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ABSTRACT

As the offshore wind power industry grows along the U.S Atlantic Coast, biolo-

gists need to assess potential conflicts between birds and wind turbines. There

is a pressing need to develop accurate tracking systems that can evaluate move-

ments of volant (flying) organisms near offshore wind facilities during both the

pre-construction and post-construction phase in U.S. waters. Based on research in

Europe, turbines at offshore wind facilities can present a collision risk to birds, as

well as a migration barrier. Available tracking technology has difficulties tracking

fine-scale temporal and spatial movements of small (<200 g) volant organisms.

The functionality of a direction finding (DF) system that uses phase differences

to accurately obtain bearings from a 3-element omni-directional antenna array

was tested. Each antenna was equally spaced (0.889 m) by a distance of a half-

wavelength. The open source Software Defined Radio (SDR) software on a PC

integrates the FUNCube dongle (FCD) by setting the tuner frequency and sample

rate. The FCD demodulates the received signals and converts them to a digital

signal after a series of filtering steps. Once converted, the data is saved to a .wav

file for post processing using MATLAB. To test the accuracy of this prototype

tracking system, a series of drone flights were initiated, with a digitally-coded

VHF transmitter attached, to test the viability of this system. However, one re-

ceiver failed due to PC memory issues thus the results for estimating bearings were

limited to two antennas. For purposes of algorithm testing, estimates were shifted

to the correct quadrants (0◦−180◦ or 180◦−360◦) based on apriori information to

compensate for the ambiguous bearing estimates from using only two antennas. At

very short ranges, bearing accuracy suffered due to the directivity of the antennas.

The system performed best (±6◦) when the transmitter was farther than 175 m



from the array, relatively well (±15◦) when the transmitter was over 100 m away

from the array, and poorly (±50◦) when within 100 m of the antenna array. The

research did show it was feasible to track azimuth angles through phase measure-

ments. With further developments to the current design, it could be feasible to

design an antenna array and continuous receiver to monitor fine-scale movements

of VHF-tagged birds using phase measurements.
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CHAPTER 1

Introduction

With the expected rapid growth of the offshore wind power industry along the

U.S. Atlantic Coast, there is a pressing need to assess potential impacts of these

new facilities on volant (flying) wildlife. One approach is developing a system to

accurately track the flight paths of birds and bats with digitally-coded transmit-

ters during both the pre-construction and post-construction stages to assess the

collision risk and barrier effects.

1.1 Motivation

In Rhode Island, the Governor has set the ambitious goal of having the state

powered by 100% renewable energy by 2030 [1], which would make the state the

first in the country to be exclusively all renewable energy. One of the primary

means to reach that goal is offshore wind energy. Rhode Island currently has

the only offshore wind energy facility in the U.S., a 5-turbine 30 MW facility off

of Block Island. There are a number of Bureau of Ocean Energy Management

(BOEM) lease blocks in southern New England waters that could provide offshore

wind energy to Rhode Island [2]. By 2030, wind power has the potential to supply

up to 20% of global electricity and reach an annual installed capacity of 8.4 GW

[3]. With wind energy companies searching for more efficient systems, such as

floating turbines for offshore wind energy set to be commercialized by 2030 [4],

they are in the planning stages of constructing offshore wind turbines in federal

waters. However, with every energy production comes some potential negative

impacts, including with volant wildlife. Offshore wind energy facilities have been

operational since 1990 in Europe [5, 6, 7]. European researchers have found that

1



collision mortality, habitat loss and alteration, and behavioral avoidance of wind

facilities were the three potential impacts of wind energy facilities on volant wildlife

[8, 2]. The research in this thesis can hopefully be used as a tool to monitor the

movements of local and migratory birds in offshore waters where wind facilities are

proposed or constructed.

1.2 Thesis Content

Chapter 2 is a literature review that summarizes research methods and findings

for both radio direction finding (RDF) systems and avian tracking. These studies

provide insight into the strengths and weaknesses the current tracking technologies

and the science behind those methods. Chapter 3 describes the methods, study

design, and limitations of this research project. Chapter 4 explains an experiment

to test the accuracy of using phase measurements to estimate bearings to transmit-

ters by flying a drone with a test tag over a predetermined flight path. Chapter 5

describes the post-processing methods of the data obtained from the experiments.

Chapter 6 summarizes the results of the experiments. Finally, Chapter 7 discusses

the results and limitations of this approach, sources of error and future design.

Finally, a bibliography is provided.
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CHAPTER 2

Literature Review

This thesis research requires knowledge and background in Radio Direction Finding

(RDF), antennas, signal characteristics including phase, and the current tracking

systems used by ornithologists. This chapter is divided into sections that describe

approaches to RDF, as well as current approaches to tracking wildlife. Much of

the RDF section is based on research compiled by Jenkins [1991] for general RDF

and by Salido-Monzú et al. [2016] which investigates phase data errors. The

wildlife tracking sections summarizes standard methods of bird tracking, some

recent emerging methods tested and some methods applied specifically tracking

volant wildlife near offshore wind turbines. Based on this thorough literature

review, the technology and analytical approaches implemented in this thesis are

novel. However, there are still accuracy and instrumentation issues with this novel

approach that need to be addressed, as with other tracking technologies, before it

can be implemented at a broader scale.

2.1 Radio Direction Finding: Phase Delay

RDF requires a passive receiving system that extracts information from passing

electromagnetic radio waves from a very high frequency (VHF) transmitter to

estimate its direction of arrival (DOA). There are three main measurement meth-

ods using RDF to obtain DOA: amplitude response, phase delay and time delay

[1].

τ =
2πd

λ
sin(φ) (1)

4



Figure 1: Schematic showing Radio Detection Finding based on phase delay
measurements [1].

Phase delay measurements require at least two antennas (Figure 1), of any kind but

work best with omni-direcitonal, separated by distance, d, and are calculated using

Equation 1. As an incident plane wave arrives at angle, φ, it first reaches antenna

1. The wave then travels the distance of dsin(φ) before reaching antenna 2. The

voltages induced at antenna 1 and 2 are V1 exp jωt and V2 exp jωt respectively.

Therefore, the bearing angle φ is a function of phase delay.

2.1.1 Two Antennas

When designing a phase comparison system, the spacing between antennas spacing

must have a maximum of λ/2, where λ is the wavelength of the transmitter signal,

limiting the maximum phase shift δ to be within π radians [1]. DOA precision can

be shown as a function of ∆δ/∆φ, phase delay over bearing, with a unit of degrees

per degrees.

θ = arcsin
√
δ2

1 + δ2
2

λ

2πd
(2)

Equation 2 depicts calculations needed to obtain azimuth angle, where δ1 is phase

5



Figure 2: Process to obtain a bearing from a remote VHF transmitter using a
dual-channel two antenna system using phase measurements [1].

delay for the respective antenna, d is distance between antennas and λ is wave-

length.

The phase detectors can output either: (1) analog measurements by summing the

analog vectors, (2) digital versions of the sine and cosine waves or (3) passed to a

phase comparator (CRT) for visual outputs. Typically, the analog phase measure-

ment accuracy decreases when there are frequency variations and low signal-to-

noise ratio (SNR), while digital phase measurements tend to be more stable.

To minimize phase errors, the unmodulated carrier frequency should be set to

the center frequency. Phase errors are introduced to the system when there are

6



Figure 3: Steps needed to estimate signal bearing using the Fourier transform
method [1].

frequency-shift-keyed (FSK) signals, where a fast Fourier transform (FFT) would

show asymmetrical spectral features for both antennas but with differently shifted

signals [1]. Phase averaging can be implemented to reduce these phase errors.

To increase the bearing accuracy of two-antenna systems that include neither in-

formation about elevation nor the use of a phase detector, the FFT method is a

good alternative. This method is implemented in this thesis and the general steps

(Figure 3) are:

7



1. Perform the time-domain processing

2. Process the frequency data

3. Compute phase-delay

4. Compute bearing

Step 1 consists of converting the analog signal to digital signal conversion and then

storing digital samples, which then are used for performing a Fourier transform.

Then the real and imaginary components can be used to calculate phase using the

Equation 3.

γ = arctan(i/r) (3)

The Fourier transform method has many advantages including (1) reduced signal

amplitude variations, (2) improved sensitivity (i.e., up to 30 dB), (3) options for

frequency and phase corrections, (4) ideally suited for short duration bursts, (5) in-

terference can be limited by eliminating the undesired spectral components, and (6)

digital can be stored and adapted through extra post-processing. This technique

is adept for short duration uncooperative transmissions in dense electromagnetic

environments [1].

2.1.2 Three Antennas

Phase interferometry typically includes three antenna elements, set up in an equi-

lateral triangle, and a triple-channel receiver [1]. For this approach, each antenna

is connected to the same receiver to maintain system coherence, which eliminates

antenna switching and produces phase measurements and DOA calculations in

real time (Figure 4a). This system can estimate both azimuth and elevation of the

target with similar strengths as a two-antenna system that has with the Fourier

transform method implemented. The limitations of a three-antenna system in-

8



(a) Process to estimate a bearing using the
Fourier transform method.

(b) Geometry of triple channel receiver,
showing azimuth, elevation and relative

angles of antennas ζ = 60◦.

Figure 4: Schematics for understanding the processing and geometry of a
triple-channel receiver [1].

clude the necessity for a highly intensive computational capability for calculating

the phase and a signal calibration injected into the system [1].

δ1−2 = (2πd/λ)cos(φ)sin(θ) (4a)

δ3−1 = (2πd/λ)cos(φ− 120◦)sin(θ) (4b)

δ2−3 = (2πd/λ)cos(φ− 240◦)sin(θ) (4c)
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Equations 4a - 4c calculate phase differentials for a three-antenna system with a

triple-channel receiver for phase interferometry.

θ = arcsin (
√
δ2

1−2 + δ2
3−1 + δ2

2−3/[(2πd/λ)(
√

(3/2))] (5a)

φ1−2 = arctan (2δ2−3 + δ1−2)/[(
√

(3))(δ1−2)] (5b)

φ1−3 = arctan (2δ3−1 + δ1−2)/[(
√

(3))(δ1−2)] (5c)

φ2−3 = arctan (2δ2−3 + δ3−1/[(
√

(3))(δ2−3 + δ3−1)] (5d)

Both azimuth and elevation can be estimated using three calculated azimuths

angles references to the three baselines seen in Equations 5a - 5d, where θ is

elevation and φ is azimuth as shown in Figure 4b.

With the φi−j values, summing them estimates the azimuth DOA using Equation

6.

φ = arctan
cos(φ1−2) + cos(φ1−3) + cos(φ2−3)

sin(φ1−2) + sin(φ1−3) + sin(φ2−3)
(6)

Three methods of reducing error are using (1) three antenna systems to remove

random measurement errors, (2) a calibration source as a common local oscillator

between the antennas for phase mismatch errors, and (3) create correction tables

based on errors from scattering and coupling.

2.2 SNR Phase Degradation

In order to obtain near-field direction of arrival estimation, one could apply phase

differences between multiple signals [2]. One approach is using a quadrature phase

detector which works in the digital domain after being converted using an ADC

converter [2]. Salido-Monzú et al. [2016] focuses on the degradation of the phase

value and how it occurs.
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Sampling radio signals can be intensive on an acquisition system. Salido-Monzú et

al. [2016] chose to purposefully undersample a signal to reduce those requirements

on the acquisition and concluded that it can be beneficial but causes some phase

estimation uncertainty. The phase degradation results from noise aliasing that

causes low SNR and instabilities in the frequency response.

To reduce the noise aliasing effects, Salido-Monzú David et al. [2016] proposes a

more restrictive anti-aliasing filtering of the analog signal. However, this would

cause more phase uncertainty due to drifts.

∆φH(jf)

∣∣∣∣∣
∆f0,f≈f0

≈ 2Q
∆f0

f0

(7)

∆φH(jf)

∣∣∣∣∣
∆Q,f≈f0

≈ 2Q
f0 − f
f0

∆Q

Q
(8)

Equation 7 shows that variations in f0 are greatly affected by the phase sensitivity

based on Q, the quality factor of the filter. Equation 8 shows that both the

quality factor is affected by the relationship between the quality factor and relative

frequency deviation. By assuming that f ≈ f0, the sensitivity of phase can be

related to the quality factor directly. With these equations the minimum stability

of components and maximum quality value can be used to design the band-pass

filter.

The designed filter resulted in a constant phase shift for every received signal where

the difference between the two signals is the relative phase difference between them

and is a constant (Figure 5). Overall Salido-Monzú David et al. [2016] found that

a bandpass filter, rather than a low pass filter, reduces the sampling speed by 60%

with <29% loss of precision. This is important for reducing digitization system
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Figure 5: Output of phase meters [2].

cost and computing load, which relatively reduces loss of precision.

2.3 Avian Tracking

Ornithologists have been tracking birds with VHF transmitters for decades [3, 4,

5, 6]. Radio telemetry has been implemented to include small animals with high

temporal and spatial precision, as there are limitations due to tag size (e.g 3.5

grams being too heavy for animals <100 g). However, with the advancements

over the years, there are now tags that weigh as little as 0.3 g and as a result

VHF technology remains one of the only options for tracking of smaller birds [7].

Transmitters weigh <0.3 - 2 g, with burst intervals every 3 - 29 seconds, and last for

long time durations (19 – 359 days) depending on battery size and signal intervals

[8]. In addition, automated receivers were developed that could collect and store

these data from thousands of individual organisms [9]. Using this technological

advance, the Motus network was developed to track the movements to hundreds

of birds with stations located across North America [9].
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Summaries of tracking techniques that are commonly implemented including a

number of new studies and wind turbine specific studies are provided.

2.3.1 Wildlife Tracking Systems

In the past, VHF wildlife tracking systems consisted of a handheld receiver that

the operator would tune to the expected carrier frequency of the tag, and manually

rotate a 3-5 element yagi antenna until the maximum audible tone was detected

[6]. However this requires a relatively loud, long tone for a human to detect, which

typically signals lasting 20 ms. The operator would then move to a new posi-

tion, manually determine signal bearing, and then use triangulation to estimate

the position. However, this is time intensive, requires detections from at least two

locations to triangulate the tag position and is often inaccurate if the bird with the

transmitter is in flight [6]. Recently engineers and biologists have developed auto-

mated telemetry systems that can track a large the number of birds simultaneously

[5, 6].

Alternative tracking methods include satellite relay systems, GPS tags, geolocator

dataloggers and radar [5]. Below include some advantages and disadvantages to

these technologies.

Satellite tracking systems typically use Doppler effect (Argos transmitters) or GPS

technology. A couple disadvantages of this method are (1) there are weight limits to

the technology to mitigate the negative effects on wildlife and (2) there are limited

numbers of fixes per day causing detecting a bird flying by a turbine at the ping

to the satellite are low. More specifically, to avoid negative impacts on the tagged

animals, the systems currently weight averages to 3%. The relation between body

mass percentage and effects with measurements of body mass percentages used in

studies can be seen in Figure 6. The 64% of device mass in terms of percentage of
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(a) Mean percentage device mass for 5-yr periods with ± 1
SD shown by the boxes and the maximum and minimum

values shown through whiskers. [10].

(b) Percentage of reported effects based on device percentage
mass with errors bars showing 95% confidence limits [10].

Figure 6: Device mass percentage and reported effects based on device [10].
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bird mass was 3% or less and only 6% of devices were >5%.

If a GPS logger is used, rather than a conventional GPS tag, the energy demands

on the battery are high, limiting the total number of data transmissions (e.g., <100

stored in the unit for a 1 g tag [11]), thus have limited utility to accurate estimate

migratory pathways or fine-scale movements near an offshore wind facility due to

the limited number of fixes.

One of the less traditional but recent tracking methods is implementing short-range

VHF transmitters and usually an array of antennas. These tags are usually coded

with different frequencies and pulse patterns and is a common method used for

the smaller birds as small as a hummingbird. The VHF tag costs are a relatively

low-cost of $140-$300 per transmitter, but the system itself can cost up to a few

thousand dollars. This method has been employed by the Motus Wildlife Tracking

Network (Motus; https://motus.org).

Motus is a collaborative network that has deployed automated radio-telemetry ar-

rays to track multiple individual species, like birds, in local to regional and hemi-

spherical scales. They employ receivers that listen for a 166.380 MHz frequency.

By limiting the frequency scan to one value, the probability of getting a detection

improves greatly. Each receiver station includes a high-accuracy GPS sensor for

precise time synchronization and geolocation of the receiver. The distance that a

tag can be detected is based on the antenna at a given site. Close range tracking,

up to 500 m, a small omni-directional antenna is stationed. For distances up to 2-3

km, 3-5 element Yagi antennas are set up. For longer range detections, 9-element

Yagi antennas are implemented and can reach ranges of 15 km. Although the

location data compared to GPS tags is less accurate, with higher temporal res-

olution the data is sufficient enough to estimate fine-scale behavior such as diel
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activity levels, departure time and timing of movements, orientation and flight

speed [12].

There are also datalogging systems such as the solar geolocation tracking method

which uses a photodiode and micro-controller that continuously tracks the light

level as a function of time [6]. Latitude and longitude can be calculated based

on the sunrise/sunset time and the length of day respectively with accuracy esti-

mates of within 100 km [6]. This is sufficient for long-distance migratory birds for

determining general flight paths and stopover sites [6]. However, data collected

from geolocators cannot be used to accurately determine migratory routes and

could never be used to estimate fine-scale movement patterns near proposed or

active offshore wind energy facilities. This method is challenging as it can require

recovery of the tag.

Finally, various radar systems have been used to track movements of birds include

surveillance, doppler and tracking radar [13]. Surveillance radar has capabilities

of detecting individual large birds within a few kilometers and a flock up to 10

km, but with a higher power system they can have a range of 100-240 km [13].

Doppler can be useful for tracking small differences in movements and velocity

and tracking radar can even analyze wing beat signatures as long as there is only

one bird present [13]. With the wing beat and/or amplitude signatures, recordings

from radar can be used to attempt to characterize a bird’s species but overall

radar systems can’t tell species apart [14]. Additionally they can be expensive and

challenging to set up for offshore environments. These systems have been effective

for investigating local movements [13].

Each of these methods are always being improved upon and additional new meth-

ods/technology are being developed as well.
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2.3.2 Emerging Tracking System Studies

There have been many studies over the years to improve these bird tracking meth-

ods. Three tracking systems include tests that include a receiver set up on drones

and one that includes new processing techniques.

The Cornell Lab of Ornithology group had designed a new time of arrival approach

(TOA) that uses pseudorandom noise (PRN) code for processing. This method

entails a continuous network of receivers and records the arrival times of detected

transmissions. The receivers then send the information to a centralized server to

calculate the transmitter position. The transmitter is based on a microcontroller

with a precision reference clock, frequency synthesizer, modulator and amplifier.

This tag uses a binary phase-shift keying (BPSK) modulation scheme that sends

a 1- to 2-ms-long signal once every minute during the most active times of day for

birds.

This method was developed to reduce the issues that come with transmitters with

shared carrier frequencies close by. They can be hard to differentiate but the

autocorrelation property of the PRN uses cross-correlation to allow these signals

to have minimal interference with precise synchronization [6].

However, if the carrier frequency is uncertain with clock errors and doppler shift

present, the PRN code shows correlation disagreements. This can be seen in Figure

7.

It was noted that the incoming signal becomes inverted halfway through trans-

mission, which is why there are disagreements in the correlation. However, this

error was accounted for using the Equation 9 showing the expected values of the

correlator output signal S.
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Figure 7: Cross correlation between coded transmission (dotted) and received
signal (solid) with a small carrier and local oscillator (LO) mismatch [6].

E{S} = A expj(∆Θ+π∆fTD) R̄(∆τ)sinc(π∆fTD) (9)

Using a value of ∆TD < 2/5 ensures that at least part of the signal is available

to detect, they also decrease the oscillator error by implementing a high-precision

one. They also needed to use a sequence that emits a 1-to-2ms-long signal once

every minute to be able to ignore the sinc term in Equation 9. The variables in this

equations are ∆Θ and ∆f which are the phase and frequency differences between

the tag carrier and LO respectively, TD is the duration of the PRN sequence, ∆τ

is the phase difference between received PRN sequence and template and A is the

carrier amplitude.

It was found that the better features of the TOA radio tracking system include the
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low-power tags, automatic detection and good location accuracy but they depend

on a continuously listening network of antennas. They learned that a TOA receiver

requires very precise frequency or time information such as ADC sampling, the LO

generator, and the buffer time stamp. It was noted that a tolerance as low as 0.1

ppm does not offer the stability needed for precise synchronization over time [6].

Overall, this method is similar to Motus by having antennas that are continuously

listening and send data to a centralized server however the tag emissions are not

bursts but are pseudorandom noise.

VonEhr et al. [2016] employed an unmanned automated vehicle (UAV) mounted

Yagi Rotation (YR) Radio Direction Finder (RDF) (Figure 8) to estimate DOA

using phased calculation techniques [15]. They also attempted to test a pseudo-

Doppler method that included omni-directional monopoles, however they found

that the SNR was too low to utilize that approach. Their YR system used the

FUNcube Dongle Pro+, Software Defined Radio (SDR) for RF passband to base-

band conversion, a Raspberry Pi 2, 3DR Pixhawk which is a flight controller with

GPS, and station laptop running 2DR Mission Planner c1.3.28. This method was

not completely automated and needed a controller that either piloted the drone or

the radio-controlled transmitter.

The goal was develop a more efficient protocol for trackers search for tagged ani-

mal. Tracking VHF radio tagged animals normally employs biologists to perform

ground searches using line-of-sight (LOS) with an aircraft to increase signal recep-

tion. However, fly time is expensive and potentially dangerous when searching at

low altitudes. They detected errors from multi-path interference from surrounding

buildings, however once those were mitigated, the accuracy of bearing estimates

increased to ±20◦. Additionally, they found that the FDP+ had some DC inter-

19



Figure 8: Mounted Yagi Rotatation system on Octocopter [15].

ference that would cause a DC offset of 25 dB with 1 kHz bandwidth, but they

reduced this error with filtering.

Another receiving system was installed quadrotor drone with omni-directional

dipole antennas [16]. They used the FDP+ but with a BeagleBone computer to

record the signals of multiple transmitters simultaneously. Using Lotek transmit-

ter, a coded VHF NanoTag, they performed calibration tests in difficult to access

terrain.

One of the two methods used was selecting the drone location where the signal

strength was strongest and calculating the Euclidean distance between those XY

coordinates. The other method modeled the signal strength as a function of XY

coordinates using a quadratic equation. They found that the transmitter signals

were dampened by the terrain. and multi-path effects made estimating bearings

practically impossible.

Overall the method of using the strongest signal strength positions and finding the

Euclidean distance sustained a mean error of 134 m with a range of 44–278 m.
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The second method, using the quadratic and a least-squared regression showed a

mean error of 94 m for range values of 15-285 m. This is not precise enough to

find nests, it still is a more cost effective way to enhance the quality and quantity

of data. It also shows that using signal strength is not enough to track wildlife

accurately and doesn’t work well for tracking moving birds offshore as drone can’t

be flown all the time.

2.3.3 Bird-Wind Turbine Interactions

There are 13,000 offshore wind turbines operating in European offshore waters

[13], with offshore wind energy facilities continuing to expand globally and to

mitigate climate change [17, 18, 19]. However, wind energy facilities are not with-

out environment conflicts, which includes potential negative consequences to birds

[20, 21, 22].

Offshore Tracking with VHF Arrays

The Bureau of Ocean Energy Management (BOEM) oversees the renewable en-

ergy developments on the Outer Continental Shelf (OCS) of the United States [7].

These renewable energy systems expose birds to collisions risks and assessments

require species-specific information about movement patterns, flight altitude and

behavioral avoidance of turbines [22]. Assessments for exposure levels to birds

include macro-scale (geographical area), meso-scale (within rotor-swept altitudes)

and micro-scale (rotos-swept area) [20].

According to Marques et al. [2014], after an extensive literature review, they

found 217 papers with experimental designs that investigated bird communities

and geographical areas being affected by the wind turbines, 60% of which were

from 2008 of later. Of these papers 60% of them were from Europe (mainly Spain

and the UK) and 33% from the USA that identify contributing factors to colli-
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sions such as species characteristics, site details and wind farm features [21]. The

common broad categories of factors affecting birds are 1) the avoidance response,

2) physical habitat loss/modification and 3) collision mortality either from either

the infrastructure or pressure vortices [22, 7].

Loring et al. [2019] performed a study to track offshore occurrences of Com-

mon Terns, endangered Roseate Terns and threatened Piping Plovers with VHF

Arrays. VHF transmitters are currently the sole option available to track small

birds. GPS loggers weight has decreased (1 to 3 g) require hundreds of high accu-

racy (<10 m) 3-dimentional tracking data but these units are archival and must be

recovered [7]. With recent developments of the VHF technology these coded trans-

mitters can be simultaneously tracked which allowed for multiple species tracking

[7]. Triangulation was used to localize the species of interest. This method uses

both signal strength and bearings from signals received on the directional anten-

nas from multiple towers. There were 22 automated radio telemetry stations in

addition to the Motus network data was added for spatially-explicit, empirical

assessment of exposure risk. The Motus data provided the following information

from the coded transmitter: bird ID, location, time, date, receiving antenna, signal

strength value.

Pamela et al. 2019 has also developed bird migration movement models that apply

radio propagation theory based on the measured signal strengths to improve the

Motus Wildlife Tracking Network analysis.

Understanding Avian-Wind Turbine Interactions in the Offshore Envi-
ronment

Population-level impacts for marine birds are a concern when constructing offshore

wind turbines. Some physical factors to take into consideration when determining
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which species are more likely to influence collision mortality risk are flight maneu-

verability, percentage of time flying (peaks of flight activity in migrant species),

habitat specialization, nocturnal light activity, disturbance by the wind farm struc-

tures and flight altitude being the most important [23, 24].

Hüppop et al. [2006] combined multiple techniques to study bird migration near

offshore wind turbine sites. These techniques included radar, thermal imaging,

with visual and acoustic observations. They found that half of the birds fly at

rotor swept altitudes, the reverse migration numbers can cause increased risk of

collision and some terrestrial birds species get struck in large numbers under poor

visibility [24].

An example of thermal imaging is the Thermal Animal Detection System that has

a 360◦ of azimuth coverage from using surveillance radars and obtains altitude from

the vertical scanning with a ’T-bar’. Infrared camera systems apply fast viewing

or recordings, exclude the non-bird observations through trigger software, and

can superimpose several hours of recordings onto one image for easier processing.

Biologists are currently using TADS even though it can be challenging to operate

offshore [13].

Different countries have already deployed systems to check for flight changes, habi-

tat deconstruction, and collisions using different forms of radar. TADS doesn’t

measure the collisions directly it offers input data to collision models by obtain-

ing the avoidance behavior close to the turbine rotor-blades, flock size and flight

altitude. It also is required to validate these models/numbers generated of birds

being killed by either the turbine structure or the vortices encountered near the

turbine wakes.
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Wildlife impact mitigation techniques suggested are avoiding constructing them in

dense migration zones, align the turbines in-line with migratory patterns, space

out wind farms several kilometers, avoid construction between resting and foraging

grounds, shutting down turbines for nights with poor visibility weather during the

migration periods, illuminations should be small and intermittent, and general

turbine design should be more recognizable to birds [24].
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CHAPTER 3

Methods, Set-up and Limitations

The overall design can be separated into three parts: the transmitter, the receiver

design and the data collection which are outlined in the sections below.

3.1 Transmitter

Wildlife tracking using telemetry has a bandwidth of approximately 1 kHz in the

VHF range and has a power less than 10 mW [1]. A typical bird tracking trans-

mitter that uses telemetry is the VHF transmitter (nanotag, Lotek.com). The tag

includes a local oscillator set at a specific carrier frequency that can switch on and

off by a timing circuit. A 20 ms pulse is transmitted when the circuit is turned

on based on the programmed period. When deciding the duration and period of

the timing circuit there are a few things to consider. The longer pulses mean more

energy consumption which cause shorter battery life. If there were longer delays

between bursts instead the tag would become more difficult to track. The optimal

duty cycle parameters, according to Maccurdy et al. [2011], are 20 ms pulses with

periods of less than 60 seconds. The tag usually costs less than $250, which is

generally low compared to other tracking tags [2].

The transmitter used in this work was the Lotek digitally-coded VHF NanoTag

with a carrier frequency of 166.380 MHz and 7 s intervals (hereafter test tag). This

test tag had a lifespan of approximately 280 days, weighed 0.9 g, and a transmission

power of -30 dBm (Figure 9). Note that other tags, such as the plover and tern

tags, typically emit a signal every 5-6 s [3].
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(a) NanoTag used for testing. (b) Tagged Piping Clover. Photographed
by Peter Paton.

Figure 9: Digitally-coded VHF transmitter (Lotek NanoTag) used for this study.

3.2 Receiver Design

The list of materials needed to construct the 3-element antenna array, includ-

ing the receiver, and associated equipment are shown in Appendix A (for design

and pricing see Antenna Structure Build and Antenna Components and Instru-

ments).

3.2.1 Antennas

In order to design and build a system that can accurately estimate DOA within

1 km, selecting the correct type of antenna is critical. For this research, three

Shakespeare 476 Classic VHF (Figure 10) antennas were utilized. These antennas

were 6.4 m tall, omnidirectional in azimuth, and have a gain of 10 dB. These anten-

nas are collinear arrays, specifically Franklin arrays, that consist of a meander-line

phase reversal [5].

In order to calculate DOA using phase, the distance between the antennas must

be less than or equal to half the wavelength of the incoming electronic pulse (for

a 166.38 MHz – 0.9015 m) to limit the ambiguity of the signal bearing. Thus,

the three antennas are equally spaced at 0.5 wavelength, or 0.889 m, for this
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Figure 10: Shakespeare 476 Classic VHF Antenna [4].
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Figure 11: Ideal beam pattern for a collinear array of phased 1/2-wave elements.

study.

The ideal beam pattern for the antenna is shown in Figure 11. The main beam of

the antenna is directed horizontally and is omnidirectional in azimuth. Also present

are sidelobes -13.3 dB at 24.2◦, -17.9 dB at 44.3◦, and -21.0 dB at 90.0◦ above and

below the horizontal. These sidelobes are also omnidirectional in azimuth.

3.2.2 Antenna Structure

The antenna structure had the following RDF and environmental constraints to

consider. For direction finding, the main objectives were spacing and keeping the

antennas rigid and vertically straight. The environmental constraints were based
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on future testing and installment of this system which included being stable and

durable enough to handle harsh weather, uneven land, wind and being elevated

enough for optimizing the beam pattern and/or the possibility of placing the system

in uneven terrain.

The design and machining of this base was done by Fred Pease at URI (Figures

12 and 13) highlighting the main components that make it both dependable and

adjustable.

This included the welded base center set into the group, 2x6 pieces of wood for extra

surface tension (Figure 13b), galvanized metal clamps securing the antennas 0.889

m equidistantly from the metal poles (Figure 13a), and the PVC spacers (Figure

13c). The spacers were set 3.4 and 4.8 meters up the antenna using custom milled

PVC 4” diameter discs attached with 1” diameter PVC rods.

The antenna height aids in being able to place the antenna systems in uneven

terrain environments while still maintaining a relatively useful beam pattern. The

final step for the installing of this structure includes three guy wires to ensure

stability of the system as well.

3.3 Data Collection

The collection of received signals includes both hardware and software. By incor-

porating radio software, modifications can be made to the de/modulation scheme

and bandwidth spread, which can be useful for tuning the RF mixer to capture

different digitally-coded VHF transmitter frequencies. For this thesis, the open

source software Software Defined Radio (SDR) was utilized.
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Figure 12: Isometric view of the Solidworks model of the 3-antenna system.
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(a) Galvanized antenna clamps
with adjustable threaded rod.

(b) Base of the antenna structure,
including a welded metal piece
with wooden 2x6 screwed in.

(c) PVC rods and milled PVC
glued together.

Figure 13: Components of the antenna system.
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Figure 14: Coax cable connected to FUNCube Dongle to convert the analog
signals to digital for the SDR software.

3.4 Hardware

Appendix A shows the list of materials used under Antenna Components and

Instruments. The electronic arrangement consisted of a coax cable (TWS400-15 -

15’ Jumper with TWS400 3/8”, 50 ohm braided cable with BNC Male and UHF

Male Installed) connecting the antenna to a USB FUNCube Dongle (FCD) that

is plugged into a laptop running SDR seen in Figure 14. The software set up is

outlined in Appendix C.

The antennas receive the electromagnetic plane waves and send the voltage to the

FCD (process outlined in Figure 15). The received signal, r(t), is passed through

a low-noise amplifier (LNA) and a radio frequency (RF) tuner connected to a local

oscillator to grant the user tuning control for the center frequency. A RF mixer has

three ports, two of which are inputs and one output. These ports are referred to as

the RF input port, local oscillator (LO) input port and the RF output port. The

output is the two signals r(t)±LO, where the signal from LO is usually a sinusoidal

continuous wave or square wave. The purpose of the RF mixer is to change the
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Figure 15: Behavior level model of RTL-SDR, comparable to the FUNCube
Dongle. Adapted from [6].

frequency of the electromagnetic signal while maintaining original characteristics

such as phase and amplitudes. By doing this the signal can be amplified at a

baseband frequency [7].

A(t) · sin[2πft+φ(t)] = A(t) · sin(2πft) · cos[φ(t)] +A(t) · sin(2πft+
π

2
) · sin[(φ(t))]

(10)

This process is known as demodulation (Equation 10), where A(t) is amplitude,

φ(t) is phase, partly due to propagation. The demodulated signal is then filtered

by the low-pass filter (LPF) and then to the variable gain amplifier (VGA) to help

increase SNR before being output through the analog-to-digital converter (ADC).

The ctrl box on Figure 15 shows that the through SDR software, the LNA and

VGA can be adjusted.

The accuracy of the output signal, r[n] in Figure 15, is dependent on the ADC

bit depth, ADC sample rate, local oscillator quality and RF mixer stability. In

this case, the documentation showed that the FCD has a stability of ±1.5ppm

[8] . When applied to the test tag frequency, the frequency has a variation of ±

249.57 Hz [8]. Also, the ADC bit depth affects the noise floor. To reduce noise
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Figure 16: Source generator with rubidium timebase [10].

and increase dynamic range a larger bit depth is necessary [9].

To minimize some of these errors and synchronize the three antennas, a signal

generator (Stanford Research Systems SG380, Sunnyvale, California) with a ru-

bidium timebase provided a stability of <±0.0001ppm (166.38 MHz ± 0.016 Hz)

[10]. The signal generator was set to propagate a continuous 166.385 MHz sine

wave (5,000 Hz above the NanoTag carrier signal) through a 5.8 GHz rubber duck

omnidirectional antenna. The calibration source antenna was set equidistant from

the three antennas.

Once the array was constructed, the software was set to begin recording data at

specific time intervals for a set duration on the three computers. The downcon-

verted signal was then saved into a .wav file for post-processing. For this thesis, a

sample rate of 44.1 kHz was chosen with a center frequency of 166.385 MHz. The

two channels of the .wav file contained the inphase and quadrature components of

the tag signal complex envelope [11].
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CHAPTER 4

Experiments

During the summers of 2018 and 2019 both stationary testing and drone testing oc-

curred. During the summer of 2018, the system originally included a RF Explorer

(Digi-Key Electronics 1597-1173-ND, Thief River Falls, MN) as the calibration

source. The generator has a frequency stability of ±0.5 ppm and a frequency ac-

curacy of ±1 ppm [1]. After preliminary analysis of the data, it was determined

the accuracy was not suitable for phase processing for this research and Stanford

Research Systems SG380 signal generator (Stanford Research Systems SG380, Sun-

nyvale, CA) with greater precision was acquired for the 2019 field season to increase

the accuracy of bearing estimates.

4.1 Fixed Tests

In the summer of 2018, a series of experiments were performed to determine the

differences between each of the recording systems. FUNcube dongles (FCD) were

labeled as A, B and C to estimate the variation in their clocks. In this test,

the original calibration source (RF Explorer) was turned on after a few seconds.

A snippet of the recorded data (Figure 17) shows the magnitude after filtering

and the corresponding unwrapped phase values. This visually shows the time

differences of the computer clocks and respective amplitude differences. The time

of arrival differences from the antenna 1 to antenna 2 and 3 recording systems are

36 and 6 ms respectively, and have amplitude differences of 0.011, and 0.023. The

magnitude inconsistencies could be attributed to the filtering process within the

FCD or antenna cable connections having different percentages of physical contact.

In other words, the SO-239 type connector on the bottom of the antenna and the
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Figure 17: Preliminary tests for determining timing errors (upper panel) and
phase drifting errors (lower panel) at three omnidirectional antennas (blue =

Antenna 1, red = Antenna 2, yellow = Antenna 3).

UHF connector from the coax cable are not perfectly snug. On the bottom subplot

the unwrapped phase is shown with and without the calibration source on. At first

there were small variations in the phase, but when source was turned on the phase

began to drift. By having the calibration source equidistant from each antenna,

phase values should be equal, or close to. In the lower panel of Figure 17, the phase

values differentials are varying. In other words, the slopes for each antenna should

be close in value, but are not. The unwrapped phase values from antenna 1 show

a negative differential fringe, this is from the wrapped phase values jumping from

−π to π unlike the antennas 2 and 3 that have phase jumps from π to −π. The

differentials for antennas 1 through 3 are -838, 670, 343 rad/s respectively.

4.2 Drone Tests

Drone flights with the test tag attached were scheduled with pilot Greg Bonynge

from the Department of Natural Resources Science at the University of Rhode

Island to estimate the accuracy bearing calculations from phase measurements by
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Figure 18: Weather on the day of testing for Narragansett, RI [2].

knowing the drone’s location.

The tests occurred on August 9th, 2019 and the weather at the time of test-

ing can be seen in Figure 18. The weather is important because technology has

temperature ratings for both operation and measurement stability. For example,

the NanoTag from Lotek operates within 32 - 95◦F [3] and although tempera-

ture stability was not rated for the calibration source, the specifications indicate

the rubidium timebase improves temperature stability [4]. Additionally, the wind

speed and direction affect the antennas spacing and the noise floor by shaking the

system.

The drone was programmed to record the GPS coordinates (accuracy ± 1m) after

hovering for 15 seconds to estimate the test tag location. The hovering points were

set before the drone changed direction to aid in both GPS stability and to record

two fixes at the same bearing.

There were six flights total. For Flight 1 the drone flew a diamond pattern around

the antenna system to test a full 360◦ bearing estimations to check for consistency

twice. The first time around the the drone was set to fly at 60 m altitude and

2 m/s and the second time for 120 m altitude and 13 m/s. Flight 2 is described

below, Flight 3 and 4 include a west to east transect at 2 m/s at altitudes 60 and

120 m respectively. Finally Flights 5 and 6 were a triangular shape pattern over

the bay at 3 m/s to check the relation between distance and bearing estimation
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Figure 19: Drone flight 2, a north to south transect over the antenna system.

accuracy, also at 60 and 120 m altitude.

Originally there was an altitude test where the drone stayed at a fixed location

and only increased in the z-direction. However, there were cable connection during

that test making the data unusable. However, the two altitudes, 60 and 120 m,

and the transects directly over the antenna system were enough to see some beam

pattern effects. The speed variations were based on file recording length and were

slow enough to obtain a large amount of fixes on the test tag. At a distance of 650

m the SNR was large enough to see detections. Flight plans and notes taken can

be found in Appendix C. However, due to the limitations and lack of coherency

of the equipment, the data processing had shifted the focus to specifically Flight

2, the transect from North to South over the antennas. Flight 2 began at 11:32

AM, the wind was north westerly and somewhere between 4 and 5.3 m/s (Figure

18).
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Figure 19 shows the transect with perspective to the antennas. The white circles

are the locations of the drone when the burst transmission occurred. The red dot

represents the antenna system receiver.
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CHAPTER 5

Processing Methods

5.1 Theory

This section includes the derivations used in the research to obtain the direction

of arrival estimations.

An CW signal from a source, such as a digitally coded VHF bird tag, is y(t) =

A sin(2πfct+ θ) transmitted from a location rb assuming plane wave propagation

in the x-y plane.

y(t, r) = A sin

[
2πfc

(
t− n̂ · (r− rb)

c

)
+ θ

]
(11)

Equation 11 shows the RF signal radiating from the source located at rb with

k = kn̂ = k(ux̂ + vŷ), where k is the wavenumber and is 2πfc
c

, fc is the carrier

frequency, and c is the speed of light.

u = cosψ (12a)

v = sinψ (12b)

The signal is propagating towards the antennas located near the origin on the

x-axis and where u and v are the direction cosines given by Equations 12a and

12b.

y1(t) = A sin

[
2πfc

(
t− n̂ · (0x̂− rb)

c

)
+ θ

]
(13a)
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Figure 20: Example of frequency differences between the shifted baseband signal
and calibration source and their respective bandwidth.

y2(t) = A sin

[
2πfc

(
t− n̂ · (−dx̂− rb)

c

)
+ θ

]
(13b)

The RF signal is received by two antennas located at r1 = 0x̂ and r2 = −dx̂, which

produces the two signals seen in Equations 13a and 13b.

y1(t) = A sin

[
2πfc

(
t− (0−R)

c

)
+ θ

]
(14a)

y2(t) = A sin

[
2πfc

(
t− (−d cosψ −R)

c

)
+ θ

]
(14b)

These two signals can be simplified using the fact that n̂ · rb = R, this distance

from the source such as a bird tag to Antenna 1 and n̂ ·dx̂ = d cosψ and are shown
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in Equations 14a and 14b.

y1(t) = A sin [2πfc (t− τ0) + θ] (15a)

y2(t) = A sin

[
2πfc

(
t+

d

c
cosψ − τ0

)
+ θ

]
(15b)

Further simplifying the expressions for the two signals are given in Equations 15a

and 15b where τ0 = R
c
, the travel time from the source location to the Antenna

1.

y1(t) = A sin [2πfct+ θ] (16a)

y2(t) = A sin

[
2πfc

(
t+

d

c
cosψ

)
+ θ

]
(16b)

Note that 2πfcτ0 is a constant phase and can be incorporated into θ, seen in

Equations 16a and 16b.

y1(t) = A sin [2πfct+ θ] (17a)

y2(t) = A sin [2πfct+ kd cosψ + θ] (17b)

These expressions can then be simplified into the final forms seen in Equations 17a

and 17b, where k = 2πfc
c

, with fc = 166.380 MHz. This produces a wavenumber

of k = 3.48rad/m and a wavelength of λ = c
f

= 1.8m.

Each signal is then added a small calibration signal, g(t) = G sin 2πfgt, with a

frequency near the carrier frequency (fg = fc + ∆f) before demodulation so that

z1(t) = y1(t) = g(t) and z2(t) = y2(t) = g(t) (Figure 21).
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Figure 21: Addition of the incoming signals and the calibration source injected
through or after the antenna.

Once the calibration source is added, z1(t) is demodulated at f1 and z2(t) at f2

to compute the respective complex envelops, where f1 and f2 are near the carrier

frequency fc.

z̃1(t) = ỹ1(t) + g̃1(t) = yc1(t) + jys1(t) + gc1(t) + jgs1(t) (18a)

z̃2(t) = ỹ2(t) + g̃2(t) = yc2(t) + jys2(t) + gc2(t) + jgs2(t) (18b)

Figure 22 shows the demodulation process of channel 1 signal, which would be

similar to channel 2. The combined demodulated equations are shown in Equations

18a and 18b.

ỹ1(t) = A exp [j2π (fc − f1) t+ jθ] (19a)

ỹ2(t) = A exp [j2π (fc − f2) t+ jkd cosψ + jθ] (19b)
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Figure 22: Example demodulation of Antenna 1 signal z1(t) performed by the
FUNCube dongle and the resultant output real and imaginary parts.

Further, the complex envelopes of the two RF signals are represented in Equations

19a and 19b which can then be simplified further known that exp jθ is a constant

and incorporating it into A.

ỹ1(t) = A exp [j2π (fc − f1) t] (20a)

ỹ2(t) = A exp [j2π (fc − f2) t+ jkd cosψ] (20b)

g̃1(t) = G exp (j2π (fg − f1) t) (20c)

g̃2(t) = G exp (j2π (fg − f1) t) (20d)

z̃1(t) = A exp [j2π (fc − f1) t] +G exp (j2π (fg − f1) t) (20e)

z̃2(t) = A exp [j2π (fc − f2) t+ jkd cosψ] +G exp (j2π (fg − f2) t) (20f)

The simplified complex envelope signals (Equations 20a and 20b), the complex

envelope of the small calibration signal (Equations 20c and 20d), and then complex

envelopes of the signal plus the calibration signal (Equations 20e and 20f).

z̃1(t) = A exp [j2π∆fc1t] +G exp (j2π∆fg1t) (21a)
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Figure 23: Example of frequency differences between the shifted baseband signal
and calibration source and their respective bandwidth.

z̃2(t) = A exp [j2π∆fc2t+ jkd cosψ] +G exp (j2π∆fg2t) (21b)

By renaming the (fc − f1) = ∆fc1, (fc − f2) = ∆fc2, (fg − f1) = ∆fg1, (fc − f1) =

∆fc1, and (fg − f2) = ∆fg2, the complex envelops then are can be written as

Equations 21a and 21b.

As an example, assume that |∆fc1| , |∆fc2| � |∆fg1| , |∆fg2| and that

|∆fc1| , |∆fc2| ∼ 1kHz and |∆fg1| , |∆fg2| ∼ 10kHz. A general schematic can

be seen in Figure 23 showing the incoming digitally coded VHF tag signal with

a larger bandwidth than the calibration signal. An FFT can be used to separate

these signals.

Overall, the algorithm measures the phase associated with the spatial offset be-

tween the two antennas kd cosψ and then computes ψ, the direction of arrival.

Using an FFT, ∆fg1 and ∆fg2 can be estimated from their respective signals. Once
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found the following parameters are calculated: f1 = fg − ∆fg1, f2 = fg − ∆fg2,

∆fc1 = (fc − f1), ∆fc2 = (fc − f2). Finally, the phase difference can be computed

between the two signals after shifting the complex envelops to baseband to solve

for ψ.

5.2 Algorithm

In the radio tracking system, the RF signal is first shifted to the baseband in-phase

(I) and quadrature (Q) components. These data are then saved digitally into a

.wav file which is then loaded into MATLAB for processing (see Appendix D for

all MATLAB code). The chooseFlight.m function allows the user to choose which

flight they would like to process. The I/Q samples from the .wav file are combined

to recreate the received complex signal and window the time block of interest. The

complex data goes through a series of functions to eventually estimate the phase

values of the received emissions from the test tag.

5.3 Equations and Code

The processing is subdivided below into the main functions used to estimate the

tag bearings (see Figure 24).

1. The command findpeaks locates the first transmission after filtering the com-

plex data to increase the SNR. For the purpose of solely increasing SNR

and not focusing on peak definition yet, the filter for this step has a cut-off

frequency that over filters the complex data (i.e., 1,000 Hz).

2. Once the first emission is located, the function getInitialBounds.m determines

the start and end index/time the emission exists in and adds a buffer to each

side. This windows the data, ideally as small as possible, to reduce the

computational load. When the first ping group was a missed detection, the
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Figure 24: Block diagram outlining code process to estimate tag bearing.

Figure 25: Automated ping group detection method.
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Figure 26: An example of filtered signals of fixed location data where there were
missing data; see Antenna 3 at time = 36-43 seconds.

search window shifts over another δt iuntil detections are found. Because

the test Lotek Nanotag emits approximately every 7 seconds, δt is set to this

value. . The first detection is critical to code automation, as the first ping

group determines where the window shifts (Figure 25).

If the window shift by δt does not find the 4 pings, the window is then opened

up to size δt. This allows the code to find pings that were shifted in time

if the data has some missing values (Figure 26). In this example. after 35

seconds on Antenna 3 two ping groups occur before a full δt interval had

passed, which results in the ping groups not lining up with the Antenna 1

or 2 data. However, after searching the full 7 second window the shifted

ping group is detected, this becomes the new starting point for the shifting

window.

3. Once the ping group is detected from the window, the function processData.m

processes the data to account for the accumulated errors from using equip-
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ment with low precision and accuracy (see Chapter 7). This step is labeled as

”Correct Frequency and Phase” (Figure 24) The script starts by calculating

the frequency offset between the calibration source peak and zero. As stated

in Chapter 3, the data were sampled with a center frequency of 166.385 MHz,

which was the same frequency of the calibration source. This means that a

FFT is expected to show the largest peak centered at 0 Hz. This was not

the case and varied differently among FCDs.

v = Vc. exp(−i2πfct+ θ); (22)

The frequency at the peak was then plugged into Equation 22 found in the function

demodulateSignal.m. The variables are the demodulated signal as v, Vc is the

complex signal, fc is the carrier frequency, t is time and θ is phase. After the

frequency offset is corrected by shifting the calibration source frequency to zero,

the phase must also be corrected.

Examples of this frequency offset are shown in the FFTs in Figure 27. In Figures

27a, the FFTs are plotted to show variation among antennae. The calibration

source frequency should align with 0 kHz for this shifted FFT.

When looking at the frequency offsets over 300 seconds through multiple FFTs, it

was found that there is a local oscillator drift due to poor FCD stability. Figure 28

shows these offsets changing over time. The left y axis showing Antenna 2 offset

ranging from 407.5 - 408.3 Hz (variation 0.8 Hz) and right y axis shows Antenna

3 ranging from 268.5 - 272.3 Hz (variation of 3.8 Hz). These average frequencies

are also seen in Figure 27.

In Figures 27b, 27c and 27d show that the nanotag frequency shifts as well.
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Figure 28: Frequency offsets over time as a result of the FCD local oscillators.
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(b) After phase correction.

Figure 29: Phase of unfiltered demodulated signal centered at the calibration
source frequency

This phase offset is found and corrected by phaseCorrectedSignal =

demodulatedSignal exp−i(median(demodulatedSignalPhase))). In Figure 29a

the offset shows approximately 2 radians. Once the phase has been corrected (Fig-

ure 29b), the demodulated signal is demodulated once more but with the carrier

shifted to center the Nanotag’s carrier frequency. Although the advertised center

frequency is 166.380 MHz, the FFT (Figure 27) showed that the test tag had a

frequency of approximately 166,379,606 Hz. These few hundred Hz differences are

needed to be accounted for to filter correctly and obtain a clear and distinguished

peak from the pings.

The filtering method implemented was a 4th-order low pass Butterworth filter

with a cutoff frequency of 200 Hz using the butter command in MATLAB. This

command produces the transfer function coefficients to be passed into the filtfilt

command that filters the data with zero phase distortion by filtering the signal in

both the forward and reverse directions. An example of the filtered signal can be

seen in Figure 30 with the phase values as well. The circles capture the peak time

of arrival and magnitude which is used to grab the corresponding phase values.

This process is repeated until all the ping groups have been found.

Finally, with all phase values saved, the function getDOAFrom2Antennas.m or
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Figure 30: Filtered signal showing precise peak detection magnitude (upper
panel) and the corresponding undistorted phase values (lower panel).

Figure 31: Visual representation of obtaining bearing estimations using 2
antennas.

getDirectionOfArrival.m are used to estimate tag bearing. The function get-

DOAFrom2Antennas.m is implemented for calculations using only two antennas

and is used as a benchmark testing method. These results will be explained in

Chapter 6.

dp = φd
λ

2π
(23)

θ = 90− arcsin(dp/d) (24)
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(a) Representation of bearing from
direction cosines.

(b) Bearing and elevation angles with
spherical angles.

Figure 32: Bearing and elevation schematics using direction cosines.

The main equations for function getDOAFrom2Antennas.m are outlined in Equa-

tions 23 where dp is path difference and φd is phase difference and 24 where d is

antenna distance. A visual is provided in Figure 31 for better understanding.

Function getDirectionOfArrival.m uses three antennas and is found by first solving

for the direction cosines. Direction cosines are the angles that the vector to the

NanoTag in space produces, shown in Figure 32a where the bearing and elevations

angles can be calculated shown in Figure 32b.

This is done using the form Ax = b. With matrix A representing the geometry of

the antenna array, vector b set as the phase differences multiplied by the inverse

wave number and x set to the direction cosines. This equation is then solved

by multiplying both sides of Ax = b by the inverse of ATA, shown in Equation

26.
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x = (ATA)−1AT b (25)[
u
v

]
=

δx21 δy21

δx31 δy31

δx32 δy32

−1 δφ21

δφ31

δφ32

 λ

2π
(26)

The inverse tangent of the u and v of the direction cosine, seen in Equation 27 to

get a bearing calculation.

θ = tan−1(
v

u
) (27)

Once these calculations were done, the bearing estimates were compared to the

actual known bearing estimates based on the drone location calculated using the

latitude and longitude positions of the drone and antenna positions.
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CHAPTER 6

Estimating the Bearing to a Tag With Two Antennas

6.1 Method

Function getDOAFrom2Antennas.m (Appendix B), uses the phase difference be-

tween two antennas (e.g., #2 and 3) to estimate the bearing to a test nanotag.

One limitation of using only two antennas is that it is uncertain exactly where the

tag is located in relationship to the antenna (Figure 33).

For example, although the estimated bearing was predicted to be in quadrant I/II,

the tag could have been quadrant III/IV. This uncertainty makes a two-antenna

system unable to get a full 360◦ bearing estimations without apriori knowledge.

There were both drone coordinates and notes taken during the drone flights for

manually changing the angles to the correct side (Appendix A). Although this

method is applicable for testing, a two antenna system would not be practical for

bird tracking.

One of the challenges during testing was that the FUNCube dongles drifted in

frequency (i.e., ±1.5 ppm). This was evident after performing a FFT on the data

recorded using SDR with a center frequency set to 166,385,000 Hz, which was

the same frequency as the calibration source. The peak was off center (discussed

and shown in Chapter 5). The test tag frequency also differed from the manufac-

turers specifications but processing accounted for these drifts using the function

getCalibrationSourceFrequencyOffset.m, (Appendix A).

To determine the reliability of the system with two antennas, Flight 2 was used for

processing. This was a helpful benchmark as the phase differences were expected
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(a) Defining the quadrant space for
consistency.

(b) Visual representation of bearing angle
uncertainty within the quadrants III and

IV.

Figure 33: Visual understanding of the defining quadrant system and the
downside of having a two antenna DF system.

to be or close to zero. This aided in the finalization of the code and steps necessary

to achieve the correct phase difference for the bearing estimations.

6.2 Results

With the test tag carrier frequency shifting throughout the recording, different

corrections were added to the test tag frequency for demodulation and filtering.

However, the peak is difficult to distinguish in the FFT because of the short dura-

tion of a transmission and low energy transmissions. As a result the first correction,

420 Hz, was chosen by lining up the test tag frequency ”bump” in energy to zero

by eye. After this, a series of FFTs were taken for every emission with a wide

windowed moving average filter to catch the upper average limit of the FFT. To

ensure that the bump in energy was the test tag and not an unknown transmission,

the FFT limited to a window of 1 kHz around the expected carrier frequency That

peak was then recorded and averaged to get the second frequency correction of

394.0903 Hz. These corrections are subtracted from the advertised frequency of

166.380 MHz during processing.
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Figure 34: Comparison of bearing estimate of the known tag location (drone)
compared to two estimates based on phase calculations using different carrier

frequencies.
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Figure 35: Measured error from the mean of the bursts bearing estimations from
phase and the drone bearings with respect to distance from antennas.
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Figure 36: Measured error from the mean of the bursts bearing estimations from
phase and the drone bearings with respect to distance from antennas.

Figure 34 includes the final results from Flight 2, showing the true bearing given

by the GPS on the drone and the estimated bearings based on phase values for

two different frequency corrections. For this test, it was expected that the phase

difference equal zero because for a North to South transect the test tag would

be equidistant from antennas 2 and 3. Figure 35 includes the phase differences

averaged per burst versus distance. When the values are close to zero, the errors

are small in this case.

By altering the carrier frequency of the test tag the errors also change. The two

corrected values of 394.0903 Hz and 420 Hz are not consistent in accuracy (Figure

36). At some distances processing with one frequency performs better than the

other but for both corrections the measured errors are at the largest the close the

test tag is to the antenna. The estimated bearings show an error ranging from of

0.01◦ to 80◦ from the true bearing. After 175 m the measured errors are less than

20◦. The errors from both the corrections seem to have no pattern when using

looking at error versus distance.
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Figure 37: RMSE values over distance for the two correction frequencies.

Using the RMSE values demonstrate the distance and error relationship. In Figure

37, the majority of the RMSE values show a decreasing trend that is relatively

linear until 200 m, where the errors begin to level out below 10◦. At 175 m distance,

bearing estimates are highly accurate (e.g., <15◦ at 225 m and the errors are <6◦

farther from the antennas), whereas when the tag approaches the antenna error

estimates increase dramatically. The errors closer to the turbine are speculated

to be effects of the beam patterns and being in near field where the electric field

becomes unpredictable (<45 m). Overall, the average RMSE values for 420 and

394.04 Hz were 0.7750◦ and 0.8250◦ respectively.

Figure 38 compared the errors directly by taking the difference between the errors

for both the measured errors and the RMSE values. With the exception of 177

seconds with a difference of 146◦, the RMSE values show a more accurate repre-

sentation of the differences between the frequency corrections. The reason being,

is that the DOA estimate differences are based on the mean bearing of each burst,

while the RMSE values take in the 4 bearing estimations per burst. Still, with

error versus time there is no pattern showing consistency. However, at 120 seconds
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Figure 38: Differences in DOA estimations (upper panel) and the RMSE errors
(lower panel) between frequency corrections 420 and 394.09 Hz. The upper panel
excludes an outlier at burst index 25 (t= 177s), where the difference was 146◦.

the test tag is above the antenna system and the differences in error begin to be

more varied rather than the beginning 100 seconds where the errors had been more

level.

Additionally, the FFT estimated carrier frequency varied greatly when there was

low SNR. In Figure 39 the full fluctuations in the carrier frequency can be seen

lined up with the ping groups. When the noise flow rises the variations in the

approximations of the test tag carrier frequency increase.

Figure 40 shows a 55 second time span from Figure 39, which clearly show large

variation in the carrier frequency, which makes estimating tag bearings based on

the phase values less accurate (see Chapter 7).
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Figure 39: Example of the filtered signal on Antenna 2 for Flight 2 with carrier
frequency calculations (lower panel) lined up with tag detections (upper panel)

over a 55 sec time span.
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Figure 40: Example of the filtered signal on Antenna 2 for Flight 2 with carrier
frequency calculations (lower panel) lined up with tag detections over a 55 sec

time span.
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CHAPTER 7

Conclusion: Sources of Error and Future Work

The DOA system was limited to two antennas for the results of this thesis. The

main reason for this is due to data sets from one of the antennas having missing

values of ping groups to orient data form other towers. Luckily the minimum

number of antennas needed is two, if there is apriori information.

7.1 Direction Finding Error Sources

Errors have the ability to accumulate based on the four major categories of error

sources: propagation-induced, environmental, instrumental and observational er-

rors [1]. Propagation-induced errors refer to the signal traveling through different

mediums, such as the ionosphere, that causes degradation in DOA, signal ampli-

tude and can cause time dispersion effects. For VHF systems these errors are more

likely to be a result of surface roughness. Over sea surfaces specifically include RF

signal reflections thus causing decreased propagation distance.

The environmental errors can be any natural or man-made obstacle that can cause

scattering or redirection of the electromagnetic wavefront causing deviation from

the linear path. This error is divided into very near (which is within λ/2π), near

(5 - 10 wavelengths), and far region (>5 - 10 wavelengths). Very near errors

occur from the space on the platform the DF antennas are placed. An example

error is antenna systems set up on the ground as it can hold dielectric constant and

conductivity variations that can cause DOA errors. Near errors are caused by point

and extended rereadiators and earth and terrain irregularities such as seasonal

vegetation changes in an area which can affect the antennas received signals. Far
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Factors Reason Result
1 Low SNR Internal receiver noise Missed detections
2 Amplitude and phase

unbalance
Poor design, Signal: amplitude and
bandwidth, Physical: temperature and
aging

Difficult to process

3 Time and frequency
inaccuracies

Mistuned RF filters Time based errors - errors in digi-
tal processing, Frequency offsets - mis-
matched phase shifts from multiple

4 Hardware imperfec-
tions and aging

Faults in hardware, aging Limited dynamic range, amplitude and
phase instability

5 Physical misalignment Imprecise installation Not optimal antenna setup, dynamic
platform, spacing inaccuracy

6 Digital processing and
algorithm imprecision

ADC create quantization noise, Time-
sampling errors, Software algorithm
imprecision, Software interpolations to
reduce memory cost

Invalid assumptions and mathematical
errors, Errors in digital data

7 Calibration inaccura-
cies

Measurement inaccuracies Residual errors

Table 1: Equipment imperfections that cause instrumental errors and their effects
on the phase detection system [from H. H. Jenkins 1991, p. 53].

region is anything beyond the near region and can consist of reradiators such

as aircraft, objects that are far but reflective or also emitting signals. Overall a

ground-based DF site must include the following to minimize environmental errors:

set up on high, level and clear terrain, the ground must be uniform in conductivity

and moisture, and removed from reradiating features such as man-made buildings,

power lines and coastlines.

Instrumental errors are derived from imperfections in the equipment or amplitude

and phase errors resulting from the use of multiple receivers. Examples and details

can be seen in Table 1.

Observational errors apply when there is a display of DF results showing corrupted

data, there tend to be large fluctuations that could be reduced by averaging. It

could also be that the human factor caused some error if they are operating the

system. In the case of this thesis, observational errors were not considered.

Looking at these errors relative to direction finding in general, and the errors

66



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time [ms]

0

0.2

0.4

0.6

M
a
g
n
it
u
d
e

Ideal Case

AT2

AT3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time [ms]

-4

-2

0

2

4
P

h
a
s
e
 [
ra

d
]

Figure 41: Ideal Case.

received on the post-processing front, there were clearly instrumental and envi-

ronmental errors. The instrumental errors were the mostly due to the FUNCube

dongles RF mixer and analog to digital converter. These errors are discussed in

more depth below. The environmental errors were not as clearly visible but as-

sumed to be there due to the area in which the testing took place. Metal buildings

surrounded the antenna system and reradiation of the incoming electromagnetic

waves are likely have occurred. However, still it is important to keep the other

errors in mind when developing a more permanent system.

In addition to understanding common errors seen from literature review, modeled

data of the system was also tested with the same functions developed for processing

the test data to ensure that they worked correctly, shown in Figure 42. Each of the

errors were added to the ideal case data (Figure 41) by itself before adding multiple

error combinations. This was important to determine which errors had the greatest

impact on the accuracy and precision of bearing estimates and how to fix these

errors. For this exercise, Antenna 2 modeled data was unaltered, while Antenna
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(a) Start Time Error of 0.14 ms Case.
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(b) Sample Frequency Error of 0.01 Hz
Case.
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(c) Frequency Error of 200 Hz Case.
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(d) Low SNR Case.

Figure 42: Different variables that were tested to observe the changes of the
phase values in modeled data.
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Figure 43: Phase of ping group 1 from using the RF Explorer as the calibration
source.

3 data was modeled for errors. The more important errors contributing to phase

inconsistencies were frequency errors and SNR (Figures 42c and 42d). Start time

errors did not affect the phase values (Figure 42a) or did the sample rate errors

42b. The sample frequency error could create some inaccuracies if phase values

of the transmission were sloped or the sample frequency error was much larger.

However, the analysis performed here assumed that the error was small.

Finally, the reason that the calculations for two antennas was possible is due to

the calibration source stability. In the beginning tests, the RF explorer was a

calibration source with a frequency stability of ±0.5 [2]. This is evident when

looking at the phase inconsistencies in Figure 43

7.2 Conclusion

The FCDs were sources of large variation. Each FCD had a difference frequency

offset by hundreds of hertz, which would change over time, thus needed to be

constantly calculated. This source of was accounted for by including a precise

calibration source, a rubidium clock with a stability of <±0.0001ppm [3]. The

calibration source allowed errors in frequency and phase to be corrected. A primary

sources of the frequency and phase errors specifically were from the FCD local
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Challenges Effect
Clock Differences Possibly lining up wrong peaks – phase difference errors
Software Memory Usage Computer freezing – missing data, lining up wrong peaks
FUNCube Dongle Stability Errors in frequency, affect frequency corrections
Nanotag Frequency Shifts Frequency correction errors
Frequency Correction Peak variability and phase correction errors
Peak Variability Phase value errors
Phase Correction Large phase errors
Signal-to-Noise-Ratio Large phase errors
Uncertainties in Antenna and Drone Coordinates Uncertainties of true bearing angles for phase bearing comparisons

Table 2: Table of all contributors of errors and their effects on the system.

oscillator drifting from the carrier frequency, the ADC timing not being precise

enough, and propagation noise. These are errors that were documented in the

literature review and were reviewed through modeled data in Figure 42.

This research showed there phase measurements are sensitive to error and can

be corrected for through processing and higher stability equipment. With the

rubidium clock calibration source, a majority of the frequency and phase errors

from the FUNCube dongle were corrected. However, the Nanotag instability, data

dropouts on the Antenna 1 system and general lack of coherency between systems

lead to the calculation of bearing with two antennas. Despite the limited number of

drone flights and using two antennas, this thesis provides an operational assessment

of transmitter location.

7.3 Future Design

Suggested improvements for a next generation of the system are having a common

LO to achieve phase coherence. The LO must be phase stable and have low phase

noise and a reference clock synchronization to ensure all measurements are lined

up.

The RSPduo and Low Jitter Precision GPSDO Reference Oscillator work well

together for these SDR purposes, Figure 44.
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(a) RSPduo Dual Tuner 14-bit SDR [4].
(b) Low Jitter Precision GPSDO Reference

Oscillator [5]

Figure 44: Two main components to the new phase measuring system design.

The RSPduo specifications are the 0.5 ppm and has external clock input and

output for easy synchronization of multiple RSPs or an external reference clock, in

this case the Low Jitter Precision GPSDO. The oscillators important specifications

are the stability of 0.001 ppm and a programmable frequency from 450 Hz - 800

MHz. When deploying this system the oscillator should be set to 166.385 MHz.

The GPSDO Reference Oscillator will be input into one of the RSPDuos and

outputted to the next RSPDuo and again with the last RSPDuo. Each RSPDuo

will have its own respective Raspberry Pi 4. A simple schematic is shown in Figure

45 to show the connections.

From the research in this paper, having three separate computers made the pro-

cessing difficult due to the FCD stability, having three separate local oscillators

and depending upon the timing from the PCs that did not have enough memory

to process the radio data. These errors should be accounted for by the new design.

The RSPDuos will be timed on the same clock from the GPSDO Reference Os-

cillator rather than the Raspberry Pi clocks. The reason that three single board

computers are used rather than one is because radio processing can be very in-

tensive. In fact, the Raspberry Pis must be contained in a cooling case during
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Figure 45: New system design schematic showing connections between the
equipment inside deployable box.
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Figure 46: Argon ONE cooling case shown on the left with its respective thermal
imaging after a heavy synthetic workload for 10 minutes [6].

radio processing. Radio data recording can be very intensive, especially over long

duration of time and hot weather.

The Argon ONE shown in Figure 46 covers the Raspberry Pi to keep the debris

out and kept the temperature below approximately 55◦. All of these components

pricing and sites are in Appendix E.

Future tests should include a drone test to determine the beam patterns of the

antenna system experimentally. The omnidirectional antennas used in this work

are Franklin arrays and can be complex. Additionally, a study on the stability of

the Nanotag.
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Appendix A: Bill Of Materials

Items Unit Price Quantity Cost
Galvanized Metal Mast Clamp Set for Style 476 Antenna $144.99 3 $434.97
Low-Carbon Steel Round Tube 0.12" Wall Thickness 2" OD $48.74 3 $146.22
2 in. x 4 in. x 4 ft. Premium Ground Contact Pressure-Treated Lumber $3.17 6 $19.02
Low-Carbon Steel Rectangular Tube 1/8" Wall Thickness, 1-1/2" x 3" Outside Size $19.82 3 $59.46
Low-Carbon Steel Round Tube 1/4" Wall Thickness, 3-1/2" OD $127.38 1 $127.38
PVC Rod $13.75 6 $82.50
Thick PVC rod $34.71 1 $34.71
1/4 in. Zinc Flat Washer (100-Pack) $5.25 1 $5.25
1/4 in.-20 Zinc Plated Hex Nut (100-Pack) $6.57 1 $6.57
#9 x 3 in. Star Flat-Head Wood Deck Screws (5 lbs. per Pack) $29.97 1 $29.97
1/4 in.-20 x 4 in. Zinc Plated Hex Bolt $0.31 18 $5.58
Guy wires

Total: $951.63

Items Unit Price Quantity Cost
476 21' Classic VHF Marine Band Antenna $859.99 3 $2,579.97
TWS400-115 - 115' Jumper with TWS400 3/8",  50 Ohm braided cable with BNC Male and UHF Male Installed$149.00 3 $447.00
SG382/4, 2 GHz generator (w/ opt. 04, Rb timebase) $5,400.00 1 $5,400.00
HP Stream - 11-ak1010nr $199.99 3 $599.97
FUNCube Dongle $155.88 3 $467.64
Nanotag - NTQB2-4-2 $210.00 1 $210.00
SMA male to BNC female adapter $11.99 3 $35.97
2.4 / 5.8GHz / 2 dBi @ 2.4GHz,  (RP-SMA) rubber duck WiFi Antenna $6.99 1 $6.99
Maxmoral N Male to SMA Female Connector RF Coax Coaxial Adapter $5.99 1 $5.99

Total: $9,753.53

Total Overall: $10,705.16

Materials needed to construct a 3-antenna tracking array

Antenna Components and Instruments
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Site
https://www.westmarine.com/buy/shakespeare--galvanized-metal-mast-clamp-set-for-style-476-antenna--3844016

https://www.mcmaster.com/7767t54

https://www.homedepot.com/p/WeatherShield-2-in-x-4-in-x-4-ft-Premium-Ground-Contact-Pressure-Treated-Lumber-274324/300526750

https://www.mcmaster.com/6527k47-6527K471

https://www.mcmaster.com/7767t75-7767T753

https://www.mcmaster.com/87025k67

https://www.homedepot.com/p/Everbilt-1-4-in-Zinc-Flat-Washer-100-Pack-800452/204276405

https://www.homedepot.com/p/Everbilt-1-4-in-20-Zinc-Plated-Hex-Nut-100-Pack-802582/204274090

https://www.homedepot.com/p/Deckmate-9-x-3-in-Star-Flat-Head-Wood-Deck-Screws-5-lbs-per-Pack-3DMT5/305418479

https://www.homedepot.com/p/Everbilt-1-4-in-20-x-4-in-Zinc-Plated-Hex-Bolt-800656/204633305

Site
https://www.westmarine.com/buy/shakespeare--476-21-classic-vhf-marine-band-antenna--297676

http://www.econ2way.com/

https://www.thinksrs.com/products/sg380.html

https://store.hp.com/us/en/pdp/hp-stream-11-ak1010nr

http://www.funcubedongle.com/?page_id=1113

https://www.lotek.com/products/nanotags/

https://www.amazon.com/Maxmoral-Female-Coaxial-Adapter-Connector/dp/B0114MWOD8/ref=sr_1_9?dchild=1&keywords=SMA%2Bmale%2Bto%2BBNC%2Bfemale%2Badapter&qid=1586440323&s=electronics&sr=1-9&th=1

https://www.amazon.com/5-8GHz-2-4GHz-RP-SMA-rubber-Antenna/dp/B0093SGI0Q

https://www.amazon.com/Maxmoral-Female-Connector-Coaxial-Adapter/dp/B01NCAL4DR/ref=sr_1_4?crid=3B62KEGOSDFS5&dchild=1&keywords=n+type+male+to+sma+female&qid=1586441731&s=electronics&sprefix=n+type+male+to+sma%2Celectronics%2C285&sr=1-4
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Appendix B: SDR-Radio SetUp

How To Set Up Recordings for Testing on SDR:  

 

● Open SDR Radio Console 
Software and go to the 
Rec/Playback tab.  

 

 

● In the Data Record section hit Record.  

 

 

● Check the box labeled Schedule this 
recording. 

● A menu will show up to set the start and stop 
time. You can change the directory if you 
would like. Currently it goes into a desktop 
folder labeled Bird data and the antenna it was 
attached to.  

● Hit Start and the program will show a 
countdown for the scheduled recording. 
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Appendix C: Flight Plans
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Appendix D: MATLAB functions
1 c l e a r a l l ; c l c ; c l o s e a l l ; warning o f f

2 %% Load constants

3 load ( ’ August2019 NanotagParameters . mat ’ )

4 % g loba l approximatedCorrect ion

5 % load ECUpdated .mat

6 ext raCor r ec t i on = 350 ; %394 .0903 ;

7 % ext raCor rec t i on = abs (mean( extraCorrect ionsUpdated ( : , 2 : 3 ) ,2 ) ) ; %; %420; %394.0903; %

348 .3514 ; 350

8 %% Decide which f i l e you want to look at and the time i n t e r e s t s

9

10 %Get data . ChooseFl ight func t i on holds the f l i g h t in format ion .

11 f l i g h t a t t empt = input ( ’ Pick a f l i g h t number 1−6: ’ ) ; %Add f l i g h t d e s c r i p t i o n s ?

12 [ f i l ename , f l i g h tD i r e c t o r y ] = chooseF l i ght ( f l i g h t a t t empt ) ;

13

14 %Get time inputs and va l i d a t e them

15 t ime In t e r e s t S t a r t = input ( ’ S tar t Time ( seconds ) : ’ ) ;

16 v a l i d a t e a t t r i b u t e s ( t ime In t e r e s tS ta r t ,{ ’ double ’ } ,{ ’ i n t e g e r ’ , ’ s c a l a r ’ })

17

18 t imeInterestEnd = input ( ’End Time ( seconds ) : ’ ) ;

19 v a l i d a t e a t t r i b u t e s ( t imeInterestEnd ,{ ’ double ’ } ,{ ’ i n t e g e r ’ , ’ s c a l a r ’ })

20

21 timeCheck = [ t ime In t e r e s tS ta r t , t imeInterestEnd ] ;

22 v a l i d a t e a t t r i b u t e s ( timeCheck ,{ ’ double ’ } ,{ ’ i n t e g e r ’ , ’ vec tor ’ , ’ i n c r e a s i n g ’ })

23

24 %Make the time vector and a matching index vector . Make sure that there i s

25 %an even index d i f f e r e n c e f o r c a l c f r e q d i f f .

26 du r a t i on In t e r e s t = t ime In t e r e s t S t a r t : t imeInterestEnd ;

27 idxTimeInteres t = ( ( du r a t i on In t e r e s t (1 ) : du r a t i on In t e r e s t ( end ) )∗SAMPLERATE)+1;

28 numberOfDetections = f l o o r ( l ength ( du r a t i on In t e r e s t ) /TIMEBETWEENPULSES) ;

29 pulseSampleIndex = TIMEBETWEENPULSES∗SAMPLERATE;

30

31 %Colors used in subp lo t s to match the main p lo t f o r p r e s en ta i t on

32 co l o r = { [ 0 .4470 . 7 4 1 0 ] , [ . 8 5 0 0 0.3250 0 . 0 9 8 0 ] , [ 0 . 9 2 9 0 0.6940 0 . 1 2 5 0 ]} ;

33

34 %% Read in the data and f i nd de t e c t i on s

35

36 f o r f i leNumber = 2 :3

37

38 f i l enameFu l l = s t r c a t ( f l i g h tD i r e c t o r y , ’\ ’ , f i l ename ( fi leNumber , : ) ) ;

39 [ recordedData , SAMPLERATE]=audioread ( f i l enameFu l l ) ;

40 t ime seconds = (0 : 1/SAMPLERATE: ( l ength ( recordedData )−1)/SAMPLERATE) ’ ;

41 t imeSe c t i on In t e r e s t = t ime seconds ( idxTimeInteres t (1 ) : idxTimeInteres t ( end ) ) ;

42 recordedDataSect ion = recordedData ( idxTimeInteres t (1 ) : idxTimeInteres t ( end ) , : ) ;

43 complexSignal ( : , f i leNumber ) = recordedDataSect ion ( : , 1 ) + 1 j ∗ recordedDataSect ion ( : , 2 ) ;

44

45 [ f i l t e r e d S i g n a l ( : , f i leNumber ) ] = g e tF i l t e r e dS i g n a l ( complexSignal ( : , f i leNumber ) , SAMPLERATE,

. . .

46 CALIBRATIONFREQUENCY, t imeSec t i on In t e r e s t , 100 , 1 , l ength ( recordedDataSect ion ) , 420) ;

47

48

49 %Plot the d e t e c t i on s on the same p lo t

50 f i g u r e (1 )

51 subplot (3 ,1 , f i leNumber )

52 p lo t ( t imeSec t i on In t e r e s t , abs ( f i l t e r e d S i g n a l ( : , f i leNumber ) ) , ’ Color ’ , c o l o r { f i leNumber })
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53 hold on

54 t i t l e ( [ ’ F i l t e r e d data f o r ’ , num2str ( du r a t i on In t e r e s t (1 ) ) , ’ to ’ , . . .

55 num2str ( du r a t i on In t e r e s t ( end ) ) , ’ seconds ’ ] , ’ FontSize ’ ,14)

56 x l ab e l ( ’Time ( s ) ’ , ’ FontSize ’ ,14)

57 y l ab e l ( ’Magnitude ’ , ’ FontSize ’ ,14)

58

59

60 [ indexPeakSearchStart , indexPeakSearchEnd , indexFreqDi f fStar t , indexFreqDiffEnd ,

pulseNumberDetected ( f i leNumber ) , peakThreshold ( f i leNumber ) ] . . .

61 = ge t In i t i a l IdxBounds ( f i l t e r e d S i g n a l ( : , f i leNumber ) , SAMPLERATE, pulseSampleIndex ,

PULSEDURATION) ;

62

63 di sp ( [ ’ F i r s t d e t e c t i on s found at ’ , num2str ( t imeSe c t i on In t e r e s t ( indexPeakSearchStart ) ) ] ) ;

64

65 f o r pulseNumber = pulseNumberDetected ( f i leNumber ) : numberOfDetections−1

66

67 [ peakValues{pulseNumber , f i leNumber } , peakIndex{pulseNumber , f i leNumber } ,

peakIndexSect ion{pulseNumber , f i leNumber } , . . .

68 phaseDetected{pulseNumber , f i leNumber } , t imeDetected{pulseNumber , f i leNumber } , . . .

69 timeUpdated{pulseNumber , f i leNumber } , f i l t e r edS i gna lUpda t ed {pulseNumber , f i leNumber } ,

phaseMeasurementsUpdated{pulseNumber , f i leNumber } , . . .

70 f r equencyOf f e t ( pulseNumber , f i leNumber ) ] . . .

71 = getCorrec tedDetec t i ons ( complexSignal ( : , f i leNumber ) , SAMPLERATE,

CALIBRATIONFREQUENCY, . . .

72 t imeSec t i on In t e r e s t , CUTOFFFREQUENCY, PULSEDURATION, indexFreqDi f fStar t , . . .

73 indexFreqDiffEnd , indexPeakSearchStart , indexPeakSearchEnd , . . .

74 peakThreshold ( f i leNumber ) , pulseSampleIndex , ex t raCor r ec t i on ) ;

75

76 % meep( pulseNumber , f i leNumber ) = approximatedCorrect ion ;

77

78 % makePlots ( timeUpdated , f i l t e r edS igna lUpdated , phaseMeasurementsUpdated , . . .

79 % timeDetected , peakValues , phaseDetected , pulseNumber , f i leNumber ,

numberOfDetections )

80

81 [ indexPeakSearchStart , indexPeakSearchEnd , indexFreqDi f fStar t , indexFreqDiffEnd ] . . .

82 = getPeakIndexSearchLimits ( peakIndex ( : , f i leNumber ) , pulseNumber , pulseSampleIndex ,

indexPeakSearchStart , indexPeakSearchEnd , . . .

83 indexFreqDi f fStar t , indexFreqDiffEnd , SAMPLERATE) ;

84 end

85

86 [ peakValuesMat ( : , f i leNumber ) , peakIndexMat ( : , f i leNumber ) , phaseDetectedMat ( : , f i leNumber ) ,

timeDetectedMat ( : , f i leNumber ) ] . . .

87 = addMissedDectectionsAsNaNs ( pulseNumberDetected ( f i leNumber )−1, peakValues ( : , f i leNumber

) , peakIndex ( : , f i leNumber ) , . . .

88 phaseDetected ( : , f i leNumber ) , t imeDetected ( : , f i leNumber ) ) ;

89

90 end

91

92 %% Ca l cu l a t i on s o f f o r determining po s i t i o n o f b i rd tag

93

94 %Get po s i t i o n matrix f o r c a l c u l a t i o n s

95 [ antennaDistanceMatrix ] = getPos i t i onMatr ix (ANTENNADISTANCES) ;

96

97 %Phase d i f f e r e n c e s between each antenna
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98 pha s eD i f f e r enc e s = [ phaseDetectedMat ( : , 2 )−phaseDetectedMat ( : , 1 ) , . . .

99 phaseDetectedMat ( : , 3 )−phaseDetectedMat ( : , 1 ) , . . .

100 phaseDetectedMat ( : , 3 )−phaseDetectedMat ( : , 2 ) ] ’ ;

101

102 d i r e c t i onO fAr r i v a l = ge tD i r e c t i onOfAr r i va l (WAVELENGTH, antennaDistanceMatrix , pha s eD i f f e r enc e s

) ;

103

104

105

106 f i g u r e

107 p lo t ( d i r e c t i onOfAr r i va l , ’∗ ’ ) ;

108

109 x l ab e l ( ’ Index ’ )

110 y l ab e l ( ’ Angle [\ c i r c ] ’ )

111 t i t l e ( ’ D i r e c t i on o f Ar r i va l ’ )

112 gr id on

113 s e t ( gca , ’ FontSize ’ ,20)

114

115

116 f i g u r e ;

117 f o r i = 1 : l ength ( phaseDetected )

118 p lo t ( ones (1 , 4 ) ∗ i , phaseDetected{ i , 2} , ’ r∗ ’ ) ; hold on ; p l o t ( ones (1 , 4 ) ∗ i , phaseDetected{ i , 3} , ’ bs ’ )

119 gr id on ; x l ab e l ( ’ Ping Group ’ ) ; y l ab e l ( ’ Phase [ rad ] ’ ) ; t i t l e ( ’ Phase Values Between Antenna 2 & 3

’ )

120 end

121

122 f i g u r e ;

123 f o r i = 1 : l ength ( phaseDetected )

124 p lo t ( ones (1 , 4 ) ∗ i , [ phaseDetected{ i ,2}−phaseDetected{ i , 3 } ] , ’∗ ’ ) ; hold on ;

125 gr id on ; x l ab e l ( ’ Ping Group ’ ) ; y l ab e l ( ’ Phase [ rad ] ’ ) ; t i t l e ( ’ Phase D i f f e r e n c e s Between Antenna

2 & 3 ’ )

126 end

Listing 1: Main script to run the DOA processing.

1 func t i on [ f i l ename , f l i g h tD i r e c t o r y ] = chooseF l i ght ( f l i g h t a t t empt )

2 %CHOOSEFLIGHT Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4

5 codeDirectory = pwd ;

6 cd . . \ . . \ Summer2019\Aug9

7 f l i g h tD i r e c t o r y = pwd ;

8

9

10 switch f l i g h t a t t empt

11 case 1

12 %F i r s t 10 :52 11 :00 10 :50

13 f i l ename ( 1 , : ) =’Aug9 − AT1A\09−Aug−2019 113300.012 166.385MHz 000 .wav ’ ;

14 f i l ename ( 2 , : ) =’Aug9 − AT2B\09−Aug−2019 113300.007 166.385MHz 000 .wav ’ ;

15 f i l ename ( 3 , : ) =’Aug9 − AT3C\09−Aug−2019 113300.000 166.385MHz 000 .wav ’ ;

16 d i sp ( ’ Total Time = 10:50 minutes ’ )

17

18 case 2

19 %Second 6 :53 7 :00 7 :00
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20 f i l ename ( 1 , : ) =’Aug9 − AT1A\09−Aug−2019 115500.016 166.385MHz 000 .wav ’ ;

21 f i l ename ( 2 , : ) =’Aug9 − AT2B\09−Aug−2019 115500.018 166.385MHz 000 .wav ’ ;

22 f i l ename ( 3 , : ) =’Aug9 − AT3C\09−Aug−2019 115500.014 166.385MHz 000 .wav ’ ;

23 d i sp ( ’ Total Time = 6:53 minutes ’ )

24

25 case 3

26 %Third 6 :00 6 :00 6 :00

27 f i l ename ( 1 , : ) =’Aug9 − AT1A\09−Aug−2019 120300.013 166.385MHz 000 .wav ’ ;

28 f i l ename ( 2 , : ) =’Aug9 − AT2B\09−Aug−2019 120300.009 166.385MHz 000 .wav ’ ;

29 f i l ename ( 3 , : ) =’Aug9 − AT3C\09−Aug−2019 120300.012 166.385MHz 000 .wav ’ ;

30 d i sp ( ’ Total Time = 6:00 minutes ’ )

31

32 case 4

33 %Fourth 6 :00 6 :00 5 :58

34 f i l ename ( 1 , : ) =’Aug9 − AT1A\09−Aug−2019 121000.015 166.385MHz 000 .wav ’ ;

35 f i l ename ( 2 , : ) =’Aug9 − AT2B\09−Aug−2019 121000.009 166.385MHz 000 .wav ’ ;

36 f i l ename ( 3 , : ) =’Aug9 − AT3C\09−Aug−2019 121000.005 166.385MHz 000 .wav ’ ;

37 d i sp ( ’ Total Time = 5:58 minutes ’ )

38

39 case 5

40 %Fi f th 9 :00 9 :00 9 :00

41 f i l ename ( 1 , : ) =’Aug9 − AT1A\09−Aug−2019 122700.004 166.385MHz 000 .wav ’ ;

42 f i l ename ( 2 , : ) =’Aug9 − AT2B\09−Aug−2019 122700.009 166.385MHz 000 .wav ’ ;

43 f i l ename ( 3 , : ) =’Aug9 − AT3C\09−Aug−2019 122700.002 166.385MHz 000 .wav ’ ;

44 d i sp ( ’ Total Time = 9:00 minutes ’ )

45

46 case 6

47 %Sixth 9 :00 9 :00 9 :00

48 f i l ename ( 1 , : ) =’Aug9 − AT1A\09−Aug−2019 123700.007 166.385MHz 000 .wav ’ ;

49 f i l ename ( 2 , : ) =’Aug9 − AT2B\09−Aug−2019 123700.019 166.385MHz 000 .wav ’ ;

50 f i l ename ( 3 , : ) =’Aug9 − AT3C\09−Aug−2019 123700.006 166.385MHz 000 .wav ’ ;

51 d i sp ( ’ Total Time = 9:00 minutes ’ )

52 otherwi se

53 d i sp ( ’ There were only 6 f l i g h t s , choose 1−6 ’ )

54 end

55

56 cd ( codeDirectory )

57 end

Listing 2: Choose flight to analyze MATLAB scrip.t

1 func t i on [ indexPeakSearchStart , indexPeakSearchEnd , indexFreqDi f fStar t , indexFreqDiffEnd ,

pulseNumberDetected , peakThreshold ] = ge t In i t i a l IdxBounds ( f i l t e r e d S i g n a l , sampleRate ,

pulseSampleIndex , pulseDurat ion )

2 %get In i t i a l IdxBoundsForFreqDi f f Summary o f t h i s func t i on goes here

3 % Inputs :

4 % f i l t e r e d S i g n a l : the f i l t e r e d s i g n a l that w i l l be used f o r peak

5 % pick ing

6 % sampleRate : sampling f requency

7 % pulseSampleIndex : the index between pu l se durat ion

8 % ( sampleRate∗pulseDurat ion )

9 % pulseDurat ion : time between pu l s e s

10 % Outputs :

11 % indexPeakSearchStart : the s t a r t i n g index f o r where the pu l se s t a r t s
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12 % indexPeakSearchEnd : the ending index f o r where the pu l se ends

13 % indexFreqDi f fS ta r t : the s t a r t i n g index f o r c a l c u l a t i n g the

14 % frequency o f f s e t

15 % indexFreqDiffEnd : the ending index f o r c a l c u l a t i n g the

16 % frequency o f f s e t

17 % pulseNumberDetected : the number o f the pu l se that was found . In

18 % otherwords , i f a pu l se was detected with in r e l a t i v e time zero and

19 % pulseDurat ion then the pulseNumberDetected i s 1 . The f i r s t pu l se

20 % detected was the f i r s t one expected , t h e r e f o r e there was no missed

21 % detect ion , however i f the re was a missed detect ion , the

22 % pulseNumberDetected w i l l i n c r e a s e by one un t i l there i s a

23 % de t e c t i on .

24

25 sk ipSp ike = f l o o r ( sampleRate /5) ; %Beginning and End have sp i k e s

26 s ta r tSearchIndex = f l o o r ( sk ipSp ike ) ;

27 endSearchIndex = f l o o r ( pulseSampleIndex )+sampleRate ;%Plus a second o f bu f f e r

28

29 percentThreshold = 0 . 5 ; %June

30 peakThresho ldMult ip l i e r = 6 ; %6 August , 20 June

31 peakThreshold = mean( abs ( f i l t e r e d S i g n a l ) )∗peakThresho ldMult ip l i e r ;

32 d i sp ( [ ’ Peak thre sho ld s e t to : ’ , num2str ( peakThreshold ) ] )

33 minimumPeakDistance = 0.01∗ sampleRate ; %0.01 i s the number o f seconds

34

35 f i l t e r e d S i g n a l S e c t i o n = abs ( f i l t e r e d S i g n a l ( s ta r tSearchIndex : endSearchIndex ) ) ;

36 [ peakValues , peakIndex , widths ] = f indpeaks ( f i l t e r e d S i g n a l S e c t i o n , ’MinPeakHeight ’ ,

peakThreshold , ’ MinPeakDistance ’ , minimumPeakDistance , ’MinPeakWidth ’ , 20) ;

37 [ peakValues , peakIndex , ˜ ] = checkPeakDetect ions ( peakValues , peakIndex , sampleRate , . . .

38 widths , minimumPeakDistance , [ ] , f i l t e r e d S i g n a l , s tartSearchIndex , . . .

39 endSearchIndex , pulseDuration , peakThreshold , [ ] , [ ] , [ ] , [ ] ) ;

40

41 pulseNumberDetected = 1 ;

42

43

44 whi le l ength ( peakValues )˜=4 | | pulseDuration <(peakIndex ( end )−peakIndex (1) ) / sampleRate

45 s ta r tSearchIndex = star tSearchIndex+pulseSampleIndex ;

46 endSearchIndex = endSearchIndex+pulseSampleIndex ;

47

48 i f endSearchIndex>l ength ( f i l t e r e d S i g n a l )

49 e r r o r ( ’Change the s t a r t and end time . ’ )

50 end

51

52 f i l t e r e d S i g n a l S e c t i o n = abs ( f i l t e r e d S i g n a l ( s ta r tSearchIndex : endSearchIndex ) ) ;

53 % peakThreshold = max( abs ( f i l t e r e d S i g n a l ( sk ipSp ike : pulseSampleIndex ) ) )∗percentThreshold ;

54 [ peakValues , peakIndex , widths ] = f indpeaks ( f i l t e r e d S i g n a l S e c t i o n , ’MinPeakHeight ’ ,

peakThreshold , ’ MinPeakDistance ’ , minimumPeakDistance , ’MinPeakWidth ’ , 50) ;

55 [ peakValues , peakIndex , ˜ ] = checkPeakDetect ions ( peakValues , peakIndex , sampleRate , . . .

56 widths , minimumPeakDistance , [ ] , f i l t e r e d S i g n a l , s tartSearchIndex , . . .

57 endSearchIndex , pulseDuration , peakThreshold , [ ] , [ ] , [ ] , [ ] ) ;

58

59 pulseNumberDetected = pulseNumberDetected+1;

60 end

61

62

63
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64

65 indexFi r s tP ing = peakIndex (1)+star tSearchIndex ;

66 indexLastPing = peakIndex ( end )+star tSearchIndex ;

67

68 indexSearchBuf fe r = round ( sampleRate /10) ;

69 indexPeakSearchStart = indexFirstPing−indexSearchBuf fe r ;

70 indexPeakSearchEnd = indexLastPing+indexSearchBuf fe r ;

71

72 %Finds one second be fo r e and one second a f t e r

73 indexFreqDi f fS ta r t= indexFirstPing−sampleRate ;

74 indexFreqDiffEnd = indexFi r s tP ing+sampleRate−1;

75

76

77

78 end

Listing 3: Find the initial indices where the first ping group exists.

1 func t i on [ f i l t e r e d S i g n a l ] = g e tF i l t e r e dS i g n a l ( complexSignal , sampleRate , f r equencyCa l ib ra t ion ,

t imeSect ion , cutof fFrequency , s tartSearchIndex , endSearchIndex , ex t raCor r ec t i on )

2 %GETFILTEREDSIGNAL takes the complex s i gna l , f i n d s the f requency d i f f e r e n c e

3 %generated by the dongles e r r o r . This func i ton needs that the number o f

4 %are even , us ing the getEvenIndexValue . Finds the demodulated s i g n a l with the

5 %frequency o f f s e t minused o f f . Then f i l t e r s the demodulated s i g n a l with the

6 %reduce no i s e func t i on to get the f i l t e r e d s i g n a l that w i l l be used f o r

7 %proc e s s i ng .

8 % Inputs :

9 % complexSignal : recorded data broken in to r e a l and imaginary

10 % components

11 % sampleRate : sampling f requency

12 % f r equencyCa l ib ra t i on : the c a l i b r a t i o n s i g n a l s f requency above the

13 % nanotags cente r f requency

14 % t imeSe c t i on In t e r e s t : the time vector o f the requested time

15 % cuto f fFrequency : the cut−o f f f requency used f o r f i l t e r i n g

16 % star tSearchIndex : where the complex s i g n a l s t a r t s to get the f requency d i f f e r e n c e

17 % endSearchIndex : where the complex s i g n a l ends to get the f requency d i f f e r e n c e

18 %

19 % Outputs :

20 % f i l t e r e d S i g n a l : the f i l t e r e d s i g n a l that w i l l be used f o r peak

21 % pick ing

22

23 %Current ly doesnt work c o r r e c t l y ?

24 % try

25 % complexSigna lSect ion = complexSignal ( s ta r tSearchIndex : endSearchIndex ) ;

26 % catch

27 % %Not needed i f F r eqDi f fS ta r t = peakStart

28 % i f s ta r tSearchIndex < 0

29 % complexS igna lSect ion = complexSignal ( 1 : endSearchIndex ) ;

30 % e l s e

31 % complexS igna lSect ion = complexSignal ( s ta r tSearchIndex : end ) ;

32 % end

33 % end

34

35 i f l ength ( s ta r tSearchIndex : endSearchIndex )<l ength ( complexSignal )

92



36 complexSignal = complexSignal ( s ta r tSearchIndex : endSearchIndex ) ;

37 t imeSect ion = t imeSect ion ( s ta r tSearchIndex : endSearchIndex ) ;

38 end

39

40 f r equencyOf f s e t = getFrequencyOf f set ( complexSignal , sampleRate ) − f r equencyCa l ib ra t i on −

ext raCor r ec t i on ;

41 demodulatedSignal = demodulateSignal ( complexSignal , t imeSect ion , f r equencyOf f s e t ) ; %Puts the im

and r e a l components in to a complex equat ion to c o r r e c t the f requency d i f f e r e n c e

42 f i l t e r e d S i g n a l = reduceno i s e ( demodulatedSignal , cutof fFrequency , sampleRate ) ; %Reduces no i s e o f

the demodulated s i g n a l us ing a butterworth f i l t e r or square f i l t e r

43

44

45 end

Listing 4: Filters complex signal using getFrequencyOffset, demodulateSignal,

and reducenoise script.

1 func t i on Xf = reduceno i s e (X,FC,FS)

2

3 [ b , a ] = butter (4 ,FC/(FS/2) ) ;

4 %b = ones (1 ,100) /100 ;

5 %a = 1 ;

6

7 Xf = f i l t f i l t (b , a ,X) ;

8 end

Listing 5: Applies a butterworth filter and filtfilt to complex data.

1 func t i on [ peakValues , peakIndexTrue , peakIndexSect ion , phaseDetected , timeDetected ,

t imeSect ioned , f i l t e r e d S i g n a l S e c t i o n , phaseMeasurementsSection , f r equencyOf f s e t ] =

getCorrec tedDetec t i ons ( complexSignal , sampleRate , f r equencyCa l ib ra t ion ,

t imeSec t i on In t e r e s t , cutof fFrequency , pulseDuration , indexFreqDi f fS tar t , indexFreqDiffEnd ,

indexPeakSearchStart , indexPeakSearchEnd , peakThreshold , pulseSampleIndex ,

ex t raCor r ec t i on )

2 %GETCORRECTEDDETECTIONS f i nd s the newly f i l t e r e s s i g n a l based on the

3 %frequency d i f f e r e n c e found one second be fo r e the pu l se . The s i g n a l i s then

4 %demodulated and f i l t e r e d againw with the new frequency o f f s e t . From there

5 %the pu l se o f i n t e r e s t i s found between the indexPeakSearchStart and the

6 %indexPeakSearchEnd index based on the peakThreshold and the hard coded

7 %peak width . From there i t goes through the checkPeakDetect ions func i t on

8 %and then e i t h e r outputs the found de t e c t i on s or outputs NaNs i f the re were

9 %none .

10 % Inputs :

11 % complexSignal : recorded data broken in to r e a l and imaginary

12 % components

13 % sampleRate : sampling f requency

14 % f r equencyCa l ib ra t i on : the c a l i b r a t i o n s i g n a l s f requency above the

15 % nanotags cente r f requency

16 % t imeSe c t i on In t e r e s t : the time vector o f the requested time

17 % cuto f fFrequency : the cut−o f f f requency used f o r f i l t e r i n g

18 % pulseDurat ion : maximum time o f between the i n i t i a l ping and the

19 % l a s t ping o f a pus l e
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20 % indexFreqDi f fS ta r t : the s t a r t i n g index f o r c a l c u l a t i n g the

21 % frequency o f f s e t

22 % indexFreqDiffEnd : the ending index f o r c a l c u l a t i n g the

23 % frequency o f f s e t

24 % indexPeakSearchStart : the s t a r t i n g index f o r where the pu l se s t a r t s

25 % indexPeakSearchEnd : the ending index f o r where the pu l se ends

26 % peakThreshold : the magnitude the peak must be above f o r de t e c t i on

27 % pulseSampleIndex : the index length between two pus l e s

28 %

29 % Outputs :

30 % peakValues : the magnitude value o f the detected peaks

31 % peakIndex : the index o f the detected peaks

32 % phaseDetected : the time o f the detected peaks

33 % timeDetected : the phase o f the detected peaks

34 % f i l t e r e d S i g n a l : the f i l t e r e d s i g n a l used f o r peak de t e c t i on

35 % phaseMeasurements : the phase s i g n a l

36

37

38

39 %Finds peaks and l o c a t i o n s

40 try

41 t imeSect ioned = t imeSe c t i on In t e r e s t ( indexPeakSearchStart : indexPeakSearchEnd ) ;

42 catch

43 di sp ( ’ catch was used ’ )

44 i f i snan ( indexPeakSearchStart )

45 keyboard

46 end

47 t imeSect ioned = t imeSe c t i on In t e r e s t ( indexPeakSearchStart : end ) ;

48 indexPeakSearchEnd = length ( t imeSect ioned )+indexPeakSearchStart −1;

49 end

50

51 sk ipSp ike = 1000 ;

52 complexSigna lSect ion = complexSignal ( indexPeakSearchStart : indexPeakSearchEnd ) ;

53 [ f i l t e r e d S i g n a l S e c t i o n , f r equencyOf f s e t ] = processData ( complexSignalSect ion , t imeSect ioned ,

sampleRate , cutof fFrequency , ex t raCor r ec t i on ) ;

54 f i l t e r e d S i g n a l S e c t i o n = f i l t e r e d S i g n a l S e c t i o n ( sk ipSp ike : end ) ;

55 t imeSect ioned = timeSect ioned ( sk ipSp ike : end ) ;

56

57 minimumPeakDistance = 0.01∗ sampleRate ; %0.01 i s the number o f seconds

58

59

60 [ peakValues , peakIndexSect ion , widths ] = f indpeaks ( abs ( f i l t e r e d S i g n a l S e c t i o n ) , ’MinPeakHeight ’ ,

peakThreshold , ’ MinPeakDistance ’ , minimumPeakDistance , ’MinPeakWidth ’ , 23) ;

61

62

63 [ peakValues , peakIndexSect ion , f i l t e r edS i gna lAd ju s t ed , indexStar tFu l l7Seconds ] =

checkPeakDetect ions ( peakValues , peakIndexSect ion , sampleRate , . . .

64 widths , minimumPeakDistance , complexSignal , f i l t e r e d S i g n a l S e c t i o n , indexPeakSearchStart ,

. . .

65 indexPeakSearchEnd , pulseDuration , peakThreshold , pulseSampleIndex , cutof fFrequency , . . .

66 f r equencyCa l ib ra t ion , t imeSec t i on In t e r e s t , ex t raCor r ec t i on ) ;

67

68 %Fina l check to see i f the code could not grab the peaks due to noise , but

69 %are p i ckab l e by eye .
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70

71 i f isempty ( peakValues )

72 indexStartFu l l7Seconds = indexPeakSearchEnd−pulseSampleIndex ;

73 i f indexStartFul l7Seconds <0

74 indexStar tFu l l7Seconds =1;

75 end

76 complexSignal7Seconds = complexSignal ( indexStar tFu l l7Seconds : indexPeakSearchEnd ) ;

77 time7Seconds = t imeSe c t i on In t e r e s t ( indexStartFu l l7Seconds : indexPeakSearchEnd ) ;

78

79 [ f i l t e r edS i gna lFu l l 7S e c ond s , f r equencyOf f s e t ] = processData ( complexSignal7Seconds ,

time7Seconds , sampleRate , cutof fFrequency , ex t raCor r ec t i on ) ;

80 f i l t e r e dS i gn a lFu l l 7 S e c ond s = f i l t e r e dS i gn a lFu l l 7 S e c ond s ( sk ipSp ike : end−1) ;

81 [ peakValues , peakIndexSect ion , f i l t e r e dS i gna lAd j u s t e d ] = manualPeakPickingCheck (

f i l t e r edS i gna lFu l l 7S e c ond s , sampleRate , peakThreshold , minimumPeakDistance ,

pulseDurat ion ) ;

82 end

83 peakIndexSect ion = round ( peakIndexSect ion ) ;

84

85

86

87

88 i f ˜ isempty ( peakIndexSect ion )

89 peakIndexTrue = peakIndexSect ion+indexPeakSearchStart+sk ipSp ike ;%−1;

90

91

92 %th i s i f loop takes care o f the s i g n a l did not hold the pulses , and needed

93 %the window of search to be opened wide in the checkPeakDetect ions

94 %func t i on .

95 i f ˜ isempty ( f i l t e r e dS i gna lAd j u s t e d )

96 f i l t e r e d S i g n a l S e c t i o n = f i l t e r e dS i gna lAd j u s t e d ;

97 peakIndexTrue = peakIndexSect ion+indexStartFu l l7Seconds ;

98 t imeSect ioned = t imeSe c t i on In t e r e s t ( peakIndexTrue (1)−round ( sampleRate /10) : (

peakIndexTrue (1)−round ( sampleRate /10)+length ( f i l t e r e d S i g n a l S e c t i o n ) )−1) ;

99 peakIndexSect ion = [ round ( sampleRate /10) ; ( peakIndexTrue ( 2 : end )−peakIndexTrue (1) )+round

( sampleRate /10) ] ;

100 %

101 % f i g u r e (28) ; p l o t ( t imeSect ioned , abs ( f i l t e r e d S i g n a l S e c t i o n ) )

102 % hold on ; p l o t ( t imeSe c t i on In t e r e s t ( round ( peakIndexTrue ) ) , peakValues , ’ o ’ )

103 % hold o f f ;

104 end

105 timeDetected = timeSect ioned ( round ( peakIndexSect ion ) ) ;

106

107

108 %

109 phaseMeasurementsSection = angle ( f i l t e r e d S i g n a l S e c t i o n ) ;

110 phaseDetected = phaseMeasurementsSection ( peakIndexSect ion ) ;

111

112

113 e l s e i f isempty ( peakIndexSect ion )

114 peakValues = NaN(4 ,1 ) ;

115 peakIndexSect ion = NaN(4 ,1 ) ;

116 peakIndexTrue = NaN(4 ,1 ) ;

117 phaseDetected = NaN(4 ,1 ) ;

118 timeDetected = NaN(4 ,1 ) ;
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119 phaseMeasurementsSection = [ ] ;

120 e l s e

121 e r r o r ( ’ ge tCorrec tedDetec t i ons e r r o r on i f loop ’ )

122 end

123

124

125 % f i g u r e (9)

126 % plo t ( timeSeconds , abs ( f i l t e r e d S i g n a l S e c t i o n ) )

127 % hold on

128 % plo t ( timeDetected , peakValues , ’ o ’ )

129 % hold o f f

130 %

131 % f i g u r e (10)

132 % plo t ( t imeSec t i on In t e r e s t , phaseMeasurements )

133 % hold on

134 % plo t ( timeDetected , phaseDetected , ’ o ’ )

135 % xlim ( [ timeSeconds (1) timeSeconds ( end ) ] )

136 % hold o f f

137

138 end

Listing 6: Applies the frequency corrections to the data, finds the peaks to grab

the phase values. Also uses checkPeakDetections and manualPeakPickingCheck

1 func t i on [ f i l t e r e d S i g n a l , f r equencyOf f s e t ] = processData ( complexSignal , time , sampleFrequency ,

cutOffFrequency , ex t raCor r ec t i on )

2 %processData Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4 ca l ib ra t ionSourceFrequency = −5000;

5 tagOf f s e t = ca l ibrat ionSourceFrequency−ext raCor r ec t i on ;

6 [ f r equencyOf f s e t , ˜ ] = getCa l ib ra t ionSourceFrequencyOf f s e t ( complexSignal , sampleFrequency ) ;

7 % g loba l approximatedCorrect ion

8 % ca l ib rat ionSourceFrequency = −5000;

9 % [ f r equencyOf f s e t , nanotagFrequency ] = getCa l ib ra t ionSourceFrequencyOf f s e t ( complexSignal ,

sampleFrequency ) ;

10 % tagOf f s e t = −( f r equencyOf f s e t + (44100−nanotagFrequency ) ) ;

11

12 % i f t agOf f s e t < ca l ibrat ionSourceFrequency −400 | | t agOf f s e t > ca l ibrat ionSourceFrequency −280

13 % %No nanotag detected on FFT, use d e f au l t c o r r e c t i o n

14 % tagOf f s e t = ca l ibrat ionSourceFrequency −340;

15 % end

16 % approximatedCorrect ion = tagOf f s e t − ca l ib ra t ionSourceFrequency ;

17

18 %Frequency Corrected

19 demodulatedSignal = demodulateSignal ( complexSignal , time , f r equencyOf f s e t ) ;

20 %Phase Corrected

21 demodulatedSignal = demodulatedSignal∗exp(−1 j ∗median ( angle ( demodulatedSignal ) ) ) ;

22

23 %Sh i f t s tag f requency to zero

24 demodulatedSignal = demodulateSignal ( demodulatedSignal , time , t agOf f s e t ) ;

25 %

26 % signa lLength = length ( demodulatedSignal ) ;

27 % NFFT = 2ˆnextpow2 ( s igna lLength ∗32) ;
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28 % frequencySpectrum = f f t ( demodulatedSignal , NFFT)/ s igna lLength ;

29 % dt = 1/ sampleFrequency ;

30 % T = dt∗NFFT;

31 % df = 1/T;

32 % frequencyVector = 0 : df : (NFFT−1)∗df ;

33 % f i g u r e ; p l o t ( frequencyVector , f f t s h i f t ( abs ( frequencySpectrum ) ) ) ;

34

35

36 %F i l t e r i n g with Cut Off Frequency

37 f i l t e r e d S i g n a l = reduceno i s e ( demodulatedSignal , cutOffFrequency , sampleFrequency ) ;

38

39 end

Listing 7: Applies the frequency correction to the data to demodulate at the

carrier frequency and corrects the phase.

1 func t i on [ f r equencyOf f s e t , nanotagFrequency ] = getCa l ib ra t ionSourceFrequencyOf f s e t ( s i gna l ,

sampleFreq )

2 %UNTITLED10 Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4

5 s igna lLength = length ( s i g n a l ) ;

6 NFFT = 2ˆnextpow2 ( s igna lLength ∗32) ;

7 frequencySpectrum = f f t ( s i gna l , NFFT)/ s igna lLength ;

8 % frequencyVector = l i n spa c e (0 , 1 , NFFT−1)∗ sampleFreq ;

9

10 dt = 1/ sampleFreq ;

11 T = dt∗NFFT;

12 df = 1/T;

13 frequencyVector = 0 : df : (NFFT−1)∗df ;

14 f requencyVectorPlot = −((NFFT−1)∗df ) /2 : df : ( (NFFT−1)∗df ) /2 ;

15

16

17 in t en s i t yVec to r = 1 : l ength ( f requencyVector ) ;

18

19 [ PeakFTs , Idx ] = max( abs ( frequencySpectrum ( in t en s i t yVec to r ) ) ∗2) ;

20 f r equencyOf f s e t = frequencyVector ( Idx ) ;

21

22 % [ envHigh , ˜ ] = envelope ( abs ( frequencySpectrum ) ,1500 , ’ peak ’ ) ;

23 % outsideBand = envHigh ( ( l ength ( envHigh ) /2) : end ) ;

24 % [ val , nanotagFrequencyIndex ] = max( outsideBand ) ;

25 % newFrequency = frequencyVector ( ( l ength ( envHigh ) /2) : end ) ;

26 % nanotagFrequency = newFrequency ( nanotagFrequencyIndex ) ;

27 % %

28 % f i g u r e (66) ; p l o t ( f requencyVector /1000 , abs ( frequencySpectrum ) ) ;

29 % hold on ; p l o t ( f requencyVector /1000 , envHigh ) ; hold o f f

30

31 lowerLimit = 38∗ l ength ( frequencySpectrum ) /44 ;

32 upperLimit = 40.2∗ l ength ( frequencySpectrum ) /44 ;

33 [ envHigh , envLow ] = envelope ( abs ( frequencySpectrum ( lowerLimit : upperLimit ) ) , 1500 , ’ peak ’ ) ;

34 sk ipSp ike = 1000 ;

35 outsideBand = envHigh ( sk ipSp ike : end−sk ipSp ike ) ;

36 [ val , nanotagFrequencyIndex ] = max( outsideBand ) ;
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37 newFrequency = frequencyVector ( lowerLimit : upperLimit ) ;

38 nanotagFrequency = newFrequency ( nanotagFrequencyIndex+skipSpike −1) ;

39 %

40 f i g u r e (66) ; p l o t ( newFrequency /1000 , abs ( frequencySpectrum ( lowerLimit : upperLimit ) ) ) ;

41 hold on ; p l o t ( newFrequency /1000 , envHigh ) ; hold o f f

42

43

44 % f i g u r e

45 % plo t ( f requencyVectorPlot , f f t s h i f t ( abs ( frequencySpectrum ( in t en s i t yVec to r ) ) ∗2) )

46 % gr id ; x l ab e l ( ’ Frequency [Hz ] ’ ) ; y l ab e l ( ’ Magnitude ’ ) ; t i t l e ( ’FFT of Ping Group 1 on Antenna

2 ’ )

47 % text ( f requencyVector ( Idx )+370 , PeakFTs , s p r i n t f ( ’ Ca l i b ra t i on Source Frequency : %.3 f Hz ’ ,

f requencyVector ( Idx ) ) , ’ HorizontalAlignment ’ , ’ l e f t ’ , ’ Vert ica lAl ignment ’ , ’ top ’ , ’ FontSize

’ , 20) ;

48 % text (−22904 , . 005 , s p r i n t f ( ’ Nanotag Frequency : −5140.914 Hz ’ ) , ’ HorizontalAlignment ’ , ’ l e f t ’ ,

’ Vert ica lAl ignment ’ , ’ top ’ , ’ FontSize ’ , 20) ;

49 % se t ( gca , ’ FontSize ’ , 20)

50 end

Listing 8: Uses an FFT to get the frequency offsets of the dongles and corrects it.

1 func t i on f r equencyOf f s e t = getFrequencyOf f set ( complexSignal , sampleRate )

2 %GETFREQUENCYOFFSET: f i nd s the h ighe s t f requency in the spectrum . I t i s

3 %assumed to be the c a l i b r a t i o n s i g n a l .

4 % Inputs :

5 % complexSignal : recorded data broken in to r e a l and imaginary

6 % components

7 % sampleRate : sampling f requency

8 % Outputs :

9 % f r equencyOf f s e t : the f requency h ighe s t in the spectrum

10

11 l eng thS i gna l = length ( complexSignal ) ;

12 i f mod( l engthS igna l , 2 ) ˜=0

13 complexSignal = complexSignal ( 1 : l engthS igna l −1) ;

14 end

15

16 spectrum = f f t s h i f t ( f f t ( complexSignal ) ) ;

17

18 %f = l i n spa c e (−FS/2 , FS/2 , N) ;

19 de l taFreq = sampleRate/ l eng thS i gna l ;

20 f requency = −( l eng thS i gna l /2−1)∗de l taFreq : de l taFreq : l eng thS i gna l /2∗ de l taFreq ;

21

22 %plo t ( f , abs ( Spec ) )

23

24 [ ˜ , indexMax ] = max( abs ( spectrum ) ) ;

25

26 f r equencyOf f s e t = frequency ( indexMax ) ;

27

28 end

Listing 9: Finds the frequency offset only for plotting pruposes.

1 func t i on demodulatedSignal = demodulateSignal ( complexSignal , time , f r equencyOf f s e t )
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2 %DEMODULATEDSIGNAL uses f requency o f f s e t to c a l c u l a t e the o r i g i n a l pu l se

3 %from the nanotags us ing the

4 % Inputs :

5 % complexSignal : recorded data broken in to r e a l and imaginary

6 % components

7 % time : the durat ion o f the s i g n a l

8 % f r equencyOf f s e t : the f requency from getFreqeucnyOf f set based on the

9 % c a l i b r a t i o n frequency and the dongle f requency d r i f t

10 % Outputs :

11 % demodulatedSignal : o r i g i n a l message s i g n a l

12

13 demodulatedSignal = complexSignal .∗ exp(−1 j ∗2∗ pi ∗ f r equencyOf f s e t ∗ time ) ;

14 end

Listing 10: Demodulates the signal.

1 func t i on [ peakValues , peakIndex , f i l t e r e dS i g n a l S e c t i o nBu f f e r , bu f f e r S t a r t ] =

checkPeakDetect ions ( peakValues , peakIndex , sampleRate , widths , minimumPeakDistance ,

complexSignal , f i l t e r e d S i g n a l S e c t i o n , indexPeakSearchStart , indexPeakSearchEnd ,

pulseDuration , peakThreshold , pulseSampleIndex , cutof fFrequency , f r equencyCa l ib rat ion ,

t imeSec t i on In t e r e s t , ex t raCor r ec t i on )

2 %CHECKPEAKDETECTIONS takes in the peak de t e c t i on s found form

3 %getCorrec tedDetec t i ons and checks i f they f i t the c r i t e r i a that

4 %con s t i t u t e s the peaks as the programmed pul se ra the r than a sp ike o f

5 %no i s e . I t ouputs the updated peakValues and peakIndex i f the q u a l i t i e s o f

6 %the peaks did not f i t that o f the nanotags pulses , or i t ouputs the

7 %o r i g i n a l d e t e c t i on s i f they seem to be r i gh t .

8 % Inputs :

9 % peakValues : the magnitude value o f the detected peaks

10 % peakIndex : the index o f the detected peaks

11 % sampleRate : sampling f requency

12 % minimumPeakDistance : minimum di s tance between pings with in the

13 % pul se

14 % f i l t e r e d S i g n a l : the f i l t e r e d s i g n a l used peak de t e c t i on

15 % indexPeakSearchStart : the s t a r t i n g index f o r where the pu l se s t a r t s

16 % indexPeakSearchEnd : the ending index f o r where the pu l se ends

17 % pulseDurat ion : maximum time o f between the i n i t i a l ping and the

18 % l a s t ping o f a pu l se

19 % peakThreshold : the magnitude the peak must be above f o r de t e c t i on

20 % pulseSampleIndex : the index length between two pus l e s

21 %

22 % Outputs :

23 % peakValues : the magnitude value o f the detected peaks

24 % peakIndex : the index o f the detected peaks

25

26

27

28 %Checks to see i f the re are too few peaks detected , i f so i t then lowers

29 %the thre sho ld l e v e l by 0 .003 and sea r che s again .

30

31 % % % %Consider g e t t i ng r i d o f t h i s one .

32 % % % i f l ength ( peakValues )<4 && ˜ isempty ( peakValues )

33 % % % disp ( ’ Threshold adjusted . ’ )

34 % % % peakThreshold = peakThreshold − .003;
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35 % % % [ peakValues , peakIndex , widths ] = f indpeaks ( abs ( f i l t e r e d S i g n a l S e c t i o n ) , ’

MinPeakHeight ’ , peakThreshold , ’MinPeakDistance ’ , minimumPeakDistance , ’MinPeakWidth ’ , 30)

;

36 % % %

37 % % % i f l ength ( peakValues )<4

38 % % % peakValues = [ ] ;

39 % % % peakIndex = [ ] ;

40 % % % end

41 % % % end

42

43 %ADDED FOR DEBUGGING

44 i f l ength ( peakValues )<4

45 % % disp ( ’ Threshold adjusted NEW CODE. ’ )

46 peakThresholdNew = peakThreshold − .0035;

47 [ peakValues , peakIndex , widths ] = f indpeaks ( abs ( f i l t e r e d S i g n a l S e c t i o n ) , ’MinPeakHeight ’ ,

peakThresholdNew , ’MinPeakDistance ’ , minimumPeakDistance , ’MinPeakWidth ’ , 30) ;

48

49 i f ˜ isempty ( peakIndex )

50 i f pulseDuration <(peakIndex ( end )−peakIndex (1) ) / sampleRate

51 peakIndex = [ ] ;

52 peakValues = [ ] ;

53 end

54 end

55

56 end

57

58 %Checks to see i f too many peaks have been detected and attemps to f i l t e r

59 %out the f a l s e d e t e c t i on s .

60

61 f i l t e r e d S i g n a l S e c t i o nBu f f e r = [ ] ;

62 bu f f e r S t a r t = [ ] ;

63 i f l ength ( peakValues )<4 && ˜ isempty ( pulseSampleIndex )

64 %Try s l i d i n g the window , t h i s means that the peak thre sho ld i s too

65 %high , t h i s may not work .

66 bu f f e r S t a r t = indexPeakSearchEnd−pulseSampleIndex ;

67 i f bu f f e r S t a r t < 0

68 bu f f e r S t a r t = 1 ;

69 end

70 % [ f i l t e r e d S i g n a l S e c t i o nBu f f e r ] = g e tF i l t e r e dS i g n a l ( complexSignal , sampleRate ,

f r equencyCa l ib rat ion , t imeSec t i on In t e r e s t , cutof fFrequency , bu f f e rS ta r t ,

indexPeakSearchEnd ) ;

71 [ f i l t e r e d S i g n a l S e c t i o nBu f f e r ] = processData ( complexSignal ( bu f f e r S t a r t : indexPeakSearchEnd ) ,

t imeSe c t i on In t e r e s t ( bu f f e r S t a r t : indexPeakSearchEnd ) , sampleRate , cutof fFrequency ,

ex t raCor r ec t i on ) ;

72 [ peakValuesBuffer , peakIndexBuffer , widths ] = f indpeaks ( abs ( f i l t e r e d S i g n a l S e c t i o nBu f f e r ) , ’

MinPeakHeight ’ , peakThreshold , ’ MinPeakDistance ’ , minimumPeakDistance , ’MinPeakWidth ’ ,

23) ;

73

74 i f isempty ( peakValuesBuf fer )

75 f i l t e r e d S i g n a l S e c t i o nBu f f e r = [ ] ;

76 e l s e

77 peakIndex = peakIndexBuffer ;

78 peakValues = peakValuesBuf fer ;

79 end
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80

81 end

82

83

84 %Finds maximum peak , and uses the index as a r e f e r e n c e index

85 i f l ength ( peakValues )>4

86 %Finds the max peak , and assumes that i t i s t rue .

87 % [˜ , maxPeakIndex ] = max( peakValues ) ;

88 % peakMaxIndexTrue = peakIndex (maxPeakIndex ) ;

89 % peakMatchIndexLower = peakMaxIndexTrue−maximumPeakDistanceIndex ;

90 % peakMatchIndexHigher = peakMaxIndexTrue+maximumPeakDistanceIndex ;

91 % peakMatchIndex = peakIndex>=peakMatchIndexLower & peakIndex<peakMatchIndexHigher ;

92 % % disp ( ’Too many peak va lues . ’ )

93 %I f loop to accomodate the i gno r ing o f the i n i t i a l sp ike in the

94 %get In i t i a l IdxBoundsForFreqDi f f

95 i f isempty ( pulseSampleIndex )

96 peakIndex = peakIndex+f l o o r ( sampleRate /5) ;

97 end

98

99 %Widths

100 [ ˜ , maxWidthIdx ] = maxk( widths , 4) ;

101 sortedWidthIdk = so r t (maxWidthIdx , ’ ascend ’ ) ;

102 peakIndexUsingWidths = peakIndex ( sortedWidthIdk ) ;

103 peakValuesUsingWidths= peakValues ( sortedWidthIdk ) ;

104

105 %D i f f s

106 r e l a t i v eD i f f s = abs ( ( peakIndex − peakIndex ’ ) ) . / peakIndex ;

107 sumDiffRows = sum( r e l a t i v eD i f f s , 2 ) ;

108 [ ˜ , idxsortSumDiffRows ] = so r t ( sumDiffRows ) ;

109 peakIndexUsingDi f f s = peakIndex ( idxsortSumDiffRows ( 1 : 4 ) ) ;

110 peakValuesUs ingDi f f s = peakValues ( idxsortSumDiffRows ( 1 : 4 ) ) ;

111 [ peakIndexUsingDif f s , i nd exSo r tD i f f s ] = so r t ( peakIndexUsingDi f f s ) ;

112 peakValuesUs ingDi f f s = peakValuesUs ingDi f f s ( i nd exSo r tD i f f s ) ;

113

114 %Maxes

115 %Finds h ighe s t peak va lues and then s o r t s them accord ing to index

116 [ peakValuesSorted , indexMaxPeakSort ] = so r t ( peakValues , ’ descend ’ ) ;

117 indexSortedByPeaks = peakIndex ( indexMaxPeakSort ) ;

118

119 peakIndex4Max = indexSortedByPeaks ( 1 : 4 ) ;

120 peakValues4Max = peakValuesSorted ( 1 : 4 ) ;

121 [ peakIndexUsingMax , indexSort ] = so r t ( peakIndex4Max ) ;

122 peakValuesUsingMax = peakValues4Max ( indexSort ) ;

123

124 i f pulseDuration >(peakIndexUsingWidths ( end )−peakIndexUsingWidths (1) ) / sampleRate | |

pulseDuration >(peakIndexUsingDi f f s ( end )−peakIndexUsingDi f f s (1 ) ) / sampleRate

125 i f ˜ isempty ( f i l t e r e d S i g n a l S e c t i o nBu f f e r )

126 f i g u r e (100) ; p l o t ( abs ( f i l t e r e d S i g n a l S e c t i o nBu f f e r ) ) ; xlim ( [ 0 l ength (

f i l t e r e d S i g n a l S e c t i o nBu f f e r ) ] )

127 e l s e

128 f i g u r e (100) ; p l o t ( abs ( f i l t e r e d S i g n a l S e c t i o n ) ) ; xlim ( [ 0 l ength ( f i l t e r e d S i g n a l S e c t i o n

) ] )

129 end

130 hold on ; p l o t ( peakIndexUsingWidths , peakValuesUsingWidths , ’ r∗ ’ )
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131 p lo t ( peakIndexUsingDif f s , peakValuesUsingDif f s , ’ ko ’ ) ;

132 p lo t ( peakIndexUsingMax , peakValuesUsingMax , ’ gs ’ , ’ MarkerSize ’ , 9) ; hold o f f

133 x l ab e l ( ’ Index ’ ) ; y l ab e l ( ’Power ’ ) ; t i t l e ( ’Check i f the peaks found are r i gh t . ’ )

134 xlim ( [ min ( [ peakIndexUsingWidths ; peakIndexUsingDi f f s ] )−5000 max ( [ peakIndexUsingWidths ;

peakIndexUsingDi f f s ]+5000) ] )

135 legend ( ’ S i gna l ’ , ’Widths ’ , ’ D i f f e r e n c e s ’ , ’Max ’ )

136 di sp ( ’ Set the peakIndex and peakValues by hand , check the p lo t . ’ )

137 keepIndex = input ( ’ 1 f o r Widths , 2 f o r D i f f e r ence , 3 f o r Max, or 4 f o r ne i th e r : ’ ) ;

138 i f keepIndex == 1

139 peakIndex = peakIndexUsingWidths ;

140 peakValues = peakValuesUsingWidths ;

141 e l s e i f keepIndex == 2

142 peakIndex = peakIndexUsingDi f f s ;

143 peakValues = peakValuesUs ingDi f f s ;

144 e l s e i f keepIndex == 3

145 peakIndex = peakIndexUsingMax ;

146 peakValues = peakValuesUsingMax ;

147 e l s e

148 peakIndex = [ ] ;

149 peakValues = [ ] ;

150 end

151

152 end

153

154

155 %Just in case :

156 i f ˜ isempty ( peakIndex )

157 i f pulseDuration <(peakIndex ( end )−peakIndex (1) ) / sampleRate

158 peakIndex = [ ] ;

159 peakValues = [ ] ;

160 end

161 end

162

163

164

165 % i f pulseDuration <(peakIndex4Max (1)−peakIndex4Max ( end ) ) / sampleRate

166 % f i g u r e (21) ; p l o t ( abs ( f i l t e r e d S i g n a l S e c t i o n ) ) ; hold on ; p l o t ( peakIndex4Max−

indexPeakSearchStart , peakValues4Max , ’ o ’ )

167 % disp ( ’Wrong peak detected , e i t h e r f i r s t or l a s t peak , r ep laced l a s t peak index

with next h ighe s t peak value index ’ )

168 % peakIndex4Max (4) = indexSortedByPeaks (5) ;

169 % peakValues4Max (4) = peakValuesSorted (5) ;

170 % f i g u r e (22) ; p l o t ( abs ( f i l t e r e d S i g n a l S e c t i o n ) ) ; hold on ; p l o t ( peakIndex4Max−

indexPeakSearchStart , peakValues4Max , ’ o ’ )

171 % end

172

173 % [ peakIndex , indexSort ] = so r t ( peakIndex4Max ) ;

174 % peakValues = peakValues4Max ( indexSort ) ;

175 % %

176 % % i f l ength ( peakValues )<4

177 % % disp ( [ ’ S k e tp t i c a l . ’ ] ) ;

178 % % peakValues = [ ] ;

179 % % keyboard

180 % % e l s e
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181 % % % disp ( ’ Fa l se d e t e c t i on s were found and removed ’ )

182 % % end

183 end

184

185 %LAST CHECK!

186 %Sometimes be f o r e i t ge t s in to t h i s i t only has one value found , and i f so ,

187 %i t keeps i t throughout the process , we want to d i s ca rd i t . Example : F i l e

188 %1 , time 198

189 i f l ength ( peakIndex )<4

190 peakIndex = [ ] ;

191 peakValues = [ ] ;

192 e l s e i f l ength ( peakIndex ) == 4 && ˜ isempty ( f i l t e r e d S i g n a l S e c t i o nBu f f e r )

193 %Redines the f i l t e r e d S i g n a l B u f f e r to the same s t a r t i n g point as i f i t were

194 %not changed so that unwrapping the phase has the same amount o f samples

195 %be fo r e the ping every time

196 try

197 f i l t e r e d S i g n a l S e c t i o nBu f f e r = f i l t e r e d S i g n a l S e c t i o nBu f f e r ( peakIndex (1)−round ( sampleRate

/10) : peakIndex ( end )+round ( sampleRate /10) ) ;

198

199 catch

200 f i l t e r e d S i g n a l S e c t i o nBu f f e r = f i l t e r e d S i g n a l S e c t i o nBu f f e r ( peakIndex (1)−round ( sampleRate

/10) : end ) ;

201 end

202 % peakIndex = [ round ( sampleRate /10) ; ( peakIndex ( 2 : end )−peakIndex (1) )+round ( sampleRate /10) ] ;

203

204 end

205

206

207 end

Listing 11: Uses a series of checks to ensure that the peaks are the NanoTag

transmissions and not noise spikes.

1 func t i on [ peakValues , peakIndex , f i l t e r e dS i gn a lFu l l 7 S e c ond s ] = manualPeakPickingCheck (

f i l t e r edS i gna lFu l l 7S e c ond s , sampleRate , peakThreshold , minimumPeakDistance , pulseDurat ion )

2 %UNTITLED Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4

5 [ peakValues , peakIndex ] = f indpeaks ( abs ( f i l t e r e dS i gn a lFu l l 7 S e c ond s ) , ’MinPeakHeight ’ , . . .

6 peakThreshold , ’ MinPeakDistance ’ , minimumPeakDistance , ’MinPeakWidth ’ , 23) ;

7

8

9 f i g 100 = f i g u r e (100) ;

10 p lo t ( abs ( f i l t e r e dS i gn a lFu l l 7 S e c ond s ) ) ;

11 hold on ; p l o t ( peakIndex , peakValues , ’ o ’ ) ; hold o f f

12 x l ab e l ( ’ Index ’ ) ; y l ab e l ( ’Power ’ ) ; t i t l e ( ’Use datat ip the peaks from the tag ’ )

13 legend ( ’ S igna l ’ , ’ Peak Options ’ ) ; ax i s auto

14

15 pickIndex = input ( [ ’ 1 f o r s e t the peakIndex and peakValues by hand as column vector , 2 f o r not

ex i s t an t ’ , . . .

16 ’\ n I f you choose 1 , hold a l t whi le us ing the datat ip s e l e c t o r on Fig 100 . ’ ] ) ;

17 i f p ickIndex == 1

18 [ peakIndex , peakValues ] = pickPeaks ( f i g 100 ) ;
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19 whi le l ength ( peakIndex )˜=4

20 di sp ( ’ Chose too many or few peaks , t ry again ’ )

21 c l e a r peakIndex peakValues

22 pickIndex = input ( [ ’ 1 f o r s e t the peakIndex and peakValues by hand as column vector , 2

f o r not ex i s t an t ’ , . . .

23 ’\ n I f you choose 1 , hold a l t whi le us ing the datat ip s e l e c t o r on Fig 100 . ’ ] ) ;

24 [ peakIndex , peakValues ] = pickPeaks ( f i g 100 ) ;

25 end

26

27 try

28 f i l t e r e dS i gn a lFu l l 7 S e c ond s = f i l t e r e dS i gn a lFu l l 7 S e c ond s ( peakIndex (1)−round ( sampleRate

/10) : l ength ( f i l t e r e dS i gn a lFu l l 7 S e c ond s )+round ( sampleRate /10) ) ;

29 catch

30 %The pu l s e s might be too c l o s e to the end o f the data sec t i on ,

31 %th e r e f o r e the s i z e needed to be ( index : end )

32 f i l t e r e dS i gn a lFu l l 7 S e c ond s = f i l t e r e dS i gn a lFu l l 7 S e c ond s ( peakIndex (1)−round ( sampleRate

/10) : end ) ;

33 end

34

35 %Rede f ines the f i l t e r e d S i g n a l B u f f e r to the same s t a r t i n g point as i f i t were

36 %not changed so that unwrapping the phase has the same amount o f samples

37 %be fo r e the ping every time

38 % peakIndex = [ round ( sampleRate /10) ; ( peakIndex ( 2 : end )−peakIndex (1) )+round ( sampleRate /10) ] ;

39

40 i f pulseDuration <(peakIndex ( end )−peakIndex (1) ) / sampleRate

41 di sp ( ’ Probably chose the wrong peaks , the sample index between the f i r s t and l a s t ping

are wrong ’ )

42 peakIndex = [ ] ;

43 peakValues = [ ] ;

44 f i l t e r e dS i gn a lFu l l 7 S e c ond s = [ ] ;

45 end

46 e l s e

47 peakIndex = [ ] ;

48 peakIndex = [ ] ;

49 peakValues = [ ] ;

50 f i l t e r e dS i gn a lFu l l 7 S e c ond s = [ ] ;

51 end

52

53

54 end

Listing 12: A way to check for peaks one last time if the algorithm could not find

them.

1 func t i on [ ] = makePlots ( time , f i l t e r e d S i g n a l , phaseMeasurements , timeDetected , peakValues ,

phaseDetected , pulseNumber , f i leNumber , numberOfDetections )

2 %UNTITLED3 Summary o f t h i s func t i on goes here

3

4 i f ˜ isempty ( peakValues{pulseNumber , f i leNumber }) & ˜ isnan ( peakValues{pulseNumber , f i leNumber })

5 xLimitStart = timeDetected{pulseNumber , f i leNumber }(1) −0.01;

6 xLimitEnd = timeDetected{pulseNumber , f i leNumber }( end ) +0.01;

7

8 f i g u r e ( f i leNumber+1)
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9 subplot (4 , round ( numberOfDetections /4) , pulseNumber )

10 p lo t ( time{pulseNumber , f i leNumber } , abs ( f i l t e r e d S i g n a l {pulseNumber , f i leNumber }) )

11 hold on

12 p lo t ( t imeDetected{pulseNumber , f i leNumber } , peakValues{pulseNumber , f i leNumber } , ’ ko ’ )

13 hold o f f

14 xlim ( [ xLimitStart xLimitEnd ] )

15 x l ab e l ( ’Time ( s ) ’ )

16 y l ab e l ( ’Magnitude ’ )

17 t i t l e ( [ ’#’ , num2str ( pulseNumber ) ] )

18 %t i t l e ( [ ’ Energy over time , Detect ion #’ , num2str ( pulseNumber ) ] , ’ FontSize ’ , 1 4 )

19

20

21 f i g u r e ( f i leNumber+4)

22 subplot (4 , round ( numberOfDetections /4) , pulseNumber )

23 p lo t ( time{pulseNumber , f i leNumber } , phaseMeasurements{pulseNumber , f i leNumber })

24 hold on

25 p lo t ( t imeDetected{pulseNumber , f i leNumber } , phaseDetected{pulseNumber , f i leNumber } , ’ ko ’ )

26 hold o f f

27 xlim ( [ xLimitStart xLimitEnd ] )

28 x l ab e l ( ’Time ( s ) ’ )

29 y l ab e l ( ’ Phase ( rad ) ’ )

30 t i t l e ( [ ’#’ , num2str ( pulseNumber ) ] )

31 %t i t l e ( [ ’ Phase angle over time , Detect ion #’ , num2str ( pulseNumber ) ] , ’ FontSize ’ , 1 4 )

32

33

34

35 e l s e

36 d i sp ( ’No peaks found , p lo t empty . ’ )

37

38 f i g u r e ( f i leNumber+1)

39 subplot (4 , round ( numberOfDetections /4) , pulseNumber )

40 t i t l e ( [ ’#’ , num2str ( pulseNumber ) ] )

41

42 f i g u r e ( f i leNumber+4)

43 subplot (4 , round ( numberOfDetections /4) , pulseNumber )

44 t i t l e ( [ ’#’ , num2str ( pulseNumber ) ] )

45

46 end

47

48 end

Listing 13: Makes plots of the magnitudes and phases to check results.

1 func t i on [ indexPeakSearchStart , indexPeakSearchEnd , indexFreqDi f fStar t , indexFreqDiffEnd ] =

getPeakIndexSearchLimits ( peakIndex , pulseNumber , pulseSampleIndex , indexPeakSearchStart ,

indexPeakSearchEnd , indexFreqDi f fStar t , indexFreqDiffEnd , sampleRate )

2 %GETPEAKINDEXSEARCHLIMITS Summary o f t h i s func t i on goes here

3 % Inputs :

4 %

5 % Ouputs :

6 % indexPeakSearchStart : the s t a r t i n g index f o r where the pu l se s t a r t s

7 % indexPeakSearchEnd : the ending index f o r where the pu l se ends

8 % indexFreqDi f fS ta r t : the s t a r t i n g index f o r c a l c u l a t i n g the

9 % frequency o f f s e t
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10 % indexFreqDiffEnd : the ending index f o r c a l c u l a t i n g the

11 % frequency o f f s e t

12

13

14

15 i f ˜ i snan ( peakIndex{pulseNumber })

16 peakIndex = peakIndex{pulseNumber } ;

17 f a c t o r = 1 ;

18 e l s e

19 peakIndex = peakIndex (˜ c e l l f u n ( ’ isempty ’ , peakIndex ) ) ;

20 matPeakIndex = ce l l2mat ( peakIndex ) ;

21 f i r s tDe t e c t i o n I nd ex = matPeakIndex ( 1 : 4 : l ength (matPeakIndex ) ) ;

22 pulseNumberLastDetectedLogic ia l = ˜ isnan ( f i r s tDe t e c t i o n I nd ex ) ;

23 pulseNumberLastDetected = f ind ( pulseNumberLastDetectedLogic ia l ==1,1, ’ l a s t ’ ) ;

24 f a c t o r = length ( f i r s tDe t e c t i o n I nd ex )−pulseNumberLastDetected+1;

25 peakIndex = peakIndex{pulseNumberLastDetected } ;

26 end

27

28 pulseSampleIndex = pulseSampleIndex∗ f a c t o r ;

29 indexFi r s tP ing = peakIndex (1)+pulseSampleIndex ;

30 indexLastPing = peakIndex ( end )+pulseSampleIndex ;

31

32 indexSearchBuf fe r = round ( sampleRate /10) ;

33 indexPeakSearchStart = indexFirstPing−indexSearchBuf fe r ;

34 indexPeakSearchEnd = indexLastPing+indexSearchBuf fe r ;

35

36 %Finds one second be fo r e and one second a f t e r

37 indexFreqDi f fS ta r t = indexFi r s tP ing+pulseSampleIndex−sampleRate ;

38 indexFreqDiffEnd = indexFi r s tP ing+pulseSampleIndex+sampleRate−1;

39

40

41 % % indexPeakSearchStart = indexPeakSearchStart+pulseSampleIndex ;

42 % % indexPeakSearchEnd = indexPeakSearchEnd+pulseSampleIndex ;

43 % % indexFreqDi f fS ta r t = indexFreqDi f fS ta r t+pulseSampleIndex ;

44 % % indexFreqDiffEnd = indexFreqDiffEnd+pulseSampleIndex ;

45

46 % i f i snan ( peakValues )

47 % %Update the search index bounds

48 % indexPeakSearchStart = indexPeakSearchStart+pulseSampleIndex ;

49 % indexPeakSearchEnd= indexPeakSearchEnd+pulseSampleIndex ;

50 % indexFreqDi f fS ta r t= indexFreqDi f fS ta r t+pulseSampleIndex ;

51 % indexFreqDiffEnd= indexFreqDiffEnd+pulseSampleIndex ;

52 % e l s e

53 % indexPeakSearchStart = peakIndex ( end )+pulseSampleIndex ;

54 % indexPeakSearchEnd= peakIndex ( end )+pulseSampleIndex ;

55 % indexFreqDi f fS ta r t= indexFreqDi f fS ta r t+pulseSampleIndex ;

56 % indexFreqDiffEnd= indexFreqDiffEnd+pulseSampleIndex ;

57 % end

58

59 end

Listing 14: Finds the indices to limits for windowing to find the NanoTag

transmission.
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1 func t i on [ peakValues , peakIndex , phaseDetected , t imeDetected ] = addMissedDectectionsAsNaNs (

pulseDetectedNumber , peakValues , peakIndex , phaseDetected , t imeDetected )

2 %UNTITLED4 Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4

5 peakValues = ce l l2mat ( [ num2cell ( nan (4 , pulseDetectedNumber ) , 1) ’ ; peakValues ] ) ;

6 peakIndex = ce l l2mat ( [ num2cell ( nan (4 , pulseDetectedNumber ) , 1) ’ ; peakIndex ] ) ;

7

8 phaseDetected = ce l l2mat ( [ num2cell ( nan (4 , pulseDetectedNumber ) , 1) ’ ; phaseDetected ] ) ;

9 t imeDetected = ce l l2mat ( [ num2cell ( nan (4 , pulseDetectedNumber ) , 1) ’ ; t imeDetected ] ) ;

10

11 end

Listing 15: Adds missed detections as nans so the phase values don’t alter the

differences.

1 func t i on [ bear ing ] = getDOAFrom2Antennas ( phase2 , phase3 )

2 %UNTITLED Summary o f t h i s func t i on goes here

3 % Deta i l ed exp lanat ion goes here

4 wavelength = 1.803101334294987;

5 d i s t ance = wavelength /2 ;

6

7

8 phaseD i f f e r ence = phase2−phase3 ;

9 f o r i = 1 : l ength ( phaseD i f f e r ence )

10 i f phaseD i f f e r ence ( i )>pi

11 phaseD i f f e r ence ( i ) = phaseD i f f e r ence ( i )−(2∗pi ) ;

12 e l s e i f phaseD i f f e r ence ( i )<−pi

13 phaseD i f f e r ence ( i ) = phaseD i f f e r ence ( i )+(2∗pi ) ;

14 end

15 end

16 pathDi f f e r ence = phaseD i f f e r ence /(2∗ pi )∗wavelength ;

17

18 bear ing = 90 − as ind ( pathDi f f e r ence / d i s t ance ) ; %i f p o s i t i v e 1 s t quadrant , negat ive 2nd quadrant

19

20

21 end

Listing 16: Find DOA with two antennas.

1 func t i on [ d i r e c t i onO fAr r i v a l ] = ge tD i r e c t i onOfAr r i va l ( wavelength , antennaDistanceMatrix ,

pha s eD i f f e r enc e s )

2 %GETDIRECTIONOFARRIVAL Summary o f t h i s func t i on goes here

3 % Inputs :

4 % wavelength : speed o f l i g h t / f requency [m]

5 % pos i t i onMatr ix : matrix o f the d i s t an c e s from l o c a l xyz o r i g i n fo

6 % antennas

7 % phas eD i f f e r enc e s : matrix o f 4x3 o f phase d i f f e r e n c e s between antennas

8 % 2−1, 3−1, and 3−2.

9 %

10 % Outputs :

11 % d i r e c t i onO fAr r i v a l : Angle from North (Antenna 1) towards t a rg e t
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12 % (Nanotag )

13

14

15

16 % [˜ , c o l ] = f i nd ( i snan ( pha s eD i f f e r enc e s ) )

17 % replaceColumnNumbers = unique ( c o l )

18 % phas eD i f f e r enc e s ( : , replaceColumnNumbers )= [ ]

19

20

21 %%%%%%%%%

22 d i r e c t i onCo s i n e s = pinv ( antennaDistanceMatrix )∗ phas eD i f f e r enc e s ∗wavelength /(2∗ pi ) ; %pinv i s

pseudo inverse ( c r e a t e s i nv e r s e o f G) %Y THEN X

23 f o r idx = 1 : l ength ( d i r e c t i onCo s i n e s )

24 normal izedCos ines ( : , idx ) = norm( d i r e c t i onCo s i n e s ( : , idx ) ) ;

25 end

26

27 di rect ionCos inesMagni tude = d i r e c t i onCo s i n e s . / normal izedCos ines ;

28

29

30 d i r e c t i onOfArr iva lRad ians = atan ( d i rect ionCos inesMagnitude ( 2 , : ) . / d i rect ionCos inesMagnitude ( 1 , : )

) ;%uses l o c a t i o n o f c a l cu l a t ed u and v the new point r e l a t i v e to the o r i g i n and c a l c u l a t e s

the angle from North tan ( theta )=Opposite /Adjacent

31

32 % di r ec t i onOfArr iva lRad ians = pi + atan ( d i rect ionCos inesMagni tude ( 2 , : ) . /

d i rect ionCos inesMagnitude ( 1 , : ) ) ;%uses l o c a t i on o f c a l cu l a t ed u and v the new point

r e l a t i v e to the o r i g i n and c a l c u l a t e s the angle from North tan ( theta )=Opposite /Adjacent

33

34 % greaterThanPi = di rec t ionOfArr iva lRad ians>pi ;

35 % lessThanPi = di rec t ionOfArr iva lRad ians<−pi ;

36 % di r ec t i onOfArr iva lRad ians ( greaterThanPi ) = d i r e c t i onOfArr iva lRad ians ( greaterThanPi )−(2∗pi ) ;

37 % di r ec t i onOfArr iva lRad ians ( lessThanPi ) = d i r e c t i onOfArr iva lRad ians ( lessThanPi )+(2∗pi ) ;

38

39 d i r e c t i onO fAr r i v a l = rad2deg ( d i r e c t i onOfArr iva lRad ians ) ;

40

41

42

43 %%%%%%%%%

44 % d i r e c t i onO fAr r i v a l = [ d i r e c t i onO fAr r i v a l ( 1 : replaceColumnNumbers (1 )−1) , NaN, NaN, NaN, NaN,

d i r e c t i onO fAr r i v a l ( replaceColumnNumbers (4 ) +1: replaceColumnNumbers (5 ) ) , NaN, NaN, NaN, NaN,

d i r e c t i onO fAr r i v a l ( replaceColumnNumbers ( end )+1:end ) ] ;

45 end

Listing 17: Find DOA with three antennas.
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Appendix E: New Design Materials

Number Items Unit Price Quantity Cost

1 RSPduo Dual Tuner 14-bit SDR $279.95 3 $839.85

2 Low Jitter Precision GPSDO Reference Oscillator $185.44 1 $185.44

3 Raspberry Pi 4 4GB $35.00 3 $105.00

4 Argon ONE Pi 4 Raspberry Pi Case $25.00 3 $75.00

Total: $1,205.29

Number Site

1 https://www.sdrplay.com/rspduo/

2 http://www.leobodnar.com/shop/index.php?main_page=product_info&products_id=234

3 https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

4 https://www.argon40.com/catalog/product/view/id/52/s/argon-one-raspberry-pi-4-case/
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