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ABSTRACT 
 
The size structure of phytoplankton communities influences important ecological 

and biogeochemical processes, including the transfer of energy through marine 

food webs. A variety of algorithms have been developed to estimate phytoplankton 

size classes (PSCs) from satellite ocean color data. However, many of these 

algorithms were developed for application to the open ocean, and their 

performance in more productive, optically complex continental shelf systems has 

not been fully evaluated. In this study, several existing PSC algorithms were 

applied in the Northeast U.S. continental shelf (NES) and assessed by comparison 

to in situ PSC estimates derived from a regional HPLC pigment data set. The effect 

of regional re-parameterization and incorporation of sea surface temperature 

(SST) into existing abundance-based model frameworks was investigated, and the 

models were validated using an independent data set of in situ and satellite match-

ups. Abundance-based model re-parameterization alone did not result in 

significant improvement in performance in the NES compared with other models, 

however, the inclusion of SST led to a consistent reduction in model error for all 

size classes. Of two absorption-based algorithms tested, the best validating 

approach displayed similar performance metrics to the regional abundance-based 

model that included SST. The SST-dependent model was applied to monthly 

imagery composites of the NES region for April and September 2019, and 

qualitatively compared with imagery from the absorption-based approach. The 

results indicate the benefit of considering SST in abundance-based models and 

the applicability of absorption-based approaches in optically dynamic regions.
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1. INTRODUCTION 
 

 Phytoplankton form the base of pelagic food webs and are a key component 

of biogeochemical cycles that impact global climate (i.e., carbon cycle) (Longhurst 

et al., 1995; Field et al., 1998; Behrenfeld et al., 2006). Phytoplankton in the ocean 

are taxonomically diverse, spanning nine orders of magnitude in cell volume and 

exhibiting an array of unique morphological and physiological characteristics 

(Finkel et al., 2010; Caron et al., 2012). Phytoplankton community composition and 

biomass are highly variable in time and space, changing in response to both 

bottom-up (i.e., nutrient availability, environmental conditions) and top-down (i.e., 

grazing) controls. Understanding the dynamics of phytoplankton in terms of both 

abundance and community structure is critical to better understanding their role in 

marine ecology and biogeochemistry.  

 Functional traits or classes have been applied as an effective means of 

studying phytoplankton community dynamics, while reducing the requirement for 

detailed taxonomic discrimination (IOCCG, 2014; Nair et al., 2008; Le Quéré et al., 

2005). Phytoplankton cell size is considered a fundamental trait as it affects many 

important biological and ecological processes, including photosynthesis (Uitz et 

al., 2008), nutrient uptake (Raven, 1998), growth rate (Marañón, 2015), light 

absorption (Ciotti et al., 2002; Bricaud, 2004), carbon export (Guidi et al., 2009; 

Mouw et al., 2016), and the transfer of energy through food webs (Boyce et al., 

2015). Thus, the size structure of phytoplankton assemblages can serve as a 

valuable indicator of the state of marine ecosystems and their response to 
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environmental changes (i.e., ocean warming) (Platt and Sathyendranath, 2008; 

Marinov et al., 2010; Morán et al., 2010). Following the classification of Sieburth et 

al. (1978), phytoplankton are conventionally partitioned into three phytoplankton 

size classes (PSCs): picoplankton (0.2-2 µm), nanoplankton (2-20 µm), and 

microplankton (20-200 µm). 

 A number of methods exist for quantifying PSCs in situ, including 

microscopy, size-fractionated filtration (SFF), conventional and imaging flow 

cytometry (Olson and Sosik, 2007), and high-performance liquid chromatography 

(HPLC) marker pigments, each with advantages and limitations (IOCCG, 2014). 

While these methods have proven accurate and useful, they are labor-intensive, 

time-consuming, and expensive. As a result, the availability of in situ PSC data 

remains quite sparse in space and time, thus limiting their utility in studying and 

modeling large scale, dynamic ocean and ecosystem processes. Satellite remote 

sensing, capable of providing regularly repeated, synoptic coverage of upper 

ocean optical properties, provides a means to characterize PSCs at spatial and 

temporal resolutions unattainable with in situ sampling techniques. Given this fact, 

deriving information on PSCs from satellite ocean color data is an active area of 

research, and a variety of algorithms have been developed for both global ocean 

(Brewin et al., 2015; Hirata et al., 2011) and regional application (Brito et al., 2015; 

Di Cicco et al., 2017; Gittings et al., 2019; Lamont et al., 2018; Sun et al., 2019, 

2018). Most current approaches for detecting PSCs from remote sensing can be 

categorized as either “abundance-based” or “absorption-based” (IOCCG, 2014; 
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Mouw et al., 2017b). These approaches differ in terms of their theoretical 

frameworks and the remotely sensed parameters utilized as inputs. 

 Abundance-based algorithms exploit the generally observed co-variance of 

phytoplankton size structure and total biomass [indexed by its proxy, chlorophyll-

a concentration ([Chl-a])] to estimate dominance or relative biomass fractions of 

PSCs (Uitz et al., 2006; Brewin et al., 2010; Hirata et al., 2011). For example, it is 

well established that picoplankton, such as the cyanobacteria Prochlorococcus 

and Synechococcus, dominate in low-nutrient, oligotrophic environments (i.e., 

open ocean gyres) and larger-celled microplankton, such as diatoms, comprise a 

greater fraction of total biomass in eutrophic, nutrient-rich regions (i.e., upwelling 

zones) (Margalef, 1978; Chisholm et al., 1988; Yentsch and Phinney, 1989). 

Abundance-based methods rely on empirical or semi-empirical relationships 

based on coincident in situ observations of size fractionated biomass (i.e., from 

HPLC marker pigments or SFF) and [Chl-a] to estimate PSCs as a function of [Chl-

a]. Given that [Chl-a] is perhaps the most widely used and well-validated satellite 

ocean color product, abundance-based methods offer a straightforward, "user-

friendly" approach for estimating PSCs from remote sensing. Yet, these methods 

are only an indirect approximation of PSCs, and the empirical relationships they 

are based on are subject to change over time, requiring ongoing assessment and 

re-calibration (Mouw et al., 2017b). Recent studies have demonstrated that the 

incorporation of additional environmental information attainable from remote 

sensing (i.e. sea surface temperature [SST]) can improve the retrieval accuracy of 
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abundance-based models (Ward, 2015; Brewin et al., 2017; Moore and Brown, 

2020). 

 Absorption-based algorithms distinguish PSCs directly from spectral 

variations in phytoplankton absorption [aph(l)], the amount of light absorbed by 

phytoplankton across the visible spectrum, which influences, and can be inversely 

derived from, the reflectance signal measured by a satellite ocean color sensor 

[remote sensing reflectance; Rrs(l)] (Ciotti et al., 2002; Ciotti and Bricaud, 2006; 

Devred et al., 2011, 2006; Mouw and Yoder, 2010). Smaller cells absorb visible 

light more efficiently than larger cells due to the way photosynthetic pigments are 

packaged within larger cells. This "package effect" results in a flattening of the 

chlorophyll-normalized absorption spectrum [aph*(l)] with increasing cell size, with 

the most pronounced change at blue wavelengths (i.e., around 440 nm) (Morel 

and Bricaud, 1981; Morel, 1987; Bricaud et al., 1988). Ciotti et al. (2002) 

demonstrated that despite physiological and taxonomic variability, cell size could 

explain >80% of the variance in the spectral shape of aph*(l) over the wavelength 

range 400-700 nm. An advantage of absorption-based methods over abundance-

based approaches is that they are able to detect changes in PSCs that do not co-

vary with [Chl-a] (i.e., blooms of different sized cells may comprise the same [Chl-

a]). Moreover, as absorption-based methods are based on direct optical responses 

rather than indirect empirical relationships, they are less likely to require re-

calibration over time or for different ocean regions. However, the limited spectral 

resolution of current multi-spectral ocean color sensors can make retrieving 
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accurate aph(l) spectral shape challenging, particularly in optically complex coastal 

and continental shelf waters with high concentrations of colored dissolved organic 

matter (CDOM) and non-algal particles (NAP), which overlap with phytoplankton 

in their contribution to the total light absorption in the blue region of the spectra.  

 Given the unique strengths and limitations of these different approaches to 

detecting PSCs from remote sensing, evaluating how they perform in different 

ocean regions, and whether they may be optimized for regional application, is 

essential. A number of studies have successfully retrieved PSCs at regional scales 

(i.e., shelf seas), including the Red Sea (Gittings et al., 2019), the Mediterranean 

Sea (Di Cicco et al., 2017), the Bohai and Yellow Seas (Sun et al., 2018, 2019), 

the Western Iberian coast (Brito et al., 2015), and the southern coast of Africa 

(Lamont et al., 2018), through re-parameterization of global abundance-based 

models with local in situ data sets. These studies demonstrate the potential benefit 

of PSC model optimization for regional applications, including regional-scale food-

web modeling and ecosystem-based fisheries management. 

 The northeast U.S. continental shelf (denoted NES throughout the 

remainder of the text), is a highly productive, temperate marine ecosystem that 

supports many commercially and recreationally important fisheries (Hare et al., 

2016; National Marine Fisheries Service, 2018). The NES region is physically 

dynamic and optically complex (Pan et al., 2008; Mannino et al., 2014), thus 

necessitating evaluation and potential optimization of existing global PSC 

algorithms to ensure their accuracy. Phytoplankton species composition and 
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abundance in the NES varies seasonally, with diatoms dominating in a typical 

winter-spring bloom, and other taxa, such as dinoflagellates, cryptophytes, and 

cyanobacteria, becoming more prevalent during the summer (O’Reilly and Zetlin, 

1998; Pan et al., 2011; Richaud et al., 2016).  

 The aim of this study is to evaluate and optimize several existing 

abundance-based and absorption-based PSC algorithms for application to ocean 

color imagery in the NES region, with the goal of improving PSC imagery products 

for long-term time series investigations and integration into regional ecosystem 

and fisheries modeling efforts. Specifically, the following scientific questions are 

addressed: 

• To what extent does regional re-parameterization using a local in situ data 

set improve the performance of abundance-based PSC algorithms in the 

NES? 

• Does the incorporation of SST into abundance-based models improve 

accuracy for predicting PSCs in the NES? 

• How do abundance-based and absorption-based models compare in their 

estimation of PSCs in the NES?  

• What spatial and temporal patterns of phytoplankton size structure are 

observed in the NES? 
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Table 1. Symbols and definitions. 
 

Symbol Definition Units (if 
applicable) 

ad(l) absorption coefficient of non-algal particles  m-1 

adg(l) absorption coefficient of colored dissolved organic matter + 
non-algal particles  m-1 

ag(l) absorption coefficient of colored dissolved organic matter m-1 
[Allo] alloxanthin concentration mg m-3 

aph(l) absorption coefficient of phytoplankton m-1 

aph*(l) chlorophyll-specific absorption coefficient of phytoplankton m2 mg-1 

[But-fuco] 19’-butanoyloxyfucoxanthin concentration mg m-3 
[Chl-a] chlorophyll-a concentration mg m-3 

CDP chlorophyll-a concentration reconstructed from the weighted 
sum of diagnostic pigments  mg m-3 

CHPLC chlorophyll-a concentration measured by high-performance 
liquid chromatography mg m-3 

Csize chlorophyll-a concentration specific to size class “size” mg m-3 

Cmsize asymptotic maximum chlorophyll-a concentration of size class 
“size” mg m-3 

Dsize fraction of size class “size” as total chlorophyll-a tends to zero unitless 
Fsize fraction of size class “size” unitless 

[Fuco] fucoxanthin concentration mg m-3 
GB Georges Bank - 

GoM Gulf of Maine - 
[Hex-fuco] 19’hexanoyloxyfucoxanthin concentration mg m-3 

MAB Middle Atlantic Bight - 
MAE mean absolute error  unitless 
NES northeast U.S. continental shelf - 

[Perid] peridinin concentration mg m-3 
r Pearson correlation coefficient unitless 

Rrs(l) remote sensing reflectance sr-1 
S slope of a Type-II linear regression unitless 

SST sea surface temperature ºC 
SFF size-fractionated filtration - 

[TAcc] total concentration of accessory pigments mg m-3 
[TChl-b] total chlorophyll-b concentration mg m-3 

[Zea] zeaxanthin concentration mg m-3 

! bias  unitless 
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2. DATA AND METHODS 

2.1.     Study Area 

 The NES region (35ºN-45.5ºN, 64ºW-77ºW) extends along the east coast 

of the U.S. from Cape Hatteras, NC to Nova Scotia (Fig. 1). The region includes 

three primary subregions: the Gulf of Maine (GoM), Georges Bank (GB), and the 

Mid-Atlantic Bight (MAB). The continental shelf is commonly delineated as inshore 

of the 200 m isobath, with deeper basins in the GoM (i.e., Georges Basin) that 

exceed 300 m depth. The NES is influenced by two major current systems: the 

warm, saline, northward flowing Gulf Stream, and the colder, fresher, southward 

flowing Labrador Current. Mesoscale features (i.e., eddies, fronts) and interannual 

variations in the path of the Gulf Stream and flow of the Labrador Current affect 

nutrient fluxes, productivity, and phytoplankton composition across the NES 

(Schollaert et al., 2004; Saba et al., 2015). The NES has experienced rapid 

warming (Pershing et al., 2015), which has been connected to changes in 

phytoplankton bloom dynamics (Hunter-Cevera et al., 2016), and the distributions 

of fish and other marine species (Kleisner et al., 2017). The NES has been 

extensively sampled relative to other parts of the global ocean, with routine 

hydrographic and biological surveys conducted throughout the region since the 

late 1970s (O’Reilly and Zetlin, 1998). At present, NOAA’s Northeast Fisheries 

Science Center (NEFSC) conducts quarterly Ecosystem Monitoring (EcoMon) 

surveys, which provide a range of hydrographic and biological data for the region 

(National Marine Fisheries Service, 2020). 
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2.2.     In situ Data  

 Discrete surface (upper 10 m) samples of HPLC pigments and the spectral 

absorption coefficients of phytoplankton [aph(l)], CDOM [ag(l)], and NAP [ad(l)] 

collected throughout the NES region from 2003 to 2018 were acquired from 

NASA’s SeaWiFS Bio-optical Archive and Storage System data repository 

(SeaBASS; https://seabass.gsfc.nasa.gov/) (Fig. 1). The compiled data were 

derived from several different cruises and experiments, with the largest portion 

from the Impacts of Climate Variability on Primary Production and Carbon 

Distributions in the Middle Atlantic Bight and Gulf of Maine (CliVEC) field campaign 

and the University of New Hampshire Western Gulf of Maine time series (Table 2). 

Only HPLC pigment samples containing a full set of seven diagnostic pigments 

required for estimating PSCs (i.e., fucoxanthin, peridinin, 19’-

hexanoyloxyfucoxanthin, 19’-butanoyloxyfucoxanthin, alloxanthin, total 

chlorophyll-b, and zeaxanthin) were included in this analysis (see Section 2.6). For 

the absorption data, only measurements with a spectral resolution of 1-nm over 

the range of 400-700 nm with coincident HPLC pigments were retained. In order 

to calculate the combined absorption of CDOM and NAP [adg(l)], a parameter 

routinely retrieved by satellite inversion algorithms, measurements of ag(l) without 

matching ad(l) (and vice-versa) were excluded. If a station had multiple samples 

within the upper 10 m, the data were averaged. To limit the effects of shallow water 

and near-shore processes, stations with a water column <25 m were removed prior 

to analysis.  
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Figure 1. Locations of the in situ data and satellite match-ups used in this study. 
The 200 m and 2000 m isobaths from the 2019 General Bathymetric Chart of the 
Oceans (https://www.gebco.net/) are shown for reference. See Table 2 for 
information on data sources. 
 
 
 An additional 40 HPLC, 24 aph(l), and 14 ag(l)/ad(l) samples collected on 

the Summer 2018 and Fall 2018 NOAA EcoMon surveys were added to the data 

from SeaBASS. HPLC pigment samples from these cruises were collected by 

filtering ~1-2 L of seawater onto 25 mm GF/F filters (0.7 µm pore size) which were 

subsequently frozen in liquid nitrogen and analyzed at Horn Point Laboratory 

(University of Maryland Center for Environmental Science). Absorption 
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measurements from the EcoMon surveys were collected and analyzed according 

to the NASA Ocean Optics Protocols (Mueller et al., 2003) following the 

procedures detailed in Mouw et al. (2017a). 

 Quality assurance (QA) for the HPLC pigment data was carried out following 

the procedure of Uitz et al. (2006). First, to account for differences in the detection 

limits and sensitivities of different HPLC processing methods, pigment 

concentrations <0.001 mg m-3 were set to zero. Then, utilizing the relationship of 

Trees et al. (2000), who demonstrated that [Chl-a] and the total concentration of 

major accessory pigments ([TAcc]) co-vary in log-linear fashion within the euphotic 

zone of diverse oceanic regions, a robust linear regression analysis (MATLAB 

function robustfit.m) of [TAcc] on [Chl-a] was performed to identify outliers. Any 

points exceeding three standard deviations with respect to the mean of the 

residuals (data – regression) were excluded. QA for the aph(l), ag(l), and ad(l) 

data consisted of the following steps: (1) overly noisy spectra were manually 

identified and removed; (2) spectra with negative values (not exceeding -0.1) were 

offset by the most negative value (Grunert et al., 2019); (3) spectra were smoothed 

using a Savitsky-Golay filtering technique (MATLAB function sgolayfilt.m) with a 9-

nm smoothing window (Torrecilla et al., 2011). The ag(l) and ad(l) values were 

then summed to obtain adg(l). After QA, a total of 786 HPLC, 214 aph(l), and 173 

adg(l) measurements remained. The pigment data were representative of every 

month of the year, with a slight bias towards summer months, whereas aph(l) and 

adg(l) data were almost exclusively limited to summer and fall months (Fig. 2). 
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Table 2. Summary of in situ data sources. N denotes the number of samples (after 
QA), where the number in parentheses refers to the number of satellite match-ups. 
Citations for the individual data sets from SeaBASS are also provided.   

Cruise/Experiment – P.I.(s) Year(s) Month(s) N, 
HPLC 

N, 
aph(l) 

N, 
adg(l) 

Impacts of Climate Variability 
on Primary Production and 
Carbon Distributions in the 

Middle Atlantic Bight and Gulf 
of Maine (CliVEC) – Mannino 

et al., 2009 

2009-
2012 

Feb, 
May, Jun, 
Aug, Nov 

424 
(212) 

182 
(101) 

153 
(86) 

NOAA Ecosystem Monitoring 
(EcoMon) – Mannino et al., 

2013 
2013, 
2018 

Feb, Aug, 
Nov 

71  
(41) 

24   
(18) 

14  
(9) 

Optical and Nutrient 
Dependence of Quantum 

Efficiency (OnDeque3) – Marra 
et al., 2008 

2008 Jul 26  
(15) 0 0 

Tara Oceans Expedition – 
Boss et al., 2009 2012 Jan, Feb 2 0 0 

East Coast Ocean Acidification 
(ECOA-1) – Mannino et al., 

2015 
2015 Jun, Jul 37  

(16) 0 0 

LOBO timeseries – Roesler, 
2009 2009 Mar 6 0 0 

Western Gulf of Maine – 
Moore, 2006  

2006-
2009 

All 
months 

188 
(68) 3 0 

Ocean Color Cal Val (OCV) – 
Hooker et al., 2005 

2007, 
2009 May, Nov 16  

(7) 0 0 

COASTAL (C7) – Hooker, 2000  2008 Oct 6  
(5) 

5  
(4) 

6  
(4) 

Delaware and Chesapeake 
Bay Fluorescence – 

Chekalyuk, 2008  
2008 May 1 0 0 

2009oct_Chesapeake – Gould, 
2009  2009 Oct 7  

(3) 0 0 

BIOCOMPLEXITY – Harding, 
2001  2003 Aug 2  

(1) 0 0 

  Totals: 786 
(368) 

214 
(123) 

173 
(99) 
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Figure 2. Relative frequencies of in situ observations from the NES data set used 
in this study (blue stairs): (a) HPLC-measured [Chl-a] (N = 786), (b) aph(443) (N = 
214) and (c) adg(443) (N = 173), with their respective monthly distributions (d-f, 
black bars). Global distributions from an OC-CCI v4.2 annual satellite composite 
for 2018 are overlain for comparison (red line). Frequencies were normalized by 
the maximum value. OC-CCI v4.2 data were downloaded from https://esa-
oceancolour-cci.org/. 
 

2.3. Satellite Data  

 Daily, Level-3 mapped (4-km resolution, sinusoidally projected) estimates 

of Rrs(l), [Chl-a], aph(l), and adg(l) from the most recent version (4.2) of the 

European Space Agency’s (ESA) Ocean Colour – Climate Change Initiative 

product (OC-CCI v4.2; Sathyendranath et al., 2019) at the time of the initiation of 
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this study were downloaded from https://esa-oceancolour-cci.org/. These 

parameters are required inputs for the PSC algorithms evaluated in this study (see 

Section 2.7). OC-CCI v4.2 consists of globally merged, bias-corrected data from 

the Sea-viewing Wide-Field-of-View Sensor (SeaWiFS), Medium Resolution 

Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer 

(MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS-SNPP) 

satellite sensors over the period 1997-2019. The multi-sensor data are band-

shifted to standard SeaWiFS wavelengths (412, 443, 490, 510, 555, and 670 nm) 

and include per-pixel uncertainty estimates. OC-CCI v4.2 also incorporates the 

latest NASA reprocessing (R2018), which corrected for drift in the MODIS-Aqua 

sensor. The reader is referred to the OC-CCI v4.2 Product User Guide (https://esa-

oceancolour-cci.org/documents-list) for a more detailed overview. 

 The standard OC-CCI [Chl-a] algorithm uses a blended combination of 

NASA’s OC3, OCI, and OC5 algorithms (O’Reilly et al., 1998; Gohin et al., 2002; 

Hu et al., 2012) based on optical water classes (Moore et al., 2009; Jackson et al., 

2017), which improves performance in optically complex waters. In addition to the 

standard algorithm, [Chl-a] was also calculated using the regional algorithm of Pan 

et al. (2010). This regional empirical algorithm was developed based on coincident 

in situ measurements of HPLC pigments and Rrs(l) collected at various locations 

across the MAB and GoM. The algorithm was applied using the published 

coefficients for SeaWiFS wavebands. The standard OC-CCI aph(l) and adg(l) 
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products are derived using the Quasi-Analytical Algorithm (QAA_v5) of Lee et al. 

(2009).  

 For validation of the satellite input products ([Chl-a], aph(l), and adg(l)) and 

PSC algorithm estimates, in situ samples were matched in time and space with the 

satellite data. Following standard methods, match-ups were determined as the 

median of a 3x3 pixel box centered on the sampling location (nearest latitude and 

longitude), where only match-ups with at least 5 valid pixels and a median 

coefficient of variation of <0.15 for Rrs(l) bands between 412 and 555 nm were 

used to ensure spatial homogeneity (Bailey and Werdell, 2006). Given that OC-

CCI is a daily, multi-sensor product, a same-day coincidence window was used 

rather than the more stringent ±3-hour window recommended for a single mission 

by Bailey and Werdell (2006). This resulted in 368 [Chl-a], 123 aph(l), and 99 adg(l) 

match-ups (Table 2).  

 Recent studies (Brewin et al., 2017, Moore and Brown, 2020) have 

demonstrated that the inclusion of SST can improve the performance of 

abundance-based algorithms. To explore the relationship between SST and the 

parameters of the Brewin et al. (2010) three-component PSC model (see Section 

2.7), all in situ pigment samples were matched with daily estimates of SST from 

the Multi-scale Ultra-high Resolution SST analysis (MUR version 4.1) (Chin et al., 

2017). MUR is a gap-filled, 1-km resolution gridded global SST product that fuses 

night-time infra-red SST retrievals from the MODIS sensor with multiple other in-

orbit infra-red/microwave instruments and data from NOAA’s in situ SST Quality 
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Monitor (iQuam) database (Xu and Ignatov, 2014). Data for the period June 1, 

2002 – December 31, 2019 were downloaded freely from NASA’s Physical 

Oceanography Distributed Active Archive Center (https://podaac.jpl.nasa.gov). 

 
2.4. Partitioning of Data for Model Re-parameterization and Validation 
 
 To allow for both the re-parameterization of abundance-based PSC models 

(see Sections 2.7.1.6 and 2.7.1.7) and independent model validation, the HPLC 

pigment data were split into two separate data sets. Of the 786 total samples, the 

368 samples with a satellite [Chl-a] match-up (~47% of the data) were removed 

and reserved for independent validation and are referred to as the validation data 

set. The remainder of the in situ pigment data (N = 418) were used for model re-

parameterization, and are referred to as the parameterization data set. 

 
2.5. Statistical Performance Metrics 

 Several statistical metrics were used to compare algorithm estimates with 

the in situ data and evaluate performance. As a measure of accuracy, the mean 

absolute error (MAE) was used. While many studies commonly use root mean 

square error (RMSE), MAE has been recommended as a more unambiguous and 

appropriate metric for model assessment (Willmott and Matsuura, 2005; Seegers 

et al., 2018). As a measure of systematic bias, the mean bias (d) was used. The 

MAE and d are calculated according to: 

																																																											"#$ =
1
'(|"! − +!|

"

!#$
																																																					(1)	

and 
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																																																																. =
1
'(("! − +!)

"

!#$
,																																																						(2) 

 
where M, O, and N represent the modeled value (e.g., satellite estimate), the 

observed value (in situ), and the number of observations, respectively. A positive 

(negative) d  indicates a model’s tendency to systematically overestimate 

(underestimate) the variable of interest. The Pearson correlation coefficient (r) and 

slope of a Type-II linear regression (S) were also computed for additional 

comparison between modeled and in situ values (Brewin et al., 2015b; Werdell et 

al., 2013). Type-II regression (MATLAB function lsqfitgm.m) was applied rather 

than Type-I regression as it accounts for the inherent measurement uncertainties 

of in situ field data (Laws and Archie, 1981). While values of r and S that are close 

to one generally indicate better agreement between model estimates and in situ 

observations, r and S alone provide no information on the accuracy or bias of a 

given model, and thus are viewed secondarily to the MAE and d  when assessing 

model performance. Statistical calculations involving total or size-specific [Chl-a], 

aph(l), or adg(l) were performed in log10 space, while calculations involving size 

fractions were performed in linear space. 

 
2.6. Estimation of PSCs from HPLC Pigments 
 
 For algorithm re-parameterization and validation, PSCs were estimated 

from the HPLC pigment data following the Diagnostic Pigment Analysis (DPA) 

method (Brewin et al., 2010; Brewin et al., 2015a; Claustre, 2005; Devred et al., 

2011; Uitz et al., 2006; Vidussi et al., 2001). This method has been extensively 
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used for the development and validation of satellite PSC algorithms, given the 

relative abundance of HPLC pigment data compared with SFF and other in situ 

methods. The DPA approach involves first reconstructing the measured [Chl-a] 

(denoted here as CHPLC) from the weighted sum of seven diagnostic phytoplankton 

pigments (denoted CDP) according to: 

																																																													1%& =(2!

'

!#$
3! ,																																																																	(3) 

 
where [W] represents pigment-specific weighting coefficients and [P] is the set of 

seven diagnostic pigments: {fucoxanthin ([Fuco]), peridinin ([Perid]), 19’-

hexanoyloxyfucoxanthin ([Hex-fuco]), 19’-butanoyloxyfucoxanthin ([But-fuco]), 

alloxanthin ([Allo]), total chlorophyll-b ([TChl-b]), zeaxanthin ([Zea])}. To derive an 

optimal set of weighting coefficients from the NES pigment data set, a multi-linear 

regression of [P] on CHPLC was performed. The newly computed weighting 

coefficients compared reasonably with those obtained from previous studies 

(Table 3), with the exception of large differences observed for the weights 

attributed to [But-fuco] and [Allo], which may be due to differences in community 

composition in the NES compared with the global ocean. The new weights yielded 

close agreement between CDP and CHPLC (MAE = 0.12, r  = 0.98), and 

demonstrated better results relative to using the unweighted sum of the diagnostic 

pigments (Vidussi et al., 2001), or the commonly applied weighting coefficients of 

Uitz et al. (2006), which were derived from a large global pigment database (Fig. 

3, Table 3). 
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 The fractional contributions of micro-, nano-, and picoplankton were 

estimated from the ratios of the diagnostic pigments attributed to each size class 

to CDP. Two diagnostic pigments were attributed to microplankton: [Fuco] and 

[Perid], associated with diatoms and dinoflagellates, respectively. Acknowledging 
 

 

              

Figure 3. Comparison of the HPLC-measured [Chl-a] (CHPLC) and the [Chl-a]  
reconstructed from the sum of seven diagnostic pigments (CDP) using the 
weighting coefficients derived from this study (green circles; MAE = 0.12, r  = 0.98), 
the weights derived by Uitz et al. (2006) from a global data set (blue triangles; MAE 
= 0.47, r  = 0.96), and no weighting coefficients (magenta squares; MAE = 0.62, r 
= 0.96). 
 
 
that [Fuco] is also present in prymnesiophytes and chrysophytes, and that diatoms 

can also occupy the nano size range, Devred et al. (2011) introduced a 

0.1 1 10

CDP [mg m-3]

0.1

1

10

C
H

PL
C

 [m
g 

m
-3

]

MAE = 0.12
r = 0.98

1:1
This study
Uitz et al. (2006)
Unweighted



 

 21 

modification that attributes a portion of [Fuco] (P1) to nanoplankton, such that P1 = 

P1,nano + P1,micro. In their approach, P1,nano  is estimated from the equation: 
 

																																																3$,)*)+ = 10[-!.+/!"(&#)2-$.+/!"(&%)],																																											(4)   
 

                                     
where P3 and P4 are the pigments [Hex-fuco] and [But-fuco], respectively, and q1 

and q2 are the coefficients of a 1% multi-linear quantile regression of P1 on P3 and 

P4. Following the same approach, The coefficients q1 and q2 were re-computed for 

the NES pigment dataset, obtaining values of q1 = 0.999 and q2 = 0.271, and P1,nano 

was estimated using Eq. (4). In any instance where the estimated P1,nano was found 

to be greater than P1, it was set equal to P1. The fraction of microplankton (Fmicro) 

was then calculated according to: 
 

																																																74!56+ =
∑ 2!
7
!#$ 3! −2$3$,)*)+

1%&
.																																														(5) 

 

 Three diagnostic pigments were used to estimate nanoplankton: [Hex-fuco], 

[But-fuco], and [Allo], attributed to prymnesiophytes, pelagophytes, and 

cryptophytes, respectively (Brewin et al., 2015a; Roy, 2011; Uitz et al., 2006). 

Brewin et al. (2010) proposed an adjustment that attributes a portion of [Hex-fuco] 

to picoeukaryotes (picoplankton) in ultra-oligotrophic environments ([Chl-a] < 0.08 

mg m-3). However, considering that only one sample in the data set used in this 

study met this criterion ([Chl-a] = 0.07 mg m-3) and the adjustment was found to 

make only minor difference (not shown), it was excluded for simplicity. 

Incorporating the [Fuco] modification of Devred et al. (2011), the fraction of 

nanoplankton (Fnano) was calculated as: 
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																																														7)*)+ =	
∑ 2!
8
!#9 3! +2$3$,)*)+

1%&
.																																																	(6) 

 

 
 The final two diagnostic pigments: [TChl-b] and [Zea], were attributed to the 

picoplankton class, the former associated with prochlorophytes and chlorophytes 

and the latter with prochlorophytes and cyanobacteria (Chisholm et al., 1988; Uitz 

et al., 2006; Roy, 2011). The fraction of picoplankton (Fpico) was computed as: 
 

																																																											7:!5+ =
∑ 2!
'
!#; 3!
1%&

.																																																														(7) 

 
 
 
Table 3. Diagnostic pigments [P] and their associated taxonomic groups and 
attributed size classes, along with weighting coefficients [W] obtained from this 
study and previous studies. The number of data points and geographical regions 
of each study are also provided. 
 

Pigment [P] 
Primary 

taxonomic 
group(s) 

Attributed 
size 

class(es) 

Weights [W] 

This 
study 

Uitz et 
al. 

(2006) 

Brewin 
et al. 

(2015a) 

Brewin 
et al. 

(2017) 
Fucoxanthin 

(P1) Diatoms Micro/ 
nano 2.20 1.41 1.51 1.65 

Peridinin (P2) Dinoflagellates Micro 1.08 1.41 1.35 1.04 

19'-Hex (P3) Prymnesiophytes Nano 0.86 1.27 0.95 0.78 

19'-But (P4) Pelagophytes Nano 3.63 0.35 0.85 1.19 

Alloxanthin (P5) Cryptophytes Nano -0.10 0.6 2.71 3.14 
Total 

chlorophyll-b 
(P6) 

Prochlorophytes, 
Chlorophytes Pico 1.21 1.01 1.27 1.38 

Zeaxanthin (P7) Prochlorophytes, 
Cyanobacteria Pico 0.99 0.86 0.93 1.02 

Number of data points 786 2419 5841 2239 

Geographic region NES Global Global North 
Atlantic 
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 Once Fmicro, Fnano, and Fpico (collectively referred to as Fsize) were 

determined, the [Chl-a] specific to each size class (collectively referred to as Csize) 

was calculated by multiplying Fsize by CHPLC, such that: 
 

																																																										14!56+ = 74!56+1<&=> ,																																																						(8?) 
 
																																																											1)*)+ = 7)*)+1<&=> ,																																																								(8@) 

																																																												1:!5+ = 7:!5+1<&=> .																																																									(8A) 

 
2.7. PSC Algorithms 

 A variety of PSC algorithms, including purely abundance-based methods, 

abundance-based methods that include SST, and absorption-based approaches, 

were selected for optimization and/or evaluation in this study. The abundance-

based models chosen are among the most commonly applied in the literature, and 

have been successfully re-parameterized for studies in diverse ocean regions, 

including continental shelf systems (Brito et al., 2015; Sun et al., 2018). The 

absorption-based models were chosen based on their global performance metrics 

(Mouw et al., 2017b), and consistency with phytoplankton phenology metrics 

(Kostadinov et al., 2017). The following sections provide brief overviews of each 

model, including their principal frameworks, methods used for model 

development/parameterization, and key differences. For more comprehensive 

information, the reader is referred to the original publications and the reviews of 

Mouw et al. (2017b) and IOCCG (2014). 

 
2.7.1. Abundance-Based 
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2.7.1.1. Brewin et al. (2010, 2015a) 

 The three-component model of Brewin et al. (2010) relates the fractional 

contribution of combined pico- and nanoplankton (Fpico,nano) and picoplankton 

(Fpico) to [Chl-a] using two exponential functions (Sathyendranath et al., 2001) 

according to: 

																					7:!5+,)*)+ =
1:!5+,)*)+4 B1 − CDE F−

G:!5+,)*)+
1:!5+,)*)+4 [1ℎJ-?]LM

[1ℎJ-?] ,																												(9) 

and 

																																					7:!5+ =
1:!5+4 B1 − CDE F−

G:!5+
1:!5+4 [1ℎJ-?]LM

[1ℎJ-?] ,																																					(10) 

 
where the model parameters Cmpico,nano and Cmpico represent asymptotic maximum 

[Chl-a] for the associated size classes, and Dpico,nano and Dpico represent the fraction 

of each size class as [Chl-a] tends toward zero. Model parameters are determined 

by fitting Eqs. 9 and 10 to an in situ data set of Fpico,nano, Fpico, and [Chl-a] via 

nonlinear least squares regression. Fmicro and Fnano are then determined as Fmicro 

= 1 - Fpico,nano  and Fnano = Fpico,nano - Fpico, respectively. Brewin et al. (2010) used a 

data set of HPLC pigments from the Atlantic Ocean (N = 1935) (Atlantic Meridional 

Transect cruises 5-15) and estimated PSCs using DPA to derive model 

parameters. Brewin et al. (2015a) utilized a much larger global data set of surface 

HPLC measurements (N = 5841) to compute the model parameters. These two 

models are denoted B10 and B15 throughout the remainder of the text. For 

simplicity, the notation B10 is also used to refer to the general framework that 
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underlies both of these models (i.e., Eqs. 9 and 10), in addition to the 

parameterization specific to that study. Further, while Brewin et al. (2015a) also 

investigated the influence of average irradiance in the mixed layer on model 

parameters, in this study B15 refers to the model without this modification. 

Parameter values obtained from the different studies are provided in Table 2. 

 
2.7.1.2. Brewin et al. (2017) 
 

Brewin et al. (2017) used a merged in situ HPLC/SFF data set from the 

North Atlantic (N = 2239) to compute the parameters of the B10 model (Eqs. 9 and 

10). They then modified the model parameters to vary as a function of SST by 

matching the in situ PSC data with satellite-derived SST and conducting a running 

fit of the model to the data binned by increasing SST. They represented the 

resulting relationships between SST and model parameters using logistic 

functions, such that Cmpico,nano, Cmpico, Dpico,nano and Dpico are expressed as: 

																																		1:!5+,)*)+4 	= 	1 − {
P$

1 + exp	[−P7(TTU −	P9)]
+ P?	,																							(11) 

 

																																				1:!5+4 	= 	1 − {
V$

1 + exp	[−V7(TTU −	V9)]
+ V?	,																												(12) 

 

																																									G:!5+,)*)+ 	= 	
W$

1 + exp	[−W7(TTU −	W9)]
+ W?	,																													(13) 

and 
																																													G:!5+ 	= 	

X$
1 + exp	[−X7(TTU −	X9)]

+ X?	,																													(14) 
 

 
where Gi, Hi, Ji, and Ki (where i = 1-4) are empirical parameters controlling the 

shape of the respective logistic curve and are provided in Table 4 of Brewin et al. 

(2017). In the remainder of this text, the notation B17 is used to refer to the SST-
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independent parameterization of the model, which uses a single set of model 

parameters derived from their full data set (Table 4). The SST-dependent 

parameterization, which uses Equations 11-14 with the published coefficients, is 

denoted as B17-SST.  

 
2.7.1.3. Devred et al. (2011) 
 

The model of Devred et al. (2011) (denoted D11) is based on the same 

exponential functions as the B10 model (Eqs. 9 and 10). The primary difference is 

that the model parameters Cmpico,nano and Cmpico were not derived from HPLC 

pigment-based size classes, but rather by successive application of the two-

population absorption model of Devred et al. (2006) to aph(l) and [Chl-a] data from 

the Northwest Atlantic and NASA’s NOMAD data set. While the model was 

originally applied as a spectral-based approach, in this study it is implemented as 

an abundance-based method, using the parameters provided in Table 2 of Brewin 

et al. (2015a). In a comparison of nine existing PSC algorithms in the Northwest 

Atlantic region near Newfoundland, Liu et al. (2018) found the application of the 

this model as an abundance-based method to be the most successful (Model E in 

their study). The reader is referred to Chapter 4 of IOCCG (2014) for more 

information on this approach. 

 
2.7.1.4. Hirata et al. (2011) 
 

The empirical model of Hirata et al. (2011) (denoted H11) estimates the 

fractional contribution of pico- and microplankton to [Chl-a] with the equations:  
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																																				7:!5+ 	= 	−[?$ 	+ 	CDE(?7Y	 +	?9)]@$ 	+ ??Y +	?8	,																					(15) 

and 
																																															74!56+ =	 [@$ 	+ 	CDE(@7Y	 +	@9)]@$	,																																					(16) 
 
where ai and bi (where i = 1-5 and i = 1-3, respectively) are empirical coefficients 

specific to each size class and X is log10-transformed [Chl-a]. Fnano is then 

calculated by difference (1 - Fmicro - Fpico). The H11 model was developed using 

PSCs derived from a global HPLC data set (N = 2776) following a unique version 

of DPA that attributes [TChl-b] to nanoplankton rather than picoplankton, as in 

Brewin et al. (2010, 2015a, 2017) and the present study (see Section 2.6). 

 
2.7.1.5. Moore and Brown (2020) 
 

The model of Moore and Brown (2020) utilizes the H11 microplankton 

equation (Eq. 16) to estimate both Fpico and Fmicro. Using a data set of surface 

HPLC pigments from the Atlantic Ocean (N = 1083), they developed two separate 

models: one parameterized using the DPA method [following the procedure of 

Brewin et al. (2015a)] and one parameterized using CHEMTAX (Mackey et al., 

1996). They then incorporated different remotely sensed environmental variables 

into the models, following a similar approach to that of Brewin et al. (2015a, 2017), 

and created a look-up table (LUT) for each model parameter indexed by the 

environmental data. Of the environmental variables tested, they found that the 

inclusion of SST resulted in the largest reduction of model error. In this study, the 

DPA version of the model was applied, both with and without the incorporation of 

SST. The SST-independent model (denoted MB20) was applied using Eq. (16) 
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with the coefficients provided in Table 4 of Moore and Brown (2020). The SST-

dependent model (denoted MB20-SST) was applied using the set of parameters 

from their LUT indexed by SST (obtained from Timothy Moore via personal 

communication).  

 
2.7.1.6. Re-parameterized B10 and H11 Models 
 
 New model parameters for the B10 and H11 models were computed using 

the pigment-based estimates of Fsize from the NES parameterization data set (N = 

418), (Table 4). To re-parameterize the B10 model, Eqs. (9) and (10) were fit to 

Fpico,nano, Fpico, and CHPLC using a nonlinear least squares curve fitting procedure 

(MATLAB function lsqcurvefit.m, Levenberg-Marquardt algorithm) with 

bootstrapping (Brewin et al., 2017; Brewin et al., 2015a; Efron, 1979). This involved  

 
Table 4. Parameter values for the abundance-based models of Brewin et al. (2010) 
(Eqs. 9 and 10) and Hirata et al. (2011) (Eq. 16), obtained from this study and from 
previous studies. 

Study Geographic 
region Years   Parameters for Equations (9) and (10)   

  Cmpico,nano Cmpico Dpico,nano Dpico   
Brewin et al. 

(2010) Atlantic 1997-2004 - 1.06 0.11 0.90 0.73 - 
Brewin et al. 

(2015) Global 1992-2012 - 0.77 0.13 0.94 0.91 - 
Brewin et al. 

(2017)a N Atlantic 1995-2015 - 0.82 0.13 0.87 0.73 - 
Devred et al. 

(2011) NW Atlantic 1996-2003 - 0.55 0.15 1.00 1.00 - 

This Study NES 2003-2018 - 0.81 0.15 0.78 0.54 - 

   Parameters for Equation (16)  
b1,micro b2,micro b3,micro  b1,pico b2,pico b3,pico  

Hirata et al. 
(2011)b Global 1995-2008 0.91 -2.73 0.40 - - - 

Moore and 
Brown (2020)c Atlantic  1997-2014 0.82 -1.33 0.39 1.41 2.82 1.72 

This Study NES 2003-2018 1.03 -1.68 -0.12 -3.45 0.67 2.29 
a Refers to the SST-independent model from their study 
b Hirata et al. (2011) used a different empirical formula to estimate picoplankton (Eq. 15; see their Table 2) 
c Refers to coefficients derived using the DPA method [see Table 4 of Moore and Brown (2020)] 
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randomly sub-sampling the data with replacement 1000 times, and re-fitting the 

model for each sub-sample, resulting in a parameter distribution from which the 

median value was taken as the new model parameter. Using the same procedure 

to re-parameterize the H11 model, both Eq. (15) and Eq. (16) were fit to Fpico and 

CHPLC, and better results were found (not shown) when using the simpler logistic 

equation (Eq. 16), consistent with the findings of Moore and Brown (2020). 

Therefore, Eq. (16) was fit to both Fmicro and Fpico and CHPLC to derive new model 

parameters. These regionally re-parameterized abundance-based models are 

denoted B-NES and H-NES, respectively. 

 
2.7.1.7. Regional SST-modified B10 Model 

 Following a similar methodology to recent studies (Brewin et al., 2019, 

2017; Moore and Brown, 2020; Sun et al., 2019), the influence of SST on the 

parameters of the B10 model was investigated. This was done by sorting the 

pigment-based estimates of Fpico and Fpico,nano from the parameterization data set 

(N = 418) by increasing SST and conducting a running fit of the model from low to 

high SST, using a bin size of 125 samples. Starting at the lowest temperature, the 

bin was moved at one-sample intervals, and at each interval Eqs. (9) and (10) were 

fit to the data within the bin using a nonlinear least squares curve-fitting method 

with bootstrapping (as described in Section 2.7.1.6). From each fit, the median 

values of the model parameters Cmsize and Dsize from the bootstrap distribution 

along with the average SST of the binned data were incorporated into a LUT, and 
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subsequently smoothed using a 5-point running average (Fig. 4). A LUT approach 

was chosen (Moore and Brown, 2020) rather than fitting logistic functions to 

represent the SST-parameter relationships (Brewin et al., 2017) in order to capture 

variability in the relationships that may be ecological meaningful and would  

 

 

Figure 4. Brewin et al. (2010) model parameters (a) Cmpico,nano/Cmpico, and (b) 
Dpico,nano/Dpico as a function of SST. Open circles show the median parameter 
values obtained by performing a running bootstrap fit of the model (Eqs. 9 and 10) 
to the in situ parameterization data set (N = 418) sorted by increasing SST. The 
SST-parameter relationships were smoothed using a 5-point running average. 
Dashed lines indicate the SST-independent model (B-NES) parameters obtained 
when fitting the model to the full parameterization data set. 
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otherwise be smoothed out by a logistic curve. The LUT included 293 unique sets 

of model parameters covering a range of SST of ~6.8 – 21.4 ºC at intervals of 

~0.06 ºC. Application of the LUT enables a dynamic set of model parameters 

based on remotely sensed SST. This SST-dependent re-parameterization is 

denoted B-NES-SST henceforth. 

 
2.7.2. Absorption-Based  

2.7.2.1. Ciotti et al. (2002) 

 The model of Ciotti et al. (2002) (denoted C02) estimates the fractional 

contribution of picoplankton (Fpico), by weighting aph*(l) between two basis spectra 

representing "pure" micro- and picoplankton. The basis spectra were determined 

by lab measurements of aph(l) of 16 natural phytoplankton communities of varying 

dominant cell sizes, and are provided in Ciotti et al. (2002), with an updated 

picoplankton spectra provided by Ciotti and Bricaud (2006). The model can be 

expressed as: 

																													?:A∗ (Z) = [7:!5+ 	 ∗ 		?]:!5+∗ (Z)^ + [_1 − 7:!5+` 		∗ 		?]4!56+∗ (Z)^,														(13) 
 
where ā*pico(l) and ā*micro(l) represent the basis spectra of pico- and microplankton, 

respectively. Fpico was estimated from Eq. (13) by performing a linear least squares 

optimization (MATLAB function lsqlin.m), using satellite-derived aph*(l) (calculated 

by dividing the satellite aph(l) by the satellite [Chl-a]), and the published basis 

spectra at 443, 490, 510, and 555 nm (Fig. 5). Only these four wavelengths were 

used due to the poor retrieval of aph(670) (see Section 3.1) and better statistical 
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performance when excluding 412 nm. The inverse of Fpico (1 - Fpico) was considered 

equivalent to the combined fraction of micro- and nanoplankton (Fmicro,nano). 

 

   

Figure 5. Satellite-derived aph*(l) at 443, 490, 510, and 555 nm from the validation 
data set (N = 368; open circles) compared with the in situ aph*(l) spectra (N = 214; 
gray lines) and the micro- and picoplankton basis spectra from the model of Ciotti 
et al. (2002) (red and blue lines, respectively). 
 

2.7.2.2. Mouw and Yoder (2010) 
 
 The algorithm of Mouw and Yoder (2010) (denoted MY10) employs an 

optical LUT containing ranges of Fmicro (binned to increments of 0.1), [Chl-a], and 

adg(443), from which Rrs(l) was calculated using the radiative transfer software 

HydroLight (Mobley and Sundman, 2013). The model uses satellite [Chl-a] and 

adg(443) as inputs to first narrow the search space of the LUT, then the closest 

matching LUT Rrs(l) to the satellite-derived Rrs(l) is found to retrieve the 
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corresponding Fmicro. Fpico,nano is then calculated as 1 - Fmicro. Based on determined 

thresholds for the detectability of cell size from SeaWiFS Rrs(l) (Mouw and Yoder, 

2010), the algorithm masks pixels with [Chl-a] < 0.05 mg m-3, [Chl-a] > 1.75 mg m-

3, or adg(443) > 0.17. Additionally, when applied to a satellite image, a 2D-

averaging filter (MATLAB function filter2.m) with a 3x3 pixel size is applied in the 

algorithm routine. 

 
2.8. Model Assessment and Imagery Application  
 
 PSC algorithm performance was assessed statistically (see Section 2.5) as 

follows. First, using the in situ [Chl-a] data as input, estimates of Fsize and Csize from 

the SST-independent abundance-based models (B10, B15, B17, D11, H11, MB20, 

B-NES, and H-NES) were compared with the in situ pigment-based estimates of 

Fsize and Csize for both the parameterization and validation data sets. Then, using 

the in situ [Chl-a] and matching satellite SST as input, estimates of Fsize and Csize 

from the SST-dependent models (B17-SST, MB20-SST, B-NES-SST) were also 

compared with the in situ Fsize and Csize for both the parameterization and validation 

data sets, and the influence of SST on model performance relative to the SST-

independent models was quantified. Lastly, using the satellite-derived data as 

input, independent satellite validation of Csize was conducted for the regionally re-

parameterized abundance-based models (B-NES-SST, B-NES, and H-NES) and 

the absorption-based algorithms (C02 and MY10). 

To illustrate the application of the models to ocean color imagery and 

preliminarily explore spatial-seasonal variations of PSCs in the NES region, the 
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best validating abundance-based and absorption-based models were applied to 

monthly imagery composites for April 2019 and September 2019, and qualitatively 

compared. A more comprehensive long-term analysis of the spatial-temporal 

variability of PSCs in the NES region will be presented in a separate publication. 
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3. RESULTS 

3.1. Satellite Validation of [Chl-a], aph(l) and adg(l) 
 
 As the performance of PSC algorithms is largely dependent on the quality 

of the satellite products used as inputs, the satellite retrievals of [Chl-a], aph(l) and 

adg(l) in the NES study region were first validated. Of the two [Chl-a] algorithms 

assessed, the standard OC-CCI algorithm (Fig. 6a) displayed lower error and bias 

(MAE = 0.21, d  = -0.03) than the regional empirical algorithm of Pan et al. (2010) 

(MAE = 0.27, d  = -0.20; Fig. 6b) when compared with the in situ HPLC [Chl-a]. 

The OC-CCI algorithm was associated with overestimation at low [Chl-a] and 

underestimation at high [Chl-a] (>0.6 mg m-3). This is a relatively common feature 

of [Chl-a] estimated from empirical band-ratio algorithms (i.e., OCx), that can be 

attributed primarily to the impact of phytoplankton cell size and underlying 

variability in the concentrations of CDOM and inorganic particulates (Dierssen, 

2010; Mouw et al., 2012; Sauer et al., 2012). In contrast, the algorithm of Pan et 

al. (2010) exhibited a considerable systematic underestimation across the entire 

[Chl-a] range (d  = -0.20). This difference is reflected in a lower Type-II regression 

slope for the OC-CCI algorithm (S = 0.66) compared with a slope nearer to one for 

the Pan et al. (2010) algorithm (S = 0.89). The two algorithms displayed similar 

correlation coefficients (r = 0.75 and 0.74 respectively). The performance of the 

OC-CCI algorithm in the NES was comparable to the global [Chl-a] validation of 

OC-CCI v4.2 as shown in the Product User Guide (RMSE = 0.32, d  = 0.07, r = 

0.75, S = 0.72; see their Figure 5). Considering the lower error and bias of the OC-  
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Figure 6. Bivariate histograms showing the satellite-to-in situ comparisons of [Chl-
a], aph(l), and adg(l), shaded by number of observations: (a) [Chl-a] from the 
standard OC-CCI algorithm, (b) [Chl-a] from the regional algorithm of Pan et al. 
(2010), (c) aph(443), (d) aph(490), (e) aph(510), (f) adg(443), (g) adg(490), and (h) 
adg(510) from the standard OC-CCI algorithm (QAA_v5). The solid black line is the 
1:1 line, dashed black lines indicate the 1:1 line ± 30%, and the red line is the Type-
II regression line. N denotes the number of match-ups, MAE denotes the mean 
absolute error, d denotes the bias, r denotes the correlation coefficient, and S 
denotes the regression slope. The aph(l) and adg(l) data are shown using the same 
x- and y-axis range for comparison. 
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CCI [Chl-a] algorithm, [Chl-a] from this algorithm was used as the satellite input to 

the PSC models in this study. 

 The standard OC-CCI estimates of aph(l) and adg(l), derived using 

QAA_v5, compared reasonably with in situ measurements, with most points falling 

within the ± 30% uncertainty range at the wavelengths 443, 490, and 510 nm (Fig. 

6 c-h). The lowest errors for aph(l) were observed at 490 and 510 nm (MAE = 0.22 

and 0.24, respectively), with retrievals of aph(443) exhibiting slightly higher error 

(MAE = 0.28). For adg(l), the best performance was observed at 443 nm (MAE = 

0.17, d  = -0.14). There was a consistent negative bias in the retrieved adg(l) which 

became more negative at longer wavelengths, corresponding with an increasingly 

positive bias for aph(l). Retrievals of aph(555) and aph(670) were associated with 

larger errors (MAE = 0.32 and 0.62, respectively), the same being true for adg(555) 

and adg(670) (MAE = 0.38 and 0.41, respectively). The decrease in performance 

at longer wavelengths for QAA_v5 is consistent with results from the global inter-

comparison of bio-optical algorithms conducted by Brewin et al. (2015b) (Model E 

in their study). Considering the reasonable performance of the standard OC-CCI 

aph(l) and adg(443) products (443 nm is the only wavelength required for adg(l) as 

input into the MY10 algorithm), no regional optimization of these products was 

attempted in this study.  

 
3.2. Comparison of SST-independent Abundance-based Models 
 
 Figure 7 shows the in situ pigment-based estimates of Fsize and Csize from 

the parameterization data set (N = 418) with the SST-independent abundance-
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based models overlain. Fsize and Csize exhibited trends with CHPLC that are 

consistent with established relationships of phytoplankton size structure and total 

biomass (Uitz et al., 2006; Brewin et al., 2010; Hirata et al., 2011). Fmicro generally 

increased, while Fpico,nano, and Fpico generally decreased with increasing CHPLC. 

Fnano displayed a unimodal relationship CHPLC, peaking at intermediate CHPLC. Cmicro 

increased in near log-linear fashion with CHPLC, becoming more tightly correlated 

at higher CHPLC, when microplankton are the dominant size class. Cpico,nano, Cnano, 

and Cpico, also displayed an overall positive relationship with CHPLC, with more 

variability at higher CHPLC.  

 The abundance-based models all followed to first order these general 

trends, with some variations that can be attributed to differences in the model 

frameworks, data sets, and approaches used for model 

development/parameterization. For example, the B10 model parameters Cmpico,nano 

and Cmpico impose asymptotic maximums to Cpico,nano and Cpico respectively, while 

the purely empirical H11 model does not impose any strict maximums. This can 

be seen when comparing Cpico predicted by the H-NES model, which increases 

continuously with CHPLC, with that of the B-NES model, which levels off at the 

imposed maximum concentration (Cmpico = 0.2 mg m-3) (Fig. 7h). The H11-modeled 

Fpico is based on a different empirical function (Eq. 15) than the one used in this 

study (see Section 2.7.1.5), and goes to zero at CHPLC > 4 mg m-3 (Fig. 7d), 

accounting for the breakdown in this model at higher CHPLC for Cpico, Cnano, and 

Cpico,nano (Fig. 7f-h). Compared with the other models examined, the B-NES model  
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Figure 7. Pigment-based estimates of Fsize (a-d) and Csize (e-h) as a function of 
CHPLC  from the parameterization data set (N = 418) with abundance-based models 
overlain: re-parameterized B10 model (B-NES, solid black), re-parameterized H11 
model (H-NES, dashed black), Brewin et al., 2010 (B10, blue), Brewin et al., 2015a 
(B15, green), Brewin et al., 2017 (B17, red), Devred et al., 2011 (D11, violet), 
Hirata et al., 2011 (H11, brown), and Moore and Brown, 2020 (MB20, yellow). 
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Table 5. Statistical metrics obtained when comparing the in situ pigment-based 
estimates of Fsize and Csize from the parameterization and validation data sets 
with estimates from the abundance-based models shown in Figure 7. Statistical 
calculations were performed in linear space for Fsize and log10 space for Csize. 
Metrics for Csize are shown in parentheses. 
 

Parameter Model 
in situ parameterization set (N = 418) in situ validation set (N = 368) 

MAE ! r MAE ! r 

Fmicro 
(Cmicro) 

B-NES 0.18 (0.24) 0.01 (0.11) 0.56 (0.86) 0.19 (0.25) 0.01 (0.13) 0.44 (0.85) 
H-NES 0.18 (0.21) 0.00 (0.10) 0.55 (0.86) 0.19 (0.25) 0.01 (0.12) 0.46 (0.85) 

B10 0.19 (0.24) -0.08 (0.00) 0.56 (0.86) 0.21 (0.26) -0.08 (0.01) 0.44 (0.85) 
B15 0.18 (0.24) -0.02 (0.05) 0.56 (0.86) 0.20 (0.25) -0.04 (0.05) 0.45 (0.85) 
B17 0.18 (0.24) -0.02 (0.07) 0.56 (0.86) 0.19 (0.25) -0.02 (0.08) 0.44 (0.85) 
D11 0.19 (0.24) 0.03 (0.10) 0.55 (0.86) 0.19 (0.25) 0.02 (0.09) 0.45 (0.85) 
H11 0.19 (0.25) -0.06 (-0.02) 0.56 (0.86) 0.21 (0.25) -0.08 (-0.04) 0.44 (0.85) 

MB20 0.19 (0.24) -0.06 (0.04) 0.55 (0.86) 0.20 (0.25) -0.05 (0.06) 0.45 (0.85) 

Fpico,nano 
(Cpico,nano) 

B-NES 0.18 (0.19) -0.01 (0.06) 0.56 (0.67) 0.19 (0.20) -0.01 (0.06) 0.44 (0.72) 
H-NES 0.18 (0.19) -0.01 (0.06) 0.55 (0.67) 0.19 (0.19) -0.01 (0.07) 0.46 (0.73) 

B10 0.19 (0.21) 0.08 (0.14) 0.56 (0.67) 0.21 (0.22) 0.08 (0.14) 0.44 (0.72) 
B15 0.18 (0.20) 0.03 (0.09) 0.56 (0.66) 0.20 (0.21) 0.04 (0.10) 0.45 (0.71) 
B17 0.18 (0.19) 0.02 (0.08) 0.56 (0.66) 0.19 (0.20) 0.02 (0.09) 0.44 (0.71) 
D11 0.19 (0.20) -0.03 (0.01) 0.55 (0.65) 0.19 (0.20) -0.02 (0.03) 0.45 (0.70) 
H11 0.19 (0.22) 0.06 (0.09) 0.56 (0.47) 0.21 (0.22) 0.08 (0.12) 0.44 (0.68) 

MB20 0.19 (0.20) 0.06 (0.14) 0.55 (0.67) 0.20 (0.20) 0.05 (0.13) 0.45 (0.73) 

Fnano 
(Cnano) 

B-NES 0.15 (0.24) 0.00 (0.10) 0.37 (0.66) 0.17 (0.28) 0.01 (0.13) 0.12 (0.74) 
H-NES 0.14 (0.24) -0.01 (0.10) 0.38 (0.67) 0.16 (0.28) 0.00 (0.12) 0.16 (0.72) 

B10 0.18 (0.29) 0.12 (0.25) 0.37 (0.66) 0.21 (0.32) 0.13 (0.27) 0.20 (0.74) 
B15 0.15 (0.25) 0.05 (0.16) 0.38 (0.66) 0.17 (0.29) 0.05 (0.19) 0.20 (0.74) 
B17 0.15 (0.25) 0.04 (0.15) 0.37 (0.66) 0.17 (0.28) 0.04 (0.18) 0.20 (0.74) 
D11 0.14 (0.24) -0.04 (0.02) 0.39 (0.65) 0.16 (0.26) -0.04 (0.05) 0.21 (0.73) 
H11 0.16 (0.26) 0.02 (0.09) 0.36 (0.55) 0.19 (0.30) 0.04 (0.15) 0.10 (0.73) 

MB20 0.17 (0.27) 0.07 (0.21) 0.26 (0.67) 0.18 (0.29) 0.06 (0.21) 0.18 (0.74) 

Fpico (Cpico) 

B-NES 0.08 (0.21) -0.01 (0.05) 0.61 (0.55) 0.10 (0.22) -0.02 (0.04) 0.63 (0.54) 
H-NES 0.07 (0.21) 0.00 (0.09) 0.67 (0.53) 0.09 (0.21) -0.01 (0.07) 0.73 (0.59) 

B10 0.08 (0.25) -0.04 (-0.10) 0.63 (0.40) 0.10 (0.25) -0.04 (-0.08) 0.71 (0.40) 
B15 0.08 (0.24) -0.02 (-0.04) 0.63 (0.41) 0.10 (0.24) -0.02 (-0.01) 0.70 (0.42) 
B17 0.08 (0.24) -0.02 (-0.04) 0.63 (0.43) 0.10 (0.24) -0.02 (-0.02) 0.70 (0.43) 
D11 0.09 (0.24) 0.01 (0.03) 0.63 (0.40) 0.10 (0.24) 0.02 (0.05) 0.71 (0.40) 
H11 0.09 (0.25) 0.05 (0.19) 0.62 (0.52) 0.11 (0.25) 0.04 (0.17) 0.64 (0.51) 

MB20 0.08 (0.24) -0.01 (-0.02) 0.63 (0.34) 0.10 (0.24) -0.01 (0.01) 0.70 (0.38) 

 

predicted a slightly higher Fmicro and lower Fpico,nano and Fpico at low CHPLC (Fig. 

7a,b,d). Further, the B-NES-modeled Fnano leveled off at low CHPLC rather than 

decreasing as with the other models (Fig. 7c). Despite the variability between the 
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different models, the range of variability in the pigment-based estimates of Fsize 

and Csize was generally greater across the entire trophic domain. Statistical 

comparison between the in situ and modeled Fsize and Csize for both the 

parameterization and validation data sets yielded very similar metrics between the 

models (Table 5). Overall, minimal improvement in performance was observed for 

the regionally re-parameterized models (B-NES and H-NES) compared with the 

other models examined, although there was a reduction in error and bias for the 

nanoplankton size class compared with the original global models (B10 and H11). 

This could in part be due to differences in the DPA methods used in the 

development of these models relative to the version used for model 

parameterization and validation in this study (see Section 2.7.1.4). 

 
3.3. Regional SST-Dependent Model (B-NES-SST) 

 
Figure 8 shows the modeled Fsize and Csize from the B-NES-SST model as 

a function of [Chl-a] for different SST, along with the SST-independent model (B-

NES) for reference. SST had a clear influence on the predicted Fsize and Csize for 

all of the size classes. Lower SST was associated with a higher fraction of 

microplankton, and a lower fraction of nanoplankton and picoplankton (Fig. 8a-d), 

consistent with the results of previous studies (Brewin et al., 2017; Sun et al., 2019; 

Moore and Brown, 2020). This relationship was generally observed across the 

entire [Chl-a] domain, but was more pronounced at lower [Chl-a]. Fnano increased 

with SST for [Chl-a] > 1 mg m-3, whereas for [Chl-a] < 1 mg m-3, Fnano increased 

with SST only up to ~18 ºC, beyond which there was a decrease in Fnano  
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Figure 8. Modeled Fsize (a-d) and Csize (e-h) from the B-NES-SST model plotted as 
a function of [Chl-a], with the color gradient illustrating the changes in the model 
when model parameters vary as a function of SST (see Section 2.7.1.7, Fig. 4). 
The black line indicates the SST-independent model, with a single set of model 
parameters (B-NES). 
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corresponding with an increase in Fpico at SST > 18 ºC. The largest variability in 

the modeled Cmicro with SST was at [Chl-a] < 1 mg m-3, whereas the largest 

variability in the modeled Cpico,nano, Cnano, and Cpico with SST was at [Chl-a]  > 1 mg 

m-3 (Fig. 8e-h). 

Results from the statistical comparison of modeled Fsize and Csize from the  

B-NES-SST, B17-SST, and MB20-SST models with the in situ pigment-based 

estimates of Fsize and Csize are presented in Table 6. For both the parameterization 

and validation data sets, the B-NES-SST model performed with lower error and 

significantly higher correlation coefficients than the other two SST-dependent 

models across all size classes. There was also a consistent improvement in 

performance (i.e., reduction in error, increase in correlation coefficient) for the B-

NES-SST model relative to the SST-independent B-NES model for both data sets. 

Considering the statistical results from the validation set, the inclusion of SST led 

to a reduction in MAE of 10-12% for Fsize and 4-10% for Csize, with the largest 

reductions for Fnano and Cpico,nano, respectively. Likewise, the inclusion of SST 

increased the correlation coefficient (r) for Fsize and Csize, with the largest increases 

for Fnano and Cpico, respectively. Interestingly, the B17-SST model exhibited slightly 

worse performance relative to the SST-independent B17 model for estimating 

Fmicro, Fpico,nano, and Cpico,nano, with essentially no change for Cmicro. The MB20-SST 

model displayed general improvement over the MB20 model. 
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Table 6. Mean absolute error (MAE) and correlation coefficients (r) for Fsize and Csize (values for Csize shown in parentheses) 
for the SST-dependent abundance-based models applied to the in situ parameterization and validation data sets. The 
percent change in the metrics when incorporating SST relative to the SST-independent models is included for reference. 
Percentages are rounded to the nearest 1%. 
          

Parameter Model 

in situ parameterization set (N = 418) in situ validation set (N = 368) 

MAE % change 
with SST r % change 

with SST MAE % change 
with SST r % change 

with SST 

Fmicro 
(Cmicro) 

B-NES-SST 0.16 (0.21) -11 (-13) 0.68 (0.89) +21 (+3) 0.17 (0.24) -11 (-4) 0.58 (0.87) +32 (+2) 
B17-SST 0.19 (0.23) +6 (-4) 0.54 (0.87) -4 (+1) 0.20 (0.25) +5 (0) 0.44 (0.85) 0 (0) 

MB20-SST 0.18 (0.23) -5 (-4) 0.59 (0.83) +7 (-3) 0.19 (0.24) -5 (-4) 0.49 (0.86) +9 (+1) 

Fpico,nano 
(Cpico,nano) 

B-NES-SST 0.16 (0.17) -11 (-11) 0.68 (0.75) +21 (+12) 0.17 (0.18) -11 (-10) 0.58 (0.77) +32 (+6) 
B17-SST 0.19 (0.20) +5 (+5) 0.54 (0.59) -4 (-11) 0.20 (0.20) +5 (0) 0.44 (0.72) 0 (+1) 

MB20-SST 0.18 (0.20) -5 (0) 0.59 (0.56) +7 (-16) 0.19 (0.19) -5 (-5) 0.49 (0.73) +9 (0) 

Fnano 
(Cnano) 

B-NES-SST 0.13 (0.21) -13 (-13) 0.55 (0.74) +49 (+12) 0.15 (0.26) -12 (-7) 0.39 (0.79) +225 (+6) 
B17-SST 0.14 (0.24) -7 (-4) 0.44 (0.66) +19 (0) 0.16 (0.27) -6 (-4) 0.29 (0.75) +45 (+1) 

MB20-SST 0.16 (0.26) -6 (-4) 0.28 (0.58) +8 (-13) 0.16 (0.27) -11 (-7) 0.18 (0.72) 0 (-3) 

Fpico (Cpico) 
B-NES-SST 0.07 (0.19) -13 (-10) 0.70 (0.64) +15 (+16) 0.09 (0.20) -10 (-9) 0.73 (0.62) +16 (+15) 

B17-SST 0.08 (0.23) 0 (-4) 0.63 (0.46) 0 (+7) 0.09 (0.23) -10 (-4) 0.73 (0.53) +4 (+23) 
MB20-SST 0.08 (0.21) 0 (-13) 0.67 (0.53) +6 (+56) 0.10 (0.22) 0 (-8) 0.72 (0.52) +3 (+37) 
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3.4. Satellite Validation of Csize 
 
 Using the satellite data as input, estimates of Csize from the re-

parameterized abundance-based models (B-NES-SST, B-NES, and H-NES) and 

absorption-based algorithms (C02 and MY10) were compared with the in situ 

pigment-based Csize from the independent validation data set (N = 368). The B-

NES-SST, B-NES, and H-NES models displayed fairly similar statistical 

performance (Fig. 9), although the SST-dependent model performed considerably 

better across all statistical metrics for Cmicro (Fig. 9a). The B-NES-SST model 

generally performed better than the SST-independent B-NES model, and was less 

constrained by static maximums for Cpico,nano, Cnano, and Cpico (Fig. 9 f-h, dashed 

green lines), particularly for Cpico, for which a substantial increase in the correlation 

coefficient was observed, consistent with previous studies (Brewin et al., 2017; 

Sun et al., 2019). Like the OC-CCI [Chl-a] input product, the satellite-estimated 

Csize from these models tended to be underestimated at higher concentrations and 

overestimated at low concentrations, especially for Cnano and Cpico below 0.1 mg 

m-3 and 0.05 mg m-3, respectively. 

 The C02 and MY10 algorithms performed comparably to the re-

parameterized abundance-based models (Fig. 10). The MY10 algorithm estimated 

Cmicro and Cpico,nano with similar errors as the B-NES-SST model, but with higher 

correlation coefficients (r = 0.74 and 0.63, respectively) and improved regression 

slopes (S = 0.97 and 0.89, respectively), although it is noted that the number of 

validation points was reduced from N = 368 to N = 352 and N = 332 for C02 and 

MY10, respectively. For the former, this was due to 16 match-ups with negative 
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Figure 9. Bivariate histograms showing the satellite-to-in situ comparisons of Csize 
estimated from the regionally parameterized B-NES-SST (a-d), B-NES (a-d), and 
H-NES (i-l) abundance-based models, shaded by number of observations. The 
solid black line is the 1:1 line, dashed black lines indicate the 1:1 line ± 30%, and 
the red line is the Type-II regression line. Dashed green lines indicate the 
maximum chlorophyll concentrations imposed by the B-NES model. N denotes the 
number of match-ups for each parameter, MAE denotes the mean absolute error, 
d denotes the bias, r denotes the correlation coefficient, and S denotes the 
regression slope. 
 
satellite aph(555) retrievals, while for the latter, 36 match-ups exceeded the [Chl-a] 

and adg(443) detection thresholds of the MY10 algorithm (1.75 mg m-3 and 0.17 m-

1, respectively; see Sections 2.7.2.1 and 2.7.2.2). Although the overall bias was 

generally higher for the absorption-based approaches, they did not exhibit the 

same overestimation (underestimation) at low (high) concentrations as seen with 
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the abundance-based methods, with the exception of Cmicro,nano estimated by C02 

model (Fig. 10a).  

 
 

           

Figure 10. Bivariate histograms showing the satellite-to-in situ comparisons of 
Csize estimated from the absorption-based algorithms applied in this study: (a) 
Cmicro,nano and (b) Cpico from the algorithm of Ciotti et al. (2002) and (c) Cmicro and 
(d) Cpico,nano from the algorithm of Mouw and Yoder (2010). The solid black line is 
the 1:1 line, dashed black lines indicate the 1:1 line ± 30%, and the red line is the 
Type-II regression line. N denotes the number of match-ups, MAE denotes the 
mean absolute error, d denotes the bias, r denotes the correlation coefficient, and 
S denotes the regression slope.  
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3.5. Examples of Satellite Imagery 
 
 Considering the overall improved performance of the B-NES-SST algorithm 

compared with the other abundance-based models, and the statistically similar 

validation metrics of the MY10 absorption-based approach, monthly composite 

imagery from these algorithms was generated for April 2019 and September 2019 

for visualization and spatial-temporal comparison. These months were chosen as 

they were relatively cloud free and displayed contrasting SST and [Chl-a], thus 

providing some insight into the seasonal variability of phytoplankton size structure 

in the NES.  

 Figure 11 shows the monthly imagery of OC-CCI [Chl-a] (Fig. 11a) and 

MUR SST (Fig. 11b), along with the size class fractions (Fmicro, Fnano, Fpico; Fig.11c-

e) and size-specific [Chl-a] (Cmicro, Cnano, Cpico; Fig.11f-h) from the B-NES-SST 

algorithm for April 2019. In April, around the time of the typical North Atlantic spring 

bloom (Friedland et al., 2016), [Chl-a] exceeding 1 mg m-3 was observed both on 

the shelf and off-shore, with the highest [Chl-a] observed around GB, south of 

Nova Scotia, and in the near-shore coastal waters along the MAB and GoM. SST 

ranged from <5 ºC in the northern GoM to ~25 ºC within the Gulf Stream. 

Microplankton were dominant in low SST, high [Chl-a] waters in the GoM, on GB, 

along the coast, and within the major estuaries. Nanoplankton were most prevalent 

in the intermediate [Chl-a] and SST waters off-shore. Picoplankton were the 

dominant size class in the oligotrophic, high SST surface waters of the Gulf of 

Stream. 
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Figure 11. Monthly composite imagery for April 2019: (a) OC-CCI [Chl-a], (b) MUR 
SST, (c) Fmicro, (d) Fnano, (e) Fpico, (f) Cmicro, (g) Cnano, and (h) Cpico from the B-NES-
SST model. Color scales for Fsize are adjusted to reflect the range of the model for 
each size class (see Fig. 8). The black line indicates the 400 m isobath to mark the 
approximate location of the shelf break. 
 
 
 Figure 12 shows the same as Figure 11 but for September 2019. Compared 

with April, in September areas of  [Chl-a] > 1 mg m-3 did not extend as far off-shore 

but were mainly confined to near-shore regions of the MAB, the GoM, and GB. 

There was a strong gradient in [Chl-a] from the highly productive waters along the 
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coast and to the north to the oligotrophic ([Chl-a] < 0.1 mg m-3) off-shore waters to 

the south. SST exceeded 20 ºC throughout much of the region, with cooler SST  

 

 

Figure 12. Same as Figure 11 but for September 2019. 
 
 
observed to the north around GB and within the GoM, coinciding with the higher 

[Chl-a] observed in these areas. Microplankton comprised a smaller fraction of 

[Chl-a] in both near-shore and off-shore waters in September, with nanoplankton 

becoming more dominant on the shelf, particularly in the central GoM and areas 

immediately surrounding GB. Likewise, the contribution of nanoplankton generally 
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decreased off-shore in September, with picoplankton becoming more dominant in 

these waters, coinciding with higher SST and lower [Chl-a] than was observed in 

April. 

 A comparison of Fmicro imagery from the B-NES-SST and MY10 algorithms 

for April 2019 and September 2019 is shown in Figure 13. Considering the Fmicro 

output from the MY10 algorithm is binned to increments of 0.1, the color scale for 

the B-NES-SST imagery was adjusted to match the scale of the MY10 imagery to 

facilitate a more visually equitable comparison. The two approaches displayed 

noticeable similarities and differences. For example, the algorithms showed 

similarities in the spatial patterns and extent of estimated Fmicro between the two 

months, with higher Fmicro on GB and in the northern GoM than the surrounding 

region in September, and areas of elevated Fmicro extending farther off-shore in 

April. Pixels exceeding the MY10 thresholds of detection (i.e., [Chl-a] > 1.75 mg 

m-3 and adg(443) > 0.17, plotted in white) were located predominantly in shallow 

regions very close to the coast and within major embayments, with some masked 

pixels around GB. While the two algorithms showed similar spatial patterns, there 

were differences in the magnitude of the estimated Fmicro. For instance, compared 

with the B-NES-SST model, the MY10-estimated Fmicro was higher around GB and 

areas in the GoM and the northern MAB in September, and was also higher within 

the off-shore feature of elevated [Chl-a] located around 38ºN, 69ºW in April. The 

MY10 imagery also displayed a higher degree of spatial variability in Fmicro 

compared with that of the B-NES-SST model. This is evident within the central 
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GoM in April, where the MY10 imagery showed areas of Fmicro spanning the full 

fractional range (i.e., 0-1), whereas the B-NES-SST imagery showed a much more 

uniform distribution of Fmicro, ranging only between 0.5 and 0.7. 

 

 

Figure 13. Comparison of monthly Fmicro imagery from the B-NES-SST and MY10 
algorithms for April 2019 (a, b) and September 2019 (c, d). The MY10 algorithm 
applies a 2-D average filter, masks pixels that exceed defined thresholds of [Chl-
a] and adg(443) (plotted in white), and bins Fmicro to increments of 0.1 (see Section 
2.7.2.2). The color scale for the B-NES-SST imagery was modified to match the 
output of the MY10 algorithm. The black line indicates the 400 m isobath to mark 
the approximate location of the shelf break. 
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4. DISCUSSION AND CONCLUSIONS 
 

The focus of this study was the regional refinement and evaluation of PSC 

algorithms in the NES. Like many similar studies, in situ estimates of PSCs derived 

from HPLC pigment data using the DPA method were used for model re-

parameterization and statistical comparisons (Uitz et al., 2006; Brewin et al., 2011, 

2015a; Hirata et al., 2011; Sun et al., 2018). While this approach is a popular 

choice given the relative abundance of HPLC samples compared with other 

methods for quantifying PSCs in situ, it has important limitations. First, DPA is not 

a direct measure of cell size, but rather an approximation of size structure based 

on assumptions about the taxonomic groups attributed to different pigments, and 

the size classes represented by those taxa. In reality, pigments are not perfectly 

diagnostic, and are known to be shared across multiple taxa in varying 

concentrations dependent on physiological state (Uitz et al., 2008). Further, 

taxonomic groups may span multiple size classes in ways that are not fully 

represented by the DPA equations (Leblanc et al., 2018; Nunes et al., 2019). 

Although proposed modifications to account for some of these biases were 

incorporated in this study (Devred et al., 2011), the efficacy of this specific 

approach for characterizing PSCs in the NES region is uncertain and warrants 

further investigation. Recently, Chase et al., (2020) evaluated the DPA method by 

comparing pigment-based PSC estimates to coincident measurements of cell size 

by imaging-in-flow and conventional flow cytometry in the North Atlantic and found 

that DPA overestimated micro- and picoplankton and underestimated 
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nanoplankton relative to cytometry. They recommended a revised set of DPA 

equations to better account for the presence of dinoflagellates and diatoms in the 

nanoplankton, and the presence of [TChl-b] in both pico- and nanoplankton. To 

reduce uncertainty on this front, continued efforts to inter-compare multiple in situ 

PSC methods across different oceanic environments will be extremely valuable. 

Abundance-based PSC algorithms are attractive for their ease of 

implementation, using satellite [Chl-a] as the sole input parameter, and have been 

shown to perform well globally (Brewin et al., 2011, 2015a) and in a variety of 

oceanic regions (Brito et al., 2015; Di Cicco et al., 2017; Sun et al., 2018; Gittings 

et al., 2019). Here, the impact of model re-parameterization was tested using a 

region-specific HPLC pigment data set, as well as the incorporation of remotely 

sensed SST on the performance of abundance-based PSC models in the NES. 

The results indicated that regional re-parameterization alone offered minimal 

statistical improvement relative to other abundance-based models evaluated, 

which included both globally and regionally parameterized models. Of the eight 

different models tested, all performed with similar errors and correlation 

coefficients, particularly for the micro- and combined pico- and nanoplankton 

classes, when applied to the in situ [Chl-a] and compared with the pigment-based 

size class estimates from the independent in situ validation data set. There was 

slightly more variation in the statistical metrics for nano- and picoplankton, but in 

no instance were the re-parameterized models exclusively the best performing, 

except for perhaps the H-NES model for estimating picoplankton, which showed 
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slightly better performance than the other models when applied to both the in situ 

and satellite data.  

While re-parameterization alone provided little benefit in terms of improving 

abundance-based model performance in the NES, the incorporation of remotely 

sensed SST into the re-parameterization of the B10 model did serve to improve 

PSC prediction accuracy. When applied to the in situ validation data set, the 

regional SST-dependent B-NES-SST model exhibited a reduction in model error 

of 10-12% for all size fractions with respect to the SST-independent B-NES model. 

The B-NES-SST model also outperformed the other two SST-dependent models 

(B17-SST and MB20-SST) for all size classes. This result supports what has been 

shown by previous studies (Ward, 2015; Brewin et al., 2017; Sun et al., 2019; 

Moore and Brown, 2020) that the addition of SST into abundance-based model 

frameworks can improve PSC prediction accuracy. The relationships between 

[Chl-a], SST, and phytoplankton size structure observed in this study were also in 

general agreement with the findings of these studies, with lower SST associated 

with an increase in the fraction of microplankton and a decrease in the fraction of 

smaller cells (i.e. pico- and nanoplankton) at similar [Chl-a]. This relationship is not 

surprising, given long-established connections between temperature, water-

column stability, nutrient availability, and phytoplankton community size structure 

in the marine environment (Margalef, 1978; Bouman et al., 2003). While SST is 

used as the additional predictor variable in these models, the associated changes 

in size structure are not necessarily in direct response to changes in SST but rather 
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the result of a combination of co-varying environmental conditions, including light 

availability, stratification, and nutrient availability. 

 Absorption-based algorithms are advantageous over abundance-based 

methods in that they are rooted in a direct spectral response to phytoplankton cell 

size, as opposed to relying on indirect statistical connections between [Chl-a] and 

phytoplankton size structure. This means that they can distinguish changes in 

PSCs that occur outside of the general biomass-size co-variation relationship and 

are less prone to change over time or geographically. When directly applied to the 

satellite data, the two absorption-based algorithms examined in this study, C02 

and MY10, performed with comparable accuracy to the regionalized abundance-

based models. The MY10 algorithm in particular showed statistically similar 

performance to the SST-dependent model, without including any additional 

environmental information. Considering that pigment-based size class estimates 

from DPA were used for validation, the similarity in performance for the absorption-

based algorithms is encouraging, given they were not developed or parameterized 

based on the same approach, as was the case with the abundance-based models. 

This suggests some degree of consistency between estimates of size classes 

derived from spectral phytoplankton absorption and those determined from HPLC 

pigment analysis in the NES, as has been previously reported in other regions 

(Devred et al., 2011).  

 The PSC algorithms and products evaluated in this study may be useful for 

validation of or assimilation into regional ecosystem or biogeochemical models 
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(IOCCG, 2020). However, given the uncertainties associated with the pigment-

based size class estimates used for algorithm assessment, as well as the different 

inputs and outputs between methods, it is difficult to make a definitive 

determination of which approach is the best choice for such applications. The most 

suitable method may be dependent on the specifics of the intended application or 

the questions to be addressed. For instance, biogeochemical models that produce 

chlorophyll-based phytoplankton size estimates may prefer to compare to 

abundance-based algorithm outputs, while models that include optics may prefer 

to compare to output from absorption-based methods – each enabling a more 

direct comparison dependent on the underlying algorithm/model frameworks and 

outputs being compared.  

In the near future, satellite ocean color remote sensing is moving toward 

more advanced radiometric instruments with hyperspectral capability and 

enhanced spatial and temporal resolution (Cetinić et al., 2018). The increased 

spectral information afforded by these upcoming sensors is anticipated to greatly 

improve our ability to accurately separate the absorption attributed to different 

optically significant in-water constituents (i.e., CDOM, NAP, phytoplankton) and 

retrieve information on phytoplankton community composition and size structure. 

This improved capability will be particularly relevant to optically complex waters, 

including coastal and continental shelf regions like the NES ecosystem. Thus, 

existing absorption-based PSC models may potentially become more robust, and 

newer methods that exploit the full range of available spectral information will 
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continue to be developed. Further, to the extent that satellite [Chl-a] estimates 

improve as a result of the increase in spectral resolution, abundance-based 

approaches may continue to be an effective option for estimating PSCs, especially 

when combined with SST or other ecologically relevant environmental parameters. 

While not considered in this work, the integration of high-resolution spectral 

information with environmental data readily attainable from remote sensing should 

be considered in future PSC algorithm development efforts. 
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