
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Dissertations 

2022 

DETECTING SLOW SLIP EVENTS FROM SEAFLOOR PRESSURE DETECTING SLOW SLIP EVENTS FROM SEAFLOOR PRESSURE 

DATA USING MACHINE LEARNING DATA USING MACHINE LEARNING 

Bing He 
University of Rhode Island, hebingjlu@gmail.com 

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
He, Bing, "DETECTING SLOW SLIP EVENTS FROM SEAFLOOR PRESSURE DATA USING MACHINE 
LEARNING" (2022). Open Access Dissertations. Paper 1451. 
https://digitalcommons.uri.edu/oa_diss/1451 

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open 
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please 
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F1451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/1451?utm_source=digitalcommons.uri.edu%2Foa_diss%2F1451&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


DETECTING SLOW SLIP EVENTS FROM SEAFLOOR PRESSURE DATA 

USING MACHINE LEARNING 

BY 

BING HE 

 

 

 

 

 

 

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN 

GRADUATE SCHOOL OF OCEANOGRAPHY 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2022 



  

DOCTOR OF PHILOSOPHY DISSERTATION 

 
OF 

 
BING HE 

 

 

 

 

 

 

 

APPROVED:  
 

Dissertation Committee: 
 

Major Professor Meng (Matt) Wei 
 
   Yang Shen 
 
   Kathleen Donohue 
 
   Marco Alvarez 
 

                                                                 Brenton DeBoef 
                                                                 DEAN OF THE GRADUATE SCHOOL 

 
           

 
 
 
 
 
 
 

UNIVERSITY OF RHODE ISLAND 

2022  



  

ABSTRACT 

Largest earthquakes with destructive tsunamic waves mostly occurred in 

the offshore subduction zone, causing massive fatalities and significant property 

losses. Due to the limitations of the seafloor geodesy, it is hard to know the stress 

status offshore, like the terrestrial geodesy. The shallow slow slip event (SSE) 

occurrence provides an approach to studying the shallow subduction zone stress 

status and investigating the area and size of the potential large earthquake and 

following tsunamis. SSE is a bridge linking the slip rates from aseismic creeping 

near the trench to the highly locked region in the seismogenic zone. Seafloor 

pressure measurement, as the high precision, low cost, and continuous vertical 

deformation records, is the most common way of studying offshore vertical 

deformation caused by geodetic movements. However, due to the long-term 

instrumental drift and considerable water movement noise in the data, detecting 

and measuring shallow SSEs from the seafloor pressure data is still very hard. 

In manuscript one, we developed a machine learning detector to detect the 

slow slip event in seafloor pressure data. Because real seafloor pressure data is 

not this abundant, we first trained the machine learning detector using synthetic 

data, and then applied the well-trained detector to the real seafloor pressure data 

collected by the HOBITSS project in New Zealand. The trained model can 

successfully detect an SSE and the accuracy increases with SSE amplitude. The 

synthetic data test also shows that the machine learning model outperformed the 

traditional matched filter method. Our detector found five events in real pressure 



  

data in New Zealand between 2014-12015, two of which are confirmed by the 

onshore GPS records. 

In manuscript two, we applied our machine learning detector to Alaska. The 

Southern Alaska subduction zone is a high seismic risk zone. Megathrust 

earthquakes and following devastating tsunami waves threaten south Alaska and 

the entire Canada and US west coast. We want to know the stress status at the 

shallow subduction zone in southern Alaska. In this study, we improved our 

previous machine learning detector by detecting both uplift and subsidence signals. 

We found four adjacent stations at 100-m water depth were uplifted, while four 

adjacent stations near the trench subsided in days 290-310 of 2018. This pattern 

is unlikely oceanographic in origin, based on an analysis of 10-year model output 

from an ocean circulation model (HYCOM). This pattern is consistent with a 

simulated ground deformation from a circular SSE on the subduction interface. We 

also investigated the daily seismicity and tremors using both onshore and offshore 

seismometers. We found that these seismic activities are closely related to our 

detected SSE: (1). A few tremors occurred before and near the SSE area. (2). the 

increased seismicity after SSE is located at the positive stress change area. 

Furthermore, our detected SSE is located 150-km northeast of the 2020 Mw 7.8 

Alaska earthquake and the updip of the 2021 Mw 8.2 Chignik earthquake. The 

SSE has possibly increased the Coulomb stress in the area of these two large 

earthquakes.  

The major problem for previous papers is correctly and broadly removing 

the oceanographic signals as much as possible. Therefore, in Chapter Three, we 



  

investigated the water column movement contribution to seafloor pressure by 

combining the machine learning method and ocean circulation model. We first 

applied the random forest method to study different features' importance in 

predicting seafloor pressure data, and then we used deep learning neural networks 

to better predict the results by incorporating the time information. This is an 

ongoing project. For future work, the well-trained model can be generalized using 

a small part of real data, and more available observations can be used to predict 

the real seafloor pressure.
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PREFACE 

 

The dissertation includes three chapters. The first two chapters are written 

in manuscript format. The third chapter includes an ongoing project. 

Manuscript One, “Detecting Slow Slip Events From Seafloor Pressure Data 

Using Machine Learning”, was published in Geophysical Research Letters, 2022. 

Manuscript Two, “A shallow slow slip event preceded the 2021 Mw8.2 

Chignik earthquake in east-central Alaska”, has been submitted to Science 

Advance. 

Chapter Three, “Quantifying the water contribution to seafloor pressure by 

combining machine learning method and ocean circulation models.”  
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Key points: 

• Using a machine learning method, we detected five events in seafloor pressure data 

offshore New Zealand, two of which are likely SSEs. 

• Performance of the machine learning method is better than the traditional matched 

filter method. 

• This method can be especially useful where the trench is far from GPS onshore. 

 

Abstract 

Detecting slow slip events (SSEs) at offshore subduction zones is important to understand 

the slip behaviour on offshore subduction megathrusts, where tsunamis can be generated. 

The most widely used method to detect SSEs is to measure the vertical seafloor 

deformation caused by SSEs using seafloor pressure data. However, due to the small 

signal-to-noise ratio and instrumental drift, such detection is very difficult. In this study, 

we trained a machine learning model using synthetic data to detect SSEs, and applied it to 

real pressure data in New Zealand between 2014-2015. Our method detected five events, 

two of which are confirmed by the onshore GPS records. Besides, our model performs 

better than the traditional matched filter method. We conclude that machine learning could 

be used to detect SSEs in real seafloor pressure data. The method can be applied to other 

regions, especially where near trench GPS is not available. 

Plain Language Summary 

We applied machine learning to detect a special tectonic signal recorded by pressure 

sensors sitting on the seafloor. This signal represents the release of tectonic stress between 

earthquakes and thus their existence indicates a lower likelihood of future large 
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earthquakes and tsunamis. It is difficult to detect this signal because of the high noise. Here 

we show that machine learning successfully detected two such signals and three possible 

cases in data collected near New Zealand between 2014-2015. The method has the potential 

to transform our way of detecting such signals in seafloor pressure data offshore New 

Zealand and elsewhere, especially where the signal source is far away from the shoreline.  

 

1.1 Introduction 

Our ability to forecast catastrophic earthquakes and tsunamis on offshore subduction zone 

such as the 2004 Sumatra and 2011 Japan earthquakes remains weak (Burgmann & 

Chadwell, 2014). One main limitation is our lack of ability to measure, detect, and quantify 

small and slow tectonic deformation including SSEs at the seafloor (Burgmann & 

Chadwell, 2014). This situation is changing as several large projects using seafloor 

pressure sensors have been conducted in the last decade in Japan (DONET, S-NET), 

Cascadia (Cascadia Initiative, OOI), New Zealand (HOBITSS), and Alaska (AACSE). 

These projects have accumulated large datasets that can be analyzed for detecting SSEs. 

 

Even with these datasets, detecting SSEs using seafloor pressure data is still challenging. 

First, the tectonic signal is small relative to background noise. The typical vertical 

displacement of a very large SSE is up to a few centimeters spanning weeks to months, 

although many can be much smaller (Dixon et al., 2014). The corresponding pressure 

change on a seafloor pressure sensor is comparable to the variation caused by deep ocean 

meso-scale eddy flows, therefore making detecting SSEs difficult. Second, instrumental 

drift exists in pressure records (Watts & Kontoyiannis, 1990). Usually, Absolute Pressure 



 4 

Gauge measurements drift non-linearly for the first few months of the deployment and then 

linearly after that (Polster et al., 2009). The drift is often removed by fitting the data with 

an exponential plus linear curve. Part of the SSE amplitude could be masked by the drift 

and is easily obscured during the pressure data de-drifting procedure.   

 
In the last few years, there has been a surge in the application of machine learning methods 

in many fields including geosciences. Kong et al., (2019) and Bergen et al., (2019) 

reviewed recent applications of machine learning in seismology and solid earth geoscience, 

respectively. Among these studies, convolutional neural network (CNN) plays an 

important role. It can learn from the complex features of images (Mousavi et al., 2019; 

Perol et al., 2018), simulate seismic waves (Moseley et al., 2018), classify volcanic ash 

particles (Shoji et al., 2018) and pick P and S waves in long seismograms (Zhu & Beroza, 

2019). In addition, recurrent neural network (RNN) is very helpful to learn the pattern of 

sequential data (Q. Wang et al., 2017; Wiszniowski et al., 2014).  

 

In this study, we combined CNN and RNN to detect SSEs in seafloor pressure data 

collected by the HOBITSS project near New Zealand between 2014-2015. As far as we 

know, this is the first effort using machine learning for this purpose. We compared the 

results with a traditional matched filter method. The results show that machine learning 

methods are promising as a means to detect SSEs in seafloor pressure data and could be 

useful to detect SSEs in other subduction zones, especially where the onshore GPS is too 

far away from the trench. 

 

1.2 Data and Method 



 5 

1.2.1 Synthetic Dataset 

We applied a supervised machine learning method, which learns the relationship between 

input and output pairs and then make predictions based on the learned relation. Usually, a 

large dataset (millions of pieces) is required to train a supervised machine learning model. 

Because real seafloor pressure data is not this abundant, we first built a large synthetic 

dataset and used it to train the model. Then we evaluated the performance and applied the 

trained model to the real data.  

 

The target real data is the seafloor pressure data collected by the HOBITSS project 

(Wallace et al., 2016). It includes 15 pressure sensors deployed at water depths ranging 

from 700 m to 3400 m and with an average spacing of 20 km (Figure 1.1a). We used 14 

stations with high quality data which span about 250 days between June of 2014 to March 

of 2015 (station TXBPR2 was not used due to short record). The seafloor pressure data 

includes oceanographic signals from tides, currents, and eddies, as well as instrumental 

drift and possible tectonic signals. We first removed tides using tidal response analysis 

(Munk et al., 1966) and removed the instrumental drift using an exponential plus linear 

curve (Watts & Kontoyiannis, 1990). Then we calculated the pressure difference between 

each station and the average of two reference stations (LOBS4 and TXBPR1) in the deep 

ocean, where no tectonic signal is expected. This subtraction removes large-scale pressure 

variations affecting both deep and shallow sensors, such as coastal trapped waves and large 

eddies, which have a spatial scale of several hundreds of kilometers. By calculating the 

difference, we reduced the variance of the pressure data to a few centimeters equivalent 
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without affecting the tectonic signal (Wallace et al., 2016). This pressure difference is the 

data we use to detect SSEs.  

 
Figure 1.1. (a) Map of the study area near New Zealand (the red box in the small inset on 

top left). Red dots are the HOBITSS seafloor absolute pressure gauge sites (APG) and the 

magenta dots on land are GPS stations. TXBPT1 and LOBS4, on the subducting Pacific 

Plate are chosen as the reference sites to remove the common mode oceanographic noise. 

Black solid lines are water depth contours at 1000 m interval. The black and the red dashed 



 7 

lines show the area of SSEs around day 270 and 360. The three shaded area show the other 

detected events by the machine learning code (PRt-model) as shown in Figure 1.4b. The 

HYt-model shows similar detections (Figure 1.11). (b) Examples of real data (station 

LOBS1 minus reference), pinkish-red noise adding SSE signal, HYCOM output adding SSE 

signal, and SSE signal. Blue bar shows the time of SSE in the data and models. (c) The 

spectral analysis of the three curves as shown in (b).  

 

A synthetic dataset should resemble real data as closely as possible, e.g. they should have 

similar power spectra. We used two methods to generate such a dataset: pinkish-red noise 

and an ocean circulation model output. The pinkish-red noise data was generated by the 

MATLAB random noise function with spectral density (𝛽 = −1.8), where 𝛽 is the spectral 

slope of the variance versus frequency, which we chose to mimic the observed pinkish-

red noise nature of the residual pressures. The ocean circulation model is from the Hybrid 

Coordinate Ocean Model (HYCOM) between 2009-2018 in the target region. The spatial 

resolution of HYCOM is 1/12 degree. As the model output does not include pressure, we 

calculated it using the temperature, salinity, and sea surface height within layers at each 

grid point. We obtained the pressure difference by subtracting reference pressure seaward 

of the trench. Examples of real data at station LOBS1, and synthetic data (with a synthetic 

SSE signal added to it), as well as their corresponding power spectrum are shown in Figure 

1.1 b-c. Because HYCOM is daily output, the spectrum lacks higher frequency content. 

The power spectral density of all three decreases linearly with frequency and the HYCOM 

data appears to have a slightly smaller slope.  
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Each piece of trained data is two-month long with hourly samples. The ramp-shaped 

synthetic SSEs were added to part of the dataset (Figure 1.1c; Table 1.1). The SSE ramp 

with duration between 7-30 days and amplitude between 1.8-5.3 hPa can occur at any time 

within the trained data. A Gaussian shaped time window with 8 hours was used to smooth 

the corners of the SSE ramp. For simplification, we only used a ramp signal corresponding 

to a pressure decrease since we aim to detect seafloor uplift. A small linear and random 

drift was also added to each piece of data to account for the imperfect de-drifted process 

(Figure 1.2). Because the HYCOM output is daily, we interpolated HYCOM data into 

hourly samples using a spline function in MATLAB. To perform a fair comparison 

between HYCOM and pinkish-red noise, we created hourly pinkish-red noise data and ran 

a one-day Gaussian low pass filter. 

Table 1.1. The characteristics for synthetic data 

Input Data Value or Characteristics 

Sample length 60 days 

Sample rate  One hour 

Noise (ocean) Pinkish-red noise, ocean model output (HYCOM) 

Signal Ramp (random duration between 7-30 days, random temporal 

position) 

Signal-to-noise 

ratio (SNR) 

-3 to 6 dB for single SNR tests, equivalent to amplitude to 1.8 – 

5.3 hPa (cm) in offshore of New Zealand 

0-3 dB, equivalent to 2.2-3.5 for mixed-SNR and application to 

real data 

Drift Straight line (random slope),  

The maximum slope could be 1.5 times of the amplitude of target 

SSE ramp. 

Synthetic data Noise + Ramp + Drift 
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Figure 1.2. A case shows how the synthetic data are constructed. The SNR for this case is 

6 dB. The synthetic data (d) is the combination of pinkish-red noise (a), SSE shaped ramp 

(b), and instrumental drift (c). When the SSE occurs, the continental plate moves upward. 

The pressure at the seafloor decreases, so the ramp is down.  

 

1.2.2. Machine Learning Methods  

We combined CNN and RNN to train the model (layer structure shown in Figure 1.3) and 

we also showed RNN is very useful in this study (Figure 1.4). Mathematically, each layer 

is performing a matrix multiplication using an existing library. Conceptually, the 1D 

convolutional layers were used to extract the features of the data. Then the bidirectional 
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Long Short Term Memory (LSTM) structures were used to optimize feature extraction in 

sequential data. In the end, a fully connected layer was set to generate a probability of 

detection. The machine learning code runs this process many times (each called an epoch) 

and monitors the performance. When the validation performance is not improved, the 

machine learning code stops the calculation. We used a binary cross-entropy as the loss 

function and chose an ADAM algorithm for optimization (Kingma & Ba, 2014). The loss 

function is defined as: 

                                               

𝐿𝑜𝑠𝑠 = 	−(𝑦 × 𝑙𝑜𝑔(𝑝) + (1 − 𝑦) × 𝑙𝑜𝑔	(1 − 𝑝))   (1.1) 

 

where y is a binary indicator of 0 or 1 and p is the predicted probability.   

 

We first used a single station as the input to train the machine learning model as shown in 

section 1.3.2. Later, in order to improve the accuracy of detection, we used three close 

stations as input to the same training algorithm.  
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Figure 1.3. Layer structure of our neural network. Left labels are the function names in 

the Keras package in Python. Conv1D means 1D convolutional neural network. 

MaxPooling1D means 1D max pooling layer. Dropout is the drop-out layer. Bi-LSTM 

means bilateral Long Short Term Memory layer. Flatten and dense are functional layer 

names. Right numbers are the rows and columns in each training layer. The filter and 

kernel sizes are chosen based on the experience and many tests.   
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Figure 1.4. This is a test to show the comparison of CNN model and the combination the 

CNN and LSTM model and this test used pinkish-red noise data with SNR 0-dB. Accuracy 

and loss represent the performance of model. The combination of the CCN and LSTM 

shows better performance than CNN only model. This result is also consistent with 

Mousavi et al., (2019)’s result. 

 

We also conducted extensive testing that use three stations as input instead of one station. 

We chose three stations that are close to each other (< 40 km) and had 101 combinations. 

For the HYt-model, we used HYCOM data at the study region to construct the synthetic 

data. For the PRt-model, three pieces of unrelated pinkish-red noise data were used. The 

model performance of the three-station case in synthetic data was much better than the one-

station case. For example, in the same SNR, three-station cases had much higher accuracy 

and lower loss compared to the one-station cases (Figure 1.5).  
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Figure 1.5.(a) How key performance indicators change with decision threshold. This 

figure is from PRt-model. (b)(c) Accuracy and loss vary with signal to noise ratios. In 

figure (a)(b)(c), solid lines are from single-station trained models, while dashed lines are 

from three-station trained models. Pinkish-red noise data trained models are shown by red 

lines and HYCOM data trained models are shown by blue lines. For the single-station case, 

PRt-model is better than HYt-model. For the three-station case, HYt-model performs better 

than PRt-model. 

 

Overall, the PRt-model outperforms the HYt-model for detecting the first large SSE around 

day 270 in the real data. It is difficult to evaluate the performance for detecting the event 

around day 360 because not all stations were affected. Here, we showed 6 representative 

cases (Figure 1.6). For stations that are around the northern part of study area, the PRt-

model reported only one SSE (Figure 1.6.a, b). In contrast, when stations were located in 

the southern part, two SSEs were detected with high probabilities in both two models 

(Figure 1.6.c, d). For a few combinations, PRt-model reported nothing, but HYt-model 

found SSEs and possible events (Figure 1.6.e, f). Overall, the HYt-model seems to be very 

sensitive to small changes in the pressure time series. It might be due to the fact that 
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HYCOM data are from three close stations and have coherent noise for three stations. 

When additional noise adds to the HYCOM data, HYt-model becomes much more 

sensitive than PRt-model.  

 
Figure 1.6. Comparison between the machine learning model on three stations with a 

traditional matched filter method. (a-f)  Machine learning detected probabilities on some 

three station combinations. The background three gray lines are three seafloor pressure 

difference data for the input to the machine learning method. The red and blue lines are 

detected probabilities from PRt-model and HYt-model, respectively. The red dashed line 

represents the decision threshold 0.65. (g-h) Detected results on average of three stations 

by the matched filter method. Blue, megenta and black lines are matched filtered output 
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using 7-day, 15-day and 30-day templates, respectively. The horizontal dashed line shows 

the 0.9 detection threshold. 

 

To compare the performance with the matched filter method, we stacked these three-station 

data and calculated correlation between the stacked values and templates with various 

durations. The performance of the matched filter for the three-station case is similar to that 

from the one-station case (Figure 1.6.g, h). A template is optimal to detect SSEs with a 

duration similar to the template but not SSEs with much different duration. For example, 

the combination of TXBPR5, LOBS10, LOBS9, 15-day template barely reached the 

threshold of 0.9 around day 270 whereas 7-day and 30-day templates missed it. Around 

day 360, only 7-day template detected the second SSE and other templates failed.  

Even though the three-station case performs better on synthetic data than the one-station 

case, its performance on real data is not as well as expected, which depends on 

combinations of three stations. It is difficult to visualize and interpret the results from the 

three-station model, so we prefer the one-station method. 

We labeled each piece of data either 1 or 0, where 1 means that the center of the SSE is on 

day 30 at the mid-point of the 2-month long data, and 0 means that either no SSE occurs in 

the data, or the center of this SSE is before day 28 or after day 32 of the data. The four-day 

buffer zone around the middle of the 2-month period allows the model to scan real data at 

any length of time and remain stable. Half of the synthetic data were labeled as 1, one 

fourth of the data contained an SSE but not in the middle, and the remaining one fourth 

only contained noise and instrumental drift. We normalized all the input data by dividing 

by their standard deviation, and divided them into training (60%), validation (20%), and 
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test (20%) datasets. The machine learning algorithm trains the model and validates the 

performance in the meanwhile. After training, we used test datasets to evaluate the model 

performance. We built multiple synthetic datasets with the SSE ramp duration ranging from 

7 to 30 days and various signal-to-noise ratios (SNRs). SNR is defined as: 

𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔!" 78
#!"#$

#%&'()
9
$
:    (1.2) 

where 𝜎 is the standard deviation, 𝜎%&'(	and 𝜎)*+,-  represent the standard deviation of 

SSE ramp and noise, respectively. The models are trained separately with the SNR ranging 

from -3 to 6 dB, which is equivalent to the amplitude of 1.8 to 5.3 cm SSE ramp in the 

study region, and then we evaluated how the performance improves with increasing SNRs. 

later, we built a dataset with mixed SNRs, which we used to detect SSEs in real data.  

 

The training dataset needs to be big enough to ensure performance. We used 80,000 for 

each individual SNR dataset and 320,000 for mixed SNRs dataset. To validate the data size, 

we compared the performance of the pinkish-red noise training dataset from 10,000 to 

640,000 for SNR = 0 dB. Both accuracy and loss improve slightly from 10,000 to 40,000 

and remain about the same level with the larger dataset (Figure 1.7.).  



 17 

 
Figure 1.7. Accuracy and loss for SNR = 0 dB with different sizes of trained dataset. We 

used pinkishred-noise data to do this test. There is an improvement when the data size 

increased from 10k to 40k. We used trained dataset with at least 80k pieces of data in our 

model. 

 

1.3 Results 

1.3.1. Performance on synthetic data 

We first evaluated the performance of these two synthetic data trained models using 

evaluation metrics including accuracy, precision, recall, F1 score and loss, which are 

defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 ./0.1
./0.102/021

,     (1.3) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 ./
./02/

	 , 𝑅𝑒𝑐𝑎𝑙𝑙 = ./
./021

	,   (1.4) 

𝐹1 = 2 × /%-3+,+*)×5-3&66
/%-3+,+*)05-3&66

	,     (1.5) 

 

where TP, TN, FP and FN represent the number of true positive, true negative, false 

positive and false negative, respectively. Accuracy is used for evaluating the fraction of 

data correctly detected. Precision represents the fraction of true positive among the 

predicted positive tags. Recall represents the fraction of true positive among the actual 

positive tags. F1 is a function of precision and recall and is used to choose an appropriate 

decision threshold.  Loss function (eq. 1) is defined in the Methods section and is used to 

evaluate how accurate the model is. The smaller the loss value, the better the trained model. 

 
A decision threshold of probability is required to define detection, so these evaluation 

metrics are calculated. As shown in Figure 1.8.a: precision increases with threshold 

whereas recall and F1 decrease with threshold. These three curves intersect at a threshold 

of 0.55, which we chose to use for this model. The recall and precision versus threshold 

figures in the different SNRs look very similar, and the decision threshold fluctuates within 

3%.   

 

Figure 1.8.b shows the performance of the pinkish-red noise data trained model (PRt-model) 

and HYCOM data trained model (HYt-model) on different SNRs. With increasing SNR, 

accuracy and loss gradually improve. The accuracy of the HYt-model ranges from 0.71 to 

0.91 for SNR between -3 dB to +6 dB, and that of the PRt-model ranges from 0.79 to 0.91. 
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The loss decreases with SNR from 0.56 to 0.22 in HYt-model and 0.42 to 0.22 in PRt-

model. In all, PRt-model outperformed HYt-model in the synthetic test for most SNRs.  

 
Figure 1.8. (a) How key performance indicators change with decision threshold. This 

figure uses the PRt-model. HYt-model also gives a threshold at 0.55. (b)(c) Accuracy and 

loss vary with SNRs for both models.  

 
1.3.2. Performance on real data  

We applied our model to real pressure data collected by the HOBITSS project in New 

Zealand between June 2014 and March 2015, during which at least two SSEs have been 

identified (Muramoto et al., 2019; Wallace et al., 2016; Warren-Smith et al., 2019). Before 

application, we built a synthetic dataset with mixed SNRs and ramp durations to train our 

model. We first used the same range of SNR as the single SNR tests, but the performance 

in synthetic test is poor (<70% accuracy). Thus, we shortened the SNR range to 0 and 3 

dB, which is equivalent to 2.2-3.5 cm of seafloor uplift considering the water noise level 

in the study region. The ramp duration was randomly chosen between 7 and 30 days. We 

processed the real pressure data as described in an earlier section to remove tides, 

instrumental drift, and common wave signals. Then we used a one-day Gaussian low 

passed filter to remove high frequency component in the data. Later, we used a 60-day 
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sliding window with 1-day sliding increment to cut the data into hundreds of pieces and 

normalized each piece, dividing by their standard deviation. Finally, we put all the pieces 

into machine learning code and make predictions (Figure 1.9.b).  

 
Figure 1.9. (a) The de-tided, de-drifted and 1-day low pass filtered pressure difference 

data at each station. Blue and red shadings indicate the time of two known SSEs based on 

the GPS records (d). (b) Detected probabilities from PRt-model and HYt-model. All the 

detected probabilities curves (red and blue) varies from 0 to 1. Red dashed lines represent 

the threshold of 0.55. The detected probabilities that exceed the threshold are considered 

as events. (c) The cross correlation of the template and data from station TXBPR5 and 

EBPR2. Both template and windowed data are normalized before cross correlation. Blue, 
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cyan and yellow lines are output using 7-day, 15-day and 30-day templates, respectively. 

The horizontal dashed lines show the threshold of 0.9. (d) The east components of the GPS 

stations. 

 
Both the PRt-model and HYt-model successfully detected two large events that have been 

reported previously as SSEs (Figure 1.1.a and Figure 1.9.b). The first event around day 270 

affected all stations in this region (except deep sea reference sites), including five nearby 

GPS stations. The second event is smaller and affected only six pressure stations and three 

GPS stations. In addition to these two events with GPS confirmation, both models reported 

three more events: one around day 210 in eight stations; one around day 245 in two stations; 

another one around day 330 in six stations. On one hand, all the stations with detection are 

spatially coherent (Figure 1.1 a), suggesting the detection of a real event rather than random 

noise. On the other hand, without additional information such as GPS, it is difficult to know 

whether these events were from small SSEs or ocean eddies. For most detections, both 

models showed a similar level of probability. For several stations (EBPR1-3 and LOBS1), 

the PRt-model showed higher probabilities in the same events compared to the HYt-model 

(Figure 1.9 b).  

 

To compare the performance with the traditional matched filter method, we used templates 

with durations of 7 days, 15 days and 30 days to calculate the cross-correlation with the 

pressure difference data at each station (Figure 1.10). The performance of the matched 

filter method depends on whether the template ramp length is similar to the real signal. For 

station TXBPR5, only the 15-day template barely reached the 0.9 threshold for the SSE 

around day 270 and only the 7-day template exceeds the 0.9 threshold for the event around 
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day 360  (Figure 1.9 c). It is likely that the two events have different durations in the 

seafloor pressure data. Therefore, no single template would successfully detect both events 

with high probability whereas our machine learning method can. For station EBPR2, none 

of the three templates detected the event around day 270 (Figure 1.9 c), but the machine 

learning method did.  

 
Figure 1.10. Templates used in this study for the matched filter method. They also 

represent the SSE ramp used to construct the synthetic data.  

 

1.4 Discussion  

Overall, the performance of the HYt-model and PRt-model is similar. They both detected 

five events in the real dataset. In synthetic tests, the PRt-model outperformed HYt-model 

slightly (figure 1.8; higher accuracy and lower loss). It is possibly due to the fact that HYt-

model used daily output which lacks energy in high frequency. In real application, PRt-

model reported high probability (>90%) for all stations for the largest event around day 

270, whereas HYt-model reported lower probability (~40%) at stations EBPR1-3 and 

LOBS1. We also conducted 3-station tests, which used data from 3-stations as input instead 
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of one. Compared to 1-station tests, both models in 3-station tests showed higher accuracy 

and lower loss in synthetic tests, which is expected with more data. In contrast to the 1-

station cases, HYt-model outperformed PRt-model in synthetic tests for 3-station cases 

(Figure 1.5), which could be due to the presence of coherent noise in HYCOM data. 

Applying to real data, the model performance of 3-station tests depends on the specific 

station combination (Figure 1.6), and there is no consistent difference between the two 

models. We focused on the 1-station method because the results from 3-station tests are 

hard to interpret and depend on the station combination. 
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Figure 1.11. Comparison between PRt-model and HYt-model on the spatial distribution of 

detected events. Map of the study area near New Zealand (the red box in the small inset on 

top left). Red dots are the HOBITSS seafloor absolute pressure gauge sites (APG) and the 

magenta dots on land are GPS stations. TXBPT1 and LOBS4, on the subducting Pacific 

Plate are chosen as the reference sites to remove the common mode oceanographic noise. 
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Black solid lines are water depth contours at 1000 m interval. The black dashed line and 

the red dashed line show the area of SSE events around day 270 and 360. The three shaded 

area show the other detected events by the machine learning code. The data used to plot 

these shaded and unfilled circles are from Figure 4b. The detected probabilities that exceed 

the threshold of 0.55 are considered as events. (a) is from PRt-model and (b) is from HYt-

model. 

 
Intuitively, the detection probability should increase with SNR. Assuming the noise level 

is about the same for all the stations, there should be a correlation between detection 

probability and uplift amplitude. However, we did not find such correlation after 

comparing the uplift maps (Wallace et al., 2016; Muramoto et al., 2019) with the detection 

probability of single-station models (PRt-model and HYt-model) for the largest SSE 

(around day 270) (Figure 1.12). There might be two reasons. First, the detection probability 

appeared to saturate at certain SNR, above which the probability is always high (>90%). 

For example, the detection probability using the PRt-model is consistently high (>90%) 

and with little variations among stations whereas the uplift maps show considerable 

variation in magnitude (2-3 times). It is likely that the smallest uplift is above the saturation 

threshold for PRt-model. Second, the low detection probability is due to the low SNR. The 

noise level is not the same among stations and stations in shallow water have higher noise. 

This is consistent with the observation that the HYt-model shows low detection 

probabilities (~0.4) in shallow stations EBPR1-3 and LOBS1, because the reference sites 

are in deep water and the pressure correlation between stations decreases with distance 

(Fredrickson et al., 2019).  
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Figure 1.12. (a) The detected probabilities from the single station trained machine 

learning model for the first SSE from the PRt-model. The circle size represents the detected 

probability. (b) same as (a) but from the HYt-model. (c) is from Muramoto et al., (2019)’s 

result. (d) is from Wallace et al., (2016)’s result. (c)(d) The amplitudes of the first SSE. The 

size of the red circle represents the amplitude of the vertical displacement. The size of cyan 

circle represents the error bar. 

 

Many studies have attempted to reduce the oceanographic noise in seafloor pressure 

measurements  (Inazu et al., 2012; Ito et al., 2013; Suzuki et al., 2016; He et al., 2018; 

Muramoto et al., 2019; Wallace et al., 2016). Some have tried to do this using ocean models. 
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For example, Hino et al., (2014) and Muramoto et al., (2019) used the global barotropic 

ocean model to remove the major component of ocean mass variation. Hino et al., (2014) 

reduced the water noise to 2-4 cm in the region near the 2011 Tohoku earthquake. 

Muramoto et al., (2019) reduced the variance in the HOBITSS data by about 66%, 

significantly lower than the variance reduction achieved by using nearby reference sites as 

done here and in Wallace et al., (2016). Even though ocean models do improve the 

measurement, they may also introduce an error of a few centimeters (Inazu et al., 2012). 

These models should therefore be used with care. Others have also tried to make the 

correction by using in-situ measurements. For example, He et al., (2018) yielded moderate 

improvement by using deep current measurements and the geostrophic balance assumption 

to remove the ocean circulation contribution. Gomberg et al., (2019) suggested an approach 

to reduce the water column and some instrumental noise based on correlations between 

seafloor temperature and pressure changes. In this paper, we did not apply the machine 

learning method to these corrected measurements. However, our machine method can also 

be applied to timeseries corrected in alternative ways such as detect SSEs, for which the 

only difference might be the noise structure and SNRs.  

 

The neural network method can be viewed as a collection of matched filters. Therefore, it 

is not surprising that it outperforms results from using a single template. In practice, one 

may run detection using many matched filters and only report ones with high probability 

along with the template. However, this is cumbersome. Our method provides an alternative 

and convenient way to detect SSEs in seafloor pressure data. The model only needs to be 

trained once and then can be applied to many data quickly.  
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Shallow SSEs are now recognized in several subduction zones, including New Zealand, 

Japan and Costa Rica (Dixon et al., 2014; Ito et al., 2013a; Wallace et al., 2016). Peninsular 

areas in these regions have allowed precise on-land geodetic measurements to detect these 

events, with limitations. However, shallow SSEs may be present in many other subductions 

such as Cascadia but remains undetected (Fredrickson et al., 2019). Our method provides 

a novel approach to detect SSEs using seafloor pressure data in these regions where the 

trench is far from land-based geodetic networks. One remaining challenge is how to 

distinguish between SSEs and ocean effects after detection. The solution might be 

including additional data such as borehole tiltmeter and study the spatial pattern of the 

signal. More studies like this and applications to more areas will be needed to address this 

problem. 
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Abstract 

Slow slip events (SSEs) have been discovered at shallow depth near the trench in some 

subduction zones and have been linked to the triggering of large earthquakes and absence 

of tsunamis. These shallow SSEs are invariably submarine, making it difficult to observe 

their temporal and spatial extent. Here, we report a shallow SSE in late 2018 in east-central 

Alaska, up-dip of and preceding the Mw 8.2 Chignik earthquake on July 29th, 2021. The 

SSE was detected in data from an offshore array of seafloor pressure gauges by a machine 

learning method. This detection is supported by the spatial pattern of simulated SSE 

deformation, the increased seismicity after SSE at the positive Coulomb stress change area, 

and the absence of a sizeable tsunami following the Chignik earthquake. Our method has 

the potential to transform the way offshore SSEs are detected and to improve tsunami 

hazard assessment in subduction zones. 

 

Teaser 

Machine learning is used to tease out tectonic signals from seafloor pressure data, 

improving understanding of great earthquakes and tsunamis.  

 

2.1 Introduction 

Slow slip events (SSEs) have recently been discovered at shallow depth on the plate 

interface in some subduction zones, including Costa Rica and New Zealand (Araki et al., 

2017; Davis et al., 2015, p. 2; Dixon et al., 2014; Saffer & Wallace, 2015; Wallace et al., 

2016). These shallow SSEs may be linked to tsunamigenic earthquakes and the triggering 

of large interplate earthquakes (Hino et al., 2014; Ito et al., 2013b; Saffer & Wallace, 2015). 
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SSEs likely play an important but as yet unresolved role in the accommodation of plate 

motion near the trench at many subduction zones. Detailed observations of slip during 

SSEs are critical to understanding the distribution of locking on subduction faults offshore 

which determines the potential seismic and tsunami hazard posed by subduction zones 

(Lindsey et al., 2021). However, it is challenging to detect and measure shallow SSEs 

because the standard GNSS systems for measuring land displacement do not operate under 

water. Seafloor pressure gauges, which detect SSEs by observing pressure changes due to 

vertical displacement of the seafloor, currently provide the only viable way to continuously 

observe and spatially map out displacements during an SSE (Ito et al., 2013b; Ruiz et al., 

2014; Wallace et al., 2016). The challenge is that the oceanic noise is comparable to the 

tectonic signal in seafloor pressure data and only very large SSEs with several centimeters 

of seafloor displacement can be observed.  

 

Recently, we developed a machine learning method to detect small shallow SSEs in 

seafloor pressure data (He et al., 2020). We have applied this method to data in New 

Zealand between 2014 and 2015 and detected five events, two of which are confirmed by 

the onshore GPS records. We also have shown that our method performs better than the 

traditional matched filter method (He et al., 2020). Here, we improved the method by 

adding the capability of detecting not only seafloor uplift but also subsidence. We applied 

this improved method to the seafloor pressure data collected in the Alaska Amphibious 

Community Seismic Experiment (AACSE) (Figure 2.1). The spatial pattern of the vertical 

deformation in late October 2018 is consistent with an SSE. The occurrence of an SSE is 

also supported by seismicity patterns around the event and the lack of tsunami after the 
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2021 Mw 8.2 Chignik earthquake. The SSE preceded the 2021 Chignik earthquake and 

likely increased the Coulomb stress in the rupture area of the 2021 earthquake by 0.2 bar. 

The unique geological structure on the seafloor might create the geophysical condition for 

SSEs in this area.  

 

 

Fig. 2.1. Map of the study area in the Alaska-Aleutian megathrust (the red box in the small 

inset on the top left). Red, magenta, and yellow circles represent absolute pressure gauges 

(APGs) in AACSE. The dashed black lines indicate the slab depth contours with a 10 km 

interval from Slab2 (Hayes et al, 2018). The red shaded areas are the historical earthquake 

distributions. The 1938 Mw8.3 earthquake is shown in 1 m slip contours from the best 

fitting model in Freymueller et al., (2021). The 2020 Mw7.8 earthquake is shown in the 50-
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cm slip contours (Crowell & Melgar, 2020). The 2021 Mw8.2 earthquake is from the USGS 

inversion results and shown in 1-m slip contours. The black and red stars label the 

epicenters of the 2020 Simeonof earthquake and 2021 Chignik earthquake, respectively. 

The cyan shaded area is our preferred 2018 SSE area. The white dashed lines show the 

area covered by Zodiak Fan sediments. T-ridge represents the transitional ridge or 

escapement terminating the transitional zone. EMB means the embayment into the Semidi 

deformation front (Huene et al., 2016). 

  

Earthquakes and SSEs in Alaska 

The Alaskan subduction zone is caused by the Pacific plate subducting beneath the North 

American Plate. There are three segments in the study region which show diverse slip 

behaviors, incoming plate structures, and hydration levels (S. Li & Freymueller, 2018; S. 

S. Wei et al., 2021). In the west, the Shumagin segment shows a low degree of seismic 

locking, called the Shumagin gap (Davies et al., 1981), which has abundant seismicity but 

lacks large earthquakes attributed to the rough surface of the subducted plate (Shillington 

et al., 2015). The 2020 Mw7.8 earthquake is the largest on the eastern Shumagin gap since 

1917 (Crowell & Melgar, 2020). No shallow slip was released by this earthquake and its 

aftershocks and most slip was at depths from 20 km to 45 km (Liu et al., 2020; Xiao et al., 

2021; Ye et al., 2021). The Semidi segment is in the middle of the Shumagin  and Kodiak 

segment and can host large earthquakes with a magnitude of 8 every 50 to 75 years (Davies 

et al., 1981). The last two events are the 1938 M8.3 earthquake and the 2021 Mw8.2 

Chignik earthquake. There is no seismic slip model for the 1938 earthquake, but an 

aftershock zone extended ~270-300 km along strike and a tsunami model shows large slip 



 49 

concentrated at shallow depth (< 20 km) (Davies et al., 1981; Freymueller et al., 2021). 

The 2021 earthquake had about half of its slip overlapping with the 1938 earthquake 

rupture with most slip occurring below 20 km depth. The Semidi segment is characterized 

as mid-locking, with more sediments subducted and smoother than Shumagin (J. Li et al., 

2015; S. Li & Freymueller, 2018; Shillington et al., 2015). The Kodiak segment shows 

high locking and has the most active seismicity at all depths (S. Li & Freymueller, 2018; 

S. S. Wei et al., 2021). The Kodiak segment and eastward hosted the largest digitally 

recorded M 9.2 earthquake in the world. The systematic along-strike variations provide an 

excellent opportunity to explore the relationship between earthquake behavior and 

geological/geophysical setting. 

 

In both the Upper and Lower Cook Inlets, in south-central Alaska, long-term SSEs with 

durations of a couple of years and intervals of decades occurred in the last ten years. 

Although the duration, interval, and magnitude of these SSEs vary from event to event, 

these SSEs occur at a depth of around 40 km to 60 km, which coincides with the down-dip 

limit of megathrust earthquakes (S. Li et al., 2016; M. Wei et al., 2012). However, no SSEs 

have been reported at the up-dip end of the seismogenic zone, mostly due to the fact that 

the Alaskan islands are far from the trench and there are no seafloor geodetic observations. 

The large community-based seafloor seismometer and pressure gauge deployment of 

AACSE in Alaska-Aleutian subduction margin allows us to detect shallow SSEs in this 

area.  

 

2.2 Materials and Methods 
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AACSE pressure data preprocessing 

Between May 2018 and August 2019, the Alaska Amphibious Community Seismic Project 

(AACSE) deployed 75 broad-band ocean-bottom seismometers (OBSs) and 30 broad-band 

land seismometers on the southern Alaskan subduction margin, aiming to study tectonics, 

structure, and seismic activities (Barcheck et al., 2020) (Fig. 2.2). 34 of the OBSs were 

equipped with absolute pressure gauges (APGs). Among the 34 APGs, only 15 shallow-

water depth stations (depth < 300-m) and 11 deep-water depth stations (depth > 1500-m) 

have data stored by IRIS, which we used in this study (Fig. 2.1). The pressure data of 

stations LA26, LT02, and LT09 were shorter than others because of discontinuity. The 

sampling rate of raw data is 120 Hz, and we downsampled the data to a half-hour per 

sampling point for further processing because we were not interested in the high-frequency 

content. 
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Fig. 2.2. Map of the study region with locations of seismic stations used in the analysis. 

Pressure and GPS stations are also shown here. 

 

We processed the seafloor pressure data in three steps: de-tiding, de-drifting, and removing 

oceanographic signals. First, we removed tides using tidal response analysis (Munk et al., 

1966) (Fig. 2.3a). Second, we used an improved method to remove the sensor drift. 

Pressure sensor drift is a gradual sensor degradation, which is traditionally estimated using 

an exponential plus linear curve (Watts & Kontoyiannis, 1990). However, we found that 

the conventional method will over-estimate the drift by including long-period ocean signals. 

Therefore, we modified the conventional method with the help of the ocean circulation 

model, HYCOM, which can reasonably predict the long-period ocean waves. We first 

subtracted the low pass filtered (fourth-order Butterworth filter with 20 days) HYCOM 
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data from the de-tided pressure data, and then we used the conventional method to remove 

the drift. Then, we added the HYCOM data back to the de-drifted pressure data (Fig. 2.3b). 

The new de-drifted data show a higher correlation coefficient with HYCOM data than the 

conventional method (Fig. 2.3cd and Fig. 2.4). Our new de-drifting approach can remove 

the drift without affecting the long-period ocean waves.  

 
Fig. 2.3. De-tide process. (a). De-tiding process. (b). De-drifting process by two methods. 

Conventional method means de-drift by exponential plus linear curve. New method is 

subtracting the HYCOM data first, and then removing drift using the conventional method. 

(c)(d). The comparisons between HYCOM data and different de-drited data. CC means the 

correlation coefficient. 
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Fig. 2.4. The correlation coefficients between HYCOM data and different de-drifting data. 

 

Third, we removed oceanographic noise by an ocean circulation model and reference 

station method. The deep ocean system is relatively quiet and is mainly affected by the 

upper water column movement. The eddies in the deep ocean can reach lateral scales of 

several hundreds of kilometers and larger. We thus assumed most deep-water stations are 

affected by identical deep eddy flows and chose station LA21 on the other side of the trench 

as the reference station. We subtracted the reference station from other deep-water stations.  

 

There are 15 shallow water stations on the continental shelf. The seafloor pressures at 

shallow-water stations are primarily affected by wind forcing and atmospheric pressure 

loading. The pressure variations at the shallow-depth stations are two to three times larger 

than that at the deep-depth stations. The shallow-depth pressures have the same period of 
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ocean waves but various amplitudes. If we choose one shallow-water station as the 

reference and subtract the reference, some oceanographic signals would be left or over-

subtracted by the reference station. Therefore, we used ocean circulation models to remove 

the oceanographic signals. The ocean circulation models commonly provide daily output, 

so we removed the high-frequency pressure data using a 1-day low pass filter. Fig. S5A 

shows the shallow-water comparison between the real seafloor pressure data and one ocean 

circulation model, HYCOM. Furthermore, we found there are some oceanic waves left in 

the deep-water residuals. We further subtract the model pressure difference from the deep-

water residuals. Fig. 2.5.B shows the deep-water residual comparison.  

 

Fig. 2.5. The comparison between real seafloor pressure data and HYCOM. For deep-

depth pressure data, we used pressure difference data to have the better comparison.   

 

We calculated the variance reduction (VR) to describe how much oceanographic signals 

can be removed in seafloor pressure data (Fig. 2.6). 𝑉𝑅 = 	 !7(9&%+&)3-(5-&67:;<=>))
9&%+&)3-	(5-&6)

. For 
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shallow-water stations, besides the very noisy station LT05, the average correlation 

coefficient (CC) between the real seafloor pressure and HYOM output is 0.80. The average 

VR is 0.64. For deep-water stations,  the average CC is 0.82, and the average VR is 0.70. 

We also tried different low pass filters for one to ten days in HYCOM pressure data, and 

the result did not improve. The variance reductions in this study are comparable with the 

results in New Zealand (Muramoto et al., 2019), even though the station spacing in Alaska 

is sparse. By calculating the difference between the HYCOM and pressure data, we reduced 

the variance of the pressure data to a few centimeters equivalent without affecting the 

tectonic signal. This pressure difference is the data we put into the machine learning 

detector. 

 
Fig. 2.6. The pressure difference between real seafloor pressure data and HYCOM data. 

The standard deviation and variance reduction for each data are labeled in the figure. 

 

There are many ways to remove the oceanographic noise in the seafloor pressure data, such 

as numerical circulation models (HYCOM, ECCO4, ROMs), global mean, isobath average, 
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temperature and pressure correlation, and reference station method (Fredrickson et al., 

2019; Gomberg et al., 2019; Hino et al., 2014; Inazu et al., 2012; Wallace et al., 2016). 

Each one has its own strengths and disadvantages. In this study, we used the HYCOM 

because HYCOM simulates the observation better than others (Dobashi & Inazu, 2021). 

Compared to the correlation relations, we also found that HYCOM performs better on the 

continental shelf than on the steep continental slope because of the rapid water movements. 

Therefore, we further remove the oceanographic noise in the continental slope by the 

reference station method. Besides, HYCOM has a spatial resolution of 1/12 degrees, which 

is much better than ECCO4, which has a spatial resolution of .5 degrees. The stations 

located at the same isobath have similar oceanographic contributions. The correlation 

coefficient can be over 90% in Alaska, while the correlation coefficient of the stations 

distributed at the different isobath decreases from 90% to 60% along the slope. The global 

mean and reference station method is unsuitable for a large area, such as AACSE. 

Removing the average isobath method is hard to keep two stations at the same isobath with 

various geodetic signals. The subtraction between them may further subtract the geodetic 

signals. In addition, we check the bottom temperature data with APGs, and they are not 

very well recovered.     

 

SSE detection with machine learning 

We built a deep learning model to detect the approximate time of SSE in the pressure 

records. The basic procedure is the same as in our previous study (He et al., 2020). We 

added the capability of detecting subsidence. Because real seafloor pressure data is limited 

and insufficient, we used synthetic data to train the machine learning model (detector). The 
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synthetic data has a spectrum similar to the real data and contains the expected SSE signals 

with random duration, amplitude, and timing. Then we evaluated the model performance 

and applied the trained model to the real data.  

 

The synthetic data consists of three components: stochastic noise data with a pinkish-red 

spectrum, linear drifts with random amplitude, and artificial SSE ramps (Fig. 2.7). This 

study is improved by including up-ramp and down-ramp synthetic SSE signals, 

representing the subsidence and uplift in the pressure. The total number of synthetic 

training data is 0.56 million. We trained the machine learning model on synthetic data with 

a 3-5 dB signal-to-noise ratio. It means that if the standard deviation of background 

pressure is 1 hPa (1 cm), the aimed amplitude of SSE is 2.5-4.3 cm. In this study, the 

standard deviation of each piece of data ranges from ~1-4 dB so that the target amplitude 

can be 2.5 to 17.2 cm. Other parameter settings are the same as in our previous study (He 

et al., 2020). 
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Fig. 2.7. A case shows how the synthetic data is constructed. The SNR for this case is 3 dB. 

The synthetic data (d) is the combination of pinkish-red noise (a), up-ramp and down-ramp 

synthetic SSE (b), and instrumental drifts (c). When the SSE occurs, the continental plate 

moves upward close to the trench and moves downward far away to the trench. The 

pressure close to the trench decreases, so the ramp is down. The pressure far away to the 

trench increases, so the ramp is up.  
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The deep learning model includes convolutional and recurrent neural networks, which can 

extract and study the long and short-term patterns in time series data (Fig. 2.8). The input 

is a piece of 60-days normalized pressure difference data from one station. The final layer 

of the network outputs a vector of probabilities of uplift, subsidence, and no SSE (Fig. 2.8). 

The trained model accuracy reaches 80% on synthetic data (Fig. 2.9). 

 
Fig. 2.8. The architecture of the machine learning method. Left labels are the function 

names in Keras. They are 1-D convolutional layer, 1-D max pooling layer, bilateral long 

and short term memory layer, flatten, dense and dropout layers. Right numbers are the 
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rows and columns in each layer. The hyperparameters are chosen based on many random 

tests. 

 
Fig. 2.9. The training performance. (a)(b). The accuracy and Loss change with epochs. 

(c)(d). The key performance indicators change with the decision threshold. We chose 0.6 

as the detection threshold in figure 2.11. 

 

In order to make sure our detected SSE is not due to oceanographic sources, we run the 

machine learning detectors on HYCOM data as well. HYCOM data from 2010 to 2019 

were used in this region. We calculated the seafloor pressure by integrating the temperature 

and salinity from the upper water column and sea surface height. To resemble the real data 

processing steps, we subtracted the global mean from the shallow-water (0-500 m) and 
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(500–4500 m) deep-water stations. We put the pressure residuals of each station into the 

machine learning detector. The detector indeed finds some subsidence and uplifts (Movie. 

2.1). For example, stations located closely are able to show identical signals because some 

common waves are left in the pressure residuals. Also, one or two stations can show the 

signals together due to the noises or small eddies. However, we did not find a single case 

with multiple stations showing a similar pattern in our detected SSE. Therefore, from a 

statistical point of view, our SSE pattern is not likely result from an oceanographic process. 

 

SSE simulation 

We simulated the surface displacement caused by an SSE using a kinematic model. We 

first built a realistic three-dimensional geometry in Alaska using the slab 2.0 model (Hayes 

et al., 2018). Then we prescribed an initial slip model on the fault plane. The prescribed 

slip model should be chosen as simply as possible, so we decided on an oval slip patch on 

the fault with two radii of 65 km and 50 km and nonuniform slip of 10 to 15 cm. The 

moment magnitude of the simulated SSE is around 6.8. Next, we set the material properties 

based on the one-dimensional Alaska velocity model (Table 2). Finally, we tested models 

at different locations to compare the observations. 

Table 2.1 The Southern Alaska (SCAK) velocity model used to locate the earthquakes. 

 

Depth (km) Vp (km/s) Vs (km/s) 

-4.0 5.30 2.974 

4.0 5.60 3.140 

10.0 6.20 3.480 

15.0 6.90 3.870 
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20.0 7.40 4.150 

25.0 7.70 4.325 

33.0 7.90 4.430 

47.0 8.10 4.550 

65.0 8.30 4.655 

 

Earthquake detection 

In order to better observe the relationship between SSEs with seismicity, we built a more 

detailed earthquake catalog for the entire study region. In addition to the AACSE seismic 

data, we also used seismic data from the National Tsunami Warning Center Alaska Seismic 

Network (network code: AT), the Alaska Regional Network (network code: AK), the 

Global Seismograph Network (network code: II), the Transportable Array (network code: 

TA), and the Alaska Volcano Observatory Network (network code: AV). However, only 

those broadband stations within a 4.4-degree distance from 55.258N, 155.8625W were 

used. 

 

The procedure of the catalog building is as follows. First, a recursive short-time-

average/long-time-average (STA/LTA) algorithm (Withers et al., 1998) is used to detect 

possible earthquake records on individual seismometer channels with a trigger threshold 

of 5, after filtering the data between 2 and 10 Hz. The STA window length was set to 2 s, 

while the LTA window length was set to 10 s. Then, the detection windows on different 

stations were associated with different events based on P-wave and S-wave coda traveling 

speeds of 10 and 4 km/s. The values were set slightly larger to accommodate the large 

interstation distance of the array. A kurtosis-based automatic phase picker was used to pick 
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P- and S-wave arrivals (Baillard et al., 2013; Ross et al., 2016). Some of the OBSs suffered 

from instrumental malfunctions (Barcheck et al., 2020), and we discarded the channels 

with no records. A particle motion filter was applied on the remaining three-component 

data to automatically separate P- and S-waves (Ross et al., 2016). The Nonlinloc package 

was used to determine the earthquake locations (Lomax et al., 2000) in a spherical earth, 

using the travel times calculated by TauP (Crotwell et al., 1999). The phase picks with 

large misfits were down-weighted while searching for the optimized earthquake locations. 

We used the Southern Alaska 1D velocity model, also called SCAK model (Table 2) for 

the earthquake localization, despite the fact that Alaska is a region with strong lateral 

structure variations and the Alaska Earthquake Center actually used several different 1D 

velocity models for the events in our study area (Personal communication with Natalia 

Ruppert from Alaska earthquake center). The possible SSE region is just located on the 

boundary between the two model areas, but our stations in the north were in the center of 

Southern Alaska. The usage of the SCAK model, rather than other models, could avoid 

causing large misfits for the distant stations. Besides, we could eliminate the location 

inconsistencies that different velocity models might cause by applying only one velocity 

model. An example of an earthquake in the SSE region detected by our method but not in 

the USGS catalog is shown in Fig. 2-10. This event has one of the least recording station 

numbers, compared with other events in the same region. 
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Fig. 2-10. Earthquake examples. An example of a new ML 2.99 earthquake detected and 

located in our catalog, in the SSE region, which is not in the USGS catalog. Its origin time 

is 2018-11-11T14:13:43.854265 (UTC), and the source location is 54.438010N, 

158.023437W at the depth of 37.6979177 km. The red and green vertical bars represent 

our picked P- and S-wave arrivals. The dashed vertical bars indicate the down-weighted 

picks during the localization. Each trace is normalized by its maximum value. 

 

After the earthquakes were located, we launched a re-association process for the events to 

better constrain their locations. The re-association method is described by (X. Wei) et al., 

2020. We used a new set of STA and LTA window lengths, which were half of the original 

values, to re-detect the possible recorded earthquakes. Accordingly, the trigger threshold 

was lowered to 3. The STA/LTA parameters update helped find more earthquake records 

on distant stations with lower signal-to-noise ratios (SNRs). However, only bringing these 

lower SNR records in the re-association process could avoid raising the false detections 

considerably. For the re-associated events, their phase arrivals were picked, and their 

source locations were determined following the same procedure after the association 

process. Finally, for every single event, we measured their local magnitudes (Richter, 

1936). 
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Tremor detection 

An SSE is usually associated with tremors occurring at the updip and downdip part of the 

seismogenic zone (Beroza & Ide, 2011). Therefore, we investigated the tremors around the 

SSE location. The tremor detection method incorporated the automated envelope cross-

correlation technique (Aaron G. Wech & Creager, 2008). Because our target region is the 

Semidi segment, we choose the seismic stations within a circle with (-157, 55) as the center 

and 3 degrees as the radius. This tremor detection region includes 46 inland and offshore 

seismic stations. Two horizontal components of waveforms are used because tremor is 

generally dominated by S waves (Ide, 2012). To obtain the better envelope cross-

correlation results, two different frequency bands were applied (Todd et al., 2018; Todd & 

Schwartz, 2016): (1) 2-8 Hz to isolate tremor with low frequencies and (2) 10-16 Hz to 

separate local earthquakes with energy from high frequencies. The two bandpass filtered 

data envelopes were calculated, and then low pass filtered to 0.2 Hz and downsampled to 

1 Hz for use in the envelope cross-correlation. 

 

The continuous records are split into half overlapping 3-minute windows. First, we quickly 

removed large-amplitude earthquakes and large spikes, which affect cross-correlation 

results from each window, by using the method in Chen et al., (2018). The amplitude is 

simplified to 1 or 0 if higher or lower than the average value. If the segments are less than 

10 or the total length proportion of segments is less than 30%, this window is considered 

to have a large amplitude of earthquakes or large spikes and removed. Second, we 

calculated the envelope cross-correlation in different frequency bands. Because of the 
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relatively sparse stations in AACSE, the criteria for tremor detection is lower than in other 

studies (Chen et al., 2018; Todd et al., 2018). We used a hierarchical cluster method to find 

the most correlated station pairs. The tremor is located if the cross-correlation is over 0.68 

for more than 3 station pairs, but the time window is skipped if the cross-correlation is over 

0.65 for at least 6 stations in 10-16 Hz to minimize the local earthquake detections. Third, 

some regional or teleseismic waves are not shown in the high-frequency band We chose 

four reference stations (EP22, WD53, LT20, WD67) outside the study region and filtered 

them to 2-8 Hz, enveloped and downsampled. When the cross-correlation is over 0.65 for 

at least four stations, including the reference station, that time window is discarded. Fourth, 

we have USGS and our own seismic catalogs. We eliminated the detection time window 

that includes earthquakes in the catalogs. These automated processes help to reduce the 

number of false tremor detections significantly. Finally, we visually inspected all the 

detection results and abandoned small tremors with durations less than 30 s. Besides, we 

checked three seismic and hydrophone components to avoid T-phase in the seismic data. 

We also tested another frequency band pair of 4-10 Hz and 12-18 Hz used in New Zealand 

tremor detection (Todd et al., 2018). The results do not improve.  

2.3 Results 

SSE detection  

We applied our machine learning detector trained by synthetic data (He et al., 2020) to the 

processed AACSE pressure data. The pressure time series is split into 60-day sliding 

windows with 1-day sliding increments and each piece of 60-day data is normalized by its 

standard deviation. We apply the machine learning detector to the data and the detector 

calculates the probability of subsidence or uplift in the middle part of the data. A probability 
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of plus one or minus one indicates the highest probability that the 60-day segment contains 

an SSE, corresponding to an uplift or subsidence of the seafloor, respectively. According 

to the machine learning threshold test, we chose ±0.6 as the decision threshold. The 

detector defines an SSE when the absolute value of the probability is over 0.6. All the 

predicted probabilities are organized into the time series shown in Fig. 2.11. B. In addition, 

we have a movie to show the spatial distribution of the detected results (Movie 2.2). 

 
Fig. 2.11. Normalized pressure data and machine learning detection results. (A). Shallow-

water and deep-water normalized pressure data. (B). Detected probabilities from each 

station. All the detected probabilities (red and blue) vary within ±1. Red and blue dashed 

lines represent the detection thresholds of ±0.6, respectively. Only the probabilities over 

the thresholds are considered as an uplift or subsidence signal.  

 



 68 

The detection results show four types of spatial patterns. The first is where most stations 

show the same trend over a short time range. An example of this pattern is evident around 

June and July 2018, when over half of the stations show an apparent subsidence signal (Fig. 

2.11 B & 2.12 A). This pattern is common in our detections, and the large distance of 

spatially coherent signals (several hundreds of kilometers) is likely caused by large-scale 

ocean circulations that have not been fully eliminated by our date processing. A second 

common pattern is where only one station shows a noticeable uplift or subsidence signal, 

such as the uplift of station LT05 on Sept. 20, 2018 (Fig. 2.11 B). This is most likely due 

to small oceanographic signals or instrumental noise from a specific location or station. A 

third pattern (Figure 2.12 B) shows three uplifting stations close to the trench and two 

subsiding stations at a similar location along strike but far from the trench. This pattern 

appears to be consistent with SSE motion because of its spatial pattern (Fig. 2.12 B). 

However, there is a gap between the uplifted and subsided stations due to a lack of stations 

between the two groups. Some adjacent stations do not show the same pattern, such as 

LA23 and LT07 (Fig. 2.12 B). In addition, oceanographic signals commonly produce 

similar motions at stations located at the same isobaths (Fredrickson et al., 2019). The 

uplifting stations LA22, LA25, and LA28 are from identical depths while subsiding station 

LT11 and LT06 are at close depths (Fig. 2.13 B). There is a GPS station, AC13, between 

the positive and negative stations. There is no evidence for an SSE that generated 

displacement over 3 cm. This pattern can be explained by the coincidence of two localized 

eddy flows. The fourth pattern evident in our data occurs around Oct. 28, 2018, and shows 

subsidence at stations LT09, LT10, LT12, and LT19 and uplift at stations LA25, LA26, 

LA28, and LA30 (Fig. 2.13C). This spatial pattern looks more like an SSE than 
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oceanographic waves. Although station LA39 located several hundred kilometers to the 

east also shows uplift during this period, the two near-trench stations between LA39 and 

the uplift stations, LA22 and LA23, do not show uplift. The uplift of LA39 is likely a 

coincidence.  

 

To better understand the proposed SSE displacement pattern, we calculated the expected 

surface deformation from an SSE using Pylith, an open-source finite-element code 

(Aagaard et al., 2013). A model centered at 55.07N, 156.82W (depth range of 8-20 km) 

with a 20-degree oblique angle to the trench’s perpendicular direction can reproduce the 

observed spatial pattern (Fig. 1 & Fig. 3D) with the uplift (3-4 cm) close to the trench and 

the subsidence (1-2 cm) further away from the trench. The location of stations LT09 and 

LT14 in the simulated model generates small deformations, but they are evident in 

detections. It can be due to the simple assumption of the shape of the SSE. The finite fault 

inversion method can help to better constrain the SSE area. The model predicts very small 

deformation at the inland GNSS stations and is consistent with GNSS observations.  



 70 

 
Fig. 2.13. Detection snapshots and simulation. (A, B, C) The detection of apparent vertical 

deformation at three dates. More detected results are shown in the Movie 2.2. (D) 

Simulated surface displacement of an SSE on the thrust interface. Red and blue represent 

uplift and subsidence, respectively. 

 
Seismicity pattern 

SSEs can trigger small earthquakes in nearby regions (Nishikawa & Ide, 2018; Vallée et 

al., 2013; Yarce et al., 2019). Here, we create an improved earthquake catalog in the area 

centered at the likely SSE region (see Method for details). Between June 10th and June 

24th of 2019, some airgun shots occurred in our SSE region (Barcheck et al., 2020). Thus, 

we masked this period in Fig. 4A to avoid possible false earthquake detections. We also 

show the USGS catalog as a comparison. When there are AACSE and other sources of 
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earthquakes in the USGS catalog, we chose the AACSE as the first choice for the 

earthquake locations and origin times. The total number of detected earthquakes in our 

catalog is about three times of that in the USGS catalog.  

 

Daily seismicity rate shows an increase of seismicity in this area right after the SSE (Fig. 

2.14A). We counted the number of earthquakes within a 120-km radius circle centered at 

55°N, 157°W. The daily seismicity rate increases three times in the ten days right after the 

SSE compared to during the SSE in both the USGS catalog and our study. The elevated 

seismicity occurred on the up-dip and down-dip ends of the SSE area (Fig. 2.14B), likely 

triggered by the SSE. Additionally, the seismicity rate drops about 25 percent in the ten 

months after the SSE (Fig. 2.14A). There are two rate peaks before the SSE. The increased 

seismicity near July 24th, 2018, is due to a Mw 4.5 mainshock and its aftershocks. There 

is no major shock for the peak on August 13th, 2018. The magnitude of seismicity is 

smaller than 3 and earthquakes are sparsely distributed.  

 

Earthquake swarms associated with shallow SSEs have been observed in New Zealand, 

Japan, and Ecuador (Bartlow et al., 2014; Montgomery-Brown & Syracuse, 2015; 

Nishikawa & Ide, 2018; Reverso et al., 2016; Vallée et al., 2013). In these studies, some 

swarms occurred before the SSE as foreshocks, and others occurred during or after the SSE. 

In our case, the earthquake swarms followed the SSE and are located updip and downdip 

of the SSE (Fig. 2.14B). We further calculate the Coulomb stress change caused by the 

SSE using the previously mentioned numerical simulation model. The elevated seismicity 

is located at positive Coulomb stress change regions, consistent with triggering by the SSE 
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(Fig. 2.14B). We also observed that the epicenters of the 2020 Simeonof earthquake and 

2021 Chignik earthquake were located at the positive Coulomb stress change regions. The 

SSE increased the Coulomb stress for the 2021 earthquake by about 0.2 bar and the 2020 

earthquake by less than 0.05 bar. The SSE might have advanced the 2021 Chignik 

earthquake.  

 

 
Figure 2.14. Daily earthquakes and coulomb stress change. (A) Change of seismicity rate 

near the SSE region. The blue rectangle highlights the duration of the SSE. The gray bar 
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masks the airgun shot time. (B) Coulomb stress change of the SSE. The different color dots 

represent the earthquake spatial distribution from four significant days, which are 

highlighted in (A). The yellow and green dots show the earthquake swarm after the SSE. 

The black and red stars label the epicenters of the 2020 Simeonof earthquake and 2021 

Chignik earthquake, respectively.  

 
Tremor detection 

Often enhanced nonvolcanic tremor activity accompanies SSEs near their source area 

(Beroza & Ide, 2011; Rousset et al., 2019). In this study, we attempted to detect tremors 

using OBS data from Aug. 2018 to 2019 (see method section for details). Around 20 

isolated short-duration (~ 90 seconds long) tremors were detected near the SSE at stations 

LA23, LA25 and LD36 (Fig. 2.15); however, only 3 occurred close in time to the SSE on 

Oct.7 (Fig. 2.15).  
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Figure 2.15. An example of tremor detected by our method on Oct. 7, 2018. A and B show 

the HH1 component in 2-8 Hz and 10-16 Hz, respectively. C and D show the HH2 and 

EDH component in 2-8 Hz.  

 

The lack of enhanced tremor activity can be due to the sparse station distribution, noisy 

OBS data, small amplitude tremors, and fewer tremors in this area (Montgomery-Brown 

& Syracuse, 2015). The station spacing in AACSE is 20-40 km. We require at least three 

stations to detect a tremor. It is possible that only one or two stations captured some tremors, 
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and we could not identify them. Additionally, noise is much higher (between 1 and 8 Hz) 

in the OBS data compared to the land stations (Barcheck et al., 2020). It is hard to detect 

small tremors from OBS data (A. G. Wech et al., 2013). Lastly, it is possible that tremors 

are just not abundant in this SSE area, which has been observed elsewhere. For example, 

Boso Peninsula did not produce any detectable tremors during the 2013 SSE, although the 

region is densely instrumented (Montgomery-Brown & Syracuse, 2015). 

 

2.4 Discussion 

Geological and physical conditions for SSE in this region 

The occurrence of shallow SSEs is related to several conditions: (1) abundant fluids;  (2) 

high fault roughness and heterogeneous fault structure; (3) near the transition zone of 

frictional properties; and (4) modestly unstable fault patches smaller than a critical 

dimension needed for earthquake nucleation (Bürgmann, 2018; Saffer & Wallace, 2015). 

In the Semidi segment, trace element analysis in nearby volcanoes shows that there is less 

fluid in Semidi compared to the Shumagin in the deep subduction zone (>100 km) (S. S. 

Wei et al., 2021). However, the fluid status is unclear in the shallow Semidi segment. On 

the one hand, there are several bending faults visible on seismic Line 4 on the west end of 

the Semidi segment, and the topography becomes smooth on seismic Line 3 in the middle 

part of the Semidi segment (J. Li et al., 2015; Shillington et al., 2015). Additionally, the 

Semidi segment has relatively thick sediments subducted compared to the southwest 

Shumagin segment (Shillington et al., 2015; S. S. Wei et al., 2021). A newly formed 

accretionary margin occurred only ~3 Ma ago and subducted sediments scraped by the 

accretionary wedge are relatively weak (Stevenson et al., 1983). The weakly faulted and 
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thicker sediment layer could carry abundant pore fluid in intergranular and fracture 

porosity to enter the trench at Semidi. On the other hand, the seismic reflection data show 

that P wave velocity within the subducting layer of the Semidi segment is substantially 

lower than in the overlying plate, and is also lower than expected for its burial depth of 

hydrostatic pore-fluid pressure. The elevated Vp/Vs ratio, at the shallow subduction zone 

along the trench including the SSE area, is observed by a double-difference earthquake 

tomography study (F. Wang et al., 2021). It is likely that the shallow section is highly 

overpressured due to the sediment compaction (J. Li et al., 2018).  

 

Thick Zodiac Fan sediment (~800-m) and other pelagic sediments subduct into the Semidi 

segment (Stevenson et al., 1983). However, such thick sediment cannot submerge the 

subducting ridge, whose height is over 1 km. In the west of the Semidi segment, a buried 

extension of the subducting Patton-Murray Ridge was recognized. It created a ridge or 

escarpment terminating the continental shelf and an embayment in the accretionary front 

(Fig. 2.1) (Huene et al., 2016). These geological features are unique in Semidi and thought 

to be favorable for tsunami hosting earthquakes (Huene et al., 2016). The physical 

conditions for tsunami hosting earthquakes and shallow SSEs are similar (Saffer & Wallace, 

2015), which may also favor shallow SSEs. The 2021 Mw 8.2 Chignik earthquake occurred 

at this spot but created a minor tsunami and did not rupture to shallow depth, suggesting 

that shallow SSEs are possible in this area. The buried extension of the subducting Patton-

Murray Ridge can be responsible for the SSEs. 
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There are many seismic reflection studies from Kodiak to Shumagin. The detailed fault 

structure information can help indicate the different portions of the seismogenic zone. On 

the west Semidi, a thin sharp reflection with a single low-velocity zone is observed at a 

depth of 13 to 20 km, and it is explained as the frictional unstable region (J. Li et al., 2015).  

In our SSE simulation result, significant slip is also found at the shallow depths around 8-

15 km, so our proposed SSE dominantly slides at the velocity-strengthening (stable) to 

weakening (unstable) fault patch. The fault patch can be over-pressured and slip as SSEs 

due to a combination of trapping fluids and disequilibrium compaction. 

 

The relation between the SSE and large earthquakes. 

Our detected SSE occurred between Oct. 12 and Nov. 6 of 2018 with 5 – 10 days of 

uncertainty. On July 22, 2020, a Mw 7.8 earthquake occurred on the Shumagin segment, 

located about 150 km southwest of the SSE area. The 2021 Chignik main shock occurred 

on the Semidi segment in July, and the hypocenter is at 32.2 km depth. Seismic inversion 

shows that the earthquake did not rupture to the shallow subduction zone (Liu et al., 2022). 

In contrast, a Mw 8.3 earthquake occurred in 1938 just east of the 2021 Chignik earthquake. 

The 1938 earthquake ruptured to a much shallower depth and generated an intermediate 

tsunami (Freymueller et al., 2021). The relatively deeper earthquake in 2021 compared to 

the 1938 earthquake could be due to the occurrence of the SSE, which released the stress 

accumulations in the shallow Semidi subduction zone. Besides, the epicenter of these 

earthquakes is located at the positive Coulomb stress change regions. The SSE can 

statically trigger these two large earthquakes according to their nucleation zones 
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A 10-year analysis of the b-value in this area shows that the SSE occurred in a region with 

a low b-value (Liu et al., 2020). Variations of the b-value can be interpreted as the presence 

of asperities and variable frictional properties (Schorlemmer & Wiemer, 2005). The 

decrease in b-value also indicates the high-stress accumulation and potential large 

earthquake location (Nanjo et al., 2012; Schorlemmer et al., 2005). In the west Semidi 

segment, Liu et al. (2020) found the b-value gradually decreased from 0.95 to below 0.8 

since 2011, which can be related to the nucleation of the 2021 Chignik earthquake. They 

also observed that the b-value rebounded from 0.7 to 0.75 at the end of 2018. The rebound 

might have been caused by the stress released by the 2018 SSE. 

 

We applied a newly developed machine learning method to detect SSEs in seafloor 

pressure data between summers of 2018 and 2019 offshore southern Alaska. The method 

detected one event between Oct. 13 and Nov. 6, 2018 with 5 to 10 days of uncertainty. The 

spatial pattern of the deformation is unlikely oceanographic in origin, based on analysis of 

the 10-years model output from the global numerical circulation model HYCOM. It is 

consistent with a simulated ground deformation from an oval-shaped SSE patch on the 

subduction interface. The spatial and temporal evolution of seismicity in this region is also 

consistent with the existence of an SSE. Our detected SSE is located 150-km northeast of 

the 2020 Mw 7.8 Alaska earthquake and updip of the 2021 Mw 8.2 Chignik earthquake. 

Neither earthquake ruptured to the shallow depth, and no significant tsunami occurred with 

the two earthquakes, consistent with our observations of shallow SSEs in this region, which 

released tectonic stresses on the shallow subduction zone interface.  Our method has the 
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potential to transform the way of detecting such signals in seafloor pressure data offshore, 

especially where the signal source is far away from the shoreline. 
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CHAPTER 3 

Quantifying the water contribution to seafloor pressure  

by combining machine learning method and ocean circulation models 
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Abstract 

Megathrust earthquakes with destructive tsunamic waves mainly occurred in the offshore 

subduction zone, causing massive fatalities and significant property losses. Due to their 

underwater environment, monitoring these offshore faults and estimating the location and 

size of potential earthquakes and tsunamis are challenging. Seafloor pressure data have 

been used to monitor vertical tectonic motion on the seafloor, especially in detecting slow 

slip events. However, such detections are difficult due to long-term instrumental drift and 

considerable water noise. In this study, I investigate the ocean circulation-generated 

pressure by using the machine learning method. The investigated process can help quantify 

the ocean circulation-generated signals and better detect the tectonic deformation signals.  

 

3.1 Introduction 

Seafloor pressure measurements have been recorded for over a decade, but only detected 

SSEs in a few cases. Correctly detecting SSEs from the seafloor pressure data mainly 

depends on finding SSE signals from the terrestrial observations (Hino et al., 2014; Wallace 

et al., 2016). The essential issues limiting SSEs detection are long-term instrumental drifts 

and large water movement noises in the pressure data. It is hard to remove those effects 

thoroughly. In our previous studies, we designed a machine learning algorithm to detect 

SSEs with instrumental drifts and ocean circulation-generated signals. The variations of 

surrounding water movements prevented us to detect small SSEs. In this study, I am 

exploring how to reduce the water movement noise and improve the signal-to-noise ratio. 
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The observed seafloor pressure can be expressed as a formula (3-1).  

𝑃(𝑥, 𝑡) = 	𝑃.(𝑥, 𝑡) + 𝑃A(𝑥, 𝑡) + 𝑃BBC(𝑥, 𝑡) +	𝑃=(𝑥, 𝑡) + e	(𝑥, 𝑡)																			(3-1) 

The measured seafloor pressure, 𝑃(𝑥, 𝑡) , varied with location 𝑥  and time	 𝑡 , can be 

considered a sum of the following signals: 𝑃.(𝑥, 𝑡) earth tides, 𝑃A(𝑥, 𝑡) instrumental drift, 

𝑃BBC(𝑥, 𝑡)  SSE (tectonic motion) caused pressure changes, 𝑃=(𝑥, 𝑡)  non-tidal ocean 

circulation, and e	(𝑥, 𝑡) other unknown sources of noise. Tide waves can be removed by 

using tidal response models or a half-day low pass filter. Long-term drift is often removed 

by an exponential plus linear curve (Watts & Kontoyiannis, 1990).  However, if an SSE 

exists in the pressure data, the de-drifting procedure will tilt the SSE and make the detection 

harder. Ocean water columns that contributed to seafloor pressure changes 𝑃=(𝑥, 𝑡) have 

large amplitude and mixed frequency components than the tectonic motion that contributed 

to seafloor pressure changes 𝑃BBC(𝑥, 𝑡). Directly distinguishing them in both the time and 

frequency domain is very difficult. Therefore, other auxiliary measurements or simulations 

are necessary. 

There are four standard methods to remove the oceanographic signals in pressure data, 

including the reference station method (Wallace et al., 2016), ocean circulation model 

(Inazu et al., 2012), depth-matched spatial coherence method (Fredrickson et al., 2019), 

and temperature pressure correlation method (Gomberg et al., 2019). The reference station 

method uses one station at the other side of the trench as the reference and subtracts it from 

other stations because the subducting plate does not move during an SSE. This method 

applies when the station's spatial distance is less than 200 km and the depth offset is within 

3 km. For example, the reference station method works well for the northern Hikurangi 

Margin, a small, shallow continental slope region (Wallace et al., 2016).The reference 
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station method can remove 80%-95% of oceanographic signals 𝑃=(𝑥, 𝑡) (Wallace et al., 

2016). Nevertheless, the ocean circulation model works better for stations located far away 

and with relatively significant depth differences than the reference station method. For 

instance, Muramoto et al. (2019) indicated that station LOBS8 and TXBPR2 have larger 

variance reduction using the ocean model method than the reference station method in New 

Zealand 2014-2015 SSE.   

The ocean circulation model method includes the global ocean circulation model: HYCOM, 

ECCO2, GLORYS, and regional ocean model: ROMs, which subtracts the modeled 

seafloor pressure data from real data. Most models are reanalysis which assimilates with 

the satellite altimeter observations and in-situ sea surface temperature as well as in-situ 

vertical temperature and salinity profiles (Cummings & Smedstad, 2013). According to 

different assimilating methods and statements, the ocean circulation model method 

depends highly on the quality, temporal and spatial resolutions of ocean circulation models 

in different regions. For example, HYCOM works better in Alaska, while ECCO2 has a 

high correlation in New Zealand (Dobashi & Inazu, 2021). Inazu et al. (2012) designed a 

one-layer barotropic ocean circulation model to simulate the ocean bottom pressure 

𝑃=(𝑥, 𝑡). They further considered the effects of the seafloor bathymetry and air pressure 

compared to other ocean circulation models. However, it is challenging to simulate small 

and deep eddy flows owing to lacking ocean bottom observations. No matter how well the 

model is, it is impossible to include all the small-scale pressure perturbations in the model. 

Directly subtracting the ocean circulation model from the real seafloor pressure data may 

add additional errors to the data. The best-modeled pressures can only explain 50-80% 

variations in the real pressure data (Muramoto et al., 2019). 
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Isobath reference method is proposed by Fredrickson et al. (2019). Because of the along-

margin spatial coherence of the ocean-generated pressure field, they used a pressure record 

at a site far from the posited SSE deformation at approximately the same depth as the 

reference station. They then subtracted the corresponding reference one in each station pair. 

The size of detectable SSE Mw ranges from 5-7, so the produced deformation fields with 

dimensions are smaller than 100 km.  For this reason, the distance between the depth-

matched station pairs should be larger than 100 km to avoid subtracting SSE signals and 

smaller than spatial correlation limitations. Seafloor pressures at the continental shelf are 

not only affected by depth variations but also the bathymetry and coastal trapped waves. 

The depth-matched station pairs should be analysis and well-considered in the local area 

(Inoue et al., 2021).  

Seafloor pressure depends on sea surface height and upper column water density variations. 

Ocean water density relates to the surrounding water temperature and salinity changes 

(equation 3-2). 

𝑆𝑆𝐻(𝑥, 𝑡) 	= 	𝑃=(𝑥, 𝑡)/(𝜌𝑔) 	+ 𝑔𝑝𝑎𝑛(𝑥, 𝑡)/𝑔,                                 (3-2) 

where 𝑔𝑝𝑎𝑛(𝑥, 𝑡)	is integrated from the bottom to the sea surface and is a function of 

temperature and salinity. The sea surface height, 𝑆𝑆𝐻(𝑥, 𝑡), varied with location 𝑥 and 

time	𝑡, can be considered a linear combination of bottom pressure anomaly 𝑃=(𝑥, 𝑡) and 

geopotential anomaly 𝑔𝑝𝑎𝑛(𝑥, 𝑡). 𝜌, 𝑔 represents seawater density and acceleration term, 

respectively (Baker-Yeboah et al., 2011). Gomberg et al. (2019) indicated that seafloor 

temperature could be used as an independent proxy to remove oceanographic signals. The 

relation between the seafloor pressure and temperature was observed and studied in New 

Zealand and Japan (Baba et al., 2006; Gomberg et al., 2019; Itoh et al., 2019). However, 



 100 

such correlations are unstable and vary with time evolution and location. For example, the 

max cross-correlation coefficient in 2014 HOBITTS data ranges from 0.2 to 0.6, and the 

time lag is around 8-16 days for different stations (Gomberg et al., 2019). For some specific 

stations, LBPR4, the correlation is even negative. It is complicated to extract functional 

correlations to help remove oceanographic signals by working on seafloor pressure and 

temperature relationships. 

All the above methods have their disadvantages. High variance reduction methods are not 

applicable for large study area, while low variance reduction methods may add additional 

errors to the residual. I want to find a new approach to reduce oceanographic noise and 

have minimum error uncertainties. Many features, such as sea surface height, sea surface 

temperature, seafloor temperature, seafloor salinity, and deep currents, are measurable and 

closely related to the water column contributed to seafloor pressure changes. However, 

these relationships are implicit and sometimes nonlinear. Summarizing an explicit and 

experienced equation and directly subtracting it is hard. 

Machine learning can study nonlinear and implicit relationship between the input (features) 

and output (target) and has the potential to be a powerful tool for estimating the ocean 

circulation-generated bottom pressure. As a first step, I investigate how well machine 

learning works by using only variables co-located in space and time. Six measurable 

features are considered in this study, including sea surface height (SSH), sea surface 

temperature (SST), seafloor bottom temperature (B-Temp), seafloor bottom salinity (B-

Sali), deep current east component (U), and deep current north component (V). I am 

exploring whether machine learning techniques can do better than just using SSH or B-

Temp alone and which features affect the seafloor pressure the most. Based on my 
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scientific questions, two machine learning methods: random forest and deep learning 

neural network, are used to study the relation between the features and target. Because real 

data is not abundant, I used the ocean circulation model data to build the training dataset. 

The random forest results show that the order of important features is SSH, B-Temp, SST, 

B-Sali, U, and V, and the proportion of importance of SSH is over 50%. The deep learning 

method shows a similar order to the random forest method, but it further studies the 

evolution of feature changes over time. For the later study, a well-trained model can be 

generalized with real data and build a new proxy to predict the oceanographic signals 

𝑃=(𝑥, 𝑡). 

3.2 Method 

I chose the southern Alaska subduction zone as the study area. HYCOM simulates the 

Alaska seafloor pressure better than other ocean circulation models and is chosen as the 

training data for the machine learning studies (Dobashi & Inazu, 2021). I downloaded ten 

years of HYCOM data from 2010 to 2019 in this area, including sea surface height and 

temperature, salinity, and deep currents data at all water column depths. Seafloor pressure 

is calculated by using equation 3-2. The spatial coverage of HYCOM ranges from 198 W 

to 210 W and 53 N to 59 N (Figure. 3.1), covering all the absolute pressure gauges in 

AACSE. I studied the relationship between different features: SSH, SST, B-Temp, B-Sali, 

U, and V, and seafloor pressure data using machine learning. 
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Figure 3.1 Map of the study area in the Alaska-Aleutian megathrust. The red and green 

dots represent the HYCOM data. According to the depth, I separate the data into two parts: 

red dots for the continental slope region (500-5000 m) and green dots for the continental 

shelf region(50- 500m).  

 

The problem is supervised machine learning with a regression function. The features and 

seafloor pressure (target) are the input and output of the machine learning model. The 

machine learning model uses many simple linear and nonlinear formulas to explore the 

relations between the features and target relations. I first use a random forest method to 

determine which feature is the most important and how important they are. Then, I consider 

the time evolution of features using the deep learning method.  
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Pressure data on the continental shelf has a much larger amplitude than on the continental 

slope, and two different currents flow along the continental shelf and slope regions. The 

relationship between seafloor pressure and other features on the continental shelf and slope 

could be different. Thus, I separate the HYCOM data into two groups based on their depth 

(Figure 3.1). The continental shelf data includes depths from 50 – 500m, and continental 

slope data is at a depth of 500 – 5000m. The HYCOM space resolution is 1/12 degree, and 

the time resolution is 3 hours. Each part of the region includes about 6000 data points in 

10 years.  

Before train the machine learning model with the HYCOM data, I have to pre-process each 

piece of data. Because the high-frequency noises can be ignored in the data, I filter the 

high-frequency stuff in all the features and pressure data using a one-day low pass filter. 

Then I cut the data into 30-days pieces. I throw out the last part of the data in less than 30 

days, avoiding data leakages during the training process. Finally, I make each piece of data 

zero mean and unit variance. Salinity and deep currents U and V data vary slightly in 30 

days. Unit variance manipulation may cause substantial values and affect the training result. 

Here, I do not divide its standard if the standard deviation of 30-days data is less than 10-8. 

Figure 3-2 shows the processed seafloor pressure data and six features. Because the data is 

processed in 30-dyas time window, there are some discontinuous segments in the long time 

series. 



 104 

 

Figure 3.2. The learning features and the seafloor pressure data at the continental slope 

and continental shelf regions. The six features are SSH (Sea Surface Height), B-Sali 

(Ocean Bottom Salinity), SST (Sea Surface Temperature), B-Temp (Ocean Bottom 

Temperature), U (ocean bottom deep current east component), and V (ocean bottom deep 

current north component) 
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Machine learning study  

Random forest regression uses an ensemble learning method for regression, which is the 

process of using multiple models trained over the same data, averaging the results of each 

model, and ultimately finding a robust predictive result. The random forest method can 

build many decision trees, and the errors of each decision tree are independent and different 

from tree to tree. Thus, this method is powerful and accurate for problems with complex 

and nonlinear relationships. I applied the random forest method by importing the scikit-

learn package in Python. I also calculated the feature importance using the random forest 

built-in function. Larger importance indicates that the features have a more significant 

influence on predicting the target. The input and output data are six features and seafloor 

pressure simultaneously. I reshaped the data points into one long piece and separated the 

first 75% into the training dataset and the last 25% into the test dataset. The data points in 

the HYCOM output are very close. To make sure that the deep learning studies the 

relationship between features and output and does not memorize the result for adjacent 

stations, the training and test datasets are from different locations. The location of each 

dataset has no overlap. The motivation is to test whether the learned relationships can be 

applied to nearby areas. Besides, I did another test that separated the training and test 

dataset into two different time ranges. The training dataset includes the data from 2010 to 

2017.5, and validation is from 2017.5 to 2019. This test can help evaluate whether the 

learned relationships can be applied to other time steps. 

Some features, like seafloor temperature, show time lags with seafloor pressure, and it is 

hard to extract the time features and put them into the random forest method. Thus, I use a 
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deep learning neural network to include the time information in the prediction. For this 

study, the input and output become the features and target in 30 days, so I cut the data into 

30-days pieces without overlap. The deep learning architecture includes an encoder-

decoder network (Figure 3.3), which is a popular network design in ML problems in 

generating dialogues (Serban et al., 2017), labeling semantic images (Badrinarayanan et 

al., 2015), detecting image forgeries (Bappy et al., 2019), and predicting vehicle trajectory 

(H. Park et al., 2018, p. 2). Seismic phase picking (Mousavi et al., 2020) and denoise 

seismic signals (Zhu & Beroza, 2019) also applied encoder-decoder network in seismology 

study. 

 

Figure 3.3: The encoder-decoder neural network is to learn the relations between the 

features and seafloor pressure data. The network consists of 3 main blocks: encoder, 
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bottleneck, and decoder branches. The encoder and decoder branches contain 4 and 5 one-

dimensional convolutional and transpose convolutional layers. The layer parameters “x 

kr y, padding” refers to x kernels with y features and same padding that means output and 

input are the same size. Each convolutional and transpose convolutional layer is followed 

by a batch normalization (BN) layer and a ReLU antinational layer. A detailed explanation 

is discussed in the main text. The red numbers in the brackets show how the tensor size 

varies between layers [number of batches ×  number of channels ×  length of signal 

sequence]. 

The architecture includes three major parts: (1) The encoder branch takes the role of 

extracting beneficial, high-level characteristics from the input features. Through training 

with sufficient data and updating its parameters, the encoder aims to extract helpful input 

data characteristics that can help predict seafloor pressure. I used one-dimensional (1D) 

convolutional layers with increasing kernels to extract high-level features with a minimal 

number of parameters (Figure 3.3). The stride of the convolution is adjusted to down-

sample the time series along the time axis. I tested using MaxPooling instead of 

convolutional strides but found poorer network performance. After each 1D convolutional 

layer, batch normalization is applied to normalize the output to zero-mean and unit variance. 

Finally, a rectified linear unit function (ReLU) is used as the activation function for non-

linearity. (2). The decoder branch translates the learned features from the encoder branch 

and reconstructs the output time series. The branch is composed of 1D transpose 

convolutional layers. In symmetry with the encoder block, the number of kernels gradually 

decreases, and then the high-level characteristics are incorporated back into the time 

domain. I also applied batch-normalization and ReLU activation following each 1D 
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transpose convolutional layer, like the encoder block. Only the final layer used linear 

activation to perform the seafloor pressure better. (3). The bottleneck block links the 

encoder and decoder branches. Its purpose is to learn the mapping relation between the 

encoder-extracted characteristics of the input features and the output seafloor pressure. 

Based on our previous study about machine learning detectors, combining convolutional 

neural network and LSTM (Long and short-term memory) shows a good performance on 

1D time-series data. I also used LSTM to build the bottleneck block in this study (Figure 

3.3). In total, the architecture includes around 23000 machine learning parameters. 

I used a mean squared error as the loss function and chose ADAM algorithm for 

optimization (Kingma & Ba, 2014). In order to monitor the training process, I use an early 

stoppling of 10 steps to monitor the validation loss. The training process will be terminated 

if the validation loss is not improved for the subsequent rolling of 10 steps. I split the entire 

dataset into the training, validation, and test datasets with a proportion of 60%-20%-20%, 

respectively. Only the training data set is used to train the network, update the model 

parameters, and minimize the loss function. The validation data set is used to validate the 

model and track over-fitting during training. The testing data set is used to evaluate the 

performance of models after training. For the same reason as the random forest study, the 

training, validation, and test datasets have no overlap in the spatial domain. 

I used the explained variance score (EVS) and R2 score to evaluate the performance of two 

machine learning models. The larger the two scores mean, the better the trained model. A 

score of 1 represents the predicted result equal to the real one. If two scores are less than 0, 

the predictions have many artifacts. 
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I tested the performance of the machine learning model with different size of training 

dataset. The random forest method has fewer learning parameters than the deep learning 

method, so the random forest method does not need lots of training data. I tested 1/10, 1/5, 

½, and 1 of the training dataset, and the training performance did not improve. Thus, I used 

1/10 of the training data to save computational time. However, in the deep learning study, 

I found the performance of the deep learning model increases with the number of the 

training dataset in a logarithmic form. I tested 0.2 and 0.5 million of the training dataset, 

and the performance of the continental slope dataset rises from 0.52 to 0.63. If I put more 

data into the deep learning model, the model can be trained better. 

 

3.3 Result 

I separated data into training and validation datasets for random forest study using location 

and time separation methods. These two methods show similar performance and 

importance factors (Figure 3.4). I used the mean value of EVS and R2 score to evaluate the 

model performance. The performance score for the continental shelf dataset is 0.92 for both 

methods. The high-performance score is that seafloor pressure is similar to the SSH at the 

continental shelf regions. The performance score is 0.89 if I only used SSH data. The 

continental slope dataset has a performance score of 0.51 because of the deep flow 

uncertainties. This number is much higher than that, only using the SSH data of 0.39. SSH 

is the most important feature in predicting seafloor pressure, especially for continental shelf 

data; its importance factor is over 0.9. For the continental shelf dataset, SST is slightly 

more important than B-Temp. B-Sali is the third important factor. U and V have a tiny 

importance proportion. The importance of SST, B-Sali, B-Temp, U, and V are all less than 
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3%. Their contribution can be ignored in the random forest model. B-Temp is more 

important than SST for the continental slope dataset because of the oceanic depth. The 

importance of B-Sali, U, and V are similar, and they are about 8%. 

A critical parameter in the random forest model is the number of trees (n_estimator in 

scikit-learn). I tested the n_estimator from 20 to 40, and the model performance increased 

by less than 1%. Lager n_estimator will significantly add computational time, so I used 

n_estimator = 20 in this study. 

 

Figure 3.4. The importance factor for different random forest training datasets. Figure A 

& B use the time separation dataset, and figure C and D use the location separation dataset. 

Figure A & C are from the continental shelf dataset and figure B & D are from the 

continental slope dataset.  

 

Continental shelf dataset (Time)

Continental shelf dataset (Location)

Continental slope dataset (Time)

Continental slope dataset (Location)

A B
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I also used different data separation methods in the deep learning model. However, the 

time separation dataset cannot be trained well, and its validation dataset is not improved 

during the training process. Therefore, I only show the result from the location separation 

dataset (Table 3.1 & Table 3.2). The continental shelf data achieves higher performance 

scores than the continental slope data because of the oceanic depth. Although SSH is the 

most important feature in predictions, other features still help to improve the training 

performance by about 3% in continental shelf data and 4% in slope data. Deep current 

velocities U and V seem useless in the continental shelf data and have an insignificant 

contribution to the continental slope data. SST and B-Temp are the second most important 

factor in predictions. B-Sali is the fourth important factor. These results are similar to the 

random forest. 

The performance scores in the random forest and deep learning studies are not comparable. 

Their input and output lengths are different. The input and output of a random forest model 

are the features and target at one time. Even if I gave the continuous data to the random 

forest training model, the model could not consider the time evolutions of the features. 

When there is a time lag in the features, such as temperatures, the random forest model can 

not study it. On the contrary, the input and output for the deep learning model are 30-days 

time series. It can learn some intrinsic characteristics from the continuous 30-days time 

series data.   

 

Table 3.1. The performance of the continental shelf data 



 112 

Features SSH, SST, 

B-Temp, 

B-Sali, U, 

V 

SSH SSH, SST SSH, B-

Temp 

SSH, 

SST, 

B-Temp 

SSH, SST, 

B-Temp, 

B-Sali 

SSH, SST, 

B-Temp, 

U, V 

EVS score 

R2 score 

0.79 

0.79 

0.76 

0.76 

0.78 

0.78 

0.76 

0.76 

0.78 

0.78 

0.79 

0.79 

0.79 

0.78 

 

Table 3.2. The performance of the continental slope data 
Features SSH, SST, 

B-Temp, 

B-Sali, U, 

V 

SSH SSH, SST SSH, B-

Temp 

SSH, SST, 

B_Temp 

SSH, SST, 

B-Temp, 

B-Sali 

SSH, SST, 

B-Temp, 

U, V 

EVS score 

R2 score 

0.63 

0.63 

0.59 

0.58 

0.61 

0.60 

0.61 

0.61 

0.61 

0.61 

0.62 

0.61 

0.63 

0.62 

 

In order to validate whether the trained relation can be applied to other regions, the training 

and validation dataset are from different areas. During the training process, there is a gap 

between the training and validation loss curves (Figure 3.5). Although the training loss is 

significantly lower than the validation loss, it does not mean over-training because both 

training and validation loss values are still improved with the epochs.  Over-training means 

that the training loss continuously decreases, and validation loss increases.   
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Figure 3.5. The training and validation loss curve for the continental shelf (A) and the 

continental slope (B) data.  

 

Figure 3.6 shows the deep learning model test examples. Because seafloor pressure 

resembles the SSH, I calculate the EVS score for SSH (S_SSH) compared with S_Predict. 

The averaged S_SSH is 0.4 for continental shelf data and 0.89 for continental slope data. 

The deep learning model for the continental shelf data has a higher performance than SSH, 

but for the continental slope data, it has a lower performance than SSH. For the cases where 

S_Predict is smaller than S_HH, the machine learning model tends to predict a curve with 

fewer variations and to lack detailed features. Also, the EVS scores for machine learning 

prediction are all positive. It means that no artificial errors are produced during the 

predictions. If the machine learning model can not sufficiently study the relationship, it 

will output zeros rather than strange signals. 
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Figure 3.6. Examples of the test dataset. The upper four figures are from the continental 

shelf data, and the lower four are from the continental slope data. Target means the 

seafloor pressure data. S_Predict represents the EVS score for the predicted result, and 

S_SSH means the EVS score for SSH data. 
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3.4 Discussion and Conclusion 

In the feature importance analysis, deep current velocities U and V have a tiny importance 

proportion. It might be due to the fact that U and V are proportional to pressure gradient 

instead of pressure. Therefore, if we consider the spatial variation of the pressure field, U 

and V could show a much higher importance factor. For the deep learning studies using 

continental slope data, U and V help improve the performance by about 2%. Even if the 

improvement is small, it indicates that, in the deep quiet ocean, the deep currents changes 

are slightly related to the pressure changes for the single station. 

Besides, we found that SST and B-Temp have similar importance factors. Suppose the B-

Temp is not available or has some issues in the seafloor temperature sensors. In that case, 

SST can be a good substitute for the B-Temp, available from the satellite altimetry 

measurement. In my trained result (Table 3.1), SST seems better than B-Temp for the 

continental shelf data. It could be because water column density depends more on SST than 

B-Temp. SST and B-Temp can help learn the ocean circulation contributed pressure 

changes, but their help is not significant. Their contribution is less than 10% in both 

machine learning models. 

B-Sali is a feature that previous studies did not use, and it has minimal variations in the 

deep ocean. Although B-Sali is not as crucial as B-Temp in two machine learning models, 

B-Sali did help improve the predictions in the continental shelf and slope data. I suggest 

assembling a salinity measurement with absolute pressure gauges. 

This study only considers the time evolution of features and ignores the spatial variations. 

In future research, the input data can be 2D feature data with 30-days images, consisting 

of both spatial and temporal information. The output data will be the pressure field with 
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30-days images. Simultaneously, the one-dimensional convolutional neural network could 

become two dimensions. This training process will require more data. This deep learning 

study uses about 0.6 million data. The suggested model will need much more data than this 

study. After the deep learning model is well trained, the model can be generalized using 

real observations. Then it can be used to estimate 𝑃=(𝑥, 𝑡) and provide a new proxy to 

remove the ocean circulation contribution to seafloor pressure. 

To conclude, I used six ocean circulation features and two machine learning methods to 

predict the bottom pressure. The sea surface height is essential in predicting the seafloor 

pressure among six features, and its importance is over 80% for continental slope and shelf 

data. Sea surface temperature and seafloor bottom temperature is the second most 

important factor. Seafloor salinity and deep current velocity are helpful in predictions, but 

their contributions are insignificant in time series data. 
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