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ABSTRACT

Biological processes in midwater habitats—ocean areas between the sunlit

surface layers and seafloor—are critical drivers of ocean biogeochemical cycling,

oxygen availability, fish population dynamics, and ecological interactions over a

wide range of scales. Achieving high-resolution observations of the environmental

and biological heterogeneity in the ocean’s interior is important for understanding

the status and evolution of the earth system at large. Traditional ocean sampling

platforms (e.g. net systems, moored and shipboard sensors), are often unable to

resolve marine biota at fine (cm-m) scales and over submesoscale (sub-km to kms)

survey areas comparable to the relevant variability in their physical environment.

Shipboard mounted acoustic echosounders are commonly used to resolve biological

data in the open ocean but record coarse measurements below 300m depth, due

to acoustic attenuation, and do not collect matching environmental data. Existing

towed sensor platforms are limited in their spatial and temporal resolutions due

to constraints from tow cable dynamics, and autonomous platforms such as AUVs

and gliders are often limited by their speed and endurance.

The development of sensor-based field surveys that can achieve concurrent bi-

ological and environmental measurements over large sampling spaces at fine scales

allows for improved characterization of these ecosystems. Studies employing these

modern survey tools have shown that biological assemblages in marine ecosys-

tems are often characterized by extreme spatial and temporal heterogeneity, and

respond to fine environmental gradients, submesoscale physical processes (e.g. ed-

dies, fronts, and internal waves), diel rhythms, and ephemeral opportunities for

resource exploitation. This thesis work seeks to both derive techniques supporting

the use of new imaging and acoustic sensor platforms to achieve detailed biological-

environmental coupled datasets and to use the data to assess the linkages between



animal habits and local hydrography in diverse midwater habitats. Collectively the

results from this project will help to further the technology-enabled exploration of

the vast but difficult to observe midwater habitat and will contribute several novel

characterizations of biological-environmental coupled dynamics in diverse epi and

mesopelagic ecosystems.
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PREFACE

This dissertation is arranged in manuscript format and is presented as 3 chap-

ters. Chapter 1 focuses on establishing stereo image processing methods to de-

scribe the occurrence and evolution of a thin layer formed by the pelagic red crab,

Pleuroncondes planipe from data collected in the eastern Tropical Pacific oxygen

minimum zone offshore of Baja California, Mexico in Jan/ Feb 2018. This species

is abundant in pelagic habitats throughout the eastern Pacific, with an estimated

biomass of 215,000 - 611,000 metric tonnes supporting ecologically and commer-

cially important oceanic predators including sharks, tunas, whales, and squids.

Pleuroncondes planipes has both pelagic and benthic phases partitioned by life

cycle stage. Pelagic populations can often be found in dense swarms at the surface

or in midwaters, with variable diel habits and apparent vertical migration patterns

suggested from net tow abundances that have not been observed in detail. Using

in situ optical and environmental measurements, this project derives detailed char-

acterization of a P. planipes thin layer and its rapid dispersal. The hypothesis that

the thin layer distribution and dispersal corresponded to the location and timing

of environmental and ecological features was investigated. Analysis of the crab

thin layer contributes new understanding of the short-lived and rapid migration

behaviors of P. planipes in their pelagic phase, and shows dispersal timing linked

to the migration timing of a specific deep (400-500m) scattering layer. The chapter

1 analysis shows the coupling of the crab thin layer to a locally stratified isopycnal

with an internal wave propagating through it, and also demonstrates alteration to

the water column stratification distribution corresponding to the arrival of the deep

migrating layers and crab thin layer dispersal. Collectively this work contributes

new understanding of the pelagic habits of P. planipes, a first documentation of a

micronekton aggregation meeting thin layer criteria, and suggests alteration to the
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epi-pelagic physical and ecological structure over short (instantaneous to 2 hour)

time intervals.

Chapter 2 sought to develop a new methodology to collect detailed con-

current hydrographic and acoustic sections in the midwater environment (0-1000

meters) with the Wire Flyer profiling vehicle and a dual-frequency split-beam

echosounder (Simrad EK80 with 70 and 200 kHz transducers) . The Wire Flyer is

able to provide high-resolution repeat profiling (0-2.5 m/sec up and down velocity)

within specified water column depth bands (typically 300-400 m) and is controlled

by a topside connection to an acoustic modem for up/down link communications.

A unique aspect of the echosounder on this platform is the decision to have the

transducers pointed lateral to the vehicle’s movement, as opposed to the more

traditional downward (or upward) transducers on ships and most other systems.

An advantage of the side-looking arrangement is that the data being collected are

orthogonal to the movement of the platform which provides collection of third-

dimension data as the vehicle moves forward and vertically. A main objective of

this chapter was to collect, process, and analyze 3-dimensional acoustic data with

expectations that coherent scattering layers and patches would be resolved and

demonstrate varying associations with the environmental sections.

This project provided initial characterization of the acoustic data collected by

the system (noise floor, interference sources, diverging per-element power trends,

and range-dependent trends) and implemented techniques to remove these sources

of noise and power trends. From the derived data, submesoscale oceanographic

phenomenon were visualized in detail showing coupling between fine scale hori-

zontal oxygen gradients and biological distributions, scatterer distributions parti-

tioned across a shallow water front, and coherent athwartship biological and gas

plume patches. This work has proven the systems capabilities for simultaneously
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recording biological and environmental information in the 0 to 1000 m region.

Chapter 3 of the dissertation implements techniques to quantify scattering

layers acoustically in Wire Flyer sections for the purpose of defining biological

assemblages and describing their submesoscale distributions within the environ-

ment. The methods for this chapter focus largely on implementing a detection

routine for scattering layers and singles targets exploiting the side-looking acous-

tic aspect and statistical analysis of detected scattering layers. The analysis of

thin layer shapes examined the extent to which planktonic thin layer shapes re-

flect the vertical adjacency of phytoplankton and zooplankton assemblages, as

has been shown previously. Regression analysis identified environmental features

influencing the distribution of the 70 and 200 kHz acoustic scattering layers, con-

tributing insights into differing ecological zonation in the midwater habitat among

the functional groups, and offering statistical analysis of the signal fidelity of the

acoustically derived biological metrics. Modeling approaches were used to simulate

the side-looking data and describe potential mechanisms for the observed profile

layer shapes. Collectively this leverages the Wire Flyer datasets to perform anal-

ysis of scattering layer distributions and the influence of environmental variables

that will further understanding of animal habits within the midwater environment.
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1.1 Abstract

Ocean midwaters—areas between the sunlit surface layers and

seafloor—comprise the largest habitat on Earth but are among the least

understood marine environments. Available sampling platforms (e.g. net systems,

moored and shipboard sensors), are often unable to resolve the environmentally-

coupled distributions of marine biota throughout the water column over the

relevant scales. A deep profiling (1000 m rated) stereo camera was operated in

tandem with a split-beam five channel fisheries echosounder to record midwater

scattering layers in detail across the oxygen minimum zone (OMZ) offshore of Baja

California. A computer vision software library was developed to batch process

the collected water column imagery and the derived biological information was

interpolated with environmental sensor and acoustic backscatter measurements.

A large aggregation of the micronekton squat lobster Pleuroncodes planipes (red

crab) was described in the imaging and acoustic data. During midday hours, the

micronekton were distributed in an intense thin layer 2 m in vertical extent and

having a maximum abundance of roughly 10 individuals m -3 . The thin layer

distribution was tightly coupled to the 1026 kg m -3 isopycnal associated with a

high-frequency internal wave. At dusk the crabs redistributed upwards suddenly

as a specific mesopelagic scattering layer with a daytime settling depth of 600-800

m migrated through the micronekton thin layer near the surface.

1.2 Introduction

The spatial and temporal dynamics of animal distributions in pelagic ecosys-

tems are patchy and vary over a broad range of scales related to heterogeneity in

the environment, resources, and opportunities for biological and trophodynamic

interactions [1]. Describing the distributions of marine populations within their

physical environment over the relevant spatiotemporal scales is a fundamental re-
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quirement for understanding the structure of pelagic ecosystems and the many

factors driving their heterogeneity [2]. Plankton and micronekton populations are

often highly aggregated over day- night cycles in the epi and meso-pelagic ocean,

and nekton and top predators respond to prey patch patterns [3, 4]. The need for

high resolution field surveys that record detailed concurrent information on the

in situ distributions and identity of organisms within their local physical environ-

ments has steered the development of a range of sensor-based tools for optical and

acoustic sensing [5]. Sensor-based water column surveys are capable of recording

fine scale in situ structures that would be integrated by net tow samples [6].

Optical sampling has proven to be an especially valuable technique for surveys

of planktonic animals [5, 7]. In situ imaging systems can record detailed taxonomic

and behavioral information at fine scales and without bias against fragile gelatinous

organisms that do not survive net tows [8, 9]. Modern plankton imaging systems

collect large and feature-rich datasets that can be processed by autonomous meth-

ods [10, 11]. Deriving consistent, efficient, and accurate biological information

from large image datasets remains challenging and lacks generalized procedures

[12]. The image processing and computer vision problems of accurately counting

and identifying animals from image data are often tackled by solutions that are

specific to a particular system or deployment and can require extensive human-

in-the-loop processing to establish training data [13]. Stereo imaging techniques

that use paired exterior-facing camera sensors allow for measurements over large

3-dimensional sample volumes and are often applied to benthic surveys (Gibson

et al. 2016). In the pelagic setting, stereo imaging systems can be used to quan-

tify larger micronekton and nekton taxa while still resolving larger-size plankton

and particles close to the camera. Without relying on collimated light sources or

vehicle-bounded sample spaces, the traditional camera setup is more utilitarian but

3



not specifically optimized for the plankton. These systems are useful for assess-

ments of the broader midwater community that incorporates larger micronekton

taxa often missed by dedicated plankton imaging platforms.

Acoustic techniques in particular have provided substantial insight into

the ubiquity and variability of Diel Vertical Migrating (DVM) behaviors by

mesopelagic animals, thought to be driven by an efficiency between food avail-

ability at the surface layers and the risk of visually-cued predators [14, 15, 4]. Ob-

servations of the migrating behaviors of animals establish important mechanisms

for connectivity between the surface and deep ocean over daily cycles, affecting

the timing and pace of biogeochemical fluxes and ecological interactions in the

ocean [16, 17, 18]. Acoustic echosounding can record cm scale measurements over

extremely large (100 m) ranges away from the system. In contrast to imaging

techniques, the derivation of bioacoustic quantities is formal, more well-posed and

comparable, but provides coarser taxonomic information for single targets and co-

herent scattering layers. The use of multi-frequency and broadband echosounder

systems expands the ability to distinguish distinct scatterer classifications but must

rely on empirically derived scattering model information and typically can provide

only broad classifications (e.g. zooplankton, fish) without ground-truth informa-

tion from net collections or imaging data.

Sensor-based sampling techniques have enabled observation and study of ex-

treme spatial heterogeneity in plankton distributions [19]. A particularly ubiqui-

tous feature noted within acoustic and imaging systems is the existence of thin

aggregations or layers of organisms [20, 21, 22]. The common criteria used to

define thin layers are described by a peak intensity 3 times higher than the back-

ground signal and where the full width half maximum of the signal describes a

vertical distribution of less than 5 m [23]. Certain micronekton species aggre-
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gate in vertically-compressed swarms that meet the common criteria for thin layer

aggregations.

Here we describe the occurrence and evolution of a thin layer formed by the

pelagic red crab, Pleuroncondes planipes. This species is abundant in pelagic habi-

tats throughout the eastern Pacific, with an estimated biomass of 215,000 - 611,000

metric tonnes supporting ecologically and commercially important oceanic preda-

tors including sharks, tunas, whales, and squids [24]. P. planipes has both pelagic

and benthic phases partitioned by life cycle stage [25], but the habits appear ex-

changeable. Pelagic populations can often be found in dense swarms at the surface

or in midwater, with variable diel habits and apparent vertical migration patterns

suggested from net tow abundances that have not observed in detail. Rapid migra-

tions performed into the water column by a portion of densely compacted benthic

populations on the continental shelf and slope have been recorded by hydro acous-

tic studies [26], and it is thought that younger benthopelagic adults migrating into

a pelagic setting at night is common [27], but data are lacking on the fine scale

vertical distribution and redistribution of offshore aggregations that retain pelagic

habits over daily cycles.

1.3 Materials and procedures
1.3.1 Data collection

A 1000 m depth rated tethered stereo camera profiler was deployed in the

eastern tropical Pacific (ETP) Oxygen Minimum Zone (OMZ) offshore of Baja

California in 2017 (Figure 1). Cruise work was conducted from the RV Sikuliaq

in January-February of 2017 as part of a project assessing the ecophysiology and

zonation of animal aggregations throughout the OMZ environment. The goal of

the camera work was to collect high resolution water column stereo imagery to

describe the in situ distributions of zooplankton, micronekton, and nekton within
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the epi and mesopelagic ocean. Datasets from two sequential deployments recorded

an abundant pelagic aggregation of the squat lobster Pleuroncodes planipes and

were analyzed in detail.

The camera system provided high resolution, 2752 x 2200 pixels, 16 bit images

(Figure 2). One camera in the pair was a black and white camera and the other was

color. Measurements from a suite of environmental sensors (CTD, Chl, Turbidity,

Oxygen) mounted with the camera were also recorded. Lighting was provided

by a pair of 200J strobes synced to the camera acquisition. The system was

deployed on a standard CTD wire using a heave compensated winch while the ship

held position with dynamic positioning. Shipboard acoustic measurements were

collected simultaneously using a 5-channel fisheries echosounder system (Simrad

EK60 split-beam Sonar with 18, 38, 70, 120, and 200 kHz transducers) mounted

on the hull of R/V Sikuliaq. The derived acoustic, imaging, and environmental

measurements were fused to generate multi-resolution biological-physical datasets

for analysis of Pleuroncondes planipes and scattering layer distributions within the

physical environment.

1.3.2 Stereo image processing

A software library to batch-process water column imagery was written in C++

using the OpenCV computer vision library. The software is configurable by the

user, and multithreaded to operate on several image pairs simultaneously. The

goals of this image processing library were to normalize the image data collected

in the epi- and mesopelagic ocean and extract stereo-pair objects from 1000s of

paired images).

Initially, a two step lighting correction was performed to remove lighting gradi-

ents resulting from the fixed strobe illumination and the variable photic conditions

near the surface (shallower than 100m) at daylight hours. To correct for the
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strobe illumination, a representative strobe lightfield was generated from averag-

ing a subset of the images profiles, determined by image statistic (the mean and

standard deviation of the image intensities) with lower quantiles corresponding to

largely empty scenes. The histograms of these empty-scene images were translated

to signed zero-mean intensity images and averaged, generating the strobe light-

field which was subtracted from the raw image profiles. These corrected images

were further processed to remove the variable ambient illumination by pixel-wise

median filtering among sequential images.

Following the lighting correction an image segmentation method was used to

identify objects in the images. Each object was defined by a Region of Interest

(ROI) which contained the boundary of the object and a list of keypoint features

(Figure 3). ROIs in matching stereo image pairs were compared to identify the

subset of ROIs which could be associated with each other and then reprojected

in 3D using the stereo camera calibration. The final list of matched objects and

interpolated depth and environmental data for each dive was then stored alongside

a directory of the segmented images.

Pleuroncondes planipes individuals were manually identified from the total set

of segmented ROIs and sorted into a separate directory of classified animal groups.

A script then read through the directory of classified images and assigned taxo-

nomic labels to the original data file based off the classification directory structure

(Figure 4). Aspect ratios (height over width) were calculated from the ROI bound-

ing boxes to provide a proxy metric for individual animal orientation. An aspect

ratio value of ¿ 0.9 was selected to label vertically swimming individuals. Individ-

uals sitting passively in the water were oriented more horizontally and had aspect

ratios generally ¡ 0.75. The ROI areas, determined in square millimeters, were

calculated from the bounded pixel area and the calibrated pixel size. The assigned
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ROI size was determined at the median range from the camera calculated from

the subset of keypoints less than 2 standard deviations from the median value for

all detected keypoints within the ROI. Crab abundances within the stereo volume

(roughly 10 m3) were calculated for each stereo pair, and then averaged in bins of

four sequential image pairs to smooth the data and obtain an abundance profile.

1.3.3 Acoustic data

Shipboard acoustic measurements were collected while deploying the stereo

imaging system using a 5-channel fisheries echosounder system (Simrad EK60 split-

beam Sonar with 18, 38, 70, 120, and 200 kHz transducers) mounted on the hull

of the R/V Sikuliaq. Continuous Wave acoustic Scattering Volume (Sv) and Mean

Volume Backscattering Strength (MVBS) measurements was calculated from the

raw data files in R. Backscatter information from the 120 kHz and 38 kHz channels

was used to examine scattering layers in the upper 400 m of the water column,

and major scattering layers of interest were manually defined from the 120 kHz

Sv echogram. Delta MVBS (120 kHz MVBS -38 kHz MVBS) values were cal-

culated to assess the broad frequency-dependant scatterer characteristics for the

annotated scattering layers below 5m depth using 10 ping integration cells and a

lower Sv threshold of -90 dB. These values overlapped the imaging profiles and the

annotated scattering layer definitions.

1.3.4 Buoyancy frequency analysis

Buoyancy (Brunt–Väisälä) frequency, N2, was calculated for all camera profiles

to analyze the distribution and potential influence of the water column stratifica-

tion on the observed micronekton thin layer and scattering layer dynamics ([28]).

Several smoothing and binning operations for the buoyancy frequency calculation

were tested without significantly altering the trends observed in the stratification
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profiles. The selected buoyancy frequency calculation followed [29]. Temperature

and salinity data were filtered into 3 meter bins and density profiles were interpo-

lated using cubic splines before the calculation of N2. A regression between the

peak crab abundance and the in situ stratification at the corresponding depth was

created for profiles before the occurrence of the layer migration with a peak crab

abundance of greater than 5 individuals per the imaging volume.

1.4 Results
1.4.1 Coverage and imaging results:

Stereo image datasets from two consecutive deployments of the stereo cam-

era profiler contained abundant Pleuroncondes planipes aggregations. The first

deployment provided a single profile containing 410 image pairs, with a sustained

observation (roughly 5 mins) of the crab thin layer at midday (Figure 5a,b). The

subsequent deployment consisted of one truncated and 15 full repeating profiles in

depth bands from 75 to 200 m, and 15m to 200m for the last 6 profiles, totaling

4,594 image pairs (Figure 5a,c). A total of 2,447 crabs from 10,458 ROIs and 2,600

crabs and 104,570 ROIs were identified from the 1st and 2nd deployments respec-

tively. The majority of the ROIs were small particles, many of which resulted

in mismatched pairs, and plankton detected within two meters from the camera

center.

1.4.2 Thin layer distribution

Pleuroncondes planipes occupied a thin layer during daylight hours tracking

the 1026 kg/m3 isopycnal around 145 m depth. The midday stereo camera profile

demonstrated the maximum Pleuroncondes planipes densities, reaching 80 individ-

uals in the imaging volume at the thin layer (Figure 5 b,h). Vertical excursions

in the camera profile path show a rapid drop off in crab abundance over short

2 m depth changes. Very few individuals were recorded above, and even fewer
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below the thin layer. Acoustic Sv 120 kHz also was higher for the thin layer dur-

ing this time, reaching roughly -55 dB. During the repeat profiling, the maximum

crab abundances again occurred between 140-150m depth for the duration of the

daylight observation (Figure 5c). Pleuroncodes planipes were completely absent

at depths beginning several meters below their peak abundance while there was

a consistent presence of individuals and smaller aggregations at shallower depths

above their thin layer aggregation. A slight secondary peak abundance was ob-

served in the intermediary profiles from 17:50 to 18:30 at the chlorophyll maximum

at 80m depth. The maximum crab abundances recorded in the thin layer at this

time was reduced from the midday profile, reaching 39 individuals in the imaging

volume (Figure 5i).

The thin layer vertical distribution corresponded to a local peak in buoyancy

frequency, N2, at the 1026 kg/m3 isopycnal (Figure 6). The calculated N2 profiles

had vertical structure, i.e. the location and relative magnitude of peaks and min-

ima, that was largely conserved for the first 11 profiles when the crab thin layer

was maintained. A high frequency internal wave propagating through the tracked

isopycnal caused a small vertical oscillation in the crab thin layer depth distri-

bution roughly 2-3 meters in amplitude. In the following profiles, the fine scale

vertical structure in N2 was diminished with fewer and lower frequency peaks in

the density gradient, before higher-frequency N2 structure reappeared in the final

profile. A relationship between the maximum crab abundance and the in situ strat-

ification intensity at the depth of the peak abundance was observed, where higher

buoyancy frequencies corresponded to greater maximum crab densities (Figure 7).

1.4.3 Thin layer dissociation

The presence of the thin layer remained stable until 19:00, in the 12th profile.

The Pleuroncondes planipes thin layer abruptly dispersed before the 12th profile
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while a shallower distribution occurred with no crabs recorded below 100m depth

(Figure 5c). An abundant aggregation was observed briefly near the surface in pro-

files 12-13 during the rapid crab redistribution. In the last profiles, the aggregation

occurring around the chlorophyll maximum at 80 m depth appears to ‘descend’

over the profile sequence, settling at depths near the original occurrence of a thin

layer but with a broader and more diffuse vertical distribution. The acoustic data

suggested a reformation of a thin layer starting at 21:00 (Figure 5a).

Distinct orientation characteristics of Pleuroncondes planipes individuals coin-

cided with the dissociation timing of the crab thin layer aggregation (Figure 5f,g).

An increase in the proportion of vertically oriented individuals was observed for

the last recorded instance of the the thin layer aggregation and for the shallower

aggregation in the following profile which had 60-80 percent vertical individuals at

the peak abundance. Smaller aggregations and individuals recorded between the

thin layer and the chlorophyll maximum also had a high proportion of vertically

oriented individuals during the early migrating layers ascent through the 75 m-150

m depth band. Aggregations recorded in the last sequence of four profiles cap-

turing descending crab distributions did not demonstrate the high proportion of

vertically oriented individuals found in the preceding imaging profile. The orien-

tation information suggested a short-lived escape-response-like vertical swimming

behavior in response to the ascent of deep migrators followed by a slower descent

of horizontally oriented individuals.

1.4.4 Acoustic scattering layers

The acoustic backscatter from the shipboard echosounder closely matched the

Pleuroncondes planipes distributions derived from the imagery. The thin layer

observed in the image data occurred as a matching oscillating feature in the acous-

tic Sv data that disappears at 19:00. The acoustic echogram also identified two
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coherent deeper scattering layers that ascended through the crab thin layer dur-

ing the repeat camera profiling. A scattering layer ascended slowly through the

micronekton thin layer at 17:00 local time departing from a diffuse distribution

at a daytime settling depth around 200 m seen for the prior two hours. A large

scattering layer with a daytime settling depth between 300-400 m ascended more

rapidly and arrived at the thin layer. Scatterers aggregated broadly around the

chlorophyll maximum at 80 meters during nightime hours with slightly partitioned

scattering layers visible 20 meters above and below the main aggregation.

1.4.5 Evidence for scattering layer compositions

The delta MVBS (120kHz - 38 kHz) values calculated from data cells cor-

responding to the two migrating layers and the large nighttime aggregation at

the chlorophyll maximum demonstrated unique unimodal distributions (Figure 8).

The two migrating layers had non-overlapping 25-75 quartiles, with the 1st and

2nd migrating layer having median delta MVBS values of +7.7 and -3.3. The

mixed aggregation had an intermediary delta MVBS value slightly elevated from

the 2nd migrating layer with a median value of -1.3. Unequal variance t-tests

showed significant difference in the delta-MVBS sample means between the three

annotated scattering layers. The assumption that delta MVBS largely describes

size-dependent assemblages composition information, with positive delta MVBS

values indicative of zooplankton dominated scattering layers and fishes and nek-

ton resulting in zero or negative centered delta MVBS values, would suggest a

zooplankton dominated 1st migrating layer and a deeper migrating layer contain-

ing midwater fishes and large invertebrates.
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1.5 Discussion
1.5.1 Micronekton thin layer evolution

Direct observations of micronekton aggregations are uncommon relative to

phytoplankton and zooplankton assemblages. This study provided direct observa-

tion of the evolution of a Pleuroncondes planipes pelagic aggregation meeting the

criteria for a thin layer during a day-night transition. The thin layer was initially

comprised of horizontally oriented individuals with outstretched pleopods showing

minimal swimming behavior. The micronekton thin layer persisted during daylight

hours closely tracking the 1026 kg m3 isopycnal while oscillating with an internal

wave. A 2-3 fold decrease in peak abundance then occurred from the midday pro-

file to the subsequent deployment beginning roughly two hours before sunset. A

local peak in buoyancy frequency was present at the thin layer depth for the dura-

tion of its occurrence. Local stratification may have contributed to the formation

and/or maintenance of the aggregation at the particular isopycnal, as the thin layer

depth provided a sharp lower boundary in the vertical distributions of the detected

crabs. Interestingly, the observed fine scale water column stratification structure

was reduced and lost during the dispersal of the thin layer. The timing of the ob-

served changes in water column structure and biological migrations might suggest

mixing mechanisms linking these events, but that remains speculative because the

dataset is non-Lagrangian and thus advective processes may be incorporated in

the apparent environmental and biological distributions.

1.5.2 Rapid dispersion and migration event

The micronekton thin layer underwent a rapid dissociation accompanied by

a short-lived migration event. Rapid migrations have been observed acoustically

for benthopelagic P. planipes aggregations but have not been directly observed

for pelagic aggregations [26]. An interesting result was the apparent response of
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the crab layer to the ascending migration of a specific scattering layer, and the

maintenance of the thin layer aggregation during the ascent of an earlier migrating

layer. These observations suggested that a transition in the epipelagic distributions

of P. planipes can be initiated by the timing of select migrating layers that cues

the rapid alteration of P. planipes vertical distributions and behavior. Further-

more, these observations support an emerging understanding of the importance of

dynamic behavioral responses driven by encounters between predators and prey

in restructuring the zonation of animals in pelagic ecosystems ([30, 31]). While

the identity of the deep scattering layer composition was not well resolved by the

imaging data, the frequency dependant scattering characteristics suggested that

this layer was largely comprised of micronekton fishes and larger soft-bodied or-

ganisms that settled at the chlorophyll maximum during nightime hours. The

acoustic observation of a reformed thin layer near the original micronekton layer

depth roughly three hours after the initial dispersal suggested a short-lived migra-

tion into and out of the densely populated 0-100m depth band after dusk. The

recording of the micronekton thin layer dispersal and redistribution at high tem-

poral resolutions supports other findings showing the role of critical time windows

at dusk diminishing spatial segregation of populations and providing pronounced

and ephemeral alterations to pelagic ecosystem structure ([17]).

1.5.3 Camera avoidance

It is likely that avoidance behaviors led to an undersampling of larger nekton

species and decreased the ability to resolve the variable community compositions

over space and time from the imaging data alone. Size spectral analysis of imaged

animals and particles within the distinct scattering layer did not show significant

differences, likely reflecting both the avoidance behavior of larger animals and po-

tential biases in the image processing pipeline configured to optimize extraction of

14



the squat lobster individuals. Observations of the squat lobsters did not appear to

be substantially affected by avoidance due to the camera and strobe, as evidenced

by the maintenance of the thin layer aggregation during repeated camera profiling

and the vertical orientation of P. planipes individuals only showing escape response

behaviors at limited times in response to ecological factors.

1.5.4 Applications and improvements of image processing methods

The image processing pipeline constructed for this study addressed the ba-

sic steps necessary for batch-processing water column stereo imagery datasets to

derive biological information in the 3D imaging volume. Stereo imaging as a wa-

ter column survey technique is readily available with off the shelf cameras and

lighting systems, but the processing of this data presents unique challenges with

variable background intensity gradients, scale dependant resolution, and the need

to apply paired image segmentation and stereo matching routines. This study

demonstrates the high resolution biological data obtainable by addressing these

processing requirement using relatively simple methods. Similar approaches to

semi-autonomous stereo image processing could be applied to process unexploited

datasets available from stereo imaging systems on ROVs and AUVS collected dur-

ing blue water operations. Stereo imaging datasets collected from these systems

during midwater transits are largely ignored, in part due to a lack of process-

ing pipelines and standard operating procedures like those existing for epibenthic

fauna. An underlying goal of the construction of the image processing methods

used for this study was to explore simple but robust automated techniques to derive

useful information from water column stereo imaging datasets. The implemented

image processing methods demonstrated skill for quantification of hard-bodied mi-

cronekton. Implementing more sophisticated image segmentation procedures and

the optimization of the camera configuration to increase depth of field and image
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contrast would improve the detection and identification of particles, plankton, and

nekton. The coupled acoustic and optical dataset compiled for this study has po-

tential value for refining scattering model descriptions for pelagic squat lobsters

([32]). The in situ orientation information for identified P. planipes individuals

can be used to better describe the predicted target strength.

1.6 Conclusions

This study combined optical, environmental and acoustic measurements to

describe the distribution and redistribution of a P. planipes thin layer with de-

tails that could not be obtained by single sensor survey approaches. The stereo

imaging profiler allowed for visual identification, abundance calculations, and be-

havioral analysis of individuals within a 3-dimensional sampling space. The con-

current environmental measurements allowed for the derived biological quantities

to be assessed within the local hydrographic context. Acoustic backscatter from a

shipboard echosounder recorded scattering layer distributions synoptically across a

large range of depths, providing information on distribution and migration timing

of deeper scattering layers while also providing a ground truth for the biological

information derived from the semi-automated image processing methods.

1.7 Figures
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Figure 1. Survey location offshore of Baja California, Mexico

Figure 2. Stereo camera profiling system. A) Schematic showing the side-looking
stereo imaging volume. B) The stereo camera profiling system on deck.
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Figure 3. Example stereo matched and segmented Regions of Interest (ROI) from
an image pair inside the crab thin layer. The top panel shows processed stereo
matching information for the right and left camera. The bottom panel shows a
single bounded Region of Interest (bottom left) and detected keypoint features
used for stereo matching (bottom right).
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Figure 4. Example segmented image regions with taxonomic details. A) Segments
identified as Pleuroncondes planipes representative of the varibility in animal ori-
entation and behavior. Detected animals ranged from 1.2 to 4.8 m distances from
the camera. B) Example segmented image regions capturing other broadly identi-
fiable taxa, including: a cestid ctenophore, copepods, shrimp, cydippid and beroe
ctenophores, chaetognaths, polychaete worms, medusae, and fishes.
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Figure 5. Measurements from sequential stereo camera profiling overlaid on 120
kHz acoustic scattering volume recorded from a shipboard echosounder. A) Stereo
image profile paths for two sequential deployments as white line plots overlaid on
120 kHz Sv echogram with 5dB contours highlighting discrete acoustic scattering
layers. Black rectangles define data subsets plotted in lower panels. B) Mean
Pleuroncondes planipes abundance per imaging volume from bins of four image
pairs shown as bubble plot size overlaid on 120 kHz Sv echograms for the midday
imaging profile and C) repeated profiling over dusk. D) Chlorophyll-a fluoroescence
recorded by stereo camera profiler with Pleuroncondes planipes mean abundance
data from imagery and Sv 8dB contours for midday profile and E) repeated profiling
over dusk. D, E) Pleuroncondes planipes mean abundance from binned imaging
data with Chlorophyll fluorescence data and 120 kHz Sv contours. F) Proportion
of Pleuroncondes planipes individuals defined as vertically swimming from the
mean ROI aspect ratio plotted as the color fill of the the abundance bubble plots
and overlaid on the 120 kHz Sv contours for the midday profile, and G) repeated
profiling. H) Pleuroncondes planipes abundances derived from the raw imaging
sequence over time for for the midday profile subset and I) the repeating profiling
at dusk.
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Figure 6. Buoyancy frequency (N2) plotted against density with crab abundance
information shown as bubble plots and color for camera profiles during repeat
profiling at dusk
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Figure 7. Maximum crab abundance per profile versus buoyancy frequency at the
depth of the maximum crab abundance depth.
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Figure 8. 120kHz-38 kHz delta MVBS data for annotated scattering layers. Anno-
tated acoustic scattering layer definitions for 1m x 10 ping cells nearby to imagery
profiles shown on 120 kHz MVBS. Histograms of delta MVBS 120 kHz-38 kHz
values for the four scattering layers.
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2.1 Abstract

Collecting detailed surveys of the environmental and biological heterogene-

ity in the epi and mesopelagic ocean is important for understanding the basic

processes that govern these expansive habitats and influence the earth system at

large. Common ocean sampling platforms (e.g. net systems, moored and ship-

board sensors), are often unable to resolve marine biota at scales comparable to

the variability existing in their physical environment. Newer approaches using

mobile robotic systems carrying suites of environmental sensors have enabled de-

tailed interrogation of the fine and sub-mesoscale distribution of animals, and have

provided more context for the water column structure. We have integrated a dual-

frequency split-beam echosounder (Simrad EK80 with 70 and 200 kHz transducers)

into the Wire Flyer profiling vehicle to achieve concurrent hydrographic and acous-

tic sections in the midwater environment (0-1000 meters) at novel scales. The Wire

Flyer provides high-resolution repeat profiling (0-2.5 m/sec up and down velocity)

within specified water column depth bands typically spanning 300-400m. This

system can provide acoustic backscatter data at depths unavailable to shipboard

surveys due to attenuation limits and can be operated in tandem with conventional

shipboard echosounders to provide overlapping acoustic coverage with concurrent

hydrographic sections. The side-looking transducer orientation, as opposed to the

traditional vertically oriented arrangement on ships, samples orthogonal to the

vehicle’s profiling survey path and provides a direct measurement of horizontal

heterogeneity. The collected and processed data have proven the system’s capac-

ity to track migrating layers and resolve coherent biological patches and single

targets in the horizontal, rising seafloor gas plumes, and scattering layer distri-

butions tightly coupled to measured submesoscale features such as strong vertical

oxygen gradients.
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2.2 Introduction

The majority of the world’s biomass resides within the mesopelagic region

of the oceans [1, 2, 3]. The biological and physical processes in this habitat are

dynamic and vary on multiple temporal and spatial scales [4, 5]. This has made

effective sampling of the mesopelagic difficult [6], as traditional ocean sampling

platforms (e.g. net systems, moored and shipboard sensors) are often unable to

resolve marine biota at scales comparable to the variability in their physical en-

vironment. Ship-based surveys using direct (e.g. nets) or indirect (e.g. acoustic)

sensors can typically monitor the near-surface (i.e. epipelagic) regions over smaller

spatial and time scales, but they can be limited in their ability to sample smaller

organisms (i.e. zooplankton) in deeper parts of the water column (¿ 200 m). Sta-

tionary sensor systems (e.g. moorings or buoys) can provide greater temporal

resolution of these processes over longer time periods, but they are point samples

and likely alias the patchy nature of the region.

The ability to measure deeper habitats is critical to understand a variety

of fundamental and dynamic physical and biological ocean processes. The non-

uniform migration of discrete scattering layers within the water column at daily

rhythms helps drive the biological pump and underpins many of the ecological

interactions in the open ocean. Frontal systems and submesoscale processes are

often responsible for driving surface processes through nutrient enhancement [7]

and coastal upwelling. Frontal systems are also common at shelf break environ-

ments where mixing between the epi- and meso-pelagic environment occurs [8].

Offshore, the importance of the massive mesopelagic fish community [9, 10] and

their roles in the global carbon budget is a topic of growing interest [11, 12]. In

addition, geologic features such as cold seeps support unique habitats [13] and

chemical environments [14]. These processes and others are difficult to sample co-
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herently with traditional instrumentation and methods (e.g. CTD casts, tow-yos

and shipboard acoustics), and may be better captured using towed rapid profiling

instruments (e.g. UCTD [15], SeaSoar [16], MVP [17], or Wire Flyer [18] that can

resolve the appropriate spatiotemporal scales.

Acoustic sensors provide a way to remotely sample the marine environment

at ranges of 10’s to 1000’s of meters at very high temporal resolutions (seconds).

Acoustic echosounders are widely used tools to measure the abundance and dis-

tribution of marine organisms, especially zooplankton and fish [19]. The effective

range of acoustic systems decreases with increasing frequency due to absorption,

however higher frequencies, greater than 38 kHz, are most useful for measuring

smaller lower trophic level organisms such as crustacean zooplankton. Addition-

ally, the ensonifed sample volume from ship-mounted systems increases with depth,

which makes effective single target detection depth-dependant and more difficult

for deeper scatterers [20]. For these reasons the depth that -based echosounders

can effectively measure the abundance and distribution of marine organisms is lim-

ited. While lower frequency echosounders (typically below 38 kHz) can measure

acoustic backscatter throughout much of the mesopelagic region these systems will

not resolve weaker scatterers in deep environments due to signal attenuation. One

solution to this problem is to bring the echosounders to the scattering features

of interest by lowering and/or towing them from a ship [21, 22, 23, 24]. These

systems often have incorporated multiple acoustic frequencies, environmental sen-

sors and optical imagery to provide additional context to the acoustic data. The

towed systems are typically operated in a tow-yo pattern to produce the water

column coverage necessary to evaluate vertical distributions and produce hydro-

graphic sections of environmental data. These ancillary data (e.g. temperature,

salinity and oxygen) taken at depth are useful and are typically lacking in strictly
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shipboard surveys. When using vertically oriented transducers on towed vehicles,

some of the acoustic data will still remain outside of the depth range where the

vehicle has been undulating and collecting environmental data.

Vertically-lowered, acoustic profilers have been used to profile with side-

looking [25] and down-looking [26, 27] transducers. Using coincident acoustic and

imaging volumes has proven effective in confirming single targets, such as fish with

swim bladders, and scattering strength estimates [25]. Earlier vertically profiling

acoustic systems, specifically the Tracor Acoustic Profiling System (TAPS) and

Multifrequency Acoustic Profiling System (MAPS), have provided bioacoustical

data at high (up to megahertz) frequencies with concurrent environmental mea-

surements in the surface ocean [28]. These systems were configured to ensonify

small horizontal sampling volumes (2-3 meters in horizontal range) in order to

isolate recordings of zooplankton from larger scatters [29]. Sonar information col-

lected in the horizontal orientation has been analyzed from TAPS at short meter

scales [30] but point sample data is typically derived from these systems instead

of analysis of backscatter returns over the full sampling range [31, 32, 33]. These

systems were designed to examine fine vertical structures in the plankton and

distribution patterns within the local environment, prioritizing innovative acous-

tic survey approaches over standardized techniques. Echosounders integrated into

large [34, 35, 36] and mid-size [37] autonomous underwater vehicles (AUVs) have

also been effective at collecting data beyond the range of shipboard systems. By

using dual frequencies these systems are able to provide animal discrimination that

is not achievable from shipboard systems due to frequency dependent attenuation

(e.g. [38]). Lower power gliders are also able to carry echosounders [39, 40, 41].

Although somewhat constrained by power limitations, gliders fill a niche for mul-

tiday observations and have many operational advantages over more demanding
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ship and AUV operations.

In this paper we describe integrating a dual frequency (70 & 200 kHz)

echosounder into the Wire Flyer towed vehicle [18]. The system utilizes the EK80

miniWBT echousounder in a similar manner as [41], but on a higher speed profiling

vehicle with side-looking transducers. With the ability to quickly collect vertical

profiles that are close in both time and space, our ability to study dynamic oceano-

graphic (e.g. frontal systems, deep-sea vents, etc) or biological (animal zonation,

deep scattering layer migration) processes can be improved. We present the in-

tegration of the acoustic system into the vehicle and present sample data that

demonstrate a new ability to resolve acoustic scattering with high resolution and

coincident hydrographic data within the mesopelagic.

2.3 Materials and procedures

The Wire Flyer towed profiling system is able to provide high horizontal reso-

lution repeat profiling within a specified region of the water column [18] (Figure 9).

The vehicle is autonomous and slides up and down a standard towed .322” CTD

wire in an automatically controlled manner using the lift created by wing foils. A

2100 lb clump weight is towed below the lower profile depth to keep the tow wire

taut, typically at 2-5 knots. The vehicle can achieve user specified up and down

velocities (0-2.5 m s−1) while profiling down to 1000 meters. During deployments

the vehicle is typically set to cover vertical bands of 300-400 meters positioned

within the water column as needed. The profile cycles will generally repeat with

one kilometer spacing.

The Flyer is equipped with the suite of environmental sensors (Table 2) to

produce detailed hydrographic sections of the water column. A post processing

routine accounts for the cable shape and vehicle layback behind the ship to place

the data at the proper location (Latitude, Longitude, depth).
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2.3.1 Echosounder integration

The EK80 miniWBT (Simrad Kongsberg) [42] is integrated into the Wire

Flyer as a stand-alone sensor packaged in its own 1500 meter rated pressure housing

10. The 200 kHz ES200-7CDK-split 7° x 7° and 70 kHz ES70-18CD, 18° x 18°

transducers are inset into the syntactic foam flotation on the top of the Wire

Flyer with the beams oriented level and pointing sideways. They are mostly flush

with the side of the vehicle and bordered by a retaining bezel to minimize flow

disturbance. Testing with thin plastic coverings to make a completely flush fairing

did not cause a change in signal quality, providing some indication that the level

of flow induced signal noise is low.

The EK80 miniWBT electronics were removed from the standard splash-proof

rectangular case and repackaged in a 106 mm diameter and 260 mm long cylindrical

housing. In this configuration the four acoustic channel cards required additional

ribbon cables to plug into the main transceiver backplane. The Mission Controller

and storage card is also packaged with the system. This repackaging allows the

system to be removed from the Flyer for testing and also keeps it away from

radiated electrical noise inside the Wire Flyer’s main electronics housing. Each

receiver card can be multiplexed to switch between two inputs, which provides eight

total acoustic channels. The EK80 receives power and has RS422 communications

with the main Raspberry Pi vehicle computer. A switching circuit allows the

communications lines to be routed to either the vehicle computer or outside the

Table 2. Wire Flyer sensors and parameters

Sensor Parameters Sample rate

SBE 49 FastCAT Temperature, conductivty, depth 16 Hz
Aanderra 4831F optode Oxygen 0.5 Hz
Wetlabs FLbb-2K Chlorophyll-a, turbidity (700 nm) 1 Hz

33



electronics housing via the deck cable so that the EK Mission Planner software

can have a dedicated connection from an external computer. Due to the noise

sensitivity of the sonar [41], power to the EK80 is filtered to achieve a roughly

-50 dB noise reduction in the 75 kHz transducer band (Figure 11). We used a

capacitance multiplier to increase the filter’s RC while avoiding a large voltage

drop over R1. The current through the resistor R1 is reduced by the T1 transistor

gain, which is typically ¿100. Selection of T1 impacts the filter’s effectiveness and

efficiency. Th high bandwidth, at least 1 MHz, allows the filter to remove noise up

to that frequency and the low voltage drop increases efficiency. The capacitance

multiplier is followed by a second RC stage with a small resistor, R2, to remove any

high frequency noise passing through or introduced by the transistor. Figure 12

shows a comparison with and without the power filter. This evaluation was made

by looking at the distribution of the returns as a function of range in a region of

the water column relatively devoid of acoustic scatterers. Since the test was done

while towing, it also provides an assessment of the lower detection limit that also

incorporates flow noise due to the vehicle’s motion. With the EK80 running at a

nominal 6 W the endurance of the Wire Flyer with the 800 W h battery system is

roughly 24 hours.

The EK80 mission files are planned and downloaded to the sonar prior to de-

ployment. The mission plans are set up for a number of preset ensembles with ping

patterns for each frequency. A linux-based sensor driver was written to interact

with the EK80 via the RS422 communications interface. This driver connects to

the EK80, sets the unit’s time to match the vehicle’s time and then sends the ap-

propriate commands to ping particular ensembles. The ensemble pattern is set as

part of the Flyer’s overall mission plan, and the driver changes the pinging pattern

as needed during a mission. The EK80 is configured to output real-time volume
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backscattering strength (Sv) data for 20 range bins per ping. The driver records

these messages as part of the standard data log and also flags other status messages

indicating the state of the system. The logged Sv messages contain a timestamp

from the EK80 that can be compared against the vehicle’s time to correct for time

drift within the sonar. These Sv data are also buffered in memory while operating

and can be retrieved in snippets via the acoustic modem communications between

the Wire Flyer and the ship side operator. This subsample of the data is useful to

identify scattering aggregations and layers during a deployment. The full data are

recorded on a large high speed USB flash drive in the EK80 electronics housing

and retrieved for processing after a deployment.

The ping sequence is typically configured to alternate frequencies in the up

and down directions (Figure 13b). The change in direction prompts the EK80

driver to switch the ping ensembles. In this pattern it is best to set the ensemble

length longer than a single profile duration. If the ensemble completes the unit

will pause and require the driver to resend a command to continue pinging. This

exchange will create a gap of a few seconds in the data. Changing frequencies

also causes a 8-10 second gap when the unit switches the multiplexer to the other

channel on each card before resuming pinging at the new frequency (Figure 13c).

When the Flyer is in a hold depth mode of level flight the pinging is typically set to

alternate frequencies, executing a fixed number of pings at each frequency before

switching.

A unique aspect of the echosounder on this platform is horizontal beam ori-

entation, as opposed to the more traditional downward (or upward) transducers

on ships and most other subsurface systems . An advantage of the side-looking

arrangement is that the data are collected orthogonal to the movement of the plat-

form, which creates an undulating ribbon of data as the vehicle moves forward and
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vertically. The size of the ensonified sampling volume is also constant across the

profile depth and is coincident with the environmental measurements. In addition,

the echosounder data is from a region that is physically separated from the vehi-

cle and cable wake or bow-wave where animals are more likely to exhibit natural

behaviors as opposed to an avoidance reaction. Several echosounders have been

previously deployed in a horizontally forward or side-looking configuration arrange-

ment ([43, 44, 45, 46]). One disadvantage of this geometry is that the majority of

fisheries acoustics literature considers data from downward-looking system. Thus,

the interpretation of volume backscatter or target strength data from these side-

looking systems will be more complicated than traditional ship surveys.

2.3.2 Echosounder data processing

The sonar was configured in Frequency Modulated (FM) mode, with a pulse

length of 2048 µs and a linear frequency sweep from 55-90 kHz and 185-255 kHz

for the 70 and 200 kHz channels respectively. Simrad’s broadband EK80 system

outputs datagrams (.RAW file format) that encapsulate the system configuration

and received acoustic information from both channels. To derive echocounting

and echointegration values from the .RAW files, a software parser written in Mat-

lab ingests the .RAW datagrams and calculates the Frequency Modulated (FM)

pulse compressed and Continuous Wave (CW) versions of acoustic Power, Target

Strength (TS) and Scattering Volume (Sv), and the angular positions. FM pulse

compressed data are calculated by match filtering with the time-reversed com-

plex conjugate of the original transmit chirp that is twice filtered at receive and

recreated using the frequency sweep, slope, and filter values stored in the .RAW

datagrams. The match filter power is used to derive pulse compressed versions of

Sv and TS, and CW versions are derived using the raw power values and by appro-

priately scaling the effective pulse length. The CW values, while inaccurate for the
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Frequency Modulated configuration, provide a dataset matching the mean volume

backscatter strength calculated onboard the EK80 and are sufficient for on-the-fly

mission adjustment and verification that the system is operating properly. The

derived FM and CW echo integration and echocounting values are fused to the

vehicle sensor information and stored in a data directory for post-processing.

The raw Sv data appeared to be dominated by the amplification of noise by

the Time-Varying Gain (TVG) term, and a post-processing step was implemented

to effectively ’flatten’ the return over range. This post-processing step was applied

differently for data collected before installation of the input power filter and for the

higher SNR data collected following the power filter-installation (Figure 14). For

the unfiltered data, the SV is detrended on a profile by profile basis by averaging all

pings within that profile at depths unaffected by surface returns and median filtered

to obtain a representative ping across range. This averaged ping is subtracted

from each individual ping within that profile. The mean (Power/Sv/TS) value

calculated from all pings within the survey is then added back as an offset. This

processing step also alleviated the non-stationary power trends observed over the

duration of the dive in the earlier datasets, often where deep profile sections have

an increased power/ noise floor relative to the shallow 0-400m sections. This may

be due to pressure effects on the transducers but we have not done a dedicated

test. The higher SNR data collected after the installed power filter did not have

the problem of a non-stationary noise floor/ power level across the duration of the

dive, and these datasets were detrended as a single batch by averaging ping across

all profiles at depths below 50m and adding back in an average value.

An additional post-processing step is performed to remove the roughly 1-

4 pings that are interfered with every 30 seconds by the transmission from the

acoustic modem used for vehicle and ship communications. The modem affected
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pings were efficiently removed for the low SNR datasets with a median difference

filter using the distal power values averaged from 50-100 m. In the higher SNR

power filtered data, where the modem interference does not raise the noise floor as

substantially and single targets are more often resolved at the distal ranges, the

median difference filter was less effective and we instead removed the interfered

pings manually. In future deployments, the stored timestamp marking the modem

transmissions will allow us to remove these pings excluding the data within a small

time window around the modem transmit timing.

When the vehicle is near the surface, scattering from the air-water interface

can be observed in the data. This is the triangular region of high intensity scat-

tering seen in Figure 13a. The surface-reflected region is excluded during post

processing, as shown in Figure 16. This section can be calculated from the trans-

ducer beam angle, and varies by several meters with sea surface state. A triangle

extending from the distal range at the surface is prescribed during processing and

data within this region are automatically removed. An exclusion line from the full

100 m range at 50 meter depth back to the surface at a 5 m range is typically

sufficient to remove the surface returns.

For data visualization, the processed Wire Flyer acoustic data can be range-

averaged to render two-dimensional echograms similar to those obtained from ship-

board systems. Since the range-averaged data occur along the vehicle’s trajectory

the coverage in the vertical is more sparse than a typical shipboard system, but

the horizontal orientation should enable better statistics at a given depth. The

2-dimensional echograms are useful for directly comparison to the simultaneously

collected environmental data. The acoustic data can also be rendered in full as a 3-

dimensional point cloud. For most of the 3-dimensional Wire Flyer data presented

here the 3-d acoustic Scattering Volume pointclouds were overlaid on co-registered
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2-d echograms obtained by a downward-looking echosounder systems at the surface

on the ship. The Wire Flyer Scattering volume data was thresholded at a lower

bound to only show returns indicative of single scatterers, scattering layers, and

acoustically-detectable hydrographic features.

2.3.3 Acoustic scattering layers as recorded in the horizontal

Horizontally insonified scattering layers record different synoptic information

than from the vertical perspective (Figure 15). Compared to the vertical gradients,

changes in backscatter intensity are typically smaller across the scattering layer

horizontally, resulting in more constant backscatter over range. Due to spread-

ing and absorption losses, the received backscatter decays logarithmically over the

horizontal range and the signal intensity will fall below the noise floor at a certain

distance (i.e. when the signal-to-noise ratio equals 0). When the signal loss terms

are compensated by applying a TVG function (as is performed in the Sv and TS

calculations), the noise floor is no longer fixed. By detrending the data over range

(as described in the previous section), the signal excess is revealed. The balance

between the scattering layer intensity and loss terms across the horizontal range

explains the ’flame’-looking backscatter distribution seen in the 3-dimensional ren-

ders of the scattering layers. Within the layer the separation between the return

scattering signal and the noise is greatest at short range, and then it decays with

range until the return signal is at the noise level.

2.3.4 Concurrent shipboard echosounding

Downward looking acoustic data were recorded using hull-mounted or tow-fish

based downward looking echosounder systems during several Wire Flyer deploy-

ments to provide standard acoustic echograms for comparison and groundtruth.

A centerboard-mounted EK60 echosounder (operating at 38, 70, and 200 kHz)
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recorded concurrent Continuous Wave (CW) acoustic data during deployments at

the Costa Rica Margin in January 2019, and a dual-frequency (38 and 200 kHz

EK80 miniWBT was deployed off the starboard side of the R/V Endeavor using

a small towfish during deployments in Baltimore Canyon in September 2019. The

transducers were located at a depth of approximately 5m and 1m below the surface

for the R/V Falkor EK60 and the towfish systems respectively. These backscatter

data were processed using a combination of Echoview and Matlab scripts. Surface

and bottom exclusion zones were created to avoid noise from bubbles and bottom

features and the background noise was removed following [47]. Volume backscat-

tering strength values were integrated into 25 or 50 m horizontal by 1 m vertical

bins and then exported. The 25 x 1 m towfish echogram, used to show the cold

seep 2.4.4 was blurred using a Gaussian kernel after scaling the x-y echogram axes

for the visualization. The downward looking acoustic data provided a ground truth

and a comparison for the horizontally-beamed Wire Flyer data and were used to

create the 3-dimensional data visualization products shown below.

2.4 Assessment

The Wire Flyer and integrated echosounder have been used on three cruises,

allowing us to investigate several different scenarios where the overlapping envi-

ronmental and acoustic data provide insight into the mesopelagic habitat. We

show examples of salient oceanographic phenomenon recorded by the Wire Flyer

in the following sections: diel vertical migration, shallow water front, deep oxycline

associated assemblages, and a gaseous cold seep plume. These represent several

broadly important biological and hydrographic features the Wire Flyer is uniquely

suited to investigate.
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2.4.1 Tracking diel migration

The massive Diel Vertical Migration (DVM) of animals at dawn and dusk is a

near-ubiquitous biological phenomenon across the oceans that is well-studied using

acoustic techniques. Shipboard acoustic observations of DVM around the globe

has shown distinct regional heterogeneity in the timing and vertical redistribution

of discrete scattering layers [48]. Variability in these migration events helps sup-

port and modify the ecological interactions and biogeochemical exchanges between

surface and deep communities. The dynamics of scattering layer migrations ap-

pear to vary among species and their life histories, with some animal assemblages

settling at depths that are physiologically driven (constrained by the oxycline),

determined by phototaxis (a fixed depth at a specific illumination intensity), and

influenced by food availability and predator avoidance. To understand how the

spatiotemporal aspects of migrating biological layers are influenced by the local

environmental gradients requires concurrent hydrographic measurements recorded

over the relevant depths and temporal scales. Additionally, observing small migrat-

ing zooplankton layers requires high frequency acoustics that decay quickly over

range and acoustic measurements that are not biased across the vertical sampling

space. We show here two examples of DVM events captured in detail by the Wire

Flyer (Figure 18, 19). Most notably the higher frequency echograms from ship or

tow-based echosounders do not cover the full range of the migrating organisms.

The Wire Flyer echograms are able to bring the higher frequency transducers to

the depths of the scattering layers themselves, enabling their detection below the

effective range of the shipboard measurements. Perhaps most importantly, the

scattering layer features are similarly resolved and tracked at the surface by both

systems suggesting that the differences in echosounder orientations (side vs down

looking) is not problematic in terms of layer detection and tracking. Character-
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istically ”patchy” scattering layers have horizontal structure directly observed in

the Wire Flyer data.

Most studies of mesopelagic deep scattering layers [1, 49, 50] rely on either one

or two echosounder frequencies, typically 18 or 38 kHz. These frequencies allow

recording of scattering layers at kilometer ranges from the surface. However, for

most of the water column only larger (fish, squid) or strongly-scattering (swim-

bladdered fish) organisms are detected. We know that the mesopelagic community

is exceptionally diverse [6] and contains a variety of zooplankton and smaller or-

ganisms not well detected at these low frequencies (including the bristlemouth

Cyclothone spp. which may be the most abundant vertebrate genus on the planet)

[51]. Use of the Wire Flyer to explore these habitats can provide novel insights into

the characteristics and movements of migrating layers. For many of the resonant

(i.e. swim-bladdered fish) scatterers, it is likely that the size or shape of their

swimbladder will change as the animals move vertically in the water column. It is

however incredibly difficult to get individual target strength measurements from

these layers as they migrate with traditional sampling methods, but it would be

possible to track a migrating layer by having the Flyer adjust its profiling accord-

ingly to provide repeated measurements of individual scatterer characteristics over

large depth ranges. AUV and glider-based echosounders could also collect these

data, however their ability to track migrating layers vertically would be more chal-

lenging without guidance from other sensing systems.

2.4.2 Shallow water front

The passive aggregation of plankton at oceanic fronts creates unique phys-

ical environments that catalyse biological interactions. Oceanic fronts promote

enhanced biological activity and an associated redirection of foraging and motile

behaviors. Submesoscale processes are often described from satellite or modelled
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data ([52]). The idea that the surface ocean may be dominated by ephemeral

submesoscale circulation processes that passively drive the distribution of primary

producers or actively enhance primary production is becoming more prominent

([53, 54, 55]). High-resolution in situ assessments, alone and in combination with

remote sensing and modelled information, have described nutrient distributions

structured by filamentous submesoscale processes and the non-uniform responses

to both the physical and ecological aspects of these features among identified taxa

([56, 57, 58]). The acoustic and environmental sections recorded by the Wire Flyer

allow for near synoptic observation of the distribution of oceanic fronts and any

associated redistribution of biological layers. In data recorded across a shallow

water front off the New England Shelf Break, the division and aggregation of the

biological layers is observed directly along the coherent edges of the front 20. The

direct overlay of the environmental information and the biological layers provides

observation of the coupling or lack of coupling between the environmental gra-

dients imparted at the front and the distribution of biological layers. Turbulent

features are visible in the environmental data across the front and corresponding

horizontal patchiness is observed in the 200 kHz scattering data.

Environmental [59, 60, 61] and biological [62, 63, 64] measurements using

towed vehicles or nets have been made across frontal zones for several decades.

However, the vertical speeds of these towed samplers limits the horizontal spacing

of the vertical profiles or the depth range which can be covered by the systems.

The Wire Flyer platform produces data at a finer horizontal (order of kilometer)

and vertical (cm) scale than any other current sensor system and offers a novel look

at the processes occurring at the fronts. In addition, other oceanographic frontal

features such as warm and cold core rings could also be better resolved with the

increased sampling capabilities of the Wire Flyer system.
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2.4.3 Oxygen minimum zone vertical boundaries

Oxygen data collected at the Costa Rica Margin (8.96N, 84.31W) show the

potential of the system to capture small scale structure within the Oxygen Min-

imum Zone (OMZ) and across the upper and lower oxycline boundaries. Deep

horizontally-distributed physical features like the lower oxycline have acoustic scat-

tering distributions which closely match the concurrently recorded vertical oxygen

gradients (Figure 21). The lower oxycline measurements recorded by the Wire

Flyer consistently show an associated scattering layer tightly coupled to very fine

scale variations in the oxygen environment. The correlation between the scattering

layer depth and features of the oxygen profile has been observed using CTD casts

(e.g. [65, 66]) but not with the level of detail seen here. This particular layer was

persistent overnight and likely comprised of non-migrating animals whose depth is

physiologically constrained at the lower oxycline [67, 68, 69]. As the distributions

of the worlds OMZs are impacted in their extent and severity by ocean warming

and climatic shifts, measurements capable of describing the settling depths and

environments of migrating and non-migrating layers within the OMZ will prove

valuable for discerning these animal habits as well as the anticipated impacts of

the redistribution of the persistent oxygen boundaries.

2.4.4 Cold seep plume

Measurements from cold seep gas plumes on the New England Shelf break

adjacent to the Baltimore Canyon produced 3-dimensional sections of salient hy-

drographic features 22. The Wire Flyer sensor measurements provide a detailed

recording of not only the plume itself, but how the plume dynamics evolves and

imparts structure to the water column in space and time. The larger overall struc-

ture of the gaseous plume, as well as wandering smaller-scale filaments, are well

resolved in the 70 and 200 kHz data respectively. Compared to the 2-dimensional
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measurements from the surface-bound towfish, the Wire Flyer data constrains the

totality of the feature and the finer athwartship structures. The inherent geometry

of the Wire Flyer acoustic survey data allows for it to fully capture these features in

a matter somewhat similar to watercolumn imaging with multibeam sonar [70] but

with a level of detail not easily achieved from a surface vessel due to attenuation

limits.

2.5 Discussion

The integration of side-looking broadband echosounders into a rapidly pro-

filing vehicle provides several advantages over other sensing systems used today.

However, there are several issues, some common to any mesopelagic sampler and

some unique to the Wire Flyer platform, that need further investigation.

2.5.1 Echosounder calibration

A key component of any acoustic echosounder system is the calibration [71]

which allows for comparison of data between different sites and systems and, in

some cases, identification and discrimination of individual scatterers. Given the

Wire Flyer configuation, in situ calibrations with a standard target positioned

athwarthship of the vehicle would be very challenging to complete in most en-

vironments. However, the acoustic components can be separated from the Wire

Flyer vehicle for an independent calibration using a hanging tethered sphere from

a ship. A preliminary calibration provided poor coverage of the transducer sur-

face (10 percent), but indicated moderate calibration values (i.e. mostly 1-4 dB

differences between the uncompensated TS and compensated TS values) using the

Simrad EK80 Client software. Uncalibrated data from the Wire Flyer can also be

compared with ship-board or tow-fish echosounders to compare the relative values

of backscatter strength of near-surface scattering layers and aggregations. How-
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ever, the direct comparison of TS or other scattering parameters between these

two systems would need to account for the backscatter directivity of most marine

organisms. Even without a calibration, the data collected are useful for the iden-

tification of distinct scattering features in the ocean and relative comparisons of

backscattering levels from these features.

2.5.2 Pressure effects on transducers

While the transducers used in the system are rated to 1500 meters depth, the

Wire Flyer profiling repeatedly pressure cycles the sensors. To our knowledge this

is the most stress (in terms of depth changes per time) these standard echosounder

transducers have been exposed to. In survey data collected before the installation

of an input power filter in the EK80 sensor package, the 70 kHz power from the

individual transducer-elements varied over the course of a dive. These increasing

or decreasing per-element power trends were pronounced when operating below

300 m and transitioning from deep to shallow depth bands, which suggests that

the vehicle operating depth (pressure) may be a factor. We do not yet have data

collected below 350 m using the input-power filtered echosounder setup, and cannot

yet discern if these varying per-element trends are still evident. For the affected

data, profile-specific TVG detrending, as described in the methods, alleviated most

of the observed variability over time. A dedicated per-element test and analysis

will need to be conducted to discern the effects of rapid pressure cycling in the 0-

1000 m depth range. Additional analysis of a pressure induced impedance changes

may also indicate a contribution to the nonstationary noise floor in the acoustic

measurements over the duration of the survey [72].
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2.5.3 Echosounder orientation and scatterer directivity

The majority of echosounder systems are deployed in near-vertical downward-

(and to a lesser extent, upward-) looking configurations. Horizontally-oriented

echosounders have been deployed on towed net systems and other platforms, but

a major issue in the analysis of these side-looking data is whether the assump-

tions regarding target distribution, spacing, and other standards used to derive

acoustic echo counting and echo integration quantities are still valid. The Wire

Flyer acoustic data present an opportunity to reassess these assumptions for the

horizontal-orientation perspective where a heterogeneous distribution of scatterers

is observed within the beam pattern such as when profiling through scattering

layers thinner than the beam width. Similarly, we have not yet derived frequency-

dependent scatterer information (TS) for the broadband EK80 data, but we antic-

ipate that standard scattering models will need to be modified (or re-calculated)

for the geometry of this system.

As the Wire Flyer samples across dense scattering layers, the received

backscatter signal is heavily attenuated over range. We assume the heavy at-

tenuation of the acoustic returns while sampling within/ across dense scattering

layers results in part from outgoing acoustic energy being scattered (in all direc-

tions) by the dense distributions of scatterers thus violating a key assumption in

echo integration that most of the acoustic energy continues through scattering lay-

ers. If this assumption is violated, then analysis of our data may have to include

multiple scattering theory such as what is done in the analysis of dense schools

of fish where ”shadow zones” exist below dense scattering aggregations. The loss

of acoustic energy at the thin layer depths is increased by the horizontal beam

direction which samples a dense scatterer distribution across the entire signal, as

opposed to downward looking systems which sample across the vertically com-
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pressed axis of these layers. If the signal loss due to enhanced extinction at dense

scattering layers is better accounted for, quantification of scattering inhomogene-

ity or patchiness in the horizontal could be achieved, which remains an elusive

measurement. Echo statistics [73, 74] may be a useful way of investigating the

scattering characteristics of these layers.

2.6 Summary

The results from this project demonstrate a new acoustic survey capability to

acquire environmental and acoustic sections in the 0-1000m region of the ocean at

novel resolutions. The side-looking transducer orientation samples orthogonal to

the vehicle’s profiling survey path and provides a unique three dimensional acous-

tic dataset with coincident environmental data. This unique survey perspective

enables observation of the spatial and temporal aspects of biological and physical

scattering processes within the ocean. The survey resolution provided by the Wire

Flyer can resolve dynamic features that would be aliased or unresolved by other

available survey platforms. The 3-dimensional acoustic data collected by the Wire

Flyer has also proven capable of resolving biological patchiness and rising seafloor

gas plumes across both the horizontal and vertical sampling perspectives. Collec-

tively the contributions from this project help to further the technology-enabled

exploration of ocean ecosystems and the vast but difficult to observe mesopelagic

habitat.
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2.7 Figures
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Figure 9. Wire Flyer towing diagram and sampling trajectory (reproduced from
[18])
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Figure 10. Wire Flyer mechanical details showing the repackaged EK80 electronics,
the transducers inset into the foam flotation on the top of the vehicle and a photo
of the Wire Flyer at sea. The oxygen sensor and fluorometer are mounted on the
port side of the vehicle, out of view in this image.
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Figure 11. Schematic of the input power filter.
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Figure 12. Comparison of the input power filtering. The plots show a histogram
of the received signal levels over range for a section of the water column with little
biomass. In both cases the high end of signal range is similar.
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Figure 13. Wire Flyer side-looking acoustic survey. (a) Sample of detailed side
looking 70 kHz data showing patchiness. (b) The typical sampling pattern alter-
nating frequencies on the up and down profiles. (c ) Alternating pings by depth
or time within a profile.
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Figure 14. Process diagram outlining the Wire Flyer acoustic processing pipeline.
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Figure 15. Schematic illustrating the fate of a side looking ping. The signal
is attenuated over range due to the transmission loss terms and falls below the
noise floor at range. The TVG amplification of the received backscatter signal,
to compensate for the transmission loss, generates a non-uniform noise floor over
range.

Figure 16. 3D rendering of the Wire Flyer acoustic data showing side-looking
acoustic data ”unwrapped” along the vehicle path.
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(a) Flyer 200 kHz

(b) Flyer 70 kHz

Figure 17. Section plots showing Scattering Volume averaged between 5 and 35
meters range and the Wire Flyer survey path for the a) 200 kHz and b) 70 kHz
profiles.
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(a) Shipboard 38 and Wire Flyer 70 kHz

(b) Shipboard 200 and Wire Flyer 200 kHz

Figure 18. Downward diel migration at the New England shelf break front. (a
Shipboard 38 kHz shown in gray with the side looking Wire Flyer 70 kHz data
shown in color and thresholded at the lower end. (b) 200 kHz Wire Flyer and
shipboard data.
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(a) Shipboard and Wire Flyer 70 kHz

(b) Shipboard and Wire Flyer 200 kHz

Figure 19. Downward diel migration at the Costa Rica Margin. (a) Shipboard 38
kHz shown in gray with the side looking Wire Flyer 70 kHz data shown in color
and thresholded at the lower end. (b) 200 kHz Wire Flyer and shipboard data.
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(a) (b)

(c) (d)

Figure 20. Transect across a frontal feature at the New England Shelf. Overlays of
(a) density, (b) oxygen, (c) salinity, and (d) temperature all show good agreement
with the concentration in acoustic scattering.
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Figure 21. Wire Flyer transect at the lower oxycline in the Costa Rica Margin
(GMT-6) (a) 70 kHz Wire Flyer acoustic data from with the oxygen concentration
contours overlaid. (b) Scatter plot of oxygen measurements from all of the Wire
Flyer profiles indicating the minimum depth and variability amongst the profiles
over the length of the transect. These data were collected prior to the final power
filter, so the overall signal range is limited by the higher noise floor.
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(a)

(b)

Figure 22. Wire Flyer acoustic transect at a cold seep plume in the Baltimore
Canyon
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3.1 Introduction

The majority of the world’s biomass resides within the mesopelagic region

of the oceans [1, 2, 3]. The biological and physical processes in this habitat are

dynamic and vary on multiple temporal and spatial scales [4, 5]. This has made

effective sampling of the mesopelagic ocean difficult, as traditional ocean sampling

platforms (e.g. net systems, moored and shipboard sensors) are often unable to

resolve marine biota at scales comparable to the variability in their physical envi-

ronment [6]. Ship-based surveys using direct (e.g. nets) or indirect (e.g. acoustic)

sensors can typically monitor the near-surface (i.e. epipelagic) regions over smaller

spatial and time scales, but they can be limited in their ability to sample smaller

organisms (i.e. zooplankton) in deeper parts of the water column (> 200 m).

Stationary sensor systems (e.g. moorings or buoys) can provide greater temporal

resolution of these processes over longer time periods, but they are point samples

and likely alias the patchy nature of the region. To expand our understanding of

pelagic ecosystems, field studies must be able to measure the local epi and meso-

pelagic hydrography concurrent to measurements of the resident populations [7, 8].

Physical gradients in the environment influence the processes of plankton aggrega-

tion, dispersal, and survival, helping to drive their heterogenous distributions [9].

Biological structures in the pelagic environment are complex and plankton habits

are diverse and not simple passive tracers of the physical gradients. Different pop-

ulations demonstrate different responses to environmental conditions over different

scales depending on their behavioral cues and life stage-specific dynamics, e.g. lo-

comotion, diet, fecundity, and differential survival rates [10, 11]. Field studies

must be able to simultaneously quantify the distributions of multiple trophic lev-

els in the environment to differentiate between behavioral and physically mediated

structures. Without quantifying the distributions of higher trophic levels includ-
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ing especially micronekton, (small fish, crustaceans, and cephalopods that are the

trophic link between zooplankton and top pelagic predators), key ecological ques-

tions concerning predator-prey interactions and their spatiotemporal overlap are

not accessible [12]. Simultaneous measurements of phytoplankton, zooplankton,

and micronekton are rare due to sampling constraints [13], but studies achieving

these measurements have resolved novel biological dynamics that impart structure

to pelagic ecosystems [10, 14, 15, 16, 17].

The dynamics and habits of micronekton are especially under-resolved relative

to lower trophic levels [18], despite their key roles in pelagic habitats. Many mi-

cronekton species perform Diel Vertical Migration, migrating to surface waters to

forage at night when predation pressures are reduced [19, 20] while other popula-

tions permanently reside at mesopelagic depths [21, 22]. Since primary production

is absent in the mesopelagic, the migration rhythms of micronekton species es-

tablish a major conduit for the vertical transport of energy to the region [23].

Basin-scale studies have demonstrated regionally variable dynamics of the diel mi-

grating pelagic component [24, 25] and detailed studies in local environments have

begun to demonstrate the importance of behaviors between predator and prey in

inducing vertical restructuring of pelagic populations and in promoting patchiness

[26]. Survey approaches that can simultaneously measure the distributions of mul-

tiple trophic levels and hydrography from the surface ocean to mesopelagic depths

offer ability to directly examine the roles the environment and predator-prey inter-

actions play in structuring the inter-connected epi- and mesopelagic ecosystems.

Acoustic sensors provide a way to remotely sample the marine environment

at ranges of 10’s to 1000’s of meters at very high temporal resolutions (seconds).

Acoustic echosounders are widely used tools to measure the abundance and dis-

tribution of marine organisms, especially zooplankton and fish [27]. The effective
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range of acoustic systems decreases with increasing frequency due to absorption,

however higher frequencies, greater than 38 kHz are most useful for measuring

smaller lower trophic level organisms such as crustacean zooplankton. Addition-

ally, the insonifed sample volume from ship-mounted systems increases with depth,

which makes effective single target detection depth-dependent and more difficult

for deeper scatterers [28]. For these reasons the depth ship-based echosounders can

effectively measure the abundance and distribution of marine organisms is limited.

While lower frequency echosounders (typically below 38 kHz) can measure acous-

tic backscatter throughout much of the mesopelagic region these systems will not

resolve weaker scatterers in deep environments due to signal attenuation. One

solution to this problem is to bring the echosounders to the scattering features of

interest by lowering and/or towing them from a ship [29, 30, 31, 32]. In this pa-

per we describe the analysis and data processing opportunities from side-looking

acoustic data collected by the Wire Flyer towed profiling vehicle[33] integrated

with a dual frequency (70 & 200 kHz) fisheries echosounder. The system utilizes

the EK80 miniWBT echosounder in a similar manner as [33] but on a higher speed

profiling vehicle with side-looking transducers. We demonstrate unique data types

leveraging aspects of the side-looking orientation to target the measurement of

dense scattering layers and inhomogeneous features. We analyze the acoustic data

with respect to the environmental measurements and use modelling approaches

to interrogate the distributions of scattering layers within the environment and

examine whether known mechanisms related to the maintenance of plankton thin

layers are evidenced in the multisensor dataset.
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3.2 Materials and Procedures
3.2.1 Wire Flyer Profiling Vehicle

The Wire Flyer towed profiling system is able to provide high horizontal res-

olution repeat profiling within a specified region of the water column [34, 35]. The

vehicle is autonomous and slides up and down a standard towed .322” CTD wire

in an automatically controlled manner using the lift created by wing foils. A 2100

lb clump weight is towed below the lower profile depth to keep the tow wire taut.

The vehicle can achieve user specified up and down velocities (0-2.5 m/s) while

profiling down to 1000 meters. During deployments the vehicle is typically set

to cover vertical bands of 300-400 meters positioned within the water column as

needed. The profile cycles will generally repeat with one kilometer spacing.

The Flyer is equipped with the suite of environmental sensors to produce

detailed hydrographic sections of the water column. The EK80 miniWBT (Simrad

Kongsberg) is integrated into the Wire Flyer as a stand-alone sensor packaged in

its own 1500 meter rated pressure housing. The system is dual channel with both

70 (Simrad ES70-18CD) and 200 (ES200-7CDK) kHz split beam transducers. For

the presented dataset, the ping sequence was configured to alternate frequencies in

the up (70 kHz) and down (200 kHz) profiling direction. The sonar was configured

in Frequency Modulated (FM) mode, with a pulse length of 2048 µs and a ‘fast-

ramping’ linear frequency sweep from 55-90 kHz and 185-255 kHz for the 70 and

200 kHz channels respectively.

A unique aspect of the echosounder on this platform is the decision to have the

transducers pointed laterally to the vehicle’s movement, as opposed to the more

traditional downward (or upward) transducers on ships and most other systems.

An advantage of the side-looking arrangement is that the data being collected are

orthogonal to the movement of the platform which provides collection of three-

dimensional data as the vehicle moves forward and vertically. One disadvantage of
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this geometry is that the interpretation of echoes from backscatter data is derived

from assumptions made for downward and upward looking systems in the fisheries

acoustic literature (Maclennan and Simmons). Thus, the interpretation of volume

backscatter or target strength data from side-looking systems will be more compli-

cated than traditional ship surveys. Since the range-averaged data occur along the

vehicle’s trajectory the coverage in the vertical is sparser than a typical shipboard

system ( meter vs cm scale), but the horizontal orientation should enable better

statistics at a given depth.

3.2.2 Baltimore Canyon Survey

Field work on the R/V Endeavor in Sept 2019 targeting phosphorescent mus-

sel assemblages associated with cold seeps around the Baltimore Canyon. The

presented data was collected from a 13-hour Wire Flyer survey during nighttime

hours through dawn (Sept 23rd 23:12 UTC – Sept 24th 11:55 UTC) following a

transect path along axis of the continental shelf and across axis of the Baltimore

Canyon that loops back onto a parallel transect roughly 2 km offshore (Figure

23). The full dataset comprised 188 individual profiles, 94 each for the 70 and 200

kHz channels and covered a total of 59 km alongtrack distance. Diverse biological

and hydrographic features were recorded in the multisensor survey data, includ-

ing coherent biological scattering layers, cold seep plumes detected acoustically,

a shallow water oceanic front, and downward Diel Vertical Migration (DVM) at

dawn.

3.2.3 Model Side-Looking Echosounder Pings

A 3D echosounder simulation was constructed to examine the received

backscatter signal from a horizontally insonified scattering layer. The received

power and Scattering Volume (Sv) were calculated by solving the sonar equation
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across a conical acoustic beam extending 100m in range. The received sound inten-

sity level (RL) was calculated for range and angle cells as a function of the source

level (SL) and target strength (TS) for backscatter targets after accounting for the

two-way spreading and absorption transmission loss (TL) terms. To simulate the

beam pattern affect, a loss term was added to achieve a 3db reduction in power

at half of the beam width. The received signal was scaled by the volume of each

range angle cell to approximate the total contribution of scatterers that would be

uniformly distributed in the cell. The total Power was calculated by summing the

received sound intensity level RL across angle cells in the linear domain. A noise

term (NL) was added to the received signal power in the linear domain to simulate

stationary additive noise at the transducer. Scattering Volume was calculated by

normalizing the received power by the beam area at range.

Beam simulator pseudo code: for i=1:dRange:Range

for j = 0:dTheta:Theta/2

RL (i, j) = 10̂[(SL(angle) -TL(range) + TS(angle, range))10]

RL (i, j) = RL * Beam Sector Volume(i,j)

end

Received Power(i) = 10*log10[Sum RL(i) + 10(̂NL/10)]

Scattering Volume = Received Power(i) Beam Sector Volume(i)

End

3.2.4 2D Metric for Scattering Layers

To enable direct analysis of the acoustically derived biological data with the

environmental measurements, the 3-dimensional acoustic data needs to be reduced

to a scalar value across range. The standard way to reduce the dimensionality

of the acoustic data would be to average the Scattering volume (Sv) over range

in the linear domain, converting the Sv data into Mean Volume Backscattering
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Strength (MVBS) which represents the average backscattering intensity over the

100m sampling range and is proportional to animal density [36]. We explored

other methods for reducing the dimensionality of the acoustic data with the highest

fidelity to resolve the relative scattering layer intensities in the vertical and that

may leverage the side-looking sampling aspect.

3.2.5 Edge Layer Shapes from Benoit Bird et al. 2009

The derived backscatter intensity and proxy profiles at scattering layers

demonstrated asymmetric vertical gradients above and below the peak layer depth.

The asymmetric ‘layer shapes’ were especially pronounced in the 200 kHz data,

due at least in part to the smaller 7° beam width enabling measurements at tighter

vertical resolutions. Profile layer shapes have been studied for phytoplankton and

to a lesser extent zooplankton thin layers, which among several defining criteria

are less than 5 m in vertical extent. Several viable formation mechanisms for thin

layers and their observed shapes have been proposed including differential settling

at stratified layers, convergence and vertical shear, passive diffusion, swimming

behaviors, and vertical gradients in predation pressure [16, 37, 38, 10, 39]. The

vertical extent of biological “layers” described by the chlorophyll and acoustic pro-

files from the Wire Flyer deployment in the Baltimore canyon exceeded the vertical

thickness ascribed to thin layers.

We sought to derive information on the layer shapes for the chlorophyll fluo-

rescence and 70 and 200 kHz acoustic profiles to determine if direct correlations to

the environmental data and observable mechanisms related to thin layer formation

were present (Figure 24). Our methodology for derivation of a layer shape metric

followed [16] and provided a means to derive layer-specific data types without man-

ual selection of the layer boundaries and against varying background intensities.

In brief, the raw profiles are initially smoothed using a median filter, and the 1st
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derivative is calculated and smoothed using a ‘loess’ filter. The intersection points

defining the layer upper and lower boundaries are assigned from local maxima in

the second derivative above and below the fluorescence or scattering peak depth.

An upper and lower gradient value is calculated as the absolute value of the dif-

ference in the peak value and the value at 10% of peak with respect to the upper

or lower baseline, divided by the difference in depth between the peak depth and

the depths at the 10% upper or lower boundaries. The final layer shape value is

calculated by subtracting the upper gradient divided by the value peak minus the

lower gradient divided by the value peak.

3.2.6 1D Phytoplankton Model

To examine whether passive diffusion could produce the observed layer shape,

we constructed a simple 1D model of phytoplankton vertical distributions over

time in a 300 meter vertically stratified water column mirroring the stratification

structure observed in the Baltimore Canyon. Our model resolution was configured

with 1 meter depth bins with timestep increments of 1 minute. Starting phyto-

plankton distributions were modelled as gaussian curves centered at 100 meters

with a sigma of 5 meters. An artificial diffusivity profile was created to mirror

the inverse relationship to the recorded stratification profile structures, by estab-

lishing k values of 3x10-3 (highest k, least stratified), 1x10-5 (lowest k, maximum

stratification), and 2x10-3 (intermediate diffusivity and stratification) for depths

from 0-60 meters, 60-100 meters, and 100-300 meters respectively. The diffusivity

profiles were smoothed using iterative moving average filters to reduce the sharp-

ness of the interfaces. Phytoplankton flux was modelled as function of the vertical

diffusivity gradient with constant growth and loss terms. The model was allowed

to run for 10 days.
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3.2.7 Multivariate Linear Regression Models

Multiple linear regression was used to examine the overall relationships be-

tween the acoustically derived biological information and the concurrently collected

environmental data. Best-fit models were constructed separately for the 70 and

200 kHz datasets using unfiltered acoustic scattering metrics and environmental

sensor data to maximize the model comparisons. Two models were derived for each

channel using the range-averaged Mean Volume Backscatter Strength (MVBS) and

the custom 2D metric for scattering layers. All profile data collected in the Balti-

more Canyon before the start of Diel Vertical Migration were used for the multiple

linear regressions to target only the nighttime distributions, 67 and 66 profiles

for the 70 and 200 kHz respectively. For each of the four models, best-fit model

selection was performed by stepwise forward selection using Akaike’s information

criteria (AICc) to determine the included explanatory variables[40]. Variable In-

flation Factors (VIF) were calculated to assess collinearity among the explanatory

variables. VIF values below 5 were considered minimally affected by collinearity

and acceptable for inclusion in the model [41]. Explanatory variables were selected

both using the AIC criteria to diagnose the goodness of fit of the model output

against the number of predictor variables and using the VIF and independent

pairwise testing to determine the strongest explanatory variables that minimized

collinearity. Outlier data points with large influence on the model results were

identified using Cook’s Distance criteria, and outliers with Cooks Distance values

> 0.025 were removed from the dataset for the final models analyzed [42]. Model

results with the MVBS and custom metric as dependent variables were provided

comparison of the fidelity of the two acoustically derived biological proxies, and

model results for the 70 and 200 kHz channels were compared to examine the

different influences of the environmental variables for the two functional groups
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discriminated acoustically.

3.2.8 Run Length Analysis

An initial focus was made to determine data types maximizing the detection

of coherent scattering layers. The side-looking configuration of our system presents

opportunity to examine inhomogeneous features in the horizontal, such as single

acoustic targets (i.e. individual animals). The algorithm implemented by Simrad

for single target detection relies on confirming the validity of targets via a min-

imum allowable deviation in angle information [43]. Without robust calibration

information, we attempted a simplified derivation of single target information in-

spired by ‘run length’ analysis, a technique used for lossless data compression [44].

To extract information on isolated targets detrended Sv/TS/or Power ping data

is first median filtered over range using a small 1D kernel (3-5 times the raw delta

range bin resolution). The initial median filtering of the data helps to render the

major scattering layers as coherent single runs, allowing for easier separability of

these features, but reduces the detectability of targets smaller than the filter win-

dow size. The data is then binarized using an empirically selected threshold value

slightly elevated from the noise floor. The total number and length of separatable

sequences or ‘runs’ (i.e. continuous ones bounded by zero values) are calculated

for each ping.

The derived run length data can be classified using the length and abundance

criteria to isolate ping data likely pertaining to single animal targets. A maximum

run length size helps identify coherent scattering layer that have long run lengths

reflecting a consistent elevation of scattering above the threshold value across long

ranges. Setting a minimum for run length size and number per ping allows for re-

moval of less confident targets that may be contributed to by noise or are relatively

depopulate.
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3.3 Assessment
3.3.1 Model Side-Looking Echosounder Ping Results

We simulated the received backscatter signal from insonified ‘high’ and ‘low’

TS horizontal layers, reflecting the scattering conditions within or outside the

scattering layer from the side-looking perspective (Figure 25). The model results

show that when a sonar system is not noise limited over the 100 meter acoustic

range (i.e. NL < SL + TS - TL for all ranges), there is a fixed offset between the

power for the high and low TS pings equal to the delta TS between the scattering

environments (Figure 26). When the system is noise limited before 100 meters due

to the transmission loss (NL > SL + TS - TL), the offset between the power for the

high and low TS pings is not fixed over range and reflects instead a convergence

to the noise floor affected by the spreading loss, and the power difference between

the high and low TS layer signal decays logarithmically.

These model results reflect what is seen in the side-looking Wire Flyer data

when the data is ‘detrended’ over range, by subtracting an approximated average

return (Figure 27). For high intensity pings recorded at the scattering layers, the

detrended data reveals the signal at a maximum (scaled to the scattering layer TS)

near the transducer and dropping towards the noise floor as a function of the TL

terms. For this reason, excess signal strength for homogenous scattering layers is

obtained over range until the SNR reaches 0, and thus higher intensity scattering

layers result in a detectable signal over father ranges than in weaker scattering

layers. This also explains related phenomenon seen in Wire Flyer datasets, such as

scattering layers recorded before installation of an input power filter (higher NL)

being detectable over shorter ranges than in the input power filtered (lower NL)

data.

The simulated power approximated the overall trends observed in the real

Wire Flyer Power data, but we were unable to match the slopes exactly at both
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short and long ranges. More sophisticated modeling efforts may provide an ability

to quantify increased signal extinction due to enhanced scattering losses from the

side-looking perspective, a phenomenon we imagine is likely to affect the acoustic

recordings.

3.3.2 2D Metric for Scattering Layer Results

Backscatter intensity contours across scattering layers are largely coherent as

viewed in the 3-dimensional acoustic data and appear to outline the scattering layer

intensity gradients, as would be expected from our simulated results. To capture

this 3-dimensional signal as a scalar across the full range with the highest fidelity,

we first threshold the Scattering Volume data using an empirically selected value.

The value selection is constrained by the requirement to exceed the noise floor on

the low end and to avoid the saturation of scattering above the threshold across the

full sampling range, which would ‘clip’ gradient features in the scattering layers.

To convert to a scalar value, we integrate the binarized ping data across range

to derive a value representing the percentage of range bins with scattering values

exceeding the selected threshold (Figure 28). This method derives data targeting

the recording of intensity gradients for apparently coherent/dense scattering layers

and is less affected by scattering from single targets and noise than an averaging

approach, especially over the full sampling range (Figure 29). Backscatter intensity

profiles as represented by this custom metric had smoother shapes than observed in

the MVBS data and in other tested derived backscatter data types (e.g. selecting a

single or averaged Sv value at a preset range or range window, filtering and contour

tracing the Sv data across pings). The fidelity of the custom metric was compared

to the MVBS data in greater detail and with statistical criteria in analyzes detailed

below.
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3.3.3 Edge Layer Shape Metric Results

The layer shape for the 70 and 200 kHz acoustic profiles were derived both from

the MVBS data and the custom metric and were roughly an order of magnitude

smaller than recorded in the original paper, reflecting the larger vertical thickness

of the layers analyzed here. The successful derivation of layer shape metrics from

the automated processing decreased roughly two-fold using the MVBS data type,

with 32 and 42 profile layer shapes derived from the MVBS data compared to

69 and 70 layer shapes derived from the custom metric for the 70 and 200 kHz

channels respectively. Pairwise comparisons of the layer shape metrics with the

environmental data and other derived metrics (e.g. layer thickness, layer depth)

demonstrated weak and noisy correlations with low R2 values (Figure ?? and

Figure ??) . Relatively consistent correlations were found between the layer shapes

and the layer peak depths, as well as between the 200 kHz layer shapes and the

chlorophyll layer shapes. We examined whether the difference in scattering in a

5 and 10 meter depth window above and below the peak chlorophyll layer depth

was correlated to the chlorophyll layer shape, as was found in the original study

for thin layers. A weak, negative relationship was observed between the data types

for the non-thin scattering layers we observed acoustically, curiously opposing the

original findings. We found this weak relationship to be unconvincing of a gradient

in predation pressure (as derived from scattering difference across the chlorophyll

layer) inducing the chlorophyll layer shapes observed in the data, and do not think

the layer shape approach as implemented in the original form applies well to our

dataset with meter-scale vertical resolutions much coarser than recorded in the

original study.
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3.3.4 1D Phytoplankton Model Results

While it did not appear that a vertical gradient in predation pressure provided

a mechanism for the chlorophyll profile layer shapes observed in our dataset, ex-

amination of potential passive physical processes offered a potential mechanism for

producing the observed layer shapes with respect to the local water column struc-

ture. The chlorophyll layer peaks were consistently observed to occur on or below

the peak in buoyancy frequency, with a vertical displacement between the peaks

of roughly 0 to 10 meters. The vertical eddy diffusivity profile can be assumed

to be inversely proportional to the buoyancy frequency (as related by epsilon and

assuming no vertical shear). It is possible that differing gradients in the vertical

eddy diffusivity (k) above and below the chlorophyll layer peaks may produce the

observed positive (sharper upper gradient) in the dataset.

The model results show that phytoplankton layers with a sharp upper interface

and elongated lower interface can result from different vertical gradients in passive

diffusion enacted by the proximity of the phytoplankton to the stratified layer, and

match well to observed shapes in the 200 kHz Wire Flyer data (Figure 32).

3.3.5 Multivariate Linear Regression Model Results

The best-fit multiple linear regression model using the custom metric as the

dependent variable explained 76% and 80% of the variation in the data for the 70

and 200 kHz models respectively, while the MVBS models explained only 30% and

33% of the variation in the biological data. The rank order of included predic-

tor variables selected using the Akaike Information Criteria was conserved among

the MVBS and custom metric models, suggesting similar relationships existing be-

tween the two biological proxies to the environmental data. Individually strong

predictor variables were removed to reduce collinearity and replaced by a single

best representative variable (i.e. spice substituting temperature, salinity, depth,
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and density). No predictor variables were transformed, as the linear relationships

all demonstrated higher R2 scores in independent testing than the transformed

variables. The best-fit 70 kHz models included in rank order of importance chloro-

phyll, alongtrack distance, spice, oxygen, and buoyancy frequency (N2). The best-

fit 200 kHz models included in rank order of importance chlorophyll, oxygen, spice,

alongtrack distance, and buoyancy frequency.

3.3.6 Run Length Distributions

Valid single target data within the bounds of the size criteria and with suffi-

cient instances of single targets across range demonstrate altered distributions in

the data set from the regions of high MVBS scattering. In the 70 kHz data from

the Baltimore Canyon, valid single target ping data occurred on the boundaries

of the major scattering layers exceeding the maximum length criteria (Figure ??).

This likely reflects the decrease in scattering intensity towards the threshold and

greater disaggregation of these dense scattering layers towards the vertical bound-

aries. Abundant valid single target data also defined a region within the deeper

canyon environment and with horizontal boundaries corresponding to the tilted

distribution of an intermediate water masses. While there may be non-negligible

contributions from noise in the run length analysis, the correspondence between the

valid single target pings and a specific intermediate water mass bounded within the

canyon provides us confidence the derived distribution likely reflects the zonation

of abundant single targets within the surveyed mesopelagic environment.

3.4 Discussion
3.4.1 Aspects of the Custom Metric

We have derived a novel biological proxy metric from side-looking acoustic

data that maximizes the detection of dense, coherent scattering layers. The custom

metric relies on the attenuation of weak scattering returns in the horizontal, and
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the detection of intense scattering layers over farther sampling ranges. Simulation

of the received acoustic intensity levels from a homogenously insonified scattering

layer demonstrated the logarithmic attenuation of the signal over the sampling

range and provided the basic assumptions used to derive the custom data type.

The custom metric demonstrated greater statistical correlations to the en-

vironmental data than the range-averaged Scattering Volume data while sharing

predictor variables selected by the best-fit criteria. The custom metric maximizes

the detection of dense scattering layers and is more invariant to high intensity re-

turns from single targets. For these reasons, the major scattering layer is recorded

with higher fidelity in the custom metric, increasing the ability to correlate the

scattering layer distributions to the environmental data. Deriving Mean Volume

Backscatter Strength over shorter range windows improved the correlation of the

MVBS data to the environmental measurements, but still did not exceed the model

fits for the custom metric. The custom metric allows for the extraction of high

fidelity scattering intensity information derived from the full sampling range, with-

out being affected by added noise.

There are several considerations for analyzing the custom metric data type.

The custom metric relies on empirically determined threshold values, which may

introduce biases. The thresholding technique was effective for the isolation of the

major scattering layer in the dataset used, due to the largely stationary noise floor

observed during the survey and the lack of other similarly intense scattering layers.

Adaptive techniques would allow for better detection of multiple scattering layers

and remove the biases introduced by the threshold selection. We are also not yet

accounting for higher order aspects of the survey geometry, such as returns from

the side lobes and the increased vertical sampling volume over larger ranges [28].

Close inspection of the acoustic measurements at scattering layers showed that the
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intense returns from the layers appear first at short ranges, and not approaching

from long ranges as was observed for surface-reflected returns. This provides us

reassurance the attenuation of the signal over range has a dominant influence on

the receive level than other factors related to the survey geometry. Implementing

routines to deconvolve the profiling data from the survey geometry and beam

pattern will allow for higher vertical sampling resolutions and improved recordings

of the scattering layer gradients.

3.4.2 Efforts to Assess Layer Shapes

The layer shape metric derived as implemented in the original study did not

demonstrate statistically strong correlations to the environmental features. These

results are due in part to the coarser vertical resolution of the side-looking acoustic

measurements. It also appears that the physical processes within the Baltimore

Canyon may exert a more dominant role in the structuring of the phytoplankton

layer. Relating the water column stratification structure into a simulated diffusiv-

ity profile, the 1D phytoplankton growth model showed that differential passive

diffusion of the upper and lower boundaries of the phytoplankton layers can pro-

duce the shapes observed in the collected data.

3.4.3 Environmental Predictors of the Scattering Layer Distributions

Comparison of the multivariate linear regression model results suggest differ-

ent relationships to the environment variables between the 70 and 200 kHz acoustic

scattering layers. Model fits for the 200 kHz were slightly increased from the 70

kHz models, with a 4% increase in the model fit in the 200 compared to the 70

kHz custom metric models. The difference in the ability to predict the scattering

layer distributions from the environmental distributions likely reflects the tighter

coupling of the 200 kHz assemblages, likely comprised of zooplankton [45] to the
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local environment. Specifically, the association between the 200 kHz scattering

and chlorophyll layers accounted for 70% of the observed variance in the custom

metric model fit. The deeper association of the 200 kHz zooplankton assemblage

to the chlorophyll distributions explains the greater predictive power of the model.

Additionally oxygen concentrations demonstrated higher corellations to the 200

kHz data, adding several percentage more explanatory power to the model. It is

likely that the scattering layer assemblage detected within the 70 kHz frequency

band are larger zooplankton and mobile nekton species with enhanced ability for

behavioral responses to influence their fine-scale distributions in the environment.

Comparisons between the 70 and 200 kHz model results should be interpreted

with caution, however, as the larger beam angle for the 70 kHz transducer invokes

coarser vertical sampling resolutions and echo integration values from sampling

volumes with greater vertical areas. The different vertical resolution owing to the

different beam geometries may have impacted the goodness of fit of the 70 kHz

model relative to the 200 kHz dataset.

3.4.4 Interpretation of Run Length Data

The distribution of classified ‘single target’ data derived from run length anal-

ysis was distinct from the echo-integration and custom metric echograms. Abun-

dant run length data delineated the boundaries of the dense scattering layers and

a unique mesopelagic region within the Baltimore Canyon tracking the intermedi-

ate water mass. Visual inspection of the full 3-dimensional acoustic data showed

abundant single target-like features in the submarine canyon region matching the

run length data. It however is not unlikely that noise may contribute to the classi-

fied run length data, as we have observed similar discrete features while in passive

mode but recording during a separate and more complicated deployment. Exten-

sive averaging and the selection criteria likely mitigated contributions from noise.
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The salient correspondence between the mesopelagic run length distributions and

the tilted water mass structure leads us to believe the run length data is in major

part identifying regions with abundant single animal targets. There is also poten-

tial to use run length information to quantify the homogeneity of the scattering

layers and to further classify the density of regions across the scattering layers.

Implementing Simrad’s single target algorithm for split beam systems will allow

us to compare the run length data to the formally derived data pertaining to single

acoustic targets [46].

3.4.5 Taxonomic Information

In general, our analyzes were limited by the lack of net tow data that could

provide baseline taxonomic information and groundtruth the identity of the assem-

blages discriminated acoustically [47]. For this reason, effort was made to derive

simple data types determining the distributions of dense scattering layers and

abundant single targets. An assumption has been made that the 200 kHz data

resolves zooplankton, while the 70 kHz channel resolves nekton and larger zoo-

plankton. Groundtruth taxonomic data collected by net tows or imaging systems

will be invaluable to improve these assumptions and better define the ‘functional

groups’ discriminated acoustically.

3.4.6 Spectral Information and System Noise

To fully exploit the broadband acoustic information from the system, fre-

quency dependent Scattering Volume, Sv(f), was derived following [46]. In theory,

the echosounder should directly measure spectral response information useful for

discriminating various taxonomic and functional animal groups [48, 49]. Spectral

data was derived across a sliding window from 5 to 10 meters in range with 50%

overlap, with a Fast Fourier Transform (FFT) resolution of 512 frequency points
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(corresponding to a frequency resolution of 68 and 137 Hz for the 70 and 200 kHz

channels respectively). Several passive 70 and 200 kHz acoustic profiles obtained

during cruise work in the Baltimore Canyon were isolated for spectral analysis

to provide baseline characterization of the noise spectrum from our system. The

spectral response shapes from the passive profiles were compared to Sv(f) data

calculated from active profiling in depth bands corresponding to the major scat-

tering layers. The active Sv(f) data was elevated in magnitude from the passive

Sv(f) data but did not demonstrate altered response shapes (Figure 34). Further

subsetting of meso and epi-pelagic scattering layers did not reveal discernable dif-

ferences in response shapes. This preliminary spectral analysis provided baseline

information on the systems noise content. In general our system is affected by

a noticeably elevated noise floor [50]. An overall flat response shape and magni-

tude spikes in narrow frequency bands were consistently observed in the 200 kHz

data, whereas the 70 kHz spectral response decreased over the frequency range.

Further characterization and dedicated mitigation of the various noise sources in

the Wire Flyer acoustic system, specifically with respect to potential electrical and

flow noise induced by the vehicles profiling motion, is required to fully exploit the

broadband potential of our system.

3.5 Summary

Using basic acoustic assumptions we have derived simple and diverse met-

rics from side looking echo integrated Scattering Volume data. The simulation of

side-looking echosounder data within homogenous scattering layers matched trends

observed in the Wire Flyer data and illustrated the mechanisms of the attenua-

tion of the signal strength over range at dense scattering layers. Our intention to

maximize the detection of dense scattering layers and disaggregated targets was

achieved by targeting information pertaining to the homogeneity of elevated scat-
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tering intensities over the horizontal sampling range. We were able to confirm

the efficacy of these metrics using model fits between the standard range-averaged

Mean Volume Backscattering Strength (MVBS) or custom metric to the same en-

vironmental data. These model fits diverged between the 70 and 200 kHz acoustic

channels, showing the stronger coupling of the 200 kHz scattering layer to the

environmental distributions, especially chlorophyll.
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3.7 Figures

Figure 23. Wire Flyer survey waypoints overlayed on Google Earth bathymetry.
The major portion of the observed shallow water front is indicated by the green
waypoints
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Figure 24. Environmental and layer shape associated per-profile metrics from
the 70 and 200 kHz custom metric data (red line plots) plotted alongside the
chlorophyll layer shape data (blue) for the complete Baltimore Canyon Survey.
The 200 kHz scattering layer reaches maximum intensities at the front. The 70
kHz layer shape data types track the downward migrating layer at dusk.
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Figure 25. Simulated side-looking echosounder Power and Sv data (Theta = 18
deg, SL = 15 dB, NL=-146 dB, AbsCo=20 dB/km) matches the Wire Flyer data.
A) Receive level distribution for a homogeneous scattering layer of -120 dB Target
Strength across range angle cells. B) Modelled Power and Sv ping data for scat-
tering layers of -120 and -150 dB Target Strength. C) Wire Flyer 100 ping power
echogram showing bounded scattering feature. The colored bars atop show the 20
pings averaged for comparison to the model power data. D) Simulated power pings
for TS=-120 dB and TS=-150 dB overlaid on Wire Flyer 20 ping power averages
showing good alignment at far ranges.
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Figure 26. Modelled Scattering Volume for two scattering layers with TS=-120
and TS=-150 dB on the left panels, and the difference between the Sv for the high
minus low TS pings on the right panel, under increasing Noise Levels (-120 dB top
row, -150 dB middle row, -400 dB bottom row).
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Figure 27. Averaged Wire Flyer Sv data from the Baltimore Canyon deployment
demonstrating the raw and detrended Sv curves over range. A) Averaged 0-25%
(blue) and 75-100% (red) Sv quartile averages. The difference between the high and
low quantiles with an average value added back is shown in black and represents
the detrended Sv data. B) The raw difference between the upper and lower Sv
quantiles matches the logarithmic decay observed in the simulated Sv data.
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(a) Derivation of custom metric

(b) Custom metric vs MVBS signals

Figure 28. Comparison of the custom metric, Sv, and MVBS signals. A) Custom
metric normalized to sampling range plotted as black line over the 3-dimensional
Sv data. The custom metric effectively traces contours in Scattering Volume across
scattering layers. B) Normalized custom metric data plotted alongside normalized
MVBS. The custom metric signal is smoother and captures more of the scattering
layer intensity gradients.
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Figure 29. 70 and 200 kHz Wire Flyer echogram sections showing the custom
metric data type versus MVBS derived from the full sampling range. The custom
metric demonstrates better detection of the major scattering layers.
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Figure 30. Pairwise linear regressions for layer shape based data types derived from
the 70 kHz custom metric (left panels) and 70 kHz MVBS (right panels). The top
panel shows chlorophyll layer shapes plotted against the scattering layer shapes.
The second row shows the scattering layer depth plotted against the scattering
layer shape. The third row shows the chlorophyll layer depth plotted against the
scattering layer shape. The last row shows the chlorophyll layer shape as a function
of the scattering difference above and below the chlorophyll layer.
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Figure 31. Pairwise linear regressions for layer shape based data types derived
from the 200 kHz custom metric (left panels) and 200 kHz MVBS (right panels).
The top panel shows chlorophyll layer shapes plotted against the scattering layer
shapes. The second row shows the scattering layer depth plotted against the
scattering layer shape. The third row shows the chlorophyll layer depth plotted
against the scattering layer shape. The last row shows the chlorophyll layer shape
as a function of the scattering difference above and below the chlorophyll layer.
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(a) (b) (c)

Figure 32. 1D phytoplankton model results. A) The simulated diffusivity profile.
B) Phytoplankton model output for 10 days of run time. The phytoplankton
starting distributions are shown in green. The final distributions are shown in
red and demonstrate a dispersed lower gradient. C) Example 200 kHz chlorophyll
profile demonstrating a similar shape to the model output.
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Figure 33. Run length data section plots derived from the 70 kHz Scattering Vol-
ume profiles. A) Total number of runs detected per ping. The most abundant runs
were observed in pings delineating the lower boundary of the mixed layer associ-
ated scattering layer and the migrating assemblage departing the surface at dawn.
B) Average run length data (percentage of sampling range). Long runs visible in
the color scale at lengths beyond that expected for individual animals corresponds
directly to the dense nighttime scattering layer. C) Selection criteria showing the
classification of valid single target data. Pings in black exceed the maximum run
length criteria and denote the dense scattering layers. Ping data show in red and
blue did not exceed the minimum run length size and number of runs per ping
respectively. D) Valid single target data corresponds to the boundaries of the
dense scattering layers and a unique region within the canyon. E) Oxygen sec-
tion shows intermediate water mass distributions matching the mesopelagic single
target distributions.
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Figure 34. Frequency dependent Scattering Volume data from active and passive
mode Wire Flyer profiles. The top two rows and bottom two rows show Sv(f)
data from the 70 kHz channel and 200 kHz channel respectively. The left and
right panels show Sv(f) data collected during passive and active acoustic profiling
respectively. The colored line plots show Sv(f) data for all pings in the profiles
while the blue line plots show the average Sv(f) response shapes. The active mode
Sv(f) demonstrates similar response shapes to the passive noise spectrum with
elevated amplitude.
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.1 Appendix

.1.1 Chapter 1 Software Overview

A software library to batch-process water column image datasets was writ-

ten in C++, using the OpenCV computer vision library and a custom directory

manager and memory buffer. The goals of this software library were to normalize

image data collected in the epi and mesopelagic ocean and autonomously perform

combined image segmentation and stereo feature matching routines on large stereo

image datasets (1000s of paired images). The software is configurable by the user,

and multithreaded to operate on several image pairs simulatenously. A directory

of paired segmented image data and a compiled datasets containing the relevant

segmentation and 3-d reprojection information for the extracted regions is output

for analysis or further processing.

.1.2 Ch1 Lighting Normalizations

The collected stereo imaging datasets are affected by two sources of variable

lighting that can bias image segmentation and feature extraction performance for

the image data. The primary source of lighting variability is due by the attenua-

tion of the active strobe lighting away from the image sensor. The strobe lighting

generates a basal intensity gradient across the image plane that is conserved among

all image data collected by each of the cameras in the calibrates stereo camera.

A secondary lighting signal is produced by ambient lighting conditions in situ as

the stereo camera profiles through the epipelagic depths. Ambient illumination

changes overall image brightness and produces a variable intensity gradient op-

posing the gradient of the strobe lighting in the imaging plane. To normalize the

collected imagery for image segmentation and data extraction routines, an initial

two-step correction is applied to decimate the variable lighting. The lighting correc-

tion software was is semi-autonomous, with several settings prescribed by the user
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Figure .35. Results of the two step image lighting normalization. A) Raw image
from the color camera in the stereo pair. B) Flattened image data after subtracting
the signed strobe lighting representation. C) Foreground isolated image data after
subtracting the calculated ambient background lighting.

to allow optimization for operating on diverse stereo imagery datasets collected by

the system. The dedicated decimation of the fixed and variable illumination acts

to isolate the foreground and the efficacy of segmentation routines.

.1.3 Ch1 Strobe illumination decimation

A representation of the strobe illumination is obtained by averaging normal-

ized images minimally influenced by ambient lighting and objects in the field of

view. A desired image subset used to render the strobe lighting gradient is de-

termined autonomously from simple image statistic calculations. The standard

deviation of the image intensities and the mean image intensities are calculated

for each image in the profile. Standard deviations are then calculated for the im-

age intensity standard deviation and the mean image intensities. The two vectors

of standard deviation values are sorted along with the index to the image. The

image subset is then selected from the two sorted vectors, where images occurring

below a user set proportion of both vectors are marked for inclusion in the strobe

lightfield correction. The histograms for the selected images are then normalized

by subtracting their mean intensity. A vector of intensity values for every pixel is
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Figure .36. Fixed lighting gradient calculated for the strobe lighting. Quadrant
gain variation is evident and reflects the composite sensor design.

constructed from the autonomously subset zero-mean intensity images. The strobe

lighting image is constructed by averaging the lower 50 image intensity values from

the sorted intensity vectors for every pixel. The pixel-specific calculation works

to minimize averaging of image regions affected by particulates and organisms.

The derived strobe lighting image captures gain differences due to the sensor de-

sign. A flatfield correction is performed on the raw images by subtracting the

signed zero mean intensity lightfield image derived by the pixelwise averaging of

the normalized inlier images [1]. This lightfield calculation and correction routine

is performed separately for each camera in the stereo pair.
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.1.4 Ch1 Ambient illumination decimation

A similar technique is used to calculate the variable ambient lighting sub-

tracted to normalize specific images in the imaging profiles, but instead the rou-

tine operates on a sliding window of images nearby in time and space. A specific

representation of the ambient lighting is generated for each image in the profile

using data from a prescribed number of raw images (5 for the datasets shown

here) centered about the relevant image. Each pixel of the ambient lightfield is

populated independently as the minimum intensity pixel value from the images in

the sliding window. A gaussian blur is applied to the generated ambient lightfield

and subtracted from raw image centered around the sequence of images used for

the calculation. Several versions of sliding window ambient lighting operations

were built and tested, including averaging a variable numbers of images adaptively

determined by the image statistics. We however found the sliding image window

calculation to work well with only a few images when operating on a pixel-by-pixel

basis and was specifically useful minimizing the influence of a baited squid mantle

in the field of view for one of the datasets.

.1.5 Ch1 Image Segmentation

Regions of interest were defined in the image data using simple threshold-

ing and connected-component routines supported in OpenCV [2]. The lighting

corrected image data were convolved with an adaptive gaussian threshold kernel,

where a threshold value is determined by the weighted sum of neighboring values

within the kernel. A kernel size was selected to maximize the search radius for the

average representation of the target species. The adaptive thresholding routing

was found to be more effective on the lighting corrected imagery than static value

thresholding operations that can result in over or under segmentation due to slight

variabilities in the mean intensities of the normalized image data. A morphological
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Figure .37. Images generated by the sliding window ambient lighting correction.
A) Ambient lighting generated for an image near the surface. B) Nearby ambi-
ent lighting images generated for images 10 m apart. C) Scalar mean intensity
representation of the ambient lighting images generated for a whole profile.
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Figure .38. Bounding contours detected and reprojected from the stereo image
pair.

opening of the binarized image data (erosion followed by dilation) was performed

to remove noise and smooth the border of larger objects. The binarized objects

in the image plane were then defined using OpenCV’s contour detection routine,

which simply defines the continuous points along the boundary of the thresholded

foreground objects. From this routine, a vector is populated for each image in

the stereo pair containing the boundary definitions for all detected objects in the

image plane. The bounding contour data is referenced during feature detection

and stereo matching operations to define paired regions between the cameras for

quantification and extraction.
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.1.6 Ch1 Feature Detection

The lighting corrected images are adjusted by a fixed brightness and contrast

value selected to improve the average intensity distribution over the available bits.

The greyscale image of the stereo pair is first convolved with a gaussian filter

(sigma of 5) to better match the resolution of the color image when converted to

grayscale. The stereo pair is then convolved with a gaussian filter (sigma of 7

pixels) blurring the images to remove noise. These image processing operations

were used for the image data processed for this study but the functions, filter

values, and order of operations are configurable by the user from a suite of basic

image processing and morphological operations, and the settings are logged in a

YAML file for reuse. A feature detection routine is then applied to each image in

the pair. We used the Scale Invariant Feature Transform (SIFT) which identifies

pixel-centered regions by defining intensity gradients that retain saliency across

a range of scale space representations (i.e. varying intensities of Gaussian image

blurring). The identified ‘keypoints’ are stored in vectors for each image in the

pair. The 128-element descriptor vectors are calculated for the surviving SIFT

keypoints to be used for feature matching between the stereo image pair.

.1.7 Ch1 Stereo Matching and Definition of Paired Regions of Interests

The two arrays of keypoint descriptors for stereo image pairs were matched

in a one vs. all manner using the brute force feature matching algorithm. Each

keypoint was assigned the strongest 6 keypoint matches from the stereo pair. The

keypoint and the 6 matching keypoints were reprojected onto the undistorted and

rectified image plane defined by the stereo calibration parameters and trimmed

using constraints defined by the stereo geometry. Keypoint match pairs not dis-

tributed on the same epipolar lines were removed, and match pairs having hor-

izontal disparities defining triangulated distances greater than 7 m or less than
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.1 m from the optical center were removed. The keypoint and surviving matches

were then assigned to an overlapping contours defined by the segmentation rou-

tine for each image in the pair. Keypoints detected in regions without contour

definitions were removed. Two selection criteria enforced unique match pair for

each contour object. If a majority of ROI keypoint matches are indexed to a single

stereo pair ROI contour, the ROI match is selected from this mode. If a match

ID mode does not exist, similarity metrics between contour shapes were calculated

from the Hu-moment values and the ROI with the lowest distance matching shape

was selected. The contours and assigned keypoints provided the basic definition

of regions of interest. Bounding boxes are calculated for the ROI and normalized

by comparing the displacement between the bounding edges and keypoint matches

between the ROI pairs.

.1.8 Ch1 Manual Identification and Data Processing

The stereo image processing pipeline creates a directory of segmented image

pairs that are indexed to a datasheet with the fused sensor data and derived 3-

D information. The Pleuroncondes planipes regions of interest were manually

identified and sorted into a folder. A script read the folder of identified P planipes

and assigned the identifications to the datasheet. The datasheet was imported to

R for data analysis. Crab abundances were averaged by depth bins and image

aspect ratios were calculated to provide a proxy metric for the animal orientation.

The derived image data was registered to the 70 and 200 kHz Continuous Wave

Scattering Volume echograms recorded from the shipboard echosounder.

.1.9 Chapter 2 Software Overview

The first thing you do is use “proc raw ek80” to parse in and process the .raw

files. This creates a .mat file directory with an indexing file (“global index.mat”).
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Figure .39. Screenshot of manually identified Pleuroncondes planipes image region
pairs segmented autonomously.

Typically, the flyer merged file is loaded automatically from this directory for

processing. Instead you will need to load in an rov log file that at minimum

contains a good ‘timestamp’, ‘timestamp ek80’, and ‘depth.’

Once step 1 is done, you can create datasets from the .mat file directory. I am

showing/ suggesting two main ways to do this. Option 1 is using the “proc ek80”

script to create datasets that you can further process and play around with in

matlab. Option 2 “pointcloud exporter” is a script to create a pointcloud file

from the data, using the main tools you would want. Detrending the data (esp.

important for Sv and TS data), range averaging (the raw range bins, or anything

less than .̃5 m will be huge files, so you want to do this).

Step 1 Processing RAW Files, ”proc raw ek80”

• This script will create a .mat directory of processed acoustic data from .raw

files.

• Before running, populate the outpath and rovdata filepath.
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• When running script, a file browser will open. Select all .raw files to process..

• Uses functions in (/rawparser) to parse in the files and (/powerprocs) to

perform the calculations.

Need to populate:

• Outpath (line 7) = string for output directory path

• Rovdata(line 6) = string to rov data (.mat or .csv).

• Needs to contain timestamp, ek timestamp, and depth

• Any additional vars can be added by adding below line 97.

• global indexer(global counter).VAR = interp1(double([rovdata.timestamp]),

double([rovdata.VAR]),double(newTime), ’linear’,’extrap’ );

• Leave save files and save index as 1, to save these files (0 if you are just

testing etc).

Step 2: Generating data
(Option 1) Overview, “prok ek80”

• This function is meant to make prescribed datasets from the processed .mat

directory, and then you can prescribe further processing or plotting below

• Simply calls “ek80” which uses “generate data” to make prescribed 70 and

200 kHz datasets.

• The variables (value types, index types, index) to prescribe datasets are

described below

• The call to ‘ek80’ will return the generated data “procdata”.

• 70 kHz data is “procdata.chan70”, 200 kHz is “procdata.chan200”
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• The acoustic data is stored as a matrix in “[procdata.chanX.val]”

• The range values are stored as a matrix in “[procdata.chanX.range]”

• The interpolated variables are stored as a table in “[procdata.chanX.vars]”

Need to Populate: ’Value’ type

• ‘power cw’ = Continuous Wave power

• ’power pc’ = Frequency Modulated power

• ‘power pc1’-‘power pc4’ = Element-specifc power, (1:4 for 70 and 1:3 for 200)

• ‘alongship’ = alongship power angle (70 kHz only)

• ‘athwartship’ = athwartship power angle (70 kHz only)

• ‘sv pc’ = FM scattering volume

• ‘ts pc’ = FM target strength

• ‘sv cw’ = CW scattering volume

• ‘ts cw’ = CW target strength

Need to Populate: ’Index’ type

• The range of Index Type values to generate data from. For instance:

• index = ‘depth’; indexes =’100:500’;

• will generate data for all pings between 100 to 500 m.

• set min/max for an index type as ‘max([global indexer.THE CHOSEN

VAR])’;
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• ‘cast’= 1 for all pings made for the rov dataset, setting indexes to 1 will

extract all data

• ‘max([global indexer.timestamp]) 2 : max([global indexer.timestamp])’,

would give you the back half of the dataset

3D plots

• plot ek80 3D(procdata.chan x, min power, max power, point size )

• takes procdata channel, set min and max power values, point size

• Will plot ping number by depth by range

2D plots

• Range average data and plot vs vars or

• Imagesc([procdata.chanX.val]) will make an echogram, range vs ping number

(Option 2) Overview, “pointcloud exporter”:

• This is an all in one script to generate/process data that is exported to a

pointcloud file.

• Set dir path (line5) = ‘path\to\.mat\directory”

• Set out path (line5) = ‘path\to\save”

• Set ‘name’ (line7) = ‘name of point cloud file’

• Set ‘var name (line8) = one of the acoustic variables described above (e.g.

‘sv pc’)

• Set ’index type’ and ‘indexes’ (line 8,9) as described above. Setting cast and

1 will use all the data.
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• Set range averaging params (line 8-10)= min range, max range, range bin

size (meters)

• Set detrend to 1 if you want to detrend the data. The default settings (line

30/31) are 50 m cutoff depth for averaging and a median filter size of 100

• Running the script will export a point cloud name 70 and name 200 in the

output path

Some Useful Processing Tools
Detrending the data:

• detrend data divewise(data, mindepth, filter size)

• procdata, the cutoff depth to avoid averaging surface returns, and the median

filter size.

• Typically: detrend data divewise(data, 50, 100)

Range averaging:

• rangeds(indata, minrange, maxrange, binsize)

• binsize is in meters

• To get scalar average, binsize =maxrange-minrange.

Ping averaging:

• pingds(data, mindepth, maxdepth, ds)

• ds = Number of sequential pings to average together.

• can also be used to subset depth with mindepth, maxdepth, ds=1.
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TVG:

• apply TVG(indata, logfactor)

• give it procdata.chan x and log factor (e.g. 10, 20), and it will TVG the

values.

Rejecting surface return/ triangle:

• reject surface reverb(datain, tri min depth, tri max depth)

• I typically use the get type vectors (described below) to perform this, but

this function can be called to perform and return this on a “procdata.chanX”.

Median Difference filter:

• modem reject filter(in data, start range, filter k, std limit)

• Start range is the range from x – 100m you want to average

• Filter k is the median filter size, # pings.

• Std limit is the std deviation cutoff for the median difference standard devi-

ation

• Useful for removing modem interfenced pings

Making data vectors (here timestamp x depth):

• get timestamp vectors(data, minp, maxp, scale range, scale depth,

tri min depth, tri max depth)

• makes/ returns a matrix of 4 XYZC vectors

• x=timestamp, y=range, z=depth, c=acoustic value

• These vectors are used to make pointclouds or plot 3D data
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• Populating the variables in sequence after ‘data’ will perform the relevant

functions, but you don’t have too.

• Data= procdata.chan70 or procdata.chan200

• minp/maxp = acoustic value cutoffs

• scale range/scale depth= scale factors

• tri min depth/tri max depth = For rejecting along the hypotenuse of a tri-

angle near the surface. Min sets starting depth where all ranges are removed.

Max is depth where all values over range are preserved. i.e. if min =0 and

max = 50, at 25 m depth data in 50-100m range is removed.

• There are also functions to make vectors using alongtrack distance

(get alongtrack vectors), or lat/lon (get localtrack vectors) if available.

Exporting a pointcloud from a data vector set:

• export pointcloud(data vectors, out directory, name)

• Takes in the vectorized data and writes a point cloud file from it.

• You specify the out directory path and the name if the file

Per Element Power Trends
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Figure .40. Comparison between Simrad’s VBS data, the processed Sv Continuous
Wave data, and the processed Sv Frequency Modulated data before installation of
the input power filter.

Figure .41. Per element power plots showing deviating trends among the sectors.
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Figure .42. Per element power point clouds showing non-stationary and diverging
trends.

Figure .43. Comparison between Simrad’s VBS data, the processed Sv Continuous
Wave data, and the processed Sv Frequency Modulated data after installation of
the input power filter.
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Figure .44. Per element power plots showing largely consistent trends among the
sectors.

Figure .45. Per element power point clouds showing consistent power distributions
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González, P., Álvarez, E., Dı́ez, J., López-Urrutia, Á., and del Coz, J. J., “Val-
idation methods for plankton image classification systems,” Limnology and
Oceanography: Methods, vol. 15, no. 3, pp. 221–237, 2017.

Greene, C. H., Wiebe, P. H., Pershing, A. J., Gal, G., Popp, J. M., Copley, N. J.,
Austin, T. C., Bradley, A. M., Goldsborough, R. G., Dawson, J., et al., “As-
sessing the distribution and abundance of zooplankton: a comparison of acous-
tic and net-sampling methods with d-bad mocness,” Deep Sea Research Part
II: Topical Studies in Oceanography, vol. 45, no. 7, pp. 1219–1237, 1998.

Greer, A. T., Boyette, A. D., Cruz, V. J., Cambazoglu, M. K., Dzwonkowski, B.,
Chiaverano, L. M., Dykstra, S. L., Briseño-Avena, C., Cowen, R. K., and
Wiggert, J. D., “Contrasting fine-scale distributional patterns of zooplankton
driven by the formation of a diatom-dominated thin layer,” Limnology and
Oceanography, vol. 65, no. 9, pp. 2236–2258, 2020.

Greer, A. T., Cowen, R. K., Guigand, C. M., and Hare, J. A., “Fine-scale plank-
tonic habitat partitioning at a shelf-slope front revealed by a high-resolution
imaging system,” Journal of Marine Systems, vol. 142, pp. 111–125, 2015.

Greer, A. T., Cowen, R. K., Guigand, C. M., Hare, J. A., and Tang, D., “The
role of internal waves in larval fish interactions with potential predators and
prey,” Progress in Oceanography, vol. 127, pp. 47–61, 2014.

131



Guihen, D., Fielding, S., Murphy, E. J., Heywood, K. J., and Griffiths, G., “An
assessment of the use of ocean gliders to undertake acoustic measurements
of zooplankton: the distribution and density of antarctic krill (euphausia su-
perba) in the weddell sea.” Limnology and Oceanography: Methods, vol. 12,
no. 6, pp. 373–389, 2014.

Haris, K., Kloser, R. J., Ryan, T. E., and Malan, J., “Deep-water calibration
of echosounders used for biomass surveys and species identification,” ICES
Journal of Marine Science, vol. 75, no. 3, pp. 1117–1130, 2018.

Haury, L., McGowan, J., and Wiebe, P., “Patterns and processes in the time-space
scales of plankton distributions,” in Spatial pattern in plankton communities.
Springer, 1978, pp. 277–327.

Herman, A. W., Beanlands, B., Chin-Yee, M., Furlong, A., Snow, J., Young, S., and
Phillips, T., “The Moving Vessel Profiler (MVP): In-situ sampling of plankton
and physical parameters at 12 kts and the integration of a new laser/optical
plankton counter,” in Proceedings of Oceanology International, vol. 102, 1998,
pp. 123–135.
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