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ABSTRACT

The objective of this research is to develop a standard operating procedure for

correlating uniaxial and biaxial digital image correlation (DIC) data and results

from numerical finite element analysis (FEA) simulations to determine material

elastic properties. An inverse method is developed in which iterative data match-

ing is achieved using the software package, Isight™. The method is applied to

characterize the elastic properties of Lexan polycarbonate sheet and a nominal

carbon epoxy composite. Displacement and strain fields obtained from DIC data

from simulated uniaxial tension and biaxial DIC experiments serve as the target

parameter to match in iterative testing where the Young’s modulus and Poisson’s

ratio are updated each cycle. The results of these experiments are used to verify

that an accurate approximation of an unknown material’s elastic properties can

be predicted by this procedure.
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CHAPTER 1

Introduction

Characterization of the constitutive behavior of woven and composite mate-

rials is a topic of increasing importance for a variety of commercial, aerospace

and military applications. Understanding the material properties and behavior

of cutting edge materials as they develop is paramount to their implementation

in the field. This research seeks to develop a standard operating procedure for

correlating uniaxial and biaxial digital image correlation (DIC) data and results

from numerical finite element analysis (FEA) simulations to determine material

elastic properties. Iterative data matching will be achieved using the software

package, Isight™. This technique will be developed and validated for isotropic and

orthotropic materials with known elastic properties.

1.1 Modeling Overview

The models in this research simulate tensile and biaxial tests to iteratively

determine the material properties of the test sample. For modeling a tensile test, in

which an axial load, P , is applied to a sample and the deformation as characterized

by the observed change in gage section length, L, with respect to time. The stress,

σ22, of the sample is defined as the longitudinal axial load, P , divided by the

initial cross sectional area of the sample, Ao. The strain of the sample is defined

as the ratio of the deformed length of the sample, L, minus the original length, Lo,

divided by its original length, [4].

σ22 =
P

Ao
(1)

ε22 =
L− Lo
L

(2)

Hooke’s law for an isotropic material subjected to a three dimensional stress

1



state (Eq. 3) relates the strain components to the stress components in terms of

Young’s Modulus, E and Poisson’s ratio ν. For the case of uniaxial tension in the

y-direction, Young’s modulus is the ratio of applied stress, σ22, to axial strain, ε22.

Poisson’s ratio is defined as the negative of the ratio of the transverse strain to the

axial strains ν = − ε11
ε22

[5].

ε11 =
σ11
E
− ν

E
(σ22 + σ33)

ε22 =
σ22
E
− ν

E
(σ11 + σ33)

ε33 =
σ33
E
− ν

E
(σ11 + σ22)

γ23 =
1 + ν

E
τ23

γ13 =
1 + ν

E
τ13

γ12 =
1 + ν

E
τ12

(3)

Eq. 3 applies to the behavior of linear-elastic isotropic materials. An isotropic

material is defined as a material whose properties are independent on the loading

direction. Orthotropic materials have different properties in three mutually or-

thogonal directions. For orthotropic materials, a generalized version of Hooke’s

law (Eq. 4) is used to describe the relation between stresses and strains.


ε11
ε22
ε33
γ23
γ13
γ12

 =



1
E1

−ν21
E2
−ν31

E3
0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1
−ν23

E2

1
E3

0 0 0

0 0 0 1
G23

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12




σ11
σ22
σ33
τ23
τ13
τ12

 (4)

For the case of plane stress, where the out-of-plane stresses σ33, τ23 and τ13

are zero, Eq. 4 reduces to [4].

2



ε11ε22
γ12

 =

 1
E1

−ν21
E2

0

−ν12
E1

1
E2

0

0 0 1
G12

σ11σ22
τ12

 (5)

Note that the 3x3 matrix on the right hand side of Eq. 5 is referred to as

the material compliance matrix and the inverse of this matrix is referred to as

the material stiffness matrix. In chapter 3, the material stiffmess matrix will be

referenced as the matrix D. It should be noted that Eq. 5 reduces to the case

of plane stress for isotropic materials, where E = E1 = E2, ν = ν12 = ν21 and

G = G12 = E
1+ν

:

ε11ε22
γ12

 =

 1
E
− ν
E

0
− ν
E

1
E

0
0 0 1

G

σ11σ22
τ12

 (6)

1.2 Motivation

Inflatable fabric structures are of growing importance for application in

aerospace, commercial and military fields. Fabrics are used as reinforcement in

both stiff laminated composite structures where a resin matrix fills the voids be-

tween the woven yarns and flexible skins for inflatable structures where a polymer

coating is applied to the surface of the fabric but does not fill the interstices between

the yarns. Inflatable fabric structures offer several advantages, including relatively

low structural weight, low deflated volume, ease of speedy deployment, and simple

transportation, making them an attractive and cost effective solution for a vari-

ety of applications. Successful application of these materials requires methods for

characterizing the constitutive behavior under a variety of load conditions.

1.3 Objective

The objective of this research is to develop a coupled experimental and nu-

merical technique for obtaining the elastic material properties of a material under

3



either uniaxial or biaxial tension utilizing a version of the finite element model up-

date method. In this procedure, the material properties are taken to be unknown

and are iteratively adjusted until the experimentally observed surface displace-

ment and strain fields match the finite element model predictions. Validation of

the method is achieved if the resulting properties match the expected values for

the material under consideration.

Another objective of this research is to apply the algorithm to an unknown

orthotropic material, such as a laminated composite or a woven fabric material,

to identify their elastic material properties. It is anticipated that future research

will explore application of this technique to the characterization of the non-linear

response of this class of materials subjected to a variety of load conditions.

1.4 Methodology

An initial set of experiments will be devised to characterize the uniaxial and

biaxial elastic properties of a known isotropic material, For this study, the material

being considered is taken to be Lexan polycarbonate, a widely used stiff polymer

with well known material properties. The original research plan was modified to

adapt to the COVID-19 pandemic in the Spring of 2020. Rather than using exper-

imentally obtained DIC image data, simulated speckle patterns were utilized. To

simulate specimen deformation to be measured with DIC, 4000x4000 pixel images

of speckle patterns in the 30mm long by 25mm wide section of the center of a

tensile bar were created with a stochastic pattern using a MATLAB script [Ap-

pendix B]. The displacement of each speckle was determined using an Abaqus™

finite element model and the deformed speckle images are created using the same

MATLAB script. These simulated deformed images are analyzed using the GOM

Correlate™ and ARAMIS™ DIC software to compute the full field displacements

and strains. These results are then used during the iterative analysis as a target to

4



match. A second set of experiments seek to characterize the biaxial response of the

same material. Prior to these experiments, specifics of the cruciform geometry will

be analyzed using finite element analysis. Geometric parameters to be explored

include specimen width, thickness, fillet radius and the addition of slits outside of

the biaxial stress region to assist in achieving a more uniform biaxial stress state.

The objective of this analysis is to identify an appropriate cruciform specimen de-

sign. The cruciform specimen images were generated using the same procedure as

the dogbone samples, focusing on their center sections behavior. As in the uniax-

ial tests, simulted DIC images are generated and commercial DIC software is used

to measure the deformation and strain fields in the cruciform test section. It is

observed that the state of strain in the cruciform test section is non-uniform. To

extract material properties from the test data will require correlation of the DIC

data with finite element analysis results. This is achieved using an iterative opti-

mization algorithm that is available in the Isight software package. The resulting

elastic properties are compared to those obtained using uniaxial test data.

Upon successful correlation of elastic properties measured with uniaxial and

biaxial testing, another material which exhibits orthotropic material behavior is ex-

amined. Such materials require characterization of four in-plane elastic constants:

E1, the Young’s modulus in the longitudinal direction; E2, the Young’s modulus in

the transverse direction; ν12 , the Poisson’s ratio characterizing the transverse con-

traction due to a loading in the longidutinal direction; and G12, the in plane shear

modulus. Using a procedure similar to that implemented by Lecompte et al. [6]

to determine the orthotropic properties of a glass fiber reinforced epoxy composite

laminate, an iterative data matching analysis of the DIC data and finite element

analysis results is used to determine these constants for the orthotropic material of

interest. In this study, the Abaqus finite element analysis program, coupled with

5



Isight’s optimization capabilities will be used for the iterative analysis.

Successful demonstration of the validity of this experimental technique will

allow for a coated woven fabric material, typical of that used in inflatable struc-

tures to be evaluated under biaxial loading. The objective of this experiment is to

simulate the effect of inflation pressure on the stiffness of the coated fabric mate-

rial when subjected to subsequent structural loads. The ability to determine the

effect of inflation pressure on inflated panel stiffness will provide a valuable tool in

predicting the behavior of inflatable structures.

1.5 Thesis Outline

The purpose of this thesis is to develop a standard operating procedure for

correlating uniaxial and biaxial digital image correlation (DIC) data and results

from numerical finite element analysis (FEA) simulations to determine the elastic

properties of orthotropic materials. Chapter 2 will review published articles and

studies relevant to DIC, FEA, and the development of the iterative testing pro-

cedure. Chapter 3 will discuss the isoparametric finite element formulation of 4

node quadrilateral elements used to analyze the tensile bar and cruciform models.

DIC background and theory, and the optimization methods used in this study’s

iterative testing procedure will also be discussed. Chapter 4 will describe each step

of the experimental procedures, including: sample creation, model creation, DIC

camera set up and operation, tensile testing, iterative testing procedure. Chapter

5 will discuss the results obtained throughout this research for both the uniaxial

and biaxial test cases. It will also discuss some of the optimization nuances en-

countered when constructing this technique. Chapter 6 will provide a summary of

relevant information and conclusions from the previous chapters and make recom-

mendations for future research possibilities and adaptations.

6



CHAPTER 2

Literature review

2.1 DIC and Finite Element Modeling

Digital image correlation (DIC) is a process developed by Sutton et al. [7]

and Bruck et al. [8] for material analysis. DIC is a full-field optical measure-

ment technique for examining the deformation of materials and structures. It has

been used to study the mechanics of textile reinforced concrete by Mobasher [9],

woven materials by Baghernezhad et al. [10], as well as metals and orthotropic

composites by Tariq et al[11]. The study conducted by Tariq et al. [11] demon-

strates that using their MATLAB-based 2D DIC algoritm, the Young’s modulus,

E, and Poisson’s ratio, ν, are accurately obtainable for a variety of materials,

including 2024-T6 aluminum, AISI 4140 steel, an aramid/epoxy composite, an E-

glass/polyester laminate, and a carbon/epoxy composite. This work verifies that

obtaining an accurate uniaxial result is possible for composite materials as well as

further verifying the validity of DIC as a method of property identification.

A more recent study done by Dinh et al. [12] utilizes Abaqus to replicate the

strain results obtained from DIC using a PVC coated fabric that has undergone

biaxial loading. This study investigated the elastic and plastic deformations of

the PVC coated fabric. The goal of this research was to validate an orthotropic

model for woven coated structures. The material properties Ewarp, Efill, ν12, ν21,

and G12 were determined during uniaxial and biaxial testing by analyzing stress

strain curves in the warp and fill directions. Because this analysis dealt with the

elastic and plastic deformations, the properties were determined for different ranges

of loading. The applied properties were used in an Abaqus model to generate a

strain field to compare to a strain field obtained from DIC. Dinh et al. developed a

biaxial model of their material subjected to an equibiaxial warp-fill direction load

7



ratio that correlated well with the observed response of their DIC experiment.

Figure 1: Warp Strain: FEA model (left) and DIC strain (right) with 1:1 loading
[12]

Figure 2: Fill Strain: FEA model (left) and DIC strain (right) with 1:1 loading
[12]

2.2 Inverse Method and Iterative Testing

The primary goal of an inverse method is to identify a set of unknown pa-

rameters in a mathematical model. In a study done by Cooreman et al. [13]

the parameters of the Hill yield surface and swift type hardening law of DC06

steel were determined using a method similar to the present study. To derive the

aforementioned constants, the experimenters perform 3D DIC on a biaxial loaded

cruciform sample of DC06 steel and correlated the observed response with a fi-

nite element model of the same sample. Their algorithm compares the axial and
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shear strains measured at a number of points from the DIC experiment and the

corresponding strain output from the finite element model. The strains at these

points are correlated by computing a least-squares cost function. At each itera-

tion the sensitivity matrix of the system is recalculated and the parameters are

updated in accordance with the Gauss-Newton update algorithm. Convergence to

a minimized cost function was shown to correspond to the desired material prop-

erties. The present research will employ a similar strain matching procedure. In

a similar study by Lecompte et al. [6], the investigators attempt to derive four

elastic parameters from two different samples of glass fibre reinforced epoxy with

an inverse methodology. Both are cruciform in shape, but one is perforated with a

hole in the center and the other is not. Similar to the first study mentioned, this

method tracks the surface strains of the material with DIC and compares them

to a finite element model, calculates the system’s sensitivity matrix, and updates

the parameters at each iteration. This scheme utilizes the same least cost func-

tion and optimization algorithm as the previous study. Both Young’s moduli were

measured within ±5 GPa and the Poisson’s ratio within ±0.07 of their value from

the classical lamination theory.
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CHAPTER 3

Material Modeling

3.1 Finite Element Method

The finite element method is a widely used technique for problem solving

in engineering and solid mechanics. It is a numerical technique for solving sys-

tems of partial differential equations. The method provides approximate solution

to the field problem by solving a system of linear algebraic equations. The do-

main is discretized into finite sized subregions called elements and the solution

is determined at key points called nodes. The finite element formulation of the

partial differential equations consists of the development of element level equa-

tions which are then assembled into a larger system of equations that represent

the entire domain of interest. For stress analysis problems, the element equations

relate each element’s nodal displacements to the corresponding nodal forces. The

element formulation assumes interpolation functions to describe the displacement

field between the nodes. The assembled global equations relate the displacements

of all of the nodes in the model to the external nodal forces. These global equa-

tions are modified to impose the external loads and boundary conditions and are

then solved to determine the unknown nodal displacements. These displacements

are then used to compute the strain and stress fields by applying the assumed

interpolation functions and the material’s stress-strain behavior.

In this section, the formulation of the 4 node quadrilateral elements that

were used to create the models used in this research are discussed. The finite

element models were constructed to model the behavior of isotropic and orthotropic

materials. The material properties of Lexan polycarbonate and a carbon/epoxy

composite laminate were used in these models.
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3.1.1 Element Formulation and Stiffness Calculation

All of the finite element models employed in this research utilized 4-node

quadrilateral elements. Every element of the mesh did not have a rectangular

shape, so an isoparametric formulation for their coordinate system was used to

simplify the computational process [1]. This takes advantage of an element’s nat-

ural coordinate system where the origin is placed at the center of the element (see

Fig. 3 ).

Figure 3: A natural coordinate system mapped [1]

The natural coordinate system is given in terms of s and t, which provide a

one-to-one mapping of a global (x, y) coordinate point to a corresponding (s, t)

coordinate point. The global x and y coordinates can be written in terms of nodal

coordinates (x1, x2, x3, x4) and (y1, y2, y3, y4) and the (s, t) position of a given point

x =
1

4

[
(1− s)(1− t)x1 + (1 + s)(1− t)x2 + (1 + s)(1 + t)x3 + (1− s)(1 + t)x4

]
y =

1

4

[
(1− s)(1− t)y1 + (1 + s)(1− t)y2 + (1 + s)(1 + t)y3 + (1− s)(1 + t)y4

]
(7)
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or, in matrix form.

[
x
y

]
=

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]


x1
y1
x2
y2
x3
y3
x4
y4


(8)

In Eq. 8, the Ni entries are the shape functions given by

N1 =
(1− s)(1− t)

4

N2 =
(1 + s)(1− t)

4

N3 =
(1 + s)(1 + t)

4

N4 =
(1− s)(1 + t)

4

(9)

Similarly, the displacements of any point with natural coordinates (s, t) can be

determined from the nodal coordinates (u1, u2, u3, u4) and (v1, v2, v3, v4)

[
u(s, t)
v(s, t)

]
=

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]


u1
v1
u2
v2
u3
v3
u4
v4


(10)

Using this isoparametric coordinate transformation, it is possible to derive the

so-called B matrix which relates the nodal displacements to the element strains

and the terms in the B matrix are functions of (s, t). Considering the function

f(x(s, t), y(s, t)) as a general form were f can represents displacement fields u

or v, the strains are defined in terms of derivatives ∂f
∂x

and ∂f
∂y

. Relating these

derivatives to the partial derivatives ∂f
∂s

and ∂f
∂t

requires application of the chain
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rule. For example, for the derivative of f(x, y) we obtain

∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

∂f

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t

(11)

Now that ∂f
∂s

, ∂f
∂t

, ∂x
∂s

, ∂x
∂t

, ∂y
∂s

, and ∂y
∂t

are defined, Cramer’s Rule can be applied to

solve for the operators ∂
∂x

and ∂
∂y

. For example

∂f

∂x
=

∣∣∣∣∂f∂s ∂y
∂s

∂f
∂t

∂y
∂t

∣∣∣∣∣∣∣∣∂x∂s ∂f
∂s

∂x
∂t

∂f
∂t

∣∣∣∣
∂f

∂y
=

∣∣∣∣∂x∂s ∂f
∂s

∂x
∂t

∂f
∂t

∣∣∣∣∣∣∣∣∂x∂s ∂y
∂s

∂x
∂t

∂y
∂t

∣∣∣∣ (12)

The operators ∂
∂x

and ∂
∂y

are now defined below where J is the Jacobian matrix

∂()

∂x
=

1

|J |
∂y

∂t

∂()

∂s
− ∂y

∂s

∂()

∂t

∂()

∂y
=

1

|J |
∂x

∂s

∂()

∂t
− ∂x

∂t

∂()

∂s
(13)

where

|J | =
∣∣∣∣∂x∂s ∂y

∂s
∂x
∂t

∂y
∂t

∣∣∣∣ (14)

Tne element strain fields can now be written in terms of the isoparametric formu-

lation. εxxεyy
γxy

 =
1

J

 ∂y
∂t

∂()
∂s
− ∂y

∂s
∂()
∂t

0

0 ∂x
∂s

∂()
∂t
− ∂x

∂t
∂()
∂s

∂x
∂s

∂()
∂t
− ∂x

∂t
∂()
∂s

∂y
∂t

∂()
∂s
− ∂y

∂s
∂()
∂t

[u(s, t)
v(s, t)

]
(15)

Substituting Eq. 10 on the right hand side of Eq. 15, we can define the [B] matrix

as

εxxεyy
γxy

 = [B]



u1
v1
u2
v2
u3
v3
u4
v4


(16)
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where [B], is obtained by applying the differential operators on the right hand side

of Eq. 15 to the shape functions in Eq. 9.

The element stiffness matrix, [k], can now be computed using isoparametric

coordinate system. The element stiffness matrix relates the nodal displacements

to the nodal forces. In global (x, y) coordinates, the stiffness matrix is given by

[1]

[k] =

∫ ∫
A

[B(x, y)]T [D][B(x, y]|J |hdxdy (17)

where A is the area of the element, [D] contains the material constants, and h

is the element thickness. For the case of an isotropic material subjected to plane

stress

[D] =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (18)

Converting Eq. 17 to natural coordinates yields

[k] =

∫ 1

−1

∫ 1

−1
[B(s, t)]T [D][B(s, t)]|J |hdsdt (19)

This integral is evaluated using Gaussian quadrature, which is discussed below.

3.1.2 Gaussian Quadrature

Evaluation of the integral in Eq. 19 is approximated by implementing Gaus-

sian quadrature. Gaussian quadrature evaluates the integral by sampling a number

of points in the domain and evaluating the integrand at those points. Appropri-

ate weight factors are applied to these terms and the integral is approximated by

summing weighted integrand evaluations. For the method of Gaussian quadrature,

the sampling point locations and associated weight factors are selected to give best

accuracy for polynomial functions. The number of sampling points and associated

weight factors can be specified, where increasing the number of points increases the
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accuracy of the approximation. For the 4 node quadrilateral elements considered

in this study, either a single sampling point, referred to as reduced integration, or a

2x2 array of points (4 sampling points), referred to as full integration, are typically

used. Sampling point locations for 2x2 Gaussian quadrature are shown in Fig. 4.

Fig. 5 gives the sampling point locations and associated weight factors for 1 point,

2 point, 3 point and 4 point Gaussian quadrature. These sampling point locations

are the roots of Legendre polynomials of increasing order and have been shown

to provide highly accurate approximations when integrating polynomial functions.

For the case of the 4 node quadrilateral element with full integration, samplings

points at (x1,x2) = ±0.57735026918962 with weight factors W1 = W2 = 1.00 are

utilized.

Figure 4: The evaluation points of a 4 node quad element. [1]

Figure 5: 2D Gaussian quadrature sampling points and weight factors. [1]
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Approximation of the element stiffness matrix is achieved using 4 point, or

2x2, Gaussian quadrature, resulting in a summation over the 4 sampling points as

shown in Eq. 20.

[k] =
4∑
i=1

[B(si, ti)]
T [D][B(si, ti)]|J |hWiWi (20)

3.2 Digital Image Correlation

Digital Image Correlation (DIC) is a non-contacting full-field measurement

technique. DIC tracks the movement of an object’s surface to extract the displace-

ment and strain fields across that objects surface [9]. To perform DIC on an object,

an area of interest (AOI) must be identified and coated with a stochastic pattern.

This pattern should be isotropic, non-repetitive, with high contrast between light

and dark regions.

Figure 6: Reference and deformed area of interest[2]

To track image displacements of the surface within the software, a grid of

facets, also called subsets, are positioned across the image. Each facet contains an

(n)x(n) grid of pixels. Each pixel within the facet is assigned a grey scale value

from zero to one hundred as an indicator of how dark or light the pattern is within

the pixel.
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Figure 7: How DIC software interprets and divides a stochastic pattern. [2]

An initial measurement with no deformation is captured by an imaging system

and used as a reference from which to calculate displacements. The sample is then

deformed and the movement of the information contained within the facets is

recorded again when the surface is displaced. The reference image is compared

to the deformed image(s) using a sum of squared differences correlation function,

C(x, y, u, v) [14].

C(x, y, u, v) =

n
2∑

i=−n
2

n
2∑

j=−n
2

(I(x+ i, y + j)− I ′(x+ u+ i, y + v + j))2 (21)

C(x, y, u, v) is a function of the facet’s center coordinates and it’s displace-

ments within the grid on the AOI’s surface. The functions I(x, y) and I ′(x+u, y+v)

represent the reference and deformed images assigned greyscale value for a given

pixel, respectively. This comparison is performed at all points within the facet,

testing different displacement values in an attempt to minimize the correlation

function. When that function reaches a minimum, the best case displacements of

the image have been found for the facet[14].

Another process happening simultaneously is the software recognizing the val-

ues of pixels adjacent to a given pixel in order to track the deformation of the

pattern. The values returned from these displacement analyses are what are used

as the values to be matched by the models in this research. For this research, the
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Figure 8: ABAQUS node placed on GOM mesh

GOM ARAMIS commercial DIC software package was utilized.

3.3 Interpolation of Displacements and Strains

A finite element model was developed for each case for use in comparison

to the DIC data. These comparisons require that the finite element results be

compared to DIC results at specific points. Ths was achieved by selecting key

finite element nodes and interpolating the DIC results to give the corresponding

DIC result at that node. For this study, the commercial finite element software,

Abaqus, was utilized.

To begin the interpolation process a point of interest, (x, y) is specified and

the coordinates of the grid triangle that it resides are recorded as (x1, x2, x3)

and (y1, y2, y3). The displacements of a triangular regions displacement field are

defined by

{
u(x, y)
v(x, y)

}
=

[
1 x y 0 0 0
0 0 0 1 x y

]

a1
a2
a3
a4
a5
a6

 (22)

18



To derive the constants associated with the x or y components of displacement,

equation (17) transforms. u1u2
u3

 =

1 x1 y1
1 x2 y2
1 x3 y3

a1a2
a3

 (23)

The column vector of constants is determined by inverting the 3x3 matrix

on the right hand side this equation. The inverse of this matrix is found by the

method of cofactors to be

1

2A

α1 α2 α3

β1 β2 β3
γ1 γ2 γ3

 (24)

where

2A =

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ (25)

The entries of the cofactor matrix are

α1 = x2y3 − x3y2, α2 = x1y3 − x3y1, α3 = x1y2 − x2y1

β1 = y2 − y3, β2 = y3 − y1, β3 = y1 − y2

γ1 = x2 − x3, γ2 = x3 − x1, γ3 = x1 − x2

(26)

The cofactor matrix is the same for both sets of displacements. A simple for-

mulation for the displacements of the point of interest is assembled by constructing

weight factors from the entries of the cofactor matrix and the coordinates of the

point of interest.

N1 =
1

2A
(α1 + β1x+ γ1y)

N2 =
1

2A
(α2 + β2x+ γ2y)

N3 =
1

2A
(α3 + β3x+ γ3y)

(27)
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These weight factors are used in conjunction with the displacement of the node

their subscript corresponds to to arrive at the value of the interpolated displace-

ments.

u = N1u1 +N2u2 +N3u3

v = N1v1 +N2v2 +N3v3

(28)

The MATLAB code used to interpolate the DIC generated displacements to

the desired finite element node location is given in Appendix A. The same formu-

lation was used to interpolate for the strains at each point of interest.

3.4 Optimization Schemes

To correlate DIC and finite element results in this study, two different algo-

rithms were used to optimize the system: the Hooke-Jeeves pattern search [3], and

the NLPQLP method that employs sequential quadratic programming [15]. Both

schemes operate within bounds or constraints specified at the beginning of the

optimization. Both are well suited for optimization of non-linear problems and are

available in the ISight software package.

3.4.1 Pattern Search

The pattern search begins with a function S(ψ) where ψ is a set of variables

such that ψ = (ψ1, ψ2, ψ3, ..., ψn). The S(ψ) function is sought to be minimized.

The intuition of the process is that it starts from an initial guess point of all

parameters. Each variable is updated individually to determine whether increasing

or decreasing a given parameter proceeds in the correct direction of minimizing

S(ψ). If a value of ψi is successful it is saved as the value to be used in the next

calculation of S(ψ). If a value of ψi fails to further minimize S(ψ), the value is

deemed a failure and its previous value is used in the subsequent step. Each of

these steps is an exploratory move that the algorithm takes in exploring the point

space where the specified constraints define.
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Figure 9: The progression of logic in a pattern search [3]

The optimization converges when the step size of the guess value of ψi reaches

a cut off point determined at the beginning of the optimization. One advantage of

this algorithm is that it will not stop until it reaches its convergence criterion or

its iteration limit has been reached. It is a heuristic method of optimization that

has proved to be effective for many problems. However, it is not time efficient.

3.4.2 NLPQLP

The NLPQLP algorithm begins similarly to the pattern search; it requires

constraints, target parameters, and a step size to be identified [16]. It also requires

that the function f(x) that this algorithm attempts to optimize is twice differen-

tiable and continuous over its domain as this is a gradient based method [17]. The

parameters of the function are updated every iteration in an attempt to arrive at

the target value, a maximum or minimum of the gradient. An advantage of this

method is its efficiency. However, it can converge to local minima or maxima and

return an inaccurate approximation.
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CHAPTER 4

Experimental methods

The original experimental procedure is discussed in Appendix C.

4.1 ABAQUS Modeling

To begin, an ABAQUS model for the uniaxial and biaxial cases needed to

be created. A tensile bar and a cruciform shape were used for each type of test

respectively. Each of these models were used in the ISight iterative testing that

returned the estimates of the elastic properties of the material being examined.

The isotropic models were created using the material properties of Lexan (Table

1). Lexan is a common polycarbonate plastic that is available in easily cuttable

sheets. The orthotropic models were created using the nominal material properties

of a carbon/epoxy composite laminate (Table 2).

Lexan Properties
Parameter Value
Young’s Modulus 2,100 MPa
Poisson’s Ratio 0.37
Material Thickness 2 mm

Table 1: Isotropic Material Properties

Orthotropic Properties
Parameter Value
E1 32,500 MPa
E2 77,000 MPa
ν12 0.297
G12 22,400 MPa
Material Thickness 2 mm

Table 2: Orthotropic Material Properties

These material properties were the values sought to be returned from the

iterative testing.
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4.1.1 Tensile Bar

A tensile bar model was created in Abaqus with the following dimensions.

Tensile Bar Dimensions
Dimension Size (mm)
End Tab Width 40
End Tab Length 25
Taper Length 25
Bar Length 150
Bar Width 25
Bar Thickness 2

Table 3: Tensile bar model dimensions

Figure 10: Unmeshed tensile bar model

Then, the part was partitioned to constrain the deformation of the end tabs

to simulate the presence of a grip from a load frame.

Pressure loads of 40 MPa were applied to the tabs on the ends of the isotropic

tensile bar. The loads were selected because they induce a three percent strain

on the object. For the orthotropic case, this load would likely cause fiber failure

and/or matrix cracking if applied to a physical sample. However, for the purpose of

verifying the algorithm for an orthotropic material, it is convenient to idealize the

part to exhibit linear elastic deformation. Three boundary conditions of the model
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Figure 11: Constrained tensile bar

were specified to give a rigid uniform displacement of the tab region, zero horizontal

displacement along the vertical center line of the tensile bar, and the center point

of the model was fixed in both directions. The tensile bar was meshed with 4-node

quadrilateral elements with biases toward the location where the tapered region

meets the bar.

4.1.2 Cruciform

A cruciform shaped model was created in Abaqus with the following dimen-

sions.

Cruciform Dimensions
Dimension Size (mm)
Tab Width 50
End Tab Length 25
Tab end to center 100
Model thickness 2

Table 4: Cruciform model dimensions
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(a) Biased seeds

(b) Meshed tensile bar

Figure 12: The seeded and meshed tensile bar model
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Figure 13: The unmeshed cruciform model

The part was partitioned along its x and x axes and -25 MPa loads were ap-

plied to the ends of all of the tabs for the isotropic model. For the orthotropic case

loads of 975 MPa were applied to all tabs. Both of these load selections were made

to generate strains that were around three percent. Similar to the orthotropic

tensile bar case, the loads of the orthotropic cruciform sample would likely cause

fiber failure and/or matrix cracking if applied to a physical sample. Two boundary

conditions were applied to the model to constrain lateral displacement of the nodes

along the x and y axes. The nodes on the x axis had their vertical displacement

constrained, and the nodes on the x axis had their horizontal displacement con-

strained. Similar to the tensile bar models, this model was meshed with 4-node

quadrilateral elements with element size biased toward the fillets.

4.1.3 Point Selection

To sample the strains and displacements of the Abaqus model, a collection

of 10 points within the area of interest for the tensile bar and cruciform samples

were selected. The node sets for both samples were selected from the upper right

hand quadrant of the respective models. The nodes selected represent the strain
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Figure 14: Seeded and meshed cruciform model

and displacement fields across the whole area of interest i.e. the points selected

are scattered about the region, not focused in a cluster. For the tensile bar, this

region is the center 30 mm length of the bar. For the cruciform shape, this area

is the center square. Each node was assigned a specific set and a field output was

requested for each individual set to extract the strains and displacements. The

node number and initial positions of all selected points were recorded from the

Abaqus input file and stored in a .csv file for later use.

4.2 Sample Preparation

Due to limited access to facilities and equipment during the COVID-19 pan-

demic adjustments had to be made to the samples that were tested. Instead of per-
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forming DIC on physical samples, a series of numerically generated, stochastically-

patterned images of the tensile bar and cruciform models were created with a

MATLAB script (see Appendix B). The code generates an initial speckle image by

reading in the number of elements, number of nodes, nodes and elements them-

selves to create the surface to be virtually speckle coated. The image resolution,

image scale, and number of deformation steps were specified at the start of the

image creation. The amount of space between speckles, the maximum and mini-

mum radii of speckles and their ability to overlap with one another when they are

placed were also parameters to be specified for each case.

(a) Undeformed tensile bar speckle pattern (b) Meshed tensile bar

Figure 15: Undeformed cruciform speckle pattern
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(a) Deformed tensile bar speckle pattern (b) Deformed cruciform speckle pattern

Figure 16: Deformed cruciform speckle pattern

An initial speckle image is created with the same footprint as the Abaqus

model it imported data from. Then, a series of speckle images are created that de-

form in accordance with nodal displacements imported from Abaqus. The images

were generated using the loads from the Abaqus model to induce a three percent

strain.

4.3 DIC

The DIC analysis in this study was performed using the GOM ARAMIS soft-

ware. The same process was used for both the tensile bar and cruciform case.

4.3.1 Software Routines

To begin, the numerically generated deformation image series was imported

into the ARAMIS software for analysis. The first undeformed image is defined

to be the reference state. The initial image analysis step is to scale the images

within ARAMIS. Two pixels on either edge of the speckled region that were at

the same height on the image were selected. For the tensile bar the image series

focused on the center region of the bar and the distance was set to 25 mm. For

the cruciform case the width of the tabs were set to 50 mm. With the reference
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stage in view in the interface, a surface component with a facet size of 34 pixels

and a point distance of 30 pixels was created for both sets of images. The facet

size specifies the nxn pixel regions that are tracked by the software. The point

distance is the distance from the center of one facet to the center of the adjacent

facets [18]. The aforementioned parameter amounts were chosen for the surface

Figure 17: Surface component creation

component through a process of trial and error. If the facets were too small and

the point distances too short, the mesh would give highly non-uniform strain and

displacement fields for images with small deformations. With larger deformations,

the mesh would develop holes where the software was unable to track the stochastic

pattern. The rationale behind the procedure is to choose the facet size to be as

small as possible, but still large enough to be calculated [18]. A facet’s ability

to be computed relative to its size is determined by the density of the stochastic

pattern on the surface that is being analyzed.
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Figure 18: An example of a mesh with data loss

To view the mesh that is created by the surface component, select the surface

component. Turn on the option to view the points and the mesh in the display

tab find the properties menu. This may assist the process of determination of the

facet size and point distance.

Figure 19: How to view the mesh and points

Normally after a surface component is created, an alignment must be per-
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formed to define a coordinate system for the surface component. Because these

images were created computationally, rather than captured with a camera, an ac-

curate alignment was assigned to them automatically as they were imported. The

alignment native to the imported images had the same orientation as the coordi-

nate system in the Abaqus models.

4.3.2 Analysis

To begin extracting the data from the deformed images, the surface component

was selected and an ”inspection” of the part was performed. An inspection is a

process in the software that calculates a desired field from the deformed image.

The isotropic cases were analyzed first. Initially, it was unclear which field,

displacement or strain, would yield a more accurate result for optimization. The

x and y strains and displacements were all extracted to determine which field was

a better option to use as target values for iterative testing. To extract a desired

field, all nodes of the surface component were selected after checking if the field of

interest was displayed in the interface window and that that field was the only field

currently being examined. The node number, (x, y) coordinates, and field value

at the node are then exported as a .csv file. If multiple fields are being sampled

at once the exported file will not record any field data, only the nodes and their

locations.

Once exported from ARAMIS, the displacement data and the strain data

were combined in .csv files. These values, in concert with the recorded initial

positions of the Abaqus nodes of interest were used to compute the strains and

displacements at the locations selected in Abaqus on the surface component de-

fined in ARAMIS. The Abaqus finite element mesh and the mesh of the surface

component generated by ARAMIS were not identical to each other. Based on

the nodal displacements and strains recorded by ARAMIS, the corresponding DIC
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(a) Undeformed tensile bar surface compo-
nent

(b) Deformed tensile bar surface component

(c) Undeformed cruciform surface compo-
nent

(d) Deformation in the x direction

(e) Deformation in the x direction

Figure 20: Deformation fields of the tensile bar and cruciform samples.
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displacements and strains at the desired Abaqus node points were calculated by

interpolation of the data recorded for the three nearest ARAMIS nodes.

4.4 Iteration

The driving concept behind an inverse method of property determination is

that from the outset you have a data set obtained by experimentation that is

sought to be matched to the finite element model by iterative model updating.

When the model can no longer be improved, i.e. the optimization converges, the

input values of the most accurate iteration are the properties of the sample being

investigated. For the isotropic cases, those parameters are the Young’s Modulus, E,

and Poisson’s ratio, ν, and for the an orthotropic material under biaxial load, the

longitudinal and lateral Young’s moduli, E1 and E2, Poisson ratio, ν12, and sheer

modulus, G12. The optimization schemes used to extract the material properties

were NQLPQL that uses sequential quadratic programming [15], and a Hooke-

Jeeves pattern search [3]. ISight, by Simulia, was the software used to execute

the iterative analysis. ISight is an interface that combines multiple applications

in a process flow, analyzes a system, and automates their execution to extract the

optimal parameters of a given system. For the systems investigated in this research

only Abaqus and Excel components were needed.

4.4.1 Parameter Selection and Mapping

After establishing the component flow of the loop the corresponding models

and spreadsheets were imported into ISight and the type of simulation flow was

defined as an optimization.
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Figure 21: How to view the mesh and points

For the Abaqus component, ISight required two files: the .inp input, and the

.odb output database files associated with the model. The orthotropic models re-

quire the .cae file associated with the model instead of the .inp file. The table of

desired material properties that this research is focused on determining is retriev-

able from the .cae file, but not from the .inp file. From the “input” tab in the

component design window, the various moduli and Poisson’s ratios were identified

as parameters to be sampled. In the “Extraction” tab of the component design

window, it was specified that all field outputs from the .odb file would be extracted.

From the “output” tab in the component design window the maximum x and y

nodal displacements of all the previously identified nodes were chosen as outputs

to sample.

Figure 22: Execution settings for parameter extraction.

Before an Excel sheet could be imported into ISight, it had to be formatted.
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The spreadsheet for each case contained the Abaqus node number, x and y nodal

coordinates, x and y displacements, x and y strains, and the interpolated x and

y strains from ARAMIS. Each cell containing data that was to be mapped in the

data flow had to be named so that ISight recognized it as either an input or output.

ISight recognizes cells with just information as inputs and cells containing formulas

as outputs.

Once all the component parameters were identified, their flow from one an-

other was mapped in the design gateway. The moduli and Poisson’s ratios were

identified as inputs to the Abaqus file and remained unmapped because they will

be specified variables that are updated at the start of each iteration in the next sec-

tion. The x and y components of the nodal displacements from the Abaqus model

were mapped to import into their respective cells in the Excel spreadsheet. The

Excel component outputs the strains or displacements from the current iteration

based on what was examined.

Figure 23: Flow of Abaqus outputs to Excel component

4.4.2 Optimization

With the parameter flow mapped, the optimization structure can then be de-

fined. As mentioned above, the isotropic models were evaluated with two different

optimization algorithms to determine which process could yield a more accurate
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conclusion. In the optimization component editor, for each scheme, the default

optimization technique options were used with the exception of updating the max-

imum number of iterations from 40 to 100.

In the variables tab, all of the parameters previously defined as inputs are

available to be defined as variables. Only the moduli and Poisson’s ratios of interest

were selected to be updated. This is where the initial prediction for the variables

and the upper and lower bound of allowed values for the variables are defined.

ISight will not use values outside of these bounds as inputs. In Table 5 the bounds

of the parameters that are updated in each iteration are displayed. These only

apply to the isotropic experiments. The bounds of the orthotropic experiments

were determined experimentally and will be discussed with the results.

Isotropic Variable Bounds
Property Upper Lower
E 3000 1000
ν 0.1 0.5

Table 5: Isotropic variable bounds

In the tab furthest to the right of the optimization component editor exists the

objective tab. The target values for the desired output parameters were defined in

the “Target” column and their direction was set to “Target.” The other specifica-

tion instructs the software to find the combination of parameters that best satisfy

the specified target values. The previously calculated interpolated strains or dis-

placements were used as the target values to be optimized. Lastly, the constraints

for the target values were specified in the “Constraints” tab. The optimization of

the model is only as accurate or inaccurate as the constraints allow. Several dif-

ferent options for constraints were explored: the least and greatest displacements

used as the lower and upper bounds respectively, the difference of the interpolated

displacement/strain value and the calculated Abaqus value of each point, and the
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average difference in displacement/strain of each component, as well as an arbitrar-

ily determined value based on the precision of the Abaqus measurements versus

the interpolated results. With all targets and constraints identified, the models

were allowed to iterate until their termination accuracy had been satisfied or the

maximum number of iterations had been reached.

Isotropic Constraint Formulations
Formulation Tensile Bar Cruciform
|ui,exp − ui,num| point dependent point dependent
1
n

∑n
i=1 |ui,exp − ui,num| ±0.002872 ±0.008

Maximum and Minimum u,v -0.11, 0, 0.02, 0.21 0.008, 0.15
Arbitrary value ±0.02 ±0.03

Table 6: Isotropic constraint values for ISight target values.

Orthotropic Constraint Formulations
Formulation Cruciform
|ui,exp − ui,num| point dependent
1
n

∑n
i=1 |ui,exp − ui,num| ±0.008

Maximum and Minimum u,v 0.33, 0.01
Arbitrary value ±0.03

Table 7: Isotropic constraint values for ISight target values.

All isotropic models were started with the initial conditions of 0.2 and 1500 for

Poisson’s ratio and Young’s modulus, respectively. The results of the simulations

combining the different algorithms and constraint criteria will be discussed in the

next section. The initial conditions of the orthotropic models will be discussed

in the discussion in Chapter 6. Like the orthotropic bounds, their determination

became part of the interpretation of results.
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CHAPTER 5

Results

From the outset, this study sought to analyze the strain and displacement

fields of the objects of interest. After analyzing the strains and displacements of

the isotropic cases using the NLPQLP, it was determined that when using the

displacements as the target, the Isight optimization gave more accurate results.

For this reason, in subsequent experiments, only the displacement fields were used

as optimization targets.

5.1 Isotropic Cases

As previously stated, each model was optimized using two different schemes

with four different constraint formulations. Only the results of the optimization

using the displacements as targets will be discussed. When interpreting the results,

it’s important to recall that the speckle images for all of the tests were created from

the nodal displacements of the Abaqus finite element model. Because ARAMIS

tracks the displacement of the speckle pattern based on how fine or coarse the

mesh used to create the images was, there is an inherent amount of error to what

data is able to be collected. In the simulated stochastic pattern of the deformed

images, the speckles do not change shape as they would on a physical sample.
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(a) |exp− num| (b) Average difference

(c) Maximum and minimum u and v (d) Arbitrary Value

Figure 24: Surface plots of the design feasibility of parameters combinations for
the isotropic tensile bar design feasibility using the pattern search scheme. ν, E,
and the design feasibility are plotted on the x, y, and z axes, respectively.
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Isotropic Tensile Bar Pattern Search Results
Constrain Case E ν E% error ν% error
|ui,exp − ui,num| 2243 MPa 0.43 6.8% 16.2%
1
n

∑n
i=1 |ui,exp−ui,num| 2221 MPa 0.42 5.7% 13.5%

Max Min u,v 2203 MPa 0.41 4.9% 10.8%
Arbitrary value 2203 MPa 0.41 4.9% 10.8%

Table 8: Isotropic tensile bar optimization results using the pattern search scheme.

5.1.1 Tensile Bar

All of the pattern search optimizations were allowed to run for 100 iterations.

Recall the initial conditions for the model were 0.2 and 1500 MPa The initial

conditions were selected to be far enough away from the known material parameters

to allow the algorithm to arrive at those values independent of the initial guess.

Recall that the Poisson ratio and Young’s modulus of Lexan are 0.37 and 2100 MPa.

The maximum and minimum displacements and arbitrarily chosen constraint value

produced the lowest error in use with the pattern search algorithm. In 24 surface

plots display the feasibility of the combination of values as a function of E and ν.

The higher the value of the design feasibility, the better the combination of E and

ν satisfy the targets and constraints.
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(a) Maximum and minimum u and v (b) Arbitrary Value

Figure 25: Surface plots of the design feasibility of parameters combinations for
the isotropic tensile bar design feasibility using the NLPQLP scheme. ν, E, and
the design feasibility are plotted on the x, y, and z axes, respectively.

Isotropic Tensile Bar NLPQLP Results
Constrain Case E ν E% error ν% error
|ui,exp − ui,num| N/A N/A N/A N/A
1
n

∑n
i=1 |ui,exp−ui,num| N/A N/A N/A N/A

Max Min u,v 2106 MPa 0.39 0.2% 5.4%
Arbitrary value 2120 MPa 0.39 0.9% 5.4%

Table 9: Isotropic tensile bar optimization results using the NLPQLP scheme.

The NLPQLP optimizations used the same initial conditions and constraint

formulations as the pattern search. The first two constraint formulations caused

errors for the optimization process. No matter where the initial conditions were

placed, the algorithm would determine the conditions that optimize the design

parameters. The first two constraint formulations are orders of magnitude stricter

than the latter two, indicating that this process does not work well if its area of

interest is too confined. The maximum and minimum displacement and arbitrary

value constraint cases paired with this algorithm returned the material property

values with less than 1% error for Young’s modulus and less than 6% error for

Poisson’s ratio.
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5.1.2 Cruciform

(a) |exp− num| (b) Average difference

(c) Maximum and minimum u and v (d) Arbitrary Value

Figure 26: Surface plots of the design feasibility of parameters combinations for
the isotropic cruciform design feasibility using the pattern search scheme. ν, E,
and the design feasibility are plotted on the x, y, and z axes, respectively.
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(a) Maximum and minimum u and v (b) Average difference

Figure 27: Surface plots of the design feasibility of parameters combinations for
the isotropic cruciform design feasibility using the NLPQLP scheme. ν, E, and
the design feasibility are plotted on the x, y, and z axes, respectively.

Isotropic Cruciform Pattern Search Results
Constraint Case E ν E %error ν %error
|ui,exp − ui,num| 2291 MPa 0.3228 9.12% 12.7%
1
n

∑n
i=1 |ui,exp−ui,num| 2103 MPa 0.3712 0.14% 0.32%

Max Min u,v 2123 MPa 0.3664 1.13% 0.98%
Arbitrary value 2104 0.3718 0.21% 0.47%

Table 10: Isotropic cruciform optimization results using pattern search scheme.

The biaxial isotropic pattern search optimizations were performed using the

same initial conditions, bounds, and constraint formulations as the uniaxial exper-

iments. The goal was a combination of optimization process and constraint for-

mulation is to return the same material properties as in the uniaxial tests. Using

the average difference between the analytical model and the experimental results

as the target constraints for the simulation returned the most accurate parameter

estimations with 0.14% error for Young’s modulus and 0.32% error for Poisson’s

ratio. The arbitrary value and max-min constraints returned similarly accurate

values to the average difference case. The NLPQLP scheme encountered errors

with the |exp − num| and arbitrary value constraint cases and couldn’t complete
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Isotropic Cruciform NLPQLP Results
Constraint Case E ν E %error ν %error
1
n

∑n
i=1 |ui,exp−ui,num| 2019 MPa 0.37952 3.86% 6.81%

Max Min u,v 1952 MPa 0.425 7.1% 14.9%

Table 11: Isotropic cruciform optimization results using NLPQLP scheme.

the optimization. The percent error of the values returned from the NLPQLP

scheme were much higher than the pattern search and the choice was made to not

use it to evaluate the orthotropic cases.

5.2 Orthotropic Cases

The DIC images for the orthotropic cruciform sample were created using a

different set of parameters to better simulate the imperfect nature of applying a

stochastic pattern with spray paint. Most notable, blurred edges were applied to

the outside of the speckles to better resemble a sprayed pattern.
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Figure 28: New speckle pattern

To begin evaluation of the orthotropic cruciform sample, the pattern search

algorithm paired with the maximum and minimum displacements as target con-

straints were investigated. Three trials of this case were run, updating the variable

bounds each trial, to refine the result based on the design feasibility plots of vari-

able pairings. The first trial had variable bounds of ±10, 000, the second ±5, 000,

and the third with bounds chosen based on regions of high design feasibility seen

in the surface plots of the first and second trials. In the second and third trials,

the bounds were chosen so the returned estimate of the variable was still contained

within the updated bounds. The initial guess of the third trial was set to the cen-

ter of the range of values for each variable. If the best estimate of the parameters

were truly the values determined by the previous trial, the optimization would
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converge to those values as they also exist inside the bounds. A single trial using

the NLPQLP scheme was conducted using the same bounds and initial conditions

as the third trial and returned values of similar accuracy.
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(a) design feasibility E1 vs E2 (b) design feasibility E1 vs G12

(c) design feasibility E1 vs ν12 (d) design feasibility E2 vs G12

(e) design feasibility E2 vs ν12 (f) design feasibility ν12 vs G12

Figure 29: Surface plots of the design feasibility of parameter combinations for
the first orthotropic cruciform trial using the pattern search scheme and max min
constraints.
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(a) design feasibility E1 vs E2 (b) design feasibility E1 vs G12

(c) design feasibility E1 vs ν12 (d) design feasibility E2 vs G12

(e) design feasibility E2 vs ν12 (f) design feasibility ν12 vs G12

Figure 30: Surface plots of the design feasibility of parameter combinations for
the first orthotropic cruciform trial using the pattern search scheme and max min
constraints.
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(a) design feasibility E1 vs E2 (b) design feasibility E1 vs G12

(c) design feasibility E1 vs ν12 (d) design feasibility E2 vs G12

(e) design feasibility E2 vs ν12 (f) design feasibility ν12 vs G12

Figure 31: Surface plots of the design feasibility of parameter combinations for
the first orthotropic cruciform trial using the pattern search scheme and max min
constraints.
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Orthotropic Cruciform Pattern Search First Trial
Literature Value Experimental Value % error

E1 32500 MPa 31012 MPa 4.57%
E2 77000 MPa 68325 MPa 11.26%
G12 22400 MPa 22053 MPa 1.55%
ν12 0.297 0.33472 13.5%

Table 12: Orthotropic cruciform pattern search first trial results.

Orthotropic Cruciform Pattern Search Second Trial
Literature Value Experimental Value % error

E1 32500 MPa 32176 MPa 0.99%
E2 77000 MPa 73763 MPa 4.20%
G12 22400 MPa 22022 MPa 1.68%
ν12 0.297 0.31475 5.97%

Table 13: Orthotropic cruciform pattern search second trial results.

Orthotropic Cruciform Pattern Search Third Trial
Literature Value Experimental Value % error

E1 32500 MPa 32526 MPa 0.08%
E2 77000 MPa 75481 MPa 1.97%
G12 22400 MPa 22001 MPa 1.87%
ν12 0.297 0.3083 3.8%

Table 14: Orthotropic cruciform pattern search third trial results.
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Orthotropic Cruciform NLPQLP
Literature Value Experimental Value % error

E1 32500 MPa 32500 MPa 0%
E2 77000 MPa 75575 MPa 1.85%
G12 22400 MPa 2300 MPa 2.5%
ν12 0.297 0.30703 3.37%

Table 15: Orthotropic cruciform pattern search third trial results.
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CHAPTER 6

Discussion and Conclusions

6.1 Isotropic Cases
6.1.1 Tensile Bar

The isotropic tensile bar experiments were able to return a minimum error

of 0.2% and 5.4% for Young’s modulus and Poisson’s ratio, respectively, by using

the NLPQLP algorithm and constraining the target values with the maximum and

minimum displacements of each node. Since the first two constraint formulations

(see Table 9) did not yield any results, it is reasonable to assume that those con-

straint formulations confine the model too tightly for the NLPQLP algorithm. The

pattern search returned values for Young’s modulus and Poisson’s ratio that were

precise relative to one another, but were not accurate in returning the properties of

Lexan. To support the claim that the first two constraint cases confine the model

too tightly, Figure 24 shows that the design feasibility for the same two constraint

cases never reaches a value higher than 3 where the other two cases return values

between 8 and 9. It is possible that if it were allowed more time to optimize,

the pattern search paired with the tighter constraint cases may have arrived at

the correct parameters, but, to maintain uniformity, this possibility was not ex-

plored. The isotropic tensile bar was the simplest case examined in this study.

The optimization resulted in values of less than 6% error utilizing the NLPQLP

optimization algorithm was taken to be acceptable and will be used in examining

the cruciform case.

6.1.2 Cruciform

The NLPQLP algorithm failed to return accurate results for any of the con-

straint cases for the isotropic cruciform experiments. The cruciform experiments
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were able to return a minimum error of 0.14% and 0.32% for Young’s modulus and

Poisson’s ratio, respectively, by combining the pattern search and constraining

the target values with the average difference constraint case. The max-min dis-

placements and arbitrary value constraints also returned values with similarly low

error percentages. Like to the tensile bar, the design feasibility of the |exp−num|

constraint case never achieves a value greater than 3, where all other constraint

formulations reach values of 9 (see Figure 26), Having approximated Lexan’s ma-

terial properties of less than 2% error in a more complex loading scenario. The

model was accepted and the orthotropic cruciform sample was examined.

6.2 Othotropic Cases

The max-min target constraints were used in the orthotropic experiments

because they were consistently the most reliable in terms of allowing the algorithm

to run without error. In Figure 29 and Figure 30 there are very clearly ranges of

values that are within the bounds of the optimization that are not explored by

the algorithm. These regions are characterized by steep gradients at the edges of

the plots and regions that look like they are forming a peak. In Figure 31, we

see a realization of these peaks, or regions of consistently high design feasibility.

The development of the peak when plotting E1 vs. E2 displays this phenomena

the best. Updating the bounds between which the variable values could exist in

accordance with the design feasibility (see Figures 29, 30, and 31) returned values

for the elastic constants of the composite with less than 2% error when compared

to the classically determined values. This process of bound determination relied

on the interpretation of the design feasibility plots and not the a priori knowledge

of the material’s elastic constants. This fact verifies that it is a suitable method

of testing an unknown orthotropic material.
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6.3 Future Research

The most intuitive next step for this research is verifying the orthotropic

results with loading that is within the elastic limits of the composite material. This

relies on the ability of the DIC software to accurately report displacements that

are orders of magnitude less than the current model. The next topic that should

be investigated is verifying this technique with displacements obtained from DIC

on a physical sample of the isotropic and orthotropic materials in this research.

If the values for these materials can be returned from an analysis of a physical

sample with a similar degree of accuracy, it stands to reason that this method

could be applied to more complex woven structures and new alloys that emerge

as candidates for commercial applications. While the isotropic results came to

an acceptable conclusion, the behavior of both algorithms in the cruciform case

require further study. These cases should be reexamined taking care to properly

set the length scale for the simulated DIC images. In the same revised experiment,

the parameters used to generate the DIC images in the orthotropic experiments

should be used for the isotropic cases. The DIC software was able to track their

motion more accurately and with less data loss.
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APPENDIX A

Displacement Interpolation Function

function nodal displacements from DIC data
%
% 1. reads finite element nodal coordinates from file
% 'nodal coordinates.csv'
% 2. reads DIC displacment fields at triangular grid points from
% file 'grid displacment.csv'
% 3. interpolates the grid point displacements to node locations
% 4. writes the interpolated nodal displacements to file
% 'nodal displacements.csv'
%
clc; clear all; close all; format compact
%
% Read nodal coordinates
%
disp('Finite element nodal coordinates')
nodal coordinates=csvread('nodal coordinates.csv');
disp(nodal coordinates)
nodal coordinate size=size(nodal coordinates);
num nodes=nodal coordinate size(1);
%
% Read DIC grid data
%
data=csvread('grid displacements.csv');
data size=size(data);
numpoints=data size(1);
grid point=data(:,1);
xgrid=data(:,2);
ygrid=data(:,3);
u=data(:,5);
v=data(:,6);
%
plot(xgrid,ygrid,'r.')
xlabel('x')
ylabel('y')
figure
plot(xgrid,ygrid,'ro')
disp('Grid points in range 0<=(x,y)<=1')
for i=1:numpoints

if 0<=xgrid(i)&& xgrid(i)<=1 && 0<=ygrid(i) && ygrid(i)<=1
disp([xgrid(i) ygrid(i) u(i) v(i)])
text(xgrid(i),ygrid(i),num2str(i))

end
end
%
% zoom in to region near (0,0)
%
axis([0 1 0 1])
%
% Interpolate to desired nodal locations
%
nodal displacements=[];
for node point=1:num nodes

node number=nodal coordinates(node point,1);
x=nodal coordinates(node point,2);
y=nodal coordinates(node point,3);
disp('--------------------------')
disp(['(x node,y node)= ' num2str([x,y])])
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hold on
plot(x,y,'kx')
xlabel('x')
ylabel('y')
%
% find 3 nearest grid points
%
distance=sqrt((x-xgrid).ˆ2+(y-ygrid).ˆ2);
[~,igrid]=sort(distance);
pt1=igrid(1); pt2=igrid(2); pt3=igrid(3);
disp(['Nearest grid points are: ' ...

num2str([pt1 pt2 pt3])])
disp([' u values are: ' num2str([u(pt1) ...

u(pt2) u(pt3)])])
disp([' v values are: ' num2str([v(pt1) ...

v(pt2) v(pt3)])])
%
x1=xgrid(pt1);
y1=ygrid(pt1);
x2=xgrid(pt2);
y2=ygrid(pt2);
x3=xgrid(pt3);
y3=ygrid(pt3);
%
alpha 1=x2*y3-x3*y2;
alpha 2=x3*y1-x1*y3;
alpha 3=x1*y2-x2*y1;
beta 1=y2-y3;
beta 2=y3-y1;
beta 3=y1-y2;
gamma 1=x3-x2;
gamma 2=x1-x3;
gamma 3=x2-x1;
A=det([1 x1 y1;1 x2 y2;1 x3 y3])/2;
%
N1=(alpha 1+beta 1*x+gamma 1*y)/(2*A);
N2=(alpha 2+beta 2*x+gamma 2*y)/(2*A);
N3=(alpha 3+beta 3*x+gamma 3*y)/(2*A);
%
node u=N1*u(pt1)+N2*u(pt2)+N3*u(pt3);
node v=N1*v(pt1)+N2*v(pt2)+N3*v(pt3);
%
disp([' Interpolated displacementss are: ' ...

num2str(node u) ' ' num2str(node v)])
nodal displacements=[nodal displacements; ...

node number, x, y, node u, node v ];

end
nodal displacements
%
% Display and save interpolated nodal displacements
%
csvwrite('nodal displacements.csv',nodal displacements)
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APPENDIX B

Stochastic Pattern Generator

function simulated speckle generator
%
clear all; close all; clc; format compact
%
global num elems num nodes elems nodes u nodes v nodes
%
% create speckle pattern
%
tic
%
% USER INPUT - turn on/off blurred edges
%
blurred edge=1;
%
% USER INPUT - set desired resolution here:
%
% N=500; % image size = (N+1) x (N+1)
% Ns=10000; % number of speckles in frame
% N=1000; % image size = (N+1) x (N+1)
% Ns=25000; % 17000; % number of speckles in frame
N=4000; % image size = (N+1) x (N+1)
Ns=150000; % 250000 % number of speckles in frame
%
N center=N/2+1; % pixel number at center of image
%
% USER INPUT - set number steps & range of pixel sizes
%
Nstep=10; % number of load steps (Number of images = Nstep+1)
rmin=5; rmax=10; % speckle size range in pixels4000
%
% USER INPUT - set if overlap is allowed when finding ...
% locations of speckles
%
allow overlap=0; % turn on/off overlapped speckles
if allow overlap==1

xp=N*rand(1,Ns);
yp=N*rand(1,Ns);

else
min space=3; % 5; % minimum spacing between speckle centers
[xp,yp]=getpoints(N,Ns,min space);

end
disp([num2str(Ns) ' speckles generated'])
toc
%
% generate image with undeformed speckles
%
rp=zeros(1,Ns);
for i=1:Ns

% if i<Ns/2
% rp(i)=rmin;
% else
% rp(i)=rmax;
% end
rp(i)=rmax-((i-1)/(Ns-1))*(rmax-rmin); % random speckle
% size between rmin and rmax

end
image size x=N+1;
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image size y=N+1;
a=uint8(255*ones(image size y,image size x));
% 6/21
gray max=100;
gray level=gray max*rand(1,Ns);
% gray level=zeros(1,Ns);
%
on sample=true(1,Ns);
[a,cmap]=create image(Ns,xp,yp,rp,image size x,image size y, ...

gray max,gray level,on sample,blurred edge);
gray pixels=sum(sum(a<255));
num pixels=(N+1)*(N+1);
af=gray pixels/num pixels; % fraction of speckles
% (non-white pixels)
disp(['area fraction of speckles = ' num2str(af)])
toc
title('undeformed speckles')
plotname=['undeformed speckles af= ' num2str(af) '.png'];
imwrite(a,cmap,plotname,'png')
disp(['initial speckle pattern created'])
toc
% pause
%
% USER INPUT - set scale (match fea coordinates)
% scale for dogbone 30mm = N pixels
%
scale=30/N; % (= 30 mm/N pixels)
for i=1:Ns

x mm(i)=(xp(i)-N center)*scale;
y mm(i)=(yp(i)-N center)*scale;

end
disp('undeformed scaling complete')
toc
%
get fea(Nstep+1)
disp('fea data read from data file')
toc
%
% find element number for each speckle
%
% gray level=255*ones(1,Ns);
% first - find centroid of each element
for ielem=1:num elems

elem node=elems(ielem,2:5);
xv=[nodes(elem node(1),2) nodes(elem node(2),2) ...

nodes(elem node(3),2) nodes(elem node(4),2)] ...
/scale+N center;

yv=[nodes(elem node(1),3) nodes(elem node(2),3) ...
nodes(elem node(3),3) nodes(elem node(4),3)] ...
/scale+N center;

x centroid(ielem)=mean(xv);
y centroid(ielem)=mean(yv);

end
% second - for each speckle, find nearest element
for ispeckle=1:Ns

clear dist
dist=sqrt((xp(ispeckle)-x centroid).ˆ2+ ...

(yp(ispeckle)-y centroid).ˆ2);
[~,elem number(ispeckle)]=min(dist);

end
% third - check to see if speckle is on the sample and if not,
% set gray level to 255 (white)
on sample=true(1,Ns);
for ispeckle=1:Ns

elem node=elems(elem number(ispeckle),2:5);
xv=[nodes(elem node(1),2) nodes(elem node(2),2) ...

nodes(elem node(3),2) nodes(elem node(4),2)] ...
/scale+N center;
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yv=[nodes(elem node(1),3) nodes(elem node(2),3) ...
nodes(elem node(3),3) nodes(elem node(4),3)] ...
/scale+N center;

in = inpolygon(xp(ispeckle),yp(ispeckle),xv,yv);
if in~=1

%
gray level(ispeckle)=255;
on sample(ispeckle)=0;

end
end
%
size(on sample);
on sample;
%
%
disp('elements found for each speckle')
toc
%
% create image for test sample
%
figure
image size x=N+1;
image size y=N+1;
a=uint8(255*ones(image size y,image size x));
[a,cmap]=create image(Ns,xp,yp,rp,image size x,image size y, ...

gray max,gray level,on sample,blurred edge);
title(['Deformed speckles - step 0'])
plotname='deformed speckles-step 0.png';
imwrite(a,cmap,plotname,'png')
disp('Deformed speckles, step 0 created')
toc
% initial video
v = VideoWriter('dogbone.avi');
v.FrameRate=1;
open(v);
frame = getframe(gcf);
writeVideo(v,frame);
%
% create images for each load step (starting with step 2)
%
% find (s,t)coordinate for each speckle

for ispeckle=1:Ns
pointxy=[x mm(ispeckle) y mm(ispeckle)];

% pointxy=[xp(ispeckle) yp(ispeckle)];
if on sample(ispeckle)==1

elem node=elems(elem number(ispeckle),2:5);
x nodes=[nodes(elem node(1),2) nodes(elem node(2),2) ...

nodes(elem node(3),2) nodes(elem node(4),2)];
y nodes=[nodes(elem node(1),3) nodes(elem node(2),3) ...

nodes(elem node(3),3) nodes(elem node(4),3)];
st=find s t(x nodes,y nodes,pointxy);
st speckle(ispeckle,:)=[st(1) st(2)];

end
end
disp('(s,t) coordinates found for each speckle')
toc
%
% determine displacement of each speckle and update position
%
for istep=2:Nstep+1

for ispeckle=1:Ns
% pointxy=[x mm(ispeckle) y mm(ispeckle)];

if on sample(ispeckle)==1
elem node=elems(elem number(ispeckle),2:5);
x nodes=[nodes(elem node(1),2) nodes(elem node(2),2) ...

nodes(elem node(3),2) nodes(elem node(4),2)];
y nodes=[nodes(elem node(1),3) nodes(elem node(2),3) ...

nodes(elem node(3),3) nodes(elem node(4),3)];
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%
s=st speckle(ispeckle,1);
t=st speckle(ispeckle,2);
un=[u nodes(elem node(1),istep) ...

u nodes(elem node(2),istep) ...
u nodes(elem node(3),istep) ...
u nodes(elem node(4),istep)];

vn=[v nodes(elem node(1),istep) ...
v nodes(elem node(2),istep) ...
v nodes(elem node(3),istep) ...
v nodes(elem node(4),istep)];

u mm=((1-s)*(1-t)*un(1)+(1+s)*(1-t)*un(2)+ ...
(1+s)*(1+t)*un(3)+(1-s)*(1+t)*un(4))/4;

v mm=((1-s)*(1-t)*vn(1)+(1+s)*(1-t)*vn(2)+ ...
(1+s)*(1+t)*vn(3)+(1-s)*(1+t)*vn(4))/4;

x mm new=x mm(ispeckle)+u mm;
y mm new=y mm(ispeckle)+v mm;
xp(ispeckle)=x mm new/scale+N center;
yp(ispeckle)=y mm new/scale+N center;

end
%

end
%
% create image for each load step
%
figure
a=uint8(255*ones(image size y,image size x));
[a,cmap]=create image(Ns,xp,yp,rp,...

image size x,image size y, ...
gray max,gray level,on sample,blurred edge);

title(['Deformed speckles - step ' num2str(istep-1)])
plotname=[['deformed speckles-step ' ...

num2str(istep-1) '.png']];
imwrite(a,cmap,plotname,'png')
disp(['Deformed speckles, step ' ...

num2str(istep-1) ' created'])
toc
% save movie frame
frame = getframe(gcf);
writeVideo(v,frame);
%

end
%
drawnow
% end
[s,Fs] = audioread('blip.wav');
sound(s,Fs);
close(v)
toc
%
% ----------------------------------------------------------
%
function [xp,yp]=getpoints(N,Ns,min space)
%
% - N gives image size = (N+1) x (N+1) in pixels
% - Ns is desired number of speckles
% - min space is the minimum spacing between pixel centers
% - xp and yp are the (x,y) coordinates of generated speckles
%
% ref: https://www.mathworks.com/matlabcentral/answers/158357-...
% create-random-points-in-a-rectangular-domain-but-...
% with-minimum-separation-distance
x = N*rand(1, 10000000);
y = N*rand(1, 10000000);
% x = N*rand(1, 100000);
% y = N*rand(1, 100000);
minAllowableDistance = min space;
numberOfPoints = 10000000;
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% numberOfPoints = 100000;
% Initialize first point.
keeperX = x(1);
keeperY = y(1);
% Try dropping down more points.
counter = 2;
for k = 2 : numberOfPoints

% Get a trial point.
thisX = x(k);
thisY = y(k);
% See how far is is away from existing keeper points.
distances = sqrt((thisX-keeperX).ˆ2 + (thisY - keeperY).ˆ2);
minDistance = min(distances);
if minDistance >= minAllowableDistance

keeperX(counter) = thisX;
keeperY(counter) = thisY;
counter = counter + 1;

end
if counter==Ns+1

break
end

end
% disp([num2str(counter) ' points found'])
xp=keeperX;
yp=keeperY;
%
% ------------------------------------------------------------
%
function [a,cmap]=create image(Ns,xp,yp,rp,image size x,...

image size y,gray max,gray level,on sample,blurred edge)
%
a=uint8(255*ones(image size y,image size x));
for k=1:Ns

if on sample(k)==1
i mid=round(yp(k));
j mid=round(xp(k));
r search=2*round(rp(k));
for i=max(1,i mid-r search):...

min(i mid+r search,image size y)
for j=max(1,j mid-r search): ...

min(j mid+r search,image size x)
dist=sqrt((j-xp(k))ˆ2+(i-yp(k))ˆ2);
if blurred edge==1

if dist<=.7*rp(k)
a(i,j)=gray level(k);

elseif dist<=.85*rp(k)
a(i,j)=gray max-...

0.8*(gray max-gray level(k));
elseif dist<=rp(k)

a(i,j)=gray max-...
0.4*(gray max-gray level(k));

end
else

if dist<=rp(k)
a(i,j)=gray level(k);

end
end

end
end

end
end
%
image(a)
cmap=colormap(gray(256));
axis equal
drawnow
%
% -------------------------------------------------------------
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%
function get fea(nsteps)
%
% read finite element results
%
global num elems num nodes elems nodes u nodes v nodes
%
% read finite element model parameters
elems=load('elems.dat');
elems size=size(elems);
num elems=elems size(1);
nodes=load('nodes.dat');
nodes size=size(nodes);
num nodes=nodes size(1);
% displacements=load('increment 10.dat');
displacements=load('displacements.dat');
size(displacements);
%
u=zeros(num nodes,nsteps);
v=zeros(num nodes,nsteps);
% u size=size(u)
mag factor=1;
for i=2:nsteps

u nodes(:,i)=mag factor*(i-1)*displacements(:,2)/(nsteps-1);
v nodes(:,i)=mag factor*(i-1)*displacements(:,3)/(nsteps-1);

end
%
% -------------------------------------------------------------
%
function st=find s t(x nodes,y nodes,pointxy)
global xn yn ptxy
ptxy=pointxy;
xn=x nodes;
yn=y nodes;
options = optimset('MaxFunEvals',1e8);
st=fminsearch(@point s t,[0,0],options);
%
% objective function to find (s,t) for a point
%
function f = point s t(x)
%
global xn yn ptxy
%
f = 0;
%
s=x(1);
t=x(2);
f=sqrt((ptxy(1)-((1-s)*(1-t)*xn(1)+(1+s)*(1-t)*xn(2)+ ...

(1+s)*(1+t)*xn(3)+ 1-s)*(1+t)*xn(4))/4)ˆ2+ ...
(ptxy(2)-((1-s)*(1-t)*yn(1)+(1+s)*(1-t)*yn(2)+ ...
(1+s)*(1+t)*yn(3)+(1-s)*(1+t)*yn(4))/4)ˆ2);
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APPENDIX C

Original DIC Procedure

C.0.1 Dog Bone

A sample of an isotropic material needed to be prepared to for uniaxial tensile

testing. To create an exact and duplicatable shape, a MATLAB script was used

to generate a set of points in an X-Y coordinate system that were stored in an

.svg file. The .svg file was uploaded into the Inventables Carvey online GUI. The

cutting path of the tool of the Carvey was set to cut outside of the perimeter of

the shape. This was done to ensure that the dimensions of the final piece most

exactly matches the dimensions of the ABAQUS model. The dimensions of the

sample were chosen to be compatible withe the biaxial load frame.

C.0.2 Cruciform

A cruciform of an isotropic material needed to be prepared to for biaxial tensile

testing. To create another exact and duplicatable shape, a MATLAB script was

used to generate a set of points in an X-Y coordinate system that were stored in

an .svg file. The .svg file was uploaded into the Inventables Carvey online GUI.

The dimensions of the sample were chosen to be compatible with the biaxial load

frame. The corners of the outside of the center region of the cruciform shape use

a small arc instead of a sharp corner to take into account the shape of the bit of

the CNC machine.

C.1 Sample Preparation

To begin preparing the Lexan tensile bars and cruciform samples, their areas

of interest (AOI) should be isolated using painters tape. A base coat of white spray

paint was applied to the area of interest and allowed to dry for 24 hours. After

drying, a medium-fine speckle coat of black spray paint was applied to the AOI
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and allowed to dry for at least 6 hours. After the second drying, the samples are

ready for tensile testing.

C.2 DIC
C.2.1 Camera Set Up

The camera array should be assembled and placed in a way such that the area

of interest to be examined is normal to the camera array. Based on the size of

the object being observed, the measuring distance, angle, and suggested aperture

opening of the cameras is obtained from the GOM Manual[18]. Using the lights

in the DIC kit, place the lights to illuminate the subject taking care to not place

the lights behind, to the side of or above the line of sight of the cameras. The

heat radiating from the lights can distort the camera view of the object. Once the

object is in view of the cameras and the lights have been placed, the cameras can

be focused and calibrated.

C.2.2 Focusing

To begin, close the apertures of the camera as much as they can be by adjusting

the collar and finger screw near their lens. Next, in the ARAMIS software, adjust

the exposure time of the cameras by clicking and dragging on the feed from the

camera. The image is taken to be good when it is illuminated with minimal red

over exposed patches. After that, the cameras can be focused. Each camera much

be focused individually. To begin focusing, zoom in on the area of interest almost

as far as the software permits. Loosen the screw of the silver collar near the lens of

the camera and rotate the barrel containing the lens until the image obtained from

each camera has the desired level of clarity. Once focused, a final adjustment of

the aperture is done using the false color option. The false color option is another

way to gauge the exposure of the object. Ideally, the apertures of each camera

should be adjusted so that the false color seen on screen is yellow. White indicates
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over exposure and blue indicates underexposure.

C.2.3 Calibration

To calibrate the camera system, indicate the desire to calibrate in the ARAMIS

interface. once prompted, the software with guide the user step by step through

the process. A calibration panel with precisely placed dots is observed by the

camera array and photographed at different angles and orientations in order to

create a 3-D calibrated space. Once the system is calibrated the cameras are ready

to capture and track the deformation of any patterned object.
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