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Abstract
Autonomous sensors for gravitational carbon flux in the ocean are critically needed, because of uncertainties in

the projected response of the biological carbon pump (BCP) to climate change, and the proposed, engineered accel-
eration of the BCP to sequester carbon dioxide in the ocean. Optical sediment trap (OST) sensors directly sense
fluxes of sinking particles in a manner that is independent of, and complementary to, other autonomous, sensor-
derived estimates of BCP fluxes. However, limited intercalibrations of OSTs with traditional sediment traps and
uncharacterized, potential biases have limited their broad adoption. A global field data set spanning three orders of
magnitude in carbon flux was compiled and used to develop empirical models predicting particulate organic carbon
flux from OST observations, and intercalibrating different sensor designs. These data provided valuable constraints
on the uncertainty in the predicted carbon flux and showed a quantitative, theoretically consistent relationship
between observations from OSTs with collimated and diffuse optical geometries. While not designed for this pur-
pose, commercial beam transmissometers have been used as OSTs, so two models were developed quantifying the
biases arising from the transmissometer’s housing geometry and optical beam diameter. Finally, an algorithm for
the quality control of beam transmissometer-derived OST data was optimized using sensitivity tests. The results of
this study support the expansion of OST-based gravitational carbon flux measurements and provide a framework for
interpretation of OST measurements alongside other gravitational particle flux observations. These findings also sug-
gest key features that should be included in designs of future, purpose-built OST sensors.

The ocean’s biological carbon pump (BCP) plays a key role in
regulating Earth’s climate by transferring biologically derived car-
bon to the ocean’s interior, thereby setting the vertical dissolved
inorganic carbon (DIC) gradient (Volk and Hoffert 1985). The
gravitational carbon pump (GCP), in which particulate organic
carbon (POC) passively sinks away from the euphotic zone, is
thought to make up about half of the total BCP flux globally

(Boyd et al. 2019). Sinking particles in the ocean form through a
variety of biological and physical processes which are closely tied
to the surface ocean ecosystem state (De La Rocha and Pas-
sow 2007; Siegel et al. 2016). Changes in the efficiency of the
BCP could lead to climate feedbacks that are poorly constrained
at present by Earth system models (Henson et al. 2022). Limited
observations of biological carbon fluxes in the global ocean pre-
sent a key obstacle to improved predictions. In particular, model
improvements require observations of biological carbon flux that
differentiate key mechanisms of the GCP, and these observations
have traditionally required labor-intensive, ship-based methods.
In addition, the responsible implementation of marine carbon
dioxide removal through nutrient addition to the ocean (e.g., as
proposed by National Academies of Sciences, Engineering, and
Medicine 2022) will require the rapid deployment of accurate
GCP flux sensors that are able to operate independently of ships.

A growing network of autonomous ocean-observing platforms
now provides estimates of total BCP fluxes through geochemical
budgets of DIC, nitrate, and oxygen, but these estimates do not
distinguish the contribution of the GCP (Nicholson et al. 2008;
Johnson et al. 2017; Huang et al. 2022). Profiling platforms that
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measure optical backscattering (bbp) provide POC flux estimates
by measuring change in the depth-integrated POC inventory
vs. time (Dall’Olmo and Mork 2014), and are calibrated using a
broad global data set of POC : bbp measurements (e.g., Cetini�c
et al. 2012). This method cannot distinguish sinking from
suspended particles under steady-state conditions, nor can it con-
strain fluxes below the profile depth, but the simplicity and
robustness of optical backscattering sensors permit its broad
application (Briggs et al. 2011; Alkire et al. 2012; Dall’Olmo and
Mork 2014; Bol et al. 2018; Lacour et al. 2019; Briggs et al. 2020;
Giering et al. 2020a).

Occasionally, profiling floats equipped with beam trans-
missometers (Bishop et al. 2004; Bishop and Wood 2009;
Estapa et al. 2013, 2017, 2019b) or upward-looking cameras
(Bishop et al. 2016; Bourne et al. 2019, 2021) are used as opti-
cal sediment traps (OSTs), providing proxy measurements
that are specific to gravitational POC flux and can be used
under steady-state conditions. In the OST method, sinking
particles are intercepted by the sensor itself (the upward-
facing optical window of a vertically mounted transmissome-
ter or camera) and the rate of change in the measured light
attenuance provides the proxy for flux. However, the direct
intercalibration of an OST with a co-deployed, traditional
sediment trap is labor-intensive and only two published data
sets are available, for the subtropical North Atlantic Ocean
(Estapa et al. 2017) and the California Coastal Current
(Bourne et al. 2019).

Here, we comprehensively evaluate the performance of the
OST method and provide a global calibration, with a goal of
broadening the user base of the method, as the need for well-
calibrated POC flux measurements grows. We compile a global
set of paired attenuance and sediment trap POC flux data from
multiple sources spanning contrasting ocean biogeochemical
settings, from the oligotrophic subtropics to the North Atlan-
tic spring bloom. We describe an updated algorithm used for
retrieval of attenuance flux from a timeseries of OST measure-
ments, and then present attenuance data that have been
derived from two sensor types: in situ beam transmissometers,
which measure the attenuance of collimated light using a
non-imaging sensor as described above; and laboratory photo-
micrographs of polyacrylamide gel sediment traps (Durkin
et al. 2021) from which a mean estimate of uncollimated, dif-
fuse attenuance can be derived (described below). We compare
these data to published, diffuse attenuance and POC flux
observations described by Bourne et al. (2019), and by Huffard
et al. (2020). Taken together, these data provide POC flux cali-
brations for OST-like beam attenuance and diffuse attenuance
sensors, that can be extrapolated broadly in the global ocean.
We explore the uncertainties associated with the use of differ-
ent OST sensor types for POC flux measurements, and finally,
we discuss the implications of the relationship between beam
attenuance and diffuse attenuance for the design of improved
sinking particle flux sensors.

Materials and procedures
Measurement principles

The term attenuance (atn) is used here to refer to the nega-
tive log-transformed ratio of the light passing through a plane
to a detector (Id), to the light incident upon that plane (Io;
Eq. 1; both have units of W m�2 nm�1).

atn¼� ln
Id
Io

� �
m2m�2� � ð1Þ

Note that atn as used here follows the definition of
Bishop et al. (2016) and is analogous to absorbance (Abs)
as defined by Mobley (2022), who instead defined
attenuance as Id/Io. If the light source is collimated and the
detector acceptance angle is close to 0� (subject to practical lim-
itations in reality; Boss et al. 2009) then we specify that atn is
the beam attenuance (atnc), which is related to the more famil-
iar beam attenuation coefficient (c) of light passing through a
sample volume over the pathlength L (Eqs. 2, 3).

c¼� ln Id=Ioð Þ
L

m�1� � ð2Þ

atnc ¼ c�L m2m�2� � ð3Þ

where the sampled area of atnc and the sampled volume of
c are related by L. While atn is a unitless quantity and c has
units of m�1, it is helpful to think of both as ratios, in the
case of atn between the sample’s total attenuance cross
section (σc, units of m2; Mobley 2022) and the sensor’s illu-
minated area (m2), and in the case of c between σc and the vol-
ume illuminated by the sensor (m3). Thus, atn has units of
(m2 m�2), where the numerator refers to the attenuance cross
section of the light-attenuating material and the denominator
to the geometric area. The attenuance cross section of a single
particle can be thought of as the particle’s cross sectional area
multiplied by the summed fractions of incident light absorbed
and scattered by that particle. A particle that is completely
opaque, and large relative to the wavelength of the light, will
have an attenuance cross section that is twice the geometric
cross section of that particle (Mobley 2022).

It is also useful to define a second variant of atn for the
situation where the illuminating light source is
uncollimated and the detector has a wide acceptance angle.
This is the case if atn is measured using a camera (Bishop
et al. 2016; Bourne et al. 2019, 2021). Here, we adopt the
name atnKd which is analogous to the downward, diffuse
attenuation coefficient Kd (Kd(z)=�d/dz ln(Ed(z)), where Ed(z)
is the depth-resolved plane irradiance; Mobley 2022). Similar
to the relationship between c and Kd in the water column
(Mobley 2022), where the incident light field becomes less dif-
fuse and the sensor acceptance angle decreases (for c relative
to Kd), for the same sample we expect atnc to always be greater
than atnKd because the former excludes more of the scattered
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light from the detector. As the incident light field becomes less
and less diffuse, the value of atnKd is expected to approach
that of atnc.

The rate of change of atn with respect to time serves as the
proxy for particle flux (Fatn; Eq. 4).

Fatn ¼ datn
dt

m2m�2 d�1
� �

ð4Þ

The proxy assumes that atn is only changing due to the
accumulation of sinking particles, and not due to changes
along the optical path of the transmissometer such as the
transient passage of zooplankton, changes in the background
optical properties due to vertical motion of the sensor through
the water column, or changes in the background pixel bright-
ness across an image. Therefore, some pre-processing of atn
data is usually required prior to estimation of Fatn. Below, we
describe the general methods we have developed to remove
interferences from two types of atn data: (1) timeseries of atnc

collected using beam transmissometers used as OSTs on auton-
omous floats drifting at a sampling depth and (2) atnKd com-
puted from images of particles accumulated in sediment traps.

Processing atnc data from in situ transmissometer as OST
A beam transmissometer (C-Rover 2000, 650 nm, 0.25 m

pathlength, Sea-Bird Scientific) deployed as an OST on a
drifting autonomous platform returned measurements of sen-
sor depth (z), time (t), and atnc at intervals of 3, 5, or 15 min,
collected over drift periods of 2–6 d (see “Data sets” section for
descriptions of different data sets presented here). If a rapid
sequence of atnc measurements was collected at each
timepoint (i.e., “burst sampling”), these were averaged and
timepoints with a standard deviation greater than
0.0013 m�2 m2 were discarded. Points collected outside of
� 25 m from the targeted depth were also discarded. Spikes,
which Estapa et al. (2017) observed to be well correlated with
zooplankton swimmer intrusion to nearby sediment traps,
were removed from the data using a moving median filter
followed by a moving mean filter (Briggs et al. 2011) with a
1.5-h window. As described by Estapa et al. (2017), the des-
piked data typically contained periods with slowly increasing
atnc interrupted by rapid increases, and sometimes decreases,
in atnc over a single sampling interval. While we interpret
rapid increases as sinking particle flux (see “Effect of sampling
cross section” and “Effect of optical sampling cross section”
sections), rapid decreases can only be explained by loss of
accumulated material from the sampling surface, possibly due
to turbulence or zooplankton consumption (Estapa
et al. 2017). Losses of atnc at a rate more negative than
�0.05 m2 m�2 d�1 were therefore cumulatively removed from
the data series. After these corrections, the data series were
smoothed with a centered, moving mean filter with a 1.5 h
window, and the first difference with respect to time com-
puted to obtain Fatnc (Eq. 4), which includes both the rapid

and slowly increasing periods of the atnc timeseries. Finally, a
single mean Fatnc value was averaged for the whole drift period
for comparison to simultaneously collected sediment trap
POC fluxes (see “Data sets” section). A Matlab (Mathworks)
script carrying out the above steps is also provided
(Supplemental Text; Estapa 2023).

Processing atnKd data from sediment trap imagery
The majority of the images of sinking particles reported in

this study were obtained through laboratory microscopy of
polyacrylamide gel collectors that were deployed in cylindrical
sediment traps as described by Durkin et al. (2021). Here we
describe the image processing procedure to derive a mean
value of atnKd for each gel. Similar image processing proce-
dures were followed to obtain atnKd from the in situ “Sedimen-
tation Event Sensor” (SES; McGill et al. 2016) camera data set
described in “California Coastal (Sta. M)” section. Briefly, poly-
acrylamide gel is a clear, viscous fluid placed in the bottom of
a sediment trap, that preserves sinking particle morphology
until samples can be imaged under a microscope in the labora-
tory. Here, the gel samples were imaged with a color digital
camera (various models) under transmitted light with eight-bit
resolution, at low magnification with a pixel size ranging from
7.9 to 15 μm (see “Data sets” section). The red channel of the
color images was used for all analyses for best correspondence
to the 650-nm C-Rover wavelength. A set of 10–20, non-
overlapping image tiles was collected for each sample. A value
of atnKd was computed for each image pixel of each tile. How-
ever, unlike measurements of atnc described above, multiple
image timepoints were not available from which to compute
datn/dt. Instead, we assumed that prior to particle accumula-
tion, Id= Io for each image pixel (that is, at time=0,
atnKd =0m2m�2). To obtain a value of Io for each pixel, we
assumed that the background lighting characteristics stayed
the same across the N images collected with the same camera
and microscope setup (i.e., on the same cruise). If undeployed
“blank” gel images were collected, these were used to provide
the appropriate pixel-specific Io values. If no blank gel images
were available, then a composite background image was cre-
ated from the sample images (see Supplement Figure SF1 for
an illustration). Assuming a sufficiently large number of
images with randomly located particles, the background pixel
value (Io[i,j]) was set equal to the brightest value for that
pixel over the whole set of N images (Eq. 5).

Io i, jð Þ¼ max
N

Id i, j,Nð Þ ð5Þ

Prior to calculating atnKd , each image tile was visually
examined for artifacts such as bubbles, zooplankton that were
likely to have actively entered the trap, and sample jar edges.
Masks were created manually to eliminate these areas from
further analysis. Then, atnKd images were calculated (Eq. 1)
and an area-weighted mean atnKd value was computed over all
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tiles for each sample. Finally, the collection period of the sedi-
ment trap deployment was used as the time interval to com-
pute FatnKd

.

Evaluation of beam transmissometers as OSTs
While beam transmissometers have seen the widest use as

OSTs due to their commercial availability and ease of integration
to autonomous sampling platforms, they were not designed for
the purpose of intercepting and detecting relatively large sinking
particles. We tested the degree of bias likely to arise through use
of a transmissometer as an OST due to imperfect filtering of envi-
ronmental artifacts and instrument noise, self-shading by the
instrument housing, and undersampling of rare, large particles
by an optical beam with a small cross section.

Sensitivity tests of algorithm for determining Fatnc from a
beam transmissometer

While the basis for determination of the atnc rate of change
is straightforward, the process of filtering out instrumental
noise and environmental artifacts, like spikes and rapid nega-
tive excursions in atnc, has the potential to introduce bias. We
performed a series of sensitivity tests on an artificial data set to
evaluate the performance of our algorithm for retrieving Fatnc

from a beam transmissometer. Simulated data from a transmis-
someter OST were generated with different characteristics
including Fatnc magnitude (0.01–0.69m2m�2 d�1), constant
vs. variable Fatnc , presence/absence of positive and negative
excursions, and different levels of random instrument noise.
These simulated data characteristics were chosen to span
the ranges that are typically observed in real deployments.
The parameters of the Fatnc algorithm (the despiking and
smoothing filter window width, and the threshold for identi-
fying “negative jumps”) and the overall averaging period were
systematically varied to find the settings that resulted in the
lowest root mean squared error (RMSE) (between “true” and
retrieved Fatnc ) over the largest range of input data characteris-
tics. The parameters tested are shown in Table 1.

Self-shading
The design of a transmissometer includes upper and lower

pressure housings that respectively contain the source and detec-
tor optics. When vertically mounted as for OST use, the upper
housing is above the detector window, so particles must be

carried into the sampling volume by ambient turbulence in the
water. Under quiescent conditions or with rapidly sinking parti-
cles, the upper housing is most likely to preclude particle collec-
tion, which we refer to here as “self-shading” (Estapa et al. 2017).
Using a rough turbulence scaling estimate, Estapa et al. (2017)
estimated that at a dissipation rate of ϵ = 10�9 m2 s�3

(a midrange value for the upper 1 km; Waterhouse et al. 2014)
self-shading would begin to impact particles settling faster than
200 m d�1, with greater effects on faster settling particles and at
lower ϵ values. Estapa et al. (2017) concluded that the impact of
self-shading was likely negligible in that study which sampled
the upper 500 m in a subtropical gyre where POC flux was domi-
nated by small, slowly settling particles (Durkin et al. 2015). In
the present study, we now reconsider the impact of transmissom-
eter self-shading in more productive settings with faster-sinking
particles, and at deeper depths with less turbulence.

To test the extent of self-shading, we created a simple, par-
ticle tracking model on top of the output from a publicly avail-
able, non-dimensional large-eddy simulation (LES) of a turbulent
flow field (Li et al. 2008). We scaled the modeled, non-
dimensional velocities output from the LES to a range of dis-
sipation rates and kinematic viscosities (ν) that are chara-
cteristic of the ocean interior (ϵ = 10�11–10�7 m�2 s�3 and
ν = 0.87–1.6 � 10�6 m2 s�1; Waterhouse et al. 2014). Twenty
simulations with different ϵ and ν values were completed. Simu-
lated particles (1000 per ϵ–ν combination) were randomly
assigned sinking speeds from a lognormal distribution ranging
from 1 to 1000 m d�1. These were released at random times and
locations in the model and followed through time to generate
sinking particle “tracks.” Then, we generated a polyhedron repre-
sentation of a C-Rover transmissometer (10 cm diameter) adja-
cent to a profiling float hull (15 cm diameter), and translated the
particle tracks so that they all terminated within the transmis-
someter’s beam cross section at the detector window. Using the
MATLAB Central File Exchange function “inpolyhedron.m”
(Sven 2023) we detected which simulated particle tracks inter-
sected the transmissometer housing, and thus would have been
affected by “self-shading.” The fraction of shaded particles and
the 2.5th, 25th, 50th, 75th, and 97.5th percentiles of their sinking
speed distributions were tabulated and compared to the sinking
speed distribution of the initial particle population.

Effect of sampling cross section
The light beam in most commercial beam transmissometers

has a relatively small cross section, generally on the order of
1 cm diameter where it intersects the detector window on
which sinking particles accumulate. This is only 1–2 orders of
magnitude larger than the sinking particles themselves, which
have diameters on the order 100 μm to 1 mm in size. Thus, a
transmissometer beam cross section is small enough that long
averaging periods may be necessary to adequately characterize
the true flux. We characterized the tradeoff between averaging
period and sampling cross section by analyzing an image
timeseries collected using an in situ camera sensor looking

Table 1. Parameters tested in F atnc retrieval algorithm.

Filter
window (h)

Negative jump
threshold (m2 m�2 d�1)

Overall averaging
period (d)

1 0 0.25

1.5 �0.005 0.5

2 �0.05 1

4 �0.5 2

Parameter values shown in boldface are the optimized values.
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upwards through a polyacrylamide gel sediment trap. Particles
larger than 300 μm were identified and tracked in the image
timeseries, and then the “area flux” of particles (particle area
per time) within subsampled areas of varying diameter
(0.7–5 cm) was calculated and compared to the flux in the entire
image (see “Effect of optical sampling cross section” section).

Data sets
To assess the empirical relationships among Fatnc , FatnKd

,

and POC flux (FPOC), we compiled all available data sets that
included Fatnc , FatnKd

, or both, as well as co-located FPOC from

sediment trap measurements. Table 2 summarizes the key
information chronologically, and the subsections under the
“Data sets” section briefly describe the details and deviations
of each deployment. The mean geographic locations where
the data were collected are summarized in Fig. 1. As much as
possible, we refer the reader to the original publications of
these data sets for deployment, sample analysis details, and
links to the original data, in order to minimize repeated infor-
mation. Where new data are presented here for the first time,
we provide an expanded description of these details. The indi-
vidual measurements are given in Supplemental Table ST1.

Subtropical North Atlantic (Bermuda Atlantic Timeseries
Study)

This site is an oligotrophic, subtropical gyre setting character-
ized by a low productivity, highly recycling ecosystem. Data were
collected monthly from July to September (stratified period) and
also just prior to the spring bloom (March). Sediment trap
deployments and sample analyses are described by Estapa et al.
(2017). The deployment depths spanned from 150 to 500 m. Key
caveats are that the particulate carbon flux is from particles
350 μm and smaller due to the screens used to remove zooplank-
ton “swimmers,” and total particulate carbon rather than POC

was analyzed. However, passively sinking particles at this site
were small, and the particulate inorganic carbon contribution to
the flux tends to be negligible (Durkin et al. 2015; Estapa
et al. 2017). Sediment trap samples were wet-split in triplicate
prior to analysis and we take the standard deviation among splits
as the uncertainty in FPOC (Fig. 2). Although polyacrylamide gel
traps were deployed (Durkin et al. 2015), they were not imaged
under transmitted light, so no atnKd estimates are available.

California coastal (Sta. M)
This site underlies a productive, upwelling eastern bound-

ary current system. Data were collected over the course of
8 months (October 2014–June 2015; Huffard et al. 2020). Mea-
surements were made at a depth of 3900 m, with POC fluxes
collected in a moored, conical trap (Parflux, McLane, Inc.) and
images of sinking particles measured in situ with the
transmitted-light, imaging SES located 3.2 km from the sedi-
ment trap. The deployments, trap sample analyses, and SES
instrument are described elsewhere (McGill et al. 2016; Huffard
et al. 2020). The SES images (10.5281/zenodo.7613681) were
reanalyzed here to provide estimates of FatnKd

using the “com-

posite background” method described in “Processing atnKd

data from sediment trap imagery” section. In addition to POC
fluxes, mass fluxes were also available from this deployment.
Estimated uncertainties in FPOC are not available.

New England coastal
This site is a productive near-coastal setting, with measure-

ments collected in November (fall diatom bloom) and June
(early summer, with flux dominated by zooplankton fecal
matter). Sediment traps were deployed at a depth of 150 m,
seaward of the shelf break current. These deployments and
sample collections are described and links to the data are pro-
vided by Durkin et al. (2021). Sediment trap tubes were
deployed in triplicate and we take the standard deviation

Table 2. Data set summary.

Region (program) Year References* Position (degrees) Fatnc method FatnKd
method

Subtropical North Atlantic (BATS) 2013–2014 1 31.67N–64.17E C-Rover on NBST Gel trap microscopy

California coastal (Sta. M) 2014–2015 2, 3 34.83N–123.00E None Sedimentation Event Sensor†

New England coastal 2015–2016 4, 5 39.80N–70.97E C-Rover on NBST Gel trap microscopy

Subtropical North Pacific 2017 5, 6 28.25N–137.68E C-Rover on NBST Gel trap microscopy

Subpolar Northeast Atlantic (PAPSO) 2017 4, 7 48.98N–16.48E C-Rover on NBST Gel trap microscopy

California coastal (CCE LTER) 2017 8, 9 32.87N–120.28E None Carbon Flux Explorer‡

Subpolar North Pacific (Sta. P-EXPORTS) 2018 6, 10 50.45N–144.99E C-Rover on NBST Gel trap microscopy

Subpolar Northeast Atlantic

(PAPSO-EXPORTS)

2021 6 48.92N–14.79E C-Rover on NBST Gel trap microscopy

BATS, Bermuda Atlantic Timeseries Study; CCE LTER, California Current Ecosystem Long-Term Ecological Research; EXPORTS, Export Processes in the
Ocean Through Remote Sensing; PAPSO, Porcupine Abyssal Plain Sustained Observatory.
*References: (1) Estapa et al. (2017); (2) Huffard et al. (2020); (3) McGill et al. (2016); (4) Estapa et al. (2019b); (5) Durkin et al. (2021); (6) this study;
(7) Baker et al. (2020); (8) Bourne et al. (2019); (9) Bishop et al. (2016); (10) Estapa et al. (2021).
†Described in “California Coastal (Sta. M)” section.
‡Described in “California Coastal (California Current Ecosystem Long-Term Ecological Research)” section.
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among tubes as the uncertainty in FPOC (Fig. 2). Gel sediment
traps were imaged at a resolution of 15 μm pixel�1.

Subtropical North Pacific
Sediment trap deployments were carried out at a depth of

150 m during two process stations in the subtropical North
Pacific in wintertime, as part of the “Sea2Space” project
(as described by Durkin et al. 2021). One station was represen-
tative of a low-productivity subtropical gyre setting, and the
other was located in the productive California coastal current.
Sediment trap samples were wet-split in triplicate prior to
analysis and we take the standard deviation among splits as
the uncertainty in FPOC (Fig. 2). The new FatnKd

estimates were

derived from the transmitted light images of these samples
(resolution 7.9 μmpixel�1) published by Durkin et al. 2021.

Subpolar Northeast Atlantic (Porcupine Abyssal Plain
Sustained Observatory)

Sediment trap deployments were carried out at depths of
200 and 350 m during a sediment trap intercomparison exper-
iment conducted at the Porcupine Abyssal Plain Sustained
Observatory (PAPSO) site in the subpolar Northeast Atlantic,
just prior to the spring bloom. The deployments and sample
analyses are described by Baker et al. (2020). Sediment trap
samples were wet-split in triplicate prior to analysis and we
take the standard deviation among splits as the uncertainty in
FPOC (Fig. 2). The transmitted-light microscopy on the gels
was collected with a pixel size of 11.5 μm. In addition to POC
fluxes, mass fluxes were also available from this project. Data
from this project are available from Estapa et al. (2019a).

California coastal (California Current Ecosystem Long-
Term Ecological Research)

The measurements from this study were collected in the pro-
ductive, upwelling California coastal current system, and descrip-
tions of particle characteristics were given by Bourne et al.
(2021). The POC and atnKd flux data from this study are

reported without modification from the original publication
(Bourne et al. 2019), except for a change of logarithmic base
to match the definition of atnKd used here. Observations were
collected at approximately 150m with an autonomous,
drifting, imaging sediment trap (“Carbon Flux Explorer,”
Bishop et al. 2016). The in situ camera sensor aboard the CFE
looked upward into the base of a conical sediment trap, and
collected series of images over 25-min time intervals, inter-
spersed with cleaning cycles prior to collection of background
images. Unlike the other atnKd estimates reported here, a
threshold was applied prior to taking the image average, so
that pixels with atnKd <0.046 were set to zero (Bourne
et al. 2019). Uncertainties in FPOC were propagated from the
standard deviations of replicate determinations of POC from
each trap sample (Bourne et al. 2019).

Subpolar North Pacific (Sta. P, Export Processes in the
Ocean Through Remote Sensing)

These observations were collected in a low-productivity,
iron-limited “high nutrient low chlorophyll” subpolar gyre, with
the low particle flux dominated by zooplankton products and
episodic salp blooms (Durkin et al. 2021; Steinberg et al. 2023).
The sediment trap deployments and sample analyses from this
study are described by Estapa et al. (2021), and the data are avail-
able in Estapa and Durkin (2018). Sediment trap samples were
wet-split in triplicate prior to analysis and we take the standard
deviation among splits as the uncertainty in FPOC (Fig. 2). The
gel traps were imaged at a resolution of 7.9 μm pixel�1. In this
study, the sediment trap samples were subject to a heavy con-
tamination by zooplankton “swimmers,” which was difficult to
eliminate during sample processing. A post-analysis, statistical
correction was also performed (Estapa et al. 2021).

Subpolar North Atlantic (PAPSO, Export Processes in the
Ocean Through Remote Sensing)

The data from this study, whose trap deployments captured
a high-flux event associated with the termination of the North

Fig. 1. Locations of sample collection sites summarized in Table 2. Colors correspond to those in Fig. 2.
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Atlantic spring diatom bloom, have not been previously publi-
shed. Briefly, POC fluxes were measured with a combination
of neutrally buoyant sediment traps (NBSTs; Estapa
et al. 2020) and surface-tethered sediment traps. All traps car-
ried polyacrylamide gels deployed and analyzed similarly to
Durkin et al. (2021), while NBSTs also carried beam transmis-
someters (e.g., C-Rover 2000) used as OSTs as described by
Estapa et al. (2020). Gels were imaged at a resolution of
7.9 μm pixel�1. The sediment traps were deployed in three
cycles, for 2–6 d periods at depths from 75 to 500 m in the
center of an anticyclonic eddy near the PAPSO site during
the Export Processes in the Ocean Through Remote Sensing
(EXPORTS) North Atlantic field campaign (Johnson et al., in

prep). The sampling procedures are described briefly here, but
correspond closely to the more detailed methods described by
Estapa et al. (2021), with the exception that a statistical correc-
tion for zooplankton swimmer contamination was not required.
Trap tubes were cylinders with collection areas of 0.0113 m2

(12 cm diameter). Two tubes on each trap were used for POC flux
measurements and were filled with 500 mL of 0.1%
formaldehyde-poisoned, 70 ppt brine overlain with filtered sea-
water. One tube on each trap carried a polyacrylamide gel collec-
tor overlain by filtered seawater. Upon retrieval, the two brine
tubes were combined, samples were passed through 350-μm
screens, the screens picked clean of zooplankton, and then the
screen contents were washed back into the <350 μm sample.

Fig. 2. FPOC and Fatn flux models (lines) compared to observational data (colored points). Vertical error bars show uncertainty in FPOC observations,
obtained as described in the subsections under the “Data sets” section. No horizontal error bars are shown because Fatn can be determined very precisely,
while biases must be constrained through modeling approaches described in “Evaluation of beam transmissometer performance as an OST” section. Solid
line shows model fit to data and dashed lines show the 95% confidence interval of the fit. Best fit equations, R2 values, and number of observations (n)
are also given. Colors correspond to Fig. 1. (Upper left) Prediction of FPOC from F atnc . (Upper right) Prediction of FPOC from F atnKd

(lower left). Relationship
between FatnKd

and F atnc (Lower right) Prediction of Fmass from FatnKd
.
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Samples were then split on a custom rotary splitter (Lamborg
et al. 2008). Splits for POC were filtered onto precombusted GF/F
filters (Whatman), and dried until analysis. The GF/F filters were
split gravimetrically and portions of three filters from each sam-
ple were analyzed for total C via combustion elemental analysis,
and inorganic C via coulometric titration. POC flux was com-
puted as the difference between the total and inorganic fluxes.
We take the standard deviation among splits as the uncertainty
in FPOC (Fig. 2). Sample splits for mass flux were filtered onto pre-
tared polycarbonate membranes then dried and reweighed, until
stable to within 0.01 mg, to determine the mass flux. Data from
this study are available in Estapa and Durkin (2022).

Models relating POC flux to attenuance flux
We tested several empirical models to predict POC flux and

mass flux from Fatnc and FatnKd
, and to characterize the rela-

tionship between atnc and atnKd . To first order, we expected a
linear Beer’s law relationship to apply, meaning we expected
light attenuation to be proportional to the concentration of
the attenuating substance. However the compiled data set
(Supplemental Table ST1) included fluxes spanning three
orders of magnitude, with different particle types from
biogeochemically contrasting settings, so the data were log-
transformed prior to carrying out regression analyses (Eq. 6).
Where errors in the x- and y-variables were comparable
(e.g., between atnc and atnKd ) we also tested Type II regression
models, otherwise we used Type I models.

FPOC ¼10a2 � Fatnð Þa1 mg�Cm�2 d�1
� �

ð6Þ

The performances of the different empirical models were
evaluated through the RMSE and normalized RMSE (nRMSE)
between the observations and the model, and through their
correlation coefficients. We also ruled out significant non-
linearity of the models by testing for the potential significance
of a (log[Fatn])

2 term.

Assessment
Models predicting POC flux from attenuance flux

The global data set supports the prediction of POC flux
from Fatnc or image-mean FatnKd

, and the prediction of mass

flux from FatnKd
. The regression coefficients, RMSE, and nRMSE

values for the models are provided in Table 3 and the model
fits are plotted with the observations in Fig. 2. None of the
models were significantly nonlinear (p<0.05). There was more
scatter in the FatnKd

�FPOC relationship compared to Fatnc

(R2=0.90 vs. 0.70, Table 3), but the FatnKd
�FPOC relationship

showed more linearity than did Fatnc �FPOC (a1=0.94�0.18
vs. 0.77�0.14; Table 3; Fig. 2). The strongly linear relation-
ship between Fatnc and FatnKd

(a1=1.00�0.09; R2=0.94;

Table 3; Fig. 2) is consistent with theoretical expectations
(see “Diffuse attenuance flux from transmitted-light, imag-
ing sensors” section). The performance of FatnKd

as a proxy

for mass flux was stronger than that of Fatnc (RMSE=199 vs.
291mgm�2 d�1).

Evaluation of beam transmissometer performance as
an OST

The good correlation between Fatnc and FPOC suggests that
biases due to algorithm assumptions, self-shading, and
undersampling were at least consistent across the roughly
three order-of-magnitude flux data set analyzed here. The pos-
sible impacts of these biases were quantified through a series
of modeling and sensitivity tests described below.

Sensitivity tests of the Fatnc data processing algorithm
The six simulated data sets, and the retrieval of Fatnc from

them using the algorithm described in “Processing atnc data
from in situ transmissometer as OST” section and by Estapa
et al. (2017), are depicted graphically in Fig. 3. Two constant,
mean δatnc/δt magnitudes were simulated, with and without
spikes and jumps. A variable δatnc/δt at an intermediate mag-
nitude was also simulated with and without spikes and jumps.
Together, the six simulated data sets covered a δatnc/δt range
of 0.01–0.69m2m�2 d�1. For each of the six simulated data
sets, five different instrument noise levels were simulated,
corresponding to noise standard deviations (SD) ranging from
0�10�3 to 8.6�10�3m2m�2 (Supplement Table ST2a). As a
point of comparison, the manufacturer-reported precision of
the 25-cm pathlength C-Rover 2000 used to collect the Fatnc

data discussed here is c=0.003m�1, equivalent to
atnc=7.5�10�4m2m�2. In most cases when noise SDs were
equal to or smaller than 8.6�10�4m2m�2, the algorithm was

Table 3. Summary of models tested, with coefficients as in Eq. 6.

x y Regression type N R2 a1 (unc) a2 (unc) RMSE (nRMSE) Units for y and RMSE

Fatnc FPOC 1 36 0.90 0.77 (0.14) 2.8 (0.3) 19.38 (0.52) mg-C m�2 d�1

FatnKd
FPOC 1 62 0.70 0.94 (0.18) 3.4 (0.4) 49.76 (0.81) mg-C m�2 d�1

Fatnc FatnKd
1 21 0.94 0.93 (0.18) �0.54 (0.36) 0.01729 (0.85) m2 m�2 d�1

Fatnc FatnKd
2 21 0.94 1.00 (0.09) �0.40 (0.18) 0.01183 (0.58) m2 m�2 d�1

Fatnc Fmass 1 7 0.77 0.65 (0.47) 3.4 (0.8) 291 (0.59) mg m�2 d�1

FatnKd
Fmass 1 37 0.79 0.87 (0.16) 4.0 (0.4) 199 (0.74) mg m�2 d�1
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able to recover the original δatnc/δt to within 10% over the
tested range and in the presence of large positive and negative
“jumps” in the signal (Supplement Table ST2b,c; noise SD of
8.6�10�4m2m�2 case illustrated in Fig. 3). However, in the
simulations with the highest noise level and the lowest δatnc/δt,
the true signal was not recoverable (Fig. 4; Supplement
Table ST2b,c). The algorithm’s success at retrieving δatnc/δt
was not especially sensitive to the negative jump threshold
or to smoothing window widths ≤ 2 d, but was more
sensitive to the relative instrument noise (Supplement
Table ST2b,c). This suggests that the most appropriate
parameter choices will take into account the sensor-
platform combination and how the OST is sampled and log-
ged by the platform controller. For the simulated data sets
used here, which mimicked the OST data collected by
C-Rovers carried by NBSTs (Estapa et al. 2020), the optimal
averaging window length was 1.5 h and the optimal nega-
tive jump threshold was �0.05m2m�2 d�1.

Results of self-shading analysis
An example of sinking particle tracks simulated by the self-

shading model is illustrated in Fig. 5. The turbulent dissipa-
tion rate (ϵ) had a much greater effect on the extent of particle
shading than did the viscosity (Fig. 6) so the results are

summarized here as a function of ϵ only. As expected, there
was more shading under lower-dissipation rate conditions,
with 20–25% of particles blocked at ϵ = 10�11 m2 s�3 but less
than 5% blocked at ϵ ≥ 10�8 m2 s�3 (Fig. 6).

Also as expected, particles with faster sinking speeds were
disproportionately shaded compared to slower-sinking parti-
cles. We compared the sinking speed distribution of the
shaded particles to that of the whole modeled population and
found that the shaded particles had higher sinking speeds
(Fig. 7). For instance, the median sinking speed of the
modeled particles was 29 m d�1, while the median sinking
speed of shaded particles ranged from 45 to 558 m d�1. The
sinking-speed dependence of shading was most pronounced at
lower ϵ, whereas at the largest modeled value
(ϵ = 10�7 m2 s�3), the distribution of shaded sinking speeds
began to approach that of the initial population (Fig. 7).

Effect of optical sampling cross section
In situ, time-lapse video imagery from a gel trap sample in

the subtropical North Pacific data set (“Subtropical North
Pacific” section) allowed us to examine the choice of “beam”
or imaged area on attenuence flux. The camera, mounted
beneath the transparent bottom of the gel cup, took an image
every 20 min, for a duration of 61 h. Each 5 megapixel

Fig. 3. Simulated atnc timeseries and ability of algorithm (“Processing atnc data from in situ transmissometer as OST” section) to retrieve the atnc rate of
change (δatnc/δt). (Upper left panel) Original, simulated data sets with overall mean δatnc/δt values (m2 m�2 d�1) shown in the legend. (Upper right
panel) Plots of δatnc/δt vs. time for simulated data sets without spikes and jumps (dashed lines) and the δatnc/δt retrieved using the algorithm described
in “Processing atnc data from in situ transmissometer as OST” section (solid lines). (Lower right panel) Same as upper right panel, only for the three data
sets that included spikes and jumps. Timeseries shown here have added instrument noise with standard deviation of 8.6 � 10�4 m2 m�2.
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image was cropped to remove blurring and distortion,
resulting in a 6.8 cm by 5.6 cm imaged area and a pixel size of
approximately 50 μm (Fig. 8). The smallest size of particle that
could be resolved from the images had an equivalent spherical
diameter of about 300 μm.

The fractional cross-sectional area occluded by particles was
calculated for the entire imaged area (thick black line, Fig. 8a–c),
resulting in a timeseries that resembled the simulated

attenuance shown in Fig. 2. Next, each image was sub-
sampled with different sizes of “beam diameter,” with the
smallest diameter (� 0.7 cm) corresponding to the beam of a
C-Rover transmissometer (Fig. 8a). A Monte Carlo sampling
approach was applied by randomly selecting the central posi-
tion of each subsampled region, and generating a timeseries of
fractional cross-sectional area covered by particles. These
experiments were repeated 10 times for each of the sub-
sampled “beams.” The means of these experiments (thin black
lines, Fig. 8a–c) and the standard deviations (gray shaded
areas) show an expected increasing trend over time, with sig-
nificantly larger stochasticity in the experiments with small
beam diameter. The root mean square deviation (RMSD, Eq. 7;
Fig. 8d–f) was calculated from

RMSD2 ¼
PN

i¼1 atni�atntrueð Þ2
N

ð7Þ

and showed that as the simulated beam diameter increases,
the results converge toward the case with the full imaged area
(of 38 cm2). Here, we found that > 90% of the total variability
was captured by a beam area greater than 5 cm2. The results
highlight that the discrete arrivals of large particles have a
strong impact on the time variability of the area flux (and also
of Fatn), particularly when the subsampled area is small.

Discussion
Attenuance flux as a quantitative proxy for POC flux

The importance of the ocean’s BCP to global climate (Volk
and Hoffert 1985), and its centrality to proposals to artificially
enhance ocean biological carbon uptake (National Academies
of Sciences, Engineering, and Medicine 2022), demand that
we expand global observations of the GCP in the highly
undersampled waters below the mixed layer. To that end,

Fig. 4. Relationship between the retrieved, mean δatnc/δt and the
amount of instrument noise in the original attenuance signal (tested levels
were 1, 3, 10, and 30 � 10�3 m2 m�2). Relative noise is expressed as the
standard deviation of the noise divided by the mean attenuance in the
original simulated data. Symbol colors and short legend labels correspond
to the simulated data sets shown in Fig. 3, upper left panel. Symbols out-
lined in black correspond to the timeseries shown in Fig. 3 (noise SD of
0.003 m2 m�2).

Fig. 5. Illustration of model used to test extent of transmissometer self-
shading. The large and small gray cylinders are the hulls of a profiling float
and the upper housing of a transmissometer, respectively. Trajectories of
sinking particles (colored lines; color denotes speed) were modeled at ran-
dom locations in the turbulent velocity field and then translated to inter-
sect the transmissometer’s detector window. A random subsampling of
50 trajectories (out of 1000 total) are shown.

Fig. 6. Fraction of particles blocked by the transmissometer or float hull
as a function of dissipation rate. Scatter among points at each ϵ value rep-
resents the dependence upon kinematic viscosity (itself primarily a func-
tion of temperature), and was much smaller than the dependence on ϵ.

86

Estapa et al. Optical sediment trap calibration

 15415856, 2024, 2, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lom

3.10592, W
iley O

nline L
ibrary on [29/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://aslopubs.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Flom3.10592&mode=


proxies that can accurately quantify GCP fluxes from autono-
mous platforms, and without ship support, will be especially
valuable (Claustre et al. 2021). Attenuance flux can be esti-
mated through a variety of methods, all of which measure the
light transmitted through accumulating, sinking particles.
Many of these methods have been, or can be adapted for
autonomous use.

Multiple prior studies have observed a correspondence
between POC flux and atn flux in regional settings (Bishop
et al. 2004, 2016; Bishop and Wood 2009; Estapa et al. 2013,

2017, 2019b; Bourne et al. 2019, 2021). This expected, quanti-
tative relationship is analogous to Beer’s Law which predicts
that light attenuation will follow mass concentration in a
water volume, although in the present application, attenuance
and mass accumulation are measured in an area rather than a
volume. Here, we have confirmed this expectation, and shown
that global, empirical models can respectively describe the
POC : atnc and POC : atnKd relationships across three orders of
magnitude in flux and across contrasting ocean biogeochemi-
cal settings. These settings have sinking particles of varying

Fig. 7. Comparison of sinking speed distributions of particles that were blocked by the transmissometer or float hull (colored, shaded patches) to the
speed distribution of the initial particle population (black line). The turbulent dissipation rate ϵ is indicated by color. The vertical breadth of the colored
areas is caused by differences due to kinematic viscosity and random variability (since the number of blocked particles was small).

Fig. 8. Effect of area sampled by an optical detector on flux signal variability. (Left panel) An example of a processed image, with > 300 μm particles
shown in white. Red circles indicate the sizes of sub-sampled areas. (Right panels) Time series of the fractional area occluded by particles over the entire
image (thick black line), and arriving in 10 subsampled areas in random, non-overlapping locations, for a “beam” diameter of (a) 0.7 cm, (b) 1.3 cm,
and (c) 2.7 cm. The thin black line shows the mean of these 10 simulations, and gray shading indicates their standard deviation. (d–f) The corresponding
root mean square deviation for each case.
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sizes and morphologies (e.g., Durkin et al. 2015, 2021), which
are likely to have second-order influences on POC : atnc and
POC : atnKd , similar to observations of POC : cp in the water
column (Cetini�c et al. 2012). Decreased uncertainty in the pre-
dictions can be achieved on a site-specific basis if appropriate
calibration data are collected (for instance, see differences
among sites in Fig. 2). The relatively small size of the data set
presented here did not allow rigorous testing of model parame-
terizations beyond the simple linear models used here, but as
more comparison data spanning a broad range of oceanic proper-
ties are collected, this will become more feasible. Finally, the
strong relationship between atnc and atnKd observed here shows
that measurements from different types of attenuance flux
sensors can be quantitatively related to one another, facilitat-
ing meta-analyses across different studies.

Beam transmissometers as Fatnc sensors
The main advantage to the use of a beam transmissometer

as an OST is the ubiquity of the sensor, which has been com-
mercially available for decades (e.g., C-Rover 2000 described
previously; C-Star, Sea-Bird Scientific; LISST-Tau, Sequoia Sci-
entific) and can be powered and sampled from commercially
available, autonomous platforms. While not one of the stan-
dard sensors on profiling floats in the global Biogeochemical-
Argo program (Bittig et al. 2019), beam transmissometers have
been more widely deployed than any other Fatn sensor to
date (Bishop et al. 2004; Estapa et al. 2013, 2019b; Terrats
et al. 2020). Even though there are clear issues stemming from
the fact that transmissometers were never designed to operate
as sediment traps, they are well-characterized and relatively
easy to acquire and deploy, adding great value to the Fatnc data
that these sensors continue to provide.

Because beam transmissometers are designed to measure
the beam attenuation coefficient c in a water volume, they
have characteristics that introduce bias when the sensor is
instead employed as an OST. The primary issues stem from
the small cross section of the light beam, and the upper pres-
sure housing which blocks particles from sinking straight
downward onto the detector window. The narrow beam cross
section increases the time variability of the signal, and makes
it more likely that accumulated particles will be dislodged in
between samples leading to “negative jump” artifacts in the
data. The algorithm that is used to process the raw atnc

vs. time data from a beam transmissometer-based OST must
be tuned to eliminate these artifacts (“Sensitivity tests of the
Fatnc data processing algorithm” section). In addition, averag-
ing periods of multiple days may be needed to compensate for
variability caused by discrete particle arrivals into a small sam-
pling cross-sectional area (Fig. 8), which limits the utility of a
transmissometer-OST for looking at high-frequency variability
in the GCP. Each combination of sensor, platform, and sam-
pling design (i.e., the frequency with which the transmissome-
ter is sampled) should be coupled to a round of sensitivity
tests of the data processing algorithm, to ensure that the

thresholds and averaging periods are tuned to the raw data
characteristics.

The upper pressure housing of a beam transmissometer
blocks a fraction of sinking particles from reaching the detec-
tor surface. The main controls on this are the ambient turbu-
lence which moves particles sideways into the sensor volume,
and the sinking speeds of the particles. Dissipation rates in the
upper kilometer of the global ocean range conservatively from
10�11 to 10�7 m2 s�3, with the lower end of this range charac-
terizing deep waters far from any boundaries, and the middle
part of the range (10�10–10�8 m2 s�3) being more typical of
the upper mesopelagic depths where GCP measurements are
often made (Waterhouse et al. 2014; Whalen et al. 2015).
Under the lowest-ϵ conditions, at most about 23% of particles
are shaded, with a bias against collection of the fastest-sinking
particles. Even at ϵ > 10�8 m2 s�3, about 5% of particles will be
shaded, although the sensitivity to particle speed diminishes
(Fig. 7). Possible evidence for this in our observations is the
departure from linearity of the relationship between Fatnc and
FPOC, relative to FatnKd

and FPOC (Fig. 2; Table 3). At higher

FPOC, the relative decrease in the Fatnc response compared to
FatnKd

is consistent with increasing self-shading at higher

fluxes, assuming that particles sink faster when FPOC is higher.
Although dissipation rate measurements are not routine dur-
ing BCP studies, global compilations of ϵ estimates
(e.g., Waterhouse et al. 2014; Whalen et al. 2015) should be
consulted during study design to identify depths and regions
where extra shading bias might impact Fatnc measurements
from a transmissometer-OST.

The empirical atnc : POC calibration provided here takes
into account the biases of transmissometer-based attenuance
flux measurements and provides POC flux estimates with
uncertainties of approximately 19 mg-C m�2 d�1 (1.6 mmol-C
m�2 d�1), for deployments under conditions that are represen-
ted by the studies compiled here. The data used in the calibra-
tion were collected at depths ≤ 500 m, all with C-Rover 2000
transmissometers. Applications of this calibration to Fatnc

observations collected at deeper depths away from boundaries
may result in FPOC fluxes that are biased slightly low (due to
more sensor self-shading under lower turbulence than is
accounted for by the calibration). The uncertainty in the atnc :
POC flux calibration given here is large enough that
transmissometer-derived flux estimates are best utilized in
high-productivity, high-flux settings.

Diffuse attenuance flux from transmitted-light, imaging
sensors

Transmitted-light imaging sensors can provide diffuse
attenuance flux measurements that also perform well as a
proxy for POC flux. Although the atnKd : POC calibration has
higher uncertainty than the one based on atnc, imaging sen-
sors provide complementary, simultaneous observations of
particle size and identity, and they tend to have larger
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collection areas than transmissometer-OSTs, which eliminates
some of the temporal variability introduced by small beam cross
sections. Carbon fluxes are often predicted from the analyzed
images by assuming relationships among particle volume, car-
bon content, and composition (e.g., Durkin et al. 2021). In addi-
tion to these assumptions, the specific particle detection steps in
the image analysis can introduce some uncertainty to the POC
flux prediction (Giering et al. 2020b). POC flux prediction from
FatnKd

, on the other hand, does not require particle detection

or assumptions about particle properties, and thus can provide
an important constraint for those more complex models.

In data sets where both were measured, we found that
FatnKd

was consistently lower than Fatnc , with an atnKd /atnc

ratio of about 0.4 (Fig. 2, bottom panel). This is analogous to
the general relationship between the beam and diffuse attenu-
ation coefficients in the water column, where Kd approaches
c as the light field becomes less diffuse (Mobley 2022). In fact,
Gordon et al. (1975) similarly predicted a Kd/c ratio of approxi-
mately 0.4 for typical oceanic particle scattering properties,
under natural, diffuse light in the ocean. While the illumina-
tion and sensor light acceptance angles were not available for
the variety of imaging systems represented in our atnKd data
sets, the fact that we find a consistent atnKd /atnc ratio here
suggests that the cameras used to collect the data probably
had fairly wide acceptance angles and illumination light
sources were diffuse. This also implies that the atnKd : POC cali-
bration reported here should not be applied to measurements
from imaging sensors with very different geometries such as
those using side-scattered light (e.g., Underwater Vision Pro-
filer; Picheral et al. 2010, 2022) or collimated light (e.g., Laser
Optical Plankton Counter or In Situ Ichthyoplankton Imaging
System; Checkley et al. 2008; Cowen and Guigand 2008).

Choosing the sampling area for Fatn sensors
It makes intuitive sense that fluxes derived from a small

sample area such as those on C-Rover transmissometers
(� 0.7 cm diam) are more sensitive to stochastic events such
as the arrival (or loss) or large particles. By simulating expected
attenuance timeseries from randomly selected subregions of a
gel trap with a fairly large total imaged area (� 15 cm2) we
showed that this sensitivity improves markedly as the “beam”
area is increased. Since this analysis was performed for parti-
cles larger than 300 μm, we were not able to investigate results
that include small particles. Assuming that smaller particles
arrive steadily over time, they would have a buffering effect,
reducing the overall sensitivity of the cumulative Fatnc to epi-
sodic large particle arrivals. Thus, the image area required to
adequately represent true particle variability is likely inversely
proportional to the slope of the particle size distribution.

Comments and recommendations
The choice of imaging vs. non-imaging Fatn sensors will

depend on a number of application-specific considerations,

such as platform power and longevity, the need for ancillary
particle size and identity information, and automated
vs. manual data interpretation requirements. However, some
universal considerations could help inform the design of
future sensors for attenuance-based measurements of gravita-
tional POC flux. Sensors that are unshaded from above will
eliminate a key source of bias. The good relationship here
between atnc and atnKd suggests that a slightly oblique and/or
diverging light source will still allow the precise determination
of attenuance flux, and of POC flux with appropriate calibra-
tion data. Alternatively, self-shading can also be minimized by
placing an attenuance sensor beneath a conical sediment trap
where the light source occupies a minimal fraction of the col-
lection area (such as the SES and CFE systems; “California
Coastal (Sta. M)” and “California Coastal (CCE Long-Term Eco-
logical Research)” sections; McGill et al. 2016; Bishop
et al. 2016). However, such systems can be larger and more com-
plex, perhaps not lending themselves to lower-cost, autonomous,
mobile platforms. Finally, sampling areas of optimized OSTs
should be large enough to minimize the uncertainty in
attenuance flux measured at higher time resolution.

Conclusion
There is a growing need for well-calibrated, autonomous mea-

surements of POC flux in the ocean, which can support studies
of the BCP’s mechanisms, evolution under climate change, and
impact on Earth’s carbon cycle. Such measurements are also key
components of any program that aims to enhance the ocean’s
carbon dioxide uptake by accelerating the BCP. We have shown
that the beam attenuance flux is a quasi-inherent optical prop-
erty that can be used as a quantitative proxy for POC flux, much
in the same way that the beam attenuation coefficient predicts
the POC concentration. This proxy is based on a global calibra-
tion data set spanning three orders of magnitude in flux, from a
broad range of ocean biogeochemical settings. We have also
showed how diffuse attenuance flux, obtained here from images
of accumulated particles, is related to beam attenuance flux and
also predicts POC and mass flux. The most ubiquitous source of
attenuance flux data at present comes from beam transmissome-
ters used as OSTs, and here we have quantified their biases due
to self-shading and a small beam cross section, to aid in the
interpretation of their derived flux estimates. Finally, to aid in
the broader use and development of optical POC flux sensors,
we have outlined the key features that should be included in
new sensor designs.
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