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Review

Better together? Lessons on sociality from
Trichodesmium

Meri Eichner,1,∗ Keisuke Inomura ,2 Juan José Pierella Karlusich,3 and Yeala Shaked4,5

TheN2-fixing cyanobacterium Trichodesmium is an important player in theoceanic
nitrogen and carbon cycles. Trichodesmium occurs both as single trichomes and
as colonies containing hundreds of trichomes. In this review, we explore the bene-
fits and disadvantages of colony formation, considering physical, chemical, and
biological effects from nanometer to kilometer scale. Showing that all major life
challenges are affected by colony formation, we claim that Trichodesmium’s eco-
logical success is tightly linked to its colonial lifestyle. Microbial interactions in the
microbiome, chemical gradients within the colony, interactions with particles, and
elevated mobility in the water column shape a highly dynamic microenvironment.
We postulate that these dynamics are key to the resilience of Trichodesmium
and other colony formers in our changing environment.

From single trichomes to colonies: teamwork is a crucial element of
Trichodesmium’s ecological success
Trichodesmium is a globally abundant, marine N2-fixing cyanobacterium (see Glossary).
Recordings of the vast surface blooms formed by this organism date back to the late 1700s,
including the famous expeditions led by James Cook [1] and Charles Darwin [2]. In the last
decade, high-throughput genetic surveys targeting the abundance and/or transcription of nifH
genes (encoding a subunit of the N2-fixing protein nitrogenase) and data-driven modeling
confirmed the wide spatiotemporal distribution of Trichodesmium [3–7], (Figure 1A). Notably,
Trichodesmium occurs in trichomes of tens to hundreds of cells that can aggregate to form
millimeter-sized colonies, both forms being widely distributed across the tropical and subtropical
oceans (Figure 1B). As it contributes up to one-half of the total N2 fixation in these areas, it is a
significant source of new nitrogen in marine ecosystems and fuels productivity in eutrophic ocean
regions. Several climate-change studies have predicted that its global distribution and N2 fixation
rates will increase as temperatures and atmospheric CO2 levels rise [8–11].

Although its ecology and physiology have been studied intensely in the past decades,
Trichodesmium continues to surprise us with its special adaptations to life in the oligotrophic en-
vironment – be it the vast array of nutrient sources it can access, ranging from multiple organic
and inorganic P sources to mineral iron (Fe) [12–16], the coordinated movement of dust particles
along its filaments [17–19], the concerted coordination of N2 fixation and photosynthetic activity
within filaments [20–22], the multitude of interactions with itsmicrobiome [23–25], or the recent
finding of active N2 fixation by Trichodesmium down to 1000 m depth [26].

Interestingly, all of these features have something in common: they are facilitated by interactions –
either between individual cells within a Trichodesmium filament (trichome), or between trichomes
within a colony or even with the diverse microorganisms that coinhabit Trichodesmium colonies.
Speculating that Trichodesmium’s ecological success is linked to the ability of trichomes to come
together and form colonies, here we systematically analyze the positive and negative implications
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of the colonial lifestyle. Doing so, we consider chemical, physical, and biological mechanisms
(Box 1). We structure the discussion according to five universal ‘life challenges’ that have to be
met for an organism to be successful. In our analysis, we explore the implications of colony for-
mation across a wide range of spatial scales, from nanometer scale all the way to the global dis-
tribution at kilometer scale.

Life as a colony: colony formation affects all major life challenges
Acquisition of nutrients
Induction of colony formation from single filaments due to P and Fe limitation in laboratory cultures
points to a link between colony morphology and nutrient acquisition [27]. In fact, colony formation
has various contrasting effects on nutrient availability (Figure 2). On the one hand, nutrient uptake
by many cells concentrated in the small volume of the colony can induce limitation in dissolved
inorganic nutrients [28]. On the other hand, high cell densities may facilitate the transfer of signal-
ing molecules as well as the efficiency of release-based uptake via siderophores or excreted en-
zymes such as alkaline phosphatase [29]. Crucially, colony morphology allows for interactions
with particles as a source of mineral nutrients [12,17–19,30]. Also, microbes associated with col-
onies can release additional organic and inorganic nutrients. Indeed, metagenomes of
Trichodesmium colonies revealed nearly ten times more unique functions in the epibiont com-
munity than in Trichodesmium alone [31], including unique transporters for P and Fe that
Trichodesmium does not encode [32] and various hydrolytic enzymes [33].

TrendsTrends inin Microbiology Microbiology 

Figure 1. Global distribution of Trichodesmium in different morphologies. (A) Predicted global distribution of
Trichodesmium (plot from [6], with permission). (B) Relative occurrence of Trichodesmium as colonies versus single
trichomes (based on data in [5]). (C) Vast size difference between single cells, trichomes, and colonies (size scale and
comparative images from [87], with permission). Position on the x-axis indicates equivalent size differences: if a single cell
were equal to an orca, a colony would be about the size of Manhattan.
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Glossary
Colony: an aggregate of filaments.
Cyanobacterium: an oxygenic
photosynthetic bacterium.
Denitrification: the process of
reducing nitrate and nitrite to dinitrogen
and nitrous oxide.
Diazocyte: a group of cells that is
specialized for fixing nitrogen.
Epibiont: an organism living on the
surface of another organism.
Holobiont: an entity of a host organism
and its symbionts.
Horizontal gene transfer: the transfer
of genetic material between organisms,
excluding that from parent to offspring.
Hydrolytic enzyme: an enzyme that
facilitates the reaction of splitting one
molecule into two involving water (H2O).
Metagenome: the entire genome
sequences in a bulk sample with mixed
organisms.
(Meta)Proteome: an entire set of
proteins of an organism (or mixed
community).
Metatranscriptomics: a study based
on the analysis of gene expression in a
bulk sample with mixed organisms.
Microbiome: a community of
microorganisms in a certain
microenvironment.
N2 fixation: the process of converting
dinitrogen to ammonia.
NanoSIMS: an experimental technique
that measures elemental and isotopic
compositions of samples at nanometer
resolution.
Nitrogenase: a nitrogen-fixing enzyme
complex.
Phosphonate: an organophosphorus
compound containing a C−PO(OR)2
group.
Phytoplankton: plankton that
conducts photosynthesis.
Quorum sensing: the ability to
respond to changes in population
density by excretion and sensing of
specific molecules.
Siderophore: a molecule with high
binding affinity for iron.
Stable isotope incubation: an
experiment for quantification of
elemental fluxes by labeling of elemental
pools with rare isotopes.
Superoxide dismutase: an enzyme
that converts the superoxide radical into
oxygen and hydrogen peroxide.
Transcriptome: the sum of all initial
products of genome expression.
Trichome: a filament of Trichodesmium
cells.
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These complex interactions of Trichodesmiumwith its microbiome in the acquisition and transfer
of nutrients require a concerted coordination of the metabolic activities of the individual players.
Metatranscriptomics revealed a close synchronization of bacterial and Trichodesmium
transcriptomes over day–night-cycles [23], potentially facilitated by signaling molecules such
as nitric oxide synthase as well as auxin efflux and sensing genes [31]. Moreover, several studies
indicated that quorum sensing is an important mechanism for cell-to-cell signaling in the
Trichodesmiummicrobiome, yet as Trichodesmium itself does not produce quorum sensing mol-
ecules, the exact mechanisms of communication between Trichodesmium and its microbiome
remain to be resolved [14,31,33,34].

Given the O2-sensitivity of the N2-fixing enzyme complex nitrogenase [35], early studies sug-
gested that anoxic microzones forming within colonies act to protect nitrogenase from O2 [36].
However, elevated O2 concentration measured within colonies in the light [37,38] – as well as
higher N2 fixation rates in colonies than in free trichomes [22] – question that hypothesis. While
the accumulated experimental evidence regarding single-cell specialization (diazocytes) is con-
flictive (reviewed in [39]) and one recent model study questioned its benefit [40], other modeling
approaches suggest that cell specialization combined with low membrane permeability provides

Box 1. Universal effects of colony formation – physical, chemical, and biological mechanisms

When single phytoplankton cells aggregate to form a colony, the immediate changes in physical properties propagate to
changes in chemical conditions and further affect biological processes ([88,89]; Figure I). These interconnected physical,
chemical, and biological effects are related to one of the following processes: (i) In a first instance, the change in shape af-
fects hydrodynamics. Specifically, due to the change in drag force, colonies move more rapidly than single cells up or
down in the water column. (ii) As distances between cells are smaller, diffusive losses are reduced and the transfer of sub-
stances between cells is more efficient. For example, acquisition of dissolved nutrients fromminerals, or transfer of DNA or
signaling molecules (quorum sensing) is more efficient in a colony. Also, the close physical interaction among genetically
identical cells allows for work division, or cell specialization. For example, specialization of cells for N2 fixation or photosyn-
thesis with direct cell-to-cell transfer of carbon and nitrogen, becomes possible. (iii) When many cells of the same species
(same metabolic functions) are concentrated in a small space, effects of their own metabolic activity on the microenviron-
ment are more pronounced. For example, chemical gradients in the diffusive boundary layer, caused by nutrient depletion,
are larger in a colony than around a free-floating cell. (iv) When many different taxa (different metabolic functions) are con-
centrated in a small space, the holobiont has a greater number of ecological functions, and work division among different
taxa opens possibilities for new pathways. For example, interactions with siderophore-producing bacteria allow for
exploiting mineral Fe sources.

TrendsTrends inin Microbiology Microbiology 

Figure I. Overview of the universal physical, chemical, and biological implications when single phytoplankton
cells aggregate to form a colony.
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a more feasible mechanism for nitrogenase protection, even in a high-O2 microenvironment
[22,41]. Apart from O2, nitrogen cycling mediated by the multitude of associated bacteria pro-
vides a potential control on N2 fixation rates in the colony. Interestingly, N2 fixation could be mod-
ulated by experimental addition of quorum sensing molecules to natural colonies, suggesting that
the microbiome controls Trichodesmium N2 fixation by quorum sensing [34]. Several
metagenome and transcriptome studies have implied denitrification in Trichodesmium colonies
[33,42,43]. By contrast, stable isotope incubations indicated that nitrogen gain (N2 fixation)
and recycling processes dominate in the colony, whereas nitrogen loss via denitrification was
negligible, preserving new nitrogen in the system [28]. Model calculations of nitrogen gradients
based on these incubations suggest complete nitrate depletion in the center of colonies but up
to sixfold higher ammonium concentrations in colonies as compared to the boundary layer
around single trichomes [28]. The ‘trichosphere’ (defined as the region enriched or depleted
with nutrients or gases by more than 2% of ambient concentrations) was predicted to be 4- to
13-fold larger than the colony itself, which likely attracts associated bacteria [28]. Notably, this
study predicted steep nutrient gradients in the colony even though assuming diffusivity close to
seawater conditions (measured O2 gradients were reproduced well by assuming a porosity of
>0.996, i.e., the volume in the colony occupied by Trichodesmium cells was negligible [28]).
Other studies have suggested that nutrient uptake can be limited by cell surface area available
for transporters (‘membrane crowding’ [44]), which would be reduced when filaments are in di-
rect contact in a colony, and that diffusion of inorganic nutrients in Trichodesmium colonies
might be further reduced by the presence of viscous polymers or mucus [44], yet this has not
been experimentally proven.

The acquisition of Fe, a major limiting nutrient for Trichodesmium [45], is critically linked to colony
formation. Natural Trichodesmium colonies can actively collect and aggregate dust particles
within their colony cores through coordinatedmovement of/along filaments [17–19]. While this fa-
cilitates Fe mining from particles in colonies, Trichodesmium cultures grown as single trichomes
were not able to accessmineral Fe from dust [19]. Variousmechanisms by which Trichodesmium
can access mineral Fe are under investigation, including reductive and ligand-promoted dissolu-
tion pathways [46]. Marker genes for siderophore utilization were enriched in Trichodesmium

TrendsTrends inin Microbiology Microbiology 

Figure 2. Overview of pros and cons of single trichome versus colony morphology sorted according to
different life challenges, as detailed in the text. The plus sign indicates an advantage for the respective morphology,
the minus sign a disadvantage. Question marks indicate that a lack of studies prevents conclusions on the benefits for
either morphology. Abbreviations: DOM, dissolved organic matter; Fe, iron; P, phosphorus; ROS, reactive oxygen species.
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colonies compared with free-living microbial communities in the same ocean regions [31] and
siderophore production by bacteria associated with natural Trichodesmium colonies from the
Gulf of Eilat was confirmed bioinformatically [47] as well as experimentally [48,49]. Interestingly,
the addition of siderophores was found to increase Fe uptake from minerals by both
Trichodesmium and its associated bacteria, suggesting a mutualistic interaction for Fe acquisition
[12,48]. Several associated bacteria can synthesize photolabile siderophores (e.g., vibrioferrin,
rhizoferrin, and petrobactin) [47]. In the sunlit surface waters, photolabile siderophores can en-
hance the bioavailability of particulate Fe to the entire consortium regardless of whether or not
Trichodesmium colonies contain siderophore utilization genes [47]. H2 produced during N2 fixa-
tion and accumulating within colonies may act as an electron source for reductive dissolution, yet
the exact mechanism requires further investigation [50]. Single-colony metaproteomics revealed
a multitude of proteins associated with the presence of dust, including multiple Fe-acquisition
pathways, the Fe storage protein ferritin, chemotaxis regulators, but alsometalloproteins contain-
ing other trace metals such as Fe and nickel [51]. pH and O2 gradients within colonies that are
induced by photosynthesis and respiration may in principle alter Fe availability, yet in colonies in
the Gulf of Eilat the effects were significant only in dense surface blooms [37].

Interactions of Trichodesmiumwith the colony microbiome in P acquisition have been extensively
studied since it was discovered that Trichodesmium can not only utilize organic P but also pro-
duce phosphonates [13,52]. Omics-based field studies strongly suggest that P cycling within
colonies, including phosphonate metabolism and alkaline phosphatase activity, is crucial in en-
abling Trichodesmium to thrive in P-limited ocean regions [31,33,53,54]. Regulation of alkaline
phosphatase activity by quorum sensing suggests that microbial P cycling in Trichodesmium col-
onies is tightly controlled [14]. Recently, it was found that Trichodesmium colonies collect and re-
tain not only Fe-rich but also P-rich mineral particles in their center [18]. Co-release of P and Fe
from these particles by dissolution provides yet another P source that is directly linked to colony
morphology [30].

Photosynthesis and carbon acquisition
Photosynthesis is directly affected by the gradients in light and in chemical conditions that are
induced by colony formation (Figure 2). Self-shading within cultured Trichodesmium colonies
has been observed to result in ca 40% of ambient light remaining at the point with lowest
light intensity [55]. While in deeper water layers, this may lead to light limitation, self-shading
may present an advantage under the high light intensities experienced in surface blooms.
Uptake of inorganic carbon leads to formation of pH, CO2, and bicarbonate gradients within
colonies, which enhance energy requirements for carbon-concentrating mechanisms, yet
diffusion-reaction-modeling based on O2 and pH profiles suggested that the buffer capacity
of open ocean seawater ensures that CO2 does not become fully depleted in Trichodesmium
colonies [56]. These gradients are the combined result of photosynthesis by Trichodesmium
as well as respiration of dissolved organic matter (DOM) followed by CO2 release by associated
bacteria within the colonies, and the relative contribution of bacteria versus Trichodesmium to
carbon turnover in colonies has not been quantified [56]. Stable isotope labeling experiments
with Trichodesmium colonies in the Southwest Pacific showed dissolved organic carbon
(DOC) uptake at rates similar to previously published inorganic carbon uptake, yet those exper-
iments could not distinguish between direct DOC uptake by Trichodesmium and that mediated
by associated bacteria [57].

Mobility
Trichodesmiumwas described early on to regulate its buoyancy in the water column by means of
exceptionally robust gas vesicles [58]. Generally, the surface-to-volume ratio of a colony is smaller
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than that of a free-floating filament due to increased cell-to-cell contact areas (Box 1). This de-
creased surface-to-volume ratio facilitates larger vertical mobility when in a colony morphology.
However, due to a lack of experimental validation, sinking and floating velocities of phytoplankton
aggregates, and specifically Trichodesmium colonies, are subject to considerable uncertainties
[26,59–61]. A part of the uncertainties lies in how the micro-scale hydrodynamics are influenced
by the morphology, which requires further experiments. Also, the surface-to-volume ratio may
vary among colonies depending on their morphology, providing an additional dimension to sinking
speed. While active migration of colonies in the water column has not been experimentally proven,
vertical mobility theoretically enables colonies to exploit the natural gradients in the water column to
balance light and nutrient demands and may furthermore increase nutrient supply due to reduction
of diffusive boundary layer thickness (Figure 2).

Trichodesmium blooms often accumulate in the P-poor upper water column. Vertical migration to
the P-rich nutricline (125–150 m depth), facilitated by buoyancy regulation through carbohydrate
ballasting and gas vesicles, was suggested as a strategy to replenish the colony P pool [62,63].
Model calculations of carbohydrate ballasting suggested that reaching the nutricline requires a
minimum colony size of 1 mm [64], which fits sizes observed in nature. Surprisingly, recent stud-
ies observed not only intact Trichodesmium colonies [61] but also active N2 fixation by
Trichodesmium [26] down to 1000 m depths. In model calculations, the authors show that this
deep N2 fixation can be supported by cellular carbon reserves, depending on the balance be-
tween the initial carbon storage and sinking speed [26]. However, sinking speed can be increased
not only through carbohydrate accumulation but likely also through mineral ballast such as dust
particles accumulated by colonies [65]. While a recent modeling approach has provided theoret-
ical estimates of the impacts of mineral ballast on sinking speed [66], experimental quantification
of the dependence of Trichodesmium’s sinking speed on particle load will provide data to validate
these assumptions (Wang et al. in preparation).

Concentrations of gases or nutrients within and around sinking aggregates directly depend on
sinking velocity. O2 concentration fields within sinking porous aggregates have been accurately
reproduced with a newly described model of mass transfer (by advection and diffusion) and re-
action [67]. At common Reynold’s numbers for sinking marine aggregates, a plume of elevated
nutrient concentrations develops at the rear end of the sinking aggregate that likely attracts
motile chemotactic microbes [67,68]. Furthermore, flow-induced removal of breakdown
products in sinking organic particles was suggested to drastically increase bacterial degrada-
tion rates [69]. For Trichodesmium, it was predicted that shear forces at the colony surface, due
to turbulence, decrease the thickness of the boundary layer, from 500–1000 μm under still
conditions to 200–500 μm under common shear rates in surface waters and thus increase
nutrient concentrations at the cell surface [28]. Finally, mobility of colonies by rapid sinking
and floating may also increase encounter rates with bacteria as well as organic and inorganic
particles.

Defense against biotic and abiotic stressors
Protection from grazing is a classic example of a benefit of colony morphology. Indeed, formation
of colonies can be induced by the presence of grazers in other phytoplankton such as
Phaeocystis and Microcystis [70,71]. With a maximum ingestion size of 100 μm observed for
crustacean zooplankton species [72], formation of 200–2000 μm (diameter) colonies enables
Trichodesmium to pass this critical size. Zooplankton grazing on Trichodesmium is typically not
considered to play a large role, yet ingestion of Trichodesmium by zooplankton has been occa-
sionally reported (e.g., [73]). In addition to size, production of toxins such as saxitoxins associated
with aggregation of Trichodesmium may hinder grazing [74]. In the relatively thick diffusive
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boundary layer of a colony, toxic compounds may accumulate more easily above a critical level
(as compared to single cells or filaments with the same rate of toxin excretion).

Regarding abiotic stressors, in parallel with elevated O2 levels induced by photosynthesis [38], re-
active oxygen species (ROS) can accumulate within colonies, making Trichodesmium a signifi-
cant source of superoxide in the water column [75]. The presence of bacteria within colonies
may increase their superoxide production compared with single trichomes [75], but bacteria
may also contribute antioxidant activity, hence it is hard to predict the colony’s overall ROS
flux. For colonies collected at the Great Barrier Reef, trichome-normalized net superoxide pro-
duction rates were ca 20-fold lower than gross production rates of laboratory cultures [76]. How-
ever, it should be noted that such comparisons are complicated by differences among
Trichodesmium species and growth conditions in culture and in nature, all of which may mask
the actual effect of colony lifestyle. Single-colony proteomics recently revealed elevated amounts
of superoxide dismutase, suggesting an elevated need for ROS detoxification, in the presence
of mineral particles [51].

Resilience and adaptability in a changing environment
Chemical conditions in the microenvironment within and around colonies are more variable over
time and space than along single filaments, implying that colony formers are adapted to dynamic
conditions (Figure 2). Light-dependence of O2, pH, and H2 gradients in colonies implies fluctua-
tions over the day–night cycle [37,38,50], and recent observations of faster oscillations in the
Trichodesmium proteome (three or four times per diel cycle) further highlight that colonies are
a highly variable system [66]. While the mechanisms and dynamics of colony formation remain
major open questions (see Outstanding questions), it is evident that aggregation and disaggrega-
tion of filaments can change the chemical and biological microenvironment of cells at relatively
short time scales. In the laboratory, by applying nutrient stress, colony formation has been in-
duced within 10 h to several days, while addition of nutrients to the media caused dissociation
of aggregates within a day [27]. Chemical microenvironments and physiological activity may
also differ among colony morphotypes. While tuft and puff-shaped colonies were found to repre-
sent different genotypes, a recent metagenome study revealed that a single Trichodesmium
thiebautii genotype occurred in two different puff morphologies (‘thin’ and ‘dense’ puffs) which
differed, for example, in their tendency to interact with dust, suggesting that Trichodesmium
may be able to adjust its colony morphology via gene regulation [77].

Considering evolutionary timescales, the close spatial interaction within colonies may facilitate
horizontal gene transfer, which is considered an important driving force for evolution in bacte-
ria [78] and may thus foster adaptation. Indeed, several studies have found indications for hori-
zontal gene transfer in Trichodesmium colonies [13,31,79]. Co-occurrence of several species
of Trichodesmium in one colony has been reported based on visual inspection [38], which can
be expected if colonies form by active aggregation of free filaments (as shown in the laboratory
[27]) as opposed to monoclonal colonies expected if colonies grow merely by cell division. Yet,
to the best of our knowledge, the diversity of Trichodesmium within single colonies has not
been stringently assessed. A high level of functional redundancy in the microbiome may enhance
its resilience to environmental changes [47]. Broadly speaking, the benefits of biodiversity under
fluctuating conditions (described as the ‘portfolio effect’ in analogy to the benefits of a diverse
portfolio in a fluctuating stock market [80]) may act favorably for the Trichodesmium colony
holobiont in a changing environment.

Regarding climate change, adaptation to variable carbonate chemistry within colonies (specifi-
cally, to low night-time pH levels) may be an advantage under ocean acidification, while on the
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downside, there is also a greater danger that critical boundaries in pH levels will be crossed earlier
in colonies [56]. Conversely, it was suggested that dissolution of carbonates in the mineral parti-
cles collected by natural colonies may act as a buffer, as implied by pH measurements on
Trichodesmium colonies amended with dust [37]. Interactive effects of ocean acidification with
other chemical factors that vary within the colonymicroenvironment [81,82] can modulate climate
change responses. In contrast to laboratory studies on cultures of Trichodesmium IMS101 grown
as single filaments [10,83], several studies on natural communities of Trichodesmium did not
show significant responses of ocean acidification treatments (e.g., [38,84]), yet, in lack of a direct
comparison, it is not clear whether this is due to colony formation in the field or other factors such
as the species or nutrient conditions. Overall, the complex interactions with the microbiome and
the dynamic chemical microenvironment within colonies most likely play key roles in the resilience
of Trichodesmium in our changing environment and thus require consideration in climate-change
studies.

Taken together, colony formation has vital effects on all the key areas of life, and is thus in-
extricably linked to the physiology and ecology of Trichodesmium. As most of the life chal-
lenges are affected by both positive and negative factors, the balance between these pros
and cons is key in understanding the ecological function of colony formation (Figure 2). Im-
portantly, this balance may vary depending on environmental conditions (such as nutrient
limitation or light) as well as metabolic state (such as respiration rates or the balance be-
tween carbon and nitrogen fixation), as recently demonstrated using a metabolic model of
carbon fluxes [85].

From cellular interactions to global distribution: implications of colony formation
across spatial scales
In summary, colony formation has effects across a remarkable range of spatial scales (Figure 3A,
Key figure). At the smallest, nanometer scale, the close interactions among single cells and or-
ganic as well as inorganic material within the colony foster chemical conversions and exchange
of nutrients, signaling molecules, and genetic material between cells of Trichodesmium and asso-
ciated bacteria (Figure 3B). At the next scale, aggregation leads to formation of micrometer-scale
physicochemical gradients, for example, in light, pH, O2, nutrient, and toxin concentrations
(Figure 3C). At even larger scale, colony formation enables meter- or kilometer-scale vertical mi-
gration along light and nutrient gradients in the water column, which has further impacts on en-
counter rates with bacteria and particles (Figure 3D). Jointly, these processes enable the
formation of kilometer-scale blooms and finally determine global distribution, where the versatile
lifestyle associated with colony morphology likely plays a key role in making Trichodesmium one
of the globally dominant N2 fixers.

Concluding remarks and future perspectives
Examining different life challenges and effects across spatial scales, we clearly show that life in
a colony is different from that as a single cell or trichome. Differences are evident in all key areas
of life, from acquisition of nutrients and photosynthesis, which are both closely linked to mobility
in the water column, to defense against biotic and abiotic stressors and resilience to environ-
mental changes. While, as far as we know, Trichodesmium does not exist as single cells, it is
poorly quantified to which percentage it occurs in free filaments as opposed to colonies. A
new data compilation based on Tara Oceans shows that both forms are globally abundant
(Figure 1B, [5]). At most sampling stations, exclusively free filaments or colonies were ob-
served, yet there are also areas where both morphologies were observed, with a higher prev-
alence in colonies (note logarithmic scale in Figure 1B). Given the long list of pros and cons of
colony formation (Figure 2), the fact that they coexist in both forms means that there must be a
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Outstanding questions
What governs the occurrence of
colonies versus single filaments in
natural systems?

Colony dynamics over time: how
transient are they, do they form and
open up, how does the abundance,
composition, and activity of the
associated bacteria change with time?

What determines the colonymorphology
(tufts versus puffs)?

Which biochemical mechanisms lead
to colony formation? What is the
‘glue’ that keeps them together?

Does colony formation facilitate nitrogen
fixation or work against it?

Can colonies be considered as ‘reactors’
catalyzing biochemical transformations
of minerals and organic molecules?

What is the contribution of associated
bacteria to carbon turnover in
colonies?

What are the molecular mechanisms
by which bacteria and Trichodesmium
communicate?

How does climate change impact the
niche of Trichodesmium and its colony
formation?

Are colonies more resilient than single
filaments to environmental changes?

CellPress logo


fine balance between the negative and positive effects of forming a colony. How this balance is
affected by environmental conditions is something we are far from understanding; while a few
recent studies reported colony formation induced in the laboratory [22,27], to what extent the
same mechanisms apply in the field is still a major open question (see Outstanding questions).
Effects of climate change on the tendency to form colonies have not been directly examined,
yet elevated production of extracellular polymeric substances under ocean acidification [86]
might favor the formation of colonies. We suggest that the ability to switch between single fila-
ments and colonies, as observed in the laboratory [27], allows Trichodesmium to exploit the
benefits of both morphologies and is thus an important component of its ecological success.

Advances in method development in terms of both spatial resolution and sample size are
allowing us to get more and more detailed insights into the chemical and physiological
processes within colonies (Box 2). Yet, key questions remain in the basic understanding of
the frequency, mechanisms, dynamics, and ecological benefits of colony formation by
Trichodesmium (see Outstanding questions). From the available data, it is evident that the
colonial lifestyle opens the door for an array of special functions that distinguish
Trichodesmium from other phytoplankton and thus shape its specific niche. With a broader

Key figure

Potential implications of colony formation across spatial scales
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Figure 3. (A) Effects of colony formation reach from nanometer to kilometer scale. (B) At nanometer scale, colony formation
may facilitate transfer between Trichodesmium cells [carbon (C) and nitrogen (N)], between Trichodesmium and associated
bacteria [DNA, dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and ammonia (NH4)], between bacteria
(quorum sensing) and release of dissolved iron [Fe(II)] from mineral particles fueled by siderophores such as
desferrioxamine B (DFB) and electrons (e–). (C) At micrometer scale, gradients in light and chemical compounds form,
which vary over day–night cycles, while colony morphology enables active collection and removal of dust particles. (D) At
kilometer scale, increased buoyancy and ballasting may promote movement along light and nutrient gradients and
enhance encounters with particles and bacteria as well as flow-induced nutrient supply. Processes in which experimental
evidence is scarce or conflicting are indicated by broken arrows and gray font.
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perspective, we therefore call for considering the vital importance of both intra- and interspe-
cific interactions in the definition of an ecological niche.
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Box 2. Tools for studying colony function and distribution

Resolving the composition and small-scale processes in colonies requires methods that have (i) high enough spatial
resolution to characterize spatial gradients within colonies and/or (ii) high enough sensitivity to analyze compounds ex-
tracted from single-colony samples. In the past decades, various such techniques have been developed and success-
fully applied (Figure I), allowing intriguing insights into the chemical and physiological characteristics of colonies.
Microscopy in combination with staining or observations of particle interactions over time provides information on
the structure, composition, and behavior of colonies [17]. A classical tool for high-resolution chemical analysis is
microsensors. Microelectrodes for various compounds, including O2, pH, H2, H2O2, and redox state are used either
to measure absolute concentrations or to calculate fluxes from measured small-scale gradients [37,50,90], while op-
tical fibers are used for light measurements or optode systems [55,91]. Chemical composition and uptake of nutrients
and carbon by Trichodesmium have been visualized using nanoscale secondary ion mass spectrometry (nanoSIMS
[17,38,92]), radio-imaging [48], and X-ray fluorescence analysis (MicroXRF [51]). Catalyzed reporter deposition
(CARD)-FISH is widely applied to identify and localize specific microorganisms, but can also localize gene expression
[mRNA CARD-FISH (Hania et al. in preparation)]. Enzyme activity assays such as the alkaline phosphatase activity as-
say have been applied to single colonies ([93]; Wang et al. in preparation). Advances in ‘omics techniques have pushed
the boundaries of required sample size, already allowing for successful single-colony metaproteomics [51] and
metagenomics (Bizic et al. in preparation). Our understanding of processes within colonies can further be improved
by combination of experimental techniques with mathematical models of different resolution [94], from simple models
as a module in ecological modeling [95,96] to detailed models for reconstructing reactions from ‘omics data [97].
Coarse-grained models compute intracellular molecular mass and fluxes of elements [98], and simple diffusion models
are used to predict intracellular concentrations of O2 [22,41]. To describe the spatiotemporal distribution of
Trichodesmium, recent developments in high-throughput imaging (Underwater Vision Profiler, FlowCam, ZooScan)
have enabled rapid enumeration of Trichodesmium filaments and colonies [5,99,100].
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Figure I. Examples of experimental techniques used to analyze structure, composition, behavior, and
physiology of Trichodesmium colonies. We acknowledge contributions from our collaborators: N. Kessler and M.
Fine (panel B), T. Neu and U. Kuhlicke (panel C), S. Basu, S. Wang, and D. de Beer (panel D), S. Myneni, N. Kessler, R.
Sanders, and D. Schlesinger (panel E), A-N. Visser, F. Zhang, O. Qafoku, and R. Boiteau (panel G), A. Mijovilovich, H.
Kuepper, A. Colussi, G. Konert, and O. Prášil (panel F), M. Kienhuis, R. Lopez Adams, and L. Polerecky (panel H), G. Konert
(panel I). Abbreviations: μXRF, MicroXRF (microX-ray fluorescence analysis); nanoSIMS, nanoscale secondary ion mass
spectrometry.
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