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ABSTRACT

The problem considered is the design of a digital control system for precision

tracking control of a fully-coupled non-minimum phase MIMO plant. The first

step is to design a 2-degree-of-freedom feedback tracking system using standard

pole-placement or linear quadratic regulator techniques. The result is a stable

closed-loop system having zero steady-state error to step inputs. In order to obtain

precision tracking for other types of inputs, some kind of feedforward control is

needed. Two different tracking architectures are considered in this thesis, both

feature a feedforward inverse filter to enable precision tracking. The filters are

the inverse of a closed-loop system. The derivations of the filters are given; for

non-minimum phase systems the result is approximately a decoupled system of

delays over a certain bandwidth. Two different possibilities to design the inverse

filters are considered: the first one is based on a novel frequency approximation,

while the other one relies on the addition of feedback. Several options to design

the feedback are discussed. The tracking performances of the resulting precision

tracking architectures are demonstrated and evaluated for several non-minimum

phase example systems via simulations.
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CHAPTER 1

Introduction

Tracking is often used to achieve zero steady-state error for control systems.

This thesis, however, focuses on the transient response of control systems, and does

not only care about the steady-state error. For this reason, the approach is called

precision tracking because it is designed to precisely follow the reference trajectory

during all time. In order to reach this goal, some kind of system inversion is

required.

If the system under consideration is non-minimum phase, the realization of

an exact inversion of the system is not used since this scenario leads to unstable

eigenvalues in the inverted system. Therefore, approximations are needed. In

this thesis, two architectures for the approximate inversion of discrete-time linear

systems will be considered. Even if the continuous-time system is minimum phase,

the corresponding discrete-time system can be non-minimum phase, due to the

presence of sampling zeros (for example there will always be zeros outside the unit

circle if the relative degree of the continuous-time system is greater than or equal

to three, and the sampling period is sufficiently short [2]).

Classic feedback control systems with integral control may face the problem

of having only a small bandwidth for precision tracking, since they only guarantee

zero steady-state error. This work will address this problem by using and designing

a feedforward filter to improve the precision tracking bandwidth of the control

system.

Precision tracking is important in many applications such as atomic force mi-

croscopes (AFM) [3, 4, 5], scanning tunneling microscopes (STM) [6], piezoelectric-

stack actuated nanopositioning platforms [7, 8] and hypersonic vehicles [9]. Two
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of the applications will be briefly explained below to demonstrate the importance

of precision tracking.

The AFM is a versatile instrument which is able to image nanoscale structures

with an increasing importance in molecular biology [10]. It is particularly interest-

ing for control engineers since the imaging depends utterly on the feedback control

loop. Advantages of the AFM over optical methods comprise a higher resolution

and the fact that the AFM produces a 3D surface map. The applications include

material sciences (photovoltaic cells, crystallization, semiconductor properties) and

the scan of biologically relevant materials (membrane stability, cell motility) [10].

The AFM can also be used to manipulate material, making it a useful actuator

for nanotechnology. The quality and speed of AFM images is dependent on the

overall dynamics of the AFM system [4], hence a good tracking of the reference

trajectory is desired.

The STM is an important tool in nanofabrication, but its problem is that

it cannot compete with more established techniques due to its limited operating

speed (throughput) [6]. The throughput, however, is limited because of positioning

errors in the STM system, and therefore a high-speed precision positioning system

is required.

1.1 Overview of Thesis

The thesis is structured as follows: Chapter 2 gives an overview of the existing

literature.

Next, in Chapter 3, the considered approaches to invert a given system are

explained: two different ways to derive a stable feedforward filter which approx-

imately inverts the system are presented. Starting point is the exact, unstable

feedforward filter. The first design possibility relies on considering a certain num-

ber of advances for the system outputs to come up with a stable filter, while the

2



other technique focuses on designing feedback to stabilize the filter. In the context

of these inversion techniques, two different precision tracking architectures will be

presented.

In Chapter 4, several alternatives to calculate the mentioned feedback con-

troller are presented. Among these alternatives, especially an idea to formulate an

optimization problem to obtain an ideal feedback gain matrix which optimizes the

system’s frequency response excels.

Chapter 5 introduces various example systems which are to be inverted for

precision tracking and provides simulation results. Finally, Chapter 6 gives the

conclusion.

3



CHAPTER 2

Review of Literature

Inversion of non-minimum phase systems has been studied previously by var-

ious authors. First, some basic thoughts on the inversion of non-minimum phase

systems are presented. In the following sections, a few approaches and ideas shall

be discussed, together with a (personal) evaluation of the advantages and disad-

vantages between these approaches and the method derived in this thesis.

Different kinds of inversion approaches and architectures can be distinguished

and exist in the literature. In general, inversion approaches can be split up into

closed-loop inversion feedforward (CLIF) and plant-inversion feedforward (PIF)

architecures, as shown in Fig 2.1 [11, 12]. The inverse filter is denoted by F, Gc

is a feedback controller and Gp a plant model. The goal of the architectures is to

track the desired output yd with the actual plant output y.

Moreover, different approaches to find the inverse filter can be distinguished.

On the one hand, various stable approximate model-inversion techniques exist

[11, 13] (e.g. Tomizuka’s zero phase error tracking control [14]), especially for

discrete-time, single-input, single-output (SISO) plants. These approaches try

to exactly invert the system model, but replace the unstable part of the zero

dynamics with a stable approximation [13]. On the other hand, techniques have

been published which use the exact, unstable inversion and ensure stability of the

system by using noncausal plant inputs [13] (e.g. in [15, 6, 16]). Some of the

noncausal approaches use some kind of preview time to make the inversion more

applicable to applications where the desired output trajectory is not completely

pre-specified [15].

An aspect that many inversion approaches (both continuous- and discrete-

4
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(a) Closed-loop inversion feedforward (CLIF) architecture
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(b) Plant inversion feedforward (PIF) architecture

Figure 2.1: Tracking architectures

time) have in common is that they specifically exclude systems with a transmission

zero on the imaginary axis or on the unit circle, respectively (e.g. [15, 6, 17, 16, 18]).

The inverse filter that will be derived in Chapter 3 is an approximate inverse

for a discret-time non-minimum phase system which uses an advanced version of

the reference input (i.e. advanced by a finite number of samples) to drive the

inverse filter.

2.1 Continuous-time approaches

One continuous-time approach can be found in [15]. It calculates the feedfor-

ward input that leads to precision output tracking. The method will be discussed

in more detail here.

The starting point is the square state-space system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(2.1)

5



with x(t) ∈ Rn and u(t),y(t) ∈ Rp. First, the relation

y(r)(t) = Axx(t) + Byu(t) (2.2)

with

Ax =



cT

1 Ar1

...
cT
p Arp


 By =



cT

1 Ar1−1B
...

cT
p Arp−1B


 . (2.3)

and

r =
[
r1 . . . rp

]T
(2.4)

has to be found. This relation motivates

uff (t) = B−1
y

(
y

(r)
d (t)−Axx(t)

)
(2.5)

as the choice of the control law u(t), where the term y
(r)
d is defined by y

(r)
d =

[
dr1yd,1
dtr1

. . .
drpyd,p
dtrp

]T

and yd(t) is the desired output trajectory.

The next step is to introduce a transformation T to divide the state vector

x(t) into a known part ξ(t), which depends on the desired output trajectory yd(t),

and the internal dynamics η(t), i.e.
[
ξ(t) η(t)

]T
= Tx(t). The part ξ(t) is given

by

ξ(t) =
[
y1 ẏ1 . . . dr1−1y1

dtr1−1 . . . yp ẏp . . . drp−1yp
dtrp−1

]T

(2.6)

so the control law becomes

uff (t) = B−1
y

(
y

(r)
d (t)−Aξξd(t)−Aηη(t)

)
(2.7)

where ξd(t) is the desired ξ(t), which is known when the desired output and its

time derivatives are specified.

Finally, the internal dynamics η(t) have to be calculated. If the system is

hyperbolic (i.e. none of the zeros of the system is located on the imaginary axis),

the internal dynamics can be decoupled with a transformation matrix U into a

6



stable (σs(t)) and an unstable (σu(t)) subsystem

σ̇s(t) = Āsσs(t) + B̄sY d(t)

σ̇u(t) = Āuσu(t) + B̄uY d(t)

(2.8)

where Y d(t) =
[
y

(r)
d (t) ξd(t)

]T

. In this hyperbolic case, the solutions for the

internal dynamics are given by

σs(t) =

∫ t

−∞
eĀs(t−τ)B̄sY d(τ)dτ

σu(t) = −
∫ ∞

t

e−Āu(τ−t)B̄uY d(τ)dτ

(2.9)

i.e. the internal dynamics η(t) can be calculated (if the system is non-hyperbolic,

the author developed an idea to deal with this case in [19]). It is important

to notice that the desired output must be completely specified (including future

information) in order to compute the solution for the unstable part σu(t). For

online computation, it is assumed that yd is known for a preview time of Tp seconds,

i.e. Y d(τ) is known for all t ≤ τ ≤ t+ Tp, and

σ̄u(t) = −
∫ t+Tp

t

e−Āu(τ−t)B̄uY d(τ)dτ (2.10)

is the approximate solution for the internal dynamics. It can be shown that it is

possible to make σu(t)− σ̄u(t) arbitrarily small by having a large enough preview

time Tp. The proposed method was tested on an experimental flexible structure

consisting of two discs, which are connected by a thin freely rotating shaft. The

input of the system is the voltage applied to a DC motor, and the output is

the angular rotation of the second disc. The method was able to track the desired

output signal, and increasing the preview time improved the tracking performance.

It was also possible to specify the trajectory online.

A similar approach by the same authors is presented in [6]. The starting point

is the same as above, i.e. a square continuous-time state-space system, with the

7



Laplace-domain representation given by

y(s) = C (sI−A)−1 Bu(s) = G(s)u(s). (2.11)

The optimal inversion problem is formulated as an optimization problem. The goal

is to minimize the cost function

J =

∫ ∞

−∞
{u∗(jω)R(jω)u(jω) + [y(jω)− yd(jω)]∗Q(jω) [y(jω)− yd(jω)]}dω

(2.12)

where R(jω) is a weight on the input energy and Q(jω) a weight on the output-

tracking error (both frequency-dependent). The corresponding optimal inverse is

given as the filter Gopt(s)

Gopt(s) =
[
R(s) + GT(−s)Q(s)G(s)

]−1
GT(−s)Q(s) (2.13)

with

uopt(jω) = Gopt(jω)yd(jω). (2.14)

The problem with this filter is that it tends to be unstable if the system under

consideration is non-minimum phase. Due to the non-causality of the filter, a

preview-based implementation approach for the optimal inverse filter is developed.

First, the filter has to be rewritten

uopt(s) = Gopt(s)yd(s) = Ĝopt(s)ŷd(s) (2.15)

such that Ĝopt(s) is proper and ŷd(s) is the Laplace transformation of a linear

combination of the desired output and its time derivatives. Next, the filter is

decoupled into a stable (Gs
opt(s)) and an unstable (Gu

opt(s)) part

Ĝopt(s) = Gs
opt(s) + Gu

opt(s) (2.16)

by partial fraction expansion. Let the state-space representations be given by

ẋs(t) = Asxs(t) + Bsŷd(t)

usopt(t) = Csxs(t) + Dsŷd(t)

(2.17)

8



and

ẋu(t) = Auxu(t) + Buŷd(t)

uuopt(t) = Cuxu(t) + Duŷd(t).

(2.18)

If the desired output and its time derivatives ŷd(t) are bounded in time, the

bounded solution to the optimal-inverse input uopt(t) is found as

usopt(t) = Cs

∫ t

−∞
eAs(t−τ)Bsŷd(τ)dτ + Dsŷd(τ)

uuopt(t) = −Cu

∫ ∞

t

eAu(τ−t)Buŷd(τ)dτ + Duŷd(τ)

uopt(t) = usopt(t) + uuopt(t).

(2.19)

The computation of the optimal-inverse input, at any time t, requires the knowl-

edge of all future values of the desired output trajectory yd(t). The input can be

approximated by using a finite preview time Tp, so that the values are known within

the time interval [t, t+ Tp]. The approximation for the unstable part becomes

ũuopt(t) = −Cu

∫ t+Tp

t

eAu(τ−t)Buŷd(τ)dτ + Duŷd(τ) (2.20)

and

ũopt(t) = usopt(t) + ũuopt(t) (2.21)

is the result for the finite preview based optimal-inverse input. It is shown that

the tracking error can be made arbitrarily small by choosing a sufficiently large

preview time. A rule of thumb is introduced as well, the preview time Tp should be

“greater than four times the time constant of of the dominant unstable pole” of the

optimal inversion filter Gopt(s). This method was applied to the STM system, and

compared to a “dc-gain approach”, where the desired trajectory is scaled by the

dc gain of the STM model. The optimal-inverse can greatly improve the tracking

performance of the STM system in comparison to the dc-gain approach, when using

a large enough preview time. An insufficient preview time, however, can lead to

substantial tracking errors. An advantage of the method considered in this thesis

9



in comparison to this continuous-time approach may be that neither in [15] nor

in [6] the author says anything about the digital implementation of the approach,

e.g. the sampling rate necessary to perform the integral calculations with sufficient

accuracy.

Another continuous-time approach can be found in [9]. It deals with the

control of an unstable, non-minimum phase hypersonic vehicle model. The basic

idea of the approach is to add a stabilizing term to a standard dynamic inversion

method to move the unstable zero into the left-half plane. The proposed method

is valid for multiple-input, multiple-output (MIMO) systems. One disadvantage

of the approach is that it involves a transformation to Jordan form, which can be

difficult in practice, especially when the matrix which is to be converted possesses

multiple eigenvalues.

In [20], an approximate-inverse method for SISO systems (that can also include

a term G0(s) = e−sT0) is presented, which uses no preview time and a causal inverse

control law. For this method, the desired output trajectory must be known at any

time instant t ≥ 0. The perfect inversion control law for a plant G(s) with m

transmission zeros is found by partitioning the plant:

G(s) = G10(s) (bms
m + · · ·+ b1s+ b0) . (2.22)

The structure can be seen in Fig. 2.2, and the ideal feedforward inversion control

law follows as

uFF = cnνy
(nν)
1d + · · ·+ c1y

(1)
1d + c0y1d (2.23)

where the coefficients ck, k = 1, . . . , nν are determined by the coefficients in G10(s)

(nν depends on the system order and the order of the Taylor approximation of

G0(s) = e−sT0) [20]. The problem is that (2.23) cannot be used, since signals y
(k)
1d

are not available for a designer. The paper focuses on finding good approximations

for this control law. An advantage of this approach is that it specifically includes
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Figure 2.2: Partitioned SISO system

a term G0(s) = e−sT0 , which is not the case for the method in Chapter 3, but the

author does not generalize the approach to MIMO systems.

2.2 Discrete-time approaches

The theoretical problem of inverting non-minimum phase discrete-time MIMO

systems is solved in [16]. It is shown, however, that the perfect inversion requires an

infinite number of “preaction” samples. Almost perfect tracking can be achieved if

a preview of the reference trajectory is available that is “significantly greater than

the maximum time constant associated to the inverses of the controlled system

invariant zeros”.

One of the standard approaches for discrete-time non-minimum phase SISO

systems, the zero phase error tracking control (ZPETC), was presented in [14].

The method designs a feedforward controller for a closed loop system, where a

combination of pole/zero cancellation and phase cancellation (applied to uncan-

cellable zeros) is used in order to ensure that the desired and the actual output are

11



in phase for all frequencies. In [1], a filter is proposed to ensure unity gain, instead

of zero phase. The ZPETC could be successfully applied to motion control of a

robot arm, excelling both in terms of tracking error and smoothness of velocity.

Unfortunately, the original ZPETC, as proposed in [14], is sensitive to modeling

errors and plant uncertainties, whereas the method from Chapter 3 explicitly deals

with stability robustness. Therefore, an adaptive ZPETC was presented in [21].

In [17], a trajectory tracking control for non-minimum phase SISO systems

is introduced by factorizing the system into a minimum phase and a zero phase

system. By inverting both systems individually, a feedforward controller can be

constructed. For the zero phase system, a discrete zero-phase FIR filter was de-

signed. The method was tested successfully on the mock model of a XY gantry

stage.

A different approach for perfect tracking for discrete-time systems was pro-

posed in [22]. The authors eliminate the unstable zero problem in the design of the

inverse discrete-time system by using a multirate feedforward controller. A highly

robust performance is achieved by the controller. Advantages of the method in

comparison to ZPETC could be shown through simulation and experiments, in

the context of a position control using a dc servomotor.

An approach for a filter design using optimization can be found in [1]. It is

called model matching and the basic idea is to find a filter F which minimizes the

worst case frequency domain gain deviation, i.e.

F = arg min
F∈RH∞

‖GF −W‖∞ (2.24)

where G is the non-minimum phase plant and W a weight chosen based on the

frequencies contained in the desired output. A choice of W = 1 for all frequencies

would cause difficulties, since the minimization will try to approach F = G−1.

Instead, W should be chosen close to unity for the frequency range of interest.

12
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Figure 2.3: Inverse Dynamic Control Architecture (according to [1])

An idea from the same authors to improve robustness can be found in [1,

23]. The first step is to design an inverse dynamic filter F for a feedback control

system (the papers propose several approaches for that filter, e.g. ZPETC or

model matching). The authors’ concern, however, derives from an unsatisfactory

filter performance due to a mismatch between the model and the physical system.

Therefore, they propose an iterative refinement approach to update the input of

the control system based on the output tracking error. An initial input sequence

u∗

u∗ := {u∗(ti) : i ∈ 0, 1, . . . , N} (2.25)

is given, which is called the nominal command input. It derives from the filter F .

A gradient descent approach was used to develop an algorithm for the update

process. The algorithm takes the input of the proceeding loop and updates it in

the following way:

unew = uold + ∆u. (2.26)

Assume a SISO system with its transfer function G (from input u to output

y), where the feedback-loop is already included. Given is a desired output sequence

13



y∗

y∗ := {y∗(ti) : i ∈ 0, 1, . . . , N}. (2.27)

The starting point of the algorithm is to set u = u∗, and it works as follows:

1. Apply u to physical system and obtain output sequence y:

y := {y(ti) : i ∈ 0, 1, . . . , N} (2.28)

2. Update u by adding a corrective term ∆u:

∆u = − α︸︷︷︸
can be found by a line search

G∗︸︷︷︸
adjoint of G

(y − y∗) (2.29)

3. Iterate until ‖y − y∗‖ or ‖∆u‖ becomes sufficiently small

The architecture can be seen in Fig. 2.3. For the update process, not the ideal

desired output trajectory yd is used, since the use of it turned out to be too

aggressive and leading to saturation. Instead, filtering is applied to yd (e.g y∗ =

Gu∗ could be used).

For this algorithm, a complete run of the control system is needed in order to

make one update. For a real-time implementation, it is proposed by the authors

to use the results from the iterative refinement to train a FIR filter mapping yd to

the corrective input ∆u:

∆uk = w1y
∗
k+n1

+ w2y
∗
k+n1−1 + · · ·+ wny

∗
k−n2+1 (2.30)

with n = n1 + n2 as the order of the filter and n1 as the look-ahead horizon. The

filter coefficients can be obtained through a least square fit to the data obtained

from the iterative refinement. The method was tested on a high speed positioning

system. The system model was obtained by identification. The fixed-coefficient

FIR filter was able to improve the tracking performance. The tracking error was

14



significantly and uniformly reduced in comparison to the case where just the in-

verse dynamic filter was used. An advantage of the proposed inversion method

in Chapter 3 could be that, as mentioned earlier, the stability robustness is taken

into account while designing the entire inversion-based tracking system, without

running an algorithm to update the ideal inversion input.
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CHAPTER 3

Stable MIMO System Inversion

In the following chapter, the tracking architectures that were examined and

derived in the course of this thesis will be presented. They were first introduced

in [24, 25]. The design of digital control systems for precision tracking will be

discussed. The first step is to design a feedback control system using classic pole-

placement or linear-quadratic regulator techniques, together with integral control,

so a stable closed-loop system having zero steady-state error to step inputs is

guaranteed. In order to have precision tracking for other types of inputs, different

kinds of feedforward filters for the closed-loop system will be derived, based on a

novel approximation. If the closed-loop system is non-minimum phase, the filter

and the closed-loop system are approximately a decoupled system of delays over a

certain bandwidth. Moreover, an alternative feedback design technique to stabilize

the inverse filter is considered and presented.

3.1 Feedback Tracking System

The first step is to design a 2-degree-of-freedom feedback control system in

order to achieve a desired bandwidth with good stability robustness.

Consider an nth-order linear, m-input, p-output plant with state-space model

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t).

(3.1)

For digital control with sampling time T seconds the zero-order hold (ZOH) equiv-

alent plant model is

x[k + 1] = Φx[k] + Γu[k]

y[k] = Cx[k]

(3.2)
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Figure 3.1: A digital state-space tracking system

where

Φ = eAT Γ =

∫ T

0

eAτBdτ. (3.3)

For the design of a control system in which y[k] tracks a class of reference signals

{w[k]} with zero steady-state error, we must use additional dynamics as shown in

Fig. 3.1, where the poles of Φa are the poles of the z-transform of w[k] [26]. The

additional dynamics have the following form

xa[k + 1] = Φaxa[k] + Γae[k]

v[k] = K2xa[k]

(3.4)

where e[k] = w[k]− y[k].

Tracking step signals requires an eigenvalue at z = 1, which gives digital

integral control. For MIMO tracking systems, the additional dynamic poles have

to be replicated up to the number of plant outputs, i.e. to track step signals for a

plant with p outputs the additional dynamics consist of a parallel combination of

p digital integrators:

Φa = Ip Γa = Ip. (3.5)

In order to compute the feedback gain K1 and the integrator gain matrix K2
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in Fig. 3.1, a design model is needed. The equations

x[k + 1] = Φx[k] + Γu[k] xa[k + 1] = Φaxa[k] + Γae[k]

y[k] = Cx[k] v[k] = K2xa[k]

u[k] = v[k]−K1x[k] e[k] = w[k]− y[k]

(3.6)

are used to form the system
[
x[k + 1]
xa[k + 1]

]
=

[
Φ− ΓK1 ΓK2

−ΓaC Φa

] [
x[k]
xa[k]

]
+

[
0
Γa

]
w[k]

=

([
Φ 0
−ΓaC Φa

]
−
[
Γ
0

] [
K1 −K2

]) [ x[k]
xa[k]

]
+

[
0
Γa

]
w[k].

(3.7)

With the definitions

Φd =

[
Φ 0
−ΓaC Φa

]
, Γd =

[
Γ
0

]
, Kd =

[
K1 −K2

]
(3.8)

it becomes clear that K1 and K2 can be found after a feedback control design on the

design model (3.8) has been performed (with an according partition of Kd). There

are several possibilities for the design of the feedback matrix Kd. Given a desired

set of n + na desired closed-loop poles, where na is the order of the additional

dynamics, a m × (n + na) feedback gain matrix Kd is computed such that the

eigenvalues of Φd−ΓdKd coincide with the desired closed-loop poles. In principle,

any pole-placement algorithm could be used to calculate Kd. For a MIMO system,

however, there are an infinite number of matrices Kd that lead to the desired closed-

loop pole locations. Therefore, a robust pole-placement algorithm is recommended

([27]), which finds the feedback gain matrix that maximizes a combination of the

input-multiplicative (δ1) and the input-feedback (δ2) stability robustness bounds.

The algorithm described in [27] returns the optimal δ1, but it was slightly modified

in this thesis so that it optimizes a combination of both bounds (a weighted measure

for δ2 was added to the cost function).

The two robustness bounds will be shortly introduced. For δ1, an input-

multiplicative plant pertubation model, shown in Fig 3.2a, is considered [28]. Let
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the system from w[k] to v[k], when all external inputs are set to zero, be denoted

by H1(z). The result is shown is Fig. 3.2b. Note that H1(z) is stable, since it has

the same poles as the nominal closed-loop control system that is stable by design

[28]. If the plant is a p-input system, then ∆1 is a p-input, p-output system which

is assumed to be stable. It represents a perturbation to the nominal plant model.

The small gain theorem is used to examine the stability of the system shown in Fig.

3.2. It gives a sufficient condition for stability for the feedback interconnection of

two stable systems, as shown in Fig. 3.2b. It states states that the closed-loop

system is guaranteed to be stable if

‖H1(z)‖∞ ‖∆1(z)‖∞ < 1 (3.9)

holds, where ‖ · ‖∞ denotes the system infinity norm [28]. This inequality may be

rewritten to obtain a bound on the size of the unknown pertubation system:

‖∆1(z)‖∞ <
1

‖H1(z)‖∞
=: δ1. (3.10)

The right-hand size of this inequality is defined as the input-multiplicative stability

robustness bound δ1 [28]. For the feedback tracking system in Fig. 3.1, the system

H1(z) is given as the following state-space system (note that w[k] refers to the

notation in Fig. 3.2 here, and not to Fig. 3.1):

[
x[k + 1]
xa[k + 1]

]
=

[
Φ− ΓK1 ΓK2

−ΓaC Φa

] [
x[k]
xa[k]

]
+

[
Γ
0

]
w[k]

v[k] =
[
−K1 K2

] [ x[k]
xa[k]

]
.

(3.11)

With this system description, δ1 can be computed as the reciprocal of the system

infinity norm.

The input-feedback stability robustness bound (δ2) is defined in a similar way.

The difference to δ1 is that a input-feedback plant perturbation model, shown in

Fig. 3.3, is considered [28]. The procedure to determine δ2 is the same, i.e. find
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Figure 3.2: Input-multiplicative stability robustness bound
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the system from w[k] to v[k], called H2(z), and use the small gain theorem to

determine the stability of the interconnection of H2 and ∆2. The result is

δ2 :=
1

‖H2(z)‖∞
. (3.12)

The system H2(z) for the feedback tracking system in Fig. 3.1 is given by:
[
x[k + 1]
xa[k + 1]

]
=

[
Φ− ΓK1 ΓK2

−ΓaC Φa

] [
x[k]
xa[k]

]
+

[
Γ
0

]
w[k]

v[k] =
[
−K1 K2

] [ x[k]
xa[k]

]
+ Ipw[k].

(3.13)

The larger the bound δ1 is, the more tolerant the control system is to errors

in the plant model, the same goes for δ2. As a rule of thumb, a control system

with δ1 > 0.5 is desired [28].

Recommendations for the pole locations of feedback tracking systems can also

be found in [27]. Another possibility for the feedback design is to use the discrete-

time linear quadratic regulator (dlqr) formulas.

In the next sections, the derivations of filters is given which, by cascading them

with the closed-loop system in Fig. 3.1, increase the precision-tracking bandwidth.

3.2 Algorithm for Stable System Inversion

In this section, the general procedure to invert a stable digital system, with

input w[k] and output y[k], is presented [24, 25]. Let the ncth order, p input and
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p output, system be given by its state-space representation

xc[k + 1] = Φcxc[k] + Γcw[k] (3.14a)

y[k] = Ccxc[k]. (3.14b)

The goal of the following filter design is to invert the model of the system (3.14).

Consider r advances of the plant output, y[k + r]. Let r be the smallest integer

for which CcΦ
r−1
c Γc is a nonzero matrix. It follows that

y[k + r] = CcΦ
r
cxc[k] + CcΦ

r−1
c Γcw[k] (3.15)

holds. This result can be easily shown:

y[k + 1] = Ccxc[k + 1] = CcΦcxc[k] + CcΓc︸ ︷︷ ︸
=0

w[k]

y[k + 2] = CcΦcxc[k + 1] = CcΦ
2
cxc[k] + CcΦcΓc︸ ︷︷ ︸

=0

w[k]

...

y[k +m] = CcΦ
m−1
c xc[k + 1] = CcΦ

m
c xc[k] + CcΦ

m−1
c Γc︸ ︷︷ ︸
=0

w[k]

...

y[k + r] = CcΦ
r−1
c xc[k + 1] = CcΦ

r
cxc[k] + CcΦ

r−1
c Γc︸ ︷︷ ︸
6=0

w[k]

(3.16)

with m < r. Define

D̃f =
(
CcΦ

r−1
c Γc

)−1
(3.17)

and rearrange (3.15)

w[k] = −D̃fCcΦ
r
cxc[k] + D̃fy[k + r] (3.18)

to obtain the ideal inversion control law w[k]. Substituting this equation into

(3.14a) yields

xc[k + 1] = Φcxc + Γc

(
−D̃fCcΦ

r
cxc[k] + D̃fy[k + r]

)

=
(
Φc − ΓcD̃fCcΦ

r
c

)
xc[k] + ΓcD̃fy[k + r].

(3.19)
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Equations (3.19) and (3.18) show that a system

xf [k + 1] = Φ̃fxf [k] + Γ̃fy[k + r]

w[k] = C̃fxf [k] + D̃fy[k + r]

(3.20)

where D̃f is given by (3.17) and where

C̃f = −D̃fCcΦ
r
c (3.21a)

Γ̃f = ΓcD̃f (3.21b)

Φ̃f = Φc + ΓcC̃f (3.21c)

holds may be used as a feedforward filter to invert the system (3.14), since it

produces the signal w[k], which inverts the system model (3.14) with a delay of r

samples, from the advanced plant output y[k+r]. That is, the cascade of the filter

(3.20) and the system (3.14) is a pure delay of r samples on each output signal.

Thus, the filter in (3.20) is theoretically able to achieve perfect tracking with a

delay of r samples.

However, the eigenvalues of the filter will include the zeros of the system under

consideration (see Section 3.2.1). Therefore, if the system (3.14) is non-minimum

phase (either because the continuous-time system is already non-minimum phase

or due to the presence of unstable “sampling zeros”), the filter in (3.20) cannot be

used as a feedforward filter, since it is an unstable system. Additional calculations

are needed to obtain a stable approximate inverse of the system.

3.2.1 Eigenvalues of the Inverse Filter

This section shows why the system (3.20), which inverts the system (3.14)

with a delay of r samples, cannot be used as a feedforward filter for non-minimum

phase systems (see also [9]). As mentioned before, this is due to the fact that it

contains the zeros of system (3.14) as eigenvalues.
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First, we will make an assumptions about system (3.14): we assume that it

is minimal, because then the transmission zeros of the system coincide with its

invariant zeros [29].

The transmission zeros of a system with transmission matrix G(z) are defined

as the values ηi for which

rank (G (ηi)) < max
z

rank (G (z)) (3.22)

holds [30]. For systems where the number of inputs is equal to the number of

outputs, this condition reduces to

det (G (ηi)) = 0. (3.23)

It is noted that other definitions for the transmission zeros exist in the literature,

they can also be defined with the help of the Smith-McMillan form [31, 32]. Par-

ticularly in [32] it is mentioned that (3.23) “can not in general be used to find or

define the zeros and poles of a square matrix G(s)”. This is due to the fact that

in

det (G (s)) = α
z(s)

p(s)
(3.24)

the polynomials z(s) and p(s) “are not necessarily relatively prime” [32]. In this

thesis, however, it is assumed that the definition for the transmission zeros in (3.23)

and the definition with the Smith-McMillan form coincide because we consider only

minimal state-space models.

The invariant zeros are defined with the help of the Rosenbrock matrix P(z)

[30, 31, 32]. The Rosenbrock matrix for a system (A,B,C,D) is defined as

P(z) =

[
zI−A −B

C D

]
. (3.25)

The invariant zeros are the values ηi for which the Rosenbrock matrix is rank-

deficient:

rank (P (ηi)) < max
z

rank (P (z)) . (3.26)
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Again, for a system with the same number of inputs and outputs, this reduces to

det (P (ηi)) = 0. (3.27)

Let the transmission matrix of system (3.14) be denoted by G(z):

G(z) = Cc (zI−Φc)
−1 Γc. (3.28)

Therefore, its transmission zeros can be found according to (3.23). We now consider

the same system, but we assume that the output is y[k + r], and not y[k]. The

transfer function of this system is given by

G̃(z) =
Z{y[k + r]}
Z{w[k]} = zr

Z{y[k]}
Z{w[k]}︸ ︷︷ ︸

=G(z)

= zrG(z) (3.29)

where Z{·} denotes the z-transform and the shifting property of the z-transform

was used (see for example [26, 33]). Thus, the transmission zeros of system (3.14),

where the output is advanced by r samples, can be found by

det
(
G̃(z)

)
= det (zrG(z)) = zp·rdet (G(z)) = 0. (3.30)

For this computation, the fact that for a square n× n matrix A

det (λA) = λndet (A) (3.31)

holds, was used [26]. It follows from (3.30) that the system with the advanced

output has the same transmission zeros as the original system, but additionally it

has p · r transmission zeros in 0.

The state-space representation of the system, when the output is advanced by

r samples, is given by

xc[k + 1] = Φcxc[k] + Γcw[k]

y[k + r] = CcΦ
r
cxc[k] + CcΦ

r−1
c Γcw[k].

(3.32)
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Due to our assumption, the transmission zeros of the system coincide with its in-

variant zeros, so the Rosenbrock matrix can be used as well to find the transmission

zeros. The Rosenbrock matrix for the system (3.32) is defined as

P(z) =

[
zI−Φc −Γc

CcΦ
r
c CcΦ

r−1
c Γc

]
(3.33)

and for every invariant zero ηi of system (3.32), this matrix is rank-deficient. Each

invariant zero ηi is associated with an invariant-zero direction z0 =

[
zx0

zw0

]
which

lies in the kernel or null space of P (ηi) [32]:
[
ηiI−Φc −Γc

CcΦ
r
c CcΦ

r−1
c Γc

] [
zx0

zw0

]
= 0. (3.34)

From the definition of the zero direction, the two equations

(ηiI−Φc) zx0 − Γczw0 = 0 (3.35a)

CcΦ
r
czx0 + CcΦ

r−1
c Γczw0 = 0 (3.35b)

follow. Equation (3.35b) can be rearranged

zw0 =

=C̃f︷ ︸︸ ︷
−
(
CcΦ

r−1
c Γc

)−1

︸ ︷︷ ︸
=D̃f

CcΦ
r
c zx0 = C̃fzx0 (3.36)

where the definitions (3.18) and (3.21a) have been used. This result is then plugged

into (3.35a):

(ηiI− (Φc + ΓcC̃f︸ ︷︷ ︸
=Φ̃f

))zx0 =
(
ηiI− Φ̃f

)
zx0 = 0 (3.37)

so it becomes clear that the invariant zeros ηi of system (3.32) are the eigenvalues of

the matrix Φ̃f = Φc + ΓcC̃f defined in (3.21c), but this is also the state-transition

matrix of the inverse filter. Together with the previous result from this section, it

can be concluded that the eigenvalues of the inverse filter in (3.20) consist of the

invariant zeros of system (3.14) (this includes possible non-minimum phase zeros)

and p · r eigenvalues at 0. Consequently, more steps have to be taken in order to

stabilize the inverse filter (3.20), which will be discussed in the following section.
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3.2.2 Adding Additional Advances

Now, the stabilization of the filter (3.20) by adding more advances is shown.

Consider adding s more advances to the r advances in (3.15). Let d = r+ s. Then

it follows:

y[k + d] = CcΦ
d
cxc[k] +

s∑

i=0

CcΦ
d−i−1
c Γcw[k + i]. (3.38)

With the approximation

w[k + i] ≈ w[k] , i = 1, . . . , s (3.39)

which will hold true for low frequency signals, equation (3.38) becomes

y[k + d] ≈ CcΦ
d
cxc[k] +

(
s∑

i=0

CcΦ
d−i−1
c Γc

)
w[k]. (3.40)

Define

Df =

(
s∑

i=0

CcΦ
d−i−1
c Γc

)−1

. (3.41)

Now the same procedure as before is used, i.e. solving (3.40) for w[k] and substi-

tuting it into (3.14a), so the new filter (Φf ,Γf ,Cf ,Df ) is obtained, where Df is

defined according to (3.41) and

Cf = −DfCcΦ
d
c (3.42a)

Γf = ΓcDf (3.42b)

Φf = Φc + ΓcCf (3.42c)

holds. The advantage of adding more delays is that the new filter (3.42) will be

stable for a sufficiently large d. The state-transition matrix is Φf = Φc + ΓcCf

and the entries of Cf = −DfCcΦ
d
c can be made arbitrarily small by increasing d,

so the eigenvalues of Φf will move towards the eigenvalues of Φc, from which we

assume that it is stable.
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This result can be verified using the Bauer/Fike Theorem [34]. Let A ∈ Cn×n

be a diagonalizable matrix with eigenvalues λi, i = 1, . . . , n, so

T−1AT = diag (λ1, . . . , λn) . (3.43)

Assume that µ is an eigenvalue of the perturbed matrix A+∆A, with ∆A ∈ Cn×n.

Then

min
i=1,...,n

|µ− λi| ≤ cond2 (T) ‖∆A‖2 (3.44)

holds, i.e. µ is within a circle with radius cond2 (T) ‖∆A‖2 centered on an eigen-

value of A. Here, ‖ · ‖2 denotes the matrix norm induced by the Euclidean norm,

and cond2 (T) = ‖T‖2‖T−1‖2 is the condition number of the transformation ma-

trix T. From this result, it follows that the eigenvalues of Φf are within a circle

that is centered in an eigenvalue of Φc, and the radius of this circle depends on

the matrix norm of ΓcCf (and also on how “well” Φc can be diagonalized), since

we have A = Φc and ∆A = ΓcCf . Accordingly, the inequality

min
i=1,...,n

|µ− λi| ≤ cond2 (T) ‖ΓcCf‖2. (3.45)

follows. Since any matrix norm induced by a vector norm is submultiplicative

[34, 35], we can further write, together with (3.42a):

‖ΓcCf‖2 = ‖ − ΓcDfCcΦ
d
c‖s = ‖ΓcDfCcΦ

d
c‖2

≤ ‖ΓcDfCc‖2 ‖Φd
c‖2 ≤ K2 ‖Df‖2 ‖Φd

c‖2

(3.46)

where K2 has been defined as K2 = ‖Γc‖2 ‖Cc‖2. The 2-norm of a matrix can also

be expressed as its maximum singular value [34], and it can be shown that

‖A−1‖2 = σmax

(
A−1

)
=

1

σmin (A)
(3.47)

holds [36]. Here, σmin(·) denotes the minimum singular value of a matrix. In the

light of this result, it becomes clear that

‖Φd
c‖2

σmin

(∑s
i=0 CcΦ

d−i−1
c Γc

) d→∞−−−−→ 0 (3.48)
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has to be shown, where the definition in (3.41) was used. Since we assume that

Φc is stable, we have |λi| < 1, i = 1, . . . , nc for every eigenvalue of Φc, thus Φd
c

converges to the zero matrix as d tends towards infinity [26]. This means that the

numerator of (3.48) tends towards zero. It is further well known that σmin > 0

holds for a full-rank matrix [26]. Because Df is defined as the inverse of the

matrix
(∑s

i=0 CcΦ
d−i−1
c Γc

)
in (3.41), we can assume that

(∑s
i=0 CcΦ

d−i−1
c Γc

)
has

full rank (because otherwise the entire method is not applicable), and therefore

the denominator in (3.48) is greater than zero, so ‖Φd
c‖2 ‖Df‖2 does converge to

zero as d tends towards infinity.

From (3.46), this implies that

lim
d→∞
‖ΓcCf‖2 = 0. (3.49)

Using (3.42c), this results leads to the recognition that, as d approaches infinity,

the eigenvalues of Φf and Φc coincide. Due to the assumption that Φc is stable,

it follows that the inverse filter will eventually be stabilized when more advances

d are added.

Consequently, the value of d is chosen to be smallest integer for which the

state-transition matrix (3.42c) of the inverse filter is stabilized. That is

d∗ = smallest d s.t. max
(
abs

(
eig
(
Φc − ΓcDfCcΦ

d
c

)))
< R (3.50)

where R is a user-defined maximum pole radius. If the assumption that Φc is stable

is fair, the choice of R can be based on the eigenvalues of Φc. It is recommended

to chose R to be exactly in between the largest absolute value of the eigenvalues of

Φc and 1. That is, if λmax denotes the eigenvalue with the largest absolute value,

R is calculated according to

R =
1

2
(|λmax|+ 1) . (3.51)
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Figure 3.4: Pole radius for a stable Φc

This is illustrated in Fig. 3.4. Note that this choice of halfway was made arbitrarily,

other choices (e.g. 75% of the distance from the maximum eigenvalue to the unit

circle) are possible and could be investigated. The pole radius can, for example,

also be chosen such that the algorithm just stabilizes the filter, e.g. R = 0.99,

without any more requirements for the absolute value of the pole locations.

Due to the approximation in (3.39), the cascade of the filter and the system

will not be a pure delay of d samples. The approximation is exact at dc and

the error caused by the approximation will increase with increasing frequency of

the signal w[k]. The frequency range over which the filter provides an accurate

inversion may be obtained by evaluating the Bode plot of the cascade of the filter

and the system.

3.2.3 Extension to Feedback Approach

In this section, an alternative approach to stabilize the inverse filter (3.20),

which inverts the system (3.14) with a delay of r samples, is presented. In contrast
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to the algorithm shown in Section 3.2.2, this new approach does not necessarily use

more advances, but uses feedback to stabilize the filter. The idea for this approach

was taken from [19].

The goal is still to find an inverse filter for the system (3.14), and the first

steps are exactly the same as presented in Section 3.2, i.e. consider r advances of

the output and rearrange (3.15) to obtain the ideal inversion control law (3.18).

Next, a possibility to stabilize (3.20) is discussed. Similar to [19], an additive term

v[k] is included in the optimal inversion control law (3.18)

w[k] = −D̃fCcΦ
r
cxc[k] + D̃fyd[k + r] + v[k] (3.52)

so

xc[k + 1] = Φ̃fxc[k] + Γ̃fyd[k + r] + Γcv[k]

w[k] = C̃fxc[k] + D̃fyd[k + r] + v[k]

(3.53)

is obtained as the “inverse” system. This system, however, is not the exact inverse

anymore, since the ideal inversion control law (3.18) was modified. Subsequently,

it is determined how the new term v[k] can be chosen. If the original system

(Φc,Γc) in (3.14) is controllable, the system
(
Φ̃f ,Γc

)
is controllable as well. For

that reason, feedback of the form

v[k] = Fxc[k] (3.54)

may be introduced to move the eigenvalues of the inverse system into the unit

circle. Due to the feedback (3.54), the approximate inverse filter becomes

xf [k + 1] = Φfxf + Γfy[k + r]

w[k] = Cfxf [k] + Dfy[k + r]

(3.55)
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where

Df = D̃f (3.56a)

Cf = C̃f + F (3.56b)

Γf = Γ̃f (3.56c)

Φf = Φ̃f + ΓcF. (3.56d)

From (3.56d) it becomes evident that F must be chosen such that the matrix

Φ̃f+ΓcF is stable. This can be done by any state-space controller design technique

(e.g. any pole placement algorithm).

The filter (3.55) may be used as a feedforward filter to invert system (3.14).

Due to the addition of v[k] to the ideal inversion control law in (3.52), the cascade of

the filter and the system is not a pure delay of r samples. The precision tracking

bandwidth has to be evaluated with the help of the Bode plot of the precision

tracking system.

Next, the statement that
(
Φ̃f ,Γc

)
is controllable if (Φc,Γc) is controllable

shall be shortly demonstrated. Consider the state-transition matrix of the inverse

filter in (3.56d). With the definiton in (3.21c), it can be rewritten as

Φf = Φc + Γc

(
C̃f + F

)
. (3.57)

Define

F̂ = −
(
C̃f + F

)
. (3.58)

The eigenvalues of the inverse filter are therefore determined by the eigenvalues of

the matrix

Φf = Φc − ΓcF̂. (3.59)

It becomes clear now that the feedback gain matrix F̂ can place the eigenvalues

arbitrarily if the system (Φc,Γc) is controllable. Even if not every eigenvalue of
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(Φc,Γc) is controllable, the feedback F̂ can stabilize the inverse filter if the non-

controllable eigenvalues of Φc are stable, which we know is true since we assume

that Φc is stable. For example, if F̂ = 0 is chosen (i.e. F = −C̃f ), the eigenvalues

of Φf and Φc coincide.

Once the matrix F̂ has been found, it is easy to obtain the feedback gain

matrix F:

F = −
(
C̃f + F̂

)
. (3.60)

The matrix C̃f , which is needed for this computation, only depends on the matrices

of system (3.14), i.e. it is known at any point. The rewriting of the inverse filter

state-transition matrix Φf was only carried out here to demonstrate that F is able

to stabilize Φ̃f over Γc; the design of F in this thesis will always be based on the

system
(
Φ̃f ,Γc

)
and never on (Φc,Γc).

The idea of adding delays from Section 3.2.2 and the feedback approach pre-

sented in this section may also be combined. Assume that smax denotes the number

of advances needed in the algorithm described in Section 3.2.2 to stabilize the in-

verse filter. Now consider that s ≤ smax advances are added to the r advances

shown in (3.15). Again, let d = r + s, so (3.38) is obtained and the approxima-

tion (3.39) is applied. Next, feedback of the form v[k] = Fxc[k] is added to the

resulting control law, so

w[k] = −
(

s∑

i=0

CcΦ
d−i−1
c Γc

)−1

CcΦ
d
cxc[k]+

(
s∑

i=0

CcΦ
d−i−1
c Γc

)−1

y[k+d]+Fxc[k]

(3.61)

follows. The resulting inverse filter is still given by (3.55) and (3.56), only the

definitions of C̃f and D̃f in (3.21a) and (3.17) change to

D̃f =

(
s∑

i=0

CcΦ
d−i−1
c Γc

)−1

C̃f = −D̃fCcΦ
d
c .

(3.62)
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The remaining definitions Φ̃f = Φc + ΓcC̃f and Γ̃f = ΓcD̃f stay the same, but

the new definitions from (3.62) have to be plugged in. Note that the design of F is

slightly different now, since Φ̃f depends on C̃f , so if (3.62) is used instead of (3.17),

the eigenvalues of Φ̃f will be different. The resulting inverse filter approximately

inverts system (3.14) with a delay of d = r + s ≤ dmax samples.

The advantage of combining the two methods is that fewer advances than in

Section 3.2.2 may be needed, and that the additive term v[k] may be kept “smaller”

(and thus does not “disturb” the ideal inversion control law (3.18) as much) if the

feedback has to stabilize a filter that inverts the system with d = r + s delays,

instead of r delays.

3.3 Command Shaping Filter

First, a filter that will be called the command shaping filter (CSF) is presented.

It follows the inversion approach shown in Section 3.2. The system (3.14), which

will be considered for the inversion, is the feedback tracking system in Fig. 3.1.

Let the closed-loop system from w[k] to y[k] be denoted by

xc[k + 1] = Φcxc[k] + Γcw[k] (3.63a)

y[k] = Ccxc[k] (3.63b)

where

xc[k] =

[
x[k]
xa[k]

]
Φc =

[
Φ− ΓK1 ΓK2

−ΓaC Φa

]
(3.64a)

Γc =

[
0
Γa

]
Cc =

[
C 0

]
(3.64b)

so for the CSF, the system considered in Section 3.2 is given by (3.63), and the

notation in (3.63) coincides with the notation in (3.14).

Next, a short argument shall be given that the system to be inverted contains

the zeros of the discrete-time plant model (3.2). In order to do so, it is assumed
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that the order of the additional dynamics is equal to the number of plant outputs,

na = p, and that both Γc and K2 are not rank deficient, i.e. they are p×p matrices

with a nonzero determinant. The invariant zeros of system (3.63) are found via its

Rosenbrock matrix Pc(z) (see also Section 3.2.1):

det (Pc(z)) = det





zI−Φ +−ΓK1 ΓaK2 0

ΓaC zI−Φa −Γ
C 0 0




 = 0. (3.65)

It is known that

det (AB) = det (A) · det (B) (3.66)

holds for A,B ∈ Rn. Define a matrix

E =




In 0 0
0 0 Ip
0 Ip 0


 . (3.67)

Since |det (E) | = 1 6= 0, (3.65) can be expressed as

det (Pc(z)) det (E) = det (Pc(z)E) = det






zI−Φ + ΓK1 −ΓK2 0

C 0 0
ΓaC zI−Φa −Γa




︸ ︷︷ ︸
:=P̃c(z)




= 0

(3.68)

so that we can as well find the values ηi for which P̃c(ηi) is rank deficient in order

to find the invariant zeros of (3.63). Next, the rule

det

([
A B
C D

])
= det

(
A−BD−1C

)
· det (D) (3.69)

is used [36], and since B = 0 in our case and it is assumed that Γa is a square

matrix with full rank

det
(
P̃(z)

)
= det

([
zI−Φ + ΓK1 −ΓK2

C 0

])
· det (−Γa) = 0 (3.70)

follows. This equation can be further rewritten

(−1)p · det (Γa) · det

([
zI−Φ −Γ

C 0

] [
I 0
−K1 K2

])
= 0 (3.71)
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and due to our assumption that K2 and Γa have full rank, we finally obtain

det (Γa) · det (K2) · det




[
zI−Φ −Γ

C 0

]

︸ ︷︷ ︸
=P(z)


 = 0 ⇒ det (P(z)) = 0 (3.72)

with det (Γa) 6= 0 and det (K2) 6= 0. The matrix P(z), however, is the Rosenbrock

matrix of the discrete-time plant (3.2). Thus the invariant zeros of (3.63) and

(3.2) coincide if the order of the additional dynamics match the number of plant

outputs and both Γa and K2 have full rank (Γa has full rank if integral additional

dynamics are used). If these conditions are not met, the argumentation has to be

modified.

Since the CSF is the inverse of a closed-loop system, it belongs to the class

of closed-loop-inversion feedforward (CLIF) architectures [11, 12], and we know

that the closed-loop system (3.63) is stable. The CSF (Φf ,Γf ,Cf ,Df ) can be

derived by using either of the algorithms shown in Section 3.2. If the feedback

approach from Section 3.2.3 is applied, it should be checked whether the system

(3.63) is controllable, but it is assumed that this should be the case if no pole/zero

cancellations occur during the design process of the feedback tracking system. If

they do occur and the system is not controllable, a model reduction and inverting

the reduced system may solve the problem. It is noted that, according to Section

3.2, the feedback is always able to stabilize the inverse filter; however, it may not

be possible to place its eigenvalues arbitrarily.

An advantage of the CSF is that the feedback design in Section 3.1 determines

the eigenvalues of the state-transition matrix Φc, which is inverted in Section 3.2.

Thus, it is ensured that Φc is stable. Additionally, if all eigenvalues of Φc are

distinct (which can be achieved by design), the matrix T which diagonalizes Φc is

known to have full rank [37], so its condition number in (3.45) will be finite.

A precision tracking system is obtained by inserting a feedforward CSF into
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Σ (Φ,Γ,C)

Plant ZOH Model
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yd[k + d] w[k] e[k] v[k] u[k]
y[k]

x[k]

−−

�

Figure 3.5: Precision Tracking System - Command Shaping Filter

Fig. 3.1 and accounting for the delay of d samples, as shown in Fig. 3.5. Here,

yd[k] denotes the desired output trajectory.

3.4 Inverse Modified Plant

The second inverse filter that is considered in this thesis is the so-called inverse

modified plant (IMP). The difference between the IMP and the CSF presented in

Section 3.3 is that not the model of the entire feedback tracking system in Fig. 3.1

is inverted, but the model for the system from v[k] to y[k], which will be called

the modified plant. It is given as follows:

x[k + 1] = (Φ− ΓK1)x[k] + Γv[k]

y[k] = Cx[k].

(3.73)

Thus, for the IMP, the system (3.14), which is inverted in Section 3.2, corresponds

to (3.73). The system (3.73) has the same invariant zeros as the discrete-time plant

(3.2). This can be shown with its Rosenbrock matrix:

det (Pc(z)) = det

([
zI−Φ + ΓK1 −Γ

C 0

])
= det

([
zI−Φ −Γ

C 0

] [
I 0
−K1 I

])

= det




[
zI−Φ −Γ

C 0

]

︸ ︷︷ ︸
=P(z)


 · det

([
I 0
−K1 I

])

︸ ︷︷ ︸
=1

= det (P(z)) = 0

(3.74)

where P(z) denotes the Rosenbrock matrix of the plant (3.2).
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Figure 3.6: Precision Tracking System - Inverse Modified Plant

After the IMP (Φf ,Γf ,Cf ,Df ) has been found, using one of the algorithms

presented in Section 3.2, it has to be inserted into the feedback tracking system

in Fig. 3.1 to obtain a precision tracking system. Furthermore, the delay of d

samples has to be accounted for. The result can be seen in Fig. 3.6. Again, the

desired output trajectory is denoted by yd[k].

The IMP belongs to the class of plant inversion feedforward (PIF) architec-

tures (see Fig. 2.1b). Even though the modified plant in Fig. 3.6 consists of a

feedback loop (closed by K1), it is not guaranteed by the feedback design discussed

in Section 3.1 that Φc = Φ−ΓK1 is stable (it is only guaranteed that Φd−ΓdKd

possesses the desired pole locations, so the feedback design is not based on the

system (Φ,Γ)). For that reason, the IMP is classified as PIF. However, since the

algorithm in Section 3.2 assumes that the system to be inverted is stable, it should

be checked whether the eigenvalues of Φc = Φ−ΓK1 are all located inside the unit

circle or not. If this is not the case, the feedback matrix Kd may be recalculated

(e.g. by selecting new pole locations or using a different design technique), or the

usage of the CSF from Section 3.3 may be considered.
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3.5 Inclusion of a State Observer

The preceding precision tracking architectures assumed that all the state vari-

ables of the plant are available in the design of the feedback tracking system. In

practice, however, this will not always be the case. Therefore, this section focuses

on the question whether and how the inclusion of a state observer will affect the

CSF and IMP precision tracking systems in Sections 3.3 and 3.4, respectively.

Consider system (3.2). A state observer provides an estimate x̂[k] for the

actual state vector x[k] [26]:

x̂[k + 1] = Φx̂[k] + Γu[k] + L (y[k]− ŷ[k])

ŷ[k] = Cx̂[k]

(3.75)

Here, L denotes the observer gain. Let ex[k] = x[k] − x̂[k] be the observer error,

so

ex[k + 1] = (Φ− LC) ex[k] (3.76)

follows. A feedback tracking system which includes a plant, additional dynamics

and state observer, can therefore be written as


x[k + 1]
xa[k + 1]
ex[k + 1]


 =




Φ− ΓK1 ΓK2 0
−Γa Φa 0

0 0 Φ− LC





x[k]
xa[k]
ex[k]


+




0
Γa

0


w[k]

y[k] =
[
C 0 0

]


x[k]
xa[k]
ex[k]


 .

(3.77)

Since the state-transition matrix of the feedback tracking system in (3.77) is a

block diagonal matrix, the eigenvalues of the tracking system are determined by

the eigenvalues of the matrices

[
Φ− ΓK1 ΓK2

−Γa Φa

]
and

[
Φ− LC

]
. The first matrix

can be rewritten as Φd − ΓdKd, with the matrices (Φd,Γd,Kd) being defined in

(3.8) in Section 3.1, and the latter matrix describes the dynamics of the observer

error. Hence, the feedback gain Kd and the observer gain L can be designed

independently, i.e. the observer gain does not affect the eigenvalues of the feedback
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tracking system shown in Fig. 3.1. A recommendation for the eigenvalue locations

of the observer dynamics can be found in [27].

When an observer is used in the feedback tracking system in Fig. 3.1, the

system (Φc,Γc,Cc) that is inverted in Section 3.2 has to be adjusted for both CSF

and IMP. For the CSF, the system from w[k] to y[k] is inverted, which is given by


x[k + 1]
xa[k + 1]
x̂[k + 1]


 =




Φ− ΓK1 ΓK2 0
−Γa Φa 0
LC ΓK2 Φ− LC




︸ ︷︷ ︸
=Φc



x[k]
xa[k]
x̂[k]


+




0
Γa

0




︸ ︷︷ ︸
=Γc

w[k]

y[k] =
[
C 0 0

]
︸ ︷︷ ︸

=Cc



x[k]
xa[k]
x̂[k]


 .

(3.78)

The IMP, in contrast, inverts the system from v[k] to y[k]:
[
x[k + 1]
x̂[k + 1]

]
=

[
Φ −ΓK1

LC Φ− LC− ΓK1

]

︸ ︷︷ ︸
=Φc

[
x[k]
x̂[k]

]
+

[
Γ
Γ

]

︸︷︷︸
=Γc

v[k]

y[k] =
[
C 0

]
︸ ︷︷ ︸

=Cc

[
x[k]
x̂[k]

]
.

(3.79)

Furthermore, the systems (3.11) and (3.13), which are used to calculate the

robustness bounds δ1 and δ2 in Section 3.1, have to be adjusted if an observer is

added to the feedback tracking system. System H1(z) is now given by


x[k + 1]
xa[k + 1]
x̂[k + 1]


 =




Φ− ΓK1 ΓK2 −ΓK1

−ΓaC Φa 0
LC ΓK2 Φ− LC− ΓK1





x[k]
xa[k]
x̂[k]


+




Γ
0
0


w[k]

v[k] =
[
0 K2 −K1

]


x[k]
xa[k]
x̂[k]




(3.80)

whereas


x[k + 1]
xa[k + 1]
x̂[k + 1]


 =




Φ− ΓK1 ΓK2 −ΓK1

−ΓaC Φa 0
LC ΓK2 Φ− LC− ΓK1





x[k]
xa[k]
x̂[k]


+




Γ
0
0


w[k]

v[k] =
[
0 K2 −K1

]


x[k]
xa[k]
x̂[k]


+ Ipw[k]

(3.81)

40



holds for H2(z). Please note that w[k] in (3.80) and (3.81) refers to the notation

in Fig. 3.2 and Fig. 3.3, not to the notation in Fig 3.1.
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CHAPTER 4

Feedback Inversion Design Techniques

This chapter deals with possibilities to design the feedback matrix F, which

was introduced in Section 3.2.3 to stabilize the inverse filter. Clearly, F has to move

the eigenvalues of Φf = Φ̃f+ΓcF inside the unit circle, but there are multiple ways

how this can be done. Since there are no strict rules for the exact pole locations

of the inverse filter, this degree of freedom can be used to try out different design

approaches.

A first idea is to use “classical” feedback design techniques, such as pole-

placement or dlqr. For pole-placement, the inverse filter’s pole location could

be based on the influence of pole and zero locations of a dynamic system on its

frequency response, and the weights for a dlqr design on the demand that the

control effort deriving from the addition of the feedback is low. Thoughts on these

design techniques are presented in Section 4.1.

As another step, a design was developed in this thesis which focuses on finding

a matrix F which stabilizes the system while having a minimal norm. It is assumed

that the influence of the feedback on the ideal inversion control law is reduced if

the norm of F is minimal. This design is explicated in Section 4.2.

Finally, inspired by the optimization in Section 4.2, another optimization de-

sign is introduced in Section 4.3. The main idea is to design F so that it “com-

pensates” the deviation of the tracking system’s frequency response from the ideal

frequency response (due to the approximation in (3.39)), while a stable inverse

filter is guaranteed. From all design techniques that were considered in order to

calculate F, this proved to be the most successful, which is why it will be consid-

ered as the main design method for the inversion via feedback in the discussion in
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Chapter 5.

4.1 Classical Feedback Design

The easiest way to design the feedback matrix F is to choose the desired

locations for the filter with the feedback included. For the discussion of the “closed-

loop” poles, we assume that the state-transition matrix Φf is given as

Φf = Φ̃f + ΓcF (4.1)

where Φ̃f is defined according to (3.21c), i.e. Φ̃f is the state-transition matrix of

the (unstable) filter which inverts system (3.14) with a pure delay of r samples (see

Section 3.2.3 for details). Consequently, the eigenvalues of Φ̃f are moved with the

help of F to obtain the eigenvalues of Φf . Assume that system (3.14) has nz zeros.

Then, nz eigenvalues of Φ̃f coincide with the zeros of (3.14). The remaining nc−nz
eigenvalues are located in zero. Since the idea of the feedback approach is to simply

stabilize the filter, without interfering too much with the ideal inversion control

law (3.18), it is proposed here to keep all the stable eigenvalues in their respective

spot and just move the unstable eigenvalues to obtain a stable filter. Sometimes,

problems might arise if the attempt is made to place multiple eigenvalues in the

same spot (e.g. the nc − nz eigenvalues in zero). In this thesis, the eigenvalues

were not placed exactly in zero, but nc − nz equally spaced eigenvalues at radius

Rzero were placed around the origin.

There are several possibilities how to choose the “closed-loop” locations of the

unstable eigenvalues of Φ̃f . The simplest way to determine the desired eigenvalue

locations is to choose a spot in the stability region that is very close to the original

position of the eigenvalue (e.g. an eigenvalue in 1.1 could be moved to 0.99 and

an eigenvalue in −1.1 to −0.99).

Another possibility is to reflect the unstable eigenvalues into the unit circle,

so that the magnitude is maintained in the Bode plot. Assume that Φ̃f has ñz
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unstable eigenvalues, that are given as the roots of the polynomial

Bu = bñzz
ñz + bñz−1z

ñz−1 + · · ·+ b1z + b0. (4.2)

Then, the roots of the polynomial

Bs = b0z
ñz + b1z

ñz−1 + · · ·+ bñz−1z + bñz . (4.3)

should be chosen as the eigenvalues of Φf [13].

If the system under consideration is a MIMO system, it is proposed to select

the eigenvalues according to this section, and to simultaneously try to minimize the

influence of F (i.e. v[k]) in the inversion control law (3.52). A reasonable approach

is to minimize a norm ‖F‖, which was achieved in this thesis by adapating the

algorithm described in [27].

Another possibility to calculate F is via a dlqr design. For a state-space system

with n variables and p inputs, a dlqr design minimizes the following quadratic

function of the states and inputs:

Jdlqr =
1

2

∞∑

k=0

(
xT[k]Qx[k] + uT[k]Su[k]

)
(4.4)

where Q ∈ Rn×n and S ∈ Rp×p are symmetric, positive-definite weighting matrices.

If S is large with respect to Q, the resulting regulator will stabilize the plant

without using much control effort [26]. In the light of this discussion, a dlqr design

for F may be used with S being much larger than Q. As a reminder: the term

v[k] = Fxc[k] was added to the inversion control law (3.18) to stabilize the inverse

filter, so it can be argued that the tracking performance will be best if the control

effort v[k] is as small as possible, while it is still large enough to stabilize the filter.

4.2 Norm Minimization Approach

One of the feedback design approaches that is considered and developed in

this thesis is to stabilize the inverse filter and simultaneously attempt to minimize
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the Frobenius norm of the resulting gain matrix F. The idea behind this is that

if the norm of F is minimal, the influence of the additive term v[k] = Fxc[k] (see

Section 3.2.3) will probably also be limited.

In order to design the matrix F, an idea from [9] is used. The author designs

feedback to stabilize the inverse of a continuous-time hypersonic vehicle plant,

which has one non-minimum phase zero. The basic idea is generalized here to the

general case of multiple (and possibly complex) non-minimum phase zeros for a

digital system.

The result of the design process is a set of linear equality constraints and non-

linear inequality constraints, which could be solved “by hand” and, by themselves,

do not ensure a minimum norm. An advantage of this design is that an analytical

relation between the eigenvalues of the stabilized inverse filter and the entries of F

is obtained. In this thesis, they were included in an optimization problem which

minimizes the norm of the feedback gain matrix. One of the (theoretic) advantages

of minimizing the norm is the Lagrange dualism could be applied to the problem,

and the Lagrange dual problem is known to be convex [38].

This section is organized as follows: first, the constraints for the entries of

the gain matrix F are derived. After this, they are included in an optimization

problem, which is solved using the Lagrange dualism. A discussion of the approach

is given in the last subsection.

4.2.1 Constraints for the Feedback Gain Matrix

Following the idea in [9], it is desired that the matrix F moves the unstable

eigenvalues of the inverse filter (resulting from the plant’s non-minimum phase

zeros) into the stability region, while it keeps the remaining (stable) eigenvalues in

their respective spot. In order to do so, system (3.53) is transformed to canonical

45



modal form. A state transformation

xc[k] = Vψ[k] (4.5)

is introduced, so

ψ[k + 1] = V−1Φ̃fVψ[k] + V−1Γ̃fyd[k] + V−1Γc FVxc[k]︸ ︷︷ ︸
=v[k]

(4.6)

is the result. The transformation matrix V is the right eigenvector matrix of

Φ̃f , but if λj,j+1 is a conjugate-complex eigenvalue pair of Φ̃f , the jth column

is replace by the real part of the jth eigenvector, and the (j + 1)th column by

the imaginary part of the jth eigenvalue. One realization aspect that was not

discussed in [9], however, is that Φ̃f possesses a multiple eigenvalue in 0 (with

multiplicity p · r, see Section 3.2.1), and usually there are less than p · r linearly

independent eigenvectors associated with the eigenvalue in 0 (i.e. V would be

rank-deficient). For that reason, generalzed eigenvectors have to be used [37]. Let

v
(1)
i be an eigenvector to the eigenvalue 0. Then the generalized eigenvector of

second order, denoted by v
(2)
i can be calculated according to [37]:

Φ̃fv
(2)
i = v

(1)
i . (4.7)

The usage of the generalized eigenvectors results in Jordan blocks for the multiple

eigenvalue in 0, i.e. in ones above the main diagonal.

With the definitons

W := V−1 (4.8a)

Λ := WΦ̃fV (4.8b)

Γψ := WΓc (4.8c)

Γy := WΓ̃f (4.8d)

F̂ := −FV (4.8e)
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we get

ψ[k + 1] = Λψ[k]− ΓψF̂ψ[k] + Γyy[k + r] (4.9)

where Λ is in canonical modal form. Next, the partitionings

F̂ =
[
f̂ 1 . . . f̂nc

]
(4.10a)

Γψ =



γψ,1

...
γψ,nc


 (4.10b)

Γy =



γy,1

...
γy,nc


 (4.10c)

are introduced. Furthermore, it is assumed (in this section) that the first nz

eigenvalues of Λ are located outside the unit circle (without loss of generality).

These are the eigenvalues that correspond to the non-minimum phase zeros of

(3.14). It is also assumed that the first 2ni eigenvalues within the first nz unstable

eigenvalues are complex (i.e. there are ni pairs of of conjugate-complex unstable

eigenvalues). The conjugate complex eigenvalues of Λ are denoted by δj ± ωj and

the real eigenvalues by λj. With these definitons and assumptions, we have

ψj[k + 1] = δjψj[k] + ωjψj+1[k]−
nc∑

l=1

γT
ψ,jf̂ lψl[k] +ψy,jy[k + r]

ψj+1[k + 1] = −ωjψj[k] + δjψj+1[k]−
nc∑

l=1

γT
ψ,j+1f̂ lψl[k] +ψy,j+1y[k + r]




j = 1, 3, . . . , 2ni−1

(4.11)

for the first 2ni modal states (which are affected by the complex unstable eigen-

values of Φ̃f ) and

ψj[k+1] = λjψj[k]−
nc∑

l=1

γT
ψ,j+1f̂ lψl[k]+γy,jy[k+r] j = 2ni+1, 2ni+2, . . . , nz

(4.12)

for the next nz − 2ni modal states (which are affected by the real-valued unstable

eigenvalues of Φ̃f ). The remaining nc − nz modal states are only affected by the
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stable eigenvalues of Φ̃f , which we do not wish to move.

Following the idea in [9], we want the modal states associated with the un-

stable eigenvalues (i.e. the first nz modal states) to be only excited by them-

selves. That is, we want ψj[k] and ψj+1[k] to be only excited by ψj[k] and

ψj+1[k] for j = 1, 3, . . . , 2ni − 1 and ψj[k] to be only excited by ψj[k] for

j = 2ni + 1, 2n+ i+ 2, . . . , nz. As a first step, the choices

f̂ l = 0 l = nz + 1, nz + 2, . . . , nc. (4.13)

are made, so that the last nc − nz modal states do not affect the first nz modal

states. Next, it is desired that

γT
ψ,jf̂ l = 0 j = 1, 3, . . . , 2ni − 1 l = 1, 2, . . . , nz, l 6= j, l 6= j + 1

γT
ψ,jf̂ l = 0 j = 2, 4, . . . , 2ni l = 1, 2, . . . , nz, l 6= j, l 6= j − 1

(4.14)

holds, so that the modal states associated with the complex eigenvalues are only

excited by themselves. Similarly, we want

γT
ψ,jf̂ l = 0 j = 2ni + 1, 2ni + 2, . . . , nz l = 1, 2, . . . , nz, l 6= j (4.15)

for the modal states associated with the real unstable eigenvalues. If we achieve

(4.14) and (4.15) and use (4.13), we have

ψj[k + 1] =
(
δj − γT

ψ,jf̂ j

)
ψj[k] +

(
ωj − γT

ψ,jf̂ j+1

)
ψj+1[k] +ψy,jy[k + r]

ψj+1[k + 1] = −
(
ωj + γT

ψ,j+1f̂ j

)
ψj[k] +

(
δj − γψ,j+1f̂ j+1

)
ψj+1[k] +ψy,j+1y[k + r]

(4.16)

for j = 1, 3, . . . , 2ni − 1, and

ψj[k+1] =
(
λj − γψ,jf̂ j

)
ψj[k]+γy,jy[k+r] j = 2ni+1, 2ni+2, . . . , nz (4.17)

for the first nz states. Note that the first nz states of the closed-loop system

Λ − ΓψF̂ are in canonical modal form as well, so that the first nz columns of F̂
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allow us to place the corresponding eigenvalues. The complex eigenvalues of the

closed-loop system have to be conjugate-complex again, so we want (from (4.16))

δj − γT
ψ,jf̂ j

!
= δj − γψ,j+1f̂ j+1 ⇒ γT

ψ,jf̂ j − γψ,j+1f̂ j+1 = 0

ωj − γT
ψ,jf̂ j+1

!
= ωj + γT

ψ,j+1f̂ j ⇒ γT
ψ,j+1f̂ j + γT

ψ,jf̂ j+1 = 0

(4.18)

for j = 1, 3, . . . , 2ni−1. This means that for the ith conjugate-complex eigenvalue

pair (i = 1, 2, . . . , ni) in modal form we need a block
[
δi,closed−loop ωi,closed−loop

−ωi,closed−loop δi,closed−loop

]
(4.19)

with (naturally) δi,closed−loop = δi,closed−loop and ωi,closed−loop = ωi,closed−loop.

Moreover, we want the closed-loop system to be stable, so we demand

∣∣∣
(
δj − γT

ψ,jf̂ j

)
± j

(
ωj − γT

ψ,jf̂ j+1

)∣∣∣ < 1 j = 1, 3, . . . , 2ni − 1. (4.20)

and

|λj − γψ,jf̂ j| < 1 j = 2ni + 1, 2ni + 2, . . . , nz (4.21)

Finally, it has to be examined how the addition of F̂ has influenced the re-

maining nc − nz eigenvalues (with (4.13) we only ensured that the last nc − nz

modal states do not affect the first nz modal states; the first nz modal states,

however, do have an influence on the last nc−nz modal states). In order to do so,

we first state that we can partition

Λ =

[
Λ1 0
0 Λ2

]
(4.22)

where Λ1 and Λ2 are matrices in canonical modal form containing the unstable

and stable eigenvalues of Φ̃f , respectively (if generalized eigenvectors have been

used, Λ2 additionaly has ones above the main diagonal). Together with the other

results from this section, we can write

ψ[k + 1] =

[
Λ̂1 Λ̂2

Λ̂3 Λ̂4

]

︸ ︷︷ ︸
=Λ−ΓψF̂

ψ[k] + Γyy[k + r] (4.23)
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for the transformed system with

Λ̂1 =

[
Λ̂1,1 0

0 Λ̂1,2

]
(4.24a)

Λ̂1,1 = blkdiag (A1,A2, . . . ,Ani) (4.24b)

Ai =

[
δ2i−1 − γψ,2i−1f̂ 2i−1 ω2i−1 − γψ,2i−1f̂ 2i

−
(
ω2i−1 − γψ,2i−1f̂ 2i

)
δ2i−1 − γψ,2i−1f̂ 2i−1

]
i = 1, 2, . . . , ni (4.24c)

Λ̂1,2 =



λ2ni+1 − γψ,2ni+1f̂ 2ni+1

. . .

λnz − γψ,nz f̂nz


 (4.24d)

Λ̂2 = 0 (4.24e)

Λ̂3 =



−γψ,nz+1f̂ 1 . . . −γψ,nz+1f̂nz

...
. . .

...

−γψ,ncf̂ 1 . . . −γψ,ncf̂nz


 (4.24f)

Λ̂4 = Λ2. (4.24g)

This summarizes the whole approach. Because Λ̂2 = 0 in (4.24e), the eigenvalues

of the closed-loop system are the eigenvalues of Λ̂1 and Λ̂4 (Λ̂ is a block tridiagonal

matrix). We can place the eigenvalues in Λ̂1 by the choice of the first nz columns of

F̂, so we can make sure that we move the unstable eigenvalues (which derive from

the non-minimum phase zeros) into the unit circle. Moreover, because of (4.24g),

the remaining nc− nz eigenvalues are the stable eigenvalues of Φ̃f (hence we have

not changed them by introducing v[k]).

In conclusion, by introducing feedback of the form v[k] = Fxc[k] to the ideal

control law (3.18) and by designing the feedback gain matrix according to this

section, we are able to move all unstable eigenvalues of the filter into the unit

circle and keep the already stable eigenvalues in their respective spot.

4.2.2 Design by Optimization

The idea of this section is to include the equality demands (4.14), (4.15), (4.18)

and the inequality demands (4.21), (4.20) (which ensure that the the inverse filter
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is stabilized) for the design of the feedback gain matrix F into an optimization

problem so that the norm of the resulting F is minimized to limit its influence on

the ideal inversion control law. Therefore, an optimization problem was formulated

to design F and which includes the stability demands (4.21), (4.20) as inequality

constraints. Further, the demands (4.14), (4.15), (4.18) are included as equality

constraints.

The gain matrix F is obtained after designing F̂ (according to (4.8e)):

F = −F̂W. (4.25)

As design parameters, we have the p·nz entries of the first nz columns of F̂ (because

we set the last nc − nz columns of F̂ to zero in (4.13)), so we define

x =



f̂ 1
...

f̂nz


 (4.26)

as the decision variable (please note that x in this case does not refer to any state

variable). Thus we define

min
x∈Rpnz

‖F̂W‖2
F (4.27)

as the optimization problem, together with the inequality constraints (4.21) and

(4.20) and the equality constraints (4.14), (4.15) and (4.18). The squared norm of

F is minimized because it simplifies the calculations later on.

This optimization problem with nonlinear constraints can be either solved

with Matlab’s fmincon function, or some further analysis can be done to solve it

with the Lagrange dualism, which is what will be done here.

The Lagrange dualism is very briefly introduced here, see for example [38] for
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details. Consider an optimization problem in standard form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(4.28)

with decision variable x ∈ Rn, and it is assumed that its domain D is nonempty

(please note that the notation here is independent of the usual notation in this

thesis: n, m and p in (4.28) do not refer to the plant order or to the number of

plant inputs or outputs). By defining the Lagrangian L : Rn × Rm × Rp → R the

constraints are taken into consideration:

L(x,µ,ν) = f0(x)+
m∑

i=1

µifi(x)+

p∑

i=1

νihi(x) = f0(x)+µTf(x)+νTh(x) (4.29)

with

f(x) =
[
f1(x) . . . fm(x)

]T

h(x) =
[
h1(x) . . . hp(x)

]T

µ =
[
µ1 . . . µm

]T

ν =
[
ν1 . . . νp

]T
.

(4.30)

We refer to µi as the Lagrange multiplier associated with the i-th inequality con-

straint fi(x) ≤ 0; similarly we refer to νi as the Lagrange multiplier associated

with the i-th equality constraint hi(x) = 0. Furthermore, we define the Lagrange

dual function g : Rm × Rp → R as the minimum value of the Lagrangian over x:

g(µ,ν) = inf
x∈D

L(x,µ,ν) = inf
x∈D

(
f0(x) + µTf(x) + νTh(x)

)
(4.31)

The dual function yields lower bounds on the optimal value p∗ of the primal

problem (4.28):

g(µ,ν) ≤ p∗ (4.32)
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so the question is what the best lower bound is that can be obtained by the

parameters µ,ν. This leads to the optimization problem

maximize g(µ,nu)

subjet to µ ≥ 0

(4.33)

where µ ≥ 0 means that all elements of the vector µ should be ≥ 0. This problem

is called the Lagrange dual problem associated with the primal problem (4.28). It

is a convex optimization problem because the objective to be maximized over is

concave and the constraint is convex. This is the case whether the primal problem

(4.28) is convex or not [38].

Next, we want to find an expression for the Lagrange dual function for our

problem at hand. The details of the calculations and the definitions of the following

matrices are described in Appendix A. It is first noted that the primal problem

(4.27) can be expressed as:

minimize xTYx

subject to xT
(
UT
j SjUj + UT

j+1SjUj+1

)
x− 2εT

j x+ rj < 0 i = 1, 3, . . . , 2ni − 1,

MNx+ k < 0

Gx = 0

(4.34)

where the details can be found in Appendix A. After some calculations (see Ap-

pendix A for a detailed discussion) the Lagrangian can be written as

L (x,µ,ν) = xTQ (µ)x+
(
µTP + νTG

)
x+ µTd (4.35)

The notation Q (µ) denotes that the matrix Q is not constant, but depends on

the Lagrangian multiplier µ. It can be shown that Q is positive definite. Thus,

the dual function becomes

g(µ,ν) = inf
x∈Rpnz

L(x,µ,ν) = inf
x∈Rpnz

(
xTQx+

(
µTP + νTG

)
x
)

+ µTd. (4.36)
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and a minimum is obtained when (4.36) is differentiated and the derivative is set

to zero, since Q is positive definite. It follows:

(
Q + QT

)
︸ ︷︷ ︸

:=Q̃

x∗ +
(
PTµ+ GTν

) !
= 0 ⇒ x∗ = −Q̃

−1 (
PTµ+ GTν

)
(4.37)

where Q̃ = Q + QT was defined. Plugging this result back into (4.36) yields

g(µ,ν) = L(x∗,µ,ν) =
(
µTP + νTG

) (
Q̃
−1

QQ̃
−1 − Q̃

−1
) (

PTµ+ GTν
)

+ µTd

(4.38)

for the dual function, where the two facts

(
Q̃
−1
)T

=
(
Q̃

T
)−1

Q̃
T

= Q̃

(4.39)

were used [34]. Thus we have

max
µ≥0

(
µTP + νTG

) (
Q̃
−1

QQ̃
−1 − Q̃

−1
) (

PTµ+ GTν
)

+ µTd (4.40)

as the (convex) dual optimization problem. Since we can express any maximization

problem as a minimization problem

max
x∈D

f(x) = min
x∈D
−f(x) (4.41)

we define

Q̂ = Q̃
−1 − Q̃

−1
QQ̃

−1
(4.42)

so we finally obtain

min
µ≥0

(
µTP + νTG

)
Q̂
(
PTµ+ GTν

)
− µTd (4.43)

as the dual minimization problem that we want to solve using Matlab’s fmincon

function. We have to use the fmincon function as we still have to consider a

constrained optimization problem.
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Once the optimization problem (4.43) is solved, and we have obtained µ∗ and

ν∗ as its solutions, we can conclude

x∗ = −Q̃
−1 (

PTµ∗ + GTν∗
)

(4.44)

by using (4.37), hence the entries of F̂ (and therefore F as well) are known.

4.2.3 Discussion of the Approach

This approach to directly influence the unstable eigenvalues of the inverse

filter (which derive from the plant’s non-minimum phase zeros) was introduced

and developed for several reasons. First, the transformation to modal canonical

form offers the possibility to express the eigenvalues of the closed-loop inverse filter

in terms of the decision variable x (i.e. the entries of F), so that the objective

function and the constraints can be analytically used to find the Lagrange dual

function (and therefore it enables us to let Matlab solve a convex optimization

problem). Moreover, if F is designed using “classic” pole-placement techniques,

multiple problems arise. It is not clear how the filter eigenvalues have to chosen to

obtain a satisfying tracking performance, and a dlqr approach requires an iterative

design to find adequate weights.

It turned out, however, that this optimization approach has some disadvan-

tages, especially in the implementation. For instance, the original unstable inverse

filter state-transition matrix Φ̃f has a multiple eigenvalue in 0 (see Section 3.2.1),

making it harder to transform the matrix to canonical modal form, since gener-

alized eigenvectors have to be used. The transformation matrix V has a high

condition number, and the entries in its inverse V−1 = W are relatively large. It

is argued then that it becomes difficult to minimize the Frobenius norm ‖F̂W‖F
if W has very large entries. It is noted that if the hybrid approach approach

mentioned in Section 3.2.3 is applied, the problem with the multiple eigenvalue

vanishes and this approach yields better results than before, but they are still not
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a real improvement to the classic design of adding advances until the inverse filter

is stabilized, and the derivation and implementation are much more complicated.

It is concluded that the success of this approach does not only depend on the

non-minimum phase zeros of the plant, but also on how “well” the inverse filter

can be transformed to canonical modal form. Furthermore, the chosen objective

function (i.e. the Frobenius norm of the resulting controller F) may not be ideal to

obtain a “good” precision tracking system. Despite this disappointing conclusion,

this approach played an important role in this thesis, since the work on this initial

idea to involve optimization in the design process of F led to more thoughts on how

optimization can improve tracking and how a corresponding optimization problem

has to be formulated. This resulted in the approach presented in Section 4.3.

4.3 Frequency Optimization Approach

This section focuses on the idea of optimizing the frequency response of the

cascade of the inverse filter and the system whose output is desired to be tracked.

In theory, the filter-based tracking system should be a pure delay of d samples

(d ≥ r), i.e. the ideal frequency response of the cascade is given by

Gideal = e−jωdT Ip. (4.45)

Let Hc

(
ejωT

)
denote the frequency response of the system, and Hf

(
ejωT

)
the

frequency response of the inverse filter with feedback matrix, F (defined in (3.56)).

Assume that a grid of frequency points ωk, k = 1, . . . , N is given, based on the

frequencies included in the system. In the simulation results presented in Chapter

5, ωN was chosen to be the maximum frequency for which none of the magnitudes

of the main diagonal elements of the feedback tracking system shown in Fig. 3.1

has dropped by 3 dB, and ω1 = 0 rad
s

(dc gain).
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According to (4.45), an initial idea for the optimization could be

F∗ = arg min
F

N∑

k=1

‖Hc

(
ejωkT

)
Hf

(
ejωkT

)
− e−jωkdT Ip‖2

F s.t. Φ̃f + ΓcF is stable

(4.46)

where ‖ · ‖F denotes the Frobenius norm. As a quick reminder, Φ̃f denotes the

unstable state-transition matrix of the inverse filter that approximately inverts the

system with a delay of d samples, and to which the feedback gain matrix F has not

yet been added (inversion is exact for d = r). This initial optimization problem,

even though it is a formulation of what we want to achieve, can prove to be quite

wasteful in practice. The reason for that is that the optimization, for a MIMO

system, attempts to optimize the off-diagonal elements of Hc

(
ejωT

)
Hf

(
ejωT

)
as

well (i.e. zero magnitude and phase over all frequencies), but this is not necessarily

required for a good inversion-based tracking performance. The phase of the off-

diagonal elements is not important for the tracking performance if the attenuation

is small enough, so the demand for the off-diagonal elements is to “simply” provide

a sufficient attenuation over the frequency range of interest.

The following sections deal with different formulation for the objective func-

tion of the optimization problem that were considered in this thesis. For better

readability, a few definitions are introduced first. Define zk = ejωkT . Introduce

G (zk) = Hc (zk) Hf (zk) (4.47)

and let the elements of G (zk) be denoted by gij (zk), i, j = 1, . . . , p:

G(zk) =



g11(zk) . . . g1p(zk)

...
. . .

...
gp1(zk) . . . gpp(zk)


 . (4.48)

4.3.1 Main Diagonal Elements

The main diagonal elements are the main concern of the optimization. For a

good tracking performance, the frequency responses gii(zk), i = 1, . . . , p have to be
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“close” to the ideal frequency response gideal(zk) = e−jωdT . Therefore, the following

cost function is introduced for the main diagonal elements

Jmain =
N∑

k=1

∥∥∥∥∥∥∥



g11(zk)− e−jωkdT

...
gpp(zk)− e−jωkdT




∥∥∥∥∥∥∥

2

2

=
N∑

k=1

p∑

i=1

(
g∗ii(zk)− ejωkdT

) (
gii(zk)− e−jωkdT

)

=
N∑

k=1

p∑

i=1

∣∣gii(zk)− e−jωkdT
∣∣2

(4.49)

where g∗ii(zk) denotes the conjugate-complex of gii(zk). It optimizes the distance

between the actual frequency response gii(zk) and the desired value in the complex

plant over the frequencies of interest.

4.3.2 Off-Diagonal Elements

Two approaches were considered for the off-diagonal elements. Since we only

care about the attenuation, the first cost function tries to minimize the squared

magnitudes of the off-diagonal elements:

Joff = α
N∑

k=1

p∑

i=1

p∑

j=1
j 6=i

|gij(zk)|2 (4.50)

The factor α can be used to weight the cost function for the off-diagonal elements

in comparison to the cost function for the main diagonal elements. Naturally, the

weighting factor could also be different for every k, i and j, so a factor αkij would

be possible, if weighting for different frequencies and elements is desired.

Another possibility is to define a desired attenuation for the off-diagonal ele-

ments. First, let the element gij(zk) be given by

gij(zk) = aij(zk) + jbij(zk). (4.51)

For i 6= j, an attenuation of

|gij(zk)| =
√
a2
ij(zk) + b2

ij(zk)
!

≤ Ra (4.52)
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is demanded. It can bee seen that gij(zk) has to lie within a circle with radius Ra

in the complex plane, centered in the origin. An idea for a penalty function (see

[39]) is given by

Joff =
N∑

k=1

p∑

i=1

p∑

j=1
j 6=i

eα(
√
a2ij(zk)+b2ij(zk)−Ra). (4.53)

The argument of the exponential function was chosen such that it is negative if

gij(zk) lies within the desired circle, and positive if it is not. Together with an

adequate choice of the weighting factor α, gij(zk) has a very high contribution to

the penalty function if it is outside the desired circle (i.e. if the attenuation at

this frequency is higher than desired), and it has basically no contribution if the

attenuation demand is satisfied. It goes without saying that α and Ra could be

chosen differently for every k, i and j, if so desired.

4.3.3 Stability Constraint

As indicated in (4.46), the optimization has to be constrained. Namely, the

feedback gain matrix F has to stabilize Φ̃f , i.e. the eigenvalues of the matrix

Φ̃f + ΓcF must be all located inside the unit circle. Usually, constraint functions

f (x) must be defined such that they return a negative value if the constraint

is satisfied and a positive value otherwise. In our case, one possibility for the

constraint function is to consider the spectral radius ρ of the matrix Φf = Φ̃f+ΓcF.

It is defined as the largest absolute value of the eigenvalues of the matrix [34].

Hence, the constraint function could be formulated as

f (F) = ρ
(
Φ̃f + ΓcF

)
− 1. (4.54)

Alternatively, a constraint function for every eigenvalue of the filter could be de-

fined:

fi (F) = |λi| − 1, i = 1, . . . , nc (4.55)

where λi denotes the ith eigenvalue of Φ̃f + ΓcF and nc is the order of the filter.
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Another possibility is to not explicitly constrain the optimization, but to

include the stability constraint in the objective function. In order to do so, a

penalty function is designed, similar to Section 4.3.2. The desired area in the

complex plane, in which the eigenvalues must be kept in, is the unit circle. If

λi = δi + jωi, i = 1, . . . , nc, then

Jeig =
nc∑

i=1

e
β
(√

δ2i+ω2
i−1

)
(4.56)

is a reasonable penalty function for the stability constraint. As before, the eigen-

value λi has a very high contribution if it is outside the unit circle, and hardly any

contribution otherwise. To ensure a successful design, the parameter β should be

assigned a pretty high value (e.g. β = 104).

4.3.4 Discussion of the Approach

In theory, this frequency optimization approach can be used in an attempt

to get a sufficient tracking performance within the frequency range of interest,

while only using the minimum number of r advances to invert the system, i.e. the

cascade of the filter and the closed-loop system is an (approximate) delay of r

samples. For most cases, however, the optimization will not be able to find a F

which stabilizes the filter while also maintaining a respectable tracking performance

over the desired frequency range, if only r advances are used. That being the case,

it is recommended to use a “hybrid approach” between adding delays and designing

the feedback matrix F (via optimization) to stabilize the filter, discussed at the

end of Section 3.2.3. Accordingly, the system matrices for the inverse filters are

given in (3.56), with C̃f and D̃f being defined in (3.62). A reasonable procedure

to find the optimal inverse filter design is to let s run from 0 to smax and use the

number of advances s that produced the smallest value of the objective function.

As an initial value F0, a result from the classical feedback design techniques,

presented in Section 4.1, can be used. In particular, it proved to be useful to
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determine F0 via a dlqr design.
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CHAPTER 5

Example Systems and Simulation Results

In this chapter, the example systems that were examined in the course of

this thesis will be presented, together with the tracking results obtained from

simulations in Matlab. The desired reference trajectory will be denoted by r[k],

the actual output by y[k].

The feedback matrix Kd =
[
K1 −K2

]
for the tracking system in Fig. 3.1

was designed according to the guidelines in [27]. These rules use normalized Bessel

poles, which can be found in Table 5.1 [25, 27].

As a rule of thumb, the sampling time T to discretize continuous-time systems

can be chosen with respect to the desired settling time TS. If n denotes the order of

the continuous-time plant and na the order of the additonal dynamics (see Section

3.1), then

T ≈ TS
20 (n+ na)

(5.1)

was often used as a rule of thumb in this thesis.

An important performance measure for the tracking systems in Fig. 3.5 and

Fig. 3.6 is the precision tracking bandwidth ωb. If all the frequencies included in

the reference trajectory lie within the bandwidth 0 ≤ ω ≤ ωb, it is assumed that the

Variable Pole Locations
s1 −4.6200
s2 −4.0530± j2.3400
s3 −5.0093, −3.9668± j3.7845
s4 −4.0156± j5.0723, −5.5281± j1.6553
s5 −6.4480,−4.1104± j6.3142, −5.9268± j3.0813
s6 −4.2169± j7.5300, −6.2613± j4.4018, −7.1205± j1.4540

Table 5.1: Normalized Bessel poles for 1st through 6th-order systems with 1-second
settling time. To get a settling time of TS seconds, divide all poles by TS.

62



architectures are able to perfectly track this reference. Let Aij (jω) = |gij
(
ejωT

)
|

be the magnitude and ϕij (jω) = ∠gij
(
ejωT

)
be the phase of the frequency response

of the transfer function from the jth input to the ith output of the entire filter-

based tracking system (shown in Fig. 3.5 and Fig. 3.6, respectively). Assume that

we choose a pure sinusoid

ri[k] = sin (ωkT ) (5.2)

with frequency ω as the reference signal for every output, i = 1, . . . , p. The differ-

ence between the ideal output and the actual output will be used to formulate a

condition for the precision tracking bandwidth.

As a first step, we derive the output of the precision tracking system for the

chosen reference input. With the presented notation, we obtain

yi[k] =

p∑

j=1

Aij (jω) sin (ωkT + ϕij (jω)) i = 1 . . . , p (5.3)

as the steady-state response of the ith ouput [26]. According to Sections 3.3 and

3.4, the cascade of the inverse filter and the system is an approximate delay of

d samples on every output signal. The ideal frequency response of the tracking

system (see also Section 4.3) is therefore

Gideal = e−jωdT Ip. (5.4)

and hence the ideal output for the chosen reference input is

yideal,i[k] = sin (ωkT + ϕ0 (jω)) i = 1 . . . , p (5.5)

with

ϕ0 (jω) = −ωdT. (5.6)

The tracking error δ[k] will be in this case defined as the difference between the

ideal output yideal[k] and the actual output y[k], so for the tracking error of the

63



ith output

δi[k] = yideal,i[k]− yi[k] = sin (ωkT + ϕ0 (jω))−
p∑

j=1

Aij (jω) sin (ωkT + ϕij (jω)) .

(5.7)

follows. Obviously, δ[k] is a (discrete) function of time, t = kT , but we want to

derive a measure for the tracking error at a specific frequency ω, independent of

the time t, which we will call ε(jω). For this reason, we define

εi(jω) := max
k
{δi[k]} = max

k
{sin (ωkT + ϕ0 (jω))−

p∑

j=1

Aij (jω) sin (ωkT + ϕij (jω))}

(5.8)

as the performance measure for every output. Next, Euler’s formula

ejx = cos(x) + j sin(x) (5.9)

will be used to find an expression for ε(jω) [40]1. This is done by rewriting (5.7) (for

ease of notation and better readability kT is replaced by t and the ω-dependency

of the magnitudes and the phase shifts is omitted):

sin (ωt+ ϕ0)−
p∑

j=1

Aij sin (ωt+ ϕij) = Im{ej(ωt+ϕ0)} −
p∑

j=1

Im{Aijej(ωt+ϕij)}

= Im

{
ej(ωt+ϕ0) −

p∑

j=1

Aije
j(ωt+ϕij)

}
= Im

{
ejωt

(
ejϕ0 −

p∑

j=1

Aije
jϕij

)

︸ ︷︷ ︸
:=Âiejϕ̂i

}

= Im{Âiejϕiejωt} = Im{Âiej(ωt+ϕi)}

= Âi sin(ωt+ ϕ̂i).

(5.10)

In the light of this observation, it can be concluded that δi[k] is a sinusoid with

amplitude Âi and phase ϕ̂i, so εi(jω) is defined as the amplitude of this sinusoid.

1https://ccrma.stanford.edu/~jos/filters/Sum_Sinusoids_Same_Frequency.html
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Since the amplitude Âi is given as the magnitude of the complex number z =

ejϕ0 −∑p
j=1Aije

jϕij , it can be expressed as

Re(jω) = cos(ϕ0(jω))−
p∑

j=1

Aij(jω) cos(ϕij(jω))

Im(jω) = sin(ϕ0(jω))−
p∑

j=1

Aij(jω) sin(ϕij(jω))

εi(jω) =

√
(Re(jω))2 + (Im(jω))2

(5.11)

where Euler’s formula was used again.

Finally, we define the precision tracking bandwidth ωb to be the largest value

ω for which εi(jω) < Kb holds for every output, i = 1, . . . , p. For the following

simulation results we chose Kb = 10−2, i.e.

ωb = largest ω s.t. εi(ω) < 10−2, i = 1, . . . , p. (5.12)

The precision tracking bandwidth will for example be used to evaluate how

much of the reference trajectory’s energy is included in this bandwidth. In order

to do so, we introduce (with Ωk = ωkT )

R (jΩk) = R[k] =
N−1∑

n=0

r[n]W kn
N (5.13)

as the discrete Fourier transformation (see for example [41]) of the reference input

r[k], where N is the number of samples of r[k] and

WN = e−j
2π
N (5.14)

holds. The value R[k] occurs at the frequency ωk = 2πk
NT

with 0 ≤ k < N . According

to Parseval’s relation, we have

E =
N−1∑

n=0

|r[n]|2 =
1

N

N−1∑

n=0

|R[n]|2 (5.15)

as the energy contained in the reference trajectory [41]. Since the DFT is periodic

and R[−k] = R∗[k] holds [41], we also have R[N − k] = R∗[k]. Therefore, the
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amount of the signal’s energy that is contained up to the frequency ωk ≤ π
T

is

calculated as

Ek =
|R(j0)|2 + 2 ·∑k

n=1 |R (jΩn) |2∑N−1
n=0 |R (jΩn) |2

(5.16)

in the following sections.

Moreover, two other performance measures were established in the thesis and

will be taken into account for the example systems in the following sections. These

performance measures were taken from [4], where the tracking of continuous-time

SISO systems is discussed. One performance measure (Je) is introduced to quantify

the energy in the tracking error, another one (Jm) to quantify the peak deviation

from the desired trajectory. Assume that yi[k] denotes the ith output and ri[k] the

corresponding desired trajectory. Then, we can define

Je,i =

∫
{((yi[k]− ri[k]) · w[k])2}dt (5.17)

and

Jm,i = max
k
{((yi[k]− ri[k]) · wi[k])2} (5.18)

as the respective performance measures for one output, where wi[k] is a weighting

function defined by

wi[k] =





1
|ri[k]| if |ri[k]| ≥ ri,t

1
ri,t

otherwise

(5.19)

and ri,t > 0 denotes a threshold value for the ith output. In the following, it is set

to

ri,t = 0.1 ·max
k
|ri[k]|, (5.20)

i.e. 10% of the maximum absolute value of the reference trajectory for the ith

output. If the reference for the ith output is ri[k] = 0 for all k, it is set to ri,t = 1.

The weighting function was introduced so that the tracking error yi[k] − ri[k] is
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normalized and becomes comparable for different systems. However, if the refer-

ence input is zero or close to zero, the performance measures would become very

large if they were divided by ri[k], and therefore the threshold ri,t was introduced.

Matlab’s trapz function was used to carry out the numerical integration in (5.17).

For MIMO systems, the performance measures for the single outputs will be

combined, so that

Je =
1

p

p∑

i=1

Je,i (5.21)

and

Jm = max
i
Jm,i (5.22)

will be used as the performance measures in the following sections.

Another measure that will be discussed is the (absolute) tracking error

δi[k], i = 1, . . . , p for every output; that is δi[k] = yi[k] − ri[k]. This is not to

be confused with the stability robustness bounds δ1 and δ2 introduced in Section

3.1, as they will also be mentioned in the discussions and evaluations of the example

systems.

The “standard” approach to calculate the CSF and IMP in the following

sections will be the design presented in Section 3.2.2, i.e. advances will be added

until all the eigenvalues of the inverse filter are contained in the chosen pole radius

R. This result will then be contrasted and compared with a design that involves

a feedback gain matrix F in order to stabilize the inverse filter. Most of the time

a hybrid approach between adding advances and designing a feedback matrix will

yield the best result.

Please note that all the Bode plots shown in the following sections are for the

closed-loop system shown in Fig. 3.5 and Fig. 3.6, respectively. Thus, they are

not indicative of gain or phase margin of the control system.
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5.1 H-Frame System

In this section, an H-Frame XY positioning system, which consists of two

stationary motors, eight pulleys and a single drive belt, is considered. A detailed

description of the system modeling and an 8th-order state-space model can be

found in [42]. The system has two inputs and two outputs. The inputs are the

voltages to the two motor power amplifiers, and the tracked outputs are the x and

y positions of the cart.

The choice of the closed-loop poles of the feedback tracking system will be

based on the pole and zero locations of the continuous-time plant. It has no finite

zeros, but the following poles:

s1,2 = −20.0068± j329.0277 s6 = −43.8959

s3,4 = −21.9751± j249.2963 s7,8 = 0

s5 = −15.6059.

(5.23)

Together with the additional dynamics, which were chosen to be integrators

(see Section 3.1), the design model in (3.1) is a 10th-order system. A settling time

of TS = 0.1 s is desired, so the sampling time was chosen to be T = 5 × 10−4 s

(see (5.1)). According to the rules in [27], damping was added to the complex

plant poles s1 to s4, and the remaining six poles were chosen to be s6
TS

(see Table

5.1). These poles were mapped using the ZOH pole-mapping formula, λi = esiT ,

and the algorithm from [27] was used to calculate the (discrete-time) feedback

gain matrix Kd. The attained input-multiplicative and input-feedback stability

robustness bounds were δ1 = 0.6490 and δ2 = 0.7395, respectively. After Kd is

calculated, the (digital) feedback tracking system (Fig. 3.1) can be formed. The
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poles are located at

λ1,2 = 0.9640± j0.1600 λ7,8 = 0.9689± j0.0213

λ3,4 = 0.9696± j0.1212 λ9,10 = 0.9650± j0.0070

λ5,6 = 0.9784± j0.0369

(5.24)

while

η1 = −9.8030 η4 = −0.9945

η2 = −9.8280 η5 = −0.1002

η3 = −0.9912 η6 = −0.1006

(5.25)

are the zeros of the tracking system, which coincides with the zeros of the dis-

cretized plant. Thus, the feedforward filters become unstable due to the presence

of the non-minimum phase (sampling) zeros η1 and η2.

Command Shaping Filter

The CSF can invert the closed-loop system in Fig. 3.1 exactly with a delay of

r = 2 samples. Since the largest absolute value of the eigenvalues of the feedback

tracking system is |λmax| = 0.9791, the pole radius R for the CSF becomes R =

0.9896 (see (3.51)). The CSF needs s = 14 additional advances to move the

eigenvalues of the filter within the pole radius R, so the cascade of filter and

feedback tracking system is an approximate delay of d = 16 samples.

The Bode plot of the entire precision tracking system (shown in Fig. 3.5) can

be seen in Fig. 5.1. The Bode plot of the feedback tracking system (FTS), i.e. the

system in Fig. 3.1, is shown is as well. The precison tracking bandwidth achieved

with the CSF is ωb = 149.5312 rad
s

.

Figures 5.2a and 5.2c show the tracking performance achieved with the CSF

and s = 14 additional delays. The chosen reference input causes the cart to

move along a square whose sides have length 2.5 cm. The corresponding absolute

tracking errors δi = yi − r1, i = 1, 2 can be seen in Figures 5.2b and 5.2d. The
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(d) From input 2 to output 2
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Figure 5.1: Frequency response of the H-Frame precision tracking system compar-
ing a standard feedback tracking system (FTS) without feedforward, and the same
feedback system with a feedforward CSF filter

70



tracking error is never higher than 1×10−3 cm for both outputs. The corresponding

performance measures are Je = 2.4659×10−7 and Jm = 1.7671×10−5, respectively.

The achieved precision tracking bandwidth with this design contains almost 100%

of the reference input’s energy.

It is possible to improve the tracking performance of the CSF if a hybrid

approach between adding advances and the frequency optimization is used. For the

H-Frame system, the unconstrained optimization, using (4.50) as penalty functions

for the off-diagonal elements (α = 10) and (4.56) as penalty function for the

eigenvalue constraint (β = 1 × 104), together with adding s = 9 advances (on

top of the r advances already needed to derive the (unstable) CSF), gave the best

result. The initial value F0 was determined using a dlqr design, with Q = 10−10 ·Inc
and S = 100 · Ip. The maximum frequency that was contained in the frequency

grid was ωN = 91.9841 rad
s

.

After the optimization, the spectral radius of the CSF is ρ (Φf ) = 0.9983 and

it reaches an objective function value of J = 8.9884× 10−7. Since s = 9 additional

advances were added, the cascade of the CSF and the closed-loop system is an

approximate delay of d = 11 samples (in contrast to the d = 16 samples that were

needed before). The actual frequency response of this CSF can be seen in Fig.

5.3. The result achieved with the frequency optimization approach (solid line) is

contrasted with the result from “simply” adding s = 14 delays (dotted line); the

precision tracking bandwidth could be roughly doubled to ωb = 298.7422 rad
s

.

Figure 5.4 shows the tracking errors for the two outputs with the frequency

optimization approach. While the tracking error δ2 stays roughly the same, the

tracking error δ1 could be improved from δ1,old = 1×10−5 m to δ1,new = 4×10−6 m,

i.e. by
δ1,old−δ1,new

δ1,old
= 60%. This also shows in the performance measures, they could

be further bettered to Je = 2.9857× 10−8 and Jm = 2.8290× 10−6.
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Figure 5.2: H-Frame tracking (CSF)
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Figure 5.3: Frequency response of the H-Frame precision tracking system (CSF -
frequency optimization)
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Figure 5.4: H-Frame tracking (CSF - frequency optimization)
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Finally, it is noted that only cart and motor positions can be measured, but

not the velocities, which are also included as states in the plant model. Therefore,

an observer was added to validate the tracking performance if only the output y[k]

is available for controlling the system (see Section 3.5 for details). The desired

observer pole locations were calculated via a dlqr design on the system
(
ΦT,CT

)
,

with weighting matrices Q = 100 · In and S = Ip (since the continuous-time plant

does not have any zeros, the guidelines in [27] were not applied). The locations

returned by this design were then used in the algorithm from [27], in order to find

the observer gain L which ensures the desired pole locations and optimizes the

stability robustness bounds. The resulting feedback tracking system suffers from

a reduced stability robustness in comparison to the previous design, δ1 = 0.4159

and δ2 = 0.3818.

With this observer design, the spectral radius of Φc increases to ρ (Φc) =

0.9943, hence the pole radius becomes R = 0.9971. The feedback tracking system

can still be exactly inverted with a delay of r = 2 samples, and s = 10 addi-

tional delays are required to stabilize the CSF, making the tracking system an

approximate delay of d = 12 samples. The precision tracking bandwidth becomes

ωb = 261.9769 rad
s

. The improvement in comparison to the standard CSF design

without observer can be explained with the larger pole radius and the resulting

fewer number of advances needed to keep the filter poles within this radius. If the

same pole radius (R = 0.9971) is used without the observer, a similar precision

tracking bandwidth is obtained. The resulting tracking errors of the CSF tracking

architecture with an observer included are shown in Fig. 5.5. The absolute track-

ing error δ1 is better in comparison to the initial CSF result in Fig. 5.2, again due

to the larger pole radius R and the resulting fewer number of delays. In general it

can be stated that the CSF architecture with an included observer is still able to
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Figure 5.5: H-Frame tracking (CSF - with observer)

track the reference trajectory.

As a next step, to validate the robustness of the tracking architecture, it

is assumed that the system description is subject to uncertainties. The inverse

filter design was based on the nominal plant model, but when the simulation was

carried out, every parameter of the H-Frame system (see [42] for a description

of the parameters) was changed by 10%. The same observer was used as in the

previous result. As to be expected, adding uncertainties substantially reduced the

precision tracking bandwidth, we now have ωb = 3.1145 rad
s

. It has to be evaluated

via a simulation if this bandwidth is sufficient to track the desired reference without

visible tracking errors. The plot of the tracking performance and the corresponding

tracking errors is shown in Fig. 5.6. Especially for the second output, the tracking

error gets worse, as deviations between reference input r2[k] and plant output
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y2[k] in Fig. 5.6b are visible. Although this result is a decline in comparison to

the previous results, it can still be argued that good tracking is achieved. The

maximum absolute tracking error is |δmax| = 0.9817 mm, while the amplitude of

the reference trajectory is rmax = 2.5 cm, so the tracking error is only around 4%

of this amplitude. In addition, the performance measures are Je = 0.0045 and

Jm = 0.1542, which is considerably larger than the prior values, but still relatively

small.

Inverse Modified Plant

The modified plant can be inverted exactly with a delay of r = 1 sample.

The algorithm needs s = 1 more advances to stabilize the inverse filter, so that

the cascade of the IMP and the modified plant is an approximate delay of d = 2

samples. The spectral radius of the modified plant is ρ (Φc) = 0.9803, the pole

radius becomes R = 0.9902. The resulting Bode plot can be seen in Fig. 5.7, the

result is contrasted with the result of the standard feedback tracking system. A

clear improvement is noticed in comparison to the feedback tracking system. In

particular, the IMP is able to greatly better the precision tracking bandwidth ωb;

it obtains a value of ωb = 1.4551 × 103 rad
s

which is more than the fourfold of the

best CSF result. Additionally, the other performance measures shrink as well, the

IMP reaches Je = 1.4852−14 and Jm = 1.0782 × 10−11. The plots of the tracking

errors are shown in Fig. 5.8, and they reveal very high frequency oscillation in

the tracking error at some time instances. These oscillations, however, have a very

small amplitude. The tracking error is never higher than |δmax| = 8.3 nm (which

constitutes an improvement of 99.79% in comparison to the best CSF result).

In the IMP case, the frequency optimization approach yields very similar

results in comparison to the standard design. An unconstrained optimization was

solved with (4.50) as cost function for the off-diagonal elements, (4.56) as penalty
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Figure 5.6: H-Frame tracking (CSF - observer with uncertainties)
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CSF CSF - freq. opt. CSF - unc. IMP IMP - freq. opt. IMP - unc.

ωb in rad
s

149.5312 298.7422 3.1145 1.4551× 103 1.4556× 103 3.1354
Je 2.4659× 10−7 2.9857× 10−8 0.0045 1.4852× 10−14 9.8952× 10−15 0.0045
Jm 1.7671× 10−5 2.8290× 10−6 0.1542 1.0782× 10−11 1.0826× 10−11 0.1540

Table 5.2: H-Frame tracking results

function for the stability constraint (β = 104, ωN = 91.9841 rad
s

) and s = smax = 1

additional advance.

The results for an uncertain plant in combination with an observer are com-

parable to the CSF results.

All the results can be seen in Table 5.2.

5.2 Atomic Force Microscope

The model for an Atomic Force Microscope (AFM) was taken from [4], where

also details on the AFM can be found. As a versatile instrument, the AFM is able

to image nanoscale structures, and it is of particular interest for control engineers

since the imaging depends utterly on the feedback control loop. In this section,

a model for motion in the X direction will be considered [4]. It is given as the

discrete-time transfer function model

PXX(z) =
−0.0014 (z − 0.0061) (z − 1.7824)

(z − 0.8884) (z − 0.8572± j0.4032)

×(z − 1.1264± j0.4627) (z − 0.8762± j0.3766)

(z − 0.8717± j0.2742) (z − 0.9716± j0.2022)

(5.26)

which uses a sampling rate of f = 20.833 kHz, so the sampling time is T = 1
f

=

0.048 ms.

In order to use the rules given in [27] for the design of the feedback track-

ing system, the poles of the discrete-time model are first mapped back to the

continuous-time domain, using si = 1
T

ln (λi). The result is

s1,2 = −1.1281× 103 ± j9.1595× 103 s5,6 = −1.5858× 102 ± j4.2745× 103

s3,4 = −1.8778× 103 ± j6.3490× 103 s7 = −2.4652× 103.

(5.27)
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Figure 5.7: Frequency response of the H-Frame precision tracking system (IMP)
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Figure 5.8: H-Frame tracking (IMP)
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Together with integral additional dynamics, the design model (3.8) is a 8th-order

system, with an additional eigenvalues in 0.

For this application, the desired settling time was set to TS = 2.5 ms. As

closed-loop pole locations in the continuous-time domain, we keep the imaginary

part of every pole and slide the real parts over to Re{si} = −2000, i = 1, . . . , 8.

For integral additional dynamics, the eigenvalue in 0 is moved to s8 = −2050, so

that the closed-loop system has only distinct eigenvalues. Since the model for the

X motion is a SISO system (i.e. the algorithm in [27] returns the same robustness

bounds as any other pole placement algorithm), Matlab’s place command was

used to calculate Kd. After the feedback design, the digital feedback tracking

system has poles at

λ1,2 = 0.8221± j0.3867 λ7 = 0.9063

λ3,4 = 0.8666± j0.2726 λ8 = 0.9085

λ5,6 = 0.8894± j0.1851

(5.28)

and zeros at

η1 = 0.0061 η4 = 1.7824

η2,3 = 0.8762± j0.3766 η5,6 = 1.1264± j0.4627.

(5.29)

The zeros of the feedback tracking system are the same as the zeros of the discrete-

time plant. The resulting robustness bounds are δ1 = 1 and δ2 = 0.8443.

The reference trajectory is a triangular wave, whose fundamental frequency is

f0 = 100 Hz and ranges from −9µm to 9µm (because the microscope shall move in

a “back-and-forth motion” [4]). For the simulation, the Fourier series of this signal

was formed and the first N harmonics were included into the reference trajectory.
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The result for the Fourier series is

bk =
3.6× 10−5

k2π2

(
sin
(
k
π

2

)
− sin

(
k

3π

2

))

r(t) =
∞∑

k=1

bk sin(2πf0k︸ ︷︷ ︸
=ωk

·t).
(5.30)

For the simulations in the following sections, the maximum frequency included in

the reference trajectory r(t) was fmax = 1900 Hz.

Command Shaping Filter

The CSF can invert the AFM model exactly with a delay of r = 2 samples.

Since |λmax| = 0.9085, we have R = 0.9542. It takes s = 14 additional advances

until the CSF is able to keep the eigenvalues of Φf within the pole radius R. The

cascade of the CSF and the closed-loop system becomes an approximate delay of

d = 16 samples. The Bode plot of the cascade can be seen in Fig. 5.9. The

corresponding precision tracking bandwidth is ωb = 567.0700 rad
s

Figure 5.10 shows the tracking performance (Fig. 5.10a) of the CSF as well

as the resulting absolute tracking error δ (Fig. 5.10b). It can be seen that the

tracking error reaches its highest value during the first rising edge of the reference

trajectory, it is approximately |δmax| = 1.8µm. After this initial peak, the tracking

error always stays within a range of ±0.35µm around 0 m (indicated by the red

dashed lines in Fig. 5.10b). The largest tracking errors occur at the maximums

and minimums of the reference trajectory. The CSF reaches Je = 4.3419 × 10−4

and Jm = 0.9543 as performance measures.

Again, the hybrid approach between frequency optimization and adding ad-

vances can be used to design the CSF. The best result is obtained for an uncon-

strained optimization with (4.56) as penalty function for the eigenvalue constraint

and β = 1×104. Moreover, s = 11 additional delays were used, and the maximum

frequency included in the optimization was ωN = 1.6897 × 103 rad
s

. The spectral
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Figure 5.9: Frequency response of the AFM precision tracking system (CSF)
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Figure 5.10: AFM tracking (CSF)
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Figure 5.11: Frequency response of the AFM precision tracking system (CSF -
frequency optimization)

radius achieved with this approach is ρ (Φf ) = 0.9799.

The resulting Bode plot can be seen in Fig. 5.11, while Fig. 5.12 shows the

tracking performance and error.

The precison tracking bandwidth could be greatly extended to ωb = 1.6897×

103 rad
s

(so the optimization design ensures perfect tracking over the desired fre-

quency range), which roughly triples the previous bandwidth. The absolute

value of the maximum tracking error could be improved by around 22% to

|δmax| = 1.4µm. During the first maximum, however, the tracking error is larger

than before (0.77µm instead of 0.35µm). After the first maximum of the reference

trajectory, the tracking error stays within a range of around ±0.35µm as well (as

shown by the red dashed lines in Fig. 5.12b). The performance measures Je and

Jm do not change significantly.

Ultimately, an uncertain plant is considered, and it is assumed that the state-

variables of the plant are not measurable, so that an observer has to be designed. If
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(a) Tracking performance of the AFM precision tracking system (CSF - frequency opti-
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Figure 5.12: AFM tracking (CSF - frequency optimization)
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the discrete-time plant (5.26) is mapped back to continuous-time, it has six zeros,

three of which are non-minimum phase. The observer gain matrix L is calculated

according to the guidelines in [27]: the desired settling time of the observer is set to

TS,O = 0.5 ms and the minimum phase zeros are kept as poles of the tracking system

and the non-minimum phase zeros are reflected on the imaginary axis and used

as poles. The remaining seventh observer pole is set to the first order Bessel pole

( s1
TS,O

, see Table 5.1) and the observer gain is calculated with place on the system
(
ΦT,CT

)
. The resulting stability robustness bounds are δ1 = 1 and δ2 = 0.5372.

After that, the inverse filter is formed with the nominal plant model (5.26), but

simulations are carried out with an uncertain plant model. This uncertain model

is formed as follows: since Φ denotes the nominal plant state-transition matrix, let

Φ̃ denote the state-transition matrix of the perturbed plant. Then, Φ̃ is obtained

by changing every entry of Φ by 10%, i.e. Φ̃ = (1 + ∆) Φ and ∆ = 0.1. The

result is shown in Fig. 5.13. Especially during the first rising edge, the tracking

system struggles to track the desired output, the output oscillates a bit around

the reference input. This, however, results in a smaller absolute tracking error,

as it decreases to |δmax| = 1.5µm. The main problem of the CSF in this case is

that it does not reach the maximum or minimum value of the reference trajectory

anymore, the absolute values at the turnaround points of the actual output are

smaller than the respective values of the reference. This leads to the behaviour

that the bounds of the tracking error after the initial peak grow in comparison to

the previous results, the tracking error now stays within a range of ±0.67µm (as

indicated by the red dashed lines in Fig. 5.13b), which almost doubles the range

of the initial CSF result.

The precision tracking bandwidth drops down to ωb = 190.8842 rad
s

, the per-

formance measures are Je = 5.2750× 10−4 and Jm = 0.9249. As for the H-Frame
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Figure 5.13: AFM tracking (CSF - uncertain plant with observer)
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system in Section 5.1, it can be concluded that acceptable tracking performances

are achieved in the presence of plant uncertainties and observer state estimations.

Inverse Modified Plant

In the case of the AFM, it was examined whether the IMP delivers more sat-

isfying results if not only integral additional dynamics are used, but the dynamics

of the reference trajectory are included as additional dynamics. It can be seen

in (5.30) that the reference trajectory consists of a sum of sine waves with fre-

quency ωk. For the following simulations, the first harmonic ω1 of the reference

was included in the additional dynamics, i.e. the matrix Φf is ought to have the

two (discrete-time) eigenvalues λ1 = ejω1T and λ2 = e−jω1T . In order to guarantee

that the design model (3.8) is controllable, the additional dynamics are given in

controllable canonical form:

Φa =

[
0 1
−1

(
ejω1T + e−jω1T

)
]

Γa =

[
0
1

]
.

(5.31)

This design did improve the overall performance of the IMP precision tracking

system, especially the precision tracking bandwidth.

Therefore, the design model is a 9th-order system, which is designed in the

same way as before (i.e. the real parts of the eigenvalues are moved to −2000).

After the feedback tracking system design, the modified plant has the following

(digital) poles

λ1,2 = 0.9523± j0.2426 λ5,6 = 0.8243± 0.3093

λ3,4 = 0.8167± j0.3784 λ7 = 0.6950

(5.32)

and zeros

η1 = 0.0061 η4 = 1.7824

η2,3 = 0.8762± j0.3766 η5,6 = 1.1264± j0.4627

(5.33)
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Figure 5.14: Frequency response of the AFM precision tracking system (IMP)

which coincides with the plant’s zeros.

The IMP can invert the modified plant exactly with a delay of r = 1 sample.

Additional s = 9 advances are needed to keep all the eigenvalues of the filter within

R = 0.9914. The cascade of the IMP and the modified plant is an approximate

delay of d = 10 samples. The Bode plot is shown in Fig. 5.14. The precision

tracking bandwidth of ωb = 909.6986 rad
s

is larger than for the first presented CSF

result, but smaller than for the hybrid CSF approach.

In Fig. 5.15 the tracking performance (Fig. 5.15a) and error (Fig. 5.15b)

can be seen. Similar to the tracking performance of the CSF, the tracking error

has a peak during the first rising edge of the reference trajectory and at the first

maximum. The maximum tracking error is |δmax| = 1.3µm for the IMP, this is an

improvement of 28% in comparison to the CSF, and also a slight improvement in

comparison to the hybrid CSF approach. After this initial peak, the tracking error

stays in between ±3.5µm, just as for the CSF. While Je has about the same value
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Figure 5.15: AFM tracking (IMP)

as in the CSF case, Jm was improved by 30.43% to Jm = 0.6639 in comparison to

the CSF results.

The best frequency optimization result was obtained when s = 8 additional

advances were added, and an unconstrained optimization problem was solved with

(4.56) as penalty function for the stability constraint (β = 104, ωN = 1.6897 ×

103 rad
s

)

The tracking results for the AFM can be found in Table 5.3.

Comparison to Source

In this section, the tracking performance achieved with the CSF and IMP

will be compared to the tracking results in [4]. In this paper, several different

91



CSF CSF - freq. opt. IMP IMP - freq. opt.

ωb in rad
s

567.0700 1.6897× 103 909.6986 1.722× 103

Je 5.3416× 10−4 4.0184× 10−4 2.5914× 10−4 2.9145× 10−4

Jm 0.9543 0.9059 0.6639 0.6673

Table 5.3: AFM tracking results

approaches were considered (e.g H∞ or `1 control) to design a feedback controller

C and a feedforward controller F . Due to the fact that several approaches were

considered, multiple tracking performances were presented in [4]. In general, the

results presented in [4] have a larger maximal tracking error |δmax|. This large

tracking error is not only observed at the first turnaround point, but at every

minimum and maximum of the reference trajectory.

The first approach presented is a H∞ design. During the rising/falling edges

of the reference trajectory, a good tracking performance is achieved. At the

turnaround points, however, the tracking error is at almost |δmax| = 2µm. In

contrast to this result, the best CSF performance improves the maximum tracking

error by 30%; the IMP by 35%. Furthermore, the maximum tracking error for

the CSF and the IMP occurred during the first rising edge, the tracking error at

the later turnaround points is much smaller for both CSF and IMP: the maximum

tracking error for both architectures at the later turnaround points is 0.35µm,

which improves the error by 82.5% in contrast to the H∞ design.

If C and F are designed via an approximate model-inversion presented in

[1, 23], the tracking error at the turnaround points could be improved to be at

around |δmax| = 1µm [4], but it achieves a worse tracking performance away from

the turnaround points. Nevertheless, CSF and IMP improve the tracking error by

65% at the turnaround points.
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5.3 Scanning Tunneling Microscope

Models for the x- and y-Dynamics for a Scanning Tunneling Microscope

(STM) were taken from [6]. In this application, a piezo scanner moves the STM

probe across a sample surface. During this movement, the distance between the

STM probe and the sample surface can be concluded from the measurement of the

tunneling current, which makes it possible to form images of the sample’s surface

topology. The piezo scanner moves the probe parallel to the sample surface (x-y

axes), and the positioning of the probe is crucial, since positioning errors can lead

to distortions in the images [6]. The (continuous-time) transfer function Gx(s) of

the x-Dynamics (from the input voltage ux in V to the piezo-position px in Å) is

given by

Gx(s) = 29.28
(s− 9.274± j41.659)(s+ 2.484± j30.434)

(s+ 0.188± j31.326)(s+ 0.857± j24.570)(s+ 7.263)(s+ 3.198)

(5.34)

while

Gy(s) = 15.26
(s+ 0.7135± j16.6719)(s− 44.8250± j63.1009)

(s+ 0.3722± j25.6469)(s+ 0.2239± j31.3441)(s+ 8.566)(s+ 3.866)

(5.35)

holds for the y-Dynamics (from the input voltage uy in V to the piezo-position

py in Å) [6]. It is important to mention that the Laplace variable s is in rad
ms

. In

this thesis, the two models for x- and y-Dynamics were combined to one single

state-space system (i.e. the overall systems consists of two decoupled subsytems)

with input u =
[
ux uy

]T
and output y =

[
px py

]T
, so that the algorithms from

Section 3.2 can be applied. Naturally, the state-space models contains

s1,2 = −0.188± j31.326 s7,8 = −0.3722± j25.6469

s3,4 = −0.857± j24.570 s9,10 = −0.2239± j31.3441

s5 = −7.263 s11 = −8.566

s6 = −3.198 s12 = −3.866

(5.36)
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the poles of the models for the x- and y-Dynamics as eigenvalues (s1-s6 belong to

the x-model, s7-s12 to the y-model).

Together with the additional dynamics, the design model is a 14th-order sys-

tem. For the design of the feedback tracking system, the desired settling time is set

to TS = 0.5 ms. According to the rules in [27], damping was added to the complex

poles, and the remaining six real-valued poles (s5, s6, s11, s12 and the two integrator

poles from the additional dynamics) were moved to the 6th order Bessel poles (see

Table 5.1). Based on the desired settling time, the sampling time was chosen to be

T = 2µs. The discrete-time modified plant has four non-minimum phase zeros, as

well as the feedback tracking system. The tracking system (without inverse filter)

has a precision tracking bandwidth of ωb = 0.1 rad
ms

.

The reference trajectory causes the STM probe to move in a raster pattern [6].

First, the probe is moved from the center to the top-left point of the image area.

During the forward (left-right) scan, the y-position is fixed, and it is incremented

while the x-position is returned back to the left. This procedure is repeated until

the entire desired are is scanned. In this case, the scan rate is sr = 1
Tr

= 250 Hz,

i.e. Tr is the time to complete one back-and-forth motion. This is illustrated in

Fig. 5.16.

Command Shaping Filter

The feedback tracking system can be exactly inverted with a delay of r = 2

samples. Because the spectral radius is ρ (Φc) = 0.9985, the pole radius is R =

0.9993. The CSF needs s = 36 additional advances to keep the eigenvalues of the

inverse filter within that radius, hence the cascade of filter and feedback tracking

system is an approximate delay of d = 38 samples. The CSF achieves a precision

tracking bandwidth of ωb = 1.9189 rad
ms

, which extends the bandwidth almost by a

factor of 20 in comparison to the simple feedback tracking system.
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Figure 5.16: STM reference trajectories

The tracking error is always smaller than |δmax| = 0.26 Å, while the maximum

tracking error in the simulation results presented in [6] is at approximately |δmax| =

0.6 Å, i.e. the tracking error shrank by 57% in comparison to the result in [6]. It

can be stated that the tracking error for the first output, δ1, oscillates with a

relatively high frequency around 0 Å. This also translates to the input voltage ux,

so it would be necessary to evaluate on the physical system if this control input

was realizable.

The performance measures obtained by the CSF are Je = 0.0162 and Jm =

0.0357.

Inverse Modified Plant

The modified plant needs r = 1 delay to be perfectly inverted. Its spectral

radius is ρ (Φc) = 0.9986, consequently the pole radius becomes R = 0.9993 and

for this R, the IMP requires s = 27 additional delays. The corresponding precision
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CSF IMP

ωb in rad
ms

1.9189 2.6906
Je 0.0162 0.0039
Jm 0.0357 0.0366

Table 5.4: STM tracking results

tracking bandwidth is ωb = 2.6906 rad
ms

, thus the bandwidth was increased by 40%

in comparison to the CSF result. However, the maximum absolute tracking error

is a bit higher than for CSF tracking, namely |δmax| = 0.34 Å. The performance

measures for the IMP are Je = 0.0039 and Jm = 0.0366. Especially Je is much

smaller than for the CSF case, we have
Je,CSF

Je,IMP
≈ 4.

A summary of the obtained results is given in Table 5.4.

5.4 Bell 205 Helicopter

In [18, 19], the linearized model of a Bell 205 helicopter is considered. The

model is a non-minimum-phase near non-hyperbolic system (i.e. the non-minimum

phase zeros are close to the imaginary axis), and the model represents the helicopter

at a nominal 5 ◦ pitch attitude, with mid-range weight, a mid-position center of

gravity, and operating in-ground effect at near sea level [18].
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The (A,B,C) continous-time model is given as [19]:

A =




0 0.03 0.18 −0.01 −0.42 0.08 −9.81 0
−0.1 −0.39 0.09 −0.1 −0.72 0.68 0 0
0.01 −0.01 −0.19 0 0.23 0.04 0 0
0.02 0 −0.41 −0.05 −0.27 0.27 0 9.81
0.03 −0.02 −0.88 −0.04 −0.57 0.14 0 0
−0.01 −0.02 −0.06 0.07 −0.32 −0.71 0 0

0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0




B =




0.08 0.13 0 0
−1.17 0.04 0 0.01

0 −0.07 0 0.01
−0.04 0 0.11 0.19
−0.04 0 0.22 0.17
0.17 0 0.03 −0.47

0 0 0 0
0 0 0 0




C =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0


 .

(5.37)

The input vector is u =
[
δC δB δA δP

]T
where δC is collective, δB lon-

gitudinal, δA lateral cyclic and δP tail rotor collective, the output vector is

y =
[
U W V R

]T
where U is forward, W vertical, V lateral velocity and

R yaw rate. The plant has the following poles

s1,2 = 0.1313± j0.5839 s7 = −1.0006

s3,4 = 0.1590± j0.4181 s8 = −0.4893

s5,6 = −0.5004± j0.3499

(5.38)

and the design model (3.8) additionally has four poles in 0, from the integral

additional dynamics. A dlqr design was used to calculate the feedback gain Kd

which stabilizes the plant and leads to the following (digital) poles of the feedback
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Figure 5.17: Helicopter reference trajectory for y2 and y3

tracking system, with a sampling time T = 0.004 s:

λ1,2 = 0.9512± j0.0464 λ7,8 = 0.9805± j0.0132

λ3,4 = 0.9683± j0.0304 λ9,10 = 0.9993± j0.0132

λ5,6 = 0.9823± j0.0153 λ11,12 = 0.9970± j0.0150

(5.39)

while

η1,2 = 1.0000± j0.0172

η3,4 = 0.9998± j0.0091

(5.40)

holds for the zeros. The regulator achieves δ1 = 0.5040 and δ2 = 0.9533 as stability

robustness bounds.

The inverse filter shall help to keep the forward velocity and the yaw rate (y1

and y4) at zero and to track the trajectory shown in Fig. 5.17 with the vertical

and lateral velocities (y2 and y3).

Command Shaping Filter

The feedback tracking system possesses a spectral radius of ρ (Φc) = 0.9993,

the pole radius is R = 0.9997. The system can be exactly inverted with a delay of

r = 2 samples, but the CSF algorithm needs s = 121 additional advances to main-

tain the desired pole radius. With the chosen sampling time T , this corresponds to

a preview time of Tpreview = 0.484 s. Apparently, this preview time is too large for

the approximation made in Section 3.2 to be valid, since the tracking results with
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this pole radius were far away from being satisfactory. For that reason, we ask

the inversion algorithm to “simply” stabilize the CSF without further pole radius

demands, i.e. R is set to R = 1. Now, s = 32 additional advances are needed

until the algorithm terminates. The CSF is pretty successful in keeping y1 and y4

at zero. The absolute value of y4[k] is never larger than 4.4 × 10−3 rad
s

, and y1[k]

is upper bounded by 8.4× 10−4 m
s
. Moreover, the tracking performance of y3[k] is

pretty well, too: the tracking error is always stays within |δ3,max| = 4.4 × 10−3 m
s
.

The second output, however, does not perform as good as the third one. The

maximum absolute value of the tracking error is |δ2,max| = 16.2 × 10−3 m
s
, so four

times larger than for y3.

The CSF has a precision tracking bandwidth of ωb = 0.2081 rad
s

, and the

limiting transfer function is g22

(
ejωT

)
. The frequencies that are included in the

discrete Fourier transform (DFT) if N = 2502 values r2[k] are considered (from

t0 = 0 s to tend = 10 s with ∆t = ti − ti−1 = T ) are ωk = 2π·k
N ·T , k = 0, . . . , N − 1.

It follows that the closest (nonzero) frequency included in the DFT to ωb is ω1 =

0.62781 rad
s

, but only 83.45% of the energy of the reference trajectory shown in Fig.

5.17 is included up to ω1, which explains the relatively poor tracking performance

of the second output.

For the CSF, the performance measures are Je = 0.0143 and Jm = 0.0847.

A hybrid approach between frequency optimization and adding advances has

been carried out for the helicopter as well. It proved to be most successful to solve

an unconstrained minimization problem with (4.56) as penalty function for the

stability constraint and (4.50) as cost function for the off-diagonal elements, where

α = 10 and β = 104 were used as weights. The best result was obtained when

s = 4 additional advances were added to the inversion control law , and then F

was designed to minimize the frequency error between the tracking system and the
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ideal tracking behaviour, so that the cascade of inverse filter and feedback tracking

system is an approximate delay of d = 6 samples. After the optimization (with

ωN = 17.829 rad
s

), the CSF has a spectral radius of Φf = 0.9998.

With this approach, the precision tracking bandwidth is ωb = 0.6889 rad
s

, which

is more than three times higher than the prior precision tracking bandwidth. Now,

the closest frequency to ωb is ω = 1.2556 rad
s

, and 97.86% of the reference trajec-

tory’s energy is included within this frequency range.

The absolute tracking error of the second output could be decreased sig-

nificantly by this approach, however, the third output now shows the worst

tracking performance. The tracking error is, in this case, upper bounded by

|δmax| = 5.8 × 10−3 m
s
, which is an improvement of 31% in comparison to the

worst previous result. Additionally, y1 could be kept closer to zero, the absolute

value of y1 is now upper bounded by 1.8×10−5 m
s
, the bound for y4 shrank slightly

to 3× 10−4 m
s

Both performance measures could be reduced significantly: Je now reads as

Je = 7.565 × 10−4, i.e. we have a factor of almost 20 between this result and the

previous one. The other performance measure, Jm, was decreased to Jm = 0.0016,

meaning that the factor between this result and the previous one is even higher,

namely almost 55.

Inverse Modified Plant

The spectral radius of the modified plant is ρ (Φc) = 0.9993, so the pole radius

would theoretically be R = 0.9996, but similar to the CSF, the IMP would need

a very large amount of additional delays (s = 238) to maintain this pole radius

and the obtained tracking performance is pretty bad. Therefore, the pole radius

is again set to R = 1. Because the modified plant can be inverted exactly with

a delay of r = 1 sample, and the algorithm needs s = 51 additional advances to
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CSF CSF - freq. opt. IMP IMP - freq. opt.

ωb in rad
s

0.2081 0.6889 0.4417 1.3847
Je 0.0143 7.565× 10−4 0.2696 0.002
Jm 0.0847 0.0016 1.1542 0.114

Table 5.5: Bell 205 Helicopter tracking results

stabilize the IMP, the whole tracking system is an approximate delay of d = 52

samples.

In comparison to the CSF, slightly worse results are obtained. The deviation

from 0 m
s

for outputs one and four are comparable to the error in y1 for the CSF,

they are |δ1,max| = 3.6× 10−3 m
s

and |δ4,max| = 3.9× 10−3 m
s
. In the IMP case, the

limiting factor (bandwidth-wise) is the third output, the IMP reaches a precision

tracking bandwidth of ωb = 0.4417 rad
s

. The maximum tracking errors for y2 and y3

are |δ2,max| = 8×10−3 m
s

and |δ3,max| = 35.5×10−3 m
s
, respectively. The large value

for |δ3,max| in comparison to the frequency optimization approach in the CSF case

can be explained with the smaller precision tracking bandwidth. This manifests

itself in the performance measures as well, as they increase to Je = 0.2696 and

Jm = 1.1542.

The best frequency optimization approach is obtained when s = 2 additional

advances are added, and then the optimization is carried out with (4.50) and (4.56)

as cost and penalty function, respectively (α = 10, β = 104, ωN = 17.829 rad
s

). The

precison tracking bandwidth becomes ωb = 1.3847 rad
s

, and Je = 0.002, Jm =

0.114 follows for the performance measures. The precision tracking bandwidth

in comparison to the CSF optimization result turns out to be larger, while the

performance measures get slightly worse.

All the results can be found in Table 5.5.

101



Comparison to Source

In [19], an adaption for the method from [15] is presented (see Section 2.1

for details). This adaption is introduced in order to be able to deal with non-

hyperbolic systems. In the framework presented in [19], non-minimum phase zeros

close to the imaginary axis result in a very large preactuation time. Therefore,

the major idea presented in [19] is to first introduce feedback to move the non-

minimum phase zeros further away from the imaginary axis, and then to apply the

stable inversion for non-minimum phase system from [15]. It is a trade-off between

precision tracking and required preactuation time.

The trade-off approach in [19] especially suffers from a (comparatively) poor

tracking performance for the yaw rate R (output y4), for it has a maximum value

of |δ4,max| ≈ 0.015 rad
s

. The maximum tracking error for the forward velocity (y1) is

|δ1,max| ≈ 2×10−3 m
s
. It has to be noticed that the tracking errors are so small that

they cannot be distinguished from zero if the approach from [15] is used without

moving the near non-hyperbolic zeros first, so this result cannot be compared with

the CSF and IMP performance. The apprehension that this results in a large

preactuation time, however, proved to be justified, i.e. the practicality of this

result is limited.

On the other hand, the tracking errors of the vertical and lateral velocities

are not shown in detail in [19], so that a discussion and comparison of the results

is not possible.

5.5 Multilink Flexible Manipulator

The model for a multilink flexible manipulator was taken from [43]. They are

used in fields like assembling of electronic hardware, space exploration or preci-

sion welding, but they suffer from vibrating links at high operation speeds, which

delays the precise positioning of the end effector [43]. Since conditioning of the
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Figure 5.18: Pole zero map of the continuous-time flexible manipulator plant

manipulator excitation signal can reduce the link vibrations, the authors in [43]

proposed an inverse controller to damp the vibrations.

The considered plant is a two link, 3D fexlible manipulator with three rotary

joints driven by dc servomotors; the model for the manipulator is a 17th-order,

three input and three output, system with the joint angles as outputs. The pole

zero map is shown in Fig. 5.18. The plant has eight zeros, all of them are very

close to the imaginary axis. Four of the plant zeros are located in the left-half

plane, the remaining four in the right half plane of the complex plane. The design

model (3.8) has three additional poles in 0 (integrator additional dynamics).

For the design of the feedback tracking system, the desired settling time is set

to TS = 2.5 s, which leads to a sampling time of T = 6.25 ms. According to the

rules in [27], ten plant eigenvalues were kept at their respective spot, damping was

added to four of them and the remaining six were chosen as the 6th-order Bessel

poles. The feedback gain was calculated with the algorithm in [27], δ1 = 0.4713

and δ2 = 0.6574 were attained as the stability robustness bounds. The resulting

feedback tracking system has four non-minimum phase zeros on the unit circle.

A step with an amplitude of 20 ◦ lasting for 10 s after which the manipulator

goes back to its vertical position for ten more seconds is the reference trajectory.

Since a step would cause infinite joint velocities during the rising and falling edges,
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leading to a potential mechanical breakdown of the manipulator, the reference is

filtered with with the following lowpass-filter [43]:

f(s) =
1

(κs+ 1)n
. (5.41)

The order of the filter is set to n = 2, and with the adjustable paramter κ the filter

roll-off can be changed, which determines the speed of the response [43]. In this

case, it was chosen to be κ = 0.2.

Command Shaping Filter

The spectral radius for the feedback tracking system is ρ (Φc) = 0.9895 so

that the pole radius becomes R = 0.9948. The exact inversion is possible with

r = 2 delays, the CSF, however, needs s = 17 additional delays to attain the pole

radius R, which makes the filter-based tracking system an approximate delay of

d = 19 samples.

With this pole radius, the CSF achieves a precision tracking bandwidth of ωb =

3.2099 rad
s

, and the tracking error is never larger than |δmax| = 0.49 ◦. Furthermore,

the performances measures Je = 0.001 and Jm = 0.2120 were obtained.

The CSF needs a relatively large number of delays, given the fact that the

non-minimum phase zeros are located right on the stability border. Therefore, the

pole radius was adjusted and set to R = 0.9999, i.e. the CSF is supposed to just

stabilize the inverse filter. With this new R, the CSF algorithm only needs s = 3

additional advances. This siginficantly improves the tracking performance of the

CSF: the precison tracking bandwidth is extended to ωb = 14.2610 rad
s

, while the

other performance measures shrank to Je = 2.9685×10−5 and Jm = 2.7230×10−4,

respectively. The tracking error is now upper bounded by |δmax| = 0.04 ◦.

For this system, stabilization of the inverse filter with the help of feedback

via a dlqr design proved to be quite successful (see Section 4.1). As weighting

matrices, Q = 10−10 · Inc and S = 100 · Ip were chosen. Since r = 2 delays are still
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needed to invert the system, the cascade of CSF and feedback tracking system is

an approximate delay of r = 2 samples. With the dlqr design, perfect tracking

should be achieved over the whole considered frequency grid, ωb ≥ 500 rad
s

. The

performance measures are much smaller as well, they become Je = 1.4294 × 10−7

and Jm = 2.2870× 10−5.

Clearly, this result is due to the ideal circumstances of the simulation. There-

fore, an observer was added to the system and uncertainties were simulated. A

dlqr design on the system
(
ΦT,CT

)
was used to calculate the desired observer

pole locations, with Q = 103 ·In and S = Ip as weighting matrices. Then, the algo-

rithm from [27] was applied to obtain the observer gain matrix L with optimized

stability robustness. The stability robustness bounds reduced to δ1 = 0.3981 and

δ2 = 0.5011 in comparison to the non observer-based tracking system. As for the

uncertainty, the inverse filter was based on the nominal plant model, but for the

simulation, every entry of the plant’s state-transition matrix was changed by 0.5%,

i.e. Φ̃ = (1 + ∆) Φ and ∆ = 0.005.

As to be expected, adding an observer and uncertainties aggravated the track-

ing performance. The best result was obtained with a frequency optimization

approach, where s = 7 additional delays were added before the design of the

feedback gain matrix F, i.e. the tracking system is an approximate delay of d = 9

samples. The cost function (4.50) was used for the off-diagonal elements and (4.56)

as penalty function for the stability constraint, with α = 10 and β = 104. The

precision tracking bandwidth dropped down to ωb = 0.0439 rad
s

, the performance

measures became Je = 1.5939 and Jm = 3.8149. Even though the precision track-

ing bandwidth reduced significantly, a sufficient tracking performance may still

have been achieved for the desired reference trajectory. The tracking errors at the

end of the rising and falling edges are way larger than before, |δmax| ≈ 3.5 ◦, and
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CSF CSF - dlqr CSF - uncert. IMP IMP - dlqr IMP - uncert.

ωb in rad
s

3.2099 ≥ 500 0.0439 0.8475 ≥ 500 0.0461
Je 0.001 1.4294× 10−7 1.5939 0.0446 3.9575× 10−21 1.6945
Jm 0.212 2.2870× 10−5 3.8149 0.2820 9.3296× 10−21 3.9381

Table 5.6: Multilink Flexible Manipulator tracking results

it has to be evaluated on the physical system if that error is acceptable or not.

Inverse Modified Plant

The spectral radius of the modified plant is ρ (Φc) = 0.9888, the corresponding

pole radius is R = 0.9944, and the IMP needs s = 14 additional advances. The

result achieved with this pole radius is slightly worse than the initial CSF result.

The precision tracking bandwidth is ωb = 0.8475 rad
s

, while Je = 0.0446 and Jm =

0.2820 holds.

Again, changing the pole radius to R = 0.9999 yields better results (only

s = 1 additional advance is required), but the best result is obtained with a

feedback approach via a dlqr design. As in the CSF case, the entire considered

frequency grid belongs to the precision tracking bandwidth (ωb ≥ 500 rad
s

), and

the performance measures almost completely disappear: Je = 3.9575× 10−21 and

Jm = 9.3296×10−21. Then, the same changes were made to the simulation settings

as in the previous section, i.e. an observer and plant uncertainties were added. In

the IMP case, the best result is achieved when s = 3 additional advances are

added before the frequency optimization. The precison tracking bandwidth and

the performance measures are comparable to the CSF case.

The results are summarized in Table 5.6.

Comparison to Source

In [43], a continuous-time feedforward filter is proposed, in a closed-loop in-

version feedforward architecture (see Fig. 2.1). Similar to the feedback approach

in Section 3.2.3, an additive term is added to the inverse control law to move the
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eigenvalues of the inverse filter into the stability region. Several filter parameters

κ were considered (see (5.41)). For high values of κ (e.g. κ = 0.7), the authors

detected that the inverse filter could not improve the tracking in comparison to

non-filter based tracking. For small values (e.g. κ = 0.2), the output trajectories

settled faster to the desired angles (first a step to 20 ◦, and then return back to 0 ◦)

and are also closer to the desired trajectory. For these filter parameters, however,

the tracking system produces overshoot. For κ = 0.2, the overshoot is around 35%

on the worst channel (27 ◦ instead of the desired 20 ◦), and when the manipulator

is supposed to return to the initial 0 ◦ angles, the worst output “shoots over” up

to almost −10 ◦. In this regard, a clear enhancement can be seen in the simulation

results obtained by the CSF and IMP, as no overshooting is noticeable when the

nominal plant is used in the simulations. When uncertainties were added to the

plant model, the absolute tracking error was still smaller than 10 ◦. Furthermore,

the control effort is comparable for κ = 0.2 for the inverse filter proposed in [43]

and the CSF and IMP filters discussed in the previous subsection. Clearly, it has

to be mentioned that in [43], actual experimental results are considered while in

this thesis, only simulations were carried out.

5.6 Overhead Crane

In [44], a linearized model for an overhead crane is presented. It consists of a

cart and a load, which is connected to the cart via a rope. The model (linearized

around the origin of the state-space) is given as the continuous-time state-space
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Parameter Symbol Value
cart friction c1 85 Nm

s

load friction c2 2.6 kgm2

s

load mass m 20 kg
cart mass M 38 kg
nominal rope length l 1.61 m

Table 5.7: Overhead Crane parameters

system (A,B,C)

A =




0 1 0 0
0 −c1

M
mg
M

−c2
M

0 0 0 1

0 c1
Ml

−g(m+M)
Ml

(M+m)c2
Mml2




B =




0
1
M

0
− 1
Ml




C =
[
1 0 l 0

]

(5.42)

where the input u is the force applied to the cart and the output y is the horizontal

position of the suspended load. The parameters of the system are given in Table

5.7, see [44] for more details.

The poles of the feedback tracking system were based on the continuous-time

poles of the plant, which are located at

s1,2 = −0.2650± j2.8792

s3 = −1.6303

s4 = 0.

(5.43)

The design model (3.8) has an extra pole in 0, resulting from the integral additional

dynamics.

For the design of the feedback tracking system, a settling time of TS = 0.5 s

is desired, which leads to T = 5 ms as the choice for the sampling time. Taking

the guidelines in [27] into account, damping is added to the complex pole pair s1,2,

and the third order Bessel poles (see Table 5.1) were used for the remaining three
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poles. After the poles were mapped to discrete-time and the feedback gain Kd was

calculated with place, the resulting (digital) feedback tracking system has

λ1,2 = 0.9604± j0.03641

λ3,4 = 0.9548± j0.0137

λ5 = 0.9511

(5.44)

as eigenvalues and

η1 = 2.4452

η2 = −2.9112

η3 = −0.2202

(5.45)

as zeros. Hence, the (digital) feedback tracking system has two non-minimum

phase zeros, η1 and η2. The stability robustness bounds are δ1 = 0.6404 and

δ2 = 0.9006.

The reference input should cause the center of gravity of the suspended crane

load to move by 300 mm, in a time interval τ = 2 s. In [44], a τ -parameterized

transition polynomial is proposed as the desired output function. The normalized

reference input is given as

r̄(t; τ) =





0 if t < 0

(2n+1)!
n!τ2n+1

∑n
k=0

(−1)n−kτkt2n−k+1

k!(n−k)!(2n−k+1)
if 0 ≤ t ≤ τ

1 if t > τ

(5.46)

and it allows “an arbitrarily smooth transition between 0 and 1”, and it can be

shown that r̄(t; τ) ∈ C(n) [44]. In this thesis, n was set to n = 2, the resulting

trajectory is shown in Fig. 5.19.

Command Shaping Filter

The feedback tracking system can be inverted exactly with a delay of r = 2

samples. The pole radius for the inversion algorithm is set to R = 0.9806, for the
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Figure 5.19: Overhead crane reference trajectory

spectral radius is ρ (Φc) = 0.9611 in this case. The CSF algorithm needs s = 5

additional advances to terminate; that is the filter-based tracking system is an

approximate delay of d = 7 samples. The resulting precision tracking bandwidth

is ωb = 62.0089 rad
s

, 99.27% of the reference input’s energy is contained up to

this frequency. The (absolute) tracking error has a peak of |δmax| = 4.8 × 10−6 m

at the beginning of the reference input at kT = 0.025 s. After this initial peak,

the error stabilizes itself at around zero (it ranges in between |δ| = 1 × 10−9 m

and |δ| = 1 × 10−12 m) during the rising edge of the reference input. At the end

of the rising edge at kT ≈ 2 s, the tracking error has another (little) peak with

|δ| = 7.7 × 10−8 m. The resulting performance measures are Je = 4.4344 × 10−10

and Jm = 2.5234× 10−8.

The best optimization result is attained when (4.56) is used as penalty function

for the stability constraint and s = smax = 5 additional advances are considered,

with a weight of β = 104 and ωN = 5.7309 rad
s

. This approach, however, does not

deliver significantly better results.

Inverse Modified Plant

The modified plant has a spectral radius of ρ (Φc) = 0.9717, resulting in

R = 0.9859 as the pole radius. The modified plant can be exactly inverted with

r = 1 delay, and the IMP algorithm needs s = 4 additional advances to keep the
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CSF CSF - freq. opt. IMP IMP - freq. opt.

ωb in rad
s

62.0089 62.1108 57.7365 57.7365
Je 4.4344× 10−11 4.4342× 10−11 2.8911× 10−11 2.8911× 10−11

Jm 2.5234× 10−8 2.5276× 10−8 1.6488× 10−9 1.6488× 10−9

Table 5.8: Overhead Crane tracking results

pole radius. Thus, the tracking system becomes an approximate delay of d = 5

samples, while ωb = 57.7365 rad
s

holds for the actual precision tracking bandwidth,

which is somewhat worse than the CSF result, but this bandwidth still contains

the same energy as the CSF bandwidth.

Just as the CSF result, the IMP tracking error has a peak at the beginning of

the reference trajectory, with |δmax| = 1.2 × 10−6 m, and it has another (smaller)

peak at the end of the reference with |δ| = 1.2×10−7 m. The performance measures

become Je = 2.8911× 10−11 and Jm = 1.6488× 10−9.

Again, the best optimization result can be observed if the maximum number

of additional advances is considered, s = smax = 4, but no noticeable improvement

is obtained.

Finally, all the tracking results are shown in Table 5.8.

Comparison to Source

In [44], a dynamic inversion technique is presented by the authors to design

suitable position (and velocity) set-point feedforward signals. In their approach,

they apply a continuous-time input-output inversion and are able to get rid of the

postaction (postaction means that the invertng signal reaches its steady-state after

the transition time), which usually occurs as a problem in motion control inversion

problems and interferes with the practicability of these approaches [44].

Besides the desired output trajectory, [44] specifies limitations for the control

input u. The cart is actuated with a brushless servomotor through a pulley and

toothed belt system, and the relationship between the motor torque T and the
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force applied to the cart u (the input signal of the plant model) is given by

u = ηriT (5.47)

where i is the reduction ratio of an epicycloidal speed reducer, η its mechanical

efficiency and r the pulley radius [44]. The maximum continuous motor torque is

Tmax = 3 Nm, and the peak is at Tpeak = 6 Nm. It is noted, however, that there has

to be a typing error in (5.47) (for example because the units are not consistent, u

is in Newtons, r in meters and T in Newton-meters, so [rT ] = Nm2 holds for the

unit of the product of torque and radius). It is assumed that at least the reciprocal

of r has to be used in (5.47) (the units are consistent then), but it is not known

whether the reciprocals of η and i have to be taken as well. Anyway, the motor

torque following the CSF and IMP design is larger than Tpeak, but it cannot be

evaluated if this would be the case for an experiment on the real physical system

as well, since it is unknown how (5.47) has to be modified to adequately describe

the system’s dynamics.

A similar behaviour as in the CSF and IMP cases for the tracking error can be

seen in the results presented in [44] for the position control, i.e. it has a relatively

sharp peak at the beginning of the reference trajectory and converges towards zero

in the course of the tracking process. Its maximum value is at around |δmax| =

0.8 mm, which is worse than the CSF results of |δmax| = 4.8µm. Naturally, the

tracking results are hard to compare since they were obtained from an experimental

setup in [44], while simulations were used in this thesis.

5.7 Two Discs

In [15], a flexible structure consisting of two discs which are connected by a

thin freely rotating shaft is considered for tracking. The input is the voltage U(t)

applied to a DC motor, while the output is the angular rotation (in degrees) of the

second disc, θ2 (the disc further away from the motor). The plant is given as the
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continuous-time state-space model:

A =




0 1 0 0
−3.656 −0.436 3.573 −0.091

0 0 0 1
3.245 −0.126 −3.259 −0.076




B =




0
21.9027

0
3.588




C =
[
0 0 1 0

]
.

(5.48)

The plant has the eigenvalues

s1,2 = −0.077± j2.6131

s3,4 = −0.1783± j0.1229

(5.49)

and a complex non-minimum phase zero pair at z = 0.1666± j4.8412. The design

model (3.8) has an extra pole in 0, due to the integral additional dynamics. In this

thesis, the continuous-time plant is discretized with a sampling time T = 0.3 s.

This values was chosen because a settling time of TS = 30 s is desired for the

feedback tracking system (Fig. 3.1). The feedback tracking system was designed

as follows (according to the guidelines in [27]): the second eigenvalue pair s3,4 is

kept, and the remaining poles in the continuous-time domain are chosen as the

third order Bessel poles (see Table 5.1). After these pole locations were mapped

into the discrete-time domain using the ZOH pole-mapping formula, and place

was used to calculate the feedback gain Kd, the (digital) eigenvalues of the feedback

tracking system are

λ1,2 = 0.6713± j0.6693 λ5 = 0.9511

λ3,4 = 0.9604± j0.0364

(5.50)

and

η1,2 = 0.1144± j1.0503

η3 = −0.8969

(5.51)
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Figure 5.20: Two discs reference trajectory

holds for the zeros. The stability robustness bounds δ1 = 1 and δ2 = 0.9251 are

reached. It is the task of the inversion algorithm to stabilize the non-minimum

phase zero η1,2. It was not possible to exactly replicate the reference trajectory

that was used in the source, since in [15], it was generated on-line. The trajectory

used in this thesis can be seen in Fig. 5.20.

Command Shaping Filter

The feedback tracking system can be exactly inverted with a delay of r = 2

samples. The pole radius for the filter design was chosen to be R = 0.9806, as

ρ (Φc) = 0.9611 holds. To attain this pole radius, s = 3 additional advances are

required, making the cascade of CSF and feedback tracking system an approximate

delay of d = 5 samples.

The CSF reaches a precision tracking bandwidth of ωb = 0.6842 rad
s

. After

simulations have been carried out, it can be concluded that this bandwidth is

sufficient: the tracking error is never higher than |δmax| = 0.01 ◦ for the desired

reference. The performance measures are Je = 1.0266 × 10−5 and Jm = 2.0780 ×

10−6.

The optimization approach to design a stabilizing feedback matrix F can be

used to enhance the tracking performance. When an unconstrained optimization

with (4.56) as penalty function (β = 104) and ωN = 0.143 rad
s

is used, where

F0 is calculated with a dlqr design (Q = 10−10 · Inc , S = 100 · Ip), the precision
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tracking bandwidth becomes ωb = 1.5239 rad
s

which more than doubles the previous

bandwidth. The maximum tracking error shrinks down to |δmax| = 0.002 ◦, and

the performance measures become Je = 1.5010× 10−6 and Jm = 1.2895× 10−7.

Inverse Modified Plant

The spectral radius of the modifed plant is ρ (Φc) = 0.9480, correspondingly

the pole radius becomes R = 0.9740. While the modified plant can be inverted

exactly with a delay of r = 1 samples, it takes the algorithm s = 2 more advances

to move the filter eigenvalues inside the desired pole radius, which is why the

filter-based tracking system is an approximate delay of d = 3 samples.

The achieved precision tracking bandwidth is the same as for the initial CSF

design, ωb = 0.6842 rad
s

, though the other performances measures differ from the

CSF result. The maximum tracking error is slightly worse (|δmax| = 0.016 ◦), but

since the maximum value of the reference input is rmax = 60 ◦, this deviation is

negligible. The performance measures Je and Jm stay roughly the same.

As in the CSF case, slightly better results can be obtained if the frequency

optimization approach is used to design a feedback matrix F to stabilize this filter.

For the IMP, however, it proved to be the best choice to add s = 1 additional delay

and then design the feedback F, i.e. the hybrid approach between adding delays

and optimizing F is used (Section 3.2.3). The initial value is the same as in the

CSF case (but naturally, the considered system is different). The most significant

refinement in comparison to the standard IMP design is the precision tracking

bandwidth, it could be expanded to ωb = 1.0943 rad
s

(this is faintly worse than the

CSF optimization result though).

The results are summarized in Table 5.9.
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CSF CSF - freq. opt. IMP IMP - freq. opt.

ωb in rad
s

0.6842 1.5239 0.6842 1.0943
Je 1.0266× 10−5 1.5010× 10−6 8.3159× 10−5 8.3649× 10−6

Jm 2.0780× 10−5 1.2895× 10−7 7.2629× 10−6 7.5322× 10−7

Table 5.9: Two Discs tracking results

Comparison to the Source

As mentioned earlier, a real comparison is difficult since the reference trajec-

tory was created on-line in [15], so it is not exactly the same as the one shown in

Fig. 5.20. Further, the results presented in [15] are experimental results, and not

simulations.

In [15], the internal (or zero) dynamics are decoupled into a stable and unstable

part, and bounded solutions are found for both parts . For the unstable dynamics,

however, an infinite preview time is required (i.e. the desired output must be

completely specified, which the author does not want to assume). Therefore, the

solution for the unstable dynamics are approximated using a finite preview time

Tp (details can also be found in Section 2). Two experiments were carried out

and presented, the first one uses a preview time of Tp = 20 s, the second one uses

Tp = 50 s.

The tracking performance for the first preview time is rather bad, as large

tracking errors can be observed during the rising edges of the reference trajectory.

For the first rising edge, the output first goes down to θ2 ≈ −20 ◦, before it

approaches the reference again. This behaviour vanishes for Tp = 50 s, but still

small tracking erros are present, this time during the falling edges (albeit they

are neglectably small in comparison to the other preview time). Even though the

preview time in [15] and the advances needed by the inversion algorithm in this

thesis are hardly comparable, it can be noted that both the best CSF and MP

results only need d = 2 delays (i.e. a “preview” of Tp = 0.6 s).
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CHAPTER 6

Conclusion

Methods to approximately invert linear non-minimum phase MIMO systems

were presented. The success of the inversion techniques was confirmed with simu-

lation results.

Two different tracking architectures were considered. The first one is the

command shaping filter (CSF), shown in Fig. 3.5, which inverts a feedback-based

tracking system to extend the precision tracking bandwidth. The second one is

the inverse modified plant (IMP, see Fig. 3.6), which inverts a modified plant that

is part of a feedback tracking system.

First, an approach to add advances in order to design a stable inverse was

presented. This makes the cascade of the inverse filter and the system to be in-

verted an approximate decoupled system of pure delays. The inverse filter design

was extended to a feedback approach to stabilize the filter, which led in general

to a fewer number of required delays. Several possibilities to calculate the corre-

sponding feedback gain matrix were discussed, among which especially a frequency

optimization approach excelled.

An advantage of the IMP is that the additional dynamics of the feedback

tracking system can be based on the reference trajectory’s dynamics, which showed

to be an improvement for some systems. However, this could also be interpreted as

a disadvantage, since the CSF always got its best tracking results with “standard”

integrator additional dynamics, thus the CSF performance apparently depends less

on the chosen reference input and the architecture does not have to be changed if

a different signal is desired to be tracked. It can be noted, though, that the IMP

tends to achieve the larger precision tracking bandwidth. The CSF, however, has
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some practical advantages, e.g. the modified plant (which is inverted by the IMP

algorithm) is not guaranteed to be stable.

An advantage of the “standard” way to compute the CSF and IMP (i.e. adding

advances until the filter is stabilized) is a very easy implementation, and the deriva-

tion of this filter is based on a reasonable approximation. A disadvantage may be

that the designer has a rather limited influence on the resulting tracking perfor-

mance, as the only parameter he can change is the pole radius R. The design of

the feedback tracking system has an influence on the tracking performance as well,

but it is not clear how changes in (Φa,Γa) or Kd will translate to the tracking

performance. On the other hand, if the frequency optimization approach is used,

the designer has some more influence on the inverse filter, e.g. through the choice

of the considered frequency grid, which allows him to a certain degree to affect the

precision tracking bandwidth. Moreover, it is possible to test several values for the

optimization parameters and different formulations for the objective function, as

presented in Section 4.3. Clearly, the design of the inverse filter with this approach

becomes an iterative task, which is more complicated than the standard design.

As a conclusion, it can be stated that the choice of the tracking architecture

and the filter design technique depends on the tracking problem and the system

under consideration; in the ideal case both architectures are tested with different

design techniques in simulations and the best performance is selected.

6.1 Areas of Future Work

A problem that has to be further examined is the proof that the eigenvalues

of the inverse filter (3.21c) contain the zeros of the discrete-time plant (3.2). In

Section 3.2.1 it was assumed that (3.23) holds for the transmission zeros of a

system, but as mentioned in Section 3.2.1, other definitions exist in the literature.

It has to be evaluated when these two different definitions coincide, since it is
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thought that they do for the class of systems that were considered during this

thesis. The results from Section 3.2.1 were confirmed by Matlab computations

and simulations, i.e. the inverse filter (3.21c) always contained the zeros of the

plant (3.2). Furthermore, an argument has to be given that the invariant zeros

of system (3.63) include the invariant zeros of the plant (3.2) if the order of the

additional dynamics is not equal to the number of plant outputs.

The optimization approach presented in Section 4.3 proved to be pretty suc-

cessful in designing an inverse filter. In the current implementation, however, it

does have some flaws. It takes a very long time until the optimization terminates,

especially for high order systems like the Bell 205 Helicopter or the Multilink Flex-

ible Manipulator. For that reason, the gradient of the objective function could be

calculated and implemented in Matlab to speed up the optimization.

Further, the inversion methods may be tested on more example systems and

experiments should be carried out to confirm the achieved success in the simula-

tions.
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APPENDIX

Derivation of the Dual Problem

In this appendix, detailed calculations for the derivation of the Lagrange dual

function are presented (see Section 4.2.2).

First, the inequality (4.21), (4.20) and equality (4.14), (4.15), (4.18) con-

straints that were included in the optimization problem shall be expressed in terms

of the decision variable x. As a reminder, x is defined as

x =



f̂ 1
...

f̂nz


 (A.1)

i.e. the first nz columns of F̂. For better readability, the bigger part of these

calculations is omitted (because they just involve a lot of indexing) and only the

results are presented. Note that γT
ψ,j denotes the jth row of matrix Γψ defined in

(4.8c), ni the number of complex non-minimum-phase zeros and nz the number of

all non-minimum phase zeros (see Section 4.2.1).

First, the constraint (4.14) is considered. It can be expressed as




Γ1T1
...

ΓniTni


x = 0 (A.2)

with (blkdiag refers to the Matlab function of the same name):

Γi =




blkdiag




nz−2 times︷ ︸︸ ︷
γT
ψ,2i−1, . . . ,γ

T
ψ,2i−1




blkdiag


γT

ψ,2i, . . . ,γ
T
ψ,2i︸ ︷︷ ︸

nz−2 times







Ti =

[
Ip(2i−2) [

0p(nz−2i)×2p Ip(nz−2i)

]
]
.

(A.3)
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Next, we care about the constraint (4.15). We get




Γ̃1T̃1
...

Γ̃niT̃ni


x = 0 (A.4)

with

Γ̃i = blkdiag




nz−1 times︷ ︸︸ ︷
γT
ψ,2ni+i

, . . . ,γT
ψ,2ni+i




T̃i =

[
Ip(2ni+i−1) [

0p(nz−2ni−i)×p Ip(nz−2ni−i)
]
]
.

(A.5)

Finally, we write (4.18) as




Γ̂1T̂1
...

Γ̂niT̂ni


x = 0 (A.6)

with

Γ̂i =

[
γT
ψ,2i−1 −γT

ψ,2i

γT
ψ,2i γT

ψ,2i−1

]

T̂i =

[[
0p×p(2i−2) Ip

]
[
Ip 0p×p(nz−2i)

]
]
.

(A.7)

As a next step, we consider the inequality constraints. The calculations are

presented in more detail here, since the absolute value is a nonlinear function and

is therefore harder to find an expression in terms of x. First, we take a look at

(4.21). This is the constraint that the real-valued unstable eigenvalues have to be

moved into the unit circle. Since (4.21) is the absolute value of a real number, we

can rewrite it as

− 1 < λj − γψ,jf̂ j < 1 j = 2ni + 1, 2ni + 2, . . . , nz (A.8)

which gives us the two demands

λj − γT
ψ,jf̂ j − 1 < 0

−λj + γT
ψ,jf̂ j − 1 < 0

(A.9)
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for each j which can be expressed as

MNx+ k < 0 (A.10)

where

M =




−γT
ψ,2ni+1

. . .

−γT
ψ,nz

γT
ψ,2ni+1

. . .

γT
ψ,nz




N =
[
0p(nz−2ni)×2pni Ip(nz−2ni)

]

k =




λ2ni+1 − 1
...

λnz − 1
− (λ2ni+1 + 1)

...
− (λnz + 1)



.

(A.11)

Finally, the constraints for the complex eigenvalues (4.20) have to be considered.

We rewrite (4.20) as

√
δ2
j − 2δjγT

ψ,jf̂ j +
(
γT
ψ,jf̂ j

)2

+ ω2
j − 2ωjγT

ψ,jf̂ j+1 +
(
γT
ψ,jf̂ j+1

)2

< 1. (A.12)

which is fulfilled if

δ2
j − 2δjγ

T
ψ,jf̂ j +

(
γT
ψ,jf̂ j

)2

+ ω2
j − 2ωjγ

T
ψ,jf̂ j+1 +

(
γT
ψ,jf̂ j+1

)2

− 1 < 0 (A.13)

holds. Because of

γT
ψ,j =

[
γj1 . . . γjp

]

f̂ j =



f̂1j
...

f̂pj




(A.14)

we have

γT
ψ,jf̂ j =

p∑

i=1

γij f̂ij. (A.15)
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We use the multinomial theorem [45]

(x1 + x2 + · · ·+ xm)k =
∑

k1+k2+···+km=k

(
k

k1, k2, . . . , km

) m∏

t=1

xktt (A.16)

where (
k

k1, k2, . . . , km

)
=

k!

k1!k2! . . . km!
(A.17)

to calculate
(
γT
ψ,jf̂ j

)2

and
(
γT
ψ,jf̂ j+1

)2

.

In our case, k = 2 and m = p, so we obtain

(
p∑

i=1

γij f̂ij

)2

=

p∑

i=1

(
γjif̂m,j

)2

+ 2

p−1∑

m=1

p∑

n=m+1

(
γjmf̂mj

)(
γjnf̂nj

)
. (A.18)

With this result, (4.20) can be expressed as

xT
(
UT
j (Γj + 2Rj) Uj + UT

j+1 (Γj + 2Rj) Uj+1

)
x− 2

(
δjγ

T
ψ,jUj + ωjγψ,jUj+1

)
x+ δ2

j + ω2
j − 1

< 0 j = 1, 3, . . . , 2ni − 1

(A.19)

in terms of x, with the definitons

Ri =

[
Ip−1

01×p−1

]


γj,1

. . .

γj,p−1






γT
i E1
...

γT
i Ep−1




En =
[
en+1 . . . ep

]


eT
n+1
...
eT
nz




Γi =

[
γ2
i1

. . . γ2
ip

]

Ui =
[
0p×p(i−1) Ip 0p×p(nz−i)

]

(A.20)

and where ei ∈ Rp denotes the ith standard basis vector. As an example, for p = 2

we would have

e1 =

[
1
0

]
e2 =

[
0
1

]
. (A.21)
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For better readability, we introduce

Sj := Γj + 2Rj

εT
j = δjγ

T
ψ,jUj + ωjγψ,jUj+1

rj = δ2
j + ω2

j − 1

(A.22)

so (A.19) becomes

xT
(
UT
j SjUj + UT

j+1SjUj+1

)
x− 2εT

j x+ rj < 0 j = 1, 3, . . . , 2ni − 1 (A.23)

Next, the objective function ‖F̂W‖2
F will be expressed in terms of x. We have

‖F̂W‖2
F =

p∑

i=1

nc∑

j=1

(
nz∑

k=1

f̂ikwkj

)2

(A.24)

with

F̂ =



f̂11 . . . f̂1nz 0 . . . 0
...

. . .
...

...
. . .

...

f̂p1 . . . f̂pnz 0 . . . 0




W =



w11 . . . w1nc

...
. . .

...
wnc1 . . . wncnc




(A.25)

and, when we use the multinomial theorem again, we get

‖F̂W‖2
F = xTYx (A.26)
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with

Y =

p∑

i=1

nc∑

j=1

RT
i WjRi + JiW̃jRi

Ri =




eT
i

eT
p+i
...

eT
(nz−1)p+i


 ei ∈ Rp·nz

Wj =



w2

1j
. . .

w2
nzj




Ji = 2
[
ei ep+1 . . . e(nz−2)p+i

]
ei ∈ Rp·nz

W̃j =



w1j

. . .

w(nz−1)j






w̃T
j E1
...

w̃T
j Enz−1




En =
[
en+1 . . . enz

]


eT
n+1
...
eT
nz


 ei ∈ Rnz

w̃T
j =

[
w1j . . . wnzj

]
.

(A.27)

Together with the previous results we can write the optimization problem as:

minimize xTYx

subject to xT
(
UT
j SjUj + UT

j+1SjUj+1

)
x− 2εT

j x+ rj < 0 i = 1, 3, . . . , 2ni − 1,

MNx+ k < 0

Gx = 0

(A.28)
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where

G =




Γ1T1
...

ΓniTni

Γ̃1T̃1
...

Γ̃niT̃ni

Γ̂1T̂1
...

Γ̂niT̂ni




(A.29)

was defined for better readability.

Next, we want to introduce the Lagrangian with parameters µ ∈ R2nz−3ni and

ν ∈ Rnz(nz−1) (we have 2nz − 3ni inequality constraints and nz(nz − 1) equality

constraints in (A.28)). Let µ be partitioned as

µ1 =
[
µ1 . . . µni

]T

µ2 =
[
µni+1 . . . µ2nz−3ni

]T

µ =

[
µ1

µ2

]
(A.30)

so

L (x,µ,ν) = xTYx+

ni∑

i=1

µi
(
xT
(
UT

2i−1S2i−1U2i−1 + UT
2iS2i−1U2i

)
x− 2εT

2i−1x+ r2i−1

)

+ µT
2 (MNx+ k) + νTGx

(A.31)

follows for the Lagrangian. We take a closer look at the sum:

ni∑

i=1

µi
(
xT
(
UT

2i−1S2i−1U2i−1 + UT
2iS2i−1U2i

)
x− 2εT

2i−1x+ r2i−1

)

= xT

(
ni∑

i=1

µi
(
UT

2i−1S2i−1U2i−1 + UT
2iS2i−1U2i

)
)
x− 2

(
ni∑

i=1

µiε
T
2i−1

)
x+

ni∑

i=1

µir2i−1.

(A.32)
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With the definitions

H(µ1) =

ni∑

i=1

µi
(
UT

2i−1S2i−1U2i−1 + UT
2iS2i−1U2i

)

E =




εT
1

εT
3
...

εT
2ni−1




r =




r1

r3
...

r2ni−1




(A.33)

we can simplify the sum to

xT

(
ni∑

i=1

µi
(
UT

2i−1S2i−1U2i−1 + UT
2iS2i−1U2i

)
)
x− 2

(
ni∑

i=1

µiε
T
2i−1

)
x+

ni∑

i=1

µir2i−1

= xTHx− 2µT
1 Ex+ µT

1 r.

(A.34)

Please note that H depends on the first ni entries of the Lagrangian multiplier µ.

This result yields

L (x,µ,ν) = xTYx+xTHx− 2µT
1 Ex+µT

1 r+µT
2 (MNx+ k) + νTGx (A.35)

for the Lagrangian, after we plugged these definitions back into (A.31).

Additionally, we define

Q = Y + H

P =

[
−2E
MN

]

d =

[
r
k

]
(A.36)

so we finally obtain

L (x,µ,ν) = xTQx+
(
µTP + νTG

)
x+ µTd (A.37)

as the Lagrangian.
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As a next step, we want to examine the matrix Q. It is defined as the sum

of two matrices, Y and H. It can be shown that Y is an upper triangular matrix

where the main diagonal entries consist of the terms

nc∑

j=1

w2
1j

nc∑

j=1

w2
2j . . .

nz∑

j=1

w2
nzj. (A.38)

For each i = 1, 2, . . . , nz, the sum
∑nc

j=1w
2
ij appears p times on the main diagonal,

so Y has the form (∗ denotes an element that could be 6= 0)

Y =




∑nc
j=1w

2
1j ∗ . . . ∗

0
. . . . . .

...
...

. . . . . . ∗
0 . . . 0

∑nc
j=1 w

2
nzj


 . (A.39)

Because W is the inverse of the transformation matrix V which transformed Φ̃f

to modal canonical form, we know that W has full rank and therefore does not

posses a row full of zeros. Thus we can conclude that Y is an upper triangular

matrix with main diagonal entries > 0, so Y is positive definite.

Moreover, it can be shown that

H =




µ1S̃1

. . .

µniS̃2ni−1

0p(nz−2ni)×p(nz−2ni)




S̃j =

[
Sj

Sj

]

Sj =




γ2
j1 ∗ . . . ∗
0

. . . . . .
...

...
. . . . . . ∗

0 . . . 0 γ2
jp




(A.40)

holds, so Sj is an upper triangular matrix with elements ≥ 0 on the main diagonal.

As a consequence, H is an upper triangular matrix with elements ≥ 0 on the main

diagonal as well. This leads to the result that Q = Y + H is an upper triangular

matrix with elements > 0 on the main diagonal, so it is positive definite.
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