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Abstract
This paper presents a design and implementation of a neural-machine interface (NMI) for artificial
legs that can decode amputee’s intended movement in real time. The newly designed NMI
integrates an FPGA chip for fast processing and a microcontroller unit (MCU) with multiple on-
chip analog-to-digital converters (ADCs) for real-time data sampling. The resulting embedded
system is able to sample in real time 12 EMG signals and 6 mechanical signals and execute a
special complex phase-dependent classifier for accurate recognition of the user’s intended
locomotion modes. The implementation and evaluation are based on Altera’s Stratix III 3S150
FPGA device coupled with Freescale’s MPC5566 MCU. The experimental results for classifying
three locomotion modes (level-ground walking, stairs ascent, and stairs descent) based on data
collected from an able-bodied human subject have shown acceptable performance for real-time
controlling of artificial legs.

I. Introduction
The technology of neurally controlled artificial limbs has advanced rapidly in recent
biomedical research [1–6]. Compared with computerized prostheses without neural control,
neurally controlled artificial limbs perform and feel like natural limbs. A neural-machine
interface (NMI) that deciphers neural signals from amputees to identify the users’ intended
movements is the center of the neural control system for artificial limbs. The NMI needs to
be realized in an embedded computer so as to be carried by amputees.

Electromyographic (EMG) signals recorded from muscles are effective electrical signals for
expressing movement intent [7]. While EMG-based NMI has been tested clinically for
artificial arm control [1–2], there has been no commercial EMG-controlled prosthetic leg
available. This is partly because the EMG signals recorded from leg muscles are highly non-
stationary. Accurately decoding the user intent from such signals is difficult. Furthermore,
the accuracy in identifying the lower-limb movement is essential because any incorrect
decision may cause the user to stumble and even fall. To address these challenges, our
research group has developed a phase-dependent EMG pattern recognition (PR) strategy to
dynamically classify the user’s locomotion modes [3]. A novel, neuromuscular-mechanical
fusion technique that incorporates neuromuscular control information in the form of EMG
signals and mechanical forces/moments acting on prostheses has been proposed to further
improve the accuracy of the PR algorithm [4].

The realization of our new PR strategy on PC shows a high accuracy in identifying user’s
locomotion modes [4]. Although the software implementation on PC is useful to verify the
correctness of the neural decoding algorithm, it is not applicable for amputees to wear in real
life. Realizing the NMI in an embedded computer is required and challenging because of
computation complexity of the PR algorithm coupled with real-time requirement of
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controlling artificial legs. Such an embedded system should provide high computation speed
for the PR algorithm since any delayed decision may result in unsafe use of the prosthesis.
Memory resources need to be carefully managed because fast memory resources on
embedded computers are usually very limited. Effective timing control is also required to
guarantee smooth control of artificial legs. The execution time of the neural machine
interfacing algorithm for one analysis window is usually expected to be less than 20 ms to
ensure the safe use of artificial legs.

Our prior NMI design was implemented on a Freescale’s MPC5566 132 MHz 32 bits
microcontroller unit (MCU) that can accurately classify sitting and standing in real-time [5].
The measured delay for generating a decision in one analysis window with 7 EMG inputs
was around 80 ms [5]. If more tasks such as walking on different terrains are considered,
more EMG channels and auxiliary mechanical signals need to be collected, and a more
complicated phase-dependent classifier needs to be applied for accurately determining the
user’s locomotion modes. Existing embedded systems generally cannot be directly applied
to such a system for NMI to provide real time performance. To tackle this problem, we
designed a parallel PR algorithm tailored to the FPGA device for classifying sitting and
standing [6]. The offline measurements based on Altera Stratix II GX EP2SGX90 FPGA
device showed a speedup of around 280X over the software implementation based on
MPC5566 MCU [6], implying that FPGA-based parallel design is a promising approach to
realize real-time NMI for artificial legs.

This paper presents an integrated design of a special purpose embedded system realizing a
complete NMI for artificial legs. It has an MCU with multiple built-in ADCs for real-time
data sampling and dispatching and an FPGA device for fast data decoding. The
neuromuscular-mechanical fusion-based phase-dependent PR algorithm is parallelized and
mapped to the FPGA device. The implementations are based on Freescale’s MPC5566
evaluation board (EVB) and Altera’s DE3 education board with a Stratix III 3S150 FPGA
device. The experimental results for classifying three locomotion modes (level-ground
walking, stairs ascent, and stairs descent) with 12 EMG signals and 6 mechanical signals
have shown that the average execution time of PR for one analysis window is 0.25 ms. A
38X speedup is observed over the software implementation on a PC with 3.2 GHz Intel i3
processor and 6GB RAM.

II. Embedded System Architecture
A. System Architecture

The system architecture of the new NMI for artificial legs is shown in Fig. 1. The embedded
NMI senses signals from two physical systems a human neuromuscular system and a
mechanical prosthetic leg, and decodes these signals to control the prosthesis. The NMI
contains two modules: a MCU module for data sampling and dispatching, and an FPGA
module for fast data decoding and pattern recognition. Data are transferred between these
two modules using serial peripheral interface (SPI).

1) MCU Module—Multichannel EMG signals are collected from multiple electrodes
mounted on patient’s residual lower-limb muscles. Mechanical forces/moments are recorded
from a 6 degrees-of-freedom (DOF) load cell mounted on the prosthetic pylon. The EMG
signals and the mechanical signals are preprocessed by filters and amplifiers and then
simultaneously streamed into on-board ADCs of the MCU. The direct memory access
(DMA) engine transfers the digitized input data from the ADCs to the RAM without direct
involvement of the processor. Data are then sent to the FPGA module through SPI bus.
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2) FPGA Module—Once the EMG and mechanical data are received by the FPGA device,
they are stored in the on-chip RAM and segmented by sliding analysis windows with a fixed
window length and a window increment. The FPGA system works in two modes: classifier
training and pattern recognition. In the classifier training mode, a large amount of
continuous analysis windows are collected to train the classifier. The parameters of the
trained classifiers are stored in the RAM for later use in the pattern recognition mode. In the
pattern recognition mode, analysis windows are processed continuously in real-time. One
classification decision is produced for each window to identify the user’s intended
movement.

B. Phase-Dependent Pattern Recognition
The architecture of the neuromuscular-mechanical fusion-based phase-dependent PR
strategy for artificial legs is shown in Fig. 2. To identify the user intent, we need first extract
features from each input channel and then choose a classifier to assign the intended
locomotion mode. The phase-dependent classifier consists of a gait phase detector and
multiple classifiers [3]. Each classifier is trained for a specific gait phase. In the real-time
pattern recognition process, current gait phase is first determined by the gait phase detector
in each analysis window, and then the classifier associated with that specific phase is
adopted to do the classification.

1) Gait Phase Detection—In this study, four gait phases are used: initial double limb
stance, single limb stance, terminal double limb stance, and swing [4]. The real-time gait
phase detector is built based on the vertical ground reaction force (GRF) measured from the
6-DOF load cell.

2) Feature Extraction—Features are extracted in every analysis window from each input
channel. In this study, four EMG time-domain (TD) features (mean absolute value, number
of zero crossings, waveform length, and number of slope sign changes) are used [8]. For the
mechanical forces/moments, the mean value is computed from each individual DOF as the
mechanical feature. The features extracted from each channel are fused and normalized into
one feature vector for each analysis window. The feature vector is then sent to the classifier
for pattern recognition.

3) Pattern Recognition—A simple linear discriminant analysis (LDA) classifier is
adopted in this study because of its computation efficiency for real-time prosthesis control
and the comparable accuracy to more complex classifiers [5, 9].

III. System Implementation & Prototype
The system implementation is based on Freescale’s MPC5566 132 MHz 32 bits MCU with
the Power Architecture™ and Altera’s DE3 education board with a Stratix III 3S150 FPGA
device. The prototype board for our NMI system is shown in Fig. 3. This paper only presents
the implementation and experimental results of the PR algorithm for testing phase. We
choose the window length and the window increment to be 160 ms and 20 ms, respectively.
The implementation of the classifier training algorithm will be presented in the future work.

A. Timing Control and Memory Management
The MPC5566 MCU has 40 on-chip ADC channels with 12 bit resolution, 32 KB unified
cache and 128 KB SRAM. It also has four SPI modules that each can be configured as either
an SPI master or a slave, and a DMA controller that supports up to 64 channels. The ADC
channels samples EMG signals and mechanical forces/moments at the rate of 1000 Hz.
Therefore, for each channel every analysis window contains 160 data samples. Twenty new
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samples are streamed into the MCU in every window increment. To guarantee the smooth
control of the prosthesis, efficient timing control and memory management is required. Fig.
4 shows a simplified diagram of our strategy for one data channel. In the diagram, we use
two RAM blocks, B1 and B2 to store the input data. Both blocks have the capacity of 20
data samples. While B1 is used for storing new incoming data from the ADC module, the
old data in B2 are being transferred to the FPGA device through the SPI bus for pattern
recognition. In this manner, real-time data sampling for new analysis window and pattern
recognition for the current window can be done simultaneously. Since the sampling time for
filling up one RAM block is 20 ms, the total execution time of SPI transfer and PR
computation must be less than 20 ms to ensure the smooth data streaming and prosthesis
control. As shown in Fig. 4, if B1 is filled up with new samples, then it will switch roles
with B2. At this time, new data will be stored in B2, and data in B1 will be sent to the FPGA
device. On the FPGA device, a similar circular buffer is also designed to efficiently utilize
the memory resources.

B. Task Parallelism and Pipelining
A new phase-dependent PR algorithm is designed and implemented based on Altera’s
Stratix III 3S150 FPGA device, to make the best use of the parallelism of FPGAs. The
algorithm is implemented using Impulse C C-to-HDL CoDeveloper software [10]. Fixed-
point data format is adopted for non-integer data in the implementation.

Fig. 5 shows the data flows and task stages of the PR algorithm. In our design, tasks are
divided into multiple processes that can be executed in parallel if there are no data
dependencies or in pipeline if a sequence of small processes are executed repeatedly. The
data streaming between different processes is done by dual-port first-in-first-out (FIFO)
RAM buffers. A single process can be associated with multiple input and output FIFO
buffers. Signals are used to synchronize a group of processes if needed.

The largest benefit obtained from the FPGA design is the high parallelism of the PR
algorithm. It is observed that the task procedure for each individual channel from data
sampling, storing, and loading, to feature extraction is independent and almost identical so
that all the channels can be processed in parallel. This greatly reduces the computation time
for feature extraction, which is very important because in the software implementation of the
PR algorithm, we found the computation time for feature extraction counted for 90% of the
total execution time.

IV. Experimental Results
This study was conducted with Institutional Review Board (IRB) approval at the University
of Rhode Island and informed consent of subjects. To verify the correctness of the FPGA-
based PR algorithm and compare the performance of the new NMI design with our previous
software implementation on PC, we used the same dataset to run on both platforms. The
software implementation is based on a PC with Intel i3 3.2 GHz processor and 6 GB RAM,
designed using Matlab programming tool. The testing dataset was previously collected from
an able-bodied subject for identifying three locomotion modes including level-ground
walking, stairs ascent, and stairs descent. The parameters of the trained classifiers were
manually loaded into the NMI systems beforehand. Twelve input channels of EMG signals
and six channels of mechanical forces/moments were used as the baseline configuration. The
SPI clock was set to 1 MHz and synchronized between the MPC566 EVB and the DE3
board. The SPI data transferring time for every window increment was less than 6 ms. The
resource utilization summary of the FPGA implementation is listed in Table 1.
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We tested both the FPGA implementation and the software implementation for 1000
continuous analysis windows and found their classification results were completely
matched. Table 2 shows comparison of the average execution time of the PR algorithm for
one analysis window. Besides the baseline configuration with 12 EMG channels and 6
mechanical channels, we also tested the performance of another configuration with 6 EMG
channels and 3 mechanical channels on both platforms to make a better comparison.

From Table 2 we can see, to classify one analysis window, the computation of PR for our
new NMI system took less than 0.3 ms. The total execution time of SPI data transfer and PR
computation was significantly less than the window increment (i.e. 20 ms), which ensured
the smooth control of prosthesis. When the NMI system had 6 EMG channels and 3
mechanical channels, our new FPGA-based design gave a 27X speedup over the software
implementation. When the number of channels doubled, the performance of the new design
was even better, a 38X speedup was observed compared with the software implementation.
This is because of the parallelism of FPGAs. The results are promising and imply that even
more neural signals and mechanical signals can be effectively handled by our designed
embedded system for identifying more complex activities, which is one of our future
research tasks.

V. Conclusions
In this paper, a new embedded system has been designed and implemented for
neuromuscular-mechanical fusion-based NMI for artificial legs. It integrates an MCU for
real-time data sampling of multichannel EMG signals and mechanical signals and an FPGA
device for fast PR computation. A parallel phase-dependent PR algorithm has been
developed and implemented on Altera’s Stratix III 3S150 FPGA device. The functionality of
the new design for accurately classifying three locomotion modes including level-ground
walking, stairs ascent, and stairs descent have shown great improvements over our prior
work that can only classified sitting and standing. The performance of the FPGA-based
implementation of PR algorithm was 38X faster than the software implementation on a PC
with Intel i3 3.2 GHz processor. Future work includes real-time testing of our new NMI
system on amputee subjects, minimizing power consumption, and increasing reliability.

Acknowledgments
This work is supported by National Science Foundation NSF/CPS #0931820, NIH #RHD064968A and NSF/CCF
#0811333.

References
1. Parker PA, Scott RN. Myoelectric control of prostheses. Critical reviews in biomedical engineering.

1986:283–310. [PubMed: 3512166]

2. Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control.
IEEE Trans Biomed Eng. 2003:848–854. [PubMed: 12848352]

3. Huang H, Kuiken TA, Lipschutz RD. A strategy for identifying locomotion modes using surface
electromyography. IEEE Trans Biomed Eng. 2009:65–73. [PubMed: 19224720]

4. Zhang, F.; DiSanto, W.; Ren, J.; Dou, Z.; Yang, Q.; Huang, H. A Novel CPS System for Evaluating
a Neural-Machine Interface for Artificial Legs. presented at ICCPS’11; Chicago, USA. April 2011;

5. Huang, H.; Sun, Y.; Yang, Q.; Zhang, F.; Zhang, X.; Liu, Y.; Ren, J.; Sierra, F. Integrating
neuromuscular and cyber systems for neural control of artificial legs. ICCPS’10; Stockholm,
Sweden. April 2010;

6. Zhang, X.; Huang, H.; Yang, Q. Design and Implementation of A Special Purpose Embedded
System for Neural Machine Interface. ICCD’2010; Amsterdam, the Netherlands. October 2010;

Zhang et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2013 June 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Basmajian, JV.; De Luca, CJ. Muscles alive: their functions revealed by electromyography. 5.
Baltimore: Williams & Wilkins; 1985.

8. Hudgins B, Parker PA, Scott RN. A new strategy for multifunction myoelectric control. IEEE Trans
Biomed Eng. 1993:82–94. [PubMed: 8468080]

9. Huang H, Zhou P, Li G, Kuiken TA. An analysis of EMG electrode configuration for targeted
muscle reinnervation based neural machine interface. IEEE Trans Neural Syst Rehabil Eng.
2008:37–45. [PubMed: 18303804]

10. Impulse, C. CoDeveloper from Impulse Accelerated Technologies. http://
www.impulseaccelerated.com/

Zhang et al. Page 6

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2013 June 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.impulseaccelerated.com/
http://www.impulseaccelerated.com/


Fig. 1.
System architecture of designed NMI for artificial legs.
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Fig. 2.
Architecture of neuromuscular-mechanical fusion-based PR algorithm for artificial legs.
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Fig. 3.
The prototype board based on MPC5566 EVB and DE3 education board.
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Fig. 4.
Timing control and memory management of real-time control algorithm for one channel.
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Fig. 5.
Task stages and data flows of phase-dependent PR.
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Table 1

Stratix III 3S150 Resource Utilization

Resource Testing

Combinational ALUTs 36,656/113,600 (32%)

Memory ALUTs 1,504/56,800 (3%)

Registers 46,713/113,600 (27%)

Block Memory bits 902,866/5,630,976(16%)

DSP blocks 104/384 (27%)
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Table 2

Comparison of PR execution time

FPGA Software Speedup

6 EMG 3 Mech. 0.22 ms 6.0 ms 27x

12 EMG 6 Mech. 0.25 ms 9.5 ms 38x
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