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ABSTRACT 

It is well recognized that evaporation from the sea surface, primarily within a 

tropical cyclone (TC) core, provides heat energy required to maintain and intensify the 

storm. The sea surface temperature (SST) typically decreases within the storm core due 

to the mixing and upwelling processes in the upper ocean thereby limiting the storm 

intensity. This negative feedback to the TC intensity depends on the oceanic thermal 

conditions and salinity stratification ahead of the storm. Upper oceanic heat content 

(OHC) has become widely accepted as a measure of the ocean energy available to the 

TCs. Observational and modeling studies note that some TCs rapidly intensify while 

passing over warm core eddies (WCEs) because of their high OHC. TC intensification 

is also significantly affected by salinity-induced barrier layers (BLs) formed when a 

low-salinity is situated near the surface in the upper tropical oceans. When storms pass 

over the regions with BL, the increased stratification and stability within the layer 

reduce storm-induced vertical mixing and SST cooling. This causes an increase in 

enthalpy flux from the ocean to the atmosphere and, consequently, leads to TC 

intensification. In this study, we applied the Hurricane Weather Research and Forecast 

(HWRF) v.4.0 system coupled to the Message Passing Interface Princeton Ocean Model 

(MPIPOM). We conducted the idealized experiments in which the WCE is embedded 

into the U.S. Navy's Generalized Digital Environmental Model (GDEM) climatology 

with a specified size using a feature-based initialization procedure. Idealized vertical 

ocean profiles from Hlywiak and Nolan (2019) are selected to conduct the sensitivity of 

TC intensity to BL thickness. The goal of this study is to quantify the impact of WCEs 



 

 

and BLs in the upper ocean on TC’s self-induced cooling and subsequent feedback on 

TC intensity in three TCs in 2018, Jebi, Trami, and Kong-Rey
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Chapter 1 

Introduction 

Tropical cyclones (TCs), known as hurricanes or typhoons, form over warm 

water in tropical oceans, especially in late summer, and cause devastating disasters such 

as heavy rains, floods, and storm surges resulting in immense damages in social and 

economic aspects. It has been well known that heat energy from the upper ocean is a 

source to generate and intensify the TCs (Emanuel et al., 1986; Cione and Uhlhorn, 

2003). In the development of TC, the surface wind stress leads to an increase of 

evaporation from the sea surface, and it provides the latent heat energy to develop the 

TC. The surface water is, however, cooled by the imposed surface wind stress as the 

storm continues to intensify, which results in a decrease in the heat energy from the 

ocean surface and weakens the storm’s intensity (Shay et al., 2000; Bender and Ginis, 

2000). Sea surface cooling is generated during the evaporation, but the main cooling 

processes are caused by the wind stress via shear-induced turbulent mixing of the upper 

ocean, upwelling and entrainment from the deep ocean into the oceanic mixed layer 

(Price 1981; Shen and Ginis, 2003; D’Asaro et al., 2007). It is evident that the magnitude 

of the sea surface cooling near the storm core contributes to the TC intensity. However, 

negative feedback from sea surface cooling to TC intensity is not merely exerted by 

storm forcing, but the combination with ocean thermal conditions (Price 1981; Schade 

and Emanuel, 1999; Bender and Ginis, 2000; Chan et al., 2001; Lin et al., 2005; Jaimes 

et al., 2015; Wang et al., 2018). Generally, the sea surface cooling is inhibited by a 

thicker subsurface warm water layer during the passage of the storm as the cold water 

from deep cannot be entrained into the surface layer. This results in a less sea surface 
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temperature (SST) cooling that can potentially strengthen the storm intensity if all else 

being equal. Thus, understanding the upper ocean thermal structure plays a crucial role 

in examining storm intensification because TCs interact not only with the surface waters 

but with the entire upper ocean water column. 

Warm core eddies (WCEs), which have a characteristic of higher temperatures 

than the surrounding waters with downwelling motion in the eddy regime, are the 

common mesoscale features in the ocean. WCE has been regarded as an insulator 

between TCs and the deep ocean water in that the thicker mixed layer in the WCE can 

limit the wind-induced mixing of the upper ocean from below (Lin et al., 2005). WCE 

can reduce the negative feedback and help to transport sufficient heat energy into the 

storm to intensify. Thus, understanding the interaction of TCs with WCE is critical for 

improving the understanding and prediction of the TC intensity change. Recent studies 

have identified that TC intensifications occur when passing over the WCEs (Hong et 

al., 2000; Shay et al., 2000; Emanuel et al., 2004; Lin et al., 2005; Wu et al., 2007; 

McTaggart-Cowan et al., 2007; Vianna et al., 2010; Yablonsky and Ginis, 2013; Jaimes 

et al., 2016). Lin et al. (2005) discussed the importance of WCE in Typhoon Maemi, 

which rapidly intensified from category 3 to category 5. Maemi intensified while 

passing over two WCEs in the northwest Pacific and became one of the most powerful 

Typhoons to strike South Korea since record keeping began in the country in 1904. 

Northwest Pacific is well known as one of the most active TC basins in the world 

(Emanuel., 2005; Peduzzi et al., 2012; Lin et al., 2013) and the region where eminent 

WCEs exist, particularly in the eddy-rich zones (Qiu 1999; Roemmich and Gilson, 

2001; Hwang et al., 2004; Lin et al., 2005). In this study, we focus on the interaction 
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between WCEs and TCs in the southern eddy zone (18°–25°N, 122°–160°E) where 

Maemi intensified over WCEs (Fig. 1.1). Previous studies conducted analyses of the 

WCEs in this region (Liu et al., 2012; Yang et al., 2013; Ma et al., 2017). According to 

Liu et al. (2012), the average size (radius) of anticyclonic eddies is 120–140 km at the 

latitude of 20°N in the southern eddy zone (Fig. 1.2).  

There have been many studies investigating the impact of WCE on the TC, 

however, most of the previous modeling studies are based on a single storm case (Hong 

et al., 2000; Shay et al., 2000; Lin et al., 2005; Wu et al., 2007; Jaimes and Shay, 2015; 

Wang et al., 2018) or using simple one-dimensional ocean models (Chan et al., 2001; 

Lin et al., 2005; Wu et al., 2007). For the TC prediction model to capture the effect of 

wind-induced sea surface cooling, it must be fully coupled to a three-dimensional ocean 

model to create an accurate SST field (Yablonsky and Ginis, 2009). In recent years, 

numerical atmosphere-ocean coupled models have been used to explore the impact of 

WCE on TC intensity. Yablonsky and Ginis (2013) suggested that the circulation of 

WCE can affect the TC intensity, and the WCE located to the right of the storm could 

even cause a less favorable condition for TC intensification due to the advection of cold 

water into the TC inner core. Ma et al. (2017) suggested that the effect of ocean eddies 

is related to the strength of eddy and TC intensity, and the effect is less pronounced 

when the eddy is located at one side of storm tracks than at the TC center. Anandh et al. 

(2020) showed that eddies play an important role in the intensification and dissipation 

of TCs in the Bay of Bengal using an atmosphere-ocean coupled numerical model, 

consisting of the Weather Research and Forecast (WRF) and Regional Ocean Modeling 

Systems (ROMS). Sun et al. (2020) investigated the response of TC intensity change to 
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the spatial distribution of WCE using WRF and the three-dimensional Price-Weller-

Pinkel (3DPWP) ocean circulation model. The results revealed that TC is strongly 

intensified (weakened) with a WCE located in the inner (outer) TC eyewall area. All of 

these modeling studies have been conducted for idealized TCs and simplified ocean 

conditions. The impact of WCEs on storm-induced ocean response and TC intensity in 

a realistic environmental setting remains unexplored by numerical models.  

Negative feedback from the ocean, which reduces TC intensification depends on 

the ocean thermal parameters as well as the upper ocean stratification. There are regions 

where a low-salinity water is located near the surface, and these low-salinity layers can 

induce barrier layers (BLs) when the isothermal layer is deeper than the mixed layer 

(Lukas and Lindstrom, 1991; Sprintall and Tomczak, 1992). BL can increase 

stratification in the upper ocean, and thereby reduce the surface cooling negative 

feedback on TC intensity. When a TC passes over a region with the BL, the increased 

stability within the upper ocean layer can reduce TC-induced vertical mixing. This 

causes a decrease in SST cooling and an increase in enthalpy flux from the ocean to the 

atmosphere and consequently leads to TC intensification. Previous studies have 

examined how the SST response to the TC-induced wind is affected by the BL (Wang 

et al., 2011; Balaguru et al., 2012; Vissa et al., 2013; Reul et al., 2014; Hernandez et al., 

2016; Yan et al., 2017; Rudzin et al., 2018; Hlywiak and Nolan, 2019). Balaguru et al. 

(2012) discussed the impact of BL on the reduction of SST cooling and TC 

intensification on a global scale. One of the well-known regions where the BLs form is 

the Amazon-Orinoco river plume region. Previous studies found that the TC-induced 

vertical mixing and SST cooling significantly are inhibited over the plume area due to 



 

 5 

the presence of strong vertical stratification (Grodsky et al., 2012; Reul et al., 2014). 

However, the recent studies of Newinger and Toumi (2015) and Hernandez et al. (2016) 

found that there was little difference in TC-induced cooling between the plume and open 

ocean experiments using a regional ocean model. Yan et al. (2017) showed that the BL 

can weaken the storm intensity when the surface wind stress is too weak to break 

through the mixed layer. Hlywiak and Nolan (2019) conducted idealized simulations 

using an atmosphere-ocean coupled model. Their results revealed that for TCs of greater 

than Category 1 intensity, thick (24–30 m) BLs favor TC intensification by 6–15%, and 

conversely, weaker storms are hindered by thick barrier layers. 

Previous studies explored relationships between upper ocean salinity 

stratification in the form of oceanic BLs and TCs based on observations, which can be 

sparse or incomplete or idealized numerical models. Here, we provide an approach to 

the problem by directly exploring the intensification of TCs over BL regions using a 

fully atmosphere-ocean coupled model in real TCs. This study is part of the Ocean-

Typhoon Interaction at Korea Institute of Ocean Science & Technology (KIOST) (Fig. 

1.3). The purpose of project is to investigate TC’s rapid intensification processes 

through observations and numerical models of air-sea interaction.  

The goal of this study is to quantify the impact of WCEs and BLs in the upper 

ocean on TC’s self-induced cooling and subsequent feedback on TC intensity in three 

TCs in the northwest Pacific in 2018, Jebi, Trami, and Kong-Rey. Chapter 2 gives the 

model description and properties of the three TCs. The impact of WCEs on TC intensity 

is examined in Chapter 3. The impact of the BL on TC intensity is discussed in Chapter 

4.  



 

 6 

Figure 1.1. Composite of NASA’s TOPEX/Poseidon and Jason-1 altimetry measure 
ments between 27 August and 5 September 2003 showing the pre-Maemi SSHA. 
Maemi’s track and locations of the two eddy-rich zones (northern eddy zone and 
southern eddy zone) are overlaid (Lin et al., 2005). 
 

Figure 1.2. Spatial distribution of averaged anticyclonic eddy (WCE) size (km) over 1° 
x 1° bins from 1993 to 2010 (Liu et al., 2012).  
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Figure 1.3. (Left) Korea Institute of Ocean Science & Technology (KIOST) research 
vessel, its path for over 2 weeks on September 2017 in the northwest Pacific and (right) 
CTD deployment locations.   
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Chapter 2 

Methodology 

2.1 Model Description 

2.1.1 HWRF Model 

Numerical experiments are performed using the Hurricane Weather Research 

and Forecast (HWRF) – NOAA’s operational hurricane prediction model. HWRF is an 

atmosphere-ocean coupled model, employing a suite of advanced physical 

parameterizations for tropical cyclones applications. HWRF became operational in 

2007, working in collaboration with the Geophysical Fluid Dynamics Laboratory 

(GFDL) of National Oceanic and Atmospheric Administration (NOAA) and the 

University of Rhode Island (URI) (Tallapragada et al., 2014). The HWRF system is 

implemented at the National Centers for Environmental Prediction (NCEP) of the 

National Weather Service (NWS) to provide numerical guidance to the National 

Hurricane Center (NHC) for 126 h forecasts of TCs’ track, intensity, and structure. The 

version of HWRF used in this study is the 2018 operational HWRF, version 4.0a, which 

has three nested atmospheric domains, one fixed parent domain and two inner movable 

domains, with horizontal grid spacings of 13.5, 4.5, and 1.5 km (Fig. 2.1). The location 

of the parent domain is determined based on the initial position of the storm and the 

NHC and Joint Typhoon Warning Center (JTWC) forecasts of the 72h position, if 

available (Biswas et al., 2017). 
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2.1.2 Ocean Model 

The atmospheric component of the HWRF is coupled to a three-dimensional 

version of the Princeton Ocean Model (POM; Mellor 2004), called POM for Tropical 

Cyclones (POM-TC; Yablonsky et al., 2015b). To increase the resolution of POM-TC 

and provide the framework for flexible ocean initialization options, POM-TC has been 

replaced in HWRF with a new, Message Passing Interface (MPI) version of POM-TC, 

called MPIPOM-TC (Yablonsky et al., 2015b). Calculations are performed on a 

staggered Arakawa C-grid with curvilinear orthogonal coordinates. The horizontal 

domain spans from 10° to 47.5° North meridionally and from 98.5° to 15.3° East 

zonally, with roughly 1/12 resolution. The vertical coordinate is the terrain-following 

sigma coordinate system (Mellor 2004). In this study, 40 half-sigma vertical levels of 

the original MPIPOM are increased to 74 levels to allow for a finer vertical resolution 

in the upper ocean (Fig. 2.2). There are 74 half-sigma vertical levels, where the level 

placement is scaled based on the bathymetry of the ocean at a given location. The 

greatest vertical spacing occurs where the ocean depth is 5500 m. The 74 full-sigma 

vertical levels are located at 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 

34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 59, 61, 63, 66, 68, 71, 74, 77, 81, 85, 89, 

94, 100, 107, 115, 125, 136, 149, 164, 183, 204, 230, 260, 296, 337, 387, 444, 511, 590, 

682, 788, 912, 1055, 1220, 1411, 1630, 1882,  2171, 2501, 2878, 3308, 3797, 4352, 

4981, and 5500 m depths. The Mellor–Yamada turbulence closure scheme (Mellor and 

Yamada, 1982) is embedded in the model to provide vertical mixing coefficients. 
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2.2 Running HWRF 

2.2.1 Ocean Model Initialization 

Prior to the coupled model integration of the HWRF system, MPIPOM-TC is 

initialized with a realistic, three-dimensional temperature and salinity field from the 

Generalized Digital Environmental Model (GDEM) monthly climatology (GDEMv3; 

Carnes 2009), which has a 0.5° horizontal grid spacing and 78 vertical z levels and 

subsequently integrated to generate realistic ocean currents (Teague et al., 1990). The 

GDEM climatology is modified by interpolating it in time to the MPIPOM-TC 

initialization date (using 2 months of GDEM) and onto the MPIPOM-TC grid, 

assimilating a land/sea mask and bathymetry data (Falkovich et al., 2005; Yablonsky 

and Ginis, 2008). The ocean temperature field is generated after assimilating with the 

real-time daily SST data (with 1° grid spacing) that is used in the operational NCEP 

Global Forecast System (GFS) global analysis (Reynolds and Smith, 1994; Yablonsky 

and Ginis, (2008, section 2)). Three-dimensional ocean initial temperature and salinity 

fields are then interpolated from GDEMv3 levels onto MPIPOM-TC vertical sigma 

levels. During the ocean spin up of 48 h in phase 1, the SST is held constant, and 

adjusted currents are generated. During phase 2, a cold wake at the sea surface is 

produced prior to the start of the coupled model forecast. Phase 2 is skipped in this study 

and the output after spin-up is used for the initial ocean component of the HWRF model. 

2.2.2 Atmospheric Model Initialization 

The location of the HWRF atmospheric component parent and inner domains is 

based on the observed TC’s current and center position based on the NHC storm 
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message. Once the environment fields in the parent domain are derived from 

interpolating the GFS analysis fields, the vortex replacement cycle and HWRF Data 

Assimilation System (HDAS) are used to create the initial nest fields (Domain size for 

parent nest is 77°x77°, inner nest 1 is 20°x20°, and 11°x11° for inner nest 2). The 

vortex-scale fields are generated by inserting a vortex corrected using TC vitals data 

(Trahan and Sparling, 2012). The analyses are interpolated onto the HWRF outer 

domain and two inner domains to initialize the forecast. (Tallapragada et al., 2014).  

2.2.3. Coupled Model Run 

After the ocean and atmosphere initializations are completed, the coupled 

HWRF is launched. During the atmosphere-ocean coupling, the momentum fluxes and 

total heat at the air-sea interface are passed from the atmosphere to the ocean, and the 

SST is passed from the ocean to the atmosphere as an independent interface between 

the HWRF ocean and atmospheric component (Fig 2.3). It highlights that the primary 

purpose of coupling a three-dimensional ocean model to HWRF is to create an accurate 

SST field for input into the atmospheric model. The total simulation time is 126 h and 

the output is provided every 6 hours. 

2.3 Simulated Tropical Cyclones in the Northwest Pacific 

Numerical simulations of three TCs, Jebi, Trami, and Kong-Rey, all occurred in 

2018 in the northwest Pacific are conducted. TC Jebi formed near the Marshall Islands 

in Western Pacific on 26 August and quickly strengthened as it headed west and rapidly 

underwent rapid intensification and became a super typhoon. Jebi is reported as the most 

intense TC to make landfall on Japan since TC Yancy in 1993, causing significant 
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damage. Jebi reached its peak intensity as a Category 5, with 10-minute sustained winds 

of 195 km/h and a minimum pressure of 915 hPa. TC Trami developed in a low-pressure 

area southeast of Guam on 20 September and intensified into a TC on 22 September. 

Trami steadily strengthened and subsequently became a Category 5 TC on 24 

September. After that, Trami considerably slowed down and drifted northward and 

during this time, it began to weaken due to upwelling. TC Kong-rey originated from a 

tropical disturbance in the open Pacific and became TC on 30 September. Kong-rey 

continued to strengthen into a powerful Category 5 super typhoon early on 2 October. 

Later, affected by vertical wind shear, low ocean heat content, and decreasing sea 

surface temperatures, the storm gradually weakened to a Category 3 typhoon on 3 

October and made landfall in South Korea.  

Four sequential experiments are conducted for each TC at 6-hour intervals: from 

0600 UTC 30 August to 0000 UTC 31 August for Jebi, from 1200 UTC 23 September 

to 0600 UTC 24 September for Trami, and from 1800 UTC 30 September to 1200 UTC 

1 October for Kong-rey. The initial times for the experiments are selected in such a way 

that the simulated HWRF TC tracks and intensities (i.e., Maximum 10 m wind speed 

and minimum central pressure) are most consistent with the observational data (BEST) 

(https://www.emc.ncep.noaa.gov/gc_wmb/vxt/HWRF/). The BEST tracks are data files 

that contain a complete history of the storm’s center locations, intensity, and other 

parameters using information found in the TCvitals that the U.S. Navy's Joint Typhoon 

Warning Center (JTWC) provides to the U.S. National Oceanagraphic and Atmospheric 

Administration's National Center for Environmental Prediction (NOAA/NCEP) for the 

purpose of initializing the model (http://hurricanes.ral.ucar.edu/realtime/index.php# 
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about_bdecks). Figure 2.4 shows the BEST tracks of three storm and the time series of 

translation speed (m/s) is shown in Fig. 2.5. Translation speed is determined every 6 h 

from the initial time until landfall for each storm using centered difference calculations 

of storm center positions. The simulated tracks and intensities will be presented in 

Chapters 3 and 4.  
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Figure 2.1. HWRF model forecast domains. The region with SST is the outer 13.5 km 
domain. The black solid boxes inside show the sizes of the vortex-following 4.5 and 1.5 
km domains, respectively. The blue box is the Western Pacific MPIPOM-TC domain. 
 

Figure 2.2. Diagram of the vertical sigma coordinate (left). A comparison of sigma level 
distribution in MPIPOM (right) in the upper 160 m in the 40 level (black dots) and 74 
level (red dots) regimes. Location of sigma levels is at 5500 m.  
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Figure 2.3. Simplified overview of the HWRF system. 

Figure 2.4. BEST tracks of TC Jebi (black), Trami (blue), and Kong-rey (red). Circles 
indicate the storm center every 6 hours.  
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Figure 2.5. Translation speed of TC Jebi (black), Trami (blue), and Kong-rey (red) every 
6 hours as a function of time.  
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Chapter 3 

Impact of Warm Core Eddies on TC Intensity 

3.1 Initialization and Experiment Design 

In the control experiment (CTRL), the ocean is initialized with the GDEM 

climatology and the real-time daily GFS SST. To compare the impact of the WCE with 

the same Coriolis effects on the TCs, which have different characteristics, WCE is 

implemented at the same latitude for all storm cases positioning at the center of each 

storm track. Under each of three TCs, simulations are run with: No WCE (temperature 

and salinity climatology), with WCE (salinity climatology). Idealized WCEs are 

embedded into the three-dimensional GDEM temperature climatology. WCEs are 

created using the specified temperature profile depicted in Lin et al. (2005) and sea 

surface height anomalies (SSHA) using the feature-based methodology described in 

Yablonsky and Ginis (2008) (Fig. 3.1). The SSHA data is provided by the Archiving 

Validation and Interpretation of Satellite Data in Oceanography (AVISO), which 

merges the altimeter missions of the Ocean Topography Experiment (TOPEX) 

/Poseidon, Jason-3, Sentinel-3A, HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, 

ENVISAT, GFO, ERS1/2 with a spatial resolution of 1/4° x 1/4°. Specifically, AVISO 

SSHA data on 21 September 2017 is used to determine the spatial structure and 

magnitude of WCE (Fig. 3.1a). 

The upper ocean temperature profiles at the center of WCE and the background 

are shown in Fig. 3.1b. The temperature profile of the WCE center is from the most 

prominent WCE that super typhoon Maemi passed over and intensified (Lin et al., 

2005). The background profile is from GDEM climatology at the location where the 
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WCE is implemented. The WCE center profile in Lin et al. (2005) was provided by the 

U.S. Naval Research Laboratory’s NPACNFS nowcast model, which is the ocean model 

with near real-time operational assimilation of satellite observations. The WCE is 

initialized by assigning a series of specified temperatures from the background 

temperature profile to the WCE center (Yablonsky and Ginis, 2008; Yablonsky and 

Ginis, 2013). The horizontal temperature field in WCE at 75 m depth and the zonal 

vertical cross section after the initialization are shown in Fig. 3.2. The radius of the 

idealized WCE is set to be about 200 km based on the observed SSHA shown in Fig. 

3.1a. In this study, the size of eddy is defined to be the radius of the circle that has the 

same area as the region within the eddy edge, and the outmost closed SSHA contours 

are used to define the eddy edge. After the WCE is created, a temperature anomaly field 

is obtained by subtracting the background temperature. The anomaly field is 

horizontally interpolated onto the POM grid and added to the GDEM climatology in 

such a way that the simulated storm track crosses the center of WCE. Figure 3.3 

illustrates the WCE embedding procedure for TC Kong-rey. Additional experiments 

with different sizes of WCE are performed to quantify the impact of WCE sizes on 

storm intensity. In these experiments, WCE are initialized with a radius of 140 km, a 

typical size in the southern eddy zone in northwest Pacific, and a radius of 300 km, 

similar to the size of the most intense WCE described in Lin et al. (2005). Fig. 3.4 shows 

the WCEs of the 140 and 300 km radii embedded in the same location as in Fig. 3.3.  

3.2 Control Experiments 

Before comparing the results between CTRL and WCE experiments, it is 

important to first investigate the results of each CTRL experiment to examine the 
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different characteristics of each storm, interacting with the different ocean conditions. 

Here we compare the control experiments initialized at 0600 UTC 30 August for Jebi, 

1200 UTC 23 September for Trami, and 1800 UTC 30 September for Kong-rey. In 

Kong-rey CTRL experiment, the storm rapidly intensified during the first 12 hours as 

seen in the increased maximum wind speed and decreased central pressure (Fig. 3.5). 

Figure 3.6a shows the spatial distribution of pre-storm SST with the storm track. Kong-

rey passes the warmer ocean surface in the first 24 hours. However, relatively uniform 

SST distribution along the track does not explain the initial rapid intensification, and 

thereby upper the ocean thermal structure and the upper ocean heat content need to be 

explored. Upper ocean heat content (OHC, also known as tropical cyclone heat 

potential) is the integrated heat content, excess relative to the 26°C, from the depth of 

26°C isotherm to the surface and, can be calculated as follow:  

𝑂𝐻𝐶	 = ∫ 	⍴𝑐*[𝑇(℃) − 26]𝑑𝑧
678
9                           (1) 

where 𝑑26 is the depth of the 26°C isotherm, 𝜌 is the seawater density, 𝑐* is a specific 

heat at constant pressure, 𝑇 is the ocean temperature, and 𝑑𝑧 is the change in depth 

(Leipper and Volgenau, 1972). We assume a constant density of 1025 kg/m3 for our 

calculations. Considerably high OHC of around 100 kJ/cm2 at the beginning of Kong-

rey track indicates more heat energy available for the storm and explains the initial rapid 

intensification (Fig. 3.6b). This is consistent with previous studies proposed that SST in 

advance of the TC does not account for the storm-induced SST cooling, and OHC ahead 

of the storm is a better measure of the available ocean energy for TC intensification 

(Shay et al., 2000; Mainelli et al., 2008).  
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In the Jebi CTRL experiment, the pre-storm SST field is around 30°C along the 

track which is higher than that in Kong-rey (Fig. 3.8a). As for Kong-rey, the evolution 

of Jebi intensity (Fig. 3.7) can be interpreted by the distribution of the OHC field rather 

than SST. The gradual intensity increase at the early stage occurs as the storm passes 

over the high OHC region during the first two days (Fig. 3.8b). The maximum wind 

speed decreases from 1800 UTC 2 September until landfall at 1200 UTC 4 September 

due to the lower OHC along the track. In the Trami CTRL experiment, there is a 

significant intensity decrease in the middle of the simulation (Fig. 3.9). This is because 

the Trami propagated with a very slow translation speed during that time period. Figure 

3.10 compares the distribution of SST and a zonal vertical cross section along 20.4°N 

at 1800 UTC 23 September and 1200 UTC 26 September. The slow TC propagation 

speed generates strong vertical mixing as well as upwelling. Vertical mixing occurs due 

to wind stress driven ocean currents and the resulting vertical current shear leading to 

entrainment of the colder water from thermocline into the ocean surface layer (Price 

1981; Ginis 2002). Ocean surface currents are also diverged by the TC cyclonic wind 

stress above causing the upwelling of the colder water toward the surface and making 

thermocline to lift (Fig 3.10d). The TC induced upwelling increases the efficiency of 

the vertical mixing and cooling of the SST. This explains why TC Trami rapidly 

weakened. 

3.3 Uncoupled Experiments 

In addition to the atmosphere-ocean coupled simulations, uncoupled TC model 

experiments are performed with a static (fixed in time) SST field to compare the results 

with the CTRL and WCE experiments. Four experiments are conducted in each TC case 
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at 6-hour intervals, from 0600 UTC 30 August to 0000 UTC 31 August for Jebi, from 

1200 UTC 23 September to 0600 UTC 24 September for Trami, and from 1800 UTC 

30 September to 1200 UTC 1 October for Kong-rey. The storm tracks in the uncoupled 

and CTRL simulations are compared in Fig 3.11, and the intensity evolutions in each 

storm case measured by TC minimal central pressure are compared in Figs. 3.12 (Jebi), 

Fig. 3.13 (Trami), and Fig. 3.14 (Kong-rey). Despite similar tracks between the coupled 

and uncoupled simulations, the evolutions of TC intensity are remarkably different in 

all three TCs. This is because the fixed SST does not account for TC-induced SST 

cooling and thus provides unlimited heat energy for TC intensification. Therefore, we 

will use the uncoupled simulations as a reference for the maximum potential intensity 

that can be attained by each storm. The maximum differences between area-averaged 

values of the sea surface temperature (SST), heat flux (HT), minimum pressure (Pmin), 

and maximum wind (Vmax) within 100 km of the storm center (the storm core region) 

in the uncoupled and CTRL experiments are summarized in Table 1. As expected, the 

largest differences are found in TC Trami, which is the slowest-moving storm among 

the three simulated TCs (Fig. 2.5).  The slow translation speed in Trami allows sufficient 

time to mix and cool the upper ocean beneath the storm, which is the largest within the 

storm core. This leads to the largest differences in maximum SST, heat flux, and 

intensity compared to the uncoupled, fixed SST, experiments.  

3.4 Impact of Warm Core Eddy on TC intensity 

Here we discuss the TC simulations in which the ocean model is initialized with 

an embedded WCE. As in the CTRL and uncoupled simulations, four experiments are 

conducted in each storm case at 6-hour intervals, from 0600 UTC 30 August to 0000 
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UTC 31 August for Jebi, from 1200 UTC 23 September to 0600 UTC 24 September for 

Trami, and from 1800 UTC 30 September to 1200 UTC 1 October for Kong-rey.  In 

each experiment, WCE is placed at the same latitude (20.4°N) and in such a way that 

its center is positioned on the TC track to examine the maximum impact on storm 

intensity. We first discuss the results of TC Jebi initialized on 0600 UTC 30 August, TC 

Trami initialized on 1200 UTC 23 September, and TC Kong-rey initialized on 1800 

UTC 30 September. To quantify the impact of WCE on the TCs, the area-averaged 

values are calculated within a 100 km radius at the storm center for each storm 

simulation (Figs 3.15, 3.16, and 3.17). The vertical red dashed lines indicate the time 

during the storm is passing over the WCE. This period is determined by the time from 

when the storm's radius of maximum wind (RMW) enters and exits the WCE area. As 

the storm passes over the WCE ocean surface cooling is decreased by the WCE, and 

hence more heat energy can be provided from the ocean to intensify the storm. 

Comparing three TC experiments, it is clear that the area-averaged SST and enthalpy 

flux (latent heat flux plus sensible heat flux), as well as the intensity and intensification 

rate change with the TC translation speed. The largest intensity increase measured by 

the decrease in central pressure due to WCE is found in Trami (14 hPa), which has the 

slowest translation speed among the three simulated storms.  

Figure 3.18 shows the spatial distributions of SST, OHC, and enthalpy flux to 

compare the WCE experiment with the CTRL experiment for Jebi on 0600 UTC 1 

September. Results for Trami and Kong-rey are also shown in Figs 3.19 and 3.20, 

respectively. These figures are produced at the times of the maximum enthalpy flux 

differences between the WCE and CTRL experiments. The presence of the WCE 
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significantly alters the SST response to TC. SST cooling is reduced in the presence of 

WCE as indicated by the SST anomaly calculated as WCE - CTRL (Figs 3.18c, 3.19c, 

and 3.20c). Figures 3.21, 3.22, and 3.23 show zonal vertical cross sections through the 

center of WCE for each TC to examine the evolution of the upper ocean thermal 

structure when the storm is passing over. The common feature noted in these cross 

sections is the TC-induced vertical mixing leads to a temperature decrease in the mixed 

layer and upper thermocline primarily to the right of the storm track. In the WCE 

experiments, however, the vertical mixing is suppressed by WCE compared to the 

CTRL experiment as indicated by the positive temperature differences in Figs 3.21c, 

3.22c, and 3.23c. The presence of deep warm water with high OHC in the WCE serves 

as an insulator between the TC and cold ocean water below. This is in agreement with 

Lin et al. (2005) and other previous studies. The higher OHC values in the WCE, as 

seen in the OHC anomalies (Figs 3.18f, 3.19f, and 3.20f) inhibit upper ocean cooling 

underneath the storm, resulting in the increased enthalpy fluxes over the WCE (Figs 

3.18i, 3.19i, and 3.20i). Maximum differences in area-averaged SST, OHC, and 

enthalpy fluxes within 100 km of the storm center and storm intensity between the 

CTRL and WCE experiments are summarized in Table 2. These differences are 

calculated during the period from the time when the storm enters the WCE area until 

one day after leaving the WCE. Although the same WCE is implemented at the same 

location for each experiment, the atmospheric and SST initial conditions created based 

on the real-time observational data vary depending on the initial time.  
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To compare the results and investigate the overall impacts of WCE, a maximum 

WCE potential index (MWPI) is introduced. MWPI compares the maximum differences 

between SST, HF, Pmin, Vmax in the uncoupled, coupled, and WCE experiments and 

is defined as 

𝑀𝑊𝑃𝐼 = 
∆@ABCDEF∆@GHI

∆@ABCDE
 × 100                                      (2) 

Where ∆𝐼MNO*P  is the maximum difference between the uncoupled and coupled 

experiments, and ∆𝐼QRS  is the maximum difference between WCE and coupled 

experiments. Table 3 shows the average of maximum differences in SST, HF, Pmin, 

and Vmax between uncoupled and CTRL, and WCE and CTRL in four experiments for 

each storm, as well as MWPI. Overall, the largest maximum difference in SST and 

enthalpy flux is found in the Trami experiments. Accordingly, the maximum difference 

in storm intensity is also the largest in Trami cases. In WCE experiments for Trami, 

SST cooling is reduced by a maximum of 1°C due to the presence of WCE compared 

to the CTRL experiment. The reduced SST cooling and increased wind speed over the 

WCE lead to an increase of enthalpy flux by about 172 W/m2. Consequently, Trami has 

the largest intensity increase of 10.75 hPa in minimum pressure and 9.9 m/s in maximum 

wind speed. It is interesting there are no significant differences in MWPI values between 

the storms. Overall, the MWPI varies from 23–31% for SST and HT, and 24–44% for 

Pmin. It is somewhat higher for Vmax, varying from 40–52%. 

Additional sensitivity tests to the size of WCE on TC intensification are 

conducted. These experiments include WCE with the sizes of 140 km and 300 km, 

initialized on 0600 UTC 30 August for Jebi, 1200 UTC 23 September for Trami, and 
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1800 UTC 30 September for Kong-rey. The maximum different area-averaged values 

and storm intensity between the CTRL and different sizes of WCE experiments are 

summarized in Table 4. MWPI as a function of WCE size is shown in Fig 3.24. Overall, 

when the storm is interacting with a larger WCE a larger MWPI is found in SST and 

HF in all three storms. Consequently, the largest MWPI is found in the WCE 

experiments with 300 km, especially 77% of maximum potential wind speed for Jebi, 

and 64% and 63% for Trami and Kong-rey, respectively (Fig. 3.24d). 

3.5 Conclusion 

The impact of WCE on TC intensity is investigated in three tropical cyclones in 

the northwest Pacific. Four experiments have been performed for each TC to investigate 

the impact of WCE on storm intensification. To quantify the effect of WCE the area-

averaged values within 100 km were calculated. Regardless of the storm translation 

speed, the presence of the WCE reduces the storm’s self-induced upper ocean cooling 

and increases the latent heat flux for all storms, but the largest impact of WCE on SST 

response is found in Trami due to the slow translation speed. To investigate the 

maximum potential impact of WCE on ocean response and TC intensity, MWPI is 

calculated. For a WCE with a size of 200 km, the maximum WCE potential in reducing 

the SST cooling and increasing in heat fluxes ranges from 23–31% and decreasing in 

minimum pressure due to the presence of WCE ranges from 24–44%. The WCE effect 

is larger, 40–52%, for the maximum wind speed compared to the coupled cases with no 

WCE. MWPI increases to 63–77% for the maximum wind speed when the WCE size is 

increased to 300 km.  
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Figure 3.1. (a) Sea surface height anomaly (SSHA) in AVISO on 21 September 2017 
and (b) temperature profiles in the background (black line) and center of WCE (red line) 
after adjustment according to Lin et al. (2005). 

 

Figure 3.2. (a) Spatial distribution of 75 m ocean temperature (℃) in the idealized WCE 
and (b) zonal vertical cross section through the center of WCE. Vertical dashed line 
indicates the WCE center.  
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Figure 3.3. (a) Spatial distribution of 75 m ocean temperature (℃) in GDEM 
climatology and (c) zonal vertical cross section at 20.4°N along the dashed line in (a). 
(b) and (d) after WCE with 200 km assimilation into GDEM climatology for the TC 
Kong-rey experiment. Track and center positions of Kong-rey every 6 hours is overlaid 
in (b).  
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Figure 3.4. Same as fig. 3.3 for (a), (c) WCE with 140 km and (b), (d) WCE 300 km 
radius.  
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Figure 3.5. Time series of (a) maximum 10 m wind (m/s) and (b) minimum central 
pressure (hPa) evolution for Kong-rey CTRL experiment. 

 

Figure 3.6. Spatial distribution of (a) SST and (b) OHC with ocean currents at 1800 
UTC 30 September. Track of Kong-rey from the model is shown in black line with the 
storm center position (circles) at the time shown.  
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Figure 3.7. Same as fig. 3.5 for Jebi CTRL experiment. 

 

Figure 3.8. Spatial distribution of (a) SST and (b) OHC with ocean currents at 0600 
UTC 30 August. Track of Jebi from the model is shown in black line with the storm 
center position (circles) at the time shown.  
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Figure 3.9. Same as fig. 3.5 for Trami CTRL experiment. 

 

Figure 3.10. (a) Spatial distribution of SST with ocean currents at 1800 UTC 23 
September and (c) at 1200 UTC 26 September. (b) Zonal cross section at 20.4°N at 1800 
UTC 23 September and (d) at 1200 UTC 26 September.  
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Figure 3.11. Model Tracks of coupled (blue) and uncoupled (red) experiments for (a) 
Jebi, (b) Trami, and (c) Kong-rey. Circle along the tracks indicates the storm center 
every 6 hours. 

 

Figure 3.12. Time series of minimum central pressure (hPa) of coupled (blue) and 
uncoupled (red) experiments for Jebi.  
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Figure 3.13. Same as fig. 3.12 for Trami. 

 

Figure 3.14. Same as fig. 3.12 for Kong-rey.  
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Table 1. Maximum different values between uncoupled and 
 CTRL experiments in different initial times. 

 

JEBI 0600 30 Aug 1200 30 Aug 1800 30 Aug 0000 31 Aug 

ΔSST (℃) 1.20 1.52 1.52 1.41 

ΔHF (W/m2) 340.23 237.04 262.52 304.84 

ΔPmin (hPa) 19 15 18 19 

ΔVmax (m/s) 13.38 11.83 11.83 19.03 

 
 

TRAMI 1200 23 Sep 1800 23 Sep 0000 24 Sep 0600 24 Sep 

ΔSST (℃) 3.75 2.95 3.70 3.77 

ΔHF (W/m2) 719.57 679.87 729.01 792.11 

ΔPmin (hPa) 44 39 43 48 

ΔVmax (m/s) 23.15 23.66 22.64 30.35 

 
 

KONG-REY 1800 30 Sep 0000 1 Oct 0600 1 Oct 1200 1 Oct 

ΔSST (℃) 1.69 1.42 2.06 2.53 

ΔHF (W/m2) 333.42 312.06 105.62 193.24 

ΔPmin (hPa) 19 11 11 14 

ΔVmax (m/s) 15.43 16.98 6.69 15.95 
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Figure 3.15. Time series of area-averaged (a) SST, (b) OHC, (c) enthalpy flux within 
100 km radius, and (d) minimum central pressure (hPa) for Jebi. Vertical red dashed 
lines indicate the time when the storm is passing over WCE. 

 

Figure 3.16. Same as fig. 3.15 for Trami.  
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Figure 3.17. Same as fig. 3.15 for Kong-rey.  
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JEBI 
     CTRL       WCE        WCE - CTRL 

Figure 3.18. Spatial distribution of (a), (b) SST and (c) anomaly, and (d), (e) OHC and 
(f) anomaly, and (g), (h) enthalpy flux and (i) anomaly responded by Jebi at 0600 UTC 
1 September, where the anomaly is calculated as WCE - CTRL. Black circle indicates 
the location and approximate size of WCE, and black dot indicates the storm center. 
Solid and dashed lines in anomalies indicate track of WCE and CTRL experiments, 
respectively.  
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TRAMI 
     CTRL       WCE        WCE - CTRL 

Figure 3.19. Same as fig. 3.18 for Trami at 1200 UTC 26 September. 
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KONG-REY 
     CTRL       WCE        WCE - CTRL 

Figure 3.20. Same as fig. 3.18 for Kong-rey at 1200 UTC 3 October.  
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Figure 3.21. Zonal vertical cross section at the center of WCE (20.4°N) in (a) CTRL, 
(b) WCE and (c) WCE - CTRL for Jebi at 0600 UTC 1 September. Vertical dashed line 
indicates the center of WCE. 

 

Figure 3.22. Same as fig 3.21 for Trami at 1200 UTC 26 September. 

 

Figure 3.23. Same as fig. 3.23 for Kong-rey at 1200 UTC 3 October.  
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Table 2. Maximum different values between WCE (200) and 
 CTRL experiments in different initial times. 

 

JEBI 0600 30 Aug 1200 30 Aug 1800 30 Aug 0000 31 Aug 

ΔSST (℃) 0.40 0.42 0.37 0.44 

ΔOHC (kJ/cm2) 34.88  27.99  25.22 33.16 

ΔHF (W/m2) 66.77 110.04 52.51 90.99 

ΔPmin (hPa) 5 7 1 5 

ΔVmax (m/s) 8.23 7.72 3.60 5.14 

 
 

TRAMI 1200 23 Sep 1800 23 Sep 0000 24 Sep 0600 24 Sep 

ΔSST (℃) 0.77 1.02 1.10 1.12 

ΔOHC (kJ/cm2) 30.52 29.90 26.68 25.01 

ΔHF (W/m2) 142.57 206.94 183.17 156.24 

ΔPmin (hPa) 14 10 11 8 

ΔVmax (m/s) 11.32 8.75 9.26 10.29 

 
 

KONG-REY 1800 30 Sep 0000 1 Oct 0600 1 Oct 1200 1 Oct 

ΔSST (℃) 0.66 0.33 0.38 0.44 

ΔOHC (kJ/cm2) 26.30 21.73  22.75 23.49 

ΔHF (W/m2) 96.80  35.11  46.60 76.96 

ΔPmin (hPa) 3 9 4 6 

ΔVmax (m/s) 5.66 13.38 4.63 3.60 
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Table 3. Average values and MWPI of four  
initial time experiments in table 1 and 2.  

 

JEBI 

 ΔSST (℃) ΔHF (W/m2) ΔPmin (hPa) ΔVmax (m/s) 

∆𝐼QRS 0.41   80.08 4.50 6.17  

∆𝐼MNO*P 1.41 286.16 17.75 14.02 

MWPI 29.1% 29% 26.2% 46.1% 

 
 

TRAMI 

 ΔSST (℃) ΔHF (W/m2) ΔPmin (hPa) ΔVmax (m/s) 

∆𝐼QRS 1.00 172.23  10.75  9.90  

∆𝐼MNO*P 3.54 730.14 43.5 24.95 

MWPI 28.6% 23.8% 24.9% 40.2% 

 
 

KONG-REY 

 ΔSST (℃) ΔHF (W/m2) ΔPmin (hPa) ΔVmax (m/s) 

∆𝐼QRS 0.45 63.87  5.50  6.82  

∆𝐼MNO*P 1.93 236.09 13.75 13.76 

MWPI 24.5% 31.1% 44.2% 51.8% 
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Table 4. Maximum different values between  
different sizes of WCE and CTRL experiments. 

 

JEBI WCE (140) WCE (200) WCE (300) 

ΔSST (℃) 0.31  0.40    0.42 

ΔOHC (kJ/cm2) 25.84 34.88    42.88 

ΔHF (W/m2)  31.20 66.77   100.53 

ΔPmin (hPa) 3 5 5 

ΔVmax (m/s) 4.12 8.23 10.29 

 
 

TRAMI WCE (140) WCE (200) WCE (300) 

ΔSST (℃) 0.80 0.77 0.97 

ΔOHC (kJ/cm2)  20.90 30.52 35.55 

ΔHF (W/m2) 133.91 142.57 206.55  

ΔPmin (hPa) 12 14 13 

ΔVmax (m/s) 11.32 11.32 14.92 

 
 

KONG-REY WCE (140) WCE (200) WCE (300) 

ΔSST (℃) 0.50 0.66 0.73 

ΔOHC (kJ/cm2) 18.50 26.30  30.30 

ΔHF (W/m2) 79.22  96.80  156.85  

ΔPmin (hPa) 2 3 9 

ΔVmax (m/s) 7.72 5.66 9.77 
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Figure 3.24. MWPI of (a) SST, (b) HF, (c) minimum pressure, and (d) maximum wind 
speed for Jebi (black), Trami (blue), and Kong-rey (red) as a function of WCE size 
(radius; unit: km). Initial time for Jebi is 0600 UTC 30 August, Trami is 1200 UTC 23 
September, and Kong-rey is 1800 UTC 30 September.  
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Chapter 4 

Impact of Oceanic Barrier Layers on TC Intensity 

4.1 Initialization and Experiment Design 

There are regions where low-salinity water is located near the surface, and these 

low-salinity layers can induce barrier layers (BLs) when the isothermal layer depth 

(ILD) is deeper than the mixed layer depth (MLD). Figure 4.2 shows the schematic 

temperature, salinity, and density profiles to show barrier layer thickness (BLT). BLT 

is defined as the difference in the isothermal (ILD) and mixed layer depth (MLD). ILD 

is defined as the level at which the temperature deviates from reference depth of 10 m 

temperature by ΔT= 0.2℃, and MLD is defined as the depth at which the potential 

density σ exceeds the σ at 10 m by the same amount that it would for a temperature 

decrease of the same ΔT for a constant salinity (de Boyer Montegut et al., 2007). 

𝛥𝜎 = 𝜎(𝑇 − 𝛥𝑇, 𝑆, 𝑃) − 𝜎(𝑇, 𝑆, 𝑃).                        (3) 

The contribution of low-salinity water in the upper ocean to storm intensification 

was observed during the KIOST field experiment in 2019. TC Lingling rapidly 

intensified from a weak category 1 at UTC 00:00 4 September to category 4 over 24 

hours while passing along the western side of WCE (Fig. 4.1) (Kang et al., 2020). 

Vertical temperature and salinity cross section at each CTD casting along the section E 

of WCE before and after Lingling passage are shown in Fig 4.1. The high temperature 

of 28–29.5˚C and relative lower salinity of 34.4–34.5 psu in the western side of WCE 

before Lingling passage suggest that the low salinity water is wrapping around the west 

of WCE (Figs 4.1b and 4.1c). It is suggested that the weak cooling of less than 0.5˚C 
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occurred due to the low salinity water, which served as the barrier layer, led to the rapid 

intensification of Lingling (Figs 4.1d and 4.1e).              

 We conducted simulations to explore the effect of BL on three TCs in 2018, 

Jebi, Trami, and Kong-rey in the northwest Pacific. Each simulation is initialized using 

one temperature and one of four different salinity profiles indicating different BLT. 

Figure 4.3 shows the temperature, salinity, and density profiles used in the idealized 

experiments based on Hlywiak and Nolan (2019). These temperature, salinity, and BLT 

are consistent with the observations in the Amazon–Orinoco plume region, but the BL 

with similar characteristics is found in the western Pacific or the Bay of Bengal (Neetu 

et al., 2012; Yan et al., 2017). The three BL cases have BLT of 15, 20, and 25 m, and 

the initial sea surface salinity values for each are 35.39 (OBL15), 33.84 (OBL20), and 

31.32 (OBL25) psu. The list of BL experiments is shown in Table 5. In every simulation, 

the initial temperature is constant down to the ILD at 50 m depth.  

4.2 Impact of Barrier Layer on TC intensity 

Previous studies found that the SST response to a passing TC depends on the 

ocean thermal structure, and TC conditions such as its size, intensity, and translation 

speed (Price 1983; Shay et al., 1989; Yablonsky and Ginis, 2009). To investigate the 

impact of the BL on TC intensity, which is expected to be a favorable ocean condition 

for storm intensification, it is important to examine different TC conditions because the 

upper ocean response is strongly influenced by the TC intensity and translation speed. 

Figure 4.4 shows the time series of the area-averaged SST cooling and SST anomaly 

relative to OBL00 for each OBL case within 100 km of the storm center for each storm. 

The total simulation time is 96 h for each experiment and the result is provided every 6 
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hours. Before discussing the impact of BLT, it is important to examine first the sea 

surface cooling trend due to the different characteristics of each storm. Overall, the 

magnitude of SST cooling is larger for the slower moving storm (Figs 4.4a, 4.4c, and 

4.4e). Unlike the gradual increase in SST cooling trends in TC Kong-rey and Jebi, rapid 

cooling occurs in TC Trami from the time at 0600 UTC 25 September as the translation 

speed slows down (Fig. 2.5). The peak of the cooling is reached at 1200 UTC 26 

September after which the cooling is reduced due to do acceleration of the translation 

speed and storm weakening (Fig 4.4c). 

In all experiments, TC-induced cooling has been suppressed by the presence of 

BL, especially in OBL20 and OBL25 cases. The maximum cooling difference is found 

in the OBL20 case in Trami, by about 0.7℃ compared to the OBL00 case, and in 

OBL25 cases for Kong-rey and Jebi, by over 0.4℃ and 0.2℃, respectively (Figs 4.4b, 

4.4d, and 4.4f). These results indicate that the effect of BL on the SST response is highly 

dependent on the TC translation speed. This is in agreement with idealized TC 

simulations by Hlywiak and Nolan (2019). An interesting result is found that the 

reduced cooling due to the presence of the BL occurs from the beginning of the 

simulation in the Kong-rey experiments (Fig. 4.4f). In contrast, there is a little cooling 

difference at the beginning of the Jebi experiments and it becomes noticeable at 0000 

UTC 1 September, 42 h after the simulation begins. To explain this result, the 

azimuthally averaged wind speed is calculated from the storm center in the OBL25 and 

OBL00 experiments in Jebi, Trami, and Kong-rey (Fig 4.5). In Kong-rey, the maximum 

averaged wind speed is found further from the storm center compared to Jebi and Trami. 

This implies that a larger area in the ocean is affected by the strong wind under Kong-
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rey, which can explain why the impact of BL in reducing SST cooling due to the BL 

occurs earlier in the Kong-rey case.  

Spatial distribution of SST anomaly between OBL25 and OBL00 cases for three 

TCs is shown in Fig. 4.6. After 24 h of simulation SSTs behind the TC center are warmer 

since the surface cooling is inhibited due to the BL for all TC OBL25 cases. However, 

after 60 h of simulation the increased SST cooling is found along the track behind in 

Jebi and Kong-rey. The increased cooling is located further from the storm center in 

Jebi and closer to the storm center in Kong-rey. The increased cooling is due to 

increased upwelling generated by the current divergence along the TC track in the BL 

experiments. Upwelling along the storm track brings the cold water from the 

thermocline closer to the ocean surface (Price 1981). The increased upwelling in the 

presence of BL can be explained as follows. TC wind-induced upper ocean mixing is 

reduced due to BL which leads to stronger surface current and thus stronger current 

divergence along the TC track. Distance from the TC center to the location of maximum 

upwelling can be estimated as  

𝑈Z(𝜋 − 𝛼)/𝑓                          (4) 

where 𝑈Z is the storm translation speed and 𝛼 is the inflow angle (the angle between the 

wind vector and the azimuthal direction) and 𝑓 is Coriolis parameter (Ginis 2002). In 

the case of TC Jebi, the maximum upwelling occurs further from the center than in 

Kong-rey because Jebi’s translation speed is higher. As a result, the BL induced SST 

cooling is found at a larger distance in Jebi compared to Kong-rey (Fig. 4.6b and Fig. 

4.6f). After the 24 hours of the Trami simulation, SST cooling is reduced due the BL 

(Fig. 4.6c), however, after 60 h SST field shows greater cooling near the storm center. 
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This is because upwelling occurs closer to the center due to Trami’s slow translations 

speed. In this case, the BL is completely eroded by mixing and upwelling, and the upper 

ocean is well mixed with the subsurface layer underneath the TC. The upper ocean 

mixing is seen in the vertical cross section in Fig. 4.7. At the beginning of the simulation, 

the cooling in the mixed layer is reduced because of the BL (Fig. 4.7e). Nevertheless, 

the increased cooling due to the BL is found after 60 h of simulation at the right of the 

storm center around 130°E and left around 128°E (Fig. 4.7f). This demonstrates that the 

presence of BL contributes to the reduced upper ocean mixing beneath the TC but also 

to increase the upwelling generated by the divergent ocean surface currents. 

Figure 4.8 shows the time series of area-averaged enthalpy flux evolution within 

100 km. In Kong-rey, the enthalpy fluxes in OBL20 and OBL25 cases increase at the 

beginning of the simulation due to the early decreased SST cooling. Noticeably, changes 

in the enthalpy flux are smaller in Trami than in the other TCs. The time series of the 

minimum central pressure evolution are shown in Fig. 4.9 to investigate the impact of 

BL on storm intensity. The storm intensification owing to BL occurs in all TC cases, 

and the larger difference is found in OBL20 and OBL25 cases (Figs 4.9b, 4.9d, and 

4.9f). The results of Trami do not support the Hlywiak and Nolan (2019) conclusion 

that there was a greater impact of BL on TC intensity for slower-moving storms. It is 

because the Trami has two features, the slow translation speed and changing the 

direction of storm movement when it slows down. Both allow Trami to have enough 

time to generate the vertical mixing as well as the upwelling over the same region, so 

the impact of the BL on Trami is comparable to that in Jebi and Kong-rey.   

The maximum area-averaged values of SST and HF within 100 km of the storm 
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center, as well as storm intensity (Pmin and Vmax) between the OBLx and OBL00 

experiments are summarized in Table 6. In all the experiments, the presence of BL lead 

to reduction of SST cooling and increased heat fluxes which lead to an increase of TC 

intensity. Overall, the largest intensity differences are found in the OBL20 and OBL25 

cases as expected due to larger BLT. However, no direct correlation between the SST 

and HF changes and TC intensity can be identified. In Jebi, increasing BLT leads to an 

increase in the maximum difference of SST and enthalpy flux. However, Trami and 

Kong-rey have the largest enthalpy flux difference due to BL in OBL20 cases, and the 

largest intensity differences are not consistently found in minimum pressure and 

maximum wind speed. Comparing the maximum difference values may not be the best 

indication of the impact of the BL on intensity in real TCs. 

4.3 Conclusion 

 The influence of BL on TC development is investigated in three real tropical 

cyclones in the northwest Pacific. In our results, the presence of the BL has an effect on 

the upper ocean response by reducing the entrainment of colder water below into the 

sea surface and thus increasing the intensity of the storm. This finding agrees with 

idealized coupled model results in Hlywiak and Nolan (2019) and other previous 

studies. In the BL experiments, the maximum increased intensity is around 6 to 9 hPa 

compared to the CTRL experiments. However, we have inconsistent results in 

sensitivity tests to storm translation speed and oceanic barrier layer thickness. Hlywiak 

and Nolan (2019) found that the degree of the barrier layer favorable effect on TC 

intensification increases with increasing the BL thickness and increases for decreasing 

translation speed. We find maximum increased intensity in minimum pressure in the 
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OBL25 cases for Jebi (fast moving TC) and Trami (slow moving TC). Nevertheless, the 

impact on TC intensity was the largest in OBL20 for Kong-rey. Besides, the impact of 

BL on the intensity of Trami is not greater compared to that of other TCs. Since the 

three TCs used in this study are the real storms occurring in 2018 the results are more 

complicated than using the idealized background wind. Additionally, it is found that the 

BL may increase the magnitude of upwelling along the storm track depending on the 

TC translation speed. Our results show that the enhanced upwelling in slow moving TCs 

can increase SST cooling underneath the storm and thus compensate for the SST cooling 

decrease due to the BL. This effect needs to be examined further in future studies.  
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Figure 4.1. (a) Track of TC Lingling with sea surface height anomaly (SSHa) on 4 
September 2019, and CTD casting stations (black rectangular). Numbers along track 
indicate maximum wind speed (knots). Temperature profile of section E (b) before and 
(c) after Lingling and salinity (d) before and (e) after storm passage. White dotted lines 
denote isothermal lines, with black solid and dotted lines indicate isopycnal lines at 
interval of 0.2 and 0.1, respectively.   
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Figure 4.2. Schematic temperature (blue), salinity (black), and density (red) profiles 
showing the mixed layer depth (MLD) and the barrier layer thickness (BLT). Shown 
are the cases of (a) no BL and (b) BL (Yan et al., 2017). 

b) a) 
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Figure 4.3. Upper 120 m of ocean (a) temperature (℃), (b) salinity (psu), (c) density 
(kg/m3) profiles. Dashed lines indicate the ILD in the temperature plot and the different 
MLDs between each BL case. 

 

 

Table 5. List of OBL experiments. 

 

 ILD (m) MLD (m) OBL (m) 

OBL00 50 50 0 

OBL15 50 35 15 

OBL20 50 30 20 

OBL25 50 25 25 
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Figure 4.4. Time series of area-averaged ΔSST for each BL case for (a) Jebi, (c) Trami, 
and (e) Kong-rey, and anomaly between OBLx and OBL00 for (b) Jebi, (d) Trami, and 
(f) Kong-rey within 100 km of the storm center as a function of time.  
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Figure 4.5. Azimuthally averaged wind speed (m/s) every 5 km for Jebi (black), Trami 
(blue), and Kong-rey (red) at (a) 6 h, (b) 12 h, and 18 h after the simulation begins. Solid 
lines indicate the OBL00 cases, and dashed lines indicate the OBL25 cases.  

a) 

b) 

c) 
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Figure 4.6. Spatial distribution of SST anomaly between OBL25 and OBL00 for (a), (b) 
Jebi, (c), (d) Trami, and (e), (f) Kong-rey at (left) 24 and (right) 60 h after the simulation 
begins. Black circle indicates the 100 km radius around the storm center, and black dot 
indicates the storm center. Solid and dashed lines indicate track of OBL25 and OBL00 
experiments, respectively.  
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Figure 4.7. Zonal vertical cross section of ocean temperature (a), (b) OBL00 and (c), (d) 
OBL25 and (e), (f) anomaly (OBL25 - OBL00) at the storm center of OBL25 
experiment at (left) 24 and (right) 60 h after the simulation begins.  
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Figure 4.8. Time series of area-averaged enthalpy flux (W/m2) for each BL case for (a) 
Jebi, (c) Trami, and (e) Kong-rey, and anomaly between OBLx and OBL00 for (b) Jebi, 
(d) Trami, and (f) Kong-rey within 100 km of the storm center as a function of time.  
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Figure 4.9. Time series of minimum pressure (hPa) for each BL case for (a) Jebi, (c) 
Trami, and (e) Kong-rey, and anomaly between OBLx and OBL00 for (b) Jebi, (d) 
Trami, and (f) Kong-rey as a function of time.  
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Table 6. Maximum different values between  
OBLx and OBL00 experiments. 

 

JEBI OBL15 OBL20 OBL25 

ΔSST (℃) 0.13 0.22 0.22 

ΔHF (W/m2) 63.60 109.42 139.78 

ΔPmin (hPa) 7 4 9 

ΔVmax (m/s) 6.17 6.69 8.75 

 
 

TRAMI OBL15 OBL20 OBL25 

ΔSST (℃) 0.23 0.70 0.48 

ΔHF (W/m2) 63.15 67.57 37.29 

ΔPmin (hPa) 5 4 6 

ΔVmax (m/s) 5.67 9.26 5.14 

 
 

KONG-REY OBL15 OBL20 OBL25 

ΔSST (℃) 0.15 0.38 0.41 

ΔHF (W/m2) 71.24 154.56 108.14 

ΔPmin (hPa) 1 9 7 

ΔVmax (m/s) 2.57 5.66 6.69 
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