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Abstract 

 A number of factors influence Lepidoptera populations. The larvae are at the 

mercy of their environment, susceptible to the effects of poor food quality, and highly 

vulnerable to predation. In this thesis I present three manuscripts dealing with a small 

snapshot of what dynamics are at play in the control of Lepidoptera numbers. 

Host quality is a cornerstone of developmental success, with host suitability to 

the herbivore in question being affected by the plant’s nutritional profile and its 

defenses against herbivory. Plant genotype influences plant suitability to herbivores; 

domesticated plants selected for properties such as high fruit yield are demonstrably 

vulnerable to herbivory. I conducted an experiment assessing the suitability of five 

Vaccinium corymbosum cultivars to the specialist notodontid Datana drexelii. In-situ 

weekly surveys of a managed blueberry patch for naturally occurring D. drexelii larval 

clusters complemented this work. Larval survival and pupal weight did indeed differ by 

cultivar. Larval occurrence on the managed blueberries also differed by cultivar. One 

especially important result was that the cultivar ‘Jersey’ yielded few naturally-occurring 

larvae and resulted in very high larval mortality and low pupal weight. The low D. 

drexelii preference for and performance on this cultivar suggest that this variety may be 

appropriate for areas where this pest is common. Cultivar-level variation in herbivore 

vulnerability highlights how understanding plant-pest interactions can help manage 

agricultural-state planning policy. 



 

Natural enemies, in contrast to food plants, exert a top-down force on the 

populations of lepidopterans. Due to the high mortality caused by these enemies, the 

introduction of new enemies can have catastrophic effects on existing populations of 

lepidopterans. This is exemplified with the non-native generalist parasitoid Compsilura 

concinnata (Diptera: Tachinidae). This fly has been linked to the decline of Hyalophora 

cecropia and Callosamia promethea. Work done in the 1990s on these two saturniid 

species found that C. concinnata parasitized 81% of deployed H. cecropia and 68% of 

deployed C. promethea. In 2017 and 2018, we repeated this field experiment. In 2017, 

C. concinnata parasitized only 19% of H. cecropia larvae and 1% of C. promethea larvae; 

in 2018, parasitism rates were 3% and 0%, respectively. This suggests a shift in the role 

of this parasitoid in the population dynamics of these saturniid moths. 

Finally, I deal with the mere risk of predation, which has demonstrable effects on 

the development and behavior of prey species. While prey responses to predators 

reduce the threat of consumption, the physiological costs of these responses can be 

considerable. Actias luna is a large saturniid native to Eastern North America with 

multiple natural enemies. Actias luna larvae were housed with the predator Vespula 

maculifrons, which were rendered non-lethal but able to move freely, as well as in a 

control (wasp-free) treatment. To rule out generic disturbance by an obnoxious insect, a 

third group of larvae were housed with a similarly-sized but harmless scavenging fly. 

Larvae in the wasp treatment died at a higher rate than those in the control treatments; 

and survival in the fly and control treatments did not differ. Larvae that died in the fly 



 

and wasp treatments gained virtually no weight between the start of the experiment 

and their death, suggesting that they may have succumbed to starvation.  
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Preface: 

This thesis is prepared in manuscript format. The first manuscript was published 

in The Journal of Economic Entomology in 2020. The second manuscript was published 

in Agricultural and Forest Entomology in 2019. The third manuscript was published in 

Frontiers in Ecology and Evolution in 2018. 
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Introduction 

Herbivore fitness is influenced by host plant phenotype. Although wild plants 

experience strong selection for herbivore tolerance and/or resistance, domesticated 

plants are subjected to different pressures. Selection for high fruit yield in domesticated 

plants, for example, can reduce plant defense against herbivores (Sanchez-Hernandez et 

al. 2006, Turcotte et al. 2014, Hernandez-Cumplido et al. 2018). Larvae of Lymantria 

dispar L. (Lepidoptera: Erebidae) grow more quickly and have lower mortality when 

reared on domesticated versus wild-type Vaccinium corymbosum L.  (Hernandez-

Cumplido et al. 2018). Wild-type tomatoes (Solanum lycopersicum L.) produce more 

phenolic compounds than domesticated ones (Sanchez-Hernandez et al. 2006), and 

growth rate of the moth Manduca sexta L. (Lepidoptera: Sphingidae) is negatively 

correlated with such phenolics (Stamp and Yang 1996, Yang and Stamp 1996). 

Vaccinium corymbosum (hereafter ‘blueberry’) is a deciduous ericaceous plant 

native to North America grown commercially for its fruits. As with other agricultural 

plants, blueberry has multiple cultivars that have been selected for yield, flavor, or 

pest/disease resistance (Lobos and Hancock 2015, Clift et al. 2017, Rodriguez-Saona et 

al. 2019). Cultivar-related differences in herbivore growth and mortality have been 

recorded in lepidopteran species such as Streblote panda (Hübner, 1820) (Lepidoptera: 

Lasiocampidae) (Calvo and Molina 2010), and tephritid flies such as Bactrocera dorsalis 

(Hendel), Ceratitis capitata (Wiedemann, 1824) (Follett et al. 2011) and Rhagoletis 

mendax (Curran) (Liburd et al. 1998). 
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Members of the notodontid genus Datana (Walker, 1855) are defoliating pests 

of agricultural, silvicultural, and horticultural crops (Cutler and Harris 1979, Harris 1983). 

Datana drexelii (Hy. Edwards) (hereafter ‘Datana’) is a native defoliating pest of 

ericaceous plants in the genera Vaccinium L. and Gaylussacia (Kunth). Females lay 

clusters of up to 200 eggs on suitable host plants; their gregarious nature, combined 

with the fact that larvae can reach six cm in length, make it an especially destructive 

pest (Wagner 2005). While this insect does not directly attack fruit, its defoliation of 

blueberry bushes reduces the following year’s flowering and subsequent fruit crop 

(Lyrene 1992, Williamson and Miller 2000). We reared Datana larvae on different 

blueberry cultivars and measured their survival to and size at pupation. In addition, we 

repeatedly surveyed a patch planted with multiple blueberry cultivars for naturally-

occurring clusters of Datana larvae. Together, the data reveal substantial differences in 

Datana preference for and performance on different blueberry cultivars.  

Materials and Methods 

Performance Assay: In June 2019, we mated adults from a lab colony of Datana 

drexelii, reared on wild-type V. corymbosum, in an outdoor emergence cage at the 

University of Rhode Island’s East Farm research facility (Kingston, RI). We collected their 

eggs and assigned five each to 946 mL polypropylene cups (Pactiv LLC, Lake Forest, IL). 

Each cup was randomly assigned to one of five blueberry cultivars: ‘Bluecrop’, ‘Blueray’, 

‘Bluetta’, ‘Jersey’, or ‘Lateblue’. These particular cultivars were used because they were 

the most abundant and thus the removal of foliage from them would have done the 

least amount of damage to the plantings. There were 22-23 replicate cups per cultivar. 
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Eggs in a given cup generally hatched on the same day, although there were three cups 

where hatching occurred over a two-day period and one cup where hatching occurred 

over a three-day period. Host foliage from the appropriate cultivar was added to the cup 

immediately following emergence of the first hatchling. Larvae received four-leaf 

sections of foliage from current year’s growth (indicated by soft, green bark), but no 

other leaf position standardization was done. Since a 2% bleach (=0.1% NaOCl) solution 

and air drying of foliage before being added to rearing containers kills pathogenic fungi 

and bacteria that can harm larvae (Trivedy et al. 2011), we treated foliage in this 

manner before feeding it to the larvae. No survival comparison was done between 

larvae fed uncleaned foliage and larvae fed cleaned foliage. Foliage was replaced every 

three days or as needed to ensure a constant food supply. 

Four days after the last hatchling in a given cup eclosed, we weighed all 

hatchlings together and counted the number of larvae and unhatched eggs. The total 

number of hatched larvae was our starting number of larvae for a cup, regardless of 

how many eggs hatched. We used this data to calculate post-hatching survival. Larvae 

were subsequently counted and weighed together each week; we recorded the date 

each larva entered the prepupal phase. Prepupae were left in cups until all larvae in a 

cup reached such a state or died. When all prepupae had either died or become pupae, 

each pupa was sexed, weighed and then held in a 6L polypropylene bin (Sterilite Corp, 

Townsend, MA) of moist coconut coir for overwintering. 

Preference Assay: In summer 2019, we conducted a six-week Datana survey of 

an East Farm blueberry patch enclosed in bird-proof netting that did not exclude insects. 
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The patch consisted of 240 bushes arranged in eight rows of 30 bushes. The cultivars 

represented (numbers of bushes in parentheses) were ‘Bluecrop’ (25), ‘Bluegold’ (5), 

‘Bluehaven’ (15), ‘Bluejay’ (15), ‘Blueray’ (15), ‘Bluetta’ (15), ‘Chandler’ (5) ‘Collins’ (20), 

‘Darrow’ (20), ‘Earliblue’ (30), ‘Herbert’ (15), ‘Jersey’ (15), ‘Lateblue’ (15), ‘Northland’ 

(15), and ‘Reka’ (15). Cultivars were arranged in five-bush groups within a given row. 

Between July 16th and August 26th, we conducted 15 total censuses (with as 

many as nine days and as few as one day between censuses) for Datana larval clusters. 

We walked on both sides of each bush and scanned for larval clusters. We spent a 

minimum of thirty seconds per bush and longer if necessary and recorded the number 

of larval clusters on each bush before removing them from the bush. Following the final 

census, we measured the height and maximum width of each bush.  

Statistical Analysis: For the performance assay, mean pupal weight and percent 

survival (average per cup) to pupation were analyzed using analysis of covariance 

(ANCOVA), with ‘cultivar’ as the main effect and ‘hatch date’ and, since we were 

concerned about sex-mediated performance differences, ‘number of female pupae per 

cup’ as covariates. We excluded 15 cups in which only a single larva hatched, leaving a 

total of 98 cups (=replicates), since these data points skew survival percentages. When 

the ANCOVA revealed a significant main effect, we used Tukey’s HSD tests (α=0.05) to 

differentiate between treatment. 

For the preference assay, we summed the total number of larval clusters 

counted per bush over the fifteen censuses. Prior to analysis, we removed data from 

two cultivars, ‘Bluegold’ and ‘Chandler’, only represented by a single five-bush cluster 
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within the patch; all other cultivars were each represented by between three and six 

five-bush clusters. During our surveys, we noticed that small (~0.5 m in height) recently-

planted bushes had virtually no larval clusters regardless of their cultivar. We addressed 

this bias by excluding bushes below the 10th percentile in height (0.7 m) from the 

analysis; this excluded 27 bushes from five cultivars but only two of 108 larval clusters. 

The final 203-bush data set was analyzed using ANCOVA, with ‘cultivar’ as the main 

effect and ‘row’, ‘column’, and ‘bush height’ as covariates. Data was square-root 

transformed prior to analysis to attain normality. The model was initially run using all 

covariates; non-significant covariates were then removed and the model re-run. When 

the ANCOVA revealed a significant main effect, we used Tukey’s HSD tests (α=0.05) to 

differentiate between treatments. 

All analyses were performed using JMP 9.0.0 (SAS 2010). 

Results 

Performance Assay: Larvae reared on ‘Lateblue’ pupated at nearly three times 

the weight of larvae reared on ‘Blueray’, ‘Bluetta’, and ‘Jersey’ (0.375 g versus 0.127 g, 

respectively; F4,91 = 3.18, P = 0.017; Fig. 1A). Survival to pupation was also higher on 

‘Lateblue’ than on ‘Bluecrop’, ‘Bluetta’, and ‘Jersey’ (16.9% versus 5.1%; F4,91 = 3.62, P = 

0.009; Fig. 1B). Hatch date affected survival, with later-hatching larvae having higher 

mortality (F1,91 = 7.84, P = 0.006). The number of female pupae per cup was correlated 

with both weight at and survival to pupation (both P < 0.001). 

Preference Assay: We found a total of 108 Datana larval clusters over the six-

week course of the survey. The distribution of larval clusters over time was as follows: 
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14 on July 16th, ten on July 18th, 35 on July 22nd, one on July 23rd, five on July 25th, three 

on July 26th, one on July 29th, two on July 30th, two on July 31st, 11 on Aug. 1st, 12 on 

Aug. 2nd, one on Aug. 6th, two on Aug. 11th, eight on Aug. 20th, and one on Aug. 26th. 

Cultivars differed in Datana colonization (F12,161 = 2.96, P = 0.001; Fig. 2), with 

‘Bluehaven’, ‘Collins’, and ‘Darrow’ having more Datana clusters (1.00/bush, 0.75/bush, 

and 0.85/bush, respectively) than either ‘Jersey’ or ‘Earliblue’ (0.13 and 0.07 per bush, 

respectively; Tukey’s HSD at α = 0.05). No covariates affected Datana colonization (all P 

> 0.1). 
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 Figure 1: Figure 1. Mean (+ SE) Datana drexelii pupal weight (A) and mean (+ SE) D. drexelii survival to pupation (B) when 

reared on five different Vaccinium corymbosum cultivars. Bars with different uppercase letters are significantly different 

(Tukey’s HSD at α = 0.05). 
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Figure 2: Mean + (SE) D. drexelii larval clusters counted per bush for 13 V. corymbosum cultivars over the course of six weeks and 

fifteen censuses. Cultivars in dark blue were included in the performance assay (Fig. 1). Bars with different uppercase letters are 

significantly different (Tukey’s HSD at α = 0.05). 
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were significantly lower for ‘Bluetta’ and ‘Jersey’ than other tested cultivars (Figs. 1, 2). 

This implies that ‘Bluetta’ and ‘Jersey’ may have antixenotic and antibiotic effects on 

Datana.  

Mortality in the performance assay occurred mostly within a week of hatching, 

when larvae were small and inconspicuous. Our high early larval mortality across 

treatments could indicate that either cultivated blueberry is unsuitable for this species 

(comparison to wild-type blueberry is needed to determine this), or perhaps that the 

unnaturally low early instar densities could be reducing the feeding ability, and thus 

survival, of hatchlings (Dave Wagner, pers. corr). It is also possible that the quality of the 

cut blueberry used in the experiment may have diminished more quickly than the 

foliage was replaced (within 24hrs instead of 3 days), malnourishing larvae. If this high 

hatchling mortality also occurred in the field survey, we could have missed some 

oviposition events when all larvae died prior to reaching a detectable size. Because of 

this, the patterns in our field survey data may result from some combination of female 

oviposition preference and plant resistance to early-instar larval feeding. Studies on the 

survival of early-instar larvae are needed to parse out these different scenarios. While 

most larval clusters contained a similar number (10-20 individuals) of small 2nd-3rd instar 

larvae, we failed to detect some clusters until they contained 4th-5th instar larvae. The 

laboratory-based oviposition choice tests necessary to isolate the role of female 

preference may be complicated by this species’ habit of readily ovipositing on container 

walls and other artificial objects.  
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Our work could be extended to comparisons of Datana interactions with 

cultivated versus wild-type blueberry, as well as with other Vaccinium species. Selective 

breeding for pest resistance (Lobos and Hancock 2015) and the incorporation of several 

related Vaccinium species into V. corymbosum cultivars (Lobos and Hancock 2015) may 

alter the cultivar’s suitability to Datana. Both ‘Lateblue’ and ‘Jersey’, cultivars on which 

larvae did the best and worst, are pure V. corymbosum, but ‘Bluecrop’ is 4% Vaccinium 

angustifolium (Aiton, 1789) and ‘Bluetta’ is 28% V. angustifolium. Some cultivars are 

only 42% V. corymbosum and contain genes from up to five other species (Lobos and 

Hancock 2015). Intrageneric variation in herbivore susceptibility has been described for 

other Vaccinium (Ieri et al. 2013) species as well as for genera ranging from Asclepias L. 

(Waterbury et al. 2019) to Quercus L. (Rieske and Dillaway 2008). 

In summary, there were blueberry cultivar-related differences in occurrence and 

performance of this blueberry defoliator. This information could prove useful for 

cultivar selection in areas where this pest becomes a major problem, and highlights how 

understanding plant-pest interactions can help reduce the need for costly chemical or 

mechanical (hand-removal of larval clusters) treatments.  
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Introduction 

Populations of silk moths (Lepidoptera: Saturniidae) in the northeastern United 

States have declined precipitously over the past half-century (Boettner et al. 2000, 

Wagner 2012, Goldstein et al. 2015). All saturniids have been affected, and the regal 

moth (Citheronia regalis) has been extirpated from the New England mainland, the 

imperial moth (Eacles imperialis) is currently so rare that it is on the Massachusetts 

Division of Fish and Wildlife Threatened species status, and Hemileuca lucina is a Species 

of Special Concern in Massachusetts, (Wagner 2012, Goldstein et al. 2015). Several 

anthropogenic causes for this decline have been hypothesized: these include habitat 

loss, human development (including electric lighting), and control efforts for gypsy moth 

(Lymantria dispar) and other forest pests (Fitzgerald 1995, Wagner 2012). The effects of 

human population densities and land usage on the populations of these moths has yet 

to be thoroughly investigated. The latter threat reflects the fact that since saturniids and 

gypsy moth larvae overlap in host usage, pesticide use on deciduous trees should affect 

both groups. However, most pesticide use was localized, and more common in practice 

in the 1940’s and 1950’s. One would expect silk moths should have recovered in the 

past 70 years.   The increasing abundance of deer and birds in the wake of increased 

human development is another potential cause of decline, since deer browse plants 

containing moth eggs and larvae and birds prey heavily upon larvae and pupae (Wagner 

2012). However, some of these silk moths produce acoustic and/or emetic signals, 

which may be defense strategies (Brown et al., 2007). Therefore, while each factor is 
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likely important, they cannot explain why saturniids outside of New England appear 

largely unaffected.  

Researchers have suggested that the parasitoid Compsilura concinnata (Meigen 

1824) (Diptera: Tachinidae; hereafter Compsilura) might help explain saturniid declines 

(Boettner et al. 2000, Kellogg et al. 2003, Wagner 2012, Goldstein et al. 2015). This 

multivoltine tachinid was first introduced to New England in 1906 (and repeatedly over 

the next 80 years) for control of L. dispar and 12 other pests (reviewed in Elkinton et al. 

2006). Compsilura established quickly in North America, where it can attack and kill over 

180 native insect species (Arnaud 1978). Compsilura was even used against one native 

saturniid moth, the range caterpillar, Hemileuca oliviae but with no known success 

(Boettner et al. 2000). Stamp and Bowers (1990) documented high Compsilura-induced 

mortality on the saturniid Hemileuca lucina, although a study of the closely related H. 

maia found lower parasitism rates (Selfridge et al. 2007). Between 1995-1998, Boettner 

et al. (2000) assessed the impact of Compsilura on the saturniids Hyalophora cecropia 

and Callosamia promethea. They found 60-80% of larvae were parasitized over a three-

instar period, a rate high enough (if extrapolated over the larval period) to kill the entire 

experimental larval cohort (n=965). Their results suggested that Compsilura may have 

played a major role in saturniid decline and disappearance in the Northeast. In the 

Appalachian region of Virginia, saturniids remain common (Kellogg et al. 2003) despite 

the presence of Compsilura. Actias luna larvae deployed in the region were frequently 

(16-60% of cases) hyperparasitised by trigonalid wasps after Compsilura parasitism, a 

degree of top-down control that may dampen the suppression of moth populations 
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(Kellogg et al., 2003). This could also explain why Compsilura plays a minor role in gypsy 

moth mortality in Virginia. More recently, surveys failed to detect Compsilura on New 

England islands with high saturniid densities (Goldstein et al. 2015). While the fly’s 

effect on saturniids is now accepted (Wagner and Van Driesche 2010), how Compsilura 

density responds to fluctuations of primary alternate host densities, such as from  L. 

dispar  abundance or scarcity (Hajek et al. 2015), is unknown. 

We report the results of surveys conducted in 2017 and 2018 that repeated work 

described in Boettner et al (2000). To investigate whether parasitism rate of saturniids 

by Compsilura have changed over the past 20 years, we deployed C. promethea and H. 

cecropia larvae in conditions replicating those of the previous study, then assayed 

parasitism rates. We found that parasitism was substantially lower on H. cecropia larvae 

than in the previous study and virtually nonexistent on C promethea larvae. Our results, 

although only a two-year snapshot, suggest that the ecological importance of this 

parasitoid has changed.  

Methods 

Eggs of both H. cecropia and C. promethea were obtained by pairing unrelated 

captive individuals from New England (RI and CT) populations collected the prior year. 

Eggs were incubated in 240mL polypropylene cups (Pactiv, Lake Forest, Illinois). As per 

Boettner et al. (2000), the emerging H. cecropia and C. promethea larvae were reared 

on Prunus serotina and Sassafras albidum, respectively. Larvae were reared outdoors on 

live hosts within one-meter-long agribon (Berry Plastics, Evansville, Indiana) bags to 
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exclude predators and parasitoids. Pilot experiments found these bags effective at 

predator/parasitoid exclusion, and larvae reared outdoors within them experienced 

minimal mortality (A. Baranowski, unpublished data).  

Once larvae had reached the 3rd-5th instar, they were deployed on naturally 

growing understory P. serotina and S. albidum saplings, respectively, along transects in 

Cadwell Memorial Forest (Pelham, Massachusetts). Both this site, and the location of 

the transects within it, were the same as reported in Boettner et al. (2000). As per the 

prior studies, three larvae (3rd-5th instar) were placed on each plant, which were spaced 

1-3 m apart and marked with flagging tape; different transects were used for the two 

saturniid species. The 'stocking density' of three larvae/plant follows Boettner et al. 

(2000), who found no evidence for density-dependent parasitism. We also conducted 

our surveys at the same time of the year that the previous study did; Boettner et al. 

deployed C. promethea larvae on July 22-24 1995, while H. cecropia larvae were 

deployed on June 19-24 and July 2 1997.   

The survey began on 2 July when we deployed 89 C. promethea larvae. We 

retrieved these larvae on 8 July; if all three larvae were not found, we searched the 

surrounding vegetation for five minutes. Following retrieval, we deployed an additional 

104 C. promethea larvae. We retrieved these larvae on 15 July. That same day, we 

deployed 72 H. cecropia larvae; these were retrieved on 22 July. The final survey took 

place when we deployed 102 C. promethea larvae on 12 August (retrieved 19 August).  



22 
 

Retrieved larvae were reared individually in the lab in 473mL polystyrene cups 

(Pactiv, Lake Forest, Illinois) on fresh leaves from the appropriate host; wilted leaves 

were replaced with fresh foliage. Rearing cups were covered with cheesecloth held in 

place with a rubber band, and cups were placed on a bench over a moist section of 

absorbent liner to maintain humidity. Indoor rearing temperatures were 21-28o C during 

both years. Host sprigs were kept fresh by means of moist floral foam (Smithers-Oasis 

brand, Kent, OH). During 2018 rearing, cut host branches were briefly immersed in a 1% 

beach solution and shaken dry before placement into rearing cups; this was done to 

reduce the spread of larval pathogens. Larvae were inspected and waste removed from 

cups daily, and their status (live/dead/pupated) recorded. Dead larvae were held 

individually for ten days to check for parasitoid emergence, then frozen for dissection to 

determine if they contained larval parasitoids. Cocoons were inspected for parasitoid 

emergence, then held outdoors in a mesh cage until moth emergence the following 

spring. Parasitoids were identified to species whenever possible.  

In 2018, we repeated the above procedures for both moth species. We deployed 

H. cecropia and C. promethea larvae on 28 June, 5 July, 12 July, and 20 July; they were 

collected on 5 July, 12 July, 20 July, and 27 July, respectively. Numbers of H. cecropia 

larvae deployed per day were 63, 87, 71, and 16, respectively. Numbers of C. promethea 

larvae deployed per day were 89, 104, and 102 (we did not deploy this species on 20 

July), respectively. 
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We analyzed data on the number of Compsilura-parasitized larvae in 2017 versus 

2018, and in both years of our study versus the data reported in Boettner et al. (2000), 

using likelihood ratio χ2 tests. All data were analyzed in JMP 9.0.0 (SAS 2010). 

Results and Discussion 

In 2017, we deployed 72 H. cecropia larvae and recovered 31 (Table 1); seven of 

the 31 (22%) survived to pupation. Six dead larvae had been parasitized by Compsilura 

(19.3%): these produced a total of ten Compsilura pupae. One prepupal larva was killed 

by the H. cecropia tachinid specialist Lespesia samiae; this single cecropia larva 

produced 22 adult parasitoids. None of the pupated H. cecropia had Compsilura emerge 

from them. In 2018, we deployed 198 larvae and recovered 32; only one survived to 

pupation. Compsilura killed one prepupal larva (3.1%) and produced a single parasitoid 

pupa; no other parasitoid species emerged. Parasitism rates were slightly higher in 2017 

than in 2018 (χ2 1 df = 4.59, p=0.032), but both years of our study differed greatly from 

the results reported in Boettner et al. (2000) (χ2 2 df = 98.5, p<0.001).  

In 2017, we deployed 295 C. promethea larvae and recovered 190 (64.4%) (Table 

1); approximately 40% (n=77) of the retrieved larvae pupated. No Compsilura emerged 

from the dead larvae; a single C. promethea larvae was parasitized and killed by an 

unknown ichneumonid.  Two Compsilura emerged in spring 2018 from C. promethea 

cocoons, having evidently overwintered inside them. This is the first record of how 

Compsilura overwinters we can find in the literature.  No other cocoons contained 

either Compsilura pupae or adult flies. A subsequent examination revealed two cocoons 
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that each had one hole in its side, indicative of parasitoid escape. Since no other 

parasitoids emerged from these cocoons, we suspect the two Compsilura each emerged 

from a unique host larva. In 2018, we deployed 155 larvae and recovered 48. Thirty 

(55%) of the recovered larvae pupated; no parasitoids emerged from dead larvae. There 

was no difference in Compsilura parasitism rates between 2017 and 2018 (χ2 1 df = 0.45, 

p=0.5); again, however, there was a highly significant difference between our results 

and those of the previous study (χ2 2 df = 223, p<0.001). We dissected all larvae of both 

moth species that died prior to pupation to ascertain cause of death and count any 

immature larval parasitoids. 

 

Table 1: Larval retrieval and parasitoid-related mortality for Hyalophora cecropia and Callosamia promethea in 2017 and 

2018 and as reported in Boettner et al (2000) for the same location and site in the late 1990s. 

Despite lower rates of Compsilura parasitism, the H. cecropia larvae we 

recovered from the field experienced high rates of pathogen-related mortality in both 

2017 (55%) and 2018 (94%). This also affected C. promethea larvae (58% and 45% in 

2017 and 2018, respectively). Pathogen-killed larvae went from apparently healthy to 

dead, with their integument turning a distinctive black color, in a short (1-2 day) period. 

Pathogen presence was confirmed via dissection and microscopy (G.H. Boettner, 

Saturniid species Data set C. concinnata Other parasitoids
Boettner et al. 2000 300 5-7 134 (45%) 81% 2%
This survey (2017) 72 7 31 (43%) 19% 3%
This survey (2018) 198 6-7 32 (16%) 3% 0%
Boettner et al. 2000 665 6-8 117 (18%) 68% 21%
This survey (2017) 295 6-7 190 (65%) 1% 1%
This survey (2018) 155 6-7  48 (31%) 0% 0%

Callosamia 
promethea

Parasitoid-related rearing mortalityLarvae 
deployed

Days in 
field

Larvae 
retrieved (%)

Hyalophora 
cecropia
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unpublished data); the dark fluid that we found oozing from the dead larvae is typical of 

viral epizootics in captive stocks of other saturniid moths (Skowron et al. 2015).  While 

larvae occasionally died in the field sleeves, none exhibited the same symptoms as those 

dying post-retrieval. The >10-day lag between retrieval and the death of pathogen-killed 

larvae, in combination with the rapid decline and death of ‘healthy’ individuals, further 

suggests that the mortality resulted from a lab-associated pathogen, the stress of 

multiple moves (from field cages to survey trees to the lab over a 7-9 day period), or 

some combination of the two factors.   

We found no larval parasitoids in the dissected larvae. While this might have 

resulted from the high rates of pathogen-induced mortality, the time from retrieval to 

death of pathogen-killed H. cecropia larvae was 10.8+1.5 days, versus 6.2+0.9 days for 

Compsilura-killed H. cecropia larvae. Because Compsilura develops quickly within its 

host, this difference in time suggests that any Compsilura larvae present should have 

grown to sizes detectable by dissection. The fact that Compsilura inserts its hatchlings 

into, and lurks within, the immune system-neglected peritrophic membrane of its host 

(Caron et al. 2008), also makes it unlikely that immune activity of sick larvae could 

reduce survival of this parasitoid.  

While care must be taken when extrapolating from a two-year survey, the 

decline in Compsilura parasitism suggests that important changes in the ecological 

impact of this tachinid may be occurring. There are many possible explanations for our 

results; we discuss below several of the more compelling hypotheses for the apparent 

decline.  
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One possible explanation for our results involves climatic differences: extreme 

temperatures can alter or disrupt host-parasitoid interactions (Hance et al. 2007), and 

changes in precipitation can impact caterpillar abundance (e.g., Karban et al. 2017). An 

analysis of daily weather data from the periods when caterpillars were deployed in 1995 

(22-31 July) and 1997 (19-24 June and 2-9 July) revealed that temperatures averaged 

22.4o + 3.1o (SE) C and weekly rainfall averaged 2.4 + 1.13 cm (NOAA 2018). During our 

work in 2017 and 2018, temperatures averaged 23.0o + 1.5o (SE) C and weekly rainfall 

averaged 4.0 + 1.1 cm (NOAA 2018). Although rainfall values are higher in our study, our 

means include one extremely wet week (28 June - 4 July 2018) in which 8.1 cm of rain 

fell; excluding this week reduces our weekly rainfall means to 3.25 + 0.86 cm.  

The reduction in parasitism may also have resulted from increased predation on 

Compsilura itself. Kellogg et al. (2003) found that ~50% of Compsilura pupae collected in 

Virginia were hyperparasitized by trigonalid wasps and hypothesized that this might 

explain the continued local abundance of silk moths. We assessed hyperparasitism by 

rearing the 14 Compsilura pupae we collected: 13 emerged as adults and one died 

without producing any hyperparasitoids. In addition, no hyperparasitoids emerged from 

dead saturniid larvae. 

A third possibility is that Compsilura-saturniid interactions are influenced by the 

interplay between L. dispar and its fungal pathogen Entomophaga maimaiga. 

Compsilura was introduced to control L. dispar, and Culver (1919) found lower C. 

promethea densities at tachinid release sites. Compsilura parasitizes early season L. 

dispar caterpillars (Gould et al. 1990), and the ensuing generations of parasitoids attack 
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both early and late season saturniids (Wagner and Van Driesche 2010). Starting in the 

late-1980s, the establishment of E. maimaiga in the northeastern U.S. reduced both the 

frequency and magnitude of L. dispar outbreaks (Hajek 2007, Hajek et al. 2015). This 

pathogen also kills L. dispar larvae so quickly that co-infecting parasitoids like 

Compsilura are unable to complete their development (Hajek and van Nouhuys 2016). 

Compsilura also tends to attack L. dispar during early instars, while Entomophaga kills 

later instar larvae. If early-season hosts determine mid and late season Compsilura 

densities, the impact of E. maimaiga on L. dispar could affect the ability of Compsilura to 

suppress saturniids, however, there is little evidence to confirm this.  

In summary, we consistently found lower rates of saturniid parasitism by 

Compsilura than previously reported (Boettner et al. 2000) from the same location. If 

Compsilura is not presently the primary driver and sustainer of saturniid decline, then 

the reasons for it, particularly in the Northeast region, remain indeterminate. In addition 

to surveying for parasitoid presence or absence, future studies should explore 

interactions between Compsilura and other lepidopteran hosts. Specifically, it seems 

important to investigate the phenology of both L. dispar and its natural enemies for 

possible overlap in pathogen and parasitoid activity. The factors responsible for wild 

mortality in other life stages of these declining moths, biotic and abiotic, are also 

relatively unexplored. While much remains to be done, our results highlight the 

importance of longitudinal survey work capable of detecting cryptic but important 

changes in community structure. 
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Introduction 

Predation risk can affect various aspects of prey behavior and physiology (Lima 

and Dill, 1990; Werner and Peacor, 2003; Adamo, 2012; Sheriff and Thaler, 2014). These 

changes are generally seen as adaptive since they reduce the likelihood of capture 

and/or consumption. Because they require prey to alter their investment in activities 

such as foraging, however, these changes can also negatively affect growth, physical 

condition, fecundity, and, in the most extreme cases, survival (Zanette et al., 2011; 

Siepielski et al., 2014; Duong and Mccauley, 2016). Exposure to predator cues decrease 

tadpole survival (Hettyey et al., 2015), for instance, and have a similar effect on 

dragonflies (McCauley et al., 2011) and grasshoppers (Schmitz et al., 1997). 

Lepidopteran larvae are important terrestrial herbivores attacked by a wide 

variety of predators and parasitoids. Because they are slow-moving and lack a hard 

exoskeleton, they often rely on camouflage to avoid detection (Lichter-Marck et al., 

2015). Foraging-related movement greatly increases caterpillar predation risk (Bernays, 

1997), and camouflaged species may be especially likely to forego feeding in response to 

risk (Ruxton et al., 2004). Even individuals that resume feeding may suffer from the 

combined impact of reduced energy intake and the physiological costs of stress 

responses (Sheriff and Thaler, 2014). 

The luna moth Actias luna (Lepidoptera: Saturniidae; Actias hereafter) is a 

silkmoth native to eastern North America (Wagner, 2005). The solitary larvae of this 

species require 3–6 weeks to mature, during which time camouflage provides their 
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primary protection against predators and parasitoids (Tuskes et al., 1996). [Sourakov 

(2018); p. 488] characterized Actias defenses against predation as “. . . relying mostly on 

cryptic colouration and being motionless when not feeding,” although they possess 

spines that may reduce their vulnerability to vertebrate predators (Sourakov, 2018). 

Vespid wasps (Hymenoptera: Vespidae) are generalist predators that hunt caterpillars 

(Stamp and Bowers, 1988; Lichtenberg and Lichtenberg, 2003); we have repeatedly 

observed yellowjacket wasps (Vespula maculifrons; wasps hereafter) attacking and 

killing Actias larvae in the field (A. Baranowski, personal observation).  

We conducted two separate experiments measuring the survivorship of Actias 

caterpillars in the presence of wasps rendered unable to either sting or bite. We 

determined whether these responses were predator-specific by also exposing 

caterpillars to (1) wasp-sized scavenging flies that had been similarly treated; and (2) a 

no-insect control. We hypothesized that survivorship would be lowest in the wasp 

treatment, and higher in both the fly and no-insect treatments.  

Methods  

2016 Experiment 

In July 2016, a newly-emerged captive female Actias luna was mated to a wild 

male at East Farm (Kingston RI), an agricultural research facility managed by the 

University of Rhode Island. Eggs were incubated in a 473 mL polypropylene deli cup 

(Pactiv brand, Lake Forest, IL) and began hatching 10 days later. Hatchlings were offered 

hickory (Carya glabra) foliage, with waste removed and new foliage added as needed. 
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Larvae were reared communally within the cup until the 2nd instar. To prevent 

overcrowding, larvae were then transferred to a 6L polypropylene bin (Sterilite brand, 

Townsend, MA) until they averaged 1.5 cm in length, when they were transferred to a 

12L bin. Twenty-six days after hatching, 54 larvae were individually weighed (mean 

0.673 ± 0.045 [SE] g) and transferred into individual 6L bins containing hickory foliage 

kept hydrated using water-filled floral tubes. Once all larvae had been transferred, each 

bin was randomly assigned to one of three 18-bin treatment groups: a predator that had 

been rendered non-lethal, a similarly-treated harmless detritivore, and no-insect 

control.  

Bins in the non-lethal predator (“wasp”) treatment each contained a single adult 

V. maculifrons collected from either flowers or overripe fruit; prior to the experiment, 

we had repeatedly observed wasps attacking and dismembering free-living Actias 

larvae. Captured wasps were first anesthetized by brief chilling in a freezer; when the 

adults were motionless, we applied one drop of UV-bonded plastic (Bondic brand, 

Aurora, ON) to both the mandible and stinger. Once each drop was applied, we 

immediately hardened it via exposure to a UV light. This procedure rendered each wasp 

“non-lethal,” alive and mobile but unable to either sting or bite potential prey; their 

non-lethal nature was confirmed via our repeated handling of test specimens with no 

stings or bites. We explored whether our addition of the glue affected wasp behavior via 

a pilot experiment in which we visually assessed the behavior of non-lethal and lethal 

wasps added singly to plastic bins. When resting, the non-lethal wasps spent more time 

grooming their mandibles than the lethal wasps; there were no other noticeable 
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differences in time of flight or exploratory behavior. The wasp in each bin was checked 

daily and replaced with a new wasp when it died.       

 Bins in the harmless detritivore (“fly”) treatment each contained a single adult 

scavenging fly (families Caliphoridae and Sarcophagidae), of similar size as the wasps, 

collected from trash or reared from eggs. As with the wasps, we added UV-bonded 

plastic to the mouthparts and terminal abdominal segment of each fly. Each fly was 

handled the same way we handled the wasps. Flies were checked daily and replaced 

with a new one as needed.    

Bins in the no-insect (“control”) treatment each received a single section of 

bamboo toothpick of wasp length, with one dot of UV-bonded plastic dots added to the 

end. Each bamboo toothpick was replaced every 2 days to simulate the level of 

disturbance received by the other two treatments.       

 After the experiment started, each bin was checked daily; food was replaced, 

waste removed, and treatments renewed as necessary. Larvae were weighed weekly 

and at either pupation or death; time (days) to either event was recorded for each larva. 

Each treatment was replicated 18 times for a total of 54 larvae.  

2017 Experiment  

To ensure that our results were robust, we repeated the experiment in 2017. 

The two experiments were identical except for the following differences. We collected 

eggs from three pairings (=broods) of different captive Actias females with wild males; 

eggs and larvae from the three different broods were held in separate containers. Brood 
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one larvae hatched on July 13–18, brood two larvae hatched on August 3, and brood 

three larvae hatched on August 8. Larvae were reared on Juglans nigra throughout the 

experiment because of greater vegetation availability, and cut foliage was kept hydrated 

using microcentrifuge tubes filled with agar water (3 g/L agar:water). This latter 

procedure kept foliage fresh while preventing floral tube leakage. Larvae reaching their 

3rd instar were transferred in groups of 25 to individual 6 l bins to prevent 

overcrowding. Data collection for experiment #2 was the same as for experiment #1, 

with the exception that the brood identity of each larva was recorded. A total of 86 

larvae were used in the experiment, with each treatment replicated 28–29 times. Of 

these larvae, 21 larvae were from brood one (n = 7/treatment), 40 from brood two (n = 

13–14), and 25 from brood three (n = 7–9).  

Statistical Analysis  

For experiment #1, we analyzed treatment-level differences in larval outcome 

[died, pupated] by fitting a GLM with a binomial distribution and logit link (maximum 

likelihood estimation method). We used GLM with a normal distribution and identity 

link to assess differences in percentage weight gain at, and time to, death or pupation, 

analyzed separately for each outcome. All p-values were obtained using likelihood-ratio 

χ 2 tests.      

For experiment #2, we assessed the individual effects of treatment, brood 

identity, and their interaction on larval outcome by fitting a GLMM with a binomial error 

distribution and logit link function. Because the Hessian matrix suggested quasi-
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complete separation, we reran the model using biasadjusted estimates (Firth adjusted 

maximum likelihood). Brood identity was used as a random effect in the model, and p-

values were obtained by performing likelihood-ratio χ 2 tests. A linear mixed effects 

modeling approach was also used to analyze weight at and time to pupation (for 

surviving larvae), or weight at and time to death. These variables were analyzed 

separately for each outcome; treatment was coded as a fixed effect and brood identity 

as a random effect. Chi-square and p-values were obtained as above. All analyses were 

conducted using JMP 9.0.0 (SAS Institute, Cary NC).  

Results 

2016 Experiment 

More wasp-cue larvae died than in the other two treatments. Only 17% of wasp-

exposed larvae pupated, vs. 50% of larvae in the fly-cue and control treatments [Figure 

1A; X 2 (2df) = 6.04, p = 0.049]. Of the larvae that pupated, mass at pupation and time to 

pupation did not differ among the three treatments (both p > 0.20; Table 1).   

 Although the treatments did not affect pupated larvae, there was a marginal 

between-treatment difference in the time to death of larvae dying prior to pupation 

(Figure 1B). Control larvae that died prior to pupation lived seven and 4 days longer than 

larvae in the fly- and wasp-cue treatments, respectively [X 2 (2df) = 5.15, p = 0.076]. 

Larvae that died prior to pupation also gained similar amounts of weight prior to their 

death [Figure 1C; X 2 (2df) = 4.30, p = 0.116].  

2017 Experiment  
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Although more larvae in all three treatments survived to pupation (39 and 61% 

survival in 2016 and 2017, respectively), only the wasp-cue treatment differed from the 

control [Figure 1D; X 2 (2df) = 13.30, p = 0.001]. As in 2016, there were no treatment-

level differences in time to, or weight gain at, pupation (both p > 0.3; Table 1).   

 There were substantial treatment-level differences between larvae that died 

before pupation. Larval longevity was greatest in the control treatment and lower in the 

fly- and wasp-cue treatments [Figure 1E; X 2 (2df) = 6.18, p = 0.045]; a similar pattern 

was seen in percentage weight gain prior to death [Figure 1F; X 2 (2df) = 6.36, p = 

0.042].       

The three broods differed overall and in their treatment response 

(Supplementary Information). Overall survival was highest for brood three [88%; 

“brood”: X 2 (2df) = 15.3, p < 0.001], while brood one responded most strongly to the 

treatments [“treatment∗brood”: X 2 (4df) = 12.9, p = 0.012]. Brood three also took 

longer to pupate [X 2 (2df) = 14.8, p < 0.001] and gained more weight prior to pupation 

[X 2 (2df) = 9.2, p = 0.010]; this likely reflects the greater number of brood three larvae 

surviving to pupation.        

While we did not take any data on predator or prey behavior, the wasps and flies 

appeared to behave similarly in both experiments. For the first several hours following 

their individual addition to an Actias-containing plastic bin, both types of insects spent 

most of their time flying between perches where they sat while attempting to groom 

their mouthparts. Wasps appeared more agitated than flies during the grooming period 

and would often buzz their wings while grooming; this behavior was never observed 
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with flies. After this first period, both wasps and flies were predominantly found walking 

on the walls of the plastic bin with occasional short (5–8 cm) flights between walls. 

Neither type of insect appeared interested in the Actias larva and were only rarely 

observed in physical contact with it.  

 

Figure 1: Impact of varying risk cues on Actias luna larval development. Left-hand panels: 2016 experiment (n = 

18/treatment); right-hand panels: 2017 experiment (n = 28–29/treatment). (A,D): Proportion of A. luna larvae surviving to pupation. 
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(B,E): Mean ± SE days from the start of the experiment to death of non-pupating larvae. (C,F): Percentage ± SE weight gain from 

hatching to death of non-pupating larvae. Green bars: no risk cues; yellow bars: risk cues from harmless scavenging fly; red bars: risk 

cues from Vespula sp. predatory wasp. Lower-case letters indicate treatments similar at α = 0.05 (post-hoc Tukey HSD); N.S. = no 

significant differences among treatments. 

 

Table 1: Weight at pupation (g) ± SE and days to pupation ± SE for larvae surviving to pupation in the 2016 (top) and 2017 

(bottom) experiments. 

Discussion  

Our two experiments, conducted in different years with different populations, 

found that predation risk decreases Actias survival by ∼55% (66 and 43% in 2016 and 

2017, respectively) relative to control treatments, while exposure to a similarly-sized 

and -treated detritivorous fly did not. This appears to be the first direct evidence that 

risk alone can increase prey mortality in lepidopterans.      

 The impact of predator cues may reflect the heavy reliance of Actias larvae on 

camouflage for predator defense. While their spines and strong grip on twigs and 

branches may deter vertebrate predators (Sourakov, 2018), Vespula sp. wasps 
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dismember larger caterpillars in situ (Lichtenberg and Lichtenberg, 2003). Feeding by 

caterpillars greatly increases their vulnerability to wasp predation (Bernays, 1997), and 

Actias that perceive risk “freeze” in place (A. Baranowski, personal observation). 

Confining larvae and wasps together (the drawbacks of which are discussed below) 

decreases or stops feeding, as indicated by the minimal weight gain of larvae dying in 

the wasp treatment (Figure 1F). Exposure to foraging honeybees similarly reduces 

feeding, and thus plant damage, by Spodoptera exigua caterpillars (Tautz and Rostás, 

2008). The fact that honeybees pose no threat to S. exigua suggests that hymenopteran 

buzzing, especially in combination with volatile and visual cues, may be a general risk 

cue for caterpillars (Tautz and Markl, 1978).        

 The risk-induced increase in Actias mortality is consistent with findings from 

aquatic predator-prey systems in which predator cues reduced the survivorship of both 

tadpoles (Hettyey et al., 2015) and larval dragonflies (McCauley et al., 2011). In a 

terrestrial system, Stamp and Bowers (1991) used data on weight gain of buckmoth 

(Hemileuca lucina) caterpillars in the presence and absence of wasps to infer the risk-

induced increase in caterpillar mortality. They estimated that exposure to wasps 

reduced survival by 20.3% via reductions in food intake that slowed growth and 

increased the larval period. Our study builds on theirs by providing the first directly-

measured evidence that risk increases mortality in a terrestrial predator-prey system. 

More generally, the strong responses of multiple lepidopteran species to risk cues 

(Tautz and Markl, 1978; Stamp, 1997; Johnson et al., 2007) suggests that similar results 

may occur in a range of systems and play an important but relatively unappreciated role 
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in plant-herbivore-natural enemy interactions in natural and managed ecosystems.  

 Low mortality in the fly treatment (Figures 1A,D) can be interpreted as 

suggesting that Actias differentiate between predators and other similarly-sized but 

harmless flying insects. This interpretation agrees with work in both aquatic and 

terrestrial systems (e.g., Bass and Gerlai, 2008; Zanette et al., 2011) showing that prey 

can distinguish between cues from similarly-sized dangerous and harmless species. It is 

not, however, consistent with our data on larvae that died prior to pupation. If Actias 

perceived flies as less risky, the time to death (Figures 1B,E) and weight gain prior to 

death (Figures 1C,F) of fly-exposed larvae should be either similar to, or slightly less 

than, the control treatment. Instead, both metrics were identical to those seen in the 

wasp treatment: fewer larvae died in the fly treatment, but those that did appeared to 

respond as strongly to flies as their counterparts did to wasps. This may suggest that 

individual Actias have different “risk thresholds” that determine their reaction to cues 

(i.e., the shy-bold continuum; Sih et al., 2012). Larvae with high risk thresholds would err 

on the side of boldness and continue to forage even when a predator might be present. 

Conversely, larvae with lower thresholds would cease feeding even when exposed to 

low-risk cues such as the buzzing of a fly. Such risk thresholds would also explain the 

similar size and larval period of successfully-pupating larvae; individuals that did not 

perceive their environment as risky should have similar times to and size at pupation. If 

true, then our work may point more toward Actias larvae distinguishing between 

different risk levels rather than discriminating between predatory wasps and similarly-

sized but harmless flies.     
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The brood-level differences we observed suggest the potential for ecologically-

relevant intraspecific variation in risk responses (Bolnick et al., 2011). Since the broods 

emerged at different times, we cannot rule out the possibility that our results are 

explained by phenology rather than genetic differences. Our increasing awareness of 

the impact of maternal stress on offspring phenotypes (Sheriff et al., 2018), however, 

argues strongly for additional research into this topic.      

 The fact that risk alone is sufficient to reduce caterpillar survival suggests several 

important areas of future research. Perhaps the most important is the nature of the 

predator cue; while other researchers have found “buzzing” important in caterpillar risk 

assessment (Tautz and Markl, 1978; Tautz and Rostás, 2008), chemical and visual cues 

may well complement and enhance auditory inputs. In retrospect, it would have been 

useful to include a “no-contact” treatment in which the non-lethal wasps were 

prevented from having the opportunity to physically touch the caterpillar; this would 

have allowed us to determine whether direct contact between the predator and its prey 

contributed to the observed effect. It is also important to consider how continuously 

confining caterpillars and cues together in an enclosed space might have affected our 

results. Although many studies have used continual risk exposure to understand its 

effects (reviewed in Ferrari et al., 2009), the variability of risk in natural settings should 

affect caterpillar responses. Finally, our work highlights the need for future studies 

linking risk-mediated changes in foraging time (Johnson et al., 2007) and assimilation 

efficiency (Thaler et al., 2012) to individual survival.  

 



45 
 

References Cited  

Adamo, S. A. (2012). The effects of the stress response on immune function in 

 invertebrates: an evolutionary perspective on an ancient connection. Horm. 

 Behav. 62, 324–330.  

Bass, S. L. S., and Gerlai, R. (2008). Zebrafish (Danio rerio) responds differentially to 

 stimulus fish: The effects of sympatric and allopatric predators and harmless fish. 

 Behav. Brain  Res. 186, 107–117.  

Bernays, E. A. (1997). Feeding by lepidopteran larvae is dangerous. Ecol. Entomol. 22, 

 121–123.  

Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., et al. 

 (2011). Why intraspecific trait variation matters in community ecology. Trends 

 Ecol. Evol. 26,  183–192.  

Duong, T. M., and Mccauley, S. J. (2016). Predation risk increases immune response in a 

 larval dragonfly (Leucorrhinia intacta). Ecology 97, 1605–1610.  

Ferrari, M. C. O., Sih, A., and Chivers, D. P. (2009). The paradox of risk allocation: a 

 review and prospectus. Anim. Behav. 78, 579–585. 

Hettyey, A., Tóth, Z., Thonhauser, K. E., Frommen, J. G., Penn, D. J., and Van Buskirk, J. 

 (2015). The relative importance of prey-borne and predator-borne chemical cues 

 for inducible antipredator responses in tadpoles. Oecologia 179, 699–710.  

Johnson, M.-L., Armitage, S., Scholz, B. C. G., Merritt, D. J., Cribb, B. W., and Zalucki, 

 M. P. (2007). Predator presence moves Helicoverpa armigera larvae to 

 distraction. J. Insect Behav. 20, 1–18.  



46 
 

Lichtenberg, J. S., and Lichtenberg, D. A. (2003). Predation of caterpillars on understory 

 saplings in an Ozark forest. Southeastern Nat. 2, 423–432.  

Lichter-Marck, I. H., Wylde, M., Aaron, E., Oliver, J. C., and Singer, M. S. (2015). The 

 struggle for safety: effectiveness of caterpillar defenses against bird predation. 

 Oikos 124, 525–533.  

Lima, S., and Dill, L. (1990). Behavioral decisions made under the risk of predation: A 

 review  and prospectus. Can. J. Zool. 68, 619–640. doi: 10.1139/z90-092  

McCauley, S. J., Rowe, L., and Fortin, M.-J. (2011). The deadly effects of “nonlethal” 

 predators. Ecology 92, 2043–2048.  

Ruxton, G., Sherratt, T., and Speed, M. (2004). Avoiding Attack: The Evolutionary 

 Ecology of Crypsis, Warning Signals and Mimicry. Oxford: Oxford University 

 Press.  

Schmitz, O., Beckerman, A., and O’brien, K. (1997). Behaviorally-mediated trophic 

 cascades: effects of predation risk on food web interactions. Ecology 78, 1388–

 1399.  

Sheriff, M. J., Dantzer, B., Love, O. P., and Orrock, J. L. (2018). Error management 

 theory and the adaptive significance of transgenerational maternal-stress effects 

 on offspring phenotype. Ecol. Evol. 2018, 1–10.  

Sheriff, M. J., and Thaler, J. S. (2014). Ecophysiological effects of predation risk; an  

 integration across disciplines. Oecologia 176, 607–611.  

Siepielski, A. M., Wang, J., and Prince, G. (2014). Non-consumptive predator-driven 

 mortality causes natural selection on prey. Evolution 68, 696–704.  



47 
 

Sih, A., Cote, J., Evans, M., Fogarty, S., and Pruitt, J. (2012). Ecological implications of 

 behavioural syndromes. Ecol. Lett. 15, 278–289.  

Sourakov, A. (2018). Size, spines and crochets: defences of luna moth caterpillars 

 against predation by brown anoles. J. Nat. Hist. 52, 483–490.  

Stamp, N. E. (1997). Behavior of harassed caterpillars and consequences for host plants. 

 Oikos 79, 147–154.  

Stamp, N. E., and Bowers, M. D. (1988). Direct and indirect effects of predatory wasps 

 (Polistes sp.: Vespidae) on gregarious caterpillars (Hemileuca lucina: Saturnidae). 

 Oecologia 75,  619–624.  

Stamp, N. E., and Bowers, M. D. (1991). Indirect effect on survivorship of caterpillars 

 due to  presence of invertebrate predators. Oecologia 88, 325–330.  

Tautz, J., and Markl, H. (1978). Caterpillars detect flying wasps by hairs sensitive to 

 airborne vibration. Behav. Ecol. Sociobiol.  

Tautz, J., and Rostás, M. (2008). Honeybee buzz attenuates plant damage by 

 caterpillars. Curr. Biol. 18, R1125–R1126.  

Thaler, J., Mcart, S., and Kaplan, I. (2012). Compensatory mechanisms for ameliorating 

 the fundamental trade-off between predator avoidance and foraging. Proc. Natl. 

 Acad. Sci. U.S.A. 109, 12075–12080.  

Tuskes, P. M., Tuttle, J. P., and Collins, M. M. (1996). The Wild Silk Moths of North 

 America: A Natural History of the Saturniidae of the United States and Canada. 

 Ithaca NY: Cornell University Press.  



48 
 

Wagner, D. L. (2005). Caterpillars of Eastern North America. Princeton NJ: Princeton 

 University Press.  

Werner, E., and Peacor, S. (2003). A review of trait-mediated indirect interactions in 

 ecological communities. Ecology 84, 1083–1100.  

Zanette, L. Y., White, A. F., Allen, M. C., and Clinchy, M. (2011). Perceived predation 

 risk reduces the number of offspring songbirds produce per year. Science 334, 

 1398–1401.  


	SEVERAL FACTORS AND THEIR ROLE IN CONTROL OF LEPIDOPTERA POPULATIONS
	Recommended Citation

	firstpartakbthesis65final616.pdf
	thesis2ndsection616.pdf
	List of Figures
	Manuscript 2 Table 1……………………………………………………………………………………………………24
	Manuscript 3 Table 1……………………………………………………………………………………………………41

	bodyofthesis616.pdf
	Datana drexelii (Lepidoptera: Notodontidae) oviposition and larval survival on highbush blueberry cultivars


