
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2020

A BLOCKCHAIN-BASED AUDITABLE AND SECURE VOTING A BLOCKCHAIN-BASED AUDITABLE AND SECURE VOTING

SYSTEM SYSTEM

Madhukara Kekulandara
University of Rhode Island, mkekulandara@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Kekulandara, Madhukara, "A BLOCKCHAIN-BASED AUDITABLE AND SECURE VOTING SYSTEM" (2020).
Open Access Master's Theses. Paper 1916.
https://digitalcommons.uri.edu/theses/1916

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1916?utm_source=digitalcommons.uri.edu%2Ftheses%2F1916&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

A BLOCKCHAIN-BASED AUDITABLE AND SECURE VOTING SYSTEM

BY

MADHUKARA KEKULANDARA

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2020

MASTER OF SCIENCE THESIS

OF

MADHUKARA KEKULANDARA

APPROVED:

Thesis Committee:

Major Professor Edmund Lamagna

Lutz Hamel

Gavino Puggioni

Brenton DeBoef
DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2020

ABSTRACT

Improving electronic voting systems to provide election security and integrity

while controlling cost has been an area of active research for decades. As a result,

many technological improvements are incorporated into the voting systems used

today. The introduction of technology, however, has not been without issues and

has raised new concerns. One is the possibility of inaccurate election outcomes due

to technical failures of the equipment. Another is the problem of election security

and the possibility of malicious alteration of election results. Yet another concern

is the capability to conduct post-election audits to validate and provide confidence

in election results.

The research reported here applies the features of blockchains and zero-

knowledge protocols to improve the security, integrity, and transparency of elec-

tronic voting systems. This study proposes a new voting algorithm that can be

used as an extension to the existing voting systems to provide evidence about the

accuracy of an election. A prototype system is developed and implemented, and

the system’s security and auditing features are tested. The Rhode Island voting

system is used as a case study in this research. The proposed algorithm is compat-

ible with current election technology and addresses many major concerns about

present voting systems.

ACKNOWLEDGMENTS

I would like to express my sincerest gratitude towards my major professor and

thesis advisor, Dr. Edmund Lamagna for his willingness to spend long hours work-

ing with me to design this voting system. His outstanding suggestions throughout

the process provided great support to achieve the expected goals of my research.

I would also like to thank my committee members, Dr. Lutz Hamel and Dr.

Gavino Puggioni for offering their time and valuable suggestions. I also like to

thank Dr. Gretchen A. Macht for her valuable comments and also for chairing my

defense.

I feel a deep sense of gratitude towards my father, sisters, and all my friends

for their support, encouragement and love. The confidence brought to me by their

words made this research possible.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vii

LIST OF TABLES . ix

CHAPTER

1 Introduction . 1

List of References . 6

2 Prior Related Work . 9

2.1 Voting Systems . 9

2.1.1 Aperio . 9

2.1.2 Scantegrity II . 11

2.1.3 Helios . 13

2.1.4 Prêt à Voter . 14

2.1.5 WAVERI . 15

2.2 Election Auditing Methods . 15

2.2.1 Ballot Audits . 15

2.2.2 Receipt Audits . 16

2.2.3 Tally Audits . 16

2.3 Risk Limiting Audits . 16

iv

Page

v

2.4 Voting Machines in Rhode Island 17

2.4.1 ES&S DS200 . 17

2.4.2 ES&S DS850 . 18

2.4.3 ES&S AutoMARK . 18

2.5 Blockchain Technology . 19

2.6 Proof of Work . 20

2.7 Related Technologies . 21

2.7.1 Cryptographic Hash Functions 21

2.7.2 Zero-knowledge Proof . 21

List of References . 22

3 A Blockchain-Based Voting Algorithm 24

3.1 The Voting Process . 24

3.2 Validator Authentication . 25

3.3 Proof of Work . 28

3.4 Genesis Block . 30

3.5 Voter Verification (Receipt Audit) 31

3.6 Post-election Audits . 31

3.6.1 Ballot Level Comparison 31

3.6.2 Ballot Pooling . 32

3.6.3 Batch Level Comparison 32

3.6.4 Block Removal Method 33

3.6.5 Block Connectivity Audit 33

3.6.6 Block Authenticity Audit 33

Page

vi

List of References . 34

4 Implementation and Testing . 35

4.1 Blockchain Voting Prototype . 35

4.2 First Mock Election . 38

4.2.1 El-Gamal Key Generation 39

4.2.2 Fiat-Shamir Zero-Knowledge Protocol 40

4.2.3 El-Gamal Data Encryption 41

4.3 Second Mock Election . 43

4.4 Third Mock Election . 44

4.4.1 Ballot Level Comparison Audit 45

4.4.2 Ballot Pooling Audit . 46

4.4.3 Batch Level Comparison Audit 47

4.4.4 Block Removal Audit . 48

4.4.5 Block Authenticity Audit 49

4.4.6 Block Connectivity Audit 50

4.4.7 Voter Verification . 51

5 Conclusion . 55

5.1 Future Work . 57

5.1.1 Improvements to the Prototype 57

5.1.2 Improvements to the Algorithm 58

List of References . 58

BIBLIOGRAPHY . 59

LIST OF FIGURES

Figure Page

1 Alteration of a blockchain . 5

2 Aperio ballot assembly . 10

3 Scantegrity II ballot structure 11

4 Scantegrity II commitment tables 12

5 Prêt à Voter ballot . 14

6 ES&S DS200 voting machine 17

7 ES&S DS850 voting machine 18

8 ES&S AutoMARK ballot marking device 19

9 Voting process . 25

10 Validator authentication process 28

11 Proof of work log . 29

12 Block structure . 29

13 Hash format . 29

14 Block removal audit equation 33

15 Online ballot form . 36

16 Tally API page . 37

17 Vote verification QR code . 38

18 Local ballot chain . 41

19 Server authentication error message 41

20 Server authentication error log 42

21 Hash generation process . 43

vii

Figure Page

viii

22 Average number of attempts vs length 44

23 Average time vs length . 45

24 API automation tool (POSTMAN) 46

25 Tally of the first precinct . 46

26 Tally of the second precinct . 47

27 Ballot level comparison audit, first precinct 47

28 Ballot level comparison audit, second precinct 48

29 Ballot pooling audit, first precinct 48

30 Ballot pooling audit, second precinct 49

31 Batch level comparison audit 49

32 Block removal audit, first precinct 50

33 Block removal audit, second precinct 50

34 Block authenticity audit, success result 51

35 Block authenticity audit, failure result 51

36 Block connectivity audit success 52

37 Block connectivity audit failure 52

38 Vote verification QR page . 53

39 Vote verification success . 53

40 Vote verification failure . 54

LIST OF TABLES

Table Page

1 Proof of work performance analysis result 44

ix

CHAPTER 1

Introduction

Electronic voting systems have been the subject of active research for decades.

The goal of such work has been to minimize the cost of conducting an election while

maintaining the security and integrity of the election, as well as voter privacy.

These studies have contributed many improvements to the voting systems we use

today. Optical ballot scanners, paperless voting systems, encrypted voting systems

and internet voting systems are some important outcomes of such work.

Many states, including Rhode Island, have adopted and are using these tech-

nologies in elections. Rhode Island decided to move from mechanical lever machines

to optical scan precinct count voting systems in 1997 [1]. The first election to be

conducted over the Internet in the US was the 1996 Reform Party Presidential

primary, in which Internet voting was offered, along with vote-by-mail and vote-

by-phone, as an option to party members who did not attend the party convention

[2]. Georgia became the first state to implement the use of direct recording elec-

tronic voting machines on a statewide basis, deploying the DREs at the same time

in every county [3].

As a result of widespread adoption of electronic voting systems, U.S. elec-

tions currently rely heavily on the quality of the technology used [4]. In the year

2000, a controversial recount occurred during the presidential election in the state

of Florida [5]. During the November 2004 general election in Carteret County,

North Carolina, electronic voting machines lost 4,438 votes [6]. These and many

other incidents involving close races—including a 1978 election for the Rhode Is-

land Senate, one in 1996 for the South Dakota House of Representatives, and a

1988 Massachusetts Senate Democratic primary [7]—have brought the integrity of

1

existing voting technologies into question. One of main concerns is the possibil-

ity of inaccurate election outcomes occurring as a result of technical failures of

election equipment. Technical failures and weaknesses in the security also enabled

unauthorized modification of the election process and the final tally. Lack of trans-

parency and the inability to conduct post-election audits cause people to lose their

trust in the election process.

As a result of such concerns, a list of compliance suggestions for electronic

voting, called the Voluntary Voting System Guidelines (VVSG), was issued by

the U.S. Election Assistance Commission (EAC) in 2005. Many states adopted

these regulations to overcome some of the weaknesses in their voting systems.

For example, Nevada became the first state to mandate that all electronic voting

machines used in federal elections be equipped with printers that produce a voter-

verified paper audit trail [8]. The California Secretary of State, Kevin Shelley,

decertified all touchscreen electronic voting machines in the state and banned their

use in four counties until significant improvements were made to the security of the

systems [9]. Maryland Governor Robert L. Ehrlich, Jr., publicly urged voters to

vote by absentee paper ballot instead of using the state’s electronic voting machines

in the November 2006 General Election after problems with the machines emerged

during Maryland’s primary that year [10]. Unfortunately, insufficient changes have

been made to improve the quality of the existing voting systems used by most

states. [4]

Security breaches of existing voting systems fall into two categories of the

voting process: those involving voting machines at the precinct level, and those

involving the centralized servers where the results are aggregated. Machines used

by voters have been viewed as flawed, due mainly to security concerns. Anyone

with physical access to a voting machine can sabotage it, thereby affecting all

2

votes cast [1]. In 2011, a group of computer science and security experts on the

Vulnerability Assessment Team at Argonne National Laboratory in Illinois man-

aged to hack a commonly used electronic voting machine using a remote control

that cost less than $11 [11]. This issue becomes even more critical at the backend

of an election system, when the results of voting machines are forwarded to cen-

tral processing centers, where servers that hold the election results are even more

vulnerable to cyber-attacks. In December 2005, Black Box Voting, Inc., set up

a demonstration in Leon County, Florida, where computer security experts Harri

Hursti and Herbert Thompson were able to hack into the central vote tabulator

of an electronic voting system and change the outcome of a mock election without

leaving any trace of their actions [12]. This is one of the key areas where blockchain

technology can be beneficial to a voting system.

Another major concern about current voting systems is their capability to

conduct post-election audits of the election results. “A voting system that may

produce accurate results, but provides no way to know whether it did, is inad-

equate. It provides far too many ways for resourceful adversaries to undermine

public confidence in election integrity” [13]. To address this concern, a strat-

egy was introduced by Philip B. Stark and David A. Wagner in 2012 to conduct

evidence-based elections [14]. This strategy involves three main points: use paper

ballots, protect them, and check them. More specifically:

1. Voters must vote by marking paper ballots - either manually or using ballot

marking devices. In either case, there should be a convenient and acces-

sible way for voters to verify their ballots and, when necessary, to mark a

replacement ballot before officially casting their vote.

2. Voted paper ballots must be carefully stored and managed to ensure that no

ballots are added, removed or altered, and procedures should be established

3

to provide strong evidence of proper ballot management.

3. Voted ballots also must be checked in robust post-election vote tabulation

audits. This procedure should involve audit judges manually reviewing a

random sample of cast ballots and comparing them to the reported initial

counts before the election results are finalized. These audits should be risk-

limiting audits (RLAs), which are very likely to correct any election outcome

that is incorrect due to a mistabulation of votes. In very close elections, a

full manual count may be required. [13]

The use of paper ballots is strongly recommended as it leaves an auditable

trail. Blockchains, however, can provide viable paperless audit trails as a substitute

for this recommendation. Blockchains are one of the most secure data structures to

hold sensitive information, and incorporate sufficient capabilities to conduct audits

of the information stored in the chain.

The blockchain technology was invented by a person (or group of people)

known as Satoshi Nakamoto in 2008 [15]. Its most widely known use to date is

in maintaining public transaction ledgers for cryptocurrencies. It is “an open,

distributed ledger that can record transactions between two parties efficiently and

in a verifiable and permanent way” [16]. Blockchains have many features to create

resistance to alteration of the data stored in the blocks. Once recorded, the data in

any given block cannot be altered retroactively without alteration of all subsequent

blocks(See Figure 1), which requires consensus of the network majority.

A blockchain possess four main features:

• The ledger exists in many different locations. Hence it is impossible to tamper

with the content of a blockchain by changing the contents at one location.

• There is distributed control over who can append new transactions to the

4

Figure 1. Alteration of a blockchain

ledger.

• Any proposed “new block” to the ledger must reference the previous state of

the ledger, creating an immutable chain.

• A majority of the network nodes must reach a consensus before a proposed

new block of entries becomes a permanent part of the ledger [17].

To date, the principal use of blockchains has been in cryptocurrency, most no-

tably Bitcoin [15]. However, blockchains are increasingly being used for a number

of other applications because of their inherent resistance to the modification of a

transaction, block, or the entire distributed ledger [18]. Mediachain is a peer-to-

peer, decentralized database for sharing information across applications and orga-

nizations [19]. Propy is a Silicon Valley-based Cryptocurrency Company working

towards modernizing the real estate industry through the use of Blockchain tech-

nology [20].

Blockchain technology provides a potential solution to many security problems

associated with voting systems:

1. Inherent resistance to modification can be used as a shield against any at-

tempt at tampering with the recorded votes.

2. Since the ledger exists in many different locations, cyberattacks on a single

server will not cause the entire system to fail.

5

3. A consensus is required before new block entries become permanent, avoiding

the addition of illegal blocks (votes) to the chain.

4. Blockchains also provide a capability to conduct election audits even when

no paper trail is available.

Introducing new technologies into a system that already suffers from techno-

logical failures might not be a feasible solution. A new voting algorithm purely

based on a blockchain network that uses coins as votes will create new security

challenges rather than solving the existing ones [21]. Despite that, we can still use

some of the key features in blockchains like proof of work, consensus mechanism,

and hash links to create a partially decentralized chain of ballots that can provide

proofs to the results posted by the existing voting system. These proofs can be

used as evidence to validate the elections or to identify any attempt of malicious

activity during an election.

This research addresses the use of features in blockchains and zero-knowledge

protocols to improve the security, integrity and the transparency of electronic

voting systems. The goal is to design an extension to the existing election system

that will improve the security and integrity of current ones, while at the same time

facilitating the auditing of election results. The Rhode Island voting system is used

as the case study because of our familiarity with it and our ability to ask questions

to local voting authorities as they arise. Another of our goals is to introduce a

minimum of changes to existing voting systems and that are compatible with the

current election process.

List of References

[1] “State of rhode island general assembly. rhode island general laws, title17 -
elections - chapter 17-19 conduct of election and voting equipment,and sup-
plies,” http://webserver.rilin.state.ri.us/Statutes/TITLE17/17-19/17-19-2.1.
HTM, (Accessed on 10/26/2020).

6

http://webserver.rilin.state.ri.us/Statutes/TITLE17/17-19/17-19-2.1.HTM
http://webserver.rilin.state.ri.us/Statutes/TITLE17/17-19/17-19-2.1.HTM

[2] L. F. Cranor, In Search of the Perfect Voting Technology: No Easy
Answers. Boston, MA: Springer US, 2003, pp. 17–30. [Online]. Available:
https://doi.org/10.1007/978-1-4615-0239-5 2

[3] J. Cathy Cox, “Georgia’s unique model for election reform,” https:
//votingmachines.procon.org/historical-timeline/, Nov 2002, (Accessed on
10/26/2020).

[4] S. I. Mello, A detailed forensic analysis and recommendations for Rhode Is-
land’s present and future voting systems. University of Rhode Island, 2011.

[5] “2000 united states presidential election in florida - wikipedia,” https://en.
wikipedia.org/wiki/2000 United States presidential election in Florida, (Ac-
cessed on 10/26/2020).

[6] E. Theisen, “Myth breakers: Facts about electronic elections,” http://www.
votersunite.org/mb2.pdf, (Accessed on 10/26/2020).

[7] “List of close election results - wikipedia,” https://en.wikipedia.org/wiki/List
of close election results, (Accessed on 10/26/2020).

[8] D. A. Heller, “Certification of voter-verified paper audit trail printer com-
pleted,” https://votingmachines.procon.org/historical-timeline/, July 2004,
(Accessed on 10/26/2020).

[9] J. Kevin Shelley, “California secretary of state news release,” https://
votingmachines.procon.org/historical-timeline/, (Accessed on 10/26/2020).

[10] C. Davenport, “Democrats blast ehrlich’s absentee-voting initiative,” https:
//votingmachines.procon.org/historical-timeline/, (Accessed on 10/26/2020).

[11] B. FRIEDMAN, “Diebold voting machines can be hacked by remote control,”
https://www.salon.com/2011/09/27/votinghack/, (Accessed on 10/26/2020).

[12] M. L. Songini, “Expert calls for increased e-voting se-
curity,” https://www.computerworld.com/article/2560901/
expert-calls-for-increased-e-voting-security.html, (Accessed on 10/26/2020).

[13] “Pilot implementation study of risk-limiting audit methods in the state
of rhode island,” https://verifiedvoting.org/wp-content/uploads/2020/07/
RI-RLA-Report-2020.pdf, August 2019, (Accessed on 10/26/2020).

[14] P. B. Stark and D. Wagner, “Evidence-based elections,” IEEE Security &
Privacy, vol. 10, no. 5, pp. 33–41, 2012.

[15] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryptography
Mailing list at https://metzdowd.com, 03 2009.

7

https://doi.org/10.1007/978-1-4615-0239-5_2
https://votingmachines.procon.org/historical-timeline/
https://votingmachines.procon.org/historical-timeline/
https://en.wikipedia.org/wiki/2000_United_States_presidential_election_in_Florida
https://en.wikipedia.org/wiki/2000_United_States_presidential_election_in_Florida
http://www.votersunite.org/mb2.pdf
http://www.votersunite.org/mb2.pdf
https://en.wikipedia.org/wiki/List_of_close_election_results
https://en.wikipedia.org/wiki/List_of_close_election_results
https://votingmachines.procon.org/historical-timeline/
https://votingmachines.procon.org/historical-timeline/
https://votingmachines.procon.org/historical-timeline/
https://votingmachines.procon.org/historical-timeline/
https://votingmachines.procon.org/historical-timeline/
https://www.salon.com/2011/09/27/votinghack/
https://www.computerworld.com/article/2560901/expert-calls-for-increased-e-voting-security.html
https://www.computerworld.com/article/2560901/expert-calls-for-increased-e-voting-security.html
https://verifiedvoting.org/wp-content/uploads/2020/07/RI-RLA-Report-2020.pdf
https://verifiedvoting.org/wp-content/uploads/2020/07/RI-RLA-Report-2020.pdf

[16] M. Iansiti and K. Lakhani, “The truth about blockchain:,” Harvard business
review, vol. 95, pp. 118–127, 01 2017.

[17] F. P. Hjalmarsson, G. K. Hreioarsson, M. Hamdaqa, and G. Hjalmtysson,
“Blockchain-based e-voting system,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). Los Alamitos, CA, USA:
IEEE Computer Society, jul 2018, pp. 983–986. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00151

[18] R. Ganji, “Electronic voting system using blockchain,” https:
//education.dellemc.com/content/dam/dell-emc/documents/en-us/
2018KS Ganji-Electronic Voting System using Blockchain.pdf, (Accessed on
10/26/2020).

[19] “Mediachain : Documentation,” http://docs.mediachain.io/, (Accessed on
10/26/2020).

[20] “Propy wiki,” https://everipedia.org/wiki/lang en/propy, (Accessed on
10/26/2020).

[21] S. Park, M. Specter, N. Narula, and R. L. Rivest, “Going from bad to worse:
from internet voting to blockchain voting.”

8

https://doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00151
https://education.dellemc.com/content/dam/dell-emc/documents/en-us/2018KS_Ganji-Electronic_Voting_System_using_Blockchain.pdf
https://education.dellemc.com/content/dam/dell-emc/documents/en-us/2018KS_Ganji-Electronic_Voting_System_using_Blockchain.pdf
https://education.dellemc.com/content/dam/dell-emc/documents/en-us/2018KS_Ganji-Electronic_Voting_System_using_Blockchain.pdf
http://docs.mediachain.io/
https://everipedia.org/wiki/lang_en/propy

CHAPTER 2

Prior Related Work

In this chapter, the most prominent voting systems that influenced our work

are surveyed. The ballot structure, the voting process, and auditing capabilities

of each system are described briefly. This chapter also discusses the auditing

requirements necessary for an election in Rhode Island and presents a description

of the machines used in the state. At the end of the chapter, a brief introduction

to all the technologies used in our work is presented.

2.1 Voting Systems

2.1.1 Aperio

Aperio is a paper-based voting system that allows the creation of verifiable

audit trails without involving any cryptographic methods. It is an ‘end-to-end’ in-

tegrity verification mechanism that can be used in secret paper-ballot environments

without the use of sophisticated election machines.

Aperio uses a randomized candidate order on each ballot paper. This allows

the generation of a set of paper receipts with the voter’s mark in its proper location,

but without exposing candidate names. As a result, it provides auditability while

maintaining voter privacy. This system was first presented at the WOTE2008

conference by Aleks Essex et. al. of the University of Ottawa as a way to conduct

high integrity elections in countries that have limited access to technology [1].

Aperio uses a stack of ballot papers instead of a single paper ballot. This

stack is referred to as the “ballot assembly”. It consists of four (or more) sheets of

paper separated by carbon paper. In this stack, the first sheet is the ballot itself

with the candidate names in randomized order. This sheet includes ovals where

votes are marked. On the second sheet, a serial number is printed along with the

9

ovals in the same position as the first sheet, but there are no candidate names. The

second sheet is a receipt that a voter retains and can use to verify his/her vote.

The last two sheets are audit sheets containing commitment reference numbers

that are used during the audit process. Like the second sheet, they include the

marked ovals without the candidate names. (See Figure 2)

Figure 2. Aperio ballot assembly

There is no limit to the number of audit sheets in the stack. There can be as

many audit sheets as desired, one for each group of auditors. When the top ballot

is marked, the mark carries through all the ballot sheets because of the carbon

paper.

Before election day, two commitment lists are created by the election authority.

The ballot commitment list holds information concerning the candidate order for

each ballot assembly. The receipt commitment list holds a serial number associated

with each ballot assembly. These lists are exposed to the public depending on the

type of audits conducted after the election. To conduct a secure audit, only one

of these lists is ever revealed. The other is destroyed during the auditing process.

On election day, a voter marks choices on the top ballot and then separates

10

the ballot assembly. The top sheet goes into a ballot box, the voter retains the

second sheet as a receipt, and the audit sheets go into corresponding audit boxes.

Aperio is capable of conducting three types of audits: receipt audits, tally

audits, and ballot audit. These are discussed later in this chapter.

2.1.2 Scantegrity II

Scantegrity II is an end-to-end cryptographic voting system created for use

with optical scan voting technology. The basic principle of this system is the

use of secret codes, called confirmation codes, that are printed in invisible ink on

the ballot. Voters reveal an invisible code by marking the intended oval on the

ballot. After casting a vote, a voter can check this code on a bulletin board to

be confident his vote was counted and included in the final tally. Scantegrity was

originally proposed by David Chaum in 2007 [2]. Scantegrity II, introduced in

2009, became somewhat of a success and was used in a governmental election held

in Tacoma Park, Maryland [3].

Figure 3. Scantegrity II ballot structure

As shown in Figure 3, a voter wishing to verify his vote can write down the

confirmation code appearing in the oval on the receipt and take it home. Unlike

Aperio, in Scantegrity II candidate names appear in the same order on every ballot,

but there is a unique serial number on every ballot.

11

The serial number of the ballot and all the secret codes on it are stored in a

table referred to as the “ballot table” (Figure 4: Table P). Since this table exposes

the relationship between the confirmation code and a candidate, it must never be

published. As a result, three commitment tables are created for use in audits: The

“permuted ballot table”, the “shuffle table”, and the “result table”.

• The permuted ballot table holds the confirmation codes for each ballot with-

out the candidate’s name. To maintain secrecy, the codes are permuted to

change the order they appear on the ballot. (Figure 4: Table Q)

• The shuffle table holds details of the confirmation codes printed in invisible

ink on each ballot. It also holds a pointer to the result table mapping each

candidate’s vote to the ballot serial number from which the vote originates.

(Figure 4: Table R)

• The Result table holds the final tally of the election. (Figure 4: Table S)

Figure 4. Scantegrity II commitment tables

12

Scantegrity II has capabilities for conducting receipt audits, ballot audits, pre-

election cut and choose audits, tally audits, and post-election randomized partial

checking (RPC) audits.

2.1.3 Helios

Helios is an open-source voting system for strictly online elections. This sys-

tem is based on public-key cryptography and has an auditing capability. A primary

goal of this project was to create a platform enabling anyone to set up and conduct

a completely online election. The Helios system was created in 2008 by Ben Adida

at MIT [4].

Internet voting is considered by most as an insecure way to conduct elections

due to security and privacy vulnerabilities, as well as the lack of a paper ballot

trail. As a result, Adida does not endorse Helios for elections that involve high

stakes. He suggests this system for schools and clubs conducting low-stakes online

elections where there is little or consequence of a cyber-attack.

The Helios system has been successfully used on many occasions. In March

2009 it was deployed in the election of the President of Université Catholique de

Louvain in Louvain-la-Neuve, Belgium [4]. It was also used to run the Princeton

undergraduate student government election in October 2009.

Since Helios is designed for online elections, the ballots are created as virtual

web forms. Cast ballots are encrypted using the El Gamal cryptosystem before

being sent back to a server for inclusion in the tally. The private key needed to

decrypt a ballot is saved on a trusted workstation. The Helios system is capable of

conducting three types of audits: ballot audits, receipt audits, and tally audits [5].

A ballot audit is performed on the virtual ballots by displaying the SHA-1 hash

ciphertext of the ballot to the voter.

13

2.1.4 Prêt à Voter

This system was created by Peter Ryan at Newcastle University in 2004.

Like Aperio, it uses a randomized candidate order to provide verifiability while

maintaining ballot secrecy [6].

A Prêt à Voter ballot has two halves that can be separated in the middle.

The left side is printed with a list of random candidates. And the right-side has

boxes where the voter marks his intention with a pen. The right-side also has a

2D bar code containing the information necessary to decrypt the candidate order

printed on the left-side. See Figure 5. The key to decrypting the candidate order

is encrypted in such a way that no one person alone can decrypt the ballot.

Figure 5. Prêt à Voter ballot

On election day, voters mark their ballots with an “X” using a pen on the right

side of the paper, detach the left side from the ballot, and discard it; the right-side

is scanned using an optical scanner that records and adds the vote to the tally.

Voters leave the polling place with the right side of the ballot as a receipt.

The Prêt à Voter system is capable of conducting four types of audits: ballot

14

audits, receipt audits, tally audits, and post-election mixnet audits.

2.1.5 WAVERI

WAVERI is an election algorithm based on set theory. The name WAVERI

stands for Watch, Audit, Verify Elections for Rhode Island. This algorithm offers a

solution that creates verifiable audit trails without the added complexity associated

with cryptographic schemes. The algorithm was created in 2011 by Suzanne I.

Mello-Stark at the University of Rhode Island [7].

Prior to election day, the algorithm creates a set of unique codes and saves

them on a precinct’s election system. On election day, the algorithm secretly

divides the audit code set into a family of disjoint subsets. One subset is assigned

to each candidate in every race. When a vote is cast, an audit code is removed

from the selected candidate’s subset and placed in the used audit code set. The

audit code is printed for the voter to take home for later verification. Since the

original candidate subsets are never exposed, the audit code cannot be linked to a

specific candidate. Final vote tallies for each candidate are calculated by looking

into the unused audit codes in each candidate’s subsets.

WAVERI system is capable of conducting four types of audits: receipt audits,

tally audits, randomized partial checking audit, and complete set audit

2.2 Election Auditing Methods

2.2.1 Ballot Audits

A ballot audit is used to verify the ballots are printed correctly. A voter or

an auditor can conduct a ballot audit on election day. To begin a ballot audit, the

interested party asks a poll worker for a blank ballot. The poll worker marks a

ballot as an “audit ballot” and hands it to the auditor for verification [7].

15

2.2.2 Receipt Audits

A receipt audit allows voters and watchdog groups to make sure all the re-

ceipts are included in the final tally. After the election day, an auditing group

collects ballot receipts from voters and compares the collected receipts with the

corresponding ballots. Any missing ballots during the election can be identified

using this audit [7].

2.2.3 Tally Audits

A tally audit gives auditors another way to verify the vote tally. There are

various methods to perform this audit based on the voting system. The main goal

is to provide evidence of the correctness of the final tally.

2.3 Risk Limiting Audits

In October 2017, the Governor of Rhode Island signed into law a groundbreak-

ing election security measure requiring Rhode Island election officials to conduct

risk-limiting audits (RLAs) staring with the 2020 presidential primary [8]. Ac-

cording to this law, election officials must conduct an RLA on a random sample of

cast ballots determined by statistical modeling instead of auditing a predetermined

number of ballots [8].

There are three different approaches to risk-limiting audits.

• Ballot-level comparison: a random sample of cast ballots is manually in-

terpreted, and each manual interpretation is checked against the machine

interpretation of the same ballot.

• Ballot polling: a random sample of voted ballots is manually interpreted,

and the resulting manual vote counts are checked against the total machine

counts to see if they provide strong statistical evidence that the reported

outcome is correct. This method is very similar to exit polling.

16

• Batch level comparison: a random sample of “batches” is selected, and the

votes in each batch are counted manually. A batch may consist of all the

ballots cast in a precinct, or on a particular voting machine. The counts are

compared to the corresponding precinct or machine counts, batch by batch,

to determine any discrepancies.

2.4 Voting Machines in Rhode Island

2.4.1 ES&S DS200

The ES&S DS200 is a precinct-based, voter-activated paper ballot counter and

tabulator. The DS200 has a 12” LCD touch screen that provides voters with feed-

back, such as an overvote warning. When the polls close, the ES&S DS200 prints

out logs providing election officials with a paper tally of the votes cast. The DS200

captures digitized images of all ballots scanned. Write-in votes and problematic

ballot markings can be processed using the digitized images. Consequently, once

the ballots are scanned, they need not be handled except in the event of a recount

or audit [9]. This system is used as the ballot scanner at all polling places in Rhode

Island elections. All ballots are marked by hand or, for accessibility purposes, an

AutoMark device.

Figure 6. ES&S DS200 voting machine

17

2.4.2 ES&S DS850

The DS850 is a high-speed, digital scan ballot tabulator designed for use by

election officials at a central election facility. The DS850 can scan and count

up to 300 ballots per minute. It uses digital cameras and imaging systems to

read the front and back of each ballot, evaluate the result, and sort each ballot

into an appropriate tray based on the result to maintain continuous scanning and

tabulating. Multiple criteria can be used to segregate ballots for review including

overvotes, crossover votes, and blank ballots. Depending on the situation, ballots

segregated in this fashion may not be counted and may need to be remade by the

election inspectors. Rhode Island mainly uses these systems for mail and absentee

ballot tabulation [10].

Figure 7. ES&S DS850 voting machine

2.4.3 ES&S AutoMARK

The AutoMARK Voter Assist Terminal (VAT) is an optical scan ballot marker

designed for use by people who are unable to mark an optical scan ballot due to

physical impairments or language barriers. Originally patented by Eugene Cum-

18

mings in 2003, ES&S purchased the rights to manufacture and distribute the sys-

tems in 2008 [11].

Figure 8. ES&S AutoMARK ballot marking device

2.5 Blockchain Technology

The first-ever blockchain-like protocol was proposed by cryptographer David

Chaum in his 1982 dissertation, “Computer Systems Established, Maintained, and

Trusted by Mutually Suspicious Groups”[13]. This work was continued in 1991

by Stuart Haber and W. Scott Stornetta into a cryptographically secured chain of

blocks [12]. Their goal was implementing a system where document timestamps

could not be tampered.

In 2008, the notion of blockchain was conceptualized by a person (or group of

people) known as Satoshi Nakamoto [13]. Nakamoto’s design used a Hashcash-like

method to timestamp blocks without requiring them to be signed by a trusted

party [14]. In the following year, Nakamoto introduced a cryptocurrency called

Bitcoin, where blockchain technology serves as the basis for implementing a public

ledger used to support this digital currency [13].

19

A blockchain is a system of recording information in a way that makes it

difficult or impossible to change, hack, or cheat the system [15]. A blockchain

ledger exists in many different locations. Hence it is impossible to tamper with the

content of a blockchain by changing the information stored at just one location.

There is distributed control over who can append new transactions to the ledger.

Any proposed “new block” in the ledger must reference its previous state, creating

an immutable chain. A majority of the network nodes must reach a consensus

before any proposed new block of entries becomes a permanent part of the ledger.

To date, the principal use of blockchains has been in cryptocurrency, mainly

Bitcoin. However, blockchains are increasingly being used in other applications

including “smart contracts” [16], financial services, video games, energy trading,

supply chains, and domain name registration [17].

2.6 Proof of Work

A proof-of-work (POW) system (or protocol, or function) is a consensus mech-

anism whose main purpose is to prevent denial-of-service attacks and other abuses

such as spam on a computer network. A service requester is required to perform

some work, usually equating to computer processing time, in order to receive a

requested service. The concept was invented by Cynthia Dwork and Moni Naor

in a 1993 journal article [18]. The term “proof of work” was first introduced and

formalized in 1999 by Markus Jakobsson and Ari Juels [19].

A key feature of proof-of-work schemes is their asymmetry. The work must

be moderately hard, though feasible, for the requester to perform, but easy for

the service provider to check. This notion is also known as a CPU cost function,

client puzzle, computational puzzle, or CPU pricing function. It is different from

a CAPTCHA, which is intended for a human to solve quickly while being difficult

for a computer to solve.

20

2.7 Related Technologies

2.7.1 Cryptographic Hash Functions

A cryptographic hash function, or hashing algorithm, takes a block of data and

operates on it in a deterministic fashion to scramble the information and produce

a much smaller fixed-size string called a hash value. A good hash function should

have the property that it is infeasible for two distinct data blocks to produce the

same hash value. These functions were originally invented in the 1950s to detect

errors in communications [20].

One of the first hash functions to gain acceptance was MD5, developed by Ron

Rivest in 1991 [21]. A pair of strings producing the same value was reported in 2004

and several other collisions have been found since [22]. Consequently, the method

is no longer considered strongly collision-resistant and MD5 is not recommended

for use in secure applications.

SHA-1 (Secure Hash Algorithm) is a widely used hash function designed by

the NSA. Although this method produces a much larger 160-bit hash, collisions

were reported in 2005 and 2008 [23].

SHA-2 and SHA256 are newer versions of the SHA-1 hash algorithm. SHA256

produces a 256-bit (32 bytes) hash value that is usually reported as 64-digit hex-

adecimal number.

2.7.2 Zero-knowledge Proof

Zero-knowledge proof (protocol) is a method by which one party (the prover)

can demonstrate to another (the verifier) that they know a value x, without con-

veying any information apart from the fact that they know the value x [26]. The

base of this technique is to use mathematical methods to verify things without

sharing or revealing underlying data.

This method was initially introduced in 1989 by Shafi Goldwasser, Silvio Mi-

21

cali, and Charles Rackoff in their paper “The Knowledge Complexity of Interac-

tive Proof-Systems” [28]. It has been successfully used in many areas including

authentication systems, to enforce ethical behavior (according to community stan-

dards) among members of an online community, nuclear disarmament, and the

blockchain.

List of References

[1] A. Essex, J. Clark, and C. Adams, “Aperio: High integrity elections for de-
veloping countries,” in Towards Trustworthy Elections. Springer, 2010, pp.
388–401.

[2] D. Chaum et al., “The scantegrity system, an introductory whitepaper and
example,” Last accessed on January, vol. 10, p. 2010, 2011.

[3] R. Carback, D. Chaum, J. Clark, J. Conway, A. Essex, P. S. Herrnson, T. May-
berry, S. Popoveniuc, R. L. Rivest, E. Shen, et al., “Scantegrity ii municipal
election at takoma park: The first e2e binding governmental election with
ballot privacy,” 2010.

[4] B. Adida, O. De Marneffe, O. Pereira, J.-J. Quisquater, et al., “Electing a
university president using open-audit voting: Analysis of real-world use of
helios,” EVT/WOTE, vol. 9, no. 10, 2009.

[5] B. Adida, “Helios: Web-based open-audit voting.” 01 2008, pp. 335–348.

[6] P. Ryan, D. Bismark, J. Heather, S. Schneider, and Z. Xia, “PrÊt À voter:
a voter-verifiable voting system,” Information Forensics and Security, IEEE
Transactions on, vol. 4, pp. 662 – 673, 01 2010.

[7] S. I. Mello, A detailed forensic analysis and recommendations for Rhode Is-
land’s present and future voting systems. University of Rhode Island, 2011.

[8] “Pilot implementation study of risk-limiting audit methods in the state
of rhode island,” https://verifiedvoting.org/wp-content/uploads/2020/07/
RI-RLA-Report-2020.pdf, August 2019, (Accessed on 10/26/2020).

[9] “Es&s ds200 – verified voting,” https://verifiedvoting.org/election-system/
ess-ds200/, (Accessed on 10/27/2020).

[10] “Es&s ds850 & ds450 – verified voting,” https://verifiedvoting.org/
election-system/ess-ds850-ds450/, (Accessed on 10/27/2020).

[11] “Es&s automark – verified voting,” https://verifiedvoting.org/
election-system/ess-automark/, (Accessed on 10/27/2020).

22

https://verifiedvoting.org/wp-content/uploads/2020/07/RI-RLA-Report-2020.pdf
https://verifiedvoting.org/wp-content/uploads/2020/07/RI-RLA-Report-2020.pdf
https://verifiedvoting.org/election-system/ess-ds200/
https://verifiedvoting.org/election-system/ess-ds200/
https://verifiedvoting.org/election-system/ess-ds850-ds450/
https://verifiedvoting.org/election-system/ess-ds850-ds450/
https://verifiedvoting.org/election-system/ess-automark/
https://verifiedvoting.org/election-system/ess-automark/

[12] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” in
Conference on the Theory and Application of Cryptography. Springer, 1990,
pp. 437–455.

[13] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryptography
Mailing list at https://metzdowd.com, 03 2009.

[14] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bitcoin
and cryptocurrency technologies: a comprehensive introduction. Princeton
University Press, 2016.

[15] “Blockchain explained: What is blockchain? — euromoney learning,” https:
//www.euromoney.com/learning/blockchain-explained/what-is-blockchain,
(Accessed on 10/28/2020).

[16] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, and
X. Xu, “On legal contracts, imperative and declarative smart contracts, and
blockchain systems,” Artificial Intelligence and Law, vol. 26, no. 4, pp. 377–
409, 2018.

[17] “Blockchain - wikipedia,” https://en.wikipedia.org/wiki/Blockchain#cite
note-reason20160506-58, (Accessed on 10/28/2020).

[18] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,”
in Advances in Cryptology — CRYPTO’ 92, E. F. Brickell, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 139–147.

[19] M. Jakobsson and A. Juels, Proofs of Work and Bread Pudding
Protocols(Extended Abstract). Boston, MA: Springer US, 1999, pp. 258–272.
[Online]. Available: https://doi.org/10.1007/978-0-387-35568-9 18

[20] R. K. Nichols, ICSA guide to cryptography. McGraw-Hill Professional, 1998.

[21] R. Rivest, “Rfc1321: The md5 message-digest algorithm,” 1992.

[22] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash functions md4,
md5, haval-128 and ripemd.” IACR Cryptol. ePrint Arch., vol. 2004, p. 199,
2004.

[23] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full sha-1,” in
Annual international cryptology conference. Springer, 2005, pp. 17–36.

23

https://www.euromoney.com/learning/blockchain-explained/what-is-blockchain
https://www.euromoney.com/learning/blockchain-explained/what-is-blockchain
https://en.wikipedia.org/wiki/Blockchain#cite_note-reason20160506-58
https://en.wikipedia.org/wiki/Blockchain#cite_note-reason20160506-58
https://doi.org/10.1007/978-0-387-35568-9_18

CHAPTER 3

A Blockchain-Based Voting Algorithm

A new voting algorithm that builds upon characteristics of blockchains is

presented in this chapter. The procedure builds on other cryptographic techniques

as well, including the El-Gamal public key encryption system and zero-knowledge

protocols. This new algorithm offers advantages over current voting systems in

terms of security and its ability to facilitate audits.

3.1 The Voting Process

On election day, each voter receives an unmarked paper ballot with no iden-

tifying index on it. This ballot follows the format now used in the state of Rhode

Island. Hence there is no need to change or reconfigure the optical scanning devices

currently used.

Voters mark their intentions on the ballot in the same manner currently used.

After marking the ballot, they insert it into a ballot scanner. The scanners perform

an initial validation to check for overvotes and other incorrectly marked ballots.

Rhode Island elections currently uses ES&S DS200 optical scanners at polling

places, and these machines have built-in features to detect incorrectly marked

ballots and overvotes. If the scanner approves a ballot as correctly marked, it

places the ballot into a bin attached to the scanner.

In our scheme, the scanner forwards the information on the ballot to a server

located within the polling place to which it is ”hard-wired”. We refer to this

server as the “validator”, and its primary function is to store the information on

all ballots cast in the precinct into a blockchain. After successfully saving the vote

into the blockchain, the validator prints out a QR code on a printer attached to

it. This QR code serves as the receipt for a particular ballot, and the voter can

24

take it home and use it to verify that his or her vote appears in the blockchain.

Figure 9. Voting process

3.2 Validator Authentication

Before storing a vote in the local chain, a validator performs a process called

“proof of work” to generate the correct hash for the block representing the new

ballot. Each hash generated by the validator needs to be formatted in a particular

way. To achieve this format, a validator uses a random value called a nonce. This

value is generated for each individual ballot by a secured workstation located in a

centralized operation center. We refer to this workstation as the “central server”.

For security reasons validators do not store this random value in their memory and

need to request it from the central server for each ballot.

To avoid unauthorized access to the central server, validators need to authen-

ticate themselves to the central server. This authentication process is performed

using a Fiat-Shamir zero-knowledge protocol [1]. The reason for using this proto-

col is to provide authentication without sharing any sensitive information between

validators and the central server. This protects validators from network eavesdrop-

ping attacks.

The authentication process works as follows. Before the election, each valida-

25

tor and the central server generate private and public encryption/decryption keys

using El-Gamal protocol [2]. This process is performed offline at a central election

facility. The key distribution process is as follows:

1. First, both the central server and all of the validators agree on two values, a

prime number n and a random value g. The central server and all validators

use the same pair of values.

2. Next, the central server generates a random value a and computes A = ga

mod n. The value a is the central server’s “password” and A is its “user-

name”. The central server shares the value of A with all the validators and

keeps a secret.

3. Each validator follows the same process, generating a random “password” b

and “username” B = gb mod n. Every validator keeps its b value secret and

sends its username to the central server, which stores the B values for each

validator separately.

4. The central server uses the B value as the “username” for each validator in

the Fiat-Shamir authentication process. It also computes Ba mod n, which

it uses as the public key to encrypt the proof of work it shares with a validator

after successful authentication.

5. Each validator computes Ab mod n and uses it as the decryption key to

decrypt the proof of work it receives from the central server after a successful

authentication process.

On election day, each validator requests a new proof of work for every ballot.

Before requesting a proof of work, a validator goes through a zero-knowledge check

to authenticate itself to the central server. This process works as follows:

26

1. The validator selects a random value v and uses it to generate T = gv mod n,

which it passes to the central server as its initial request for authentication.

2. The central server keeps the T value and responds to the request with a

randomly generated value C.

3. The validator uses the equation R = v − Cb based on the value C returned

from the server and its secret password b. It forwards R as the second request

in the authentication process.

4. The central server uses R, the previously generated value C and the valida-

tor’s username B to generate U = gRBC mod n .

5. If the value U is equal to the value T from the initial request, the central

server accepts the proof of work request from the validator and establishes a

connection to send the proof of work.

U = gRBC

U = gv−Cb(gb)C

U = gv−CbgbC

U = gv−Cb+Cb

U = gv = T

The information shared by the central server consists of two parts. The first is

the proof of work, a random number (nonce) use to format the hash. The second

is a timestamp bearing the time the central server generated the proof of work.

These two values are encrypted before sharing them with the validator. The

central server uses the public key of the validator to encrypt the data. The validator

uses its private key to decrypt the proof of work.

27

Figure 10. Validator authentication process

3.3 Proof of Work

Proof of work (POW) is the mechanism that protects the integrity of the

information stored in the local chain. Blockchain technology provides an inherit

resistance to alteration of data in the chain [3]. This resistance is achieved by

storing the previous state of the chain, in the form of a hash value, in every block

before the block is allowed to become a permanent part of the chain. The resistance

is compromised, however, if someone tries to replace the entire blockchain with a

new one. The concept of proof of work is used to protect against such attacks on

the local chains stored in validators.

After authenticating a validator, the central server generates a random value

(cryptographic nonce) and sends it back to the validator. The POW concept is

based on this random number and “vote id”, initially assigned a value of 0, that is

stored in each block. The central server saves the newly generated nonce with the

name of the validator that requested it and the time of the request in a POW log.

This log is stored securely on the central server and is used to conduct post-election

audits.

Since the POW generation algorithm is based on random numbers, a hacker

with the same algorithm cannot predict the nonce generated by the central server

in response to a specific request. The central server is the only place where the

28

Figure 11. Proof of work log

nonce is stored in the entire system.

Figure 12. Block structure

Each block consists of four data fields as shown in Figure 12. The previous

hash comes from the hash of the last block in the local chain, the ballot data is

the information received from the ballot scanner, the POW timestamp is sent by

the central server, and the vote id is the number used by the validator to generate

and format the hash of the new block.

The POW is based on the validator generating a SHA256 has that begins with

a binary sequence of 0s followed by a 1. See Figure 13. The number of 0s in the

sequence determines the difficulty of the POW. The number of attempts required

by the validator to find a hash with the correct format increases as the number of

0s increases. A feasible value for the number of 0s needs to be set before the start

of the election. This value is static for all the blocks in every local chain during

the election.

Figure 13. Hash format

29

To achieve the desired format, a validator adds the nonce value to the vote

id. The validator generates a hash for the block combining all four data fields. If

the hash is not in the expected format, the validator increases the vote id by one

and generates another hash. The validator continues this process until it finds a

hash of the correct format. When this hash is found, the validator generates a new

block in the local chain. This block includes the data combined to generate the

hash, but the vote id is altered by deducting the nonce. For example, if the server

sends 152345 as the nonce, and the validator took 120 attempts to find a hash of

the correct format, the vote id used to generate the correct hash is 152345 + 120

= 152465. But the validator stores 120 as the value for the vote id in the new

block. As a result, validators retain no information about the nonce values used

to generate each block.

After storing the block into the local chain, the validator uses the hash to

generate a QR code that is printed on a piece of paper that voters can take home

as a receipt of their vote. Voters can use this QR code to verify their vote has

been included in the local chain. This voter verification process is referred to as a

receipt audit.

3.4 Genesis Block

Recall that each block in the local chain stores the previous state of the chain

in the form of a hash value. The problem is that each chain needs to start with

a block that does not refer to a previous hash. This block is referred to as the

“genesis block” of the chain. This special block is placed in each validator to mark

the starting point of the local chain, and does not have any value for the “previous

hash” and “ballot data” fields. Before election day, the central server generates a

list of nonces and assigns each nonce to a genesis block in every validator. Each

validator executes the POW procedure described above with null ballot data, a null

30

previous hash, and a timestamp for the nonce and to generate a “genesis block”.

3.5 Voter Verification (Receipt Audit)

The main purpose of the voter verification process is to create an audit trail

for each vote. Voters can also use it as evidence to verify their vote is included in

the final tally.

After the conclusion of an election and the posting of the results, voters can

access the vote verification system using the receipt they were given at the polls.

Voters can use their smartphones or a QR code scanner to access the verification

portal through an online website. After scanning the receipt, voters are directed

to the verification portal for their precinct, where the system will confirm that

their ballot was included in the tally. This confirmation does not reveal any detail

about how the ballot was cast, just that the vote has been included in the election

count.

3.6 Post-election Audits

The Rhode Island Board of Elections is now, under law, required to perform

risk-limiting audits (RLAs) for certain elections [4]. Risk limiting audits can be

of three principal types: ballot level comparison, ballot pooling, and batch level

comparison. The system proposed here provides sufficient features to conduct all

three types of RLAs.

3.6.1 Ballot Level Comparison

Since we have a separate chain for each precinct, this can be used to produce

a separate final tally for each precinct. After the election, precincts can be selected

randomly and the ballots for a precinct can be rescanned using a different scanner

and validator to create a new chain. By generating the final tally for the new chain

and comparing it to the original tally, we can evaluate the validity of the scanner

31

and validator used in the precinct. To improve the accuracy of the process, it can

be repeated for different precincts.

Furthermore, we can manually evaluate a sample of ballots (e.g., 10%) from

the precinct and project the election outcome for that precinct based on the tally

of the sample. This is useful in verifying there are no programming issues related

to ballot-scanning and processing the information on ballots.

3.6.2 Ballot Pooling

Sets of blocks from a precinct chain can be randomly selected to create a

sample of ballots. By evaluating the information stored in each block, the vote

count for the sample can be determined. This information can be used to estimate

the final tally of the precinct, providing a projection of the election count. The

same process can be performed manually by visually inspecting and counting the

actual ballot papers (instead of using blocks in the chain) from a random sample

of votes to provide an estimation of the final election tally.

3.6.3 Batch Level Comparison

This is one of the easiest audits to perform with our current design. Since

the system provides the local blockchains for each precinct separately, they can be

used as the batches. When the results for all precincts are added together, this

should generate the final count for the election. We can select a random sample

of precinct local chains and evaluate the tally of each chain to generate the final

tally of the sample. This information can be used to estimate the final tally of the

election. The count from the sample can be compared to the original tally from

the logs generated by the voting machines.

32

3.6.4 Block Removal Method

In this procedure, a random set of blocks are removed from a precinct chain.

The tally of the removed blocks and the rest of the blocks left in the chain is

evaluated. The sum of the two tallies needs to be equal to the original final tally

of the chain. The final tally can be validated with the equation in Figure 14.

Figure 14. Block removal audit equation

This method provides mathematical proof of the tally in each precinct.

3.6.5 Block Connectivity Audit

In addition to the above audits, we can use the features of the blockchains to

perform post-election audits. The validity of each link in the chain can be verified

from the “previous hash” value of the next block and the four pieces of information

stored in the current block: the ballot data, timestamp, vote id, and the hash of the

previous block. Verifying the validity of the links provides evidence that the local

chain has not been maliciously altered. If the hash in either of the two consecutive

blocks is incorrect, the connectivity check will fail.

3.6.6 Block Authenticity Audit

The proof of work for each block can also be used to validate the integrity of the

chain. The timestamp stored in each block can be used to locate the corresponding

POW (nonce) in the central server’s log. After adding the nonce value to the

vote id value in the block, we can regenerate the hash of a block and check that

the format of the hash is correct. By performing this test on all blocks in the chain,

we can validate the integrity of the entire chain.

33

List of References

[1] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identi-
fication and signature problems,” in Advances in Cryptology — CRYPTO’ 86,
A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp.
186–194.

[2] T. ELGAMAL, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” https://caislab.kaist.ac.kr/lecture/2010/spring/cs548/
basic/B02.pdf, (Accessed on 10/28/2020).

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryptography
Mailing list at https://metzdowd.com, 03 2009.

[4] “Pilot implementation study of risk-limiting audit methods in the state
of rhode island,” https://verifiedvoting.org/wp-content/uploads/2020/07/
RI-RLA-Report-2020.pdf, August 2019, (Accessed on 10/26/2020).

34

https://caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/B02.pdf
https://caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/B02.pdf
https://verifiedvoting.org/wp-content/uploads/2020/07/RI-RLA-Report-2020.pdf
https://verifiedvoting.org/wp-content/uploads/2020/07/RI-RLA-Report-2020.pdf

CHAPTER 4

Implementation and Testing

Implementation and testing of this research were conducted in two phases.

In the first phase, a prototype was implemented based on the voting algorithm

described in Chapter 3. In the second phase, three mock elections were conducted

to test the system.

The first mock election tested the functionality of certain features in the sys-

tem such as the zero-knowledge protocol, El-Gamal encryption, and proof of work.

Only one precinct and a small number (less than 20) ballots were used in this mock

election. No post-election audits were conducted due to an insufficient amount of

data in the chain.

The second mock election analyzed the computational complexity of the pro-

posed proof of work procedure to determine a feasible length for the sequence of 0s

used in the proof of work. Only one precinct was used, and up to 100 votes tested

for each length to collect data.

The third mock election replicated an actual election with two precincts. Up

to 1000 ballots were used for each precinct. All the post-election audit methods

were tested including voter verification. The findings of each mock election are

presented at the end of this chapter.

4.1 Blockchain Voting Prototype

Actual ES&S DS200 optical scanners were not acquired for use in the proto-

type. Instead, the software was developed to simulate the functionality of a ballot

scanner, a validator, and the central server. A webform developed using HTML

and JavaScript was used for ballots. A web API (REST API) developed using the

Python Flask framework was used to send the ballot data to the validator. Each

35

ballot was converted to a JSON object and stored inside the block as the value for

the “ballot data”.

Figure 15. Online ballot form

The validator was implemented in Python, and the local chains were stored

inside a validator as a binary file. All the algorithms (zero-knowledge protocol,

El-Gamal encryption, and proof of work) used in the validator were implemented

from scratch without using any third-party Python libraries. The built-in Python

library “hashlib” was used to perform the SHA256 hash function.

Features of the central server were also implemented in python on the same

server as the validator. The validator authentication process (zero-knowledge pro-

tocol) and the encryption of the data shared between the central server and the

validator were implemented as described in Chapter 3. The proof of work log was

also stored on the server as a binary file.

A separate tallying function was implemented to calculate the result of votes

received by the validator. This function was written to replicate the tallying feature

of an ES&S DS200 optical scanner. A separate web API was developed using the

36

Python Flask framework to view the final result of the election. The API returns

a web page with the current tally of votes.

Figure 16. Tally API page

The voter verification process also faced minor changes from the original design

due to the absence of actual validators attached to a QR printer. Instead of printing

a receipt with the QR code, a QR code image was displayed on the online ballot

page after a successfully cast vote. This image can be downloaded or printed on

paper to use as a receipt to access the voter verification portal. As in the original

design, this image can be scanned using a camera on a smartphone or a QR code

scanner. The scanned image reveals a link to access the voter verification portal,

which is a web API developed using the same Python Flask framework as the tally

API. This API informs the voter that their vote is included in the final tally.

Post-elections audits were implemented as Python scripts. These scripts access

the data stored in a binary file to perform the validations necessary to provide

evidence of the accuracy of the election. The processes of voter verification and

post-election audits are explained further in the following sections.

37

Figure 17. Vote verification QR code

4.2 First Mock Election

As previously mentioned, the main purpose of the first mock election was to

test the key features of the voting algorithm. This mock election was designed

to exercise functions such as generating public and private encryption keys for

validators using El-Gamal key generation, authenticating validators to the central

server with the Fiat-Shamir zero-knowledge protocol, and validating hashes using

proof of work.

This mock election was conducted using a single precinct. Only one virtual

validator was used to record votes. An online ballot form was designed to ac-

commodate one race with three options to vote: two candidates plus a space for

a write-in. Several votes were added to the chain representing all the options to

check the success of the vote casting process.

All the keys and passwords required to perform the zero-knowledge protocol

and data encryption were manually generated before the test and stored as fixed

values inside the code.

38

4.2.1 El-Gamal Key Generation

For El-Gamal key generation, the central server and each of the validators

need to agree upon two values: a prime number n and a random number g, where

g is preferably a generator mod n (i.e., the powers of g mod n run through the

numbers 1, 2, . . ., n–1 in some order). In the first mock test, 11881379 was the

prime n and 1567892 was the value of g. These two values were saved inside both

the central server and the validator. Then a random value a = 15467 was selected

as the private key of the central server. By using the equation A = ga mod n, the

public key for the validator was calculated and shared with all the validators.

A = ga mod n

A = 156789215467 mod 11881379

A = 11170411

The same process was repeated to generate private and public keys for the

validator. Random value b = 76543 was selected as the private key for the validator

and the public key was calculated and shared with the central server.

B = gb mod n

B = 156789276543 mod 11881379

B = 748829

This B value is also used as the validator’s username for the Fiat-Shamir zero-

knowledge protocol. The encryption key was generated in the central server using

the equation Ba mod n

39

Encryptkey = Ba mod n

Encryptkey = 748829815467 mod 11881379

Encryptkey = 5956664

Similarly, the decryption key was generated for each validator using the equa-

tion Ab mod n.

Decryptkey = Ab mod n

Decryptkey = 1117041176543 mod 11881379

Decryptkey = 5956664

4.2.2 Fiat-Shamir Zero-Knowledge Protocol

To test for successful validator authentication with the Fiat-Shamir zero-

knowledge protocol, seven votes were added to the system using the fixed key

values generated in the previous section for the validator. After adding the votes

to the system, the local chain stored in the validator was retrieved to check whether

all the votes were successfully recorded in the chain. The retrieved data showed

the local chain held eight blocks, the genesis block plus one block for each of the

seven votes cast. All the votes were successfully turned into blocks and stored in

the chain (Figure 18). Hence the validator successfully authenticated itself to the

central server for each vote cast without sharing any other information.

The system was also tested to be sure that an invalid authentication is detected

and prevented. This was tested by using incorrect values for the username of the

validator. To do so, the public key of the validator on the central server was

changed to the incorrect value 5830. As with the previous test, several votes were

added to the system to test the process. In this case, no votes were recorded in

40

Figure 18. Local ballot chain

the local chain and an error message was flagged in the program log to indicate

the invalid login attempt. See Figure 19 and Figure 20.

Figure 19. Server authentication error message

4.2.3 El-Gamal Data Encryption

A similar test was conducted to validate the El-Gamal data encryption pro-

cess. First, several votes were added to the system. Then the nonce values in

the pow log file on the central server were checked against the program log to en-

sure the validator received the correct nonces for each vote. A fail scenario was

41

Figure 20. Server authentication error log

also tested by changing the private key of the validator to an incorrect value. A

comparison between the generated hash and the corresponding pow for the block

revealed the hashes generated with an invalid decryption key did not follow the

correct pow rules.

The El-Gamal encryption test also provides evidence to demonstrate the suc-

cess of the proof of work algorithm. All the hashes generated on the validator when

the correct private key was used successfully followed the proof of work rule. The

proof of work procedure is repeated until a validator finds a hash with the correct

number of 0s. Figure 21 shows the last six hashes that did not match the pow rule

and the final one which successfully matched the rule. The program accepts this

last hash as a valid hash.

In addition to this information, the first mock election also revealed the success

of storing and retrieving vote information and pow data in binary files. For the

first mock election, a value of 16 was used as the length of the sequence of 0s

needed to be followed by each hash. This number was selected to reduce the time

required to generate the hash. Each successful hash was generated in an average

time of 2020 milliseconds per nonce. The average number of guesses to generate a

correct hash was 141212 tries.

42

Figure 21. Hash generation process

4.3 Second Mock Election

The main purpose of the second mock election was to analyze the computa-

tional complexity of the proposed proof of work algorithm. The mock election was

designed to determine the average number of attempts to find a correct hash as a

function of the number of leading 0s. The test was conducted for seven different

lengths starting from 8 to 20 in increments of two. For each length, 100 votes

were added to the system using an API automation tool. The average number

of attempts needed to format the hash was recorded along with the average time

to generate a hash. The results of this test are shown in Table 1 and the graphs

appearing in Figure 22 (average number of attempts) and Figure 23 (average time).

Based on these results, a value of 16 was selected as a feasible value for the

number of 0s, and this value was used for the mock elections described in the next

section.

43

POW (Length) Average Tries Average Time (ms)

8 516 560
10 2222 570
12 8464 630
14 28783 950
16 141212 2020
18 473874 5310
20 1791479 19050

Table 1. Proof of work performance analysis result

Figure 22. Average number of attempts vs length

4.4 Third Mock Election

The third mock election was conducted to simulate an actual election envi-

ronment. Two precincts were used, each with its own validator and chain of votes.

One reason for using two validators was to test the voter verification process and

batch level comparison auditing. Approximately 1000 simulated ballots were cast

for each precinct using an API automation tool. The same ballot structure was

used as in the previous mock elections. The ballot consisted of one race with three

options to vote: two candidates, and space for write-ins. Slightly biased ballot data

was created for each precinct. All the votes were added to the system directly using

the API instead of using the online ballot form.

44

Figure 23. Average time vs length

Risk limiting audits and other validations were performed on each voting chain

to analyze the system’s capabilities to conduct post-election audits. The results of

these audits and other artifacts of the election were cross-checked against the tally

API to test the validity of the election results.

For the first precinct, 943 simulated votes were cast, 49% for Candidate A,

40% for Candidate B and the rest were write-ins. See Figure 25.

For the second precinct, 1213 simulated votes were cast, 30% for Candidate

A, 46% for Candidate B and the rest were for write-ins. See Figure 26.

4.4.1 Ballot Level Comparison Audit

A ballot level comparison audit was implemented using a Python script. The

script was written to access the binary file for the local chain from each precinct

separately. A new tally was generated using the ballot data stored in each block.

A comparison between the new tally and the tally generated by the voting machine

was reported on a web page. This audit was conducted for both precincts and the

results were identical to those for the votes cast in each case. See Figure 27 for

the first precinct result and Figure 28 for the second precinct result.

45

Figure 24. API automation tool (POSTMAN)

Figure 25. Tally of the first precinct

4.4.2 Ballot Pooling Audit

A ballot pooling audit was also conducted using a Python script. The script

created a random sample of blocks from the precinct’s local chain. For this test,

10% of the blocks in a local chain were selected as the sample size. The script

produced the tally of the sample and used this to project the expected result

for the entire chain. These values were reported on a web page along with the

original machine tally for each precinct. The test was conducted on both precincts

separately, and the result returned by the script provided evidence to support the

46

Figure 26. Tally of the second precinct

Figure 27. Ballot level comparison audit, first precinct

validity of votes produced by the tally API. The posted result for each precinct is

shown in Figure 29 and 30.

4.4.3 Batch Level Comparison Audit

This audit was also conducted using a Python script. The tally for each

precinct was produced separately using the script, and the sum of each precinct’s

tally was compared against the combined result of the tally API. The result was

returned as a web page for comparison. The result is shown in Figure 31.

47

Figure 28. Ballot level comparison audit, second precinct

Figure 29. Ballot pooling audit, first precinct

4.4.4 Block Removal Audit

A block removal audit was conducted on the second precinct data using a

Python script created for this purpose. First, a random sample of blocks was

selected and these blocks were removed from the local chain. 10% of the total

blocks in the chain were selected as the sample size. Both the tally of votes in

the sample and the tally for the 90% of votes remaining in the local chain are

calculated separately. The sum should agree with the votes cast on the voting

machine. The results are shown in Figures 32 and 33.

48

Figure 30. Ballot pooling audit, second precinct

Figure 31. Batch level comparison audit

4.4.5 Block Authenticity Audit

This audit is conducted to check the validity of the data stored in the local

chain. The audit is performed by recalculating the hash for each block and validat-

ing the newly generated hash against the original proof of work used for the block.

Using the proof of work timestamp stored in each local block, the corresponding

nonce value is extracted from the pow list on the central server. Then the hash

of the block is re-calculated and checked against the proof of work. Each block in

the chain is tested using a Python script that returns an error when a mismatch

occurs. The script returns a list of the blocks in error for any mismatches. The

49

Figure 32. Block removal audit, first precinct

Figure 33. Block removal audit, second precinct

audit was conducted on the second precinct’s data, and the successful result is

shown in Figure 34.

To test a failure scenario, one hash value in the local chain that was validated

in the previous test was altered. The result is shown in Figure 35.

4.4.6 Block Connectivity Audit

This audit is conducted to check the link between each block on the chain.

An audit script was written to match the previous hash value in each block with

the re-generated hash of the previous block. This test was applied to all of the

blocks in the second precinct’s chain. As with the block authenticity audit, both

50

Figure 34. Block authenticity audit, success result

Figure 35. Block authenticity audit, failure result

success and failure scenarios were tested. To test a failure scenario, the hash value

in a block was intentionally altered. The result of the successful scenario shown in

Figure 36 and the failure scenario in Figure 37.

4.4.7 Voter Verification

Due to a change in the design of the QR code for vote verification, this code is

not currently printed on a paper receipt as described in the third chapter. When a

successful ballot is cast online, its QR code is instead displayed on the screen. This

QR code follows the same structure as the printed QR code in the third chapter.

See Figure 38.

51

Figure 36. Block connectivity audit success

Figure 37. Block connectivity audit failure

Each QR code includes a link to the vote verification portal. The QR code

also contains a hash of the four ballot data fields as a hexadecimal string.

To test the voter verification process, a successfully generated QR code was

scanned using a mobile device. This device automatically logged into the voter

verification portal through the link in the QR code. For valid votes, the system

indicates the vote is successfully recorded (Figure 39), and for invalid votes returns

an error (Figure 40).

52

Figure 38. Vote verification QR page

Figure 39. Vote verification success

53

Figure 40. Vote verification failure

54

CHAPTER 5

Conclusion

The main objective of this research is to use features of blockchains and the

notion of proof of work to create an auditable, immutable, and secure voting sys-

tem. The system developed also incorporates, in a unique way, two additional

security technologies. These are the use of zero-knowledge protocols to avoid shar-

ing sensitive information, and end-to-end encrypted communication through the

El-Gamal public-key cryptosystem.

The first mock election showed the Fiat Shamir zero-knowledge protocol to

be a good way for a validator to authenticate itself without sharing any sensitive

information. The procedure uses random numbers and calculations based on keys

generated prior to the election for the authentication. This zero-knowledge proto-

col was tested more than 3000 times in the second and third mock elections. It

successfully authenticated the validators to a central server on all occasions apart

from a few times when the value R (from R = v–Cb) was negative. This issue was

corrected by replacing gR in the equation U = gRBC mod n with the modular

inverse of g−R for negative R values.

if(R > 0) : U = gRBC mod n

else if(R < 0) : U = mod inverse(g−R)BC mod n

An El-Gamal cryptosystem was used to generate secret keys for the validators

and was also used to encrypt information shared between machines. This proved to

be a successful method of achieving end-to-end encrypted communication between

validators and the central server.

55

The performance of the proposed proof of work concept was tested and ana-

lyzed in the second mock election. Both the average number of attempts and the

average time to compute a hash in the correct format was measured by increasing

the length of the sequence of 0s in increments of two. The results revealed that

the average number of attempts increased by approximately four times for every

two 0s added to the sequence. The average time also showed an exponential in-

crease for longer length sequences but not for shorter ones. This is mainly due to

the time consumed performing the modular computations in the zero-knowledge

protocol. Based on the results of these tests, a value of 16 was established as a

good compromise for the number of 0s used in the rest of the study.

The final mock election was conducted to replicate an actual election envi-

ronment. Risk-limiting audits, as required by Rhode Island law, were successfully

conducted on more than 2000 ballots in two virtual precincts. In addition, three

new post-election auditing methods were introduced and tested. These new audits

take advantage of the characteristics of blockchains, and cannot be conducted with

the election system currently in place. The resistance of the data in a block to al-

teration was tested with a block authenticity audit. The immutability of the chain

was tested using a block connectivity audit. The paperless audit trail capability

was tested using a block removal audit. The vote verification process was also

tested during the third mock election.

The mock elections demonstrate that the characteristics of blockchains can

be used to create an immutable and secure voting system. By storing the ballot

data inside a blockchain-like data structure, any unauthorized modification to the

data can be detected. The chain also creates an audit trail for each ballot that

can be used in post-election audits. These experiments also demonstrated the

proposed system’s capability to perform several post-election audits including all

56

of the risk-limiting audits required by Rhode Island law [1].

One of the major parameters of this study was to introduce as few, if any,

changes to the existing election process. The results of the second mock election

indicate there will be no appreciable delay in the voting process. The time for the

rest of the voting process remains unchanged.

Compared to many of the existing secure voting systems discussed in the

second chapter, the system proposed here requires minimal effort to set up prior

to election day. Moreover, no modification to the current ballot structure or voting

machines used in Rhode Island is required.

Based on these observations, the proposed voting algorithm has clear potential

to be integrated with current voting systems, thereby improving the security and

integrity of elections.

5.1 Future Work

Several possible improvements were identified for both the prototype system

and the underlying algorithm. These would be interesting to pursue as future

work.

5.1.1 Improvements to the Prototype

An important improvement to the prototype would be to conduct mock elec-

tions with multiple validators working simultaneously to generate hashes. This

would provide a better understanding of the performance of the system.

It would also be interesting to conduct an election allowing voters to vote for

more than one candidate and to include more than one contest in the election.

These features would create a much complex value for the “ballot data” field. The

tally API would also need to be modified to accommodate these types of elections.

Finally, it would be interesting to test the prototype with an actual voting

57

machine, like the ES&S DS200, instead of an online ballot form to see how the

prototype handles data provided by an actual voting machine.

5.1.2 Improvements to the Algorithm

One important improvement to the algorithm would be to use a single

blockchain for all the validators in an election, instead of having separate local

validators. This might require implementing a consensus mechanism similar to the

bitcoin protocol [2] before adding a block to a validator’s chain.

A second improvement would be the implementation of a private information

retrieval protocol for the voter verification process [3]. This would create a secure

retrieval of information from the blockchain when a voter tried to verify his or

her vote. It would enhance privacy if no one knew the origin of voter verification

requests.

List of References

[1] “Pilot implementation study of risk-limiting audit methods in the state
of rhode island,” https://verifiedvoting.org/wp-content/uploads/2020/07/
RI-RLA-Report-2020.pdf, August 2019, (Accessed on 10/26/2020).

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryptography
Mailing list at https://metzdowd.com, 03 2009.

[3] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information
retrieval,” in Proceedings of IEEE 36th Annual Foundations of Computer Sci-
ence. IEEE, 1995, pp. 41–50.

58

https://verifiedvoting.org/wp-content/uploads/2020/07/RI-RLA-Report-2020.pdf
https://verifiedvoting.org/wp-content/uploads/2020/07/RI-RLA-Report-2020.pdf

BIBLIOGRAPHY

“2000 united states presidential election in florida - wikipedia,” https://en.
wikipedia.org/wiki/2000 United States presidential election in Florida, (Ac-
cessed on 10/26/2020).

“Blockchain - wikipedia,” https://en.wikipedia.org/wiki/Blockchain#
cite note-reason20160506-58, (Accessed on 10/28/2020).

“Blockchain explained: What is blockchain? — euromoney learning,” https:
//www.euromoney.com/learning/blockchain-explained/what-is-blockchain,
(Accessed on 10/28/2020).

“Es&s automark – verified voting,” https://verifiedvoting.org/election-system/
ess-automark/, (Accessed on 10/27/2020).

“Es&s ds200 – verified voting,” https://verifiedvoting.org/election-system/
ess-ds200/, (Accessed on 10/27/2020).

“Es&s ds850 & ds450 – verified voting,” https://verifiedvoting.org/
election-system/ess-ds850-ds450/, (Accessed on 10/27/2020).

“List of close election results - wikipedia,” https://en.wikipedia.org/wiki/List of
close election results, (Accessed on 10/26/2020).

“Mediachain : Documentation,” http://docs.mediachain.io/, (Accessed on
10/26/2020).

“Propy wiki,” https://everipedia.org/wiki/lang en/propy, (Accessed on
10/26/2020).

“State of rhode island general assembly. rhode island general laws, title17 - elec-
tions - chapter 17-19 conduct of election and voting equipment,and sup-
plies,” http://webserver.rilin.state.ri.us/Statutes/TITLE17/17-19/17-19-2.1.
HTM, (Accessed on 10/26/2020).

“Pilot implementation study of risk-limiting audit methods in the state
of rhode island,” https://verifiedvoting.org/wp-content/uploads/2020/07/
RI-RLA-Report-2020.pdf, August 2019, (Accessed on 10/26/2020).

Adida, B., “Helios: Web-based open-audit voting.” 01 2008, pp. 335–348.

Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.-J., et al., “Electing a
university president using open-audit voting: Analysis of real-world use of
helios,” EVT/WOTE, vol. 9, no. 10, 2009.

59

https://en.wikipedia.org/wiki/2000_United_States_presidential_election_in_Florida
https://en.wikipedia.org/wiki/2000_United_States_presidential_election_in_Florida
https://en.wikipedia.org/wiki/Blockchain#cite_note-reason20160506-58
https://en.wikipedia.org/wiki/Blockchain#cite_note-reason20160506-58
https://www.euromoney.com/learning/blockchain-explained/what-is-blockchain
https://www.euromoney.com/learning/blockchain-explained/what-is-blockchain
https://verifiedvoting.org/election-system/ess-automark/
https://verifiedvoting.org/election-system/ess-automark/
https://verifiedvoting.org/election-system/ess-ds200/
https://verifiedvoting.org/election-system/ess-ds200/
https://verifiedvoting.org/election-system/ess-ds850-ds450/
https://verifiedvoting.org/election-system/ess-ds850-ds450/
https://en.wikipedia.org/wiki/List_of_close_election_results
https://en.wikipedia.org/wiki/List_of_close_election_results
http://docs.mediachain.io/
https://everipedia.org/wiki/lang_en/propy
http://webserver.rilin.state.ri.us/Statutes/TITLE17/17-19/17-19-2.1.HTM
http://webserver.rilin.state.ri.us/Statutes/TITLE17/17-19/17-19-2.1.HTM
https://verifiedvoting.org/wp-content/uploads/2020/07/RI-RLA-Report-2020.pdf
https://verifiedvoting.org/wp-content/uploads/2020/07/RI-RLA-Report-2020.pdf

Carback, R., Chaum, D., Clark, J., Conway, J., Essex, A., Herrnson, P. S., May-
berry, T., Popoveniuc, S., Rivest, R. L., Shen, E., et al., “Scantegrity ii mu-
nicipal election at takoma park: The first e2e binding governmental election
with ballot privacy,” 2010.

Cathy Cox, J., “Georgia’s unique model for election reform,” https://
votingmachines.procon.org/historical-timeline/, Nov 2002, (Accessed on
10/26/2020).

Chaum, D. et al., “The scantegrity system, an introductory whitepaper and ex-
ample,” Last accessed on January, vol. 10, p. 2010, 2011.

Chor, B., Goldreich, O., Kushilevitz, E., and Sudan, M., “Private information
retrieval,” in Proceedings of IEEE 36th Annual Foundations of Computer Sci-
ence. IEEE, 1995, pp. 41–50.

Cranor, L. F., In Search of the Perfect Voting Technology: No Easy
Answers. Boston, MA: Springer US, 2003, pp. 17–30. [Online]. Available:
https://doi.org/10.1007/978-1-4615-0239-5 2

Davenport, C., “Democrats blast ehrlich’s absentee-voting initiative,” https://
votingmachines.procon.org/historical-timeline/, (Accessed on 10/26/2020).

Dwork, C. and Naor, M., “Pricing via processing or combatting junk mail,” in Ad-
vances in Cryptology — CRYPTO’ 92, Brickell, E. F., Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1993, pp. 139–147.

ELGAMAL, T., “A public key cryptosystem and a signature scheme based on
discrete logarithms,” https://caislab.kaist.ac.kr/lecture/2010/spring/cs548/
basic/B02.pdf, (Accessed on 10/28/2020).

Essex, A., Clark, J., and Adams, C., “Aperio: High integrity elections for de-
veloping countries,” in Towards Trustworthy Elections. Springer, 2010, pp.
388–401.

Fiat, A. and Shamir, A., “How to prove yourself: Practical solutions to identifi-
cation and signature problems,” in Advances in Cryptology — CRYPTO’ 86,
Odlyzko, A. M., Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987,
pp. 186–194.

FRIEDMAN, B., “Diebold voting machines can be hacked by remote control,”
https://www.salon.com/2011/09/27/votinghack/, (Accessed on 10/26/2020).

Ganji, R., “Electronic voting system using blockchain,” https:
//education.dellemc.com/content/dam/dell-emc/documents/en-us/
2018KS Ganji-Electronic Voting System using Blockchain.pdf, (Accessed on
10/26/2020).

60

https://votingmachines.procon.org/historical-timeline/
https://votingmachines.procon.org/historical-timeline/
https://doi.org/10.1007/978-1-4615-0239-5_2
https://votingmachines.procon.org/historical-timeline/
https://votingmachines.procon.org/historical-timeline/
https://caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/B02.pdf
https://caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/B02.pdf
https://www.salon.com/2011/09/27/votinghack/
https://education.dellemc.com/content/dam/dell-emc/documents/en-us/2018KS_Ganji-Electronic_Voting_System_using_Blockchain.pdf
https://education.dellemc.com/content/dam/dell-emc/documents/en-us/2018KS_Ganji-Electronic_Voting_System_using_Blockchain.pdf
https://education.dellemc.com/content/dam/dell-emc/documents/en-us/2018KS_Ganji-Electronic_Voting_System_using_Blockchain.pdf

Governatori, G., Idelberger, F., Milosevic, Z., Riveret, R., Sartor, G., and Xu,
X., “On legal contracts, imperative and declarative smart contracts, and
blockchain systems,” Artificial Intelligence and Law, vol. 26, no. 4, pp. 377–
409, 2018.

Haber, S. and Stornetta, W. S., “How to time-stamp a digital document,” in
Conference on the Theory and Application of Cryptography. Springer, 1990,
pp. 437–455.

Heller, D. A., “Certification of voter-verified paper audit trail printer completed,”
https://votingmachines.procon.org/historical-timeline/, July 2004, (Accessed
on 10/26/2020).

Hjalmarsson, F. P., Hreioarsson, G. K., Hamdaqa, M., and Hjalmtysson,
G., “Blockchain-based e-voting system,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). Los Alamitos, CA, USA:
IEEE Computer Society, jul 2018, pp. 983–986. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00151

Iansiti, M. and Lakhani, K., “The truth about blockchain:,” Harvard business
review, vol. 95, pp. 118–127, 01 2017.

Jakobsson, M. and Juels, A., Proofs of Work and Bread Pudding Protocols(Extended
Abstract). Boston, MA: Springer US, 1999, pp. 258–272. [Online]. Available:
https://doi.org/10.1007/978-0-387-35568-9 18

Kevin Shelley, J., “California secretary of state news release,” https://
votingmachines.procon.org/historical-timeline/, (Accessed on 10/26/2020).

Mello, S. I., A detailed forensic analysis and recommendations for Rhode Island’s
present and future voting systems. University of Rhode Island, 2011.

Nakamoto, S., “Bitcoin: A peer-to-peer electronic cash system,” Cryptography
Mailing list at https://metzdowd.com, 03 2009.

Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S., Bitcoin
and cryptocurrency technologies: a comprehensive introduction. Princeton
University Press, 2016.

Nichols, R. K., ICSA guide to cryptography. McGraw-Hill Professional, 1998.

Park, S., Specter, M., Narula, N., and Rivest, R. L., “Going from bad to worse:
from internet voting to blockchain voting.”

Rivest, R., “Rfc1321: The md5 message-digest algorithm,” 1992.

Ryan, P., Bismark, D., Heather, J., Schneider, S., and Xia, Z., “PrÊt À voter:
a voter-verifiable voting system,” Information Forensics and Security, IEEE
Transactions on, vol. 4, pp. 662 – 673, 01 2010.

61

https://votingmachines.procon.org/historical-timeline/
https://doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00151
https://doi.org/10.1007/978-0-387-35568-9_18
https://votingmachines.procon.org/historical-timeline/
https://votingmachines.procon.org/historical-timeline/

Songini, M. L., “Expert calls for increased e-voting se-
curity,” https://www.computerworld.com/article/2560901/
expert-calls-for-increased-e-voting-security.html, (Accessed on 10/26/2020).

Stark, P. B. and Wagner, D., “Evidence-based elections,” IEEE Security & Pri-
vacy, vol. 10, no. 5, pp. 33–41, 2012.

Theisen, E., “Myth breakers: Facts about electronic elections,” http://www.
votersunite.org/mb2.pdf, (Accessed on 10/26/2020).

Wang, X., Feng, D., Lai, X., and Yu, H., “Collisions for hash functions md4, md5,
haval-128 and ripemd.” IACR Cryptol. ePrint Arch., vol. 2004, p. 199, 2004.

Wang, X., Yin, Y. L., and Yu, H., “Finding collisions in the full sha-1,” in Annual
international cryptology conference. Springer, 2005, pp. 17–36.

62

https://www.computerworld.com/article/2560901/expert-calls-for-increased-e-voting-security.html
https://www.computerworld.com/article/2560901/expert-calls-for-increased-e-voting-security.html
http://www.votersunite.org/mb2.pdf
http://www.votersunite.org/mb2.pdf

	A BLOCKCHAIN-BASED AUDITABLE AND SECURE VOTING SYSTEM
	Terms of Use
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	List of References

	Prior Related Work
	Voting Systems
	Aperio
	Scantegrity II
	Helios
	Prêt à Voter
	WAVERI

	Election Auditing Methods
	Ballot Audits
	Receipt Audits
	Tally Audits

	Risk Limiting Audits
	Voting Machines in Rhode Island
	ES&S DS200
	ES&S DS850
	ES&S AutoMARK

	Blockchain Technology
	Proof of Work
	Related Technologies
	Cryptographic Hash Functions
	Zero-knowledge Proof

	List of References

	A Blockchain-Based Voting Algorithm
	The Voting Process
	Validator Authentication
	Proof of Work
	Genesis Block
	Voter Verification (Receipt Audit)
	Post-election Audits
	Ballot Level Comparison
	Ballot Pooling
	Batch Level Comparison
	Block Removal Method
	Block Connectivity Audit
	Block Authenticity Audit

	List of References

	Implementation and Testing
	Blockchain Voting Prototype
	First Mock Election
	El-Gamal Key Generation
	Fiat-Shamir Zero-Knowledge Protocol
	El-Gamal Data Encryption

	Second Mock Election
	Third Mock Election
	Ballot Level Comparison Audit
	Ballot Pooling Audit
	Batch Level Comparison Audit
	Block Removal Audit
	Block Authenticity Audit
	Block Connectivity Audit
	Voter Verification

	Conclusion
	Future Work
	Improvements to the Prototype
	Improvements to the Algorithm

	List of References

	BIBLIOGRAPHY

