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ABSTRACT 

Dimensionality reduction algorithms are a commonly used solution to create a 

visual summary of high dimensional data in a way that makes identification of patterns and 

trends easier. Algorithms that are used to visualize data as 2 or 3 dimensional plots are 

popular options, even more so due to clustering and manifold learning. There already exist 

many tools, both linear and nonlinear, that are used in visualizing high dimensional data, 

three of the most popular being PCA, t-SNE and UMAP. PCA has low memory 

requirements and is efficient in low dimensions, t-SNE captures much of the local structure 

of high dimensional data while also revealing factors like presence of clusters, and UMAP 

has no computational restrictions on embedding dimension. 

Despite each of their respective advantages, all three of these tools have noticeable 

drawbacks. t-SNE and UMAP both have hyperparameters which require tuning to get 

visualizations of any value. PCA cannot recover nonlinear structure, so there can be 

significant loss of the global structure when applying that algorithm to data. These 

drawbacks prompt the development of new (mostly nonlinear) tools for visualizing high 

dimensional data. The reason for which we would want to visualize high dimensional data 

in the first place is because humans are incapable of seeing in more than three dimensions. 

Reducing the dimension of high dimensional data enables us not only to view the data, but 

to notice patterns and easier detect anomalous data points. 

Manifold learning is one approach to getting a simplified low dimensional version 

of higher dimensional data. This machine learning tool is used in the visualization of high 

dimensional data by describing these datasets as low dimensional manifolds embedded into



higher dimensional space. Clustering is a machine learning approach that groups together 

individual data points in a way that provides value. Clustering simplifies a large high 

dimensional dataset by showing clusters, or organized groups of data points, rather than all 

the data points individually. Hierarchical clustering applies this principle by first 

organizing datasets into one large cluster, and then recursively dividing the current 

cluster(s) until a specific criteria is met that finds the optimal “level” of this process, or the 

optimal clusters which represent the dataset. 

Clustering algorithms are usually more effective in lower dimensions due to the 

“curse of dimensionality”, or the issues which arise when analyzing high dimensional data 

that do not occur in lower dimensions. For this reason, if we want to apply clustering 

algorithms to high dimensional data, we will be required to use dimensionality reduction 

first. This is a reason for which we would use manifold learning in tandem with hierarchical 

clustering, as it reduces the dimension of the data first to maximize the effectiveness of 

clustering. 

When manifold learning and hierarchical clustering are used in unison, the result is 

a set of clusters from a dataset brought down to a lower dimension through manifold 

learning. These clusters, when taken from the manifold, are then able to be visualized easily 

in graph form. In this study, we will develop a tool to visualize high dimensional data by 

using hierarchical clustering and manifold learning together, but without actually reducing 

the dimension. Instead of using dimensionality reduction traditionally, we will visualize 

low dimensional summaries of high dimensional data. The summaries inferred from the 

data will give information about the manifold, such as connectedness between different 

parts of the manifold and how this connectedness changes through different stages of the



hierarchical clustering algorithm. These summaries will also give factors indicating the 

presence of possible anomalous data points. 

To create and access these summaries, we will use Pyclam, the Python 

implementation of CLAM (Clustered Learning of Approximate Manifolds). CLAM is an 

existing dimensionality reduction tool that uses manifold learning and hierarchical 

clustering, and made primarily for anomaly detection. From the manifolds produced by 

CLAM, we will be able to access all the necessary properties needed to infer graphs. These 

graphs will be returned in our implementation in the form of a DOT file, a file format read 

by various software to produce a graphical representation. After we are able to produce 

working DOT files, we will use a visualization tool of our own design, implemented in 

Rust, to read these DOT files and display these graphs in a force-directed layout. 
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CHAPTER 1 

INTRODUCTION 

1.1 Dimensionality Reduction 

Many datasets in machine learning almost always have a high dimensionality, 

meaning these datasets possess thousands of features. This also includes real-world data, 

such as speech signals, digital photographs, or fMRI scans. Having such a large number of 

features causes issues such as an extremely slow training process and difficulty in finding 

an effective solution. These issues are together known as the “curse of dimensionality”, 

which dimensionality reduction techniques aim to solve. Dimensionality reduction is the 

transformation of high dimensional data into a lower dimensional representation that is 

typically more meaningful. Dimensionality reduction is important to many fields, since it 

uses the classification, visualization, and compression of high-dimensional data by 

reducing or simplifying the properties of high-dimensional spaces [3, 22]. 

1.2 Data Visualization 

Data visualization is arguably one of the most important parts of dimensionality 

reduction, since it has the dimensionality of the given data drop down to two or three, 

making it possible to visualize the data on a plot. This opens the possibility of gaining 

important insights by analyzing the patterns and trends these plots can give us. Two major 

approaches exist for data visualization, projection and manifold learning. Projection 

translates every high dimensional data point onto a low dimensional subspace, 

approximately preserving the distances between the points. Manifold learning, which will 
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be explained in further depth in Subsection 1.2.1, relies on the assumption that most real-

world high dimensional datasets lie close to manifold with a much lower dimension [22]. 

1.3 Importance of Graphs 

The purpose of a graph is to present data, often too numerous and complicated to 

be described in text, in a way that visually illustrates relationships in the data [23]. Graphs 

are used extensively in computer science, as well as many other related fields. Many 

domains, such as social networks, molecular graph structures, biological protein-protein 

networks, recommender systems can be modeled as graphs. Relationships and interactions 

between individual units can be represented as edges connected between nodes 

representing the units. Graphs also play a key role in machine learning. When making 

predictions and discovering new, graph-structured data is used as feature information [24]. 

1.4 Our Solution 

Using CLAM, an existing dimensionality reduction tool, we have been able to 

extract low dimensional summaries of high dimensional data in the form of manifolds. 

From these manifolds, we were able to iterate over the clusters recorded into it, and thus 

infer two types of graphs to display the data. The first graph, the Cluster Tree graph, 

visualizes the clusters in the manifold made by hierarchical clustering as a binary tree. The 

Manifold Layer graph, the second graph, visualizes a specified layer of the Cluster Tree, 

representing the dataset at a specified stage of the hierarchical clustering algorithm. 

The algorithms used to produce these graphs were implemented in Python and 

added to Pyclam, the Python implementation of CLAM. These implementations would 
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return the graph in the form a DOT file, which is a file format able to be read by software 

to produce visualized graphs [12]. After the DOT files were produced, we would then use 

Graphviz, a DOT file visualization software, to test the file format for errors. After the 

DOT files were written to a correct format, we would observe their visualization and 

determine what features to add in order to make the graph more meaningful in terms of 

anomaly and pattern detection. 

After being able to return usable DOT files from our implementations, we were 

able to use them to test our own graph visualization tool, which we implemented in Rust. 

This tool was made with the functionality of Graphviz in mind, such that it would read 

DOT files and produce a visual representation of the graph. Where we intended to make 

our Rust tool different in Graphviz was the graph’s layout. Using an existing Rust library, 

force_graph [19], we would create a visually appealing force-directed graph from the DOT 

file. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Current Data Visualization Tools 

Reducing the dimensionality of data and visualizing it as a plot is not a new concept, 

as there already exist multiple tools for this purpose. Traditionally, dimensionality was 

reduced using linear techniques, of which PCA (Principal Components Analysis) was a 

popular option [3]. These tools reduce dimensionality through projection, translating the 

data into a linear subspace with minimum information loss [22]. However, if the data lies 

on a nonlinear submanifold of the feature space, then linear dimensionality reduction tools 

will overestimate the dimensionality, and thus give a much less accurate summary of the 

data. Since linear solutions are unable to adequately handle complex nonlinear data, there 

have been many recently proposed nonlinear tools for dimensionality reduction [1, 3, 15]. 

Existing tools used in dimensionality reduction includes PCA, t-SNE, and UMAP. Another 

and more recent one is CLAM, which we will be using in this project. CLAM uses a 

combination of hierarchical clustering and manifold learning to get a dimensionally 

reduced set of clusters, each cluster representing a group of similar data points. 

2.1.1 PCA 

PCA (Principal Component Analysis) is a linear dimensionality reduction tool that 

has found applications in fields such as facial recognition and image compression, and 

covers standard deviation, covariance, and eigenvectors. PCA works by identifying the 

hyperplane to which the data lies closest to, and then projects the data on that hyperplane, 

retaining most of the properties of the original dataset in the process [22]. PCA’s strengths 
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include low sensitivity to noise, low capacity and memory requirements, and high 

efficiency in smaller dimensions. PCA’s key weaknesses are its covariance matrix being 

difficult to evaluate in an accurate manner, and even simple invariances could not be 

captured by the PCA unless this information is supplied by the training data [18]. Another 

weakness of PCA comes with its nature as a linear tool for dimensionality reduction, as 

studies have shown that nonlinear techniques outperform their linear ones on complex tasks 

[3]. 

2.1.2 t-SNE 

t-SNE is a nonlinear tool for visualizing high dimensional data, capable of capturing 

most of the local structure of high dimensional data while revealing global structure, such 

as the presence of clusters, at several scales. t-SNE takes a high dimensional data set and 

reduces it to a low dimensional graph while retaining much of the original data’s 

information. This is made possible by giving each data point a location on a two or three-

dimensional map, and finding clusters in data, making sure that this embedding preserves 

the original data’s information [22]. Testing t-SNE on a variety of real-world data sets has 

been shown that it outperforms existing state-of-the-art techniques for visualizing data. t-

SNE’s weaknesses lie in its unclear performance on general dimensionality reduction tasks, 

its local nature making it sensitive to the differences between the inherent high 

dimensionality of data and its reduced dimensionality, and not guaranteeing convergence 

to a global optimum of its cost function [17]. 
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2.1.3 UMAP 

UMAP (Uniform Manifold Approximation and Projection) is a nonlinear 

dimensionality reduction tool, and is very effective in visualizing clusters data points along 

with their relative proximities [22]. UMAP constructs a topological representation in two 

steps: approximating the manifold containing the data, and building a fuzzy simplicial set 

representation of the approximated manifold. Strengths which UMAP has over t-SNE lie 

in visualization quality, global structure preservation, runtime performance, and ability to 

scale to significantly larger dataset sizes than t-SNE can handle. UMAP also has no 

computational restrictions regarding embedding dimension. Weaknesses of UMAP include 

lacking the strong interpretability of Principal Component Analysis, and approximations 

that need to be made for the sake of computational efficiency can have a negative impact 

on results produced from small datasets [16]. 

2.2 Manifold Learning 

Manifold learning is a component of many dimensionality reduction tools, and 

describes datasets as low-dimensional manifolds that are embedded into high-dimensional 

spaces. It relies on the manifold hypothesis, or the assumption which holds that most real-

world high dimensional datasets are “close” to a manifold of a much lower dimension [22]. 

In manifold learning, the manifold can be compared to a flat sheet, or a low dimensional 

object embedded in a higher dimensional world [4]. The dataset of interest is in this low 

dimensional manifold, where the low dimensional space reflects the underlying 

parameters, and the high-dimensional space is the feature space [6]. 
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The manifold can be rotated, reoriented, and stretched to fit all data points in high 

dimensional space. No matter how the manifold is moved or altered to fit the data points, 

it still retains its low dimensional geometry while still embedding high dimensional space. 

Manifold learning is essentially the process of uncovering this manifold structure in a 

dataset, and also helps to visualize data using the low dimensional nature of the manifold 

as it is contorted to fill  high dimensional space [4, 7]. 

2.3 Hierarchical Clustering 

Clustering techniques are widely used in the analysis of large datasets to group 

together samples with similar properties, with data points bearing distinctive similarities 

being grouped in the same cluster [5, 8]. Cluster analysis divides data into multiple clusters 

in a way that is useful and meaningful to the user. In most cases, cluster analysis is the 

starting point for other purposes, such as, in this study, data summarization [5]. 

Cluster trees are introduced with hierarchical clustering, where a tree-like structure 

is used to allocate data points into leaf nodes [7]. Hierarchical clustering creates clusters 

that have a predetermined ordering from top to bottom, and is divided into top-down 

(divisive) and bottom-up (agglomerative) clustering. Divisive clustering begins by 

assigning all data points to one large cluster, and recursively dividing all existing clusters 

into two clusters until either a user-specified condition is met, or each cluster has only one 

data point. Agglomerative clustering works in reverse, initially having each data point as 

its own cluster, and then recursively joining two clusters based on similarity until either a 

user-specified condition is met, or the entire dataset is in one cluster. Each “hierarchy” of 

these two methods are the clusters produced in each recursive step. Evidence shows that 
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divisive clustering algorithms give more accurate hierarchies than bottom-up algorithms in 

some cases, but are conceptually more complex [9]. 

2.4 CLAM 

CLAM (Clustered Learning of Approximate Manifolds) is an approach to 

dimensionality reduction that uses hierarchical divisive clustering to find a manifold in 

high dimensional space. Simply put, CLAM applies hierarchical clustering to a manifold 

learned from high dimensional data, a task made easier since the algorithm will be looking 

for simplified clusters rather than a wide range of data points scattered across high 

dimensional space [7]. The manifold learning component of CLAM is derived from 

CHESS (Clustered Hierarchical Entropy-Scaling Search), a hierarchical search algorithm 

that is used here to accelerate approximate search on high dimensional datasets [8, 9]. 

CLAM also induces a graph at each stage of hierarchical clustering, where a 

collection of five algorithms are put to work, all of which make up CHAODA (Clustered 

Hierarchical Anomaly and Outlier Detection Algorithms). CHAODA is meant to explore 

the various properties of each graph in the different cluster hierarchies to detect anomalies 

and outliers, and relies on optimal graphs at nonuniform depths, using machine learning to 

determine these depths [7]. CLAM infers graphs from hierarchical clustering and can do 

so at uniform depths. The method in which these graphs are produced can be found in 

Figure 2 of the Appendix. Figure 2 highlights each stage of hierarchical clustering, graphs 

as they are induced at each stage or “level” of the algorithm, and how these graphs are 

induced in the first place. 
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CHAPTER 3 

METHODOLOGY 

3.1 Data Sources 

Many of the datasets we used in this project to get manifolds from CLAM are some 

of the same datasets used to originally test the CLAM implementation and were sourced 

from Outlier Detection Datasets [7]. These datasets were taken from the UCI Machine 

Learning Repository [25]. The size of these datasets ranged from just over 100 records to 

thousands of records, and with dimensions ranging from a simple 3 dimensional space to 

over 2,000 dimensions [7]. 

Two especially large datasets were also used to measure our project’s success with 

datasets of high dimension and size. The first is APOGEE (Apache Point Observatory 

Galactic Evolution Experiment) from the Sloan Digital Sky Survey, each data point a 

stellar spectrum in the infrared band, with 8,575 bins, translating into datasets with a 

dimension of 8,575 [26]. The second is SILVA, an 18S ribosomal RNA dataset, whose 

multiple sequence alignment gave each sequence 50,000 bases long, translating into 

datasets with a dimension of 50,000 [27]. Each dataset used in this project can be found in 

Figure 1 of the Appendix, which a chart showing the name of every dataset, the number of 

data points, and their dimensional space. We ran these datasets through CLAM to extract 

manifolds of a given depth, and from this manifold we were able to infer graphs. 
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3.2 Inferring Graphs from the Manifold 

There are two types of graphs which we produced in this project. The first is the 

Cluster Tree graph, which visualizes the clusters of the manifold as a binary tree, starting 

from a “root” cluster up to “leaf” clusters. The second is the Manifold Layer graph, which 

visualizes the dataset as clusters at a specific layer of the manifold, or a specified stage of 

hierarchical clustering. The following subsections explain how these graphs are inferred 

from the manifold. 

3.2.1 Cluster Tree Graphs 

A Cluster Tree graph takes the form of a binary tree, starting at the top with a “root” 

node and ending with “leaf” nodes. The root node, and every other node in the graph except 

for the leaf nodes, share edges with at most two “child” nodes that are both on the level of 

the tree directly under their parent node and ending at the bottom with “leaf” nodes. The 

Cluster Tree has uniform “layers” holding its clusters. Figure 2 of the Appendix provides 

a visual explanation of a Cluster Tree with a depth of four, meaning four layers of child 

nodes which are descended from the root node. The graph in Figure 2 starts with the root 

node at the top, connecting to its two child nodes. Both of the child nodes are on the same 

layer of the tree, and the children of these two nodes are also on the same layer. 

Inferring a Cluster Tree graph from the manifold starts as CLAM applies divisive 

clustering to the dataset. At the first step of hierarchical clustering, every point on the 

dataset is assigned to one large cluster. Next, this cluster is divided into two clusters, and 

both of the two new clusters are divided into two new clusters as well. This division of 

existing clusters continues recursively until either every cluster contains only one data 



11 

 

point, or until the algorithm has reached a user-given limit of recursions. This limit, 

whether user specified or not, is the “depth” of the Cluster Tree. Every cluster that was 

formed by the algorithm is saved to the manifold, which allows us to retrieve our Cluster 

Tree graph after the hierarchical clustering is finished [7, 10]. 

The nature of the clusters as they are saved to the manifold help us to draw the 

manifold as a binary tree. From the manifold, we can get a “root” cluster, which is the 

original cluster we started with in hierarchical clustering and contains all the data points. 

As we start from the root cluster, we are able to access each of its “child” clusters, or the 

two clusters formed from the division of the root cluster that happens in hierarchical 

clustering. We are then able to access the children of the root’s child clusters, and this 

process continues iteratively until we reach the “leaf” clusters, or clusters at the end of the 

tree that have no children. Each “layer” of the Cluster Tree, or the set of clusters at a certain 

depth of the manifold, represent the entire dataset clustered at one stage of CLAM’s 

hierarchical clustering process. Cluster Tree graphs don’t always have to start from the root 

cluster. When inferring a graph based on Cluster Trees, we can also get a subtree, treating 

a cluster that’s between the root and the leaf clusters as the root of this new subgraph. The 

binary tree displaying all this cluster’s descendents up to the leaf nodes gives us a Cluster 

Subtree graph. 

The purpose of the Cluster Tree graph is to give a clear visualization of how certain 

properties of clusters change through each step of hierarchical clustering. Also, it is from 

the layers of the Cluster Tree from which we are able to infer the next type of graph, which 

is the Manifold Layer graph. The view of the Cluster Tree graph can also help the user find 

what depth of the Cluster Tree is optimal for the Manifold Layer Graph [10]. 
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3.2.2 Manifold Layer Graphs 

The Manifold Layer graph represents the dataset clustered at a particular stage of 

the hierarchical clustering algorithm of CLAM. This graph is not as neat as the Cluster 

Tree graph, and instead takes the form of a set of nodes whose connectivity and 

arrangement are much less uniform. However, if each node in the graph is properly labeled, 

then the Manifold Layer graph can offer a wealth of information. The image in Figure 2 of 

the Appendix gives a “cartoon” representation of Manifold Layer graphs inferred from the 

Cluster Tree. Underneath the binary tree in Figure 2, the blue nodes represent nodes from 

the Cluster Tree at specific depths, and which nodes in the binary tree they correspond to 

are denoted by grey arrows. The nodes in the Manifold Layer graphs are connected based 

on whether or not the two nodes’ volumes overlap, which is shown on the Cluster Tree by 

the circles around the nodes overlapping. This is useful because the connectivity of the 

Manifold Layer graph shows us both the global and local structure of the manifold as it is 

occupied by data. Some of what the Manifold Layer graph shows us is if the manifold is 

continuous, if “holes” in the data are present, and if outliers exist. 

The Manifold Layer graph is extracted from a specific layer of the Cluster Tree, 

since each layer of the Cluster Tree graph represents the entire dataset organized by the 

clusters in that particular layer, which is at a particular phase of hierarchical clustering. As 

CLAM is building the Cluster Tree, the algorithm builds a graph for each layer of the tree 

by creating edges between clusters with overlapping volumes. The Manifold Layer graph 

is one of these graphs at a specified depth of the Cluster Tree. CLAM builds the Cluster 

Tree up to the user-specified depth, and also produces a heterogenous layer graph based on 
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different depths for different parts of the tree. These depths are useful in anomaly detection 

[7]. 

The purpose of Manifold Layer graphs is that they allow us to get a closer look at 

the varying properties of clusters at different depths. These properties include cardinality, 

connectivity of clusters, outliers, and how often a cluster is visited by random walks on the 

manifold. CLAM also uses these graphs to detect outliers and anomalies in small, disjoint 

connected components of the graph. These disjoint components, or “islands” represent 

isolated regions of the manifold. These islands are more likely to contain anomalies due to 

their isolation from a majority of the other clusters and can be caused by one or few 

anomalous data points close enough to non-anomalous data points to form a cluster. 

At the level of a Manifold Layer graph, several other properties unique to graphs 

alone can help us better understand the data. Connectedness of the nodes and the shortest 

distance of traversal between interconnected nodes can help us define relationships 

between different clusters. Radii between connecting clusters can be used to determine 

their “closeness”, or similarity. Essentially, all the properties which 2D graphs have to offer 

can help us find out the properties of various sets of high dimensional data, with each 

situation offering new and unique insights. 

Manifold Layer graphs are also analogous to “filtration” in computational topology. 

Filtrations are one of the key components in persistent homology, a method used to 

understand such shapes and their persistence in point clouds and networks. Filtration can 

be imagined as an embedded sequence of networks with some form of geometrical shape 

built from the edges and nodes in each sequence step. Filtration can also make certain 
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components visible, components which are persistent across a wide range of distances 

along with those that are artifacts of a particular distance. Using this principle, we can look 

at graph properties to see how long-lived they are [7, 21]. 

3.3 Our Algorithms 

The algorithms meant to infer graphs and produce DOT files were implemented in 

Python, and were then added to three different classes in Pyclam depending on whether 

they would produce a Cluster Tree graph, a Cluster Subtree graph, or a Manifold Layer 

graph. All of these graphs are inferred after the Manifold has been built up to a specified 

depth. Implemented in Python, these three algorithms return a string in DOT format, meant 

to be written as a DOT file. From there, the produced DOT file can be read by graph 

visualization software, such as Graphviz [10]. 

3.3.1 Extracting the Manifold Layer Graph 

The algorithm that infers the Manifold Layer graph operates from the specified 

layer of the Cluster Tree, accessing the clusters and edges built between them from the 

given layer alone. This algorithm reads each cluster and edge in the layer of the manifold 

iteratively and creates a graph from it. For each cluster, a node is initialized and added to 

the graph, with this new node given the appropriate properties derived from the cluster. 

After we have gone over all the clusters and filled the graph with nodes, we bring 

our attention to edges. Edges, in a Manifold Layer graph, are made between two nodes 

whose clusters overlap. Each cluster possesses a radius, which is defined by the distance 

between the cluster’s center and its furthest point, treating them as hyperspheres in this 
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instance. Two clusters whose radii overlap have their respective nodes connected by edges, 

where the weight of this edge, in our project, is set as the distance between the cluster 

centers. 

 

Algorithm 1: produce DOT string for a Manifold Layer graph 

 

 

3.3.2 Extracting the Cluster Subtree Graph 

The algorithm that infers the Cluster Subtree graph operates by going over several 

“layers” of the manifold, or each stage of hierarchical clustering. The Subtree algorithm 

starts from one specified starting cluster in the manifold, iteratively accessing all 

descendants of the given cluster. The algorithm reads every cluster (the starting cluster and 

all its descendants) and from it creates a graph. For each cluster, a node is initialized and 

added to the graph, this new node given the appropriate properties derived from the cluster. 

Edges are added after, and edges in a Cluster Subtree graph are made between two nodes 
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that have a parent/child relationship. All nodes in this graph, save for the leaf nodes, have 

edges going to their child nodes. 

 

Algorithm 2: produce DOT string for a Cluster Subtree graph 

 

 

3.3.3 Extracting the Cluster Tree Graph 

The algorithm that infers the Cluster Tree graph of the entire manifold operates 

from the manifold itself, accessing the subtree algorithm highlighted in Subsection 2.3.2, 

except using the root cluster as the starting cluster. This gives us the Cluster Tree of the 

entire manifold, starting from the root cluster and accessing all its descendants. The 

algorithm reads every cluster (the root cluster and all its descendants) and from it creates a 

graph. For each cluster, a node is initialized and added to the graph, this new node given 

the appropriate properties derived from the cluster. Edges are added after, and edges in a 

Cluster Subtree graph are made between two nodes that have a parent/child relationship. 

All nodes in this graph, save for the leaf nodes, have edges going to their child nodes. 
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Algorithm 3: produce DOT string for a Cluster Tree graph 

 

3.4 Writing the DOT File String 

When reading the manifold, accessing all the required elements of the graph was 

simply a matter of reading every cluster and every edge. After extracting the graph from 

the manifold, the next step was writing the graph to a string in DOT format. DOT files, 

when used with software such as Graphviz, are able to draw graphs either as graph files or 

in a graphics format such as GIF, PNG, SVG, PDF, or PostScript. Its features include well-

tuned layout algorithms for placing nodes and edges, as well as applying labels, shapes, 

and colors to nodes and edges [12]. 

We took advantage of the features DOT format had to offer, since both clusters 

(represented as nodes in a graph) and edges between the clusters would have distinct 

properties we wanted to visualize with the graph. DOT files produced by the implemented 

algorithms were tested and read using Graphviz, an open source graph visualization 

software. Graphviz takes descriptions of graphs in a simple text language, and uses them 

to make diagrams in various formats. This was ideal for the testing of DOT files of cluster 

trees and cluster tree layers produced by our code [12]. 
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3.4.1 Cluster Properties 

In the implementation of our algorithms, properties of clusters that are used in 

visualizing the graph are the clusters’ name, cardinality, radius, and local fractal dimension 

(LFD). A cluster’s radius, or the distance between the outermost point of the cluster and 

the cluster’s center, is used in determining whether the cluster overlaps with any of the 

other clusters. Cluster cardinality is equated with its “anomalousness”, or the likelihood of 

the cluster containing points that are not outliers. A higher cardinality indicates a lower 

probability of a cluster containing outliers, and a low cardinality indicates a higher chance 

of a cluster having outliers. A cluster that contains few points is more likely to have outliers, 

so the cardinality of a cluster is proportional to the number of points it contains [7]. 

The LFD of a cluster is calculated using the ratio of the number of data points within 

two spheres of the same center point, the first sphere having the radius of the whole cluster 

and the second sphere having the radius of half that cluster [8]. The equation used to 

calculate a cluster’s LFD can be found at Figure 3 of the Appendix. This equation captures 

the effect a shape’s radius has on its area has. For example, if double the length of a line, 

which is one dimensional, doubles the amount of space it takes up. With that same 

principle, doubling the diameter or radius of a circle quadruples the amount of space the 

circle takes up. Doubling the radius of a sphere increases its area by 8 × 23. If the LFD is 

1, then that means the number of points in the whole cluster is equal to the number of points 

in a sphere with a radius half of that of the whole cluster. The closer the LFD of a cluster 

is to 1, the higher likelihood there is for that cluster to contain anomalous points. 
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3.4.2 Calculating the Node Color from the LFD 

All of the cluster’s properties are written on the node representing the cluster as 

labels in the visualized graph. The LFD, however, is also used to define the color of the 

node representing the cluster. The algorithm used to determine all the clusters’ colors 

happens before any graphs are derived, and first normalizes the LFD’s of every cluster in 

the graph to values between 0 (the lowest LFD) and 1 (the highest LFD). The normalized 

LFD’s are then used to calculate an RGB value (green hard-coded to zero), that is on a 

color gradient between blue (representing the lowest LFD) and red (representing the 

highest LFD). This RGB value is then converted to a Hexadecimal color string, a format 

that is better able to be read by Graphviz. 

 

Algorithm 4: calculating the color of each cluster based on its LFD 

 

 

3.4.3 Edge Properties 

Unlike clusters, edges between clusters are different when it comes to different 

types of graphs. In the implemented algorithm for Cluster Trees and Subtrees, edges 
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defined are directed edges going from parent clusters to child clusters, and are not given 

any labels. These edges denote the binary division of clusters as hierarchical clustering is 

applied. In the Manifold Layer graphs, the edges we included are all undirected edges 

which represent the clusters of connected nodes having overlapping volumes. These edges 

are also labeled by their distance. 

3.4.4 DOT File Format 

In DOT format, each line of the file, after the opening bracket and before the closing 

bracket, denotes a feature of the graph. Figures 4 through 7 of the Appendix show simple 

DOT files compared with the graphs they visualize through Graphviz. Figures 5 and 7 both 

show DOT files which contain graphs named after the dataset that CLAM read to produce 

them. Each of the DOT files begin by declaring the “type” of graph, meaning whether or 

not they are a directed graph. Then the edge properties are defined, followed by the node 

properties, and then finishing up with the edges between nodes and, if applicable, labels 

for the edges. 

Both DOT files begin with the “type” of graph they will draw. Figure 5 is a 

“digraph”, or directed graph, and Figure 7 is a “graph”, an undirected graph. This 

specification is followed by the name of the graph, or in this case, the name of the dataset 

used to infer the graph. Edge properties of the graph come next, denoted by “edge”, which 

is followed by a set of properties enclosed in a bracket. Both Figure 5 and 7 have edges 

with a solid style, a pen width of 5, and a label distance of 10. All of these properties are 

constant throughout the graph, so these are only specified once at the start of the DOT files. 

Nodes are defined next, which are signified by their cluster’s name, followed by a bracket 
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containing the node’s properties. These properties include the node’s label, which includes 

the cluster’s name, cardinality, radius, and LFD. Color is defined next, and the properties 

are concluded with the coloring style “filled”. 

Finally, the edges are written to the DOT file, and are defined in two ways 

depending on the type of graph. If we are writing a Cluster Tree graph, which is a digraph 

with directed edges like in Figure 5, then we write “->” on the line and between the names 

of the two clusters meant to be connected, signifying a directed edge going from the node 

on the left and to the node on the right. But if we are writing a Manifold Layer graph, which 

is a graph of undirected edges like in Figure 7, then we write  “--” on the line and between 

the names of the two connected clusters, signifying an undirected edge between the two 

nodes. This undirected edge is followed by the properties of that particular edge in brackets, 

which in this case is a label of the edge’s distance. 

All the properties defined in the DOT files are visualized in their corresponding 

graphs produced by Graphviz. Figure 4 shows the visualized graph of the DOT file in 

Figure 5, and Figure 6 shows the visualized graph of the DOT file in Figure 7. 

3.5 Results 

The wide set of capabilities allowed by DOT format ensured that we could add all 

the features we wanted to the visualizations of our inferred graphs. These features included 

node labels, node colors, edge labels, and directed/undirected edges. The end result for 

Cluster Tree graphs were DOT files that gave us binary trees representing the manifold, 

starting from the node representing the root cluster and ending in leaf clusters at a specified 

depth. Directed edges go from parent nodes to child nodes, representing the binary division 
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of clusters as hierarchical clustering is applied. The end result for the Manifold Layer 

graphs were DOT files that gave us a visualization of a specified layer of the Cluster Tree, 

with nodes representing clusters at the layer of interest. Undirected edges between nodes 

signify the two clusters, represented by the connected nodes, having overlapping volumes. 

In both types of graphs, all nodes are labeled with their names, cardinality, radius, and 

LFD. All nodes are also given colors calculated from their LFD, all within a gradient 

between red (a high LFD) and blue (a low LFD). 

Because of the capabilities of DOT format, the DOT files produced by the 

implemented algorithms worked exactly as intended. DOT files were read by Graphviz and 

visualized without encountering any error. The colors of the nodes in most of the Cluster 

Tree graphs showed an expected trend of increasing LFD the further the clusters were from 

the root. This is an example of graphs of summarized data having more information and 

value than data in its raw form. Several examples of manifold data we visualized using 

Graphviz can be found in Figures 8 and 9 of the Appendix. Figure 8 shows Cluster Tree 

graphs given by DOT files which our implemented algorithms produced, based on several 

different datasets. Figure 9 shows Manifold Layer graphs given by DOT files which our 

implemented algorithms produced, based on different datasets.  

Figure 9 also has several examples of graphs with multiple disjoint connected 

components, or “islands”. These islands can be used to find clusters containing anomalous 

points, as well as determining if the manifold is made up of multiple distributions, or 

multiple disjoint components [7]. Each of the smaller islands on the Manifold Layer graphs 

contains one or more cluster with an LFD of exactly 1. As shown in Figure 3, a cluster’s 

LFD is a ratio of the set of points within two radii on the cluster’s center. An LFD of 1 
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would mean that both sets of points have the same amount of points, which signifies a low 

amount of points in that cluster (these clusters do not have only one point, otherwise they 

would have a radius of 0). These clusters also consistently have a low cardinality of 2, 

which means a higher likelihood of containing anomalous points. This solidifies the notion 

that these islands contain anomalous points, and these visualizations make it easier to find 

the clusters containing such points. 

3.6 Visualizing DOT Files with Rust 

After being able to create usable DOT files from our implemented algorithms, we then 

started working towards making our own DOT file visualization tool with many of the 

same capabilities of Graphviz. This tool would access the DOT file and read each line as a 

string, parsing it to extract information for the cluster or edge that line represents. Our tool 

would save the data and use existing programming tools and libraries to create a force-

directed visualization of the graph. 

For this part of the project, we implemented in Rust. Rust is a multi-paradigm system 

programming language that runs similar to C++. We decided that, with its fast 

performance, memory efficiency, no runtime, and no garbage collector [13], it was a 

feasible option for graph visualization. After our Rust tool read the DOT file and created a 

graph, we would use an existing Rust library, force_graph, to apply the Rust 

implementation of Graphoon, a force-directed graph algorithm [19]. After these two steps, 

our tool would then visualize the graph using Nannou, an open sourced coding graphics 

framework for Rust [14]. 
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3.6.1 Reading the Dot File 

In our Rust tool, we began by reading each line of the DOT file iteratively to gather 

graph data. As we were reading the DOT file, we looked for indicators of whether the 

current line was a cluster, an edge, or neither. If the current line was either a cluster or an 

edge, we would parse the line as a string to extract that line’s data, and save it as either a 

cluster or an edge. Newly extracted clusters or edges are then put into one of two lists, one 

full of clusters and the other full of edges [11].

 

Algorithm 5: reading a DOT file to extract graph data 

 

 

3.6.2 Applying Force Direct 

To visualize a force-directed graph with our Rust tool, we used an existing Rust 

library, force_graph. This library uses the Rust implementation of the Graphoon algorithm 

[19]. Graphoon creates a force-directed graph layout by simulating physical forces, pulling 

and pushing each node in the graph until a visually appealing layout is found. Graphoon 
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emerged from the graph calculation code used that is present in both LoGiVi and LoFiVi, 

both of which are data visualization tools that display force-directed graphs [20]. In our 

project, this Rust implementation of Graphoon gives us the ability to create graphs and 

calculate their force-directed layout based on physical attraction and repulsion forces. 

Graphoon works by first creating a graph, to which we can add nodes and edges. In 

force_graph, nodes have several properties which must be defined upon initialization. The 

first are the node’s original coordinates, or the node’s starting position before force-direct 

is applied. The second is the node’s data, which is a user defined object. The third property 

is the node’s mass, which is a major factor in calculating one node’s repulsion towards 

other nodes. The last property is Boolean, and it decides whether or not the given node is 

an anchor node or not. Anchor nodes, simply put, have their initial coordinates be constant 

through every update of the force-directed graph. Edges, once initialized, only have two 

properties: the indices of the two nodes the edge connects. After adding the nodes and 

edges to the graph, we can apply the force calculations by calling a single function, 

update(), from force_graph in our Rust tool a set number of times. The update() function 

takes one parameter, which is the amount of force, as a floating point, applied to the 

movement of the force-direct algorithm. The more update() is called, the closer the user 

gets to a visually appealed force-directed graph [19]. 

We were able to make use of force_graph in two major areas of our Rust tool. 

Firstly, as we were reading the DOT file, we created a new graph using force_graph. After 

this, we iteratively went over each line of the DOT file, and added nodes to the graph when 

we read lines representing nodes, and added edges to the graph when we read lines 

representing edges. As each node was created and added to the graph, the nodes’ initial 
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coordinates were set to random values on given ranges. All the nodes were given the same 

value for their mass, and their data was an object possessing cluster properties which were 

read from the DOT file. For every graph produced by our Rust tool, there was only one 

anchor node: the first node of the DOT file, which would be the root node in the case of 

Cluster Trees. 

After the creation of the graph is complete, we apply the update() function from 

force_graph for a set number of iterations in order to apply the force-direct algorithm to 

the existing graph. We have observed that even a small amount of force, below 0.5, can 

cause significant movement in even a single call from update(). Also, after much trial and 

error, we have found that it is necessary to apply several thousand iterations of updates to 

the graph in order to achieve the best results for the force-directed layout. 

3.6.3 Visualizing the Graph 

After applying Force Direct to the graph, drawing it using Nannou is a simple 

matter of drawing all edges and all clusters iteratively. First, accessing the list of edges, we 

draw each edge as simple lines with the coordinates of the clusters they connect. Then the 

clusters are drawn in their appropriate coordinates as ellipses, then giving them the 

appropriate color. One issue we faced was that Nannou is unable to color shapes based on 

the Hexadecimal colors in our DOT files. Because of this, we had to implement a function 

that converted the Hexadecimal color strings to RGB tuples. Labels of the cluster are drawn 

inside its ellipse. Examples of the visualized graphs our tool produced can be found in 

Figure 10 and 11 in the Appendix. 
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3.6.4 Analyzing Datasets at Different Depths 

One measure of success we defined in our project was how our Rust tool visualized 

graphs made from significantly high dimensional data. Using the added modules to 

Pyclam, we made DOT files of six datasets, each of them Manifold Layer graphs taken at 

different depths, which we visualized using our Rust tool. 

In Figure 12 of the appendix, we included a chart of DOT files produced by the 

modules added to Pyclam, including the dataset they were taken from, their depth, the total 

number of nodes in the graph, and the number of disconnected nodes. The two largest 

datasets we used are apogee-train, with 254,160 data points at a dimension of 8,575, and 

silva-SSU-Ref-train, with 2,214,740 data points and a dimension of 50,000 [26, 27]. Figure 

13 shows Manifold Layer graphs for both APOGEE and SILVA at different depths, 

highlighting our project’s ability to derive graphs from significantly large datasets in terms 

of dimension and number of data points. 

In each Manifold Layer graph, we found that more the depth increased, the more 

nodes there were in the graph, in terms of both the total number of nodes and, in some 

cases, the number of disconnected nodes. This is consistent with the Manifold Layer graph 

representing different layers of the Cluster Tree graph, since the further we go down the 

Cluster Tree, the more nodes there are. A larger depth also means more of a chance there 

is that we find disconnected nodes, which would be leaf nodes on the Cluster Tree graph. 
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3.7 Results 

Evaluating the success of our Rust tool for visualizing graphs was mainly based on 

comparing its performance with Graphviz. However, the reading of the DOT file, as well 

as the implementation of the force-directed graph layout were also procedures whose 

success needed to be evaluated. We carefully analyzed how effectively the DOT file was 

read, assessing any possible weaknesses. 

As we were implementing our Rust tool, we used the visualizations produced by 

Graphviz as an outline for what features to add to our own visualizations. The intent was 

to have the graphs our tool gave us display all the node labels and colors, as well as 

directed/undirected edges that are labeled with their distance when appropriate, all of which 

were visible on Graphviz. The only aspect of Graphviz we didn’t intend to add to our Rust 

tool was the layout it presented graphs in. Instead we wanted our Rust tool to apply a force-

directed layout to the graphs it would visualize. Examples of the visualized graphs our tool 

produced can be found in Figure 10 and 11 in the Appendix. These graphs are similar to 

the output provided by Graphviz, such that they display similar labels, their name, 

cardinality, radius, and LFD. 

Reading the DOT file was a simple matter for Rust. We were able to take advantage 

of common patterns and trends in DOT files to identify which lines represented clusters 

and which lines represented edges. Parsing each line of the DOT file as a string is how our 

Rust tool gathers data for clusters and nodes. However, the functions that parse the line all 

depend on each line following a consistent order and format, that they are in a similar order 

as they are in the DOT files produced by our algorithms. This creates the possibility that 
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our Rust tool could fail to successfully extract the DOT file information if the DOT file 

was not written in an identical format as those produced by our algorithms implemented in 

Pyclam. For example, in the DOT files produced by our algorithms, the cluster’s labels are 

given in a precise order, first its name, followed by its cardinality, radius, and LFD. The 

cluster’s color and color style is then included respectively. Our Rust tool relies on all those 

features being in that precise order. If it read a DOT file with nodes whose labels and other 

properties were in a different order, our Rust tool would very likely return an error. 

Concerning graphics, one shortcoming of our Rust tool was its inability to color the 

nodes in a gradient ranging between red and blue the way Graphviz did. Instead of coloring 

each node with its exact color, the colors were approximated to the closest color that was 

coded into Nannou. For example, if a cluster’s color, read from the DOT file and converted 

to an RGB tuple, gives us (250, 0, 5), this color would be approximated to (255, 0, 0) when 

coloring a node on our graph. 

The implementation of the Graphoon algorithm gave us a force-directed layout for 

both the Cluster Tree graphs and the Manifold Layer graphs. Visualizations of Cluster Tree 

graphs from our Rust tool gave clearly successful implementations of force-directed 

layouts. Figure 10 of the Appendix shows force-directed Cluster Tree graphs our Rust tool 

visualized from given DOT files, all of which were made from our implemented 

algorithms. Visualizations of Manifold Layer graphs from our Rust tool also gave force-

directed layouts of these graphs, which can be found in Figure 11 of the Appendix. 

There were a few shortcomings of the force-direct visualization in our Rust tool. 

Firstly, there lies the possibility of part of the visualized graph extending beyond the 
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boundaries of the computer display. This can be solved, however, by implementing a 

“scrolling” or “zoom in/out” feature to the Rust tool. Second, the layouts of the Manifold 

Layer graphs were noticeably more complicated than that of Cluster Tree graphs, due to a 

major difference in the number of edges between the two graph types. The Manifold Layer 

graph has nodes with higher degrees (the number of edges connecting the node), which is 

a significant factor in the force-direct algorithm, both in the attraction and repulsion of 

other nodes. There was also some trouble faced from finding the value for the node mass. 

After much trial and error, we found that a higher node mass is required for a greater 

number of high degree nodes to create a reasonable distance between these nodes. Using 

the same node mass on a graph with low degree nodes (below 5) can push the nodes very 

far apart from each other. 

The end result for our graph visualization was a force-directed version of the 

Graphviz visualizations. Nodes from the graphs produced by our Rust tool were still 

labeled in a similar way as their Graphviz counterparts, displaying the name of the cluster 

they represent, as well as cardinality, radius, and LFD. The node color, although 

approximated to stricter Nannou color values, still was able to show a clear shift of LFD 

throughout different layers of Cluster Tree graphs. Edges are still drawn between clusters 

as defined in DOT files, whether they are directed edges between parent and child clusters, 

or undirected edges between nodes whose clusters overlap.  
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CHAPTER 4 

CONCLUSION 

4.1 Analysis of Results 

The purpose of this study was to develop a tool to visualize high dimensional data 

using summaries of the given data, which were gathered by using hierarchical clustering 

and manifold learning together. CLAM (Clustered Learning of Approximate Manifolds), 

which implements both these techniques [7], was used to extract manifolds from various 

datasets. Afterwards, we would infer different graphs from these manifolds, based on the 

clusters formed at different stages of hierarchical clustering, and write these graphs to a 

DOT file. The DOT file would then be read and visualized using Graphviz, and later with 

a tool of our own design that was implemented in Rust. 

The algorithms meant to infer graphs from the manifolds produced by CLAM were 

largely successful. They were evaluated by the DOT files they produced after being 

implemented in Python and added to Pyclam, and then read and visualized through 

Graphviz. The result was the clear visualization of graphs extracted from manifolds, 

showing intended manifold features in a way that’s easy to follow. The DOT file 

visualization tool we implemented in Rust, despite having its shortcomings, provided the 

framework for a Rust-based DOT file visualizer. It was able to read DOT files and retrieve 

graph data by reading and parsing each line of the file. It also provided a force-directed 

layout of the graphs it visualizes. 
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4.2 Contributions 

One of the contributions of our work in this project are providing algorithmic 

framework for inferring graphs from high dimensional data. Code added to Pyclam allows 

the user to get a graph from dimensionally reduced data in DOT format, a method which 

can be adapted to existing dimensionality reduction tools. The additions to CLAM also 

include a tool for inferring graphs of cluster trees, which show the dataset at each stage of 

hierarchical clustering and aids in finding the optimal layer of the cluster tree to derive an 

additional graph from. Another contribution of our work is the creation of a Rust DOT file 

visualizer, which can be incorporated into existing data dimensionality reduction tools. 

The impact of these contributions has to do with the importance of graph 

visualizations in data analysis, exploration of high dimensional datasets, and anomaly 

detection. Graphs themselves represent complex data in a way that visually illustrates 

relationships in the data, and graph-structured data is used as feature information in 

predictions made by machine learning [23, 24]. Our visualizations allow for easy anomaly 

detection by providing clusters labeled with cardinality and LFD, both of which can be 

used to determine the presence of outliers in a cluster. 

In the Manifold Layer graphs, clusters containing anomalous points are found in 

small disjoint “islands” in the graph, which represent isolated regions of the manifold. 

These disconnected components are more likely to contain anomalies, indicated by their 

low cardinality, due to their isolation from a majority of the other clusters. The LFD of a 

cluster, calculated by a ratio of points within the whole cluster and half the cluster, can be 



33 

 

used to indicate the presence of outlier data points the closer the cluster’s LFD is to 1. It is 

through displaying the cluster’s cardinality, LFD, and nature as an “island”, that Manifold 

Layer graphs can not only just determine the presence of anomalous data points, but also 

detect whether the entire manifold is made up of a series of disjoint components. 

4.3 Future Work 

The work we have done in this project creates one possible model for two tools 

working together: data visualization and summarization of high dimensional data. Along 

with being the start of deriving optimal graphs from CLAM, our work can be a base for 

future methods of visualizing data in DOT file form to be added in existing dimensionality 

reduction tools. Possible future work for this topic include creating 3D visualizations of 

the graphs, and showing them in a graphical user interface or even virtual reality 

environments. Another is to unify both the DOT file producing functions and the 

visualization tool and have them both work in the same program. The current Rust tool can 

also be built on even more, paving the way for a Rust-implemented DOT file visualizer 

comparable with Graphviz. 
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APPENDIX 

Dataset # Data 

Points 

# Dimensions Dataset # Data Points # Dimensions 

lympho 148 18 vertebral 240 6 

wbc 278 30 fashion-mnist-test 10000 784 

glass 214 9 fashion-mnist-train 60000 784 

vowels 1456 12 gist-test 1000 960 

cardio 1831 21 gist-train 1000000 960 

thyroid 3772 6 glove-100-test 10000 100 

musk 3062 166 glove-100-train 1183514 100 

satimage-2 5803 36 glove-200-test 10000 200 

pima 768 8 glove-200-train 1183514 200 

satellite 6435 36 kosarak-test 500 27983 

shuttle 49097 9 kosarak-train 74962 27983 

breastw 683 9 lastfm-test 50000 65 

arrhythmia 452 274 lastfm-train 292385 65 

ionosphere 351 33 mnist-test 10000 784 

mnist 7063 100 mnist-train 60000 784 

optdigits 5216 64 nytimes-test 10000 256 

cover 286048 10 nytimes-train 290000 256 

mammography 11183 6 sift-test 10000 128 

annthyroid 7200 6 sift-train 1000000 128 

pendigits 6870 16 apogee-train 254160 8575 

wine 129 13 silva-SSU-Ref-train 2214740 50000 

Figure 1: datasets used in this project, taken from the UCI Machine Learning 

Repository [25], APOGEE [26], and SILVA [27] 
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Figure 2: a “cartoon” explanation of how Cluster Tree graphs and Manifold Layer 

graphs are inferred from manifolds (purely a representation and not based on any 

existing data). The cluster center at the top of the tree is the “root” cluster, or the 

cluster containing all points of the dataset at the first stage of hierarchical 

clustering. All following “child” clusters are derived from splitting the previous 

“parent” cluster into two clusters. At each level of the tree, we can infer graphs of 

all the clusters at that level, or “layer”, and form edges between clusters whose radii 

overlap with each other [7]. 

 

 

Figure 3: Formula for a cluster’s LFD (Local Fractal Dimension), where BD(q, r) is 

the set of points contained in a sphere on the dataset D of radius r centered on point 

q; fractal dimension is computed for radius r2 and a smaller radius r1 = r2/2 [8]  
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Figure 4: a small, close up view of a Cluster Tree graph visualized by Graphviz 

using a DOT file our algorithm produced. The dataset used was optdigits, and was 

extracted at the tree depth of 2. The node colors are indicative of their LFD (local 

fractal dimension), which gets closer to blue as we move down the tree, indicating a 

decrease. 

 

 

 

Figure 5: the DOT file our algorithm produced to make the Cluster Tree graph in 

Figure 4  
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Figure 6: a small, close up view of a Manifold Layer graph visualized by Graphviz 

using a dot file our algorithm produced. The dataset used was annthyroid, and was 

extracted at the tree depth of 2. The node colors are indicative of their LFD (local 

fractal dimension), showing one red cluster (a high LFD compared to the other 

three nodes). 

 

 

 

Figure 7: the DOT file our algorithm produced to make the Manifold Layer graph 

in Figure 6.  
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Figure 8.a 

 
Figure 8.b 

 
Figure 8.c 

 
Figure 8.d 

 
Figure 8.e 

 
Figure 8.f 

 
Figure 8.g 

Figure 8: Cluster Tree graphs visualized by Graphviz using DOT files our 

algorithms produced. The datasets used are lympho (8.a), wbc (8.b), glass (8.c), 

vowels (8.d), cardio (8.e), thyroid (8.f), and musk (8.g), and all have a depth of 6. 

The node colors of each graph are indicative of their LFD (local fractal dimension), 

and give us an idea of the change in LFD without having to read the labels. These 

graphs show us what clusters have an increase in LFD (closer to red), a decrease in 

LFD (closer to blue), and no change.  
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Figure 9.a 

 
Figure 9.b 

 
Figure 9.c 

Figure 9: Manifold Layer graphs visualized by Graphviz using DOT files our 

algorithms produced. The datasets used are pima (9.a), mammography (9.b), and 

wine (9.c), all at a depth of 6. These graphs all share a feature of having multiple 

disjoint connected components, of which possess clusters that fit the criteria for 

outliers and anomalies (LFD of 1 and cardinality of 2). 
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Figure 10.a 

 
Figure 10.b 

 
Figure 10.c 

 
Figure 10.d 

Figure 10: Cluster Tree graphs visualized by our Rust tool using DOT files our 

algorithms produced. The datasets used are kosarak-test (10.a), glove-200-test 

(10.b), sift-train (10.c), and mnist-train (10.d), and all have a depth of 6. 
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Figure 11.a 

 
Figure 11.b 

 
Figure 11.c 

 
Figure 11.d 

Figure 11: Manifold Layer graphs visualized by our Rust tool using DOT files our 

algorithms produced. The datasets used are gist-test (11.a), arrhythmia (11.b), 

fashion-mnist-test (11.c), and kosarak-test (11.d). All these graphs were extracted at 

the tree depth of 5. The top two and the bottom right graphs all have a set of 

disconnected nodes, which are pushed to the lower right side of the graph. 
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Dataset # Data 

Points 

# Dimensions Depth Total 

Nodes 

Disconnected 

Nodes 

arrhythmia 452 274 5 15 5 

arrhythmia 452 274 6 23 8 

arrhythmia 452 274 7 35 10 

arrhythmia 452 274 11 95 31 

arrhythmia 452 274 20 437 415 

mnist 7063 100 5 32 0 

mnist 7063 100 6 64 0 

mnist 7063 100 7 126 0 

mnist 7063 100 11 1094 32 

mnist 7063 100 20 7045 5040 

musk 3062 166 5 32 0 

musk 3062 166 6 62 3 

musk 3062 166 7 117 44 

musk 3062 166 11 939 207 

musk 3062 166 20 3062 3062 

fashion-mnist-test 10000 784 5 32 0 

fashion-mnist-test 10000 784 6 62 0 

fashion-mnist-test 10000 784 7 117 2 

fashion-mnist-test 10000 784 11 941 87 

fashion-mnist-test 10000 784 20 6818 3255 

gist-test 1000 960 5 19 3 

gist-test 1000 960 6 28 13 

gist-test 1000 960 7 37 17 

gist-test 1000 960 11 96 39 

gist-test 1000 960 20 627 152 

kosarak-test 500 27983 5 6 4 

kosarak-test 500 27983 6 8 5 

kosarak-test 500 27983 7 10 7 

kosarak-test 500 27983 11 16 10 

kosarak-test 500 27983 20 61 30 

apogee-train 254160 8575 5 15 5 

apogee- train 254160 8575 6 25 16 

apogee- train 254160 8575 7 34 23 

apogee- train 254160 8575 11 123 76 

apogee- train 254160 8575 20 1129 640 

silva-SSU-Ref- train 2214740 50000 5 19 7 

silva-SSU-Ref- train 2214740 50000 6 29 8 

silva-SSU-Ref- train 2214740 50000 7 46 12 

silva-SSU-Ref- train 2214740 50000 11 243 68 

silva-SSU-Ref- train 2214740 50000 20 3436 1004 

 

Figure 12: A chart of Manifold Layer graphs taken from different datasets at 

different depths (5, 6, 7, 11, 20), and the graphs’ total number of nodes and 

disconnected nodes. 

 

  



43 

 

 
Figure 13.a  

Figure 13.b 
 

Figure 13.c 

 
Figure 13.d  

Figure 13.e  
Figure 13.f 

 

Figure 13: Manifold Layer graphs visualized by our Rust tool using DOT files our 

algorithms produced. The graphs are derived from apogee-train at depth 5 (13.a), 

apogee-train at depth 6 (13.b), apogee-train at depth 7 (13.c), silva-SSU-Ref-train at 

a depth of 5 (13.d), silva-SSU-Ref-train at a depth of 6 (13.e), and silva-SSU-Ref-

train at a depth of 7 (13.f). 
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