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ABSTRACT 

Election officials at the state and local levels begin operations and logistical 

planning several months before election day. Current research efforts focus on 

creating basic systems to facilitate the collection and synthesis of polling place data by 

election administrators and poll workers. Practically all the current methods involve 

the manual collection of this data, and then some aggregated form is utilized in 

decision-making processes. The research contributes to the voting-systems literature in 

two ways. First, it broadens the scope of knowledge about check-in processing time 

variation both within and between precincts. Secondly, it proposes a methodology for 

using the EPB transaction logs to estimate arrival rates using a Hidden Markov Model.  

Check-In processing time observations are collected through time studies 

during the 2018 Midterm elections at seven precincts throughout Rhode Island. An 

analysis of check-in observations revealed that processing times are reasonably similar 

both between and within precincts. Check-In observations are then used to model a 

stochastic process time distribution for four precincts in Providence, Rhode Island. 

The process models are combined with electronic poll book transaction logs to 

simulate voter arrival times. The count of simulated arrivals over discrete 15minute 

intervals are used to populate an observation sequence. Multiple observation 

sequences are used to compute parameter estimates for a Discrete-time Poisson 

Hidden Markov Model (dt-PHMM).  

 

 



 

 

A dt-PHMM is constructed with three, four, and five hidden states for each of the 

four Providence Precincts. At least one dt-PHMM model was successfully able to 

estimate arrival rates for all four precincts. The most appropriate size for the hidden 

state-space varied between precincts. The strengths and weakness of the three, four, and 

five-state models are discussed for each precinct.
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND 

Election officials at the state and local levels begin operations and logistical 

planning several months before election day. It is common for Election Officials to 

make resource allocation decisions using “Rules of Thumb.” Their planning heuristics 

are frequently based on their past decisions rather than quantitative methods (Stewart 

III, 2015). Election administrators often lack the necessary data to effectively measure 

election performance and identify operational inefficacies (Spencer & Markovits, 

2010).  

Furthermore, simulation studies have shown that voter wait times are extremely 

sensitive to changes in voter turnout and expected processing time (Edelstein & 

Edelstein, 2010). The arrival behavior of voters on Election Day can significantly 

impact the resources (e.g., number of poll workers, voting booths, and ballot scanners) 

required to manage queues at a polling place. It is especially important that election 

officials can adequately estimate the capacity needs for each precinct as these new 

technologies can be expensive and are often a scarce resource (Yang, Kelton, Fry, & 

Allen, 2013). 

Recent literature relating to resource allocation and voter wait times are based on 

observational (i.e., time studies and survey response) or queuing theory and simulation 

models (Herron & Smith, 2015). Time studies are useful for measuring processing 

times and voter arrivals but can labor-intensive and require a fair deal of planning. 

(Fortier, Stewart III, Pettigrew, Weil, & Harper, 2018). Survey-based research allows 
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for arrival and wait time information to be collected at the national level but often lack 

the specificity to perform analyses at the municipal or precinct levels (Stewart III, 

2015).  Queuing simulations models and operations management approaches provide 

trackable methods for effective capacity planning and resource allocation. The results, 

however, are based on broad generalizations about voter arrival behaviors derived 

from synthetic data or historical case studies. Application of these models requires 

precinct specific knowledge about the arrival behavior and processing times per 

jurisdiction per election. 

 Various researchers have been working on designing and implementing simple 

data collection programs to provide actionable data to about voter arrivals and queue 

lengths and processing times. A report by the Bipartisan Policy Center (BCP) posits 

that information about voter arrivals and line lengths must be collected regularly at 

every single polling place in a given jurisdiction (Fortier, Stewart III, Pettigrew, Weil, 

& Harper, 2018).   Current research efforts focus on creating basic systems to facilitate 

the collection and synthesis of polling place data by election administrators and poll 

workers.  
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1.2 RESEARCH GOALS 

Practically all the current methods involve the manual collection of this data and 

then some aggregated form to be implemented in decision-making processes. Perhaps 

a more efficient, scalable, and sustainable method can be developed using 

timestamped voter check-in information captured automatically by the electronic poll 

book (EPB) systems. Electronic Poll books exist on laptops or tablets that are directly 

connected to the Statewide Voter Registration System. In a report to the Wisconsin 

Government Accountability Board, Michael Hass discusses several new improvements 

introduced by EPB systems. Firstly, they eliminate the need the for alphabetically 

divided poll rosters to provide multiple check-in stations allowing voters to check-in at 

the first available stations. EPBs are also able to look up voters automatically by 

scanning the barcode on their ID card. 

Furthermore, the EPB identifies if voters are at the wrong location and share the 

address of the correct location to their cell phone via text. Lastly, EPBs can upload 

election-day registrations to the Statewide Voter Registration System automatically 

instead of entering it manually - which can be time-consuming and prone to human 

error.  This study’s research aims to understand the characteristics of the integrated 

EPB check-in process to leverage its transaction logs to obtain critical insights about 

arrival behavior at polling places for a more immediate feedback loop and process 

enhancement for overall improved decision making for the future of elections. 
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Therefore, the research questions for this work are: 

1. What are the process time characteristics at the check-in station using EPB’s?  

2. How does the processing time vary between poll workers in a single polling 

place? Between different polling places? 

3. Can the EPB check-in timestamps be used as a proxy for actual arrival times? 

If so, to what extent? 

4. Can the EPB check-in timestamps be used in a Hidden Markov Model (HMM) 

to reveal voter arrival patterns?    

 

The remainder of this thesis proceeds as follows. Chapter 2 begins by reviewing 

current methods for collecting and analyzing voter arrival data.  Potential strengths 

and weaknesses of these methodologies are then discussed. The third chapter outlines 

the methodology and implementations used to address the research questions proposed 

in this study. The methodology section begins with a basic overview of the procedures 

used to collect and clean various elections related data sets from polling places in 

Rhode Island (RI) during the 2018 U.S. Midterm elections. This will include 

processing time data from times studies as well as electronic records provided by the 

Rhode Island Board of Elections (RI BOE). The second half of Chapter 3 focuses on 

the fundamental terms and concepts that will be used to estimate arrival rates at four 

different precincts. Chapter 4 first reports the analysis results of check-in time study 

data then continues with a detailed description of the HMM implementation and 

results for each of the four test precincts. The fifth and final chapter accesses the 

adequacy of the proposed methodology and concludes the proposed research 

questions. 
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CHAPTER 2 

REVIEW OF LITERATURE 

This chapter provides an overview of past case studies as well as current methods 

for collecting and analyzing elections data with a focus on voter arrival behavior.  

2.1 CASE STUDIES 

The use of queuing theory and simulation optimization models to examine 

resource allocation decisions within the voting systems domain is extremely limited. 

Allen and Bernshteyn (2006) use a basic queuing theory model to predict average wait 

times and voting-machine requirements. Allen and Bernshteyn (2006) use data from 

Franklin County, Ohio, during the 2004 presidential election to create a machine-

allocation algorithm to minimize wait times and maximize efficiency. 

A heuristic approach for mitigating wait times using a “Queue Stop Rule” is 

proposed by Edelstein (2006) to determine the minimum number of parallel servers 

needed at each station to prevent voter wait times from exceeding a prespecified value. 

The time to vote, TVote is given by Equation 1 (TDay is the amount of time the polling 

place is open, and NVvs is the total number of voters). 

                                        𝑇𝑉𝑜𝑡𝑒  ≤  
1

2
 (
𝑇𝐷𝑎𝑦

𝑁𝑉𝑣𝑠
)                                           (1)      

Edelstein & Edelstein (2010) expands upon this work by include variable arrival 

rates using a Non-homogenous Poisson Process. A numerical example offered by the 

authors assumes three high-intensity periods between 7:00 AM-9:00 AM, 12:00 PM-

2:00 PM, and 5:00 PM-8:00 PM with 10% of total voters arriving each hour. Arrivals 

occurred at 5% per hour at all other times. The baseline process times and arrival 

patterns in these studies are based on the observations in (Dow, 2007). The authors 
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report that the Queue Stop Rule output very sensitive to process time and arrival rates 

and conclude with a discussion of specific considerations for designing efficient 

voting systems.  

 Two different heuristic approaches for making fair and effective resource 

allocation decisions are explored in (Yang, Fry, & Kelton, 2009). Voting times are 

based on a mock election using the 2006 gubernatorial election ballot. The Voter 

Experience Survey (Feldman & Belcher, 2005) from Franklin County, Ohio, is used to 

model the arrival distribution shown in Table 1. 

Time Interval Arrival Percentage 

Before 8:00 AM 20.61 

8:00 AM-11:00 AM 27.34 

11:00 AM-3:00PM 24.05 

3:00 PM-5:00 PM 13.26 

After 5:00 PM 13.87 
Table 1: Arrival Distribution of Voters in Yang et al. 2009 

A proposed “Greedy Improvement Algorithm” (GIP) heuristic aims to 

minimize the average absolute difference of expected waiting times across all 

precincts. The authors also implement a Utilization Equalization heuristic approach 

that balance the resource utilization levels across all polling places. (Yang, Kelton, 

Fry, & Allen, 2013) builds upon this work by formalizing an optimization model and 

exploring various objective functions that minimize the maximum average waiting 

times for a given set of precincts. Their work also discusses how existing Service-

Operations Management techniques (capacity & demand management) apply to voting 

systems. 

Herron & Smith (2015) define a generalizable procedure for collecting data on 

voter arrivals and processing times using web-based applications. The data collection 

procedure is implemented during the 2014 Midterm election for a single polling place 
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in Hanover, New Hampshire. A simulation model is constructed based on this data and 

used to estimate voter wait times under 36 different scenarios  These scenarios explore 

two arrival patterns and various combinations of resource allocation levels for check-

in stations, voting booths, and ballot scanners. 

2.2 ARRIVAL RATES 

 

The work of Spencer and Markovits (2010) develops a systematic data 

collection method that breaks down the voting process into three fundamental steps 

that can be universally applied regardless of local rules. This method is used in a pilot 

study to collect arrival and processing time observations during the 2008 presidential 

primary for 30 polling stations across three counties California. The data is collected 

by stationing volunteers inside the polling place. Volunteers record the number of 

voters arriving in 10-minute intervals between 7:00 AM and 8:00 PM. Service times 

were recording by recording a timestamp for every fifth voter as they started and 

finished each operation (check-in, ballot marking, ballot scanning). These 

observations are used in a basic queuing model to predict line lengths and identify 

potential bottlenecks in the process.  The check-in and ballot marking times were 

found to be relatively constant despite changes in the arrival rate of voters. The author 

posits that the arrival rate of voters may be predictable based on a “double-hump” 

pattern of increased arrival rates in the early morning and late afternoon.     

Survey research from the 2012 and 2016 General Elections by (Stewart III, 

2015) found that peak arrival rates generally occurred early in the morning, steadily 

decline throughout the afternoon and then increase slightly in the evening as voters 

leave work. This supports the “double-hump” pattern suggested by (Spencer & 
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Markovits, 2010).  However, Stewart also reported significant variation at the county, 

and state levels (2015).  These findings were based on responses to the Survey of the 

Performance of American Elections (SPAE) and the Cooperative Congressional 

Election Study (CCES). 

2.3 PRACTICAL TOOLS AND APPLICATIONS 

 

The BPC and MIT collaborated to develop a survey-based protocol that would 

empower poll workers to collect actionable data about wait times and line dynamics. 

A “Line Length survey” collected hourly counts of line length at 88 different precincts 

in 2016 General elections. Average wait times were reported for each precinct using 

Little’s Law given by Equation 2 The average arrival rate was calculated by dividing 

the total number of voters by the total time, in minutes, the polling place was open. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑖𝑡 𝑇𝑖𝑚𝑒 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑖𝑛𝑒 𝐿𝑒𝑛𝑔𝑡ℎ

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑅𝑎𝑡𝑒
                       (2) 

An additional report was included for municipalities where hourly check-in counts 

were available through their EPB transaction logs. Figure 1 illustrates details about the 

data included in the additional report using a line graph. 
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Figure 1: Hourly Arrivals, Check-ins, and Number Standing in Line Source: BCP Voting Lines Project 

 

The authors acknowledge that Littles law is only valid over the long run and that 

the hourly line count is not always an accurate representation of the actual average line 

length. The authors argue that their current protocol strikes a workable balance 

between precision and cost — their survey designed for simplicity so that it can be 

implemented universally without increasing staffing requirements.  

The Voter Technology Project (VTP), a collaborative effort between CalTech and 

the Massachusetts Institute of Technology (MIT), significantly contributes to the 

polling place resource management and election planning literature. A 2015 

publication written by Stuart, titled Managing Polling Place Recourses, describes the 

fundamental concept of Queueing Theory and explains the potential benefits for 

resource allocation decision making. This document provides simple data collection 

procedures for measuring arrival rates and process times along with instructions for 

using resource allocation tools available on the VTP website. The Line Optimization 
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and Poll Worker Management tool can be used to estimate of the number of check-in 

stations or voting booths required to attain a desired average wait time or service level 

at a polling place. A screenshot of this tool is provided in Appendix A. This tool is 

simple, straightforward, and well documented.        

  A second tool by the VTP, called the Line Optimization tool shows average 

expected wait times throughout the day. The Line Optimization tool accounts for 

potential bottlenecks at the check-in station and voting booths. The Line Optimization 

tool also allows users to choose between a smooth arrival pattern and an early morning 

peak. The arrival patterns for election day are based on data collected by in a study by 

Fortier, Stewart, Pettigrew, Weil, and Harper (2018)   However, significant variation 

in arrival patterns between polling places at various municipal levels (Stewart III, 

2015). The output of this tool may not be representative of any specific precinct unless 

it is known to have a similar arrival distribution. 

The tools provided by the VTP and others are certainly a step in the right 

direction. However, a more efficient, scalable method for approximating voter arrival 

behavior is needed. The new electronic poll book systems automatically capture 

timestamped voter check-in information. Their transaction logs may provide useful 

insights about voter arrival behavior. This study’s research contributes to the voting-

systems literature in two ways. First, it broadens the scope of knowledge about check-

in processing time variation both within and between precincts. Secondly, it proposes 

a methodology for using the EPB transaction logs to estimate arrival rates using a 

Hidden Markov Model.  
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CHAPTER 3 

METHODOLOGY 

The following chapter describes the methodology and procedures used to 

address the proposed research questions. The first section describes the time study 

procedures used to collect processing time data at RI polling places during the U.S. 

Midterm election in 2018. The methods to clean and validate the check-in processing 

time observations are discussed, followed by a comparative analysis. The next section 

introduces the EPB log files, data validation processes, and comparative analysis 

methods. The HMM implementation procedure for estimating voter arrival rates is 

discussed in the final sections of this chapter.   

3.1 POLLING PLACE TIME STUDIES 

A series of time studies were performed during the 2018 U.S. Midterm 

Elections at seven Polling places throughout Rhode Island. Simple timers were created 

in Microsoft Excel using Visual Basic for Application (VBA) forms to ensure 

timestamps were precise and consistently formatted. Separate timers were used to 

record observations for each check-in stations so that processing times could be 

compared on an individual basis. Students enrolled in the Human Factors and 

Ergonomics class (ISE/PSY 420) at URI were trained on how to use the VBA timers 

before participating in the time study. A timestamp was recorded for the Check-in start 

time when a voter engaged with poll workers at an individual station. A second 

timestamp was recorded as the end time when a voter accepted their ballot and exited 

the station. The complete Data Collection Instructions document and a preview of the 

timing tools are provided in Appendix B. Students were grouped in teams of four and 
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assigned to collect data from 7:00 AM-11:00 AM at three different polling locations 

across the State. The specific timeframe was chosen to maximize the number of 

observations collected. The fifth team with two Graduate Research Assistants and an 

ISE professor collected data from precincts across Providence, RI between 7:00 AM 

and 7:30 PM. This team also collected anecdotal evidence about voter arrival 

behaviors from election officials and local poll workers. Individual Excel files for each 

precinct were saved using a standardized naming convention which included the 

observers last name and the station observed. 

3.1.1 DATA PROCESSING AND ANALYSIS 

The time studies data files were collected from all participants and organized 

into folders by station type. The check-in observations for all locations were then 

consolidated onto a CSV file with the columns labeled Precinct Number, Station 

Number, Start Time, End Time, Observer Last Name. The CSV file was then imported 

as a Data Frame using the Pandas package in Python. An additional column called 

“Seconds” computed the check-in times by subtracting End Time and Start Time 

columns.  

3.1.2 COMPARITIVE ANALYSIS 

The process time observations for individual poll pads within each precinct are 

compared using a Kruskal-Wallis test. This non-parametric test was chosen due to the 

varying sample size between poll pads (Kruskal & Wallis, 1952). The null hypothesis 

that the population median is equal for all test groups is tested using a P-value of 0.05. 

Post-hoc comparisons are performed when the null hypothesis is rejected to identify 

which individual group(s) are different following (Dinno, 2015). The Kruskal-Wallis 
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test is also used to compare aggregated precinct data. This testing only includes 

precincts where all check-in station observations were similar. The results of 

comparative tests within precincts will determine if a single processing time 

distribution can be used to represent all Check-In stations. The comparative analysis 

between precincts is used to assess if a generalized Check-in process model could be 

used in cases where precinct specific data is not available.   

3.1.3 DEFINING CHECK-IN PROCESS MODELS 

A stochastic process model for each precinct is used to generate observation 

sequences used to train Hidden Markov models for precincts 1-4. The check-in 

observations were fit to a variety of statistical distributions using the Fitter package in 

Python. This package uses SciPy’s fit method is used to extract Maximized Likelihood 

Estimates (MLE) for the parameters each distribution tested. The sum-square error 

(SSE) is used to report the goodness-of-fit for each distribution. The Lognormal 

distribution performed well for the four providence precincts. The SciPy package 

defines the MLE parameters for the Lognormal distribution as Shape and Scale. The 

Shape parameter is equal to the natural log of the observed standard deviation (std. 

dev). The Scale computed based on the observed mean. Parameter estimates are 

defined for each precinct in Table 2.  

Precinct Scale Mean Shape Std. Dev SSE 

1 51.1097 56.1689 0.0434 25.6030 0.00368 

2 41.5438 44.7884 0.388 18.0436 0.00383 

3 50.9032 55.8517 0.431 25.2186 0.00884 

4 55.0285 63.3564 0.530895 36.1507 0.00616 

Table 2: Stochastic Process Model Parameter Estimates 
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3.2 ELECTRONIC POLL PAD DATA 

The EPB transaction logs record the following information for every voter on 

Election day: Sequential ID number, Election Name, Timestamp, Poll Pad Name, and 

Precinct Number upon completion of the check-in process. The transaction logs from 

the EPB’s used in Rhode Island polling places during the 2018 elections are the 

primary source of raw data used to approximate arrival rates. These files were 

provided by the RI BOE as a Microsoft Excel file using the “.xlsx” format. A data 

validation script was created to identify and correct any irregularities that may have 

occurred while transferring the data. The first function in this script tested the 

Timestamp column to ensure all values were displayed in the correct time zone using 

the “MM:DD:hh:mm: ss” format. The second function is used to ensure only one 

precinct number and location name is recorded for each EPB. A third function is used 

to create a new column with the Timestamp corresponding to the previous check-in on 

that device. This column will be referenced when simulating voter arrival times. 

3.2.1 PRESCREENING PRECINCT EPB DATA 

The timestamps in the transaction logs record the time when a voter completes 

the check-in process but does not indicate the starting time nor the exact time of 

arrival. This chapter defines a procedure for using the process models defined in 3.1.3 

to estimate arrival rates over discrete, 15-minute intervals. First, Pseudo-start times are 

computed by subtracting the average observed check-in time from each EPB 

timestamp. These values are used as a proxy for arrival times under the assumption 

that queue formation is minimal, and any delay that occurs between the time a voter 

arrives and begins the check-in process is negligible. To test this, a deterministic 
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throughput capacity is estimated based on the average of time studies observations for 

each precinct.  The maximum and 75% throughput capacities are plotted against the 

pseudo-arrival counts to graphically access if the throughput capacity was sufficient 

throughout the day. 

Next, the proxy arrival times tested for conformance to a non-homogenous 

Poisson Process. The time between successive arrivals must be exponentially 

distributed with a stationary mean when separated into independent time blocks. A 

Log Kolmogorov-Smirnov test (Brown, et al., 2006) is applied the proxy arrival times 

over 15-minute intervals. First, the data be transformed using Equation 3: 

             𝑅𝑖𝑗 = (𝐽(𝑖) + 1 − 𝑗 [−𝑙𝑛 (
𝐿 − 𝑇𝑖𝑗

𝐿 − 𝑇𝑖,𝑗−1
)]                             (3) 

Where Tij is the j-th ordered arrival time in the i-th block, J(i) is the total observations 

in the i-th block, and L is the time length of each block.    

Next, a Kolmogorov-Smirnov test is used to test the null hypothesis: 

H0: {Rij} are independent, standard exponential variables 

A False Detection Rate procedure (Benjamini & Hochberg, 1995) is applied to the P-

values for all intervals to correct false positives.  If the null hypothesis fails to be 

rejected, then it is concluded that arrival observations in each interval are a Poisson 

Process. 
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3.3 POISSON HIDDEN MARKOV MODEL 

Non-homogenous Poisson processes have been used to represent voter arrival 

rates in previous voting systems research. Edelstein & Edelstein (2009) and Yang et 

al. (2009; 2013) rely on rate time tables that assume the rate to be constant over 

intervals ranging for two to four hours. Herron & Smith (2015) use smaller, one-hour 

intervals. The level of variability illustrated in the arrival count plots throughout 

Chapter 4.2 show these estimates to be gross overgeneralizations. 

This research proposes a probabilistic approach to model the evolution of 

arrival rates of individual precincts using a special case of Hidden Markov Models 

(HMM) called a Discrete-time Poisson Hidden Markov Model (dt-PHMM). An HMM 

is a bivariate market chain that combines an observable time stochastic process {Ot} 

with a hidden Markov chain {Ct} with states that cannot directly be observed.  

HMMs are useful for temporal pattern recognition and are especially known 

for their use cases in speech recognition (Rabiner, 1989). In these use cases, the 

hidden Markov chain is predefined using semantically meaningful states. In the case 

of Poisson HMMs, the modeler seeks to define the hidden Markov Chain in with 

states corresponding to meaning rate classes. Two popular use-cases in HMM 

literature that use PHMMs to analyze count data in discrete time include Leroux & 

Puterman (1992) and Scott (2001). Leroux and Puterman (1992) construct a PHMM to 

monitor Fetal lamb activity with hidden states that signify periods where the lamb was 

inactive, somewhat active, or very active. Scott (2001) constructs a PHMM with a 

binary hidden state to predict internet network intrusion based on mouse-click activity.  
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A discrete-time PHMM was also used by Paroli, Redaelli, & Spezia (2002) for over-

dispersed insurance counts.    

For Poisson Hidden Markov models defined for the purpose of this study, the 

unobservable sequence {Ct} exists within the finite state-space Sc = {1,2…m}. Each 

Ot in the observed sequence, {Ot} is conditioned on the contemporary state of Ct 

(Paroli, Redaelli, & Spezia, 2002). For any time t, where Ct is in state i  (i ∈ Sc), the 

conditional distribution of Ot is a Poisson random variable with rate parameter 𝜆𝑖 

(Paroli, Redaelli, & Spezia, 2002). The An m-length vector 𝛿 is the initial state 

distribution of Ct at t =1.  The parameter A denotes an m x m matrix where  𝜃𝑖𝑗 is the 

transition probability from state i, at time t-1, to state j at time t (for any state i,j, and 

for any time t). Additional elements used to characterize the model are defined as 

follows: 

• Ot = Number of arrivals observed in time interval t, 

•  Q = q1, q2, …qT  be the state sequence where qT  is in state i  at time t.  

• 𝜋𝑂,𝑖 = 𝑃(𝑂𝑡 = 𝑂 |𝐶𝑡 = 𝑖), the state-dependent probabilities 

The state dependant probabilities are computed using Equation 4 given by Paroli, 

Redaelli, & Spezia (2002):  

                                         𝜋𝑂𝑡,𝑖𝑡 = e−𝜆𝑖𝑡

𝜆𝑖𝑡

𝑂𝑡

𝑂𝑡!
                                         (4) 

Implementation of a dt-PHMM can be broken down into three general steps. 

First, the Forward-Backward algorithm (Rabiner & Juang, 1986) is used to compute 

𝑃(𝑂|𝜙), the probability that observed sequence {Ot} will occur given the initial 

parameter estimate for the model: 𝜙 = [𝛿, 𝜃, 𝜆]  (5). In the next step, the Baum-Welch 
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algorithm (Baum, Petrie, & Weiss, 1970) maximizes the probability of observing 

sequence {Ot} by iteratively adjusting parameter estimates for [𝛿, 𝜃, 𝜆]. Finally, the 

Viterbi algorithm is applied to find the hidden state sequence, S*, that is most likely to 

generate O, the observed sequence (Viterbi, 1967). The Forward-Backward and 

Baum-Welch algorithms are implemented using the procedures and equations given 

by Paroli, Redaelli, & Spezia (2002, p464-466)1. Implementation of the the 

Logrithmic Viterbi algorithm follows Tiberiu & Harrison (2013, p77-85)2  

3.3.1 FORWARD-BACKWARD ALGORITHM 

 

The Forward-Backward algorithm computes the probability of observing a given 

sequence (𝑃(O|𝜙), in terms of forward and backward variables denoted by α and β.  

Forward variable: 

                          𝛼𝑡(𝑖) = 𝑃(O1, O2 … , Ot, 𝑞𝑡 = 𝑆𝑖 | 𝜙)                      (6) 

Where i = 1, 2,…m , t = 1,2,…T, and 𝑆𝑖 is the state at time t 

1. Initialization: 

                      𝛼1(𝑖) =  𝛿𝑖𝜋O1,𝑖  𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚                           (7) 

2. Proceeding inductively: 

                  𝛼𝑡+1(𝑗) = [∑𝛼𝑡(𝑖)𝜃𝑖𝑗

𝑚

𝑖=1

] 𝜋𝑂𝑡+1,𝑗                                (8) 

𝑓𝑜𝑟 1 ≤ 𝑡 ≤ 𝑇 − 1 , 1 ≤ 𝑗 ≤ 𝑚 .  

Where 𝛼𝑡(𝑖)𝜃𝑖𝑗 is the joint event probability of observing O1, O2 … ,Ot then 

transitioning from state Si at time t to state Sj at time t + 1. 

                                                 
1 The parameter notation is slightly different. The parameters X,Y, and γ correspond to the parameters 

C, O, and θ used in this study.  
2 The author’s parameters 𝛿, 𝑎, 𝑏, and 𝜋 correspond to the parameters denoted by 𝜁, 𝜃, 𝜋, and 𝛿 in this 

study  
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Backwards Variable: 

                 𝛽𝑡(𝑖) = 𝑃(Ot+1, Ot+2 … ,OT| 𝑞𝑡 = 𝑆𝑖, 𝜙)                        (9) 

1. Initialization: 

                          𝛽𝑇(𝑖) = 1,    𝐹𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚                                     (10) 

2. Proceeding Inductively: 

                      𝛽𝑡(𝑖) = ∑𝜃𝑖𝑗

𝑚

𝑗=1

𝜋𝑂𝑡+1,𝑗 𝛽𝑡+1(𝑗)                                     (11) 

𝑓𝑜𝑟 𝑡 =  𝑇 − 1, 𝑇 − 2,… , 1, 1 ≤ 𝑖 ≤ 𝑚 .   

Finally, the observation probability is given by Equation 16: 

                  𝑃(𝑂|𝜙) =  ∑ 𝛼𝑡(𝑖)𝛽𝑡(𝑖), ∀ t                                    (12)𝑚
𝑖=1  

 

3.3.2 BAUM-WELCH ALGORITHM 

The Forward and Backward probabilities are used by the Baum-Welch algorithm to 

find the Maximized Likelihood Estimator of 𝜙 . [𝛿, 𝜃, 𝜆]. A two-step Expectation-

Maximization (EM) procedure iteratively adjusts parameter estimates as defined by 

(Paroli, Redaelli, & Spezia, 2002). The E step computes Forward and Backward 

probabilities according to Equations 12 & 13, respectively. Next, the auxiliary 

function for the (𝑘 + 1)𝑡ℎ iteration is evaluated based on using Equation 13a as 

follows: 

 

𝑄(𝜙;𝜙𝑘)  = 𝐸𝜙𝑘(ln 𝐿𝑇 (𝜙)| O)                                                                 (13)  

 

                 = (∑
𝛼1

𝑘(𝑖)𝛽1
𝑘(𝑖) 

∑ 𝛼𝑡
𝑘(𝑖)𝛽𝑡

𝑘(𝑖)𝑖∈𝑆𝑐

ln 𝛿𝑖𝑖∈𝑆𝑐
) + (∑ ∑

∑ 𝛼𝑡
𝑘(𝑖) 𝜃𝑖,𝑗

𝑘 𝜋𝑂𝑡+1,𝑗
𝑘 𝛽𝑡+1

𝑘 (𝑗)𝑇−𝑖
𝑡 =1

∑ 𝛼𝑡
𝑘(𝑖)𝛽𝑡

𝑘(𝑖)𝑖∈𝑆𝑐
𝑗∈𝑆𝑐𝑖∈𝑆𝑐

ln 𝜃𝑖,𝑗)   +

                          + (
∑ 𝛼𝑡

𝑘(𝑖)𝛽𝑡
𝑘(𝑖)𝑇

𝑡=1

∑ 𝛼𝑡
𝑘(𝑖)𝛽𝑡

𝑘(𝑖)𝑖∈𝑆𝑐

ln 𝜋𝑂𝑡,𝑖
𝑘 )                         (13a) 
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The M-step (𝑘 + 1)𝑡ℎ iteration seeks to maximize auxiliary function, such that 

𝑄(𝜙𝑘+1; 𝜙𝑘)  ≥  𝑄(𝜙;𝜙𝑘).  Maximum Likelihood Estimates are obtained for �̂� and �̂� 

applying Equations 14 & 15, respectively. 

               𝜃𝑖,𝑗
𝑘+1 =

∑ 𝛼𝑡
𝑘(𝑖)   𝜃𝑖,𝑗

𝑘    𝜋𝑂𝑡+1,𝑗
𝑘    𝛽𝑡+1

𝑘 (𝑗)𝑇−𝑖
𝑡 =1

∑ 𝛼𝑡
𝑘(𝑖)  𝛽𝑡

𝑘(𝑖)𝑇
𝑡=1

                      (14) 

                    𝜆𝑖
𝑘+1 =

∑ 𝛼𝑡
𝑘(𝑖)  𝛽𝑡

𝑘(𝑖)  𝑂𝑡
𝑇
𝑡=1

∑ 𝛼𝑡
𝑘(𝑖)  𝛽𝑡

𝑘(𝑖)𝑇
𝑡=1

                                         (15) 

The Baum-Welch algorithm repeats between the two EM steps until 

(ln 𝐿𝑇 (𝜙𝑘+1)  - (ln 𝐿𝑇 (𝜙𝑘) converges to a difference less than 1.00 e-3. 

 

3.3.3 VITERBI ALGORITHM 

 

The Logarithmic Viterbi Algorithm is used to identify the most likely hidden state 

sequence, S* following the four-step procedure described by Tiberiu & Harrison 

(2013). The variable St*(i) is used to denote the path ending in Si that maximizes log-

likelihood for observations O1, O2, …, Ot. The variable ζ(i) computes the log 

probability of generating observations O1, O2, …, Ot.,  from path  St*(i). The variable 

ψ𝑡(𝑖) is defined to track each t and i that has maximized the last ζ𝑡(𝑖) (Tiberiu & 

Harrison, 2013). The Logarithmic Viterbi Algorithm proceeds as follows: 

1. Initialization: 

     ζ1(𝑖) =  ln(𝛿𝑖𝑏𝑖𝑂1) 1 ≤ 𝑖 ≤ 𝑚                                     (16) 

                                         𝜓1(𝑖) = 0                                                      (17) 

2. Recursively compute values for variables for j = 1,2, …, m and t = 1,2, …,T-1: 

          ζ𝑡(𝑗) = 𝑚𝑎𝑥1≤𝑖≤𝑚[ζ𝑡−1(𝑖) + ln 𝜃𝑖𝑗] + ln(𝑏𝑗(𝑂𝑡))            (18) 

                 𝜓𝑡(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑚[ζ𝑡−1(𝑖) + ln 𝜃𝑖𝑗]                       (19) 
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3. Termination: 

                  𝑃∗ = 𝑚𝑎𝑥1≤𝑖≤𝑚[ζ𝑇(𝑖)]                                        (20) 

               𝑆𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑚[ζ𝑇(𝑖)]                                    (21) 

4. Backtrack through the sequence as such: 

                                     𝑆𝑡
∗ = 𝜓𝑡+1(𝑖𝑡+1

∗ )                                   (22)  

 

3.3.4 INITIALIZING MODEL PARAMETERS 

The proxy arrival times from the Log-KS test are used to generate an array of 

arrival counts at 15-minute intervals between 7:00 AM and 8: 00 PM. The k-means 

algorithm is used group the arrival counts into m different clusters. The cluster centers 

are then used to define λ0, the initial vector of rate parameters.  Parameter values for 

the initial state and transition probability matrices are defined arbitrarily at first and 

then adjusted manually until the Baum Welch algorithm converges.  

3.3.5 GENERATING OBSERVATION SEQUENCES 

Observation sequences for each precinct are generated from EPB data using 

the stochastic process model. Arrival times are simulated for each check-in 

observation by subtracting a random variable from the process time distribution. For 

continuity, the simulated arrival time is replaced by the previously observed check-in 

time of that machine if the simulated time proceeds the EPB timestamp. The count of 

simulated arrivals over discrete 15minute intervals are used to populate an observation 

sequence {Ot}. Multiple observation sequences are used to train the model to provide 

more reliable estimates of model parameters (Rabiner, 1989).  
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3.3.6 EVALUATING MODEL FITNESS 

 

A simple, theoretically correct method for estimating the most appropriate 

number of states has not yet been established (Rabiner, 1989). Three models are 

constructed for each precinct with the number of hidden states m = 3,4, and 5. Precinct 

models are compared quantitatively using two maximum penalized likelihood 

estimators following (Leroux & Puterman, 1992). The Bayesian Information Criterion 

(BIC) and Akaike Information Criterion (AIC) and computed using Equations 23 & 

24, respectively.  

 

                               𝐵𝐼𝐶 =  ln(�̂�) − 
1

2
ln(𝑛) ∗ 𝑘                                (23) 

 

                                       𝐴𝐼𝐶 =  ln(�̂�) − 𝑘                                           (24) 

    

 

Where: �̂� is the maximized value of the likelihood function of the model 𝜙. 

The total number of data points (sequence length x number of samples) is denoted by 

n. The variable k represents the number of parameters to be estimated under the 

model. The fitted values for �̂� and 𝜃 are also taken into consideration when comparing 

the models for each precinct.  Value in the matrix  �̂� should represent a unique, 

semantically meaningful rate class that, at least vaguely, describes an arrival intensity 

for each state (i.e., high, moderate, low intensity). The transition probabilities in the 𝜃 

matrix need not be fully ergodic. However, model validity is rejected if 𝜃 contains 

closed, or absorbing states.      
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CHAPTER 4 

FINDINGS 

This chapter begins by summarizing the check-on processing time data collected 

during the U.S. 2018 Rhode Island Midterm election. A comparative analysis of 

processing times is then performed for observations within and then between 

precincts. The second half of the chapter details the implementation and evaluation of 

Poisson Hidden Markov models constructed for four precincts in Providence, Rhode 

Island. 

4.1 COMPARITIVE ANALYSIS OF CHECK-IN PROCESSING TIMES 

 

Processing time observations were collected for a total of 25 check-in stations 

across seven different polling places. The number of check-in stations varies between 

precincts, as well the number of observations recorded for each station. Table 3 

provides a general overview via descriptive statistics of processing time observations 

from the 2018 Midterms time study.  
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Precinct Poll Pad Count Average Standard 

Deviation 

1 1_1 46 59.09 24.74 

1_2 28 59.89 25.18 

1_3 47 50.55 25.56 

1_4 56 57.13 28.39 

2 2_1 40 42.40 16.98 

2_2 89 44.29 19.85 

2_3 73 48.36 21.68 

2_4 55 44.00 21.88 

3 3_1 18 60.00 28.63 

3_2 26 54.19 23.78 

3_3 40 52.53 26.44 

3_4 27 61.07 31.33 

4 4_2 16 61.63 47.41 

4_3 9 58.67 43.28 

4_4 16 70.94 42.29 

5 5_1 89 56.69 19.01 

5_2 79 60.03 17.99 

5_3 94 45.65 17.75 

5_4 65 44.14 26.24 

6 6_1 67 63.13 32.33 

6_2 58 59.83 22.38 

6_3 86 61.00 33.70 

6_4 68 49.57 18.58 

7 7_1 17 87.24 29.48 

7_2 11 105.73 36.16 
Table 3: Summary of Check-in Observations 
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4.1.1 PRECINCT LEVEL COMPARISONS 

 

The observations from each precinct are compared using a Kruskal-Wallace 

test. Table 4 summarized the results for individual precincts. 

Precinct No. 

Stations 

Total 

Observations 

Test 

Statistic 

P-Value 

1 4 177 6.82 0.078 

2 4 257 4.97 0.174 

3 4 111 2.43 0.488 

4 3 41 2.34 0.309 

5 4 327 65.77 0.00* 

6 4 279 12.57 0.006* 

7 2 28 1.799 0.180 
Table 4: Kruskal-Wallace test for Individual Precinct Observations 

   

Post-hoc testing is performed for these precincts to determine which check-in 

station observations are different and identify subsets of similar observations for 

Precincts 5 and Precinct 6. The P-values from the Dunns-Bonferroni test, Table 5, 

indicate subgroups of similar data can be formed for Precinct 5 for the first and second 

then third and fourth check-in stations. Table 6 lists the P-values for the Dunns-

Bonferroni test for Precinct 6 observations. The first, second and third stations are all 

similar. The fourth station is similar to station three but, significantly different from 

stations one and two.   

Station  1 2 3 4 

1 -1.00 1.00 1.82e-05 1.27e-07 

2 1.00 -1.00 4.07e-08 2.20e-10 

3 1.82e-05 4.08e-08 -1.00 9.96e-01 

4 1.27e-07 2.20e-10 9.96e-01 -1.00 

 Table 5: Dunn-Bonferroni test for Subgroups within Precinct 5 
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Station  1 2 3 4 

1 -1.00 1.00 1.00 9.88e-03 

2 1.00 -1.00 1.00 1.99e-02 

3 1.00 1.00 -1.00 1.83e-01 

4 9.88e-03 1.99e-02 1.83e-01 -1.00 

 

4.1.2 COMPARING BETWEEN PRECINCTS 

 

A comparative analysis is performed between each precinct to address the 

second research question posed in this study. This is performed using aggregated data 

from precincts, where all poll pads observations were found to be similar. Precincts 

with P-values less than 0.05 in the initial precinct level testing are excluded from this 

analysis (Precinct 5 and 6). The Kruskal-Wallace test was performed using aggregated 

data from precincts 1, 2, 3, 4, and 7 and confidently rejected the null hypothesis that 

all precincts were similar. P-values from a post-hoc analysis using a Dunns-

Bonferonni test, Table 7, indicate that aggegate observations from Precinct 1, 3, and 4 

are all similar to one another.Obervations from Precinct 2 and 7 were not similar to 

any other prcincts. 

 

 

 

 

 

Table 6 Dunn-Bonferroni test for Subgroups within Precinct 6 
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Precinct 1 2 3 4 7 

1 -1.00 3.06e-07 0.788 0.697 0.02 

2 3.06e-07 -1.00 3.4e-03 7.34e-03 1.86e-15 

3 7.89e-01 3.84e-05 -1.00 0.584 2.08e-02 

4 6.97e-01 7.39e-04 0.584 -1.00 3.16e-01 

7 1.93e-02 1.86e-15 0.020 3.16e-01 -1.00 

  

Figure 2 is used to visualize the distribution of the aggregated datasets using 

boxplots. The median observation time at Precinct 1 is shifted slightly to the left 

compared to the other precincts. It is noted that practically all the observations are 

within the interquartile range of all other precincts. 

 

Figure 2: Boxplot of Check-in Observation Times by Precinct 

 

 

 

 

 

 

 

 

Table 7: Dunn-Bonferroni test for Subgroups between Precincts 
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4.2 POISSON HIDDEN MARKOV MODELS 

 

Arrival rates for four precincts in Providence Rhode Island at 15-minute 

intervals using a dt-PHMM. After the prescreening procedure is completed, a 

stochastic process model is created using observations from the 2018 Midterm time 

study. A dt-PHMM then constructed for each precinct using three, four, and five 

hidden states.   The fitness of each model and output parameters are discussed. 

4.2.1 PRECINCT 1 

          Approximately 38% of the 3222 registered voters casted their ballot at Precinct 

1 Election day. Processing times at the four check-in stations were observed between 

10:30AM-12:30 PM and averaged 53 seconds. The Log KS test returned a p-value of 

0.027 for arrivals between 10:45 AM-11:00 AM. However, the null hypothesis failed 

to be rejected after the FDR correction procedure was applied. Comparing the arrival 

counts to the 75% throughput capacity in Figure 3 shows that enough capacity existed 

to prevent significant queues from forming before the check-in station.  

 
Figure 3: Arrival Rate vs. Check-in Capacity for Precinct 1 
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Initial estimates for 𝜆0 are generated for each model by applying the k-means 

clustering algorithm to the static arrival sequence. Twenty observation sequences 

generated from the EPB timestamps using a stochastic processing times generated 

from a log normal distrution based on the parameter values given in Table 2. Table 6 

gives the initial and fitted estimates for rate parameters 𝜆0 , �̂� , and �̂�, the transition 

probability matrix.    

 

 

Table 8: HMM Parameter Estimates for Precinct 1 

 

The fitted �̂�  values corresponding to Viterbi state sequence plotted against arrival 

counts for the first and second models (m=3, m=4) in Figure 4 to draw qualitative 

comparisons between the models.  

 
Figure 4: Viterbi Sequence vs. Observation Sequence for Precinct 1 

 

 

STATE 

MODEL 
M = 3 M = 4 M = 5 

𝝀𝟎 [41.2 26.1 13.2] [41.2 28.3 18.9 9.0] [ 43.5 31.7 24.1 17.1 9.0] 

�̂� [34.1 22.9 13.4] [42.4 31.4 22.9 13.3] [ 42.8 31.5 23.8 16.4 4.51] 

�̂� 
[
0.983 0.164 0
0.052 0.839 0.109

0 0.103 0.897
] 

 

0.580 0.420
0.107

0
0

0.879
0
0

0 0
0.014
0.882
0.109

0
0.118
0.891

  

 
 
 
 
 
0.592
0.103

0
0
0

0.408
0.879

0
0
0

0
0.018
0.937
0.019

0

0
0

0.063
0.932

0

0
0
0

0.049
1  

 
 
 
 

 

LOG 

LIKELIHOOD 
-3543.37 -3495.25 -3407.92 

BIC -3560.74 -3519.57 -3439.18 
AIC -3548.38 -3502.25 -3416.92 
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The third model (m=5) is not considered to be valid due to the transition probability 

for the fifth state converging to 1. The 4-state model is marginally better than the 3-

state in terms of the BIC and AIC scores. The additional state-space allows the 4-state 

model to account for the peak arrival period in the early morning. Nevertheless, the 

Viterbi state sequences for both models appear to be an accurate representation of the 

observation sequences. 

 

4.2.2 PRECINCT 2 

 

Precinct 2 has 3218 registered voters and experienced ~53% on Election day. 

Check-in processing time observations were collected at this precinct between 

11:30AM-2:55 PM. The four check-in servers had an average processing time of 42 

seconds.  

  A static series of arrival times are generated by subtracting the average 

processing time from each EPB timestamp. Applying the Log KS test to the data in 

15-minute intervals initially rejects the intervals with P-values less than 0.05 listed in 

Table 7. This rejection is overturned using the FDR correction procedure. It is 

concluded that pseudo-start times adequately represent a Poisson process. 

Time Interval P-value 

7:15-7:30 AM 0.0153 

7:45-8:00 AM 0.0426 

8:15-8:30 AM 0.0153 

12:15-12:30 PM 0.0451 

3:30-4:00 PM 0.0344 

4:15-4:30 PM 0.0299 

6:45-7:00 PM 0.0294 
Table 9: P-values less than 0.05 for Log-KS test for Precinct 2 
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The average observed processing time is used to calculate a deterministic 

throughput rate, shown by the dashed line in Figure 3. The dashed line displays 75% 

of the deterministic throughput capacity. Inspection of Figure 5, showing the arrival 

count vs. estimated capacity, provides evidence to support the assumption that start 

times may be used as an arrival time proxy because the wait time to check-in is 

negligible.  

 
Figure 5: Arrival Rate vs. Check-in Capacity for Precinct 2 

 

The static arrival sequence is clustered using the k-means algorithm. Cluster 

centers are used as initial estimates for the arrival rate parameter 𝜆0. A stochastic 

processing time model is used to generate an arrival observation sequence {Ot}. A 

total of 20 samples sequences are used to train each model. Table 8 gives the initial 

and fitted parameter estimates for rate parameters 𝜆0 and �̂�  as well as the transition 

probability matrix.   

 

Table 10: HMM Parameter Estimates for Precinct 2 

 

STATE 

MODEL 
M = 3 M = 4 M = 5 

𝝀𝟎 [52.6 28.3 11.2] [55.4 37.4 26.2 11.2] [ 55.4 40.8 31.2 24.6 11.2] 

�̂� [50.3 28.5 11.1] [56.6 42.3 27.4 11.2] [56.6 44.2 36.6 26.7 11.2] 

�̂� 
[
0.925 0.075 0
0.030 0.850 0.120

0 0.740 0.260
] 

 

0.825
0.130

0.175
0.843

0
0

0.03
0

0
0.026

0
0

0.839
0.739

0.128
0.261

  

 
 
 
 
 
0.891
0.115

0
0
0

0.109
0.833

0
0
0

0
0.052
0.868

0
0

0
0

0.132
0.868
0.734

0
0
0

0.132
0.266 

 
 
 
 

 

LOG 

LIKELIHOOD 
-3773.50 -3728.91 -3505.45 

BIC -3790.86 -3753.22 -3536.71 
AIC -3778.49 -3735.91 -3514.45 
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The fitted �̂� values corresponding to Viterbi state sequence plotted against arrival 

counts for each model in Figure 6 to draw qualitative comparisons between the 

models. 

 
Figure 6: Viterbi Sequence vs. Observation Sequence for Precinct 2 

 

The BIC and AIC values indicate the dt-PHMM with five states (m=5) has the 

highest probability of observing the training sequences. The Viterbi state sequences 

for all three models is nearly identical for all three models. Excluding the low points at 

12:15, 1:45, and 3:00, the observation sequence appears relatively stable during the 

second half of the day. The first and second models (m=3, m=4) lack the state space to 

account for the local variability compared to the 5-state model.  

4.2.3 PRECINCT 3 

Approximately 55% of this precinct’s 3130 registered voters casted their ballot 

at Precinct 3 Election day. Check-in processing times from all four stations were 

collected from 6:30 PM-7:30 PM. The average observation time of 51 seconds was 

subtracted from each EPB timestamp to generate a static series of arrival times. The 

7:45 PM-8:00 PM time block was the only time interval rejected the null hypothesis 

for the Log- KS test with a P-value = 0.0176 but was deemed to be a false positive 

after FDR correction. 
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 The deterministic throughput rate and 75% throughput capacity estimates were 

calculated based on a check-in process time of 51 seconds. The static arrival counts 

plotted in Figure 7 exceed the 75% capacity several times but do reach 100%. The 

negligible wait assumption is upheld by poll worker testimony that line formation was 

not significant at any point during the day.   

 

 
Figure 7: Arrival Rates vs. Check-in Capacity for Precinct 3 

 

Initial estimates for the rate parameter 𝜆0 were computed based on the k-means 

clustering algorithm for dt-PHMM models with three, four, and five states. A total of 

20 observation sequences were generated from the EPB timestamps based on a 

stochastic process time model.  Table 9 gives the initial and fitted parameter estimates 

for rate parameters 𝜆0 and �̂� as well as the transition probability matrix.   

 

  

STATE 

MODEL 
M = 3 M = 4 M = 5 

𝝀𝟎 [56.7 38.9 22.6] [60.2 43.9 27.5 16.3] [ 61.2 44.9 34.4 25.8 15.8] 

�̂� [57.4 39.7 23.3] [60.5 45.7 27.4 15.0] [ 61.8 46.9 40.7 26.7 14.8] 

�̂� 
 [

0.694 0.306 0
0.155 0.720 0.120

0 0.008 0.992
] 

 

0.511
0.118

0.489
0.815

0
0

0.043
0

0
0.067

0
0

0.899
0.144

0.058
0.856

  

 
 
 
 
 
0.776

0
0.237

0
0

0
0.918
0.118

0
0

0.224
0

0.645
0
0

0
0.082

0
0.947
0.136

0
0
0

0.053
0.864 

 
 
 
 

 

LOG 

LIKELIHOOD 
-3773.97 -3851.27 -3584.45 

BIC -3791.34 -3875.59 -3615.82 
AIC -3778.97 -3858.27 -3593.55 

Table 11: HMM Parameter Estimates for Precinct 3 
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The fitted �̂� values corresponding to Viterbi state sequence plotted against arrival 

counts for each model in Figure 8 to draw qualitative comparisons between the 

models. 

  
Figure 8: Viterbi Sequence vs. Observation Sequence for Precinct 3 

 

The first model (m=3) fits the observed counts comparatively well for the first 

half of the sequence but fails to account for any variation or trend in the second half of 

the day. The second model (m=4) underestimates the early morning peak but appears 

to be a good fit for the rest of the day. The BIC and AIC scores indicate that the 5-

state model performs best. However, the third state is only used twice in the Viterbi 

sequence. Furthermore, the fitted value �̂� 2= 46.9 is very close to fitted value �̂� 3 =

40.7 suggesting that using five states may be superfluous under the current model.  

4.2.4 PRECINCT 4 

Approximately 24% of the 3276 registered voters in Precinct 4 casted their 

ballot in-person Election day in 2018. Check-in processing time observations were 

collected for the five stations between 7:00 AM-9:00 AM. period. One of the check-in 

stations was only utilized three times during the observation period. These 

observations were not included in the analysis because two of them were instances 

where the voters casted a provisional ballot which required additional services from 

the clerk. The other three stations had an average observed time of 55 seconds. After 
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subtracting the average processing time from the EPB timestamps, the Log KS found 

that intervals listed in Table 10 had P-values less than 0.05. Application of the FDR 

correction procedure concluded theses intervals to be false positives. The null 

hypothesis that emissions from all intervals are a Poisson process failed to be rejected 

for the entire dataset. 

Time Interval P-value 

1:15-1:30 PM 0.0385 

1:30-1:45 PM 0.0176 

6:00- 6:15 PM 0.0017 

6:15-6:30 PM 0.0432 
Table 12: P-values less than 0.05 for Log-KS test for Precinct 4 

The arrival counts for each 15-minute interval are well below the deterministic 

throughput rate, and 75% capacity displayed in Figure 9. 

 
Figure 9: Arrival Rate vs. Check-in Capacity for Precinct 4 

 

The initial rate parameter values, 𝜆0 , are shown in Table 11 for all three 

models. A total of 20 observation sequences were generated to train the models. The 

fitted values for the arrival rate and transition probability matrixes are provided in 

Table 11 for the three-state model. The Baum-Welch algorithm failed to converge to 

exact parameter values for �̂� and  in the four and five-state models. Therefore, the 

values listed in Table 11 are mere approximations. 
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The arrival counts are plotted against the arrival rates corresponding to the Viterbi 

state sequence for the 3-state model in Figure 10.  

 
Figure 10: Viterbi Sequence vs. Observation Sequence for Precinct 4 

After inspecting the most likely state sequence provided by the Viterbi 

algorithm for the 3-state model, it is noted that only the two states corresponding with 

lower rates are predicted in the Viterbi state sequence. The state with the highest 

arrival rate is not reached despite the apparent increase in arrivals in the latter part of 

the day. 

 

 

 

 

 

 

 

 

 

 

STATE 

MODEL 
M = 3 M = 4 M = 5 

𝝀𝟎 [23.4 16.6 10.0] [23.8 17.7 13.1 8.5] [ 23.8 17.7 13.1 8.5 8.3] 

�̂� [20.1 15.1 9.6] [25.4 20.1 15.2 9.6] [ 24.1 16.9 11.6 4.3 4.2] 

�̂� 
[
0.988 0.012 0
0.002 0.986 0.012

0 0.022 0.978
] 

 

0.626 0.374
0
0
0

0.989
0.002

0

0 0
0.011
0.986
0.019

0
0.012
0.981

  

 
 
 
 
 
0.871
0.008

0
0
0

0.129
0.981
0.017

0
0

0
0.011
0.983

0
0

0
0
0

0.798
0.752

0
0
0

0.202
0.248 

 
 
 
 

 

LOG 

LIKELIHOOD 
-3238.02 -3269.28 -3247.02 

BIC -3255.39 N/A N/A 
AIC -3243.02 N/A N/A 

Table 13: HMM Parameter Estimates for Precinct 4 
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CHAPTER 5 

CONCLUSION 

5.1 CHECK-IN PROCESSING TIME CONCLUSIONS 

 

 The comparative analysis within precincts demonstrated similar results for 

most precincts. The check-in station observations at individual precincts were 

statistically similar to one another at five out of seven locations. At Precinct 5, three 

out of the four stations were statistically similar while the fourth averaged ~10 seconds 

faster. Precinct 6 check-in stations split into two subgroups of similar observations. 

Additional information about the polling place layout and volunteer testimonials are 

needed to speculate the underlying factors causing these differences. Nevertheless, 

using a single process model to represent all check-in stations is concluded to be a 

reasonable assumption. 

The comparative analysis between precincts concluded that the check-in 

processing time at 4 out of 5 locations are statistically similar. Observations at the fifth 

location were only five seconds faster on average. It is tentatively concluded that the 

use of a generalized check-in process model would not be an unreasonable assumption 

when constructing Hidden Markov Models from EPB data where precinct specific 

observations are not available. 

5.2 HIDDEN MARKOV MODEL CONCLUSIONS 

A discrete-time Hidden Markov model was successfully able to estimate 

arrival rates of four precincts. The most appropriate size for the hidden state-space 

varied between precincts. The strengths and weakness of the three, four, and five-state 

models are discussed for each precinct. 
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At Precinct 1, the three and four-state models were valid. The Viterbi sequence 

in both cases produced similar results models. The five-state model was rejected due 

to the transition probability in the last state fully converging to a single value. Arrivals 

at Precinct 1 dropped off significantly after 7:15 PM. It is speculated that the 

additional state-space in this model was used to account for these extremely low 

values at the end of the sequences. The inclusion of a lower bounding constraint of 

some sort would be beneficial for this specific model. 

The dt-PHMMs constructed for Precinct 2 are considered valid models for the 

three, four, and five-state cases. The Viterbi state sequences for three and four-state 

models estimated the observation sequences reasonably well. The five-state performs 

considerably better than the previous two models in term of their AIC and BIC scores. 

The additional state-space allows the five-state model to better account for the 

variability throughout the day-especially in the late morning period.   

 The dt-PHMMs constructed with three and four hidden states are valid for 

Precinct 3. The Viterbi sequence produced by the three-state model was better able to 

represent the three peaks during the first half of the day but grossly underestimated the 

variability later. The Viterbi sequence of the four-state model performed moderately 

well in the morning but did a far better just depicting the variability in the second half 

of the day. The additional state-space in the last model is considered to superfluous 

because the third state is only seen twice in the Viterbi sequence. Furthermore, there is 

no meaningful difference between �̂� 2 and �̂� 3.  

 Arrivals to Precinct 4 were unique in comparison to the other precincts. The 

three-state dt-PHMM was the only model that fully converged in this test case. It is 
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noted that the state with the highest arrival rate is not reached in the Viterbi sequence 

despite an apparent increase in arrivals later in the day. The apparent oscillation in the 

observation sequence suggests that a continuous-time model would be more 

appropriate in this case. It is concluded that the observation sequence is marginally 

aperiodic, and the discrete-time model is still considered to be a valid model. 

5.3 LIMITATIONS 

 

 There are, however, some limitations inherent to the modeling assumptions 

used in this research. Firstly, the procedure used to ascertain arrival times is only valid 

when the arrival rates are less than the overall throughput capacity of the voting 

system. The processing time distributions are based solely on observations of the 

standard check-in process and do not include times where voters required additional 

services. Although these cases occur infrequently, they can last significantly longer 

than the standard check-in process. The 75% capacity is used in the second 

prescreening to account for the possibility of one of the check-in stations being 

occupied by one voter for the entire 15-minute segment. There is also an implicit 

assumption that the check-in station is the bottleneck of the operation. While this 

assumption has historically been accepted, the implementation of EPB has 

dramatically changed the way voters flow throughout the system (Haas, 2014). A 

more robust procedure for validating these assumptions is needed in order to increase 

the extensibility of this work. 

The second limitation stems from the requirement that emissions of Poisson 

processes must strongly stationary and exponentially distributed. The FDR correction 

(Benjamini & Hochberg, 1995) is a less conservative procedure, thereby relaxing the 
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overdispersion constraint. While this is acceptable while using pure count data (Paroli, 

Redaelli, & Spezia, 2002) there is still some risk in the assumption that state-changes 

occur at discrete intervals. 

The third limitation is that a theoretically sound procedure for model validation 

has yet to be established (Paroli, Redaelli, & Spezia, 2002). A residual analysis cannot 

be performed because it is not possible to compute the residuals from an unobserved 

Markov chain (Paroli, Redaelli, & Spezia, 2002). Additional time studies (collecting 

actual arrivals over the entire day) are required to test this work within a broader scope 

of use-cases. 

5.4 FUTURE WORK 

This research study establishes a baseline procedure for estimating voter 

arrival behaviors through Hidden Markov Models. The scope of future work on the 

immediate horizon will focus on reducing the workload to instantiate and train new 

model instances. A bootstrapping method will be explored for automatically adjusting 

input parameter values when the Baum-Welch algorithm fails to converge. Alternative 

implementations including but not limited to continuous-time hidden Markov models, 

time-dependent hidden Markov models, mixture models, and Kalman Filters.    

Future work in the near term will also focus on creating a more robust 

prescreening procedure. The data from individual Poll Pads will be used to explore the 

relationship between the mean and variance of time between successive observations 

in each time block. When the arrival rate is well below throughput capacity the time in 

between successive timestamps are expected to be exponentially distributed. As the 

arrival rate increases, the mean and variance will decrease proportionately until a 
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queue begins to form. As the arrival rate reaches throughput capacity, a new voter will 

likely arrive almost immediately after a poll pad becomes available. In this case, the 

time deltas are expected to come from the same lognormal distribution as the check-in 

process time. A Ratio of Maximized Likelihood (RML) test illustrated in Gupta, 

Rameshwar, & Kundu (2005) can be used to discriminate between a Lognormal or 

Generalized Exponential distribution. This will be useful when developing 

experimental missing data methods for estimating the arrival rates beyond the 

threshold of the check-in capacity station. 
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APPENDICES 

APPENDIX A 

 
Figure A1: Voter Technology Project: Graves-Yuan Tool 

 

 
Figure A2: Voter Technology Project: Pelczarski Tool 

 

 

APPENDIX B 

Data Collection Instructions (2018) 
General Notes 

● Meet with the Moderator and ask where you can stand/sit for data collection 

(try to make sure you have a view to all stations). 
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● Locate the station you plan to observe (i.e., Check-in poll pads, voting booths, 

scanners). 

● DO NOT GO PAST THE CHECK-IN AREA! 

● Try to track as many voters as you can throughout the three hours. If you miss 

a voter entering your station, skip that observation. If you lose track of the 

voter, use the Undo Last feature to remove the observation. 

Data Collection by Station 

● Arrival and Random Sampling 

o As voters arrive at the polling place (enter the room in which voting 

takes place), click the Voter Arrival button on the calculator.  

o As frequently as possible, track a voter throughout the entire voting 

system. Do this by clicking start as they arrive (as defined above). 

When the voter finishes scanning the ballot, click the Stop button for 

that voter. 

o There are two timers to track voters throughout the voting system. A 

text box is provided to input identifiers so that voters are tracked 

consistently. 

● Check-in 

o Once the voter is called up by the supervisor or approaches the check-

in table, click the Start button on the timer.  

o Once the voter has received their ballot, is sent away, or moves to the 

clerk, click the Stop button.  

o Keep track of each poll pad consistently, so that poll pad one on the 

spreadsheet always has observations from the same poll pad in use. If 

there are several poll pads in the polling place, number them from left 

to right before data collection and use this consistently throughout.  

● Voting booth 

o As soon as a voter approaches a booth, click the Start button on the 

timer.  

o When the voter exits the booth (when they begin to walk away), click 

the Stop button. 

o There will likely be many voting booths at the polling location. This 

timer allows you to track up to five voters at a time.  

o Use the text box field to input identifiers to help you keep track of 

which voter is which.  

o The number on the timer does not need to be assigned to specific 

booths (like check-in) but rather to a specific voter. 

● Scanner  

o As soon as the voter approaches the DS200 scanning machine, click the 

Start button on the timer. 

o When the voter begins to walk away from the scanner, click the Stop 

button. 
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o If a voter has an error and must correct the ballot (walks away but does 

not exit the polling location) press stop. Their next scanning attempt 

will be treated as a new observation. 

o If anything unusual happens (machine breakdowns, technicians fixing 

scanner, etc.) try to take a note of this.  

● Completing Data Collection 

o At the end of the three hours, save the Excel file with your name, 

station, and the precinct at which you collected data 

(“LastnameStationPrecinctNumber.xlsm”). 

 

If anyone needs to use the restroom, have another member track your station in your 

absence 

 

 

 

Figure A.3: Check-In process timer used in the 2018 Time Studies 
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