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ABSTRACT 

This thesis discusses a mathematical approach to solv

ing the bearings only target motion analysis problem. The 

problem of solving a sonar contact's tract can be reduced to 

a two variable minimization problem of finding the values of 

initial and final ranges to contact that minimize the sum of 

squares of error between the actual sonar bearings and the 

computed bearings given the estimated initial and final 

ranges. 

Because a submarine can use specific tactics when 

tracking a contact and because maximum detection ranges can 

be estimated, the general shape of the sum of squares of 

error function and its orientation are known. This research 

develops a search technique in which two conjugate gradient 

searches converge simultaneously from opposite sides of the 

optimum. Rules are developed to determine starting points 

which guarantee that the searches remain on opposite sides 

of the optimum in both variables. The stopping criterion 

for the search is the distance between the searches after 

each iteration. A measure of the progress of the search in 

terms of maximum distance from the optimum is guaranteed 

because either search is no further from the optimum at any 

iteration than the distance between the two searches. The 
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research shows that a solution to the bea ring s only targe t 

motion analysis problem is obtained with the required accu

racy more efficiently by searching s imult a neou s ly from oppo

site s ides of the optimum th a n by sea rching from one point 

only. 

The advent of multi-processors and co-processors in 

small computers argues for exploring the concept of sear

ching simultaneously from multiple starting points. Multi

ple search in itself is not a solution. Criteria are still 

needed for stopping the searches and choosing a solution 

from the results of the two searches. This study tests a 

number of criteria for stopping the search and also evalua

tion criteria for choosing a solution. 
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SECTION 1 

INTRODUCTION 

1.1 STATEMENT OF THE PROBLEM. 

A submarine on patrol is continuously searching for 

other submarines if for no other reason than to avoid a 

collision with another submarine, be it friendly or un

friendly. Once a submarine detects another submarine, it 

must estimate the position, course and speed of the contact. 

This can be accomplished using active sonar which provides 

both range and bearing to target. Submarines, however, 

usually prefer to refrain from using active sonar in order 

to remain as quiet as possible and thus minimize the proba

bi 1 i ty of being counterdetected. Consequently, submarines 

usually patrol using passive sonar only. Passive sonar, 

which 1 is tens for sounds from other submarines, provides a 

bearing to the sound source but does not provide range 

information. Although passive sonar provides bearings only 

information (as compared to active sonar which provides 

bearing and range to target), it is still possible to esti

mate the sonar contact's track using bearings only informa

tion (1). This procedure is called passive target motion 

analysis. 

Developing and improving the efficiency and accuracy 
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of procedures that solve the passive bearings only target 

motion analysis problem has been a priority of the U.S. Navy 

for over forty years (2,3). Considerable time and funds 

have been expended on this effort. A number of techniques 

have been developed from manual techniques that use hand 

drawn plots to mathematical techniques that use analog and 

digital computers. Mathematical techniques using the Kalman 

filter (4), maximum likelihood estimator (5), and regression 

techniques (6) have been developed. Some algorithms require 

hand held calculators (7,8) while others require desk top 

computers (9). This research, however, is limited to exam-

ining the conjugate gradient search as a technique for solv-

ing the passive bearings only target motion analysis pro-

bl em. 

The following example describes the problem. A track-

er, holding contact on a target submarine, travels east for 

five time steps and then turns left 135 degrees and travels 

two additional time steps to the northwest (see figure 1-1). 

At each time step, the tracker holds a sonar bearing to 

A . 
target (Bi solid arrows). RINIT and RFINAL' which are the 

actual initial and final ranges to the target, are not known 

to the tracker. Since the tracker has initial and final 

bearings to the target, it can estimate the target's course 

and speed if it can determine the initial and final ranges 

to the target. The conjugate gradient search is used to 

compute a best estimate of RINIT and RFINAL" 
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Some estimate of the initial range to target (R0 ) and 

final range to target (Rn) are made and tested (see figure 

1-1). Bi are the bearings to target (dashed arrows) given 

Ro and Rn as estimates. The problem of solving the sonar 

contact's track can be reduced to a two variable minimiza-

tion problem of finding the values of initial (R0 ) and final 

(R ) ranges that minimize the sum of squares of error ben 

tween the actual sonar bearings and the computed bearings 

given Ro and Rn. The initial and final ranges that minimize 

the sum of squares of error together with the initial and 

final measured bearings are then used to determine the best 

estimate of the track of the target. 

1.2 PURPOSE OF STUDY. 

A submarine can use specific tactics when tracking a 

threat that improve the likelihood of obtaining a solution 
\ 

from a particular target motion analysis technique. The two 

legged track shown in figure 1-1 is an example of such a 

tactic. Maximum detection ranges also can be estimated 

using various acoustic prediction techniques (10). This 

research will show that the general shape of the sum of 

squares of error function and its orientation in R0 ,Rn space 

are predictable for a specific tracking tactic. The purpose 

of this research is to develop and test a search technique 

in which two conjugate gradient searches converge simulta-

neously from opposite sides of the minimum. This is possi-

ble if the function is well behaved and the shape and orien

tation of the function can be predicted. 
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A technique is developed to determine starting points 

which provide a high probability that the searches converge 

from opposite sides of the minimum in both variables. The 

stopping criterion is the ~distance between the searches 

after each iteration. A measure of the progress of the 

search in units of maximum distance from the minimum is 

available because either search is no further from the 

minimum at any iteration than the distance between the two 

searches, provided the two searches remain on opposite sides 

of the minimum. The number of iterations required to obtain 

an acceptable solution using the simultaneous conjugate 

gradient search is compared to the number of iterations 

required to obtain an acceptable solution using a single 

search and traditional stopping criteria. 

The research first develops a form of the conjugate 

gradient search which consistently converges for all inputs 

tested. It then tests the hypothesis that a solution to the 

bearings only target motion analysis problem is obtained 

with the required accuracy more efficiently by searching 

simultaneously from opposite sides of the minimum than by 

searching from one point only. 

1.3 SCOPE OF STUDY. 

This study is primarily concerned with comparing the 

effectiveness of two simultaneous conjugate gradient search

es converging from oppo~ite sides of the minimum to the 

effectiveness of the single search for solving the bearings 

5 



only target motion analysis problem. Th e re are many areas 

of inves tig a t ion for imp roving bea rings only targ et motion 

analysi s . Ta ctical a s pec t s such as tr a cking ge ometry, 

trac king s peed and s ona r settings (11) are be y o nd the s cope 

of this a nalysis. No attempt is ma d e to opt i miz e the conju

gat e g r a dient s e arch nor to compa re the c onjugat e gradient 

techniqu e to other t e chniques s uch as the Ka lman filter, 

least squares or maximum likelihood estimators. Because the 

same conjugate gradient search i s us e d for the single and 

simultane ous conjugate gradient s earches, optimizing the 

search does not affect the relative performance of the two 

techniques. Cons iderab 1 e effort is necessary, however, to 

develop a conjugate gradient search algorithm that consis

tently converges on the minimum for the number of tracking 

geometri e s and the range of starting positions used for the 

analysis. 

1.4 COMPUTER CONSIDERATIONS. 

The advent of multi-processors and co-processors in 

small computers (12,13) argues for exploring the concept of 

searching simultaneously from multiple starting points. 

Multiple search in itself is not a solution. Criteria are 

still needed for stopping the searches and choosing a solu

tion from the results of the two searches. The primary 

advantage of multiple search is that the converging searches 

provide maximum error measurements in terms of nautical 

miles if the starting points are properly chos e n. Error 

measurements for the single conjugate gradient sea rch a re in 
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terms of sum of squares of error or probabi 1 i ty of an accep

table solution after n iterations (14). 

All computer runs are made on a Zenith Z-100 desktop 

computer with the 8087 mathematics chip. The Z-100 does not 

have multi-processing or co-processing capability. A simul

taneous search algorithm is developed which simulates a 

computer than can calculate two searches simultaneously. 

Al 1 programs are written in Z-BASIC which is Zeni th' s ver

sion of Microsoft's BASIC. Opt imi za t ion programs are com

piled. Some statistical programs are run in the interpre

tive mode. The Z-100 is chosen primarily because of its 

ability to perform the necessary calculations in a reason

able amount of time and for its ready availability. 

1.5 REPORT STRUCTURE. 

Section 2 discusses the conjugate gradient search 

technique and constraints on the solution set that are 

imposed by the physics of underwater acoustics and the 

tactics of the searcher. Section 2 also describes the shape 

of the sum of squares of error function and the technique 

developed for using the simultaneous conjugate gradient 

search. Section 3 evaluates the single conjugate gradient 

search and Section 4 evaluates the simultaneous conjugate 

gradient search. Cone 1 us ions and recommendations are pre

sented in Section 5. 
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SECTION 2 

DISCUSSION OF THE PROBLEM 

Using the conjugate gradient search to solve the pas

sive bearings only target motion analysis problem is an 

appropriate application of classical search theory (15,16). 

A number of constraints are imposed on the theoretical 

problem of finding the minimum of a contour by operational 

considerations and the physics of underwater acoustics. 

These factors constrain both the shape of the function and 

also the area in R0 ,Rn space in which the function is de

fined. Section 2 discusses some of the constraints imposed 

by the physical conditions and the implication of these con

straints to the solution of the problem. It also discusses 

the form of the conjugate gradient search used for this 

analysis and some of the parameters selected for the algo

rithm. 

2.1 OPERATIONAL CONSIDERATIONS 

The primary rationale for the submarine service is the 

unique ability of the submarine to operate in a clandestine 

morje. While various methods of detecting submarines are 

available, particularly sonar, it is difficult to detect and 

track a submarine in the open ocean. Because the submarine 

can compromise its tactical advantage of clandestine opera-

8 



tion if it is detected, it is imperative for a submarine to 

redu ce as much as practical all s i gnals eminating from the 

boat. One of the st r ongest signals produced by any wa r sh ip 

i s the pinging of its ac tive sonar. Consequently, it is 

ad vantageous for a s ubmarine to avoid using active sona r if 

it desires to remain clandes tine. 

A submarine, once it detects another submarin e , must 

track the contact in order to determine its cours e and 

speed. This is necessary whether the purpose of the patrol 

is to avoid contact with other submarines, to follow and 

collect information on a contact, or to attack a contact. 

In order to track a contact clandestinely, the submarine 

relies on passive sonar, that is, listening to noise from 

the contact. Passive sonar provides the tracking submarine 

with bearings only information. It knows the bearing to the 

contact every minute for 10 minutes, for instance, but it 

does not know the range to the contact. 

Clandestine tracking is desired for a number of rea

sons. If the contact suspects it is being tracked, it may 

attempt to avoid or evade the tracker. If a submarine is to 

follow a contact to gain information on enemy tactics, it 

must be able to track for a long period of time without 

being counter-detected. In wartime, a tracking submarine 

could be counter-detected and counter-attacked by the subma

rine it is tracking . 

Various me thod s have been developed to estima te target 
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range from bearings only information. These me th ods work 

best if the bearings change significantly during the track 

ing sequence. Certain tracking tactics tend to work be tt e r 

than others because th e y tend to produce bearin g changes 

larger than other tactics. Primarily, some course maneuver 

is required by the tracker such as using a ziz-zag search 

tactic or taking an L or V shaped course. 

Tracking a submarine is a difficult task. Because the 

range at which a sonar can detect a submarine is limited 

(and different for varying environmental and tactical condi

tions), a tracker must maintain the target within detection 

range while at the same time avoiding high speed (which 

tends to reduce sonar performance). It must also keep the 

contact within detection range while making the necessary 

tactical maneuvers to provide favorable bearings. 

2.2 UNDERWATER ACOUSTICS 

2 .2 .1 Active and Passive Search 

A number of fundamental principles of underwater 

acoustics are discussed because they are important to an 

understanding of the target motion analysis problem. The 

first topic is the difference between active and passive 

acoustic search. Some of the most effective methods of 

detecting a submerged submarine are acoustic methods (1). 

These can be divided into active and passive search. In 

active search, the searcher projects sound into the water. 

This sound travels to the target, is deflected off the 

10 



t a r get a n d is echoe d back t o t h e sea rch e r (pr o v id ed the 

t a r get i s wit h i n de t ec tion range ). The son a r s y s t e m on th e 

s ea r c h e r c omputes the time delay be for e t he echo i s rec e ived 

a nd a l so the bea ring on which the ech o i s r e ceiv e d. Because 

th e spee d o f so un d in water is known, it is possible to 

det e rmin e both r ange and bearing t o t a rget u s ing active 

search. Targe t motion analysis using a ctive s e arch is rela

tively e asy. Knowing own ship cours e a nd speed as well as 

range and bearing t o target at two or more time steps, it is 

possible to estimate the course and speed of the target. 

For a s ubmarine to detect a contact at 10 nautical miles on 

active sonar, sound must travel 20 nautical miles, 10 in 

each direction. The liability of active sonar is that the 

target can hear the active pinging a t twice the distance 

that the searcher can detect the target. 

Passive search, on the other hand, 

for noise from the target submarine. 

involves listening 

When a target is 

detected on a passive sonar system, · a signal is received on 

a particular bearing. The searcher knows that a target is 

within maximum detection range on a particular bearing but 

has no other informati-0n as to the rang e to target. If the 

searcher can tra ck the target over a p e riod of time, it can 

collect a series of bearing to targe t readings. Passive 

target motion analysis involves determining the most likely 

target track given the time dependent s et of sonar bearings. 

11 



2 . 2 .2 Maximum Det ect ion Range 

2.2.2.1 Propagation Loss . An imp ortant element of target 

mot ion ana l ys i s i s estimat ing maximum detection r ange . As 

sou nd travel s through the ocean , it is absorbed and scat 

tered. In ge neral, t he intensity of sound decreases with 

distance from the sou rce (17). For this r eason , th e r e is a 

max imum distance at which a so nar can detect a targ e t in a 

given environment. 

Acoustic range prediction computer models are avai l

able which predict propagation loss as a function of dis

tance from source. The primary input to these models is a 

profile of the temperature of the ocean as a function of 

depth. A device called an expendable bathythermograph is 

used to measure ocean temperature as a function of depth as 

it is dropped through the ocean. The computer prediction 

model uses the temperature profile and other information 

such as salinity, bottom type, wave height and frequency to 

predict the loss in intensity of a sound source versus 

distance from source. Figure 2-1 shows that the loss in 

intensity increases from 60 to 110 decibles as range in

creases from 1 to 50 nautical miles in the sample environ

ment. 

The propagation of sound in the ocean is a complex 

phenomenon. The same sound source which can be heard for 

hundreds of miles in one ocean environment may be undetect

able at 2 or 3 nautical miles in another o cean . The a bilit y 

12 
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of sound t o propaga te ove r lon g di stan ces in the ocea n is 

often due to the path it t akes . The sou n d e mit ted by a 

submarine can follo w a number of i nt e resting a nd unex pe ct ed 

paths. So un d can tra v el in a st r aight lin e b e tw een tw o 

submarines (d irec t pa th), but sound can a 1 so t rave 1 between 

two s ubm a rines by first bouncing of f the ocean floo r (bottom 

bounce). In a d ee p ocean environment, unde r favo r a bl e con-

diti ons , sound ca n bend down into the ocean and converge 

back t o th e su rf a ce approximately 30 to 35 nautical miles 

fr om the sou rce (convergence zone). Fig ure 2-2 i s a sample 

convergence zone propagation loss curve. Propagation loss 

in this e nvironment is greatest between 10 and 30 nautical 

miles and beyond 35 nautical miles. Sound propagation is 

best within 10 nautical miles of the source (direct path/ 

bottom bounce zone) and between 30 and 35 nautical miles 

(convergence zone). 

2.2.2.2 Figure of Merit. Figure of merit of a sonar is the 

allowable transmission loss, Nw, for 50 percent probability 

of detection. The passive sonar equation is 

where 2-1 

Ls is target radiated noise, 

LN is omnidirectional background noise, 

NDI i s the directivity index of the sonar, a nd 

NRD i s the ope rator's recognition differential. 
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A line i s drawn acros s th e propagation loss curve at 

the f i g ure of merit (se e fi g ur e 2 -3). The ran g e a t which 

the f i g ur e of merit int e r sects th e c urv e is the range at 

whi ch the sea rcher has a 50 percent probability of detec

ti on . The p robability of de t ec ti o n at any range is deter

min ed from th e standard normal di s tribution and the sigma 

for th e sonar. If, for inst a nce, s igma is 10 decibels, 

figure o f me rit is 80 decibels and propaga tion loss is 90 

d e cibel s (at 40 nautical miles on figure 2-3), then 

z = 
80 - 90 

10 
-1 and 2-2 

the probability of detection at the range at which propaga

tion loss is 90 decibels is the probability that z is less 

than -1 which is approximately 16 percent. Consequently in 

a direct path/bottom bounce environment, it is possible to 

determine a maximum detection range for any confidence level 

desired (10). 

In a convergence zone environment, the problem is much 

more complex. Although maximum detection range may be 35 

nautical miles (see figure 2-4), a contact is often much 

closer (0 to 10 nautical miles). The probability of detec

ting in a convergence zone is u s ually less than 1.0. In the 

environment depicted in figure 2-4, it is approximately 0.6 

assuming figure of merit is 80 and sigma is 10 decibels. 

Conseque ntly there i s a 0.4 probability that initial detec

tion occur s within 10 nautical mile s . For the sake of th e 
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Figure 2-4. 

20 30 40 so . 60 
Range (Nauti ca l Hiles) 

Figure of Me rit--Dire ct Path Detection. 

20 30 40 so 60 
Range (Nautical Hile s ) 

Figure of ·Merit--Convergence Zone De t ec tion. 
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algorithm used in this analysis , it i s acc e ptable to use t he 

longes t possible detection r ange as an initial estimate. 

Because the maximum range at which a submarine can 

det ec t a target can be es tim a ted, the minimum and maximum 

range to targe t at the beginning and end of the tracking 

maneuver are also predicted. Only values between zero and 

the maximum range are possible. This information is impor

tant to solving the target motion analysis problem because 

the region in which the problem is defined is limited to the 

area of positive R0 ,Rn space between zero and the maximum 

detection range in both variables. Although there is a 

probability of either underestimating or overestimating 

maximum detection range, this is not a serious problem for 

the simultaneous conjugate search algorithm. The algorithm 

can self correct if it determines that it has underestimated 

or overestimated maximum detection range. If an incorrect 

estimate of maximum range is made at the first attempt to 

solve the problem, the solution from the first attempt is 

used to estimate a new maximum range. 

2.3 THE MATHEMATICAL PROBLEM 

The problem of determining a sonar contact's tract 

using bearings only information can be reduced to a two 

variable minimization problem of finding the values of ini

tial (R 0 ) and final (Rn) ranges that minimize the sum of 

squares of error function 
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n 

g(R0 , Rn) = :L 
i=l 

where 'Bi is the ith s onar bearing, and 

2-3 

Th e function is a well behav ed canoe or bowl shaped 

surface that has a single minimum in the area of R0 ,Rn space 

in which the function is defined (see figure 2-5). Conse-

quently the function, which is an arctangent function, is 

amenable to solution by non-linear optimization techniques. 

Several methods are available for solving optimization 

problems, including direct search methods and descent me-

thods. The descent methods are generally more efficient 

compared to direct search methods because they use more 

information about the function, specifically the derivatives 

of the function. The optimization technique used in this 

analysis is a form of the conjugate gradient search. This 

technique uses the gradient and a conjugate gradient to 

determine the direction of optimum descent. 

Although much effort has been expended in developing 

techniques to solve the passive bearings only target motion 

analysis problem, almost the entire effort is devoted to 

techniques other then the conjugate gradient search. There 

are, for instance, no references in the public literature of 

using the conjugate gradient search to solve the problem. 
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Figure 2-5. Sum of Squares of Error Function. 
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The on l y r efe rences in the classif i e d lite r ature pertain to 

th e SURFLOC algo rithm ( 9 ,1 8 ), which runs on a HP 9825 desk 

top comput e r. Some problems a r e i de nti fied with SURFLOC, 

specifically that it seems to work for some s t ar t ing points 

but not for others. 

2.3.1 The Conjugate Gradient Search 

Th e partial derivatives of a f unction with respect to 

each of the variables in the function are collectively 
/ 

called the gradient of the function (15,16). The gradient 

has an important property: at any point on a contour, the 

function value increases at the fastest rate in the direc-

tion of the gradient. Because the gradient vector repre-

sents the direction of steepest ascent, the negative of the 

gradient vector denotes the di rec ti on of steepest descent. 

The direction of steepest descent, however, is a local 

property of a function, which changes as the search steps in 

the direction of steepest descent. Al though the method of 

steepest descent appears to be an efficient technique for 

converging on the minimum of a function, it is not really 

effective in solving many problems. The application of the 

steepest descent method leads to a path composed of parallel 

and perpendicular steps (see figure 2-6). For a function 

with long narrow valleys, this method tends to settle into a 

process of making ever smaller zig-zag steps along a vall ey 

and ca n become hopelessly slow. 

Th e convergence charac te ris tics of the steepest des-
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CONJUGATE GRADIENT 
GRADIENT 

Figure 2-6. Zig-Zag Steps of Steepest Descent Method. 
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cent method can be greatly improved by mod i fy in g it in to a 

conjugate ( or deflected) g radien t me thod. It has been s hown 

(15) that any minimization method t ha t makes us e of th e 

conjugate d irections is quadratically co n ve r ge n t . The co n-

jugate g radi e nt procedur e s ets up a n ew sea r ch direction as 

a linear c omb ina tion o f a ll previous search directions and 

the newly determined g radient. It is clear from fi gure 2-6 

that the search (solid line) is working in the correct 

direction al though very inefficiently. Using a linear com

bination o f all previous gradients (in the example, a line 

faired th r ou g h the gradients would point toward the mini

mum), th e d e flected gradient moves much more efficiently 

toward the minimum. One of the weaknesses, however, of the 

conjugate gradient search is that new information can be 

overpowered by old information, especially if the search 

must take a significant turn. For this reason, it is usual

ly advantageous to use only the new negative gradient as the 

search direction every few steps. 

2.3.2 Golden Section Search 

Once a search direction is determined using either the 

gradient or the conjugate gradient, it is necessary to 

determine the minimum point on the contour in the direction 

of the search. It is at this point that a new search direc

tion is determined. The golden section search is used to 

find the minimum in the direction of the search. In this 

technique, the line to be searched is divided into three 

parts (see figure 2-7). The two end sections, which are 

22 



Xl 

a 

a 

X2 

X4 - X3 
X4 - Xl 

a 

a 
1 

1 

X3 

1 

l-2a 

3 -ll 
2 

X3 - ·x2 
X3 - Xl 

1 - 2a 
1 - a 

a 

a 

.3892 

Figure 2-7. Golden Section Search. 
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equal, are approximately 0 . 3892 of the total leng th of th e 

lin e . The ac tu a l length of th e lin e t o be searched is 

arbitrary but important; some considerations for cho o sin g 

the leng th of the line a re discussed in sec tion 2 . 5 .1. 

The golden section i s much u se d as a proportion in 

design. The golden section wa s discovered by the Greeks in 

the fifth century BC. Th e main measurements of ma ny build

ings of antiquity and of th e middle ages, such as th e Par

thenon, are build to this proportion. In mathem a tics, the 

golden section is applied to search techniques b e cause it 

efficiently reduces the length of the line to be searched. 

Because of the shape of the function, it is safely 

assumed that the function has one minimun in the direction 

of the search. Functional evaluation are made at X2 and X3. 

If the function value at X3 is less than at X2, then th e 

area from Xl to X2 is eliminated because the functi o n is 

increasing from X2 to Xl and the mJnimum, therefore, is to 

the right of X2. If X2 is less than X3, then X4 is elimi

nated. The golden section search process is repeated on the 

remaining 0.6108 of the line. At each iteration the length 

of the line is reduced by nearly 39 percent and the length 

of the line after any n iterations is (0.6108)n of the 

original length. The search is halted either after n itera

tions or when the difference between the two functional 

evaluations at X2 and X3 are less th a n some value of epsi

lon. 
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2.3.3 Al gorithm Us e d f o r the Analy s is 

Th e fir s t s t ep i n d eve l o ping th e algorithm fo r the 

analysi s i s t o det e rmin e the g radi e nt of the s um of s qu a r es 

of error fun c tion g (R0 , Rn ). Th e gra dient is the vect o r 

dBi(Ro,Rn) 
*------

dRo 
2-4 \7 f 

dBi(Ro,Rn) 
*------

dRn 

The lines of the computer algorithm that compute the gra-

dient, the absolute value of the gradient and the negative 

gradient are shown in figure 2-8. 

The multiplier, alpha, used to compute the linear 

combination of the old and new gradient is 

alpha ( absolute value of 

absolute value of 

and the conjugate gradient is 

2 

present gradient) 

last gradient 

present gradient + alpha * last gradient 

2-5 

The conjugate gradient search algorithm used in this analy

sis (see appendix a) alternately uses the gradient and the 

conjugate gradient as the search direction. The program 

repeats the following seven steps for each of 15 iterations: 
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3000 
3010 
3011 
3012 
3013 
3014 
3015 
3016 
3020 
3030 
3100 
3200 
4000 
4001 
4010 
4020 
4030 
4040 
5000 
5001 
5010 
5020 
5030 
5050 
5060 
6000 

REM COMPUTE GRADIENT 
REM 
GRO=O: GRN=O 
FOR I=O TO 14 
G RO =G Ro+'c 1- I I 14) I R( I)''< FN s I ND (BA( 0) - B (I) )''< ( B (I)- BA( I)) 
GRN=GRN+Ifl4/R(I)*FNSIND(BA(l4)-B(I))*(B(I)-BA(I)) 
REM PRINT 11 3015 GRO ,GRN 11 ;GRO ,GRN 
NE XT I 

G Y = G RO : G Z = G RN 
REM P RI N T 11 G RADIE N T , G Y , G Z 11 

; G Y , G Z 
REM 
REM 
REM COMPUTE ABS VALUE OF GRADIENT 
REM 
ABSG=SQR(GY*GY+GZ*GZ) 
REM P RI NT 11 ABS GRADIENT " ; . AB S G 
REM 
REH 
REH COMPUTE NEGATIVE GRADIENT 
REM 
NEGGY=-GY:NEGGZ=-GZ 
REM PRINT 11 NEGATIVE GRADIENT 11

; NEGGY, NEGGZ 
RE TU RN 
REM 
REM 
REM FUNCTIONAL EVALUATION 

Figure 2-8. Gradient Calculations Algorithm. 
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1. Comput e th e g radient. 

2 . Use golde n section sea rch to find the minimum in the 

direction of the nega tive g radi en t. 

3 . Comput e the new g radient. 

4 . Compute alpha . 

5 • Compute conjugate gradient. 

6. Use golden section search to find the minimum in 

the direction of the conjugate gradient. 

7. Print "SOLUTION" if search is within 300 feet ( 0 .0 6 

nautical miles) of the true minimum in both vari

ables. 

Sample computer runs demonstrate that this algorithm 

finds the minimum of the function for all the tracking 

geometries tested (see figure 2-9). Note that once the 

search is within 0.06 nautical miles in both variables, it 

converges very slowly to the true minimum (9.00, 7.724). 

For figure 2-9, the search is allowed to continue to 15 

iterations after a solution is found. Although it does not 

always converge in 15 steps from all starting points, it 

does converge in 15 steps or less in 93 percent of the 

trials. In the worst case geometry tested (the fifth geome

try), the algorithm converges in 15 steps or less from 65 

percent of the starting positions. In geometry 5, a maximum 

of 26 iterations are needed to reach an acceptable solution. 
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TRI AL: 2 
RO = : 2 
RN = : 2 
10:11 8 :/19 
ITERATION RO RN ll l' L TA !\() ll EL TA RN SS£ 

l 2 . 8 38 5 . 7 ()() G. 16 2 2 .0 2 6 16 . 109 73 
2 8 . 258 7 . 4 8 7 0. 7 11 2 0. 238 0.0790 4 
3 8 . 9 7 5 7 . 7 l 5 0.0 25 0. 0 10 0.0003 3 

SOLUTION 
4 8 . 9 7 5 7 . 7 l 7 0 . 0 25 0.00 8 0.00009 
5 8 . 9 7 5 7 . 7 l 7 0 . 0 25 0. 0 0 8 0 . 00008 
6 8 . 9 7 6 7 • 7 l 7 0 . 0 24 0 . 00 8 0 . 0000 8 
7 8 . 9 77 7 . 7 18 0 . 0 23 0.00 8 0.00007 
8 8 . 9 7 8 7 . 7 18 0 . 022 0.007 0.00007 
9 8.979 7 . 7 18 0 . 0 2 1 0.007 0 . 00006 

10 8.9 7 9 7 • 7 18 0 . 021 0 . 007 0 . 00006 
l l 8 . 983 7 • 7 l 9 0.017 0 . 006 0 . 00005 
l 2 8 . 985 7 . 7 2 1 0.01 5 0 . 005 0 . 00003 
l 3 8 . 985 7 • 7 2 l 0 . 01 5 0 . 004 0 . 00003 
14 8 . 986 7 • 7 2 l 0.014 0 . 004 0 . 00003 
l 5 8 . 986 7. 7 21 0.0 14 0 . 004 0.00003 

FUNCTIONAL EVALUATIONS: 521 

TRIAL: 2 
RO=: 14 
RN= : 14 
11 :02:46 
ITERATION RO RN DELTA RO DELTA RN SSE 

1 1 5 . 86 3 9 . 86 4 6 . 863 2 .1 39 3 .0 1447 
2 11 • 20 7 8 . 5 77 2 . 207 0 . 852 1 . 222 0 9 
3 10 .719 8 .2 29 1. 7 19 0.504 0 . 38808 
4 10 .443 8 .21 8 1. 4 4 3 0 . 493 0. 26 25 4 
5 9 .3 3 1 7. 8 6 1 0 . 331 0 .1 36 0 .05 5 77 
6 9 . 3 3 5 7. 83 4 0 . 335 0 . 109 0 . 0 14 0 8 
7 9 . 3 10 7. 8 19 0 . 3 10 0 . 094 0 . 0 1 288 
8 9 .3 0 5 7. 824 0 . 305 0 . 099 0 .011 65 
9 9 . 2 7 8 7. 809 0 . 278 0 . 084 0. 0 10 6 1 

10 9.2 73 7. 814 0. 2 7 3 0 . 089 0.0 09 4 0 
11 9 . 26 7 7.80 9 0 . 267 0 . 083 0 . 0090 6 
1 2 9 . 2 57 7.810 0 . 25 7 0. 085 0.00 8 5 8 
l 3 9 . 25 3 7.807 0 . 253 0 .08 2 0 .00810 
1 4 9 . 18 6 7.790 0 . 186 0 . 065 0 . 00 57 2 
1 5 9. 18 6 7.7 8 4 0.1 86 0 .0 59 0 . 0 0 43 8 

FUNCTIONAL EV AL UA TI ONS: 463 

11:1 4:2 7 
TOTAL FUNCTION AL EV AL UATI ONS: 463 

Figu Pe 2- 9 . Samp l e Ou t put fop Lo w and Hi gh SeaPch. 
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2.4 NATURE OF THE FUNCTION. 

2.4.1 Overview 

The conjugate gradient search t e chnique converges to a 

local optimum on a contour. If th e contour has no saddle 

point and only one optimum, then the conjugate gradient 

search should converge on the optimum in some reasonable 

number of iterations. Before using the conjugate gradient 

search for the analysis of the bearings only target motion 

analysis problem, it is necessary to investigate the shape 

of the function. 

2.4.2 Target Motion Analysis Geometries 

Fourteen specific geometries are chosen for this ana

lysis. In all cases the tracker uses a two legged tracking 

maneuver, transiting thirty minutes to the east and then 

fifteen minutes to the northwest at 7 knots. The target 

always remains on a constant course and speed from the west 

to the east (but not parallel to the tracker's course). The 

search algorithm assumes that the target remains on a con

stant course and speed. 

If it is determined that the target has changed course 

or speed, it is necessary to res tart the tracking sequence. 

Although an infinite number of tracking geometries is theo

retically possible, the geometries are constrained by a 

number of factors. As is discussed in section 2.2, detec

tion ranges are limited and thus the tracker must keep the 

target within detection range. The speed at which the 
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tracker can search is limited because of the r equiremen t of 

minimizing own ship noi se that can r educe s onar performanc e 

and increase the target's ability to counterdetect t he 

tracker and realize that it is being tracked (1). It i s 

necessary that the tracker either lead or lag the target. 

If bearing to target remains a constant over the first le g 

of the track, no information is obtained (21). The target 

could be on any of a number of tracks (see figure 2-10). 

The target on tracks 1, 2 and 3 are maintaining the same 

speed as the tracker while the target on tracks 4, 5 and 6 

are faster than the tracker. 

The problem of a constant bearing can be avoided 

either by increasing or decreasing the speed of the tracker 

or by changing course. Increasing tracker speed causes 

bearing to target to drift astern. A target on a relative 

bearing 090 at the beginning of a search may be on 091 after 

one minute, 092 after two minutes, and so forth. This is a 

bearing rate of 1 degree per minute. Likewise, decreasing 

tracker speed below target speed causes bearing to target to 

drift toward the bow. Bearing rate must be sufficiently 

high that bearing changes are not overwhelmed by random 

bearing errors. If bearing rate is low, bearing entries can 

be made at longer time intervals, thus increasing the bear

ing delta between entries. This however increases the 

length of time required to collect a series of bearings and 

is a potential liability because the probability that the 

target will change course or speed increas es with time. 
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Figure 2-10. Possible Target Course Given Constant Bearing 
from Tracker. 
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Convergence zone tracking is especially difficult. 

First it is difficult to maintain detection in a narrow 

convergence zone. Secondly, bearing rate is genera lly low 

at convergence zone ranges (see figure 2-11). A contact at 

a 35 nautical mile range moves a maximum of 1.6 degrees as 

it transits 1 nautical mile, whereas a contact at 6 nautical 

miles moves 9.5 degrees as it transits one nautical mile in 

the same amount of time. It is possible that bearing error 

will overwhelm a bearing rate at convergence zone ranges. 

It is often necessary to close a low bearing rate contact in 

order to track in a geometry that is more conducive to 

passive target motion analysis. 

Because of the above mentioned cons train ts, fourteen 

specific geometries are chosen for the analysis (see table 

2-1). Four of these geometries are depicted with their 

respective contours later in this chapter. In all cases, 

tracker course maneuver remains constant. These geometries 

provide a representative sample of tracking geometries in-

eluding variations in target speed, target course, and ini-

tial bearing to target. 

2.4.3 Plots of the Contours 

The first computer program written for this analysis 

is called CONTOUR (see appendix b). The first task of this 

program is to compute the coordinates of the target and the 

tracker as well as bearing to target for 15 time steps in 

each geometry. The choice of 15 time steps is arbitrary. 
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Figure 2-11. Convergence Zone Tracking. 
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Geornetry 
Numb e r 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Tab l e 2- 1. Geome tries Selected f o r Analy s i s . 

Target 
Speed 

(knots) 

12 

12 

12 

12 

12 

12 

6 

6 

6 

6 

6 

6 

6 

12 

Target 
Course 

(d eg from x axis) 

20 

-20 

20 

-20 

20 

-20 

20 

-20 

20 

-20 

20 

-20 

- 20 

-20 

34 

Ho Initia l Bearing 
(nm i ) to Targe t 

(deg from y axis ) 

9 0 

9 0 

9 30 

9 30 

9 -30 

9 -30 

9 0 

9 0 

9 30 

9 30 

9 -30 

9 -30 

4 0 

4 0 



This tracking information i s prin t ed (see table 2-2) and 

stor ed on a disk file for use by subseq u e nt programs. 

Arithmet ic bea rings are measured counter-clockwise from the 

horizontal axi s . Relative bearings are measured clockwise 

from the direction in which the track e r is transiting. 

"True" bearing s a re measured clockwise from th e vertical 

axis (North). 

The second ta&k of this program is to generate data 

that can be used to draw the contour map of sum of squares 

of error for various values of R0 and Rn. The program 

provides data to plot the four contour lines for sum of 

squares of error = 2, 5, 10 and 20. It first computes the 

valley line of the surface by using a golden section search 

-to determine the values of Rn at which the function is a 

minimum for all integer values of Ro from 2 to 25 (see 

figure 2-12). To determine the sum of squares of error = 2 

contour line, the program again uses the golden section 

search on a penalty function to determine the two points on 

either side of the valley at which the (sum of squares of 

error - 2) is a minimum for all integer values of Ro from 2 

to 25. If the points on both sides of the valley actually 

fall in the valley, then the sum of squares of error is 

always greater than 2 for that value of R0 . In this case, 

the sum of squares of error for all three points at Ro will 

be identical and greater than 2.0. This process is repeated 

for SSE - 5, SSE - 10 and SSE - 20 (see figure 2-13). 
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Ta ble 2-2 . Out put of CONTOUR -- Tru e Data for a Geome try . 

RUN NUMBER: l 

SPEED BLUE (NMI): 7 

SPEED TARGET: 6 

COURSE TARGET: l l 0 

TIME STEP (MIN): 3 

RO ( NMI) : 9 
BEARIN G TO TARGET: 0 

MEASURED DATA 

TRACKER TARGET ARI TH RELATIVE TRUE 

XB YB XT YT BEARING BEARING BEARING RANGE 

o.oo 0.00 o.oo 9.00 90.00 270.00 o.oo 9. 00 
0. 3 5 0.00 0.28 8.90 90.44 269.56 -0.44 8.90 
Q.70 0.00 0.56 8.79 90.89 269.11 -0.89 8.80 
1 • 0 5 o.oo 0.85 8.69 91 • 3 5 268 .65 -1. 35 8.69 
1 • 40 o.oo 1 • 1 3 8.59 91. 8 2 268.18 -1. 8 2 8 . 59 
1 • 7 5 0.00 1 • 4 1 8.49 92.30 26 7 • 7 0 -2.30 8.49 
2.10 o.oo 1.69 8.38 92.79 267 .21 -2.79 8 .39 
2.45 o.oo 1.97 8.28 93.29 266.71 -3.29 8.30 
2.80 o.oo 2.26 8. 18 93.81 266.19 -3.81 8.20 
3.15 0.00 2.54 8.08 94.34 265.66 -4.34 8. 10 
2. 9 0 0.25 2.82 7. 9 7 90.62 44.38 -0.62 7 • 7 3 
2. 6 6 0.49 3.10 7. 8 7 86.54 48.46 3. 4 6 7 • 39 
2 • 4 1 0.74 3.38 7. 77 82.10 52.90 7. 90 7.09 
2 • 16 0.99 3.66 7. 6 7 77 .30 57. 70 12.70 6.84 
1 • 9 1 1. 24 3.95 7.56 7 2 .1 7 62.83 17 • 8 3 6.65 
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08 -23-1983 
RUN NUMBER : 1 

CONTOUR: SSE = 2 
Rn SSE 

RO LOWER CENTER UPPER LOWER CENTER UPPER 

2 .0 0 7. so 7 • s 1 7. s 2 20 .7 9 20 .7 9- 20 . 80 
3.00 7 . 2 9 7. 30 7. 3 2 13. 4 3 13 . 4 3 13. 44 
4.00 7 • 11 7 • 12 7 • 14 8 .3 9 8 . 38 8 . 3 7 
s.oo 7.00 7. 0 2 7.03 4 .8 6 4.87 4.88 
6.00 6 . 8 7 6.87 6 .89 2.51 2. s 1 2.50 
7.00 6 . 57 6.80 7.02 1 . 9 9 1 . 0 3 1 . 9 9 
8 .00 6.40 6.74 7.04 2.01 0.25 2 .00 
9.00 6.30 6. 6 3 7. 0 1 1 • 9 9 o.oo 2.01 

10.00 6.25 6.57 6.94 1. 98 0. 21 2.01 
11 • 00 6.33 6.56 6.84 1.41 0. 77 1 . 9 9 
12.00 6.33 6.48 6.67 2.01 1. 62 1.99 
13.00 6.47 6.50 6.51 2.69 2 .70 2. 71 
14.00 6.45 6.48 6.49 3.9 6 3.97 3.98 
15.00 6.41 6.42 6.44 5.37 5. 37 S.37 
16.00 6.37 6.39 6.42 6.92 6.91 6.89 
17. 00 6 .37 6.39 6.42 8.53 8 .5 2 8 . 51 
18.00 6.37 6.39 6.42 10.21 10.20 10 .19 
19.00 6.37 6.39 6.42 11 .9 s 11 • 9 4 11 • 9 3 
20.00 6.37 6.39 6.42 13. 7 2 13 • 7 1 13.70 
21.00 6.40 6.42 6.44 1 s. so 1s.49 15. 49 
22.00 6.45 6.48 6.49 17 • 29 17 • 30 17 • 31 
23.00 6.45 6.48 6.50 19 .10 19 • 10 19 • 11 
24.00 6.47 6.50 6.52 20. 9 1 20.91 20.92 
25.00 6.48 6.50 6.52 22.71 22 .70 22.71 

Figure 2-13. Output of CONTOUR Data to Plot a Contour for 
Sum of Squares of Error = 2. 
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Four representative contours are shown in figure 2-14. 

The surfaces for all fourteen geometries are similar in 

shape and in orientation. The individual contour line for a 

particular sum of squares of error is essentially canoe 

shaped. Recall that these are three dimensional figures; 

the contour lines lie above the R0 ,Rn plane. They are shown 

in two dimensions because it is easier to portray the shape 

and orientation of the valley in two dimensions. 

The analysis in this report uses bearings without 

error. Obviously random error is a part of sonar bearings 

as it is in any measurement. Random bearing error does not, 

however, substantially change the shape of the function; it 

lifts the function above the R0 ,Rn plane (see figure 2-15). 

Contours are run for geometry 1 using bearings with random 

error. These contours follow the same shape as the baseline 

geometry but the contour is uniformly higher by the sum of 

squares of random error. Because bearing error does not 

change the shape of the function, it is possible to do the 

analysis with true bearings. 
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2.4.4 Implication of Surface Shape to the Conjugate 

Gradient Search 

Plotting the sum of squares of error contour for each 

geometry shows that the contours follow a definite pattern 

for the tracking scenario that is used. The implications of 

this common shape to the choice of starting points for the 

conjugate gradient search are important: 

1. Only positive values of both variables are per

mitted. 

2. Values of R0 and Rn close to 0,0 are always below 

the function minimum in both variables. 

3. Since maximum detection range can be predicted 

(with some degree of certainty), values of both 

variables can be chosen which are above the func-

tion minimum. 

Because the function appears to be a well behaved 

function, it should be possible to search with the conjugate 

gradient search from two points, one below the minimum and 

one above the minimum in both variables. If the two search-

es converge on the minimum from opposite directions, then 

the distance between the two searches provides valuable 

information on the success of the search. Either search can 

be no further from the minimum than the distance between the 

two searches. 

In order for the two searches to converge from oppo

site directions, it is necessary that the searches begin in 
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opposite quadran ts as defined in this paragraph. For p ur

poses of illustration, two lines are drawn through th e 

minimum, one tangent to the vall ey and the other perpendicu

lar to the valley (see figure 2-16). Although the vall ey 

line is not straight, the parallel line is a good approxima

tion of the valley in the area of the search. A conjugate 

gradient search that begins in the neighborhood of 0,0 

should remain in the lower left quadrant and converge on the 

minimum with steps in which R0 and Rn are always less than 

the minimum. Likewise a search that begins at high values 

of Ro and Rn should remain in the upper right quadrant (see 

figure 2-17). The output of the computer runs indicate that 

the two searches do consistently converge on the minimum 

from opposite directions given a proper choice of starting 

points for the two searches. 

Note that it is not sufficient for a starting point 

for the high search to be above the minimum in both vari

ables. A starting point can be above the minimum in both 

variables and yet be in the lower right quadrant if the 

valley has a positive slope. A search that begins in the 

two lower quadrants could converge on each other and yet be 

quite distant from the minimum particularly in the vertical 

direction (see figure 2-18). The high search must commence 

high enough above the minimum in both variables that it be 

above the valley line in the vertical variable. 
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5 INITIALI ZING THE CONJUGATE GRADIENT SEARCH 2. 

2.5.1 Tuning the Conjugate Gradient Search Algorithm 

Befo re using the conjugate gradi e nt sear'ch al gorithm 

for analysis, it is necessary to tun e the algorithm to 

minimize comput a tional time. A number of possibilities 

exist for' tuning the algorithm. All options discussed per

tain to the acceleration leg of the search algorithm, that 

is, how far the search accelerates in the direction of 

steepest descent. Over 90 percent of the calculation time 

of the conjugate gradient search is devoted to pel'.'forming 

the functional evaluations necessal'.'y for the golden section 

search to determine the minimum on the acceleration leg of 

the search. The following factors are tested: 

1. Using double precision mathematics versus single 

precision. 

2. Choice of epsilon (stopping criterion on the ac

celeration leg). 

3. Limits of search on the acceleration leg. 

The three topics are discussed separately. 

2.5.1.1 Double Precision Mathematics. The seal'.'ch algorithm 

often cannot converge to an minimum on the acceleration leg 

if single precision variables are used. Once the algorithm 

reaches the neighborhood of the minimum, it oscillates 

across the optimum. This is due to the fact that functional 

evaluations a re insensitive to the last few decimal places 

if single precision calculations al'.'e used. In a sensitivity 

run, all variables are changed to double pr'ecision (except 
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for loop counters), and a run repeated. Double precision 

calculations require significantly more computer time than 

do single precision calculations and do not enable the 

algorithm to converge with fewer functional evaluations. 

Double precision is actually counterproductive in the cases 

tested. In half the cases tried, the algorithm uses all 

fifteen iterations and converges more slowly toward the 

minimum. Even with the conjugate gradient search, double 

precision may keep the search too tight to the valley. 

Double precision calculations are required only in one 

line of the program, specifically the line that computes the 

sum of squares of error. Note that an error of 0.003 is not 

significant at the sixth digit if the sum of squares of 

error is 2.000000. Consequently the error and the sum of 

squares of error are both double precision variables; all 

other variables, except for loop counters are single preci

sion. Loop counters are integers. 

2.5.1.2 Change of Epsilon. The search on the acceleration 

leg terminates when the difference between two functional 

evaluations that are on opposite sides of the minimum is 

less than epsilon. An initial value of 0.00001 is used. A 

value smaller than 0.00001 is beyond the sensitivity of 

single precision. Epsilon set equal to 0.0001 is unaccept

able. Sixty percent of the trials tested at epsilon = 

0.0001 do not provide solutions to the required tolerance. 

Twenty percent of the solutions were significantly away from 
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the minimum. 

2.5.1.3 Limits of Search on the Acceleration ~· The 

choice of lambda, the maximum length of the acceleration 

leg, is important to computational efficiency. If lambda is 

small, the algorithm works too slowly toward the minimum 

(and may not reach the optimum in the maximum fifteen steps 

allowed by the algorithm.) If lambda is large, the algo-

rithm is slow in searching for the minimum along the accele-

ration leg (and may not reach the minimum in the twenty 

iterations allowed for the golden section search). If lamb-

da is sufficiently long that the search evaluates a location 

on the contour in negative space, the algorithm stalls at 

that point. The geometry of the problem does not hold for 

these locations; computed bearings, for instance, are no 

longer within plus or minus ninety degrees. 

A set of ten runs is made comparing various lengths of 

the accelertion leg (see table 2-3) . . 

Table 2-3. Sensitivity of Search Time to the Length of 
the Acceleration Leg. 

Lambda 
(Nautical Miles) 

100 

50 

20 

10 

4 

Number of Iterations 
(Conjugate Gradient Calculations) 

52 

3553 

2467 

2190 

1881 

2999 



A large lambd a at th e beginni n g of th e search is 

desired becau se it e nables the search to move significantly 

toward th e v a lley. A shor t e r lambda i s de sired in lat er 

iterations as the search moves mo re s lowly along the v al ley. 

A shorter lambda r educes th e numb e r of it e rations of the 

golden section search. If however, lambda becom es too 

small, the search c an mo ve unac cep tably slowly. 

The following decision is made for the analysis runs. 

Lambda is initially set to 10. During each of the fifteen 

iterations, lambda is divided by the iteration number. 

Lambda is, however, never allowed to be less than 2. This 

set of values for lambda allows the search to move quickly 

toward the valley and to search more efficiently along the 

valley. The results of runs show that if lambda is greater 

than 2, then the algorithm will, at least occasionally, 

stall in negative space. If this occurs, the algorithm 

divides the initial lambda by 2 and repeats the search. 

2.5.2 Choice of Starting Position 

An important area of investigation is the attempt to 

identify regions in Ro,Rn space that contains starting 

points that yield success in a low number of iterations. 

The number of possible starting points in R0 ,Rn space is 

infinite as are the number of possible contours. Conse-

quently an exhaustive search of R0 ,Rn space is impossible. 

The nu_mber of possible starting points and contours is 

constrained only by the decimal accuracy of the computer 
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being used. 

A number of observations are made concerning the s t ar-

ting points for the searches. Some starting points a r e 

better in that the search iterates to a solution in two or 

three steps from these points whereas the search sometimes 

does not reach an acceptable solution in fifteen steps from 

other points. As is noted in section 2.5.1.1, a starting 

point that is good when the single precision variables are 

used, is not necessarily as good when double precision 

variables are used. This would suggest that starting coor

dinates that are favorable on one computer may be unfavor

able on another computer if different decimal accuracy is 

used. Test runs also show that a starting position removed 

from a good position by a very small distance is not neces

sarily a good starting position. 

Figure 2-19 shows the number of iterations required to 

reach a solution using Rn = 3.0 and 3.5 nautical miles for 

Ro varying from 1 to 40. Although lower values of R0 are on 

the average somewhat better than high values, considerable 

randomness occurs in the plot. The regression line on 

figure 2-19 shows that the average number of iterations 

required to attain a solution does increases from 5.5 to 

11.6 as Ro increases from 1 to 40, but the correlation 

coefficient of 0.43 is explained by the high degree of 

randomness found in the scatter plot. It is noted that the 

regression line and correlation coefficients are virtually 
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identical for both values of Rn. One possible exp lanation 

for the average longer search times for higher values of Ro 

is that these searches begin much farther from the minimum 

than do the lower searches. 

In general, favorable and unfavorable starting posi

tions seem to be randomly distributed in R0 ,Rn space. Al

though figure 2-19 depicts only two sets of sample starting 

positions, the trend represented by this plot is shown in 

all runs made for this analysis. Even though the average 

number of iterations does seem to increase with Ro, it is 

noted that many values of Ro from 15 to 22 require 13 or 

more iterations but no values of Ro from 23 to 29 requires 

more than 11 iterations. Both good and poor starting posi

tions seem to be randomly distributed in R0 ,Rn space. 

2.6 STOPPING CRITERIA 

Typically in tracking a target, sonar bearings are 

collected over a period of time . . If 15 bearings are used 

for solving the problem, then the 15 most recent bearings 

are used. As a new bearing is received, the old bearings 

are pushed down in the queue and the oldest bearing is 

dropped. Consequently, if the interval for reading bearings 

is once a minute, then the algorithm must be able to input 

the new data, solve the problem and output the answer in 

less than one minute. 

Because solving the passive target motion analysis 

problem is a real time operation, some stopping criteria 
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must be invoked. Using sum of squares of error less than 

epsilon is not very helpful since the actual random bearing 

error is a variable and the minimum of the function is some 

positive value which includes the sum of the random error 

and is not zero. A commonly used criterion is n iterations 

(18). The limitations of using n iterations as a stopping 

criterion are discussed in section 3. 
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SECTION 3 

ANALYSIS OF SINGLE CONJUGATE GRADIENT SEARCH 

3.l OVERVIEW 

The traditional method of solving the bearings only 

target motion analysis probl em using the conjugate gradient 

search on a computer is to have either the operator or the 

computer choose starting coordinates for the search (9). 

The computer program performs n iterations and presents a 

solution. As is shown in section 2.5, the choice of start

ing position is one factor in determining the number of 

iterations required to obtain an acceptable solution. This 

section establishes a baseline for the effectiveness of the 

conjugate gradient algorithm in obtaining a solution for the 

14 basic geometries discussed in section 2.4. 

3.2 TESTING THE CONJUGATE GRADIENT SEARCH 

For each geometry, the conjugate gradient search is 

used to search from ten low starting points and ten high 

starting points. The 20 starting coordinates are listed in 

table 3-1. The program used for this part of the analysis 

is called CGHL (see appendix c. It is similar to the pro

gram in appendix a with three exceptions: 
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Tab l e 3-1. St a rting Coord i nates f o r Conjugat e 

Gr a di ent Sea r ch . 

Position Low Searc h Hi gh Search 
Numb e r Ro Rn Ro Rn 

1 1 1 15 15 

2 2 2 14 14 

3 3 3 13 13 

4 1 2 15 14 

5 2 1 15 13 

6 1 3 14 15 

7 3 1 14 13 

8 2 3 13 14 

9 3 2 13 15 

10 1 4 16 16 

Note: True Ro in all geometries is either 9 or 4 nmi. 
True Rn i s betwe en 4 and 14 nmi. 
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1. It it e rate s fr om a clos e g r o up of starting po int s 

ins t e ad o f fr om s t a rting po ints a long a line . 

2 . It al wa ys pe rfo r ms 15 it e r a tions , but p rin t s 

"SOLUTION" aft e r the itera tion that f i rst r eaches 

an acc e pta ble so lution (within 0.06 na utica l mil es 

in both variables - see fi gure 3-1). 

3 . It s aves the r es ults in a file. 

The computer pro g r a m CGHL is run 28 times, twice for 

each geometry. Because each run consists of ten trials, a 

total of 280 results are stored on disk files. The purpos e 

of these runs is twofold: 

1. Determine the number of iterations required to 

reach an acceptable solution (error less than 300 

feet in both variables for a given starting 

position). The algorithm is given the correct 

answer which is used only to evaluate the progress 

of the search. 

2. Determine the number of iterations required to 

reach an acceptable solution in 90, 85 and 80 

percent of the trials given that n it e rations is 

the stopping criterion. 

Table 3-2 summarizes the numb e r of iterations required 

to reach an acceptable solution for each of ten starting 

positions in 14 geometries for both high and low starting 

positions. The number 16 is a code that an acceptable 

solution is not reached in fifteen iterations. Th e a verage 
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0\ 
f-' 

RUN NUMBER: CONTOUR! 

TRIAL: 2 
RO=: 2 
RN=: 2 
10:48:49 
I TE RATION RO RN DELTA RO DELTA RN SSE 

1 2.838 5.700 6. 16 2 2.026 16.10973 
2 8.258 7 • 4 8 7 0.742 0.238 0.07904 
3 8. 9 7 5 7 • 7 15 0.025 0.010 0.00033 

SOLUTION 
4 8. 9 7 5 7 • 7 1 7 0.025 0.008 0.00009 
5 8.975 7 • 7 1 7 0.025 0.008 0.00008 
6 8. 9 7 6 7 • 7 1 7 0.024 0.008 0.00008 
7 8. 9 7 7 7 • 7 18 0.023 0.008 0.00007 
8 8.978 7 • 7 18 0.022 0.007 0.00007 
9 8.979 7 • 7 18 0.021 0.007 0.00006 

10 8. 9 7 9 7 • 7 18 0.021 0.007 0.00006 
11 8.983 7 • 7 19 0.017 0.006 0.00005 
12 8.985 7 • 7 21 0.015 0.005 0.00003 
13 8.985 7 • 7 2 1 0.015 0.004 0.00003 
14 8.986 7 • 7 21 0.014 0.004 0.00003 
15 8. 9 8 6 7 • 7 21 0. 0 14 0.004 0.00003 

FUNCTIONAL EVALUATIONS: 521 

11:01:50 
TOTAL FUNCTIONAL EVALUATIONS: 521 

Figure 3-1. Results of Conjugate Gradient Search for Starting 
Conditions R0 =2,Rn=2 on the First Geometry. 



Tab Le J- 2 • Nu mber of It e ration s Re qui r c d to Reac h ;l Solution . 

Sta rtin g Po s ition 

Run 
Number 2 3 4 5 ' 7 8 9 10 0 

Low 2 7 8 5 Li 10 2 l 3 2 6 
I! i g h 16 l 5 6 l 3 l l l 6 8 16 1 6 l 3 

2 LOW 5 2 2 2 9 2 6 3 2 s 
2 l! igh 10 3 16 1 s 4 l 1, 9 1 l 9 16 

J Low 4 2 2 2 2 2 2 2 2 7 

J ll i g h 8 3 4 10 16 16 12 l 3 6 16 

4 Low s 2 2 4 2 4 4 4 7 2 
1, High l l 9 6 16 4 s l 1 9 6 2 

5 Low 1 l 11 6 7 16 9 16 3 13 l 1 

5 High 8 15 1 1 16 16 1 3 16 16 16 1 3 

6 Low 4 9 16 12 11 s 7 1 2 6 3 

6 High 9 4 14 14 2 13 s 16 13 13 

7 Low 7 4 4 7 4 6 s 6 s s 
7 High 3 4 4 3 3 7 3 3 s s 

8 Low 6 2 2 7 s 6 2 3 2 6 
8 Hi g h 4 s 2 4 4 s 2 s 15 8 

9 Low s 5 5 7 6 s 12 12 6 10 
9 High 3 s 5 3 10 3 2 2 8 3 

10 Low 2 2 3 2 s 2 3 2 2 2 
10 Hi g h 2 2 2 4 2 3 3 2 2 2 

l l Low 3 3 3 3 2 · 3 l 3 2 3 
l l High 3 2 2 2 3 2 2 2 2 3 

12 Low 7 5 4 6 4 9 8 5 8 10 
12 Hi g h 8 8 3 6 12 3 16 9 3 6 

13 Low 2 2 2 3 2 3 l 2 2 3 
l 3 High 5 4 4 4 4 5 4 4 4 3 

14 Low 2 2 2 2 2 2 2 2 1 6 
14 High 5 3 3 2 2 3 6 2 3 7 
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number of iterations required is six with a st a ndard devia

tion of 4.4. 

A modification is made to the al gorithm in an attempt 

to reduce the time required to reach an acceptable solution 

in the fifth geometry. The algorithm is modified to use two 

conjugate gradient searches instead of only one before re

verting to the gradient. Because this modification substan

tially changes the search (using three golden section 

searches per iteration versus two for the baseline), compa

risons must be made in terms of functional evaluations 

instead of iterations. With this modification, the algo

rithm reaches an acceptable solution using 3371 functional 

evaluations versus 5890 for the baseline case. In an addi

tional modification, three conjugate gradient searches are 

used before reverting to the gradient. 3253 functional 

evaluations are used in this case, a minor improvement over 

the first modification. 

The slowness of the search on the fifth geometry in 

the baseline case is due to very small steps on the accele

ration leg. Using multiple conjugate gradients substantial

ly reduces the time required to reach a solution in this 

geometry. Because a technique that works well on one geome

try does not n~cessarily work on another, it is not possible 

to generalize about the effectiveness of these modified 

algorithms on other geometries. The entire analysis would 

have be to repeated for both new algorithms in order to 
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determine their general applicability. 

3 THE EFFECT OF STARTING POSITION ON SEARCH EFFECTIVENESS 3. 

While th e choice of starting position is a deciding 

factor in determining the success of the search algorithm's 

ability to converge quickly on a solution in an individual 

trial, it is difficult to identify any starting points that 

are universally better than others. The results of these 

280 conjugate gradient search runs are_ grouped in a number 

of ways (see table 3-3). Standard Deviation pertains to the 

total number of trials while Standard Deviation of the Means 

pertains to the average of each group. 

Table 3-3. Summary Results of Single Conjugate Gradient 

Search. 

Number Total Average Standard Standard 
Grouping of Number Number of Deviation Deviation 

Groups Trials Iterations of Means 

All Runs 28 280 5.98 4 .38 3 .46 

Low Search 14 140 4.82 3.36 2.53 

High Search 14 140 7.14 1.77 3.96 

All Columns 
(Low Only) 10 140 4.82 3.36 0.4 7 

All Columns 
(High Only) 10 140 7 .14 1.77 0.82 
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Table 3-3 shows a significant variation in the numb e r 

of iterations required to reach a solution. The summary 

statistics correlate with the results of th e individual 

runs: solutions are obtained in as few as one iteration or 

in as many as 15 or more iterations from man y of the s tart

ing points. Table 3-3 does show that low starting points 

provide a solution on the average in two less iterations 

than the high search. This difference is significant at the 

three sigma level. The very low standard deviation (0.47) on 

the average of the ten low searches suggests that no one low 

point is significantly better than any other. All averages 

are within two standard deviations of the average of the 

means. The same observation is made about the high 

searches. On the other hand, the standard deviation on the 

average number of iterations for a particular starting point 

is 4.39. Considerable variability is evident in the ability 

of a search to converge from a particular starting point. 

In some instances, (for example, . geometry 9), the high 

search is often much better than the low search. Even 

though low starting points are more efficient statistically, 

they are not necessarily more efficient for a particular 

geometry. 

3.4 NUMBER OF ITERATIONS REQUIRED TO REACH A SOLUTION 

If the criterion for stopping the conjugate gradient 

search is n iterations, it is necessary to determine the 

Probability that an acceptable solution is reached in n 

iterations. Table 3-4 presents the percent of trials in 
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Tabl e 3-4 · Percent of Trial s in which Solution i s Reached 
in n Iteration s . 

Numb er Co unt Cumulative Cumu1-ative 
I t e ration s Co unt Percentage 

l 3 3 • 0 1 1 
2 70 73 • 2 6 1 
3 40 l l 3 .404 
4 29 14 2 . 507 
5 28 l 7 0 • 6 07 

6 20 19 0 . 679 
7 1 2 20 2 • 7 2 l 
8 10 212 • 7 5 7 
9 10 222 • 7 9 3 

10 8 230 • 8 2 1 

1 1 7 237 . 84 6 
12 6 243 .8 6 8 
1 3 10 253 . 9 04 
14 3 256 • 9 14 
1 5 4 260 . 9 29 

16+ 20 280 1.000 
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which an acceptable solution is reached in n iteration s . 

Thirteen iterations are required if the algorithm is to 

reach an acceptable solution 90 percent of the time, 1 2 

iterations 85 percent of the time and 10 iterations 80 

percent of the time. 

3.5 OBSERVATIONS ON SINGLE CONJUGATE GRADIENT SEARCH 

Although the conjugate gradient search successfully 

solves the optimization problem at issue, it often requires 

a large number of iterations, particularly if n iterations 

is the stopping criterion and a high probability of success 

is required. If for example, a 90 percent probability of 

success is required, then 13 iterations are needed. This is 

more than twice the average number of iterations required to 

reach the optimum and it represents a significant loss of 

time in obtaining a solution. 

Four decided weaknesses of the single conjugate gra

dient search are identified: 

1. It does not differentiate the acceptable from the 

unacceptable solutions. 

2. It provides no direct information on how far from 

the optimum a solution may be after n itera

tions. 

3. It requires a large number of iterations on runs in 

which an adequate solution is actually obtained 

with a few iterations because of the need to 

choose a sufficiently large n to guarantee success 
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in an acceptable percent of the cases. 

4. It provides error measurements in terms of sum of 

squares of error. This level of information may 

not be meaningful to the user. 

section 4 discusses a solution to these problems. 
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SECTION 4 

SIMULTANEOUS CONJUGATE GRADIENT SEARCH 

4.1 OVERVIEW 

The primary purpose of this analysis is to show that 

the bearings only target motion analysis problem can be 

solved by using two conjugate gradient searches, one begin

ning in the neighborhood of 0,0; the other at a point deci

dedly beyond the optimum in both variables. As is mentioned 

in sections 2 and 3, these searches, on the contours defined 

by the geometries, consistently converge on the optimum from 

opposite directions (see figure 4-1). Consequently this 

technique provides a measure in units of feet of the maximum 

error at every iteration. Either search is never any fur

ther from the optimum at any iteration than the difference 

between the two searches. 

4.2 EXPERIMENTAL DESIGN 

4.2.1 Simultaneous Search Algorithm 

The simultaneous search algorithm can be used on a 

conventional computer, evaluating an iteration of the first 

search, an iteration of the second search and then computing 

the distance between the two searches. The concept of 

simultaneous search, however, is really intended for a com

puter with co-processing capability. With co-processing, 
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the second search can be done simultaneously with the first, 

thus theoretically performing two searches in the same time 

as a single sea rch (12). There i s some loss of efficiency 

with a co-processor (generally one iteration requires more 

functional evaluations than the other) and some loss occurs 

with the need for the two processors to communicate (13). 

In general, however, a computer with co-processing capabili

ty should be able to perform two searches in significantly 

less time than a comparable single processor machine can 

perform two searches. 

The analysis of the efficiency of the simultaneous 

conjugate gradient search consists of solving each of the 14 

geometries one hundred times for each of three stopping 

criteria. The one hundred attempts consist of using the 100 

combinations of the 10 pairs of low starting positions and 

the 10 pairs of high starting positions (refer to table 3-

1). The three stopping criteria are to stop when the 

searches are .15, .20 and 0.25 nautical miles apart. Conse-

quently, three hundred runs are needed for each of the 

fourteen geometries. 

Once the search stops, some evaluation criteria must 

be invoked to choose a solution. Likely possibilities for 

solutions include using the coordinates of the first search, 

the coordinates of the second search, or an average of the 

solutions of the two searches at the time the searches are 

stopped. 
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4.2.2 Sets of Runs 

seven sets of runs are made for each geometry to t est 

seven evaluation criteria that ca n be used to choo se a 

solution. A set consists of three g roups of 100 runs, one 

grou p for each stopping criterion. Figure 4-2 summarizes 

the computer runs used to t es t the simultaneous conjugate 

gradient search. The seven sets are differentiated by the 

evaluation criteria used to choose a solution when the 

stopping criteria are invoked. The seven sets are: 

1. Choose the solution that has the lowest sum of 

squares of error when the stopping criteria are 

invoked. 

2. Choose the average of the two solutions when the 

stopping criteria are invoked. 

3. Choose the solution that has the lowest sum of 

squares of error (set 1) after a minimum of 5 

iterations. A minimum of . 5 iterations are re-

quired for all runs in sets 3 to 7. 

4. Choose the average of the two solutions when the 

stopping criteria are invoked (set 2) after a 

minimum of 5 iterations. 

5. Choose the solution that has the least change in 

sum of squares of error when the stopping criteria 

are invoked. Use the difference between the last 

three iterations to determine the most stable sum 

of squares of error. 
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4.2.3 

6. Ch oose t h e so lutio n tha t h a s the l east c h a ng e in 

s um o f s qu a r es o f e rro r whe n the s topp ing c rit e ria 

are i n vok e d . Us e the di f fer e nc e be tween the l a st 

four it e rations to de termine the most s t a ble sum 

of s qu a r e s of e rror. 

7. Choose the solution that has the l eas t cha n ge in 

sum of s quares of error when the s topping c rit e ria 

are invoked. Use the differe nce betwe en the l a st 

two iterations to determine the most stable sum of 

squares of e rror. 

Simulated Simultaneous Search 

Makin g all the computer runs required for all the 

combinations of starting positions, geometries, stopping 

criteria and evaluation criteria needed for the analysis 

would be very time-consuming and expensive because of the 

large number of functional ev a luations required. Each 

search from each starting position would be repeated 10 

times for each stopping criteria and each set of evaluation 

criteria. This repetition of the searches is unn e cessary 

since the r e sults of each individual search is determinis

tic. Because each search is performed to fift e en iterations 

for the single search analysis in section 3 and the results 

are stored on disk, the searches do not have to be repeated 

for each test case of the simultaneous conjugate gradient 

search. Only a simple statistical program is required for 

this part of the analysis. The prog ram simulate s a s imulta

neous conju g at e g radient s earch by re a din g th e r e sult s o f 
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each iteration from a disk file instead of actua lly perform

ing the calculations. The simulated simultaneous search 

performs six functions for each test case: 

1. Read the results of a low search from a disk file. 

2. Read the results of a high search from a disk file. 

3. Determine the number of iterations required before 

the s earches are .15, .20 or .25 nautical miles 

apart. 

4. Choose an estimate of the optimum (low search, high 

search, average of two searches) using one of 

seven sets of evaluation criteria. 

5. Determine if the solution is acceptable (within 300 

feet of the true optimum in both variables). 

6. Collect statistics. 

a. Good solution. 

b. Stopping criteria not invoked, but solution 

available on one of the two searches. 

c. Stopped iterating too soon. 

d. No solution possible by either search in 15 

iterations. 

4.3 STOPPING AND EVALUATION CRITERIA 

As is discussed in section 3, the conjugate gradient 

search is an effective tool to solve the bearings only 

target motion analysis problem. Solving the problem in real 

time applications, however, requires invoking some stopping 

criteria. Because of the canoe shape of the curve, two 

solutions with the same sum of squares of error are not 
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necessarily equally close to the optimum. The simultaneous 

conjugate g radi ent search provides some absolute information 

on the success of the search in that it provides at every 

iteration a maximum er ror, namely the distance between both 

searches . This type of absolute information on the success 

of the sea rch is not available from a single search. 

One of the major difficulties in evaluating the suc

cess of the simultaneous conjugate gradient search is the 

lack of information on which search is closer to the opti

mum. In general, one search is likely to be closer to the 

optimum than the other as is discussed in section 2. Al

though the distance between the two searches provides a 

limit on the maximum error, it does not identify which 

search is farther from the optimum. 

4.3.1 Stopping Criteria 

Clearly it is possible to continue the two conjugate 

gradient searches until they are within 300 yards in both 

variables. Because searches that do not converge quickly 

tend to converge after quite different numbers of itera-

tions, the approach would be very inefficient. In many 

cases, one search would be at the optimum many iterations 

before the other search is within the stopping criterion. 

Because the purpose of the simultaneous conjugate gradient 

search is to increase the probability of stopping the search 

at an acceptable solution while at the same time reducing 

the number of iterations, this stopping criterion would be 
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too strict. Three stopping criteria are se lect ed for this 

analysi s : 

1. Stop when searches are within .15 nautical miles 

(900 feet). 

2. Stop when searches are within .20 nautical miles 

(1200 feet). 

3. Stop when searches are within .25 nautical miles 

(1500 feet). 

Despite the fact that these distances are significant

ly greater than .06 nautical miles, the criterion used in 

single search, in both variables (a maximum of .085 nautical 

miles), they incorporate the statistical probability that 

one search tends to converge before the other and thus one 

search may reach an acceptable solution while the other is 

1200 feet away. There is some probability of choosing the 

search with the poorer solution. This analysis is testing 

the statistical probability of obtaining an acceptable solu

tion given that the search terminates once the two searches 

converge to a particular range. The three values are chosen 

as baseline parameters for the anlaysis. 

be investigated if necessary. 

4.3.2 Evaluation Criteria 

Other values can 

4.3.2.1 Lowest Sum of Squares of Error. Although it is 

established that the solution with the lowest sum of squares 

of error is not necessarily the best solution, the first 

test of the simultaneous search is to choose the solution 
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that has the lower s um of s quar es of e rror when the sto p pin g 

criteria are invoked. Using th e minimum sum of squares of 

error as an evaluation criterion is important because it is 

an obvious criterion to test. Even though it does not 

a 1 ways provide the best so 1 u ti on, it is important to es ta-

blish how well minimum sum of squares of error functions as 

an evalution criterion. 

4.3.2.2 Average of Two Solutions. Because the two searches 

are converging from opposite directions, some point between 

the two searches is actually closer to the optimum than 

either search. The average values of the two variables from 

both searches is used instead of either solution in the 

second set of runs. One search, however, usually converges 

more quickly than the other. It is likely in many cases 

that one of the solutions is actually closer to the optimum 

than the average of the two solutions. Because the proba-

bility that both searches are equidistant from the optimum 

is low, especially for searches that converge after a large 

number of iterations, the average distance may not be the 

best choice to use as an estimate of the optimum. It is 

worthwhile, however, to test a value between the two search-

es and the average search is an obvious choice. 

4.3.2.3 Minimum of Five Iterations. 61 percent of the test 

runs reaches an acceptable solution in five iterations or 

less. If all runs were independent, then there would be an 

85 percent probability that an acceptable solution would be 
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reached by at least one of th e two searches in five it era -

tions or less. Although there i s some definite dependence 

between the high and low search, there is also a fair amoun t 

of ind e pendence both betwe e n high and low search and within 

high and low search. For thes e reasons, sets thre e and four 

explore the advantage of calculating at least five itera

tions in all cases. Set 3 repeats set 1 and set 4 repeats 

set 2 under the additional stopping criterion that a minimum 

of five iterations be completed. 

4.3.2.4 Most Stable Sum of Squares of Error. As the conj u

gate gradient search iterates toward the optimum, the change 

in the sum of squares of error between two iterations be

comes consistently smaller. Sets 5, 6 and 7 test the change 

in the sum of squares of error as an evaluation tool in 

choosing a solution. The coordinates of the search that 

have the smaller change in sum of squares of error when the 

stopping criteria are invoked are chosen as the estimate of 

the optimum. Set five tests the difference between the last 

three iterations (n and n - 2). Set six tests the differ

ence between the last four iterations and set seven the last 

two iterations. 

4.4 RESULTS OF SIMULTANEOUS CONJUGATE GRADIENT SEARCH 

4.4.1 Explanation of Output 

A statistical computer program called STAT (see appen

dix d), which simulates the simultaneous conjugate gradient 

search by reading the result of each iteration from a disk 
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file, is used to quantify the performance of the simulta

neous conjugate gradient search. Sample output of a set o f 

runs is presented in figure 4-3. The output is explained by 

discussing three specific trials. In the first trial, which 

uses the first set of low coordinates (0,0) and the first 

set of high coordinates (15, 15) as starting points, the two 

searches converge to 0.15 nautical miles after 13 itera

tions. The evaluation criterion is lowest sum of squares of 

error. Since the low search (RNl,ROl) has the lowest sum of 

squares of error and both variables are within 0.06 nautical 

miles of the optimum (see DELTA RNl,DELTA ROl), the values 

of ROl and RNl after 13 iterations are an acceptable solu-

tion to the problem. In the second test which uses the 

first set of low coordinates (2,2) and the second set of 

high coordinates (14,14), the two searches do not converge 

to 0.15 nautical miles in 15 iterations. Although the low 

search does have an acceptable solution, the solution is 

missed because the searches do not converge to the stopping 

criterion. The program prints "SOLUTION ON LOW" to indicate 

that a good solution is missed. Trial 55 is a case in which 

the search stops too early (see figure 4-3c). The two 

searches are within 0.15 nautical miles but the high search 

has the lower sum of squares of error. Because Ro on the 

second search is more than 0.06 nautical miles from the 

function optimum (DELTA R02 = 0.065), the program prints "NO 

SOLUTION" and counts the trial as a BADSTOP. 
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TEST DISTANCE 1 . 15 
CONTOUR GEOMETRY Ill 
FIRST FILE B:OUTPUTlL.ASC 
SECOND FILE B:OUTPUTlH.ASC 

NUMBER DELTA DELTA DELTA DELTA 
TR IAL ITERATIONS RNl ROl RN2 R02 

1 13 0.003 0. Oll 0.032 0 .119 
2 15 0.003 0.010 0.051 0 .148 NO SOLUTION 

SOLUTION ON LOW 
3 6 0,004 0.015 0. Oll 0.014 
4 ll 0.004 0.012 0.039 0 . l15 
5 7 0.005 0.013 0.023 0. l19 
6 15 0.003 0.010 0.102 0.328 NO SOLUTION 

SOLUTION ON LOW 
7 8 0.004 0.013 0.002 0.007 
8 15 0.003 0.010 0.044 0. 160 NO SOLUTI ON 

SOLUTION ON LOW 
9 15 0.003 0.010 0.026 0.094 

OJ 10 13 0.003 0. Oll 0.000 0.004 
f--' 11 13 0.001 0.003 0.032 0 .119 

12 15 0.001 0.003 0.051 0.148 NO SOLUTION 
SOLUTION ON LOW 

13 7 0.020 0.038 0.005 0.016 
14 ll 0.001 0.003 0.039 0.115 
15 9 0.012 0.038 0.019 0.066 
16 15 0.001 0.003 0.102 0.328 NO SOLUTION 

SOLUTION ON LOW 
17 8 0.013 0.040 0.002 0.007 
18 15 0.001 0.003 0.044 0.160 NO SOLUTION 

SOLUTION ON LOW 
19 15 0.001 0.003 0.026 0.094 
20 13 0.001 0.003 o.ooo 0.004 
21 13 o.ooo 0.002 0.032 0. l19 
22 15 0.001 0.002 0.051 0.148 NO SOLUTION 

SOLUTION ON LOW 
23 8 0.001 0.002 0.005 0.014 
24 ll o.ooo 0.002 0.039 0.115 
25 8 0.001 0.002 0.036 0.114 

Figure 4-3a. Sample Output -- Simultadeous Conjugate Gradient Search . 



TES T DISTANCE 1 .15 
CONTOUR GEOMETRY #1 
FIRST FILE B:OUTP UT lL. AS C 
SECO ND FILE B:OUTPUTlH. ASC 

NUMBER DELTA DE LTA DELT A DELTA 
TR IAL I TERATIO NS RNl ROl RN2 R0 2 

26 15 0.001 0 . 002 0 . 102 0 . 32 8 NO SOLUTI ON 
SOLUTION ON LOW 

27 8 0 . 001 0 . 002 0 . 002 0 . 007 
28 15 0.001 0.002 0.044 0 . 16 0 NO SOL UTIO N 

SOLUTION ON LOW 
29 15 0 .00 1 0 . 002 0 . 026 0.094 
30 13 o. ooo 0 . 002 o.ooo 0 . 00 4 
31 14 0.00 9 0 . 026 0 .0 37 0.116 
32 15 0 .008 0.025 0.051 0.1 48 NO SOL UTIO N 

SOLUTION ON LOW 
33 6 0 . 01 9 0.058 o. 011 0 . 014 
34 12 0 .00 9 0 . 027 0 . 037 0 . 115 

co 35 9 0 . 009 0 . 030 0 . 019 0 . 06 6 
[\.) 36 15 0.008 0 . 025 0 . 102 0 .3 28 NO SOLUTION 

SOLUTION ON LOW 
37 8 0.010 0.032 0 . 002 0 . 007 
38 15 0 .008 0.025 0 . 044 0 . 160 NO SOLUTION 

SOLUTION ON LOW 
39 15 0.008 0.025 0 . 026 0 . 094 
40 13 0 . 009 0 . 027 0 . 000 0 . 004 
41 13 0.002 0 . 006 0 . 032 0 . 11 9 
42 15 0 . 002 0 . 006 0 . 051 0 . 148 NO SO LUTIO N 

SOLUTION ON LOW 
43 6 0 . 002 0 . 007 0.011 0 . 014 
44 11 0 . 002 0 . 006 0 . 039 0 . 115 
45 7 0 . 002 0 .007 0 . 023 0 . 11 9 
46 15 0 . 002 0 . 006 0.10 2 0 .32 8 NO SOLUTION 

SOLUTION ON LOW 
47 7 0.002 0 . 007 0.04 8 0 . 149 
48 15 0 . 002 0 . 006 0 . 044 0 . 160 NO SO LUTION 

SOLUTION ON LOW 
49 15 0 . 002 0.006 0 . 026 0 . 09 4 
50 13 0.002 0.006 0.00 0 0 . 004 

Figure 4- 3b. Sample Output - - Simultaneo us Conjuga t e Gr ad i ent Se a r ch . 



TEST DISTANCE 1 .15 
CONTOUR GEOMETRY #1 
FIRST FILE B:OUTPUTlL.ASC 
SECOND FILE B:OUTPUTlH.ASC 

NUMBER DELTA DELTA DELTA DELTA 
TRIAL ITERATIONS RNl RO l RN2 R02 

51 15 0.009 0 . 026 0 . 020 0 . 055 
52 15 0.009 0.026 0.051 0 . 14 8 NO SOLU TI ON 

SOLUTION ON LOW 
53 10 0.014 0.035 0 .004 0 . 013 
54 13 0.010 0 .02 9 0.001 0.000 
55 10 0.014 0.035 0 .02 1 0 . 065 

NO SOLUTION 
56 15 0.009 0.026 0 . 102 0 . 328 NO SOLUTIO N 

SOLUTION ON LOW 
57 10 0.014 0 .03 5 0 . 002 0 . 006 
58 15 0.009 0 .02 6 0 . 01~ 4 0 . 160 NO SOL UTION 

(X) SOLUTION ON LOW w 
59 15 0.009 0.026 0.026 0 . 094 
60 13 0.010 0.029 0 . 000 0 . 004 
61 13 0.004 0 . 013 0 . 032 0 . 119 
62 15 0.004 0.012 0 .0 51 0 .14 8 
63 6 o .• 004 0.015 0 . 011 0 . 01 4 
64 9 0.005 0 . 014 0 . 054 0 . 154 
65 7 0.004 0 . 015 0 .023 0 . 119 
66 15 0.004 0 . 012 0 .1 02 o . 32e NO S O L UT IO I~ 

SOLUTION ON LOW 
67 6 0 . 004 0.015 0 .063 0 . i 115 
68 15 0.004 0 . 012 0.044 0 . 160 NO SO LUTION 

SOLUTION ON LOW 
69 15 0 .004 0 . 012 0 . 026 0 . 09 4 
70 13 0.004 0 .013 0.000 0 . 004 
71 13 0 . 006 0 . 025 0 . 032 0 .119 
72 15 0 .008 0.023 0 .0 51 0 . 14 8 NO SOLUTIO N 

SOLUTION ON LOW 
73 13 0.006 0.025 0 . 004 0.012 
74 13 0.006 0 .025 0.001 0 . 000 
75 13 0 .006 0 . 025 0 . 014 0 . 041 

Figure 4-3c. Sample Output -- Simultaneous Conjugate Gradient Sear ch . 



TEST DISTANCE 1 .15 
CONTOUR GEOMETRY #1 
FIRST FILE B:OUTPUTlL.ASC 
SECOND FILE B:OUTPUTlH.ASC 

NUMBER DELTA DELTA DELTA DELTA 
TRIAL ITERATIONS RNl ROl RN2 R02 

76 15 0 .008 0.023 0 .102 0 .32 8 NO SOLUT I ON 
SOLUTION ON LOW 

77 12 0 .044 0.137 0.002 0 . 006 
78 15 0.008 0.023 0 . 044 0 . 160 NO SOLUTION 

SOLUTION ON LOW 
79 15 0.008 0.023 0.026 0.094 
80 13 0.006 0.025 0.000 0.004 
81 13 0.001 0.005 0.032 0.119 
82 15 0.001 0.005 0.051 0.148 NO SOLUTION 

SOLUTION ON LOW 
83 6 0.002 0.006 o. 011 0 .014 
84 11 0.001 0.005 0.039 0 .115 
85 7 0.002 0.006 0.023 0 .11 9 

co 86 15 0.001 0.005 0.102 0.328 NO SOLUTION 
J::" SOLUTION ON LOW 

87 8 0.002 0.005 0 . 002 0 . 007 
88 15 0 . 001 0.005 0.044 0 .16 0 NO SOLUTI ON 

SOLUTION ON LOW 
89 15 0.001 0.005 0.026 0 .09 4 
90 13 0.001 0.005 0 . 000 0 . 00 4 
91 13 0.005 0 . 017 0 . 032 0 . 119 
92 15 0.006 0 . 016 0 . 051 0 . 14 8 NO SOLU TION 

SOLUTION ON LOW 
93 6 0.007 0.035 0. 011 0 .014 
94 11 0 . 006 0.019 0 . 039 0 . 115 
95 9 0.009 0.029 0 . 019 0 . 066 
96 15 0.006 0.016 0.102 0 . 328 iW SOLUTIO N 

SOLUTION ON LOW 
97 8 0 . 011 0.033 0.002 0 .00 7 
98 15 0 .006 0.016 0.044 0.16 0 NO SOL UTION 

SOLUTION ON LOW 
99 15 0 .00 6 0.016 0.026 0.094 

100 13 0.005 0. 017 o. ooo 0 . 004 

Figure 4-3d . Sample Output -- Simultaneous Conjugate Gradient Sea r ch . 



s ummary o utput o f t he 1 00 tria l s i s fou nd a f t e r th e 

last tri a l on f i g ur e 4-4. The dist ri but ion o f the numb e r of 

itera ti on s i s s hown. 16 it e rati on s is a c ode f o r tria ls that 

do not c l ose t o th e s to p ping c rit e ri o n. Th e 2 9 trial s 

list ed at 1 6 iter a tions are t h e 29 tr ia l s th a t do not c on

ver ge to 0 .1 5 nautical mil es . I n a ll 2 9 tri a l s , however, 

one o f th e two s e arches doe s hav e an acc e pt a ble solution 

(MIS SED= 29). 

STAT is run for all 14 geometries a nd the results 

stored on disk. A program called S UMMARY (see appendix e) 

is used to print results of a set of 14 STAT runs on one 

table (s e e figure 4-5). Figure 4-5 summarizes 70 pages of 

output from STAT. Each numbered row of figure 4-5 contains 

the summary results of 100 runs (the 100 combinations of 10 

low and 10 high searches) on a particular geometry. The 

next to the last line is the mean of the fourteen statistics 

in each column and the last row is the standard deviation of 

the fourteen sample means. 

The first column of the output is the number of the 

geometry. The second column is the number of trials (out of 

100) in which a successful solution is found under the 

stopping criteria and evaluation criteria for that run. The 

third column is the average number of iterations required to 

reach a solution. The last three columns summarize the 

three reas ons that a correct solution is not identified: 
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Number Numb e r 
Iteration s Tri a 1 s 

1 0 
2 0 
3 0 
4 0 
5 0 
6 7 
7 6 
8 8 
9 4 
10 3 
11 6 
12 2 
13 22 
14 1 
15 12 
16+ 29 

Number of Successes: 
Average # Iterations: 

Missed Solutions: 
Bad Stop: 
No Solution: 

70 
12 .19 

29 
1 
0 

Figure 4-4. Summary Output -- Simultaneous Conjugate 
Gradient Search. 
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# 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

AVG 
SD 

SET #1: R=.15 09-05-1985 

SUCCESS ITERATIONS MISSED BADS TOP NO 
70.00 12 .19 29 1 
74.00 10.10 20 6 
78.00 9.89 22 0 

100.00 7.45 0 0 
36.00 14.15 50 0 
79.00 10.89 17 3 
95.00 4.35 0 5 
93.00 3.64 0 7 
96.00 5.85 0 4 
87.00 2.04 0 13 
97.00 2.52 0 3 
93.00 8.28 6 1 

100.00 4.00 0 0 
94.00 2.84 0 6 

85.14 7.01 10.29 3.50 
17.23 3.96 15.36 3.72 

Figure 4-5. Sample Output -- Summary of 
Fourteen Geometries. 
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SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1. 07 
3.73 



1. MISSED - fif t ee n iterat ions are completed for both 

searches but the two searches never converge to 

the stopp ing criterion. One of the searches does, 

however, have an acceptable solution. Note that 

this number is a constant over all seven set s of 

runs for a given stopping criterion, for example, 

.15 nautical miles. 

2. BADSTOP - the searches converge to the stopping 

distance before either search reaches an accept

able solution. 

3. NONE - Neither search reaches an acceptable solu

tion in 15 iterations and the searches do not 

converge to the stopping criterion. 

Columns 2, 4, 5 and 6 sum to 100 trails. 

4.4.2 Results of Set l =Minimum Sum of Squares of Error 

In the first set of runs, the choice of stopping 

criteria has no effect on the number of successful trials 

(85, 86 and 85) but does effect the number of iterations 

(see table 4-1). This is expected since the number of 

iterations required for the two searches to converge to .25 

nautical miles should be less than the number required to 

reach .15. Because the process is a step function, however, 

the number of iterations required to bring the searches to 

.25 may actually bring them to .15 in some trials. Increas

ing the stopping criterion from .15 to .25 nautical miles 

affects the number of solutions missed and the number of bad 

stops. When the stopping criterion is .15 nautical miles, 
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Tal>l e IJ-1. Hes ult s or 0 et 1 - 0 lmultaneous Conjuga te 
Gradient Search. 

SC'l' //1: n~.15 

II 
1 
2 
3 
4 
5 
G 
7 
8 
9 

10 
11 
12 
13 
14 

AVG 
SD 

SUCCESS 
70.00 
7lJ.OO 
18.00 

100.00 
36.00 
79.00 
95.00 
93.00 
96.00 
3·r. oo 
9'{. 00 
93.00 

100.00 
9lJ.OO 

85.14 
17. 23 

ITERATIONS 
12.19 
10.10 
9.89 
7.45 

14.15 
10.89 
4.35 
3.64 
5.85 
2.04 
2.52 
8.28 
4.00 
2.84 

1.01 
3.96 

SET #1: R=.20 

# SUCCESS 
1 88.oo 
2 74.00 
3 89.00 
4 98.00 
5 40.00 
6 93.00 
1 86.oo 
8 84.00 
9 90.00 

10 84.oo 
11 93. 00 
12 95.00 
13 100.00 
14 90.00 

AVG 86.oo 
SD 14.76 

ITERATIONS 
11.54 

9.51 
9.40 
1.15 

14.oo 
10.11 
3.84 
3.27 
5.15 
2.00 
2.43 
7.62 
3.90 
2.68 

6.61 
3.83 

SET #1: R"'.25 

# SUCCESS 
1 88.00 
2 80.00 
3 90.00 
4 98.00 
5 41.00 
6 90.00 
7 78.oo 
8 75.00 
9 86.oo 

10 84.00 
11 88.oo 
12 96.oo 
13 100.00 
14 90.00 

AVG 84.57 
SD 14.46 

ITERATIONS 
10.85 
9.13 
8.54 
6.94 

13.90 
9. Ill 
3.55 
2.92 
4.39 
2.00 
2.311 
1.09 
3.90 
2.58 

6.25 
3. 71 

MISSED 
29 
20 
22 

0 
50 
17 

0 
0 
0 
0 
0 
6 
0 
0 

10.29 
15.36 

MISSED 
10 
20 
11 

0 
46 

0 
0 
0 
0 
0 
0 
3 
0 
0 

6.113 
12.91 

MISSED 
10 
13 
10 

89 

0 
44 

0 
0 
0 
0 
0 
0 
2 
0 
0 

5. 611 
11.97 

09 - 0 5- 1913 5 

OADSTOP 
1 
6 
0 
0 
0 
3 
5 
7 
4 

13 
3 
1 
0 
6 

3.50 
3.72 

NO SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3. 73 

09-05-1985 

BADSTOP 
2 
6 
0 
2 
0 
6 

14 
16 
10 
16 

7 
2 

-o 
10 

_6.50 
5.88 

NO SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3.73 

09-05-1985 

BADS TOP 
2 
7 
0 
2 
l 
9 

22 
25 
14 
16 
12 

2 
0 

10 

8. 71 
8.25 

NO SOLUTION 
0 
0 
0 
0 

111 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3. 73 



the solution is missed in over 10 percent of the trails. 

Even though one search converges to an acceptable solution, 

it is not used since the distance between the two searches 

is still greater than 0.15 after 15 iterations. On the 

other hand, as the stopping criterion is increased to .25, 

the percent of trials in which the search is stopped before 

either search reaches an acceptable solution increases from 

3.5 to 8.7 percent. In this particular set, the average 

number missed and the average number of bad stops is essen

tially a constant. This is not the case, however, in indi

vidual runs. The number of bad stops remains fairly con

stant over the first five runs under all three stopping 

criteria, while the number of missed solutions is essential

ly unchanged over the last eight geometries. Geometry 5 is 

difficult to solve under all stopping criteria in 15 itera

tions or less with the particular form of the conjugate 

gradient search used for the analysis. 

4.4.3 Results of Set£~ Average Distance 

Using the average distance between two searches as the 

estimate of the optimum when the two searches converge to 

the stopping criterion provides a reduction in performance 

in virtually all cases (see table 4-2). The only exception 

is geometry 10 in which performance increases from 84 to 94 

percent in all 3 cases (using only 2 iterations in almost 

all trials). The unique characteristic of geometry 10 is 

that virtually all searches reach a solution in three itera

tions or less and are very close after two iterations. 
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Table 4 -2 . Results of Set 2 - S imultane ou s Co njugate 
Gr a di e nt Search. 

SET 112: n~.15 

II SUCCESS 
1 60.00 
2 75.00 
3 74.00 
4 98.00 
5 24.oo 
6 80.00 
7 89.00 
8 82.00 
9 79.00 

10 91l.OO 
11 97.00 
12 85.00 
13 91l.OO 
14 91l.OO 

AVG 80.36 
SD 19.43 

ITERATIONS 
12.19 
10.10 

9.89 
7.45 

14.15 
10.89 

4.35 
3. 61J 
5.85 
2. OlJ 
2.52 
8.28 
4.oo 
2.84 

SET #2: R=-.20 

u 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
.12 
13 
14 

AVG 
SD 

SUCCESS 
ll4.00 
52.00 
67.00 
81l.oo 
20.00 
68.oo 
11.00 
72.00 
57.00 
94.oo 
89.00 
77 .oo 
88.00 
84.00 

69.50 
20.44 

ITERATIONS 
11. 54 
9.51 
9.40 
1.15 

111. 00 
10.11 
3.84 
3.27 
5.15 
2.00 
2. ll3 
1.62 
3.90 
2.68 

6.61 
3.83 

SET 112: R=.25 

# SUCCESS 
1 39.00 
2 46.oo 
3 46.oo 
4 75.00 
5 17.00 
6 61. 00 
7 65.00 
8 68.oo 
9 110.00 

lo 94.oo 
11 81.00· 
12 61. 00 
13 88.oo 
111 77.00 

AVG 61. 29 
SD 21.56 

ITERATIONS 
10.85 

9.13 
8.54 
6.94 

13.90 
9. ll 1 
3.55 
2.92 
4.39 
2.00 
2.34 
1.09 
3.90 
2.58 

6.25 
3. 71 

MI SSED 
29 
20 
22 

0 
50 
17 

0 
0 
0 
0 
0 
6 
0 
0 

10.29 
15.36 

MISSED 
10 
20 
11 

0 
46 

0 
0 
0 
0 
0 
0 
3 
0 
0 

6. '13 
12. 91 

MISSED 
10 
13 
10 

0 
4'1 

0 
0 
0 
0 
0 
0 
2 
0 
0 

5.64 
11. 97 

91 

09-05-1985 

BADSTOP 
11 
5 
4 
2 

12 
2 

11 
18 
21 

6 
3 
9 
6 
6 

8.29 
5.80 

NO SOLUTION 
-0 

0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3.73 

09-05-1985 

BADSTOP 
1J6 
28 
22 
16 
20 
31 
23 
28 
43 

6 
11 
20 
12 
16 

23.00 
il. '18 

NO SOLUTION 
0 
0 
0 
0 

lll 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3.73 

09-05-1985 

BADSTOP 
51 
41 
4'1 
25 
25 
38 
35 
32 
60 

6 
19 
37 
12 
23 

32.00 
l ll. 8'1 

NO SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3- 73 



since both iterations are converging simu 1 taneous ly, aver

aglng the two results is very effective in thi s geometry. 

It is noted that the average number of iterations do es 

not change from set 1 to set 2 for a given geometry and 

stopping conditions. Likewi se the number of miss ed solu

tions for a geometry and stopping conditions does not change 

since this is the number of combinations of starting condi-

tions that do not converge to the stopping distance with 15 

iterations even though one of the searches reaches an ac-

ceptable solution. 

4.4.4 Results of Set l =Minimum Sum of Squares of Error 

and Five Iterations Minimum 

The upper limit of performance is constrained by the 

column labeled "MISSED" as this column is a constant for a 

given stopping criterion. A number of solutions are not 

found in set 1 because the search stops before either search 

has iterated to an acceptable solution (see table 4-1). 

Adding the additional constraint of a minimum of five itera-

tions to the first set of runs provides a significant in-

crease in performance, virtually eliminating bad stops (see 

table 4-3). Using a lower stopping criterion would prevent 

bad stops. The use of a stopping criterion greater than 

0.10 nautical miles, however, is based on the assumption 

that two opposing searches do not regularly converge in the 

same number of iterations. In general, either both searches 

converge quickly (five or less iterations each) or the two 

92 



Table 4-3 . Res ult s of Set 3 - S imultaneous Co njuga t e 
Grad i e nt Se arch. 

S ET 113: ll = .1 5 

11 S UCCESS 
1 70.00 
2 80.00 
3 78.00 
lj 100.00 
5 36.oo 
6 8 1. 00 
7 97.00 
8 99.00 
9 98 .00 

10 100.00 
11 100.00 
12 94.00 
13 100.00 
14 100.00 

AVG 88.07 
SD 18.18 

ITErtl\TIONS 
l?.. l 9 
10.38 
10.15 
7.82 

14.15 
11. 00 
5.os 
5.04 
6.33 
5.00 
5.00 
8.39 
5.00 
5.02 

1.89 
3 .17 

SET #3: R=.20 

# SUCCESS 
l 88.00 
2 80.00 
3 89.00 
4 99.00 
5 40.00 
6 96. 00 

. 1 96.oo 
8 97.00 
9 95.00 

10 100.00 
11 100.00 
·12 97. 00 
13 100.00 
14 98.00 

AVG 91.07 
SD 15.76 

ITERATIONS 
11. 54 

9.80 
9.75 
7.56 

14.oo 
10.28 
5.00 
5.00 
5.89 
s.oo 
s.oo 
1.11 
5.00 
5.00 

7.61 
3.00 

SET #3: R2 .25 

# SUCCESS 
l 88.oo 
2 86.oo 
3 90.00 
4 99.00 
5 41.00 
6 93.00 
7 96.oo 
8 97. 00 
9 93.00 

10 100.00 
11 100.00 · 
12 98.oo 
13 100.00 
14 95.00 

AVG 91.14 
SD 15.13 

ITERATIONS 
10.85 

9.44 
8.93 
7.40 

13.90 
9.59 
5.00 
s.oo 
5.44 
s.oo 
s.oo 
1.30 
s.oo 
s.oo 

7-35 
2.83 

09-05-1985 

MIS.SEO 111\0STOP 
?.9 I 
20 0 
22 0 

0 0 
50 0 
17 1 
0 3 
0 l 
0 2 
0 0 
0 0 
6 0 
0 0 
0 0 

10.29 0.57 
15.36 0.94 

NO SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1. 07 
3-73 

09-05-1985 

MISSED 
10 
20 
11 

0 
46 

0 
0 
0 
0 
0 
0 
3 
0 
0 

6.43 
12.91 

MISSED 
10 
13 
10 

93 

0 
44 

0 
0 
0 
0 
0 
0 
2 
0 
0 

5.64 
11. 97 

BADSTOP 
2 
0 
0 
1 
0 
3 
4 
3 
5 
0 
0 
0 
0 
2 

1. 43 
1. 74 

NO SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3-73 

09-05-1985 

BADS TOP 
2 
1 
0 
1 
1 
6 
4 
3 
1 
0 
0 
0 
0 
2 

1.93 
2.30 

NO SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
3 

1.29 
3-75 



searches converge after a significantly different number of 

iterations (2 versus 16+, 5 verses 13, and so forth). Re

quiring a minimum of five iterations allows for the geome

tries in which the two searches converge simultaneously in a 

few iterations. 

4.4.5 Results of Set 4 - Average Distance and Five 

Iteration Minimum 

Adding the five iteration minimum as an additional 

stopping criterion to set 2 provides a significant improve

ment in performance (see table 4-4). The runs with the 0.15 

nautical mile stopping criterion are virtually as good as 

the runs in set 1 in terms of the number of successes but 

not in terms of the number of iterations required. 

The effectiveness of the stopping criterion is de-

graded significantly by any increase in the stopping dis-

tance beyond 0.15 nautical miles. Using a larger average 

distance as a stopping criterion is counterproductive if the 

two searches do not converge simul taneou.s ly. It is noted, 

however, that this technique produced 100 percent success in 

five geometries. No other technique tested provided 100 

percent success for as many geometries. The common trend in 

these five geometries is that most searches in these geome

tries converge in 5 or less iterations, that is, the two 

searches tended to converge quickly and simultaneously, the 

conditions under which using the average between two search

es tends to provide a good solution. 
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Ta b 1 e 11 - 1~ • Res ult s of' Set 11 - Si rnul tancous Conjugate 
Gradient Search. 

SET //4: n~.15 

II 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

AVG 
SD 

SUCCESS 
60.00 
75.00 
711. 00 

100.00 
24.00 
80.00 
95.00 

100.00 
85 .00 

100.00 
100.00 

85 .00 
100.00 
100.00 

84.14 
21. 54 

I.TERATIONS 
12.19 
10.38 
10.15 
7.82 

14.15 
11. 00 
5.05 
5.04 
6.33 
5.00 
5.00 
8.39 
5.00 
5.02 

7.89 
3.17 

SET #4: R"'.20 

H 
1 
2 
3 
4 
5 
6 
7 

· 8 
9 

10 
11 
12 
13 
14 

AVG 
SD 

SUCCESS 
44.00 
52.00 
68.oo 
88.oo 
20.00 
69.00 
95.00 

100.00 
10.00 

100.00 
100.00 
79.00 

100.00 
100.00 

77.50 
25.19 

ITERATIONS 
11. 54 

9.80 
9.75 
7.56 

14.00 
10.28 
5.00 
5.00 
5.89 
5.00 
5.00 
1.11 
5.00 
5.00 

7.61 
3.00 

SET i/4: R"'.25 

# SUCCESS 
1 39.00 
2 45.00 
3 50.00 
4 81.00 
5 17.00 
6 63.00 
7 95.00 
8 100.00 
9 62.00 

10 100.00 
11 100.0Q 
12 66.oo 
13 100.00 
14 100.00 

AVG 72.71 
SD 27.83 

ITERATIONS 
10.85 

9.44 
8.93 
7.40 

13.90 
9.59 
5.00 
5.00 
5.44 
5.00 
5.00 
7.30 
5.00 
5.00 

7.35 
2.83 

MI SSED 
29 
20 
22 

0 
50 
17 

0 
0 
0 
0 
0 
6 
0 
0 

10.29 
15.36 

MISSED 
10 
20 
11 

0 
46 

0 
0 
0 
0 
0 
0 
3 
0 
0 

6.43 
12. 91 

MISSED 
10 
13 
10 

95 

0 
44 

0 
0 
0 
0 
0 
0 
2 
0 
0 

5.61l 
11. 97 

09-05-1985 

13/\DSTOP 
11 

5 
11 

0 
12 

2 
5 
0 

15 
0 
0 
9 
0 
0 

4.50 
5.24 

NO SOLU'rION 
-0 

0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1. 07 
3. 73 

09-05-1985 

BADSTOP 
46 
28 
21 
12 
20 
30 

5 
0 

30 
0 
0 

18 
0 
0 

15.00 
1.4. 89 

NO SOLUTION 
0 
0 
0 
0 

14 
l 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3. 73 

09-05-1985 

BADSTOP 
51 
42 
40 
19 
25 
36 

5 
0 

38 
0 
0 

32 
0 
0 

20.57 
19.25 

NO SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3. 73 



4.4. 6 Results of Set 2 ~Most Stable Sum of Squares of 

Error: Last Three Iterations 

As the conjugate gradient search conv e rges toward the 

optimum, the differences between the s um of squares of error 

tend to be very small (refer to figure 2-5). The evaluation 

criterion for choosing a solution in this set of runs is to 

choose the solution that has the most stable sum of squares 

of error when the stopping criteria are invoked. "Most 

stable" is defined as the search that has the least change 

over the last three iterations. The results of set 5 show 

capability comparable to set 1 in obtaining an acceptable 

solution but at the expense of an increase of one in the 

average number of iterations required (see table 4-5). 

4.4.7 Results of Set 6 - Most Stable Sum of Squares of 

Error: Last Four Iterations 

The results of set 6 are virtually identical to the 

results of set 5 (see tabl~ 4-6). Some minor differences 

are noted in some of the geometries~ but the averages are 

identical. With few exceptions, the search that changes 

least between the last three iterations also changes least 

between the last four iterations. 
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'l'alJ l e 4-5 . Res ul ts o f Set 5 - Simul ta neous Conj ugate 
Gradient Sea r ch . 

SET U5: n ~ .1 5 09-05 -1 985 

II SUCCESS ITEl1A'rIONS MI SSED DADSTOP NO SOLUTI ON 
1 70.00 12 .19 29 1 0 
2 80.00 10.38 20 0 0 
3 7 8 .oo 10.15 22 0 0 lJ 96 .oo 7. 8 2 0 lj 0 
5 35 .00 14.15 50 1 l lJ 
G 7 lJ.OO 11.00 17 8 1 
7 94 .00 5.05 0 6 0 
8 93. 00 5.04 0 7 0 
9 89 .00 6.33 0 11 0 

10 10 0 .00 5.00 0 0 0 
11 100 .00 5.00 0 0 0 
12 89 .00 8.39 6 5 0 
13 100.00 5.00 0 0 0 
14 96 .00 5.02 0 4 0 

AVG 85.29 7.89 10.29 3.36 1.07 
SD 17.57 3.17 15.36 3. 63 3.73 

SET #5: R"'. 20 0 9-05-1985 

# SUCCESS ITERATIONS MISSED BADSTOP NO SOLUTION 
1 87 .oo 11.54 10 3 0 
2 79 . 00 9.80 20 1 0 
3 89.00 9.75 11 0 0 
4 96 .00 7.56 0 4 0 
5 39.00 14.00 ll6 1 llJ 
6 87.00 10.28 0 12 1 
7 91.00 5.00 0 9 0 
8 92.00 5.00 0 8 0 
9 84.00 5.89 0 16 0 

10 100.00 5 . 00 0 0 0 
11 100.00 5.00 0 0 0 

· 12 90.00 7.77 3 7 0 
13 100.00 5.00 0 · o 0 
1 4 91l.OO 5.00 0 6 0 

AVG 87.71 7.61 6.ll3 lj. 79 1.07 
SD 15.31l 3.00 12.91 5.09 3.73 

SET 115: R"'.25 09-05-1985 

II SUCCESS ITERATIONS MISSED BADSTOP NO SOLUTION 
1 85.00 10.85 10 5 0 
2 85.00 9.44 13 2 0 
3 88.00 8.93 10 2 0 
4 96.00 7.40 0 4 0 
5 ll0.00 13.90 41l 2 14 
6 80.00 9.59 0 19 1 
1 91.00 5.00 0 9 0 
8 92.00 5.00 0 8 0 
9 80.00 5.41l 0 20 0 

10 100.00 5.00 0 0 0 
11 100.00 5.00 0 0 0 12 85.00 7.30 2 13 0 13 100.00 5.00 0 0 0 14 94.oo 5.00 , 0 6 0 

AVG 86 .86 7.35 5.64 6 . 43 1.07 SD 15.19 2.83 11.97 6 . 71 3. 73 
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'l' u b 1 c L1 - 6 . I\ e s u 1 t s of Se t G - S 1 mu 1 t a n e o us Conj u g a t e 
Gradi ent Search. 

SET H 6: 11~. 15 

II 
1 
2 
3 
lj 

5 
6 
7 
8 
9 

10 
11 
12 
13 
llJ 

AVG 
SD 

SUCCESS 
69.00 
80 .00 
78.00 
97 .00 
36.00 
71i.oo 
92 . 00 
90.00 
91.00 

100.00 
100.00 

88 .00 
100.00 

98.00 

85.21 
17. lJ5 

ITERATIONS 
12.19 
10.38 
10.15 
7.82 

14.15 
11. 00 
5.05 
5.04 
6.33 
5.00 
5.00 
8.39 
5.00 
5.02 

1.89 
3.17 

SET #6: R=.20 

# SUCCESS 
1 87. 00 
2 80.00 
3 89.00 
lj 97. 00 
5 39.00 
6 87. 00 
7 91. 00 
8 89.00 
9 8lJ.OO 

10 100.00 
11 100.00 
.12 87.00 
13 100.00 
llJ 97.00 

AVG 87.64 
SD 15.41 

ITERATIONS 
11.54 

9.80 
9.75 
7.56 

14.00 
10.28 
5.00 
5.00 
5.89 
5.00 
5.00 
1.11 
5.00 
5.00 

7.61 
3.00 

SET #6: R=.25 

# SUCCESS 
1 84.oo 
2 84.00 
3 88.oo 
4 97.00 
5 41.00 
6 81.00 
7 91.00 
8 89. 00 
9 8.0.00 

10 100.00 
11 100.00 
12 8lJ.oo 
13 100.00 
14 97.00 

AVG 86.86 
SD 15.08 

ITERATIONS 
10.85 

9.44 
8.93 
7.40 

13.90 
9.59 
5.00 
5.00 
5.44 
5.00 
5.00 
1.30 
5.00 
5.00 

7.35 
2.83 

MISSED 
29 
20 
22 

0 
50 
17 

0 
0 
0 
0 
0 
6 
0 
0 

10.29 
15.36 

MISSED 
10 
20 
11 

0 
46 

0 
0 
0 
0 
0 
0 
3 
0 
0 

6.43 
12.91 

MISSED 
10 
13 
10 

98 

0 
1j 4 

0 
0 
0 
0 
0 
0 
2 
0 
0 

5.64 
11. 97 

09-05 - 1985 

l3 1\DSTOP 
2 
0 
0 
3 
0 
8 
8 

10 
9 
0 
0 
6 
0 
2 

3. lJ 3 
3.90 

IW SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1. 07 
3. 73 

09-05-1985 

BADSTOP 
3 
0 
0 
3 
1 

12 
9 

11 
16 

0 
0 

10 
0 
3 

4.86 
5.55 

NO SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3. 73 

09-05-1985 

BADSTOP 
6 
3 
2 
3 
1 

18 
9 

11 
20 

0 
0 

14 
0 
3 

6.43 
6.86 

NO SOLUTION 
0 
0 
0 
0 

14 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1.07 
3. 73 



4.4.8 Results of Set 1 = Most Stable Sum of Squares of 

Error: Last Two Iterations 

The e valuation criteria for s e t 7 is to choose the 

solution that has the least reduction in sum of squares of 

error between the last and next to last iteration. The 

results of set 7 show that the probability of success is two 

percentage points less than in sets 5 and 6 (see table 4-7). 

4.4.9 Summary of Results 

The results of the seven sets of runs are presented in 

table 4-8. Performance varies from a low of 60 to a high of 

91 percent probability of obtaining an acceptable solution 

in 15 iterations or less for the 21 combinations of stopping 

and evaluation criteria tested. The average number of 

iterations varies from 6.3 to 7.9. 16 of the 21 combina

tions tested provided acceptable solutions for 85 percent of 

the trials in an average of 7.9 iterations or less while 

four of the combinations tested provided acceptable solu

tions for 88 percent of the trials in an average of 7.6 

iterations or less. The only tests that fail to provide 84 

percent success use the average distance between the two 

searches. Even in this case, however, the technique pro

vides 84 percent success if the stopping distance is low and 

a minimum of five iterations is required. Two evaluation 

criteria consistently provide good results: lowest sum of 

squares of error and most stable sum of squares of error. 

Lowest sum of squares of error provides an 85 percent suc

cess after an average of only 6.3 iterations for a stopping 
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Table 4- 7 . Results of Set 7 - Simultaneo us Conjugate 
Gradient Sea r c h . 

SET 117: n~. 1 5 09 - 05-1985 

II SUCCESS I TErl l\TIONS MIS SED 131\DSTOP NO SOLUTI ON 
1 70 . 00 1 2 .1 9 29 1 0 
2 80 . 0 0 10. 38 20 0 0 
3 78 .00 10 .1 5 22 0 0 
4 96. 00 7. 82 0 4 0 
5 35 .00 lll. 15 50 1 14 
6 79 . 00 11. 00 17 3 1 
7 86 .oo 5 . os 0 14 0 
8 93 . 00 5 . 04 0 7 0 
9 77 . 00 6 . 33 0 23 0 

10 100 . 00 5.00 0 0 0 
11 100 . 00 5.00 0 0 0 
12 88 .00 8 . 39 6 6 0 
13 10 0 .00 5.00 0 0 0 
1 4 96 .oo 5.0 2 0 4 0 

AVG 8 4 .14 1. 89 10 . 29 4. 5 0 1.07 
SD 11. 28 3.17 15 .3 6 6.62 3.73 

SET #7: R=.20 09-05-1 98 5 

H SUCCESS ITERATIONS MI SSED BA DSTOP NO SOLUTION 1 83.00 11.54 10 7 0 2 78. 00 9.80 20 2 0 
3 89.00 9.75 11 0 0 4 96.oo 7.56 0 4 0 
5 37.00 14.00 46 3 14 
6 89.00 10.28 0 10 1 
7 83.00 5 . 00 0 17 0 8 94.00 5.00 0 6 0 
9 71.00 5. 8 9 0 29 0 10 100.00 5 . 00 0 0 0 11 100.00 5.00 0 0 0 .12 87.00 1.11 3 10 0 13 100.00 5.00 0 ·o 0 14 94.00 5.00 0 6 0 

AVG 85.79 7.61 6.43 6 . 71 1.07 SD 16.51 3.00 12. 91 8·. 08 3. 73 

SET #7: R"'. 25 09 - 05-1985 

# SUCCESS I TERATIO NS MISSED BADSTOP NO SOLUTION 
1 81.00 10.85 10 9 0 2 84.00 9.44 13 3 0 
3 89.00 8.93 10 1 0 4 96.oo 7.40 0 4 0 
5 35.00 13.90 44 7 14 6 82 .00 9.59 0 17 1 
7 83.00 5.00 0 17 0 8 94.oo 5.00 0 6 0 
9 64.oo 5.44 0 36 0 10 100.00 5.00 0 0 0 11 100.00 5.00 0 0 0 12 79.00 7.30 2 19 0 13 100.00 5 . 00 0 0 0 14 94.oo 5.00 0 6 0 

AVG 84.36 7 . 35 S. 6 4 8.9 3 1. 07 S D 17.ll9 2. 8 3 11. 97 10 .18 3 .7 3 
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Table 4- 8 . Summary Results o f Simultane o us Con j uga t e Gradient Search. 

Stopping Stat i stic Set 
Criterion 

2 3 4 5 6 7 

Searches Percent 8 5 8 0 88 84 8 5 85 84 
Within Success 

• 15 
Nautical Number of 7 • 0 7 • 0 7 • 9 7 • 9 7 • 9 7 • 9 7 • 9 

f--' Miles Iterations 
0 
f--' 

Se a rches Percent 86 70 91 78 88 88 86 
Within Success 

.20 
Nautical Number of 6 • 6 6 • 6 7 • 6 7 • 6 7 • 6 7 • 6 7 • 6 

Miles Iterations 

Searches Per c ent 85 61 9 1 73 8 7 87 84 
Within Suc c ess 

• 2 5 
Nautical Number of 6 . 3 6.3 7 • 4 7 • 4 7 • 4 7 • 4 7 . 4 

Miles It e r a tions 



distance of 0.25 nautical miles. The evaluation criteria 

used in set 3 consistently provide a high probability of 

success (except in geometry 5). It is noted, however, that 

geometry 5 is unique in that 7 of the 20 individual searche s 

in geometry 5 fail to reach an acceptable solution in 15 

iterations. Consequently any simultaneous search that uses 

either one or both of any of those seven searches will not 

converge to the stopping criterion. 

The optimal technique identified by this analysis is 

the following: 

1. Perform a minimum of 5 iterations. 

2. Perform a maximum of 15 iterations. 

3. Stop iterating when searches are within .25 nautical 

miles. 

4. Choose the search with the lower sum of squares of 

error at the time the stopping criteria are 

invoked. 

This technique provides a 91 percent success rate in an 

average of 7 .4 iterations. 
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SECTION 5 

CONCLU SIONS AND REC OMMENDATION S 

5.1 SINGLE CONJUGATE GRADIENT SEARCH 

The s ingle conjugate gradient search, with the fine 

tuning discussed in section 3, does consistently find the 

minimum of thesum of squares of error function for all the 

geometries tested in a finite number of iterations (26 or 

less). Table 3-4 shows that there is better than a ninety 

percent probability of obtaining an adequate solution using 

13 iterations. A much higher probability of success is 

possible if the algorithm performs 20 or 25 iterations but 

the time required to perform a large number of iterations is 

prohibitive in the tactical environment in which compu

tational power and time to reach a solution are limited. 

It is not necessary that every individual attempt at 

solving the problem be successful. As is discussed in 

section 2, target motion analysis is a continuous process. 

As a new bearing is added to a full set of bearings, the 

earliest bearing is dropped and a new solution estimated. 

Because a new set of bearings makes at least minor changes 

to the contour, it is possible that a solution is obtained 

in one time step even if it is not obtained in the previous 

time step. 
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Th e u se o f di f fer e nt st a rtin g p o int s o n s ub s equent 

s ea r ches may inc r ease the probab ility of ob taining a s olu

tion a t one of th e time s t e p s . Unf o rtun a t e ly, i t i s oft e n 

di f ficul t t o de t e rmin e which o f two s uc cessi v e s olutions i s 

be tt e r. 

Th e majo r pro blem with the s ing le conjug ate g r a dient 

sea rch i s that it provides, at best, vague indicators as to 

the succ es s of an individual search. It is possible to use 

regressi on analysis or exponential smoothing on the last n 

solutiqns. There is the long term probability that a parti

cular solution is correct, but this says nothing about the 

accuracy of an individual solution, and there is also infor

mation available from the sum of squares of error. It is 

likely, however, that the end user of these tactical deci

sion aids is unfamiliar with analysis of variance. More

over, such information as a stable sum of squares of error 

over the last n iterations could indicate only that the 

search is stalled at a non-optimal point. 

5.2 SIMULTANEOUS CONJUGATE GRADIENT SEARCH 

The simultaneous conjugate gradient search provides a 

solution to the two main problems with the single conjugate 

gradient search: it reduces the average number of iterations 

and it provides an indication if a solution is acceptable. 

It provides an acceptable answer in 91 percent of the trials 

in an average of 7.4 iterations versus a 92 percent success 

rate in 13 it e r a tions for the s ingl e search. More impor-
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tant, however, the s imultaneous conjugate gradien t search 

provides clear indications as to which solutions are accept

abl e , which ones are close to acceptable, which ones are 

inconclusive , and which ones are sta ll e d. It also provides 

a me an ingful measure of the maximum er ror at every iteration 

(in units of feet). 

A simple CRT graphic or digital printout showing the 

progress of each search in R0 ,Rn space would provide an 

operator with a clear indication if the algorithm is con

verging or if one or both of the searches is stalled. Be

cause this technique differentiates acceptable from non

acceptable solutions, the probability of obtaining an ac

ceptable solution on one of three successive calculations is 

very high given a 91 percent probability of success at an 

individual time step. 

The simultaneous conjugate gradient search provides a 

solution in half the iterations required by the single 

conjugate gradient search. Even if true simultaneous co

processing capability is not available, this technique would 

on the average require no more total computer time than the 

single search. The simultaneous search, moreover, provides 

evaluation criteria that are not possible with the single 

search. If computers with simultaneous co-processing are 

made available for this application, then a significant 

speed advantage is also possible. 
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5.3 OBSERVATIONS PERTAINING TO THE CONJUGATE GRADIENT 

SEARCH 

The results of this research identify a number of 

potential problems with using the conjugate gradient search 

to solve the passive bearings only target motion analysis 

problem. The most serious problem is that the search fails 

to work in a large number of trials if the length of the 

acceleration leg is too long. In these cases the search is 

taken into negative space in one or both variables. The 

basic geometry of the problem does not hold for negative 

values of R0 and Rn, and the algorithm stalls in negative 

space. On the other hand, if the length of the acceleration 

leg is too short, the search will not move quickly enough to 

the optimum in some other geometries. Since it is deter

mined that no one length for the acceleration leg works for 

all geometries, a technique is developed to successively 

reduce the length of the acceleration leg and restart the 

search if the search is taken into negative space. 

The choice of the stopping criteria for the golden 

section search is also critical. The conjugate gradient 

search does not work if the golden section search on the 

acceleration leg is stopped too soon. Because nearly all 

the computational time of the conjugate gradient search is 

spent doing functional evaluations on the acceleration leg, 

it is important that the golden section search be terminated 

as early as possible. Although the lower limits of the 

stopping criteria for the conjugate gradient search are not 
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tested, it is found that a maximum of 20 iterations or a 

maximum distance of 0.00001 between two functional eva lua 

tions does work for all geometries and starting positions 

tested. 

For the algorithm tested in this analysis, the use of 

double precision calculations i s c o unterproductive on the Z-

100 computer. Computers that typ i ca lly use a hig h l e vel of 

precision for computations such a s the HP 9845 and the VAX 

may keep the conjugate gradien t search too close to the 

ridges of the function and thus ke ep it from moving off the 

ridges to the optimum. 

Although the conjugate gradient search developed for 

this analysis finds the optimum of all the geometries from 

all the tested starting points, it is inefficient in solving 

the fifth geometry, requiring as many as 26 iterations, over 

four times the average. This problem can be resolved by 

modifying the conjugate gradient search. 

This research has identified a number of areas in 

which the conjugate gradient search must be tuned to the 

particular problem. Otherwise there is a probability that 

the search will either stall or move unacceptably slowly 

toward the optimum. 
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5.4 RECOMMENDATIONS 

Although this research demonstrates the effectiveness 

of the simultaneous conjugate gradient search in solving the 

bearings only target motion analysis problem in the repre

sentative geometries, the resu 1 ts of this ana 1 ys is are not 

necessarily conclusive. One of the more important findings 

of this research is that minor changes to the starting 

positions for the search or to the contour can cause signi

ficant differences in the ability of the search to converge 

quickly on the minimum of the function. 

The next step in this analysis is to test and fine 

tune the algorithm to solve the problem using typical bear

ings that are generated on sea tests. A number of variables 

are included in sea test data that affect the contour. 

Among these are random bearing error and random error on the 

time steps. Another important concern is · the issue of lost 

data points. A bearing can be lost at a given time step for 

a number of reasons including temporary loss of detection by 

the sonar. Bearing readings also must be rejected at times 

if a bearing seams to be clearly erroneous. If the target 

is on a constant course and speed (as the algorithm as

sumes), then the bearing rate is fairly constant between 

time steps. A student's t or other suitable test is used to 

determine if a new bearing is acceptable and to be added to 

the algorithm or if it is to be rejected. Because all these 

factors affect the shape of a contour, it is important to 

tune and test the algorithm with data taken from sea tests 
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or at l e ast with simulated sea t e st data that include random 

bearing e rror. 

Th e geometries used in this study assume an environ-

ment with a 15 nautical mile direct path/bottom-bounce de-

tection range. It is important to test the technique both 

in other environments and with different tracking tactics. 

Lastly the conjugate gradient search itself must be 

tested and optimized. Various conjugate gradients need to 

be tested as well as the optimal ratio of conjugate gradient 

to gradient directions. 

The results of this analysis on theoretical tracking 

geometries and theoretical bearings suggest that a properly 

tuned conjugate gradient search is an effective tool for 

solving the passive target motion analysis problem. The 

technique of using two simultaneous conjugate gradient 

searches converging from opposite directions provides both 

an effective search and also criteria for evaluating the 

success of a search at any iteration. 
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RLM ***************************** ** ******* ** ***** *** ************* 
2 1n:M * 
I() RU·! * 
J 2 REM * 
J 3 REM * 
l 8 REM * 

PROCRJ\M N/\ME : CONTOUR 
GEN l·:R ATE GEOMETR[ES l·' Oll. T/\RC l: T MOT [()N /\NALYS[S l'ROll LU1 

07 JUl. Y 198 '.i 

* 
* 
* 
* 
* 

!9 KEM ********************** ***************** *************** *** **** 
2 CJ RE M 
SO PI=3 .1 4 ! 59 :EP SI LON = .0000l 

6 0 REM 
70 REM DEFINE TRI G FUN CTlONS IN DECREES 

8 0 REM 
90 DEF FNSIND(X) = SIN(X*PI/180) 
1 00 DEF FNCOS D( X ) = COS(X*PI/1 80 ) 
11 0 DEF FNTAND(X)=TAN(X*PI/180) 
12 0 DEF FNATND(X) = l80/Pl*ATN(X) 
130 ALPHA=(3-SQR(S))/2:PRINT "ALPH A ", A LPHA 
14 0 DIM XB (lS),YB(lS),XT(lS),YT(lS), B( lS), R( lS) 
150 DIM XTARG(lS),YTARG(lS),BA(lS),BM(lS),BR(lS),ERRORSQ(lS) 

160 REM 
170 REM READ FIX DATA FOR GEOMETRY FROM DATA STATEMENTS 

18 0 REM 
190 DATA 7,225,12,20,3,9 
200 READ SPEEDBLUE,MANEUVER,SPEEDTARGET,COURSETARGET,TIMESTEP,RO 
2 10 REM 
220 REM READ VARIABLE DATA FOR GEOM ETRY FROM INPUT STATEMENTS 

2 30 REM 
240 INPUT "ENTER RUN NUMBER ", RUNNO$ 
250 INPUT "ENTER SPEED OF TARGET ",SPEEDTARGET 
260 INPUT "ENTER COURSE OF TARGET ",COURSETARGET 
270 INPUT "ENTER STARTING RANGE ",RO 
280 INPUT "ENTER BEARING TO TARGET ",BEARTOTARG 
2 9 0 REM 
300 REM PRINT VARIABLE DATA FOR GEOMETRY 
3 10 REM 
320 LPRINT DATE$:LPRINT "RUN NUMBER: ";RUNNO$:LPRINT 
330 LPRINT "SPEED BLUE (NMI): "; SPEEDBLUE 
340 LPRINT "SPEED TARGET: ";SPEED TARGET 
350 IF COURSETARGET=20 THEN LPRINT "COURSE TARGET: 110" 
360 IF COURSETARGET=-20 THEN LPRINT "COURSE TARGET: 070" 
370 LPRINT "TIME STEP (MIN): ";TIMESTEP 
380 LPRINT "RO (NMI): ";RO 
390 LPRINT "BEARING TO TARGET: ";BEARTOTARG:LPRINT:LPRINT 
400 FILE$=RUNNO$+" .ASC" :OPEN "O" ,Ill ,FILE$ 
4 10 REM 
420 REM COMPUTE POSITION OF TRACKER 
4 30 REM 

440 XB(O)=O:YB(O)=O 
4 S 0 FO R I= 1 TO 9 
460 YB(I)=O 
470 INCREMENT=SPEEDBLUE/60*TIMESTEP 
480 XB(I) =X B(I-l)+INCREMENT 
490 NEXT I 
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'i () () F 0 R I = l 0 TO l 4 
5 1 O X 11 ( I ) = X II ( [ - I ) + l NC REM EN T* F NC 0 S D ( 3 (, 0 - MANE lJ V l~ R) 
5 2 O Y l3 ( [ ) = Y II ( 1- I ) +I NC R U1 UJ T* F NS [ N D ( 3 6 0 - MAN 1: UV E R) 

53 0 Nl::XT l 
5 40 REM 
5 5 0 REM COMPUT E POSITlON OF TARGET 

5 6 U Rl' M 
5 7 () x TA RC ( 0 ) = 1rn * F N s l NI) ( ll E /\ R TO TA lcC ) 
5 80 YTARG( O) = RO*FN COSD( BE/\RTOTARG ) 
5 90 INC REMF:N T=S PE EDT/\ RC I~ T/ 60* TIMES TU' 
6 0 0 F 0 R I= I TO l 4 
6 1 0 XTARG( I)=XTARG( I -1 )+INCREMENT*FNCOSD(360-COURSETARGET) 
6 2 0 YTARG( I)= Y TARG( 1-l )+INCRCMF:NT*tN S IND(360 - COURSETARGET) 

630 NEXT I 
6 4 0 REM 
650 REM COMPU TE RANGE AND BEARINGS A T EACH TIME ST EP 

6 60 REM 
6 7 0 F 0 R I = 0 TO l 4 
6 8 0 R( I)= ( ( x TA RC ( I)- x B ( I) ) A 2+ ( y TA RC ( I) - YB ( I) ) A 2 ) A • 5 

690 IF XTARG( l)=XB( I) THEN BEARING=90 
ELSE BEARING=FNATND( (YTARG( 1)-YB( I))/ (XTARG( I)-XB( I))) 

70 0 IF BEA RING<O THEN BEARI NG= l80+BE ARING 
710 IF I<lO THEN BR(I)= 360-BEARING 

E LSE BR(I)=l 35 -B EAR ING 
7 20 BM(I)=BEARING 
730 BA(I)=FNATND(( X TARG(I)-XB(I))/( Y TARG(I) - YB( I))) 

740 NEXT I 
7 5 0 REM 
760 REM PRINT GEOMETRY DATA TO PRINTER 
770 REM 
780 LPRINT" MEASURED DATA 
790 LPRINT" TRACKER TARGET ARITH RELATIVE TRUE 
800 LPRINT " XB YB XT YT BEARING BEARING BEARING R 
ANGE 
810 LPRINT 
8 2 0 F 0 R I= 0 TO l 4 
830 LPRINT USING "II/Ill. II/I "; X B(I),YB(I), XTARG (I),YTARG(I),BM(I),BR(I 
) , BA( I) , R( I) 
840 NE X T I 
8 50 REM 
860 REM PRINT GEOMETRY DATA TO DISK 
8 7 0 REM 

880 PRINT /fl ,RUNNO$;",";SPEEDBLUE;MANEUVER; SPE EDTARGET;COURSETARGET; 
TIME STEP ; RO;BEARTOTARG 
8 9 0 F 0 R I= 0 TO 1 4 
900 PRINT Ill ,XB( I); YB( I) ;XTARG( I); YTA RG( I); BM( I); BR( I); BA( I); R( I) 
910 NEXT I 
920 CLOSE 

9 3 0 LP RI N T CH R$ (1 2 ) 
9 40 REM 

9 SO REM LOOP FOR THE 4 CONTOURS 
9 60 REM 

970 N=l4 :REM 15 BEARINGS COUNTED FROM 0 TO 14 
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<J (lt ) FU !{ CC= I TO L, 

9 <J() [ J.' C<> L TllEtJ Ll'R I N T DA T E$ : LP Rl N T " RUN NU Ml\ E R: " ;RUNNO$ :LPRINT 
l tl O ll [ F CC= J Tl! EN L PRINT DA T E$ :L PRI N T "!WtJ NUM lll': R : "; RUN N0 $ :LP RI NT 
l t1 10 lF CC= I T llE N CONTOUR=2 E L S E IF CC =2 T ll l·:N CO N TOUR= 5 
! fJ 2 0 LF CC= 3 Tll EN CONTOUR= LO E L SI~ I F CC =4 TllE N CON TOUR=2 0 
t OJU l. l'l([ N T " CON TOUR : SS E= "; CONTOUR 
1 1140 L l'RI N T " Rn SSE " 
! IJS il L l' Rl~JT " RO L OWE R C EMTER \J l' l.' E I( LOWE R CENTE R UPP E 

IZ 
l 0 (J 0 I\ EM 
l () 7 0 R l:: M L 0 0 P F 0 R TH E 2 4 VAL U ES 0 F RO 
1 0 8 0 REM 
l 0 9 0 F 0 R RO= 2 TO 2 5 
!L OO X l = O : X4=30 
l l I 0 XS TA RT= X B ( 0 ) + RO * F NS I ND ( BA ( 0 ) ) 
11 20 Y S TART=YB (O)+ RO* F NCOSD(BA(O ) ) 
l I 3 0 REM 
11 40 REM COM PUTE T HE MINIM UM OF TH E FUNCT I ON 
1 1 5 0 REM 
l l Ii 0 TES T= 0 : REM F IND MIN IM UM 
11 70 GOS U B 1 5 00 : REM GOLDEN SECTI ON S EAR CH 
1 18 0 CEN T E R=X:CSSE=SSE 
11 90 PRINT "CENTE R" , CE NTER 
I 2 0 0 REM 
1 2 10 REM CO MPUTE THE LOWER POINT ON TH E CONTOUR 
1 220 REM 
1 230 X l = O 
1 240 X4=CEN TER 
1 250 TES T= CON TOUR : REM FIND THE POINT ON THE CON TOUR 
1 260 GOS UB 1500 : REM GOLDEN SECTIO N SEARCH 
1 2 7 0 LOWER=X:LSSE=SSE 

PRINT "LOWER ",LOWER 
REM 

1 280 
1 29 0 
1 3 0 0 
l 3 l 0 
1 320 
1 33 0 
1 34 0 
1 35 0 
13 60 
1 3 7 0 
1 380 
1 3 9 0 
1 4 00 
1 4 10 
14 20 
1 430 
1 4 40 
14 5 0 
14 6 0 
14 7 0 

RE M F I ND THE HI GH P 0 IN T 0 N THE C 0 N TO U R 
RE M 
X l=CENTER 
X4=50 
GO SUB 1500 : REM GOLDEN SECTIO N SEARC H 
UPPER= X : USSE=SSE 
P RINT "UPPER ",UPPER 
P RI N T US ING "fl 111111 fl • 1111" ; RO , L 0 WE R, C EN TE R , U P P E R, LS SE , C S S E , U S SE 
LP RI N T US ING " fl fl II 1111 • II ff " ; RO , L 0 WE R, C EN TE R , UPP E R , LS SE , CS S E , US S E 
NEXT RO 
IF CC=l 
IF CC=3 
I F CC=4 
I F CC= 2 
NEX T cc 
END 
REM 
REM 

THEN LP RI N T : LP RI N T 
THEN LPRINT:LPRINT 
TH EN L P R IN T CH R$ ( 1 2 ) 
THEN LP-RIN T CH R$ ( 12) 
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\4 8!l l\U\ ****** SU ll~:OUTI.Nl·:S ****** 
\ 1190 REM 
t 500 RUI CO LDEN SECT [O N SEARC H 
I 5 I 0 
1 520 
1 530 
I 5 /4 0 
l ') 5 0 
l 5 6 CJ 
l 'j 7 ll 

! 580 
! 590 
! 600 
l 6 l 0 
1620 
1630 
1 640 
16 5 0 
l 660 
l 670 
16 80 
l69 0 
l 7 00 
l 7 1 0 
17 20 
1730 
1740 
17 50 
1760 
177 0 
1780 
1790 
1800 
18 l 0 
1820 
1830 
18 40 
1 85 0 
1860 
1 8 70 
1880 
1890 
1900 
1910 
1920 
19 30 
19 40 
19 50 
1960 
1970 
1980 
1990 
2000 

Rl·:M 
X2 = Xl+ ALP ll A*(X4-Xl) 
X3 = Xl1-A LP11 A*(X4-X l) 
X= XJ : GOS UU l 8 l0:F X3=FX 
X= X2 :GOSUll l 8 LO : FX2=F X 
FOR I= l TO 2 'i 
IF FX3( = FX2 THEN GOS UB 1650 

EL SE GOSUB 1730 
[ F ABS( FX 2-FX3 ) ( EP SI LON THE N RETUIZN 
NEXT I 
REM LPRINT I,X2,F X2 , FX3 , X3 - X2 
RE TU RN 
REM 

REM 
REM 

REM ELUlINATE Xl 
REM 

LOW VARIABLE 

Xl = X2:X2=X3:FX2=FX3 
X3=X4 -ALPHA*(X4- Xl) 
X=X3 :GOSUB 1810:F X3=FX :RETURN 
REM 
REM 

REM 
REM ELIMINATE X4 
REM 

HIGH VARIABLE 

X4=X3 :X3=X2:FX3=FX2 
X2=X l+ALPHA*(X4-Xl) 
X=X2 :GOSUB 1810:FX2=FX:RETURN 
REM 
REM 

REM 
REM FUNCTIONAL EVALUATION 
REM 
SSE=O 
XEN D=XB(N)+X*FNSIND(BA(N)) 
YEND=YB(N)+X*FNCOSD(BA(N)) 
FOR I=O TO N 
XT(I)=(l-I/N)*XSTART+I/N*XEND 
YT(I)=(l-I/N)*YSTART+I/N*YEND 
REM 
RE M DETERMINE COMPUTED BEARING GIVEN ESTIMATE OF RO AND RN 
REM 
B(I)=FNATND((XT(I)-XB(I))/(YT(I)-YB(I))) 
REM 
REM COMPUTE SUM OF SQUARES OF ERROR 
REM 
ESQ=(BA(I)-B(I))A2:SSE=SSE+ESQ 
NEXT I 
REM PRINT "RO,X,SSE ",RO,X,SSE 
FX=ABS(SSE-TEST) 
RE TU RN 
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Points on a Contour Al g orithm 
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r! 1·:r-1 )\: * --~ *** * * * ** * * * * ** *** * * ** * * * ** ** * * * *)'i: ** f:: * * * * ~'i: * * * ** * * * ** )~ ** * * 
t O RHI '~ ~; 1,C O N IJ l' RO C RMI FOi~ TllES[ S - C C I H .J U L 8 'i 

I I REM * 
I 2 i< l·:M * 
I J l\ U I * 

PROCl{ At! l' IC: lff ORMS C O NJ UC/\ TI·: CR/\ lllE N T S l:: /\ RCll 

IH S K //(, 7 * 
* 
* 
* 

1 4 l\l::M **** ******* ********** * * ******* ********** ********** * ** **** * * 
I 5 REM 
z O I) I·: F lJ I\ L 1~: : ll I: F l N T I - K 
J () I) I ~I X B ( I ) ) , Y i} ( l 5 ) , X T ( I 5 ) , Y T ( l 5 ) , I\ ( I 5 ) , R ( I 5 ) , RN C ( I 5 ) 
3 5 I) U! X TA RC ( I 5 ) , YT J\ RC ( I 5 ) , ll J\ ( I 5 ) , BM ( l 5 ) , ll R ( l 5 ) 
11 O P L = 3 • I 4 l 5 9 : E: PS I L 0 N = • 0 0 0 0 l : C 0 UN T J\ f, I, = 0 : L 4 l N = I 0 
4 5 I N P U T " RN " , IUJ 

1, 6 I NPU T " RO STAR T ",RO S TART 
47 I NP UT "RO END ",ROEND 
50 DE F FNS I ND(X)=SI N( X*PI/1 8 0) 
60 DE F F NCOSD( X ) = CO S ( X*PI/180) 
8 0 DE F FNATND(X) = l80/PI*ATN(X) 
90 ALPHA = (J - SQR(5))/2 : PRINT "ALPHA " , ALPHA 
9 5 F 0 RM A Tl $ = " 1111 If 111111 • 1111 If If II ii • 111111 111111 • II ii II 111111 • II itil 

11 1111 • If 1111 If II " 
l 0 5 REM 
109 GO S UB 30000 REM READ INPUTS 
l l 0 REM 
20 0 IN= 14 
2 1 0 FOR IR=ROSTART TO RO END : RO= I R : L P RI N T : L P RI N T : LP RI N T " RO= : " ; RO : LP 
RINT " RN=:";RN 
21 5 LPRINT TIME$ 
2 2 0 L p RI N T II I TE RA TI 0 N 

S S E11 

RO RN DELTA RO DEL TA RN 

230 Ll=O:L4HOLD=L4IN : COUNT=O 
235 YY=RO : ZZ=RN 

: REM L4 NEEDED TO BE VARIED 

2 J 6 
2 J 7 
238 
240 
245 
246 
247 
250 
280 
284 
285 
286 
290 
292 
293 
294 
295 
296 
297 
298 
JOO 
J l 0 
3 20 

REM 
REM EVALUATE FUNCTION 
REM 
GOSUB 6000 : FX=ESS 
REM 
REM COMPUTE GRADIENT 
REM 
GOSUB 3000 
Y= RO: Z= RN 
REM 
REM PERFORM 15 ITERATIONS 
REM 
F 0 R K = l TO l 5 : p RI N T " K : II ; K 
REM 
REM DECREMENT LENGTH OF ACCELERATION LEG 
REM 
L4=L4HOLD/K:IF L4<2 THEN L4=2 
REM 
REM PERFORM TWO LEGS FOR EACH ITERATION 
REM 
F 0 R J = 1 TO 2 : P RI N T " J L 4 : " ; J , L 4 
REM SET LAMBDA ON ACCELERATION LEG 
Xl=Ll:X4=L4 
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l '.lll COS U I\ I 000 : IZH1 CO Lil U: S !·:c 'i l. ll N S 1:/\ RC !! 
1 ;, I) ru: M I' I{[ N T " x , y , F x y " , y y , ;'. i'. , I' x 2 

150 RI~ M 
:i :,:z RU1 COM PUTJ·: CO NJUC/\TI: r:R/\l)U:NT ON r'IRST LEC 

35!, Rl:M C<HJPUT E C:RA l)[E NT OU SECON D LEC 
·3 Sb 1: n1 
31,rJ u· J = l T ll EN C 0 SU ll I () 0 U 0 E LS 1: C 0 S UB l l 0 0 () 

J 7 ll N l~X T J 
] 7 4 REM 
]75 REM COM Pun: DI S TANCJ-: F ROM MINIM UM 
3 7 6 REM 
J80 Ol: L TARO =A HS( RNC(O )-Y): DEL Ti\RN = ABS( RNC( 14)- Z ) 
4 00 LP RINT USING FORMAT1$ ; K , Y , Z , DELTARO , DE LTAR N , ESS 
410 PRINT USING FORMAT 1$;K, Y , Z ,DELTARO ,D ELTA RN , ESS 
!, 1 4 REM 
4 1 5 REM EXIT IF SEARC H WITHIN LIMITS OF MIN I MUM 
4 16 REM 
420 I F DELTAR0( .0 6 AND DELTARN < . 06 TH EN 435 
4 2 l REM 
422 REM STA RT SEARCH OVER WITH SHOR TER ACCELERATION LEG IF SSE )2 0 
423 REM THIS USU ALLY MEAN S SEARC H I S IN NEGATIVE SPACE 
4 2 4 REH 
425 IF K) =2 AND ESS)20 THEN L4HOLD=L4HOLD/2:GOTO 23 5 
430 NEXT K 
435 LPRINT "FUNCTI ONA L EVALUATIONS: ";COUNT 
440 NEXT IR 
444 LPRINT:LPRINT:LPRINT TIME$ 
445 LPR IN T "TOTAL FUNCTIONAL EVALUATIONS: "; COUNTA LL 
450 END 
1000 REM 
1 00 l REH 
1002 REM *** ** * SUBROUTINES **** * * 
1003 REM 
101 9 REM 
10 20 RE M GOLDEN SECTION SEARCH 
10 2 1 REH 
1040 X2=Xl+ALPHA*(X4-Xl) 
1050 X3=X4-ALPHA*(X4-Xl) 
1060 X=XJ:GOSUB 1430:FX3=FX 
1090 X=X2:GOSUB 1430:FX2=F X 
l 1 2 0 F 0 R I J = l TO 2 0 
1125 PRINT IJ; 
1130 IF FXJ(=FX2 THEN GOSUB 1340 

ELSE GOSUB 1390 
1140 IF ABS (FX2-FX3) ( EPSILON THEN PRI NT :RETURN 
l l 5 0 NEXT IJ 
1330 REM LPRINT I, X2 ,FX2,F X3 ,X 3-X2 
1 33 3 PRINT 
l 3 3 5 RE TU RN 
l 3 3 6 REM 
1337 REM 
1340 REM ELIMINATE Xl 
1341 REM 
1345 Xl=X2:X2=XJ:FX2=FX3 
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I J 5 7 X J = X 1, - ;\ I, I' 11 ,\ * ( X 4 - X l ) 
i Jhll X= X]:COSLll\ ! 430 : FX3= F X : f~ ETUR N 

I ]70 Rl:M 

REM ! ·~ L [ M I f' ,\ T I: X 4 
RE 1' l 

I J 7L 
I 39 IJ 
l 3 9 I 
l JC) 2 
I 3 9 8 
1 40 0 
1 42 0 
I 4 2 l 
1430 
l 4 3 s 
14 4 0 
l !, 5 0 
1 460 
l 4 7 0 
14 80 
1490 
3000 
3010 
3 0 1 1 
3 0 1 2 
3013 
3014 
301 S 
3016 
3020 
3030 

X4 = X3 : XJ = X2 :F X] = FX2 
X2=X l +!\ Ll'llt\*( X4- Xl) 
X= X2 : GOSU !l 14JO : FX2 = FX:R ETURN 
REM 
REM 
RE M FUNCT I ON AL EVAL UA TIO N 
REM 
ZZ = Z+NEGGZ/ABS G*X 
YY=Y + NE CGY /A BSG * X 
REH P RI NT "YY, ZZ,ABSG ";YY,ZZ,ABSG 
GOSUB 6000 :FX=ESS:RETURN 
Rt: M 
REM 
REM COMPUTE GRADIENT 

REM 
G RO= 0 : G RN = 0 
FO R I = O TO 14 
GRO =GRO+(l-I/14)/R(I)*FNSIND(BA(O)- B(I))*(B(I)-BA(I)) 
GRN=GRN+I/14/R(I)*FNSIND(BA(l4)-B(I))*(B(I)-BA(I)) 
REM PRINT "3015 GRO,GRN ";GRO,GRN 
NEXT I 

G Y = G RO : G Z = G RN 
REM PRINT "GRADIENT,GY,GZ ";GY,GZ 

3100 REM 
J 200 REM 
4000 REM COMPUTE ABSOLUTE VALUE OF GRADIENT 
4001 REM 
4010 ABSG=SQR(GY*GY+GZ*GZ) 
4 0 2 0 REM PRINT "ABS GRADIENT " ; ABS G 
4030 REH 
4040 REM 
SOOO REM COMPUTE NEGATIVE GRADIENT 
5001 REM 
SOlO NEGGY=-GY:NEGGZ=-GZ 
S020 REM PRINT "NEGATIVE GRADIENT ";NEGGY,NEGGZ 
S 030 RE TU RN 
SOSO REM 
5 06 0 REM 
6000 REM FUNCTIONAL EVALUATION 
600S REM 
6010 ESS = O:COUNT=COUNT+l:COUNTALL=COUNTALL+l 
6012 XSTART=XB(O)+YY*FNSIND(BA(O)) 
6014 YSTART=YB(O)+YY*FNCOSD(BA(O)) 
6020 XEND=XB(IN)+ZZ*FNSIND(BA(IN)) 
6030 YEND=YB(IN)+ZZ*FNCOSD(BA(IN)) 
6 0 4 0 F 0 R I= 0 TO IN 
6050 XT(I)=(l-I/IN)*XSTART+I/IN*XEND 
6060 YT(I)=(l-I/IN)*YSTART+I/IN*YEND 
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(, () !i ') ll X = X T ( L ) - X I\ ( I ) : DY= Y T ( I) - Y II ( I ) 
(i () 7 () I\ ( L ) = F N i\ T N IJ ( D X / ll Y ) : R ( I ) = S <i R ( ll X * Ll X + ll \' * ll Y ) 
f, 0 7 1, Rt-:M 
(, 0 7 5 RI:: M C 0 i'1 l' lJ TE S U M 0 F SQ U 1\ JU·: S 0 I·' E IUW Ii 

6076 Rt::M 
(,l)80 El< = I\,\( I)-1\( I): l~S S =ES S+F:l{*l : R 

6 I) 9 U N I·: X T I 
(,tlJO REM PRINT "RO,X,SSE ",RO,X,ESS 
6 l 20 RETURN 
(1200 REM 
6300 REM 
tO OOO REM J LESS THAN 2 
10 001 RE M COMPUTE CONJUGATE GRADH:NT 

10002 RH! 
10010 OLDNEGGY=NEGGY:OLDNEGGZ=NEGGZ:OLDABSG=i\BSG:Y=YY:Z=ZZ 
10020 GOSUB 3000 : REM COMPUTE GRADIENT 
10030 ALPHAJ=ABSG*ABSG/OLDABSG/OLDABSG 
t0040 REM PRINT "ALPHA J ";ALPHAJ 
10050 NEGGY=NEGGY+ALPHAJ*OLDNEGGY:NEGGZ = NEGGZ+ALPHAJ*OLDNEGGZ 

1 0 0 6 0 RE M P RI N T " N E W G RAD I E N T " ; N E G G Y , N E G G Z 
1 0 0 7 0 RE TU RN 
1008 0 REM 
1009 0 REM 
11000 REM J EQUAL TO 2 
11001 REM COMPUTE GRADIENT 

11010 OLDNEGGY=NEGGY:OLDNEGGZ=NEGGZ:OLDABSG=ABSG:Y=YY:Z=ZZ 
11020 GOSUB 3000 : REM COMPUTE GRADIENT 
1 1 0 7 0 RE TU RN 
111 00 REM 
1 1 1 1 0 REM 
30000 REM INPUT DATA FROM FILE 
30005 REM 
30010 INPUT "ENTER DATA FILE ",FILE$ 
30015 FILE$=FILE$+".ASC" 
30020 OPEN "I" ,ltl ,FILE$ 
30030 INPUT #l,RUNNO$,SPEEDBLUE,MANEUVER,SPEEDTARGET,COURSETARGET,TI 
MESTEP,RO,BEARTOTARG 
3 0 0 3 2 F 0 R I= 0 TO 1 4 
30034 INPUT #l,XB(I),YB(I),XTARG(I),YTARG(I),BM(I),BR(I),BA(I),RNG(I 
) 
30036 NEXT I 
30040 LPRINT DATE$:LPRINT "RUN NUMBER: ";RUNNO$:LPRINT 
30045 RETURN: REM &&&&&&&&&&&&&&&&&&&&&& 

30046 REM 
30047 REM ALL INPUTS CAN BE PRINTED AS AN OPTION 
30048 REM 

LPRINT "SPEED BLUE (NMI): ";SPEEDBLUE 
REM LP RIN T "MANEUVER: ";MANEUVER 
LPRINT "SPEED TARGET: ";SPEEDTARGET 
IF COURSETARGET=20 THEN LPRINT "COURSE TARGET: 
IF COURSETARGET=-20 THEN LPRINT "COURSE TARGET: 
LPRINT "TIME STEP (MIN): ";TIMESTEP 

LP RI N T " RO ( NM I ) : " ; RO 

11 0" 
07 O" 

30050 
30060 
30070 
30080 
30090 
30100 
3 0 11 0 
30120 LPRINT "BEARING TO TARGET: ";BEARTOTARG:LPRINT:LPRINT 
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\ u l J (} 
A " 
J 0 l 4 0 L I' I{ [ i'J T " 
30 150 l'R[NT " 
30 160 Ll'RINT" 

Ji)l70 PRINT " 
RA NG 1·:" 
3 0 I 8 0 L P IZ [tJT " 

RAtJ C !: " 
30 190 l'!UNT 
30200 LPRI NT 

p j{ I N T II 

TI~ 1\ CK I~ R 

TI( ACK I·: R 

x I\ y I\ 

' x I\ yg 

3 O 2 l 0 F 0 R [ = 0 TO l 4 

TA RC I: T 
TA RC 1: T 

XT YT 

XT YT 

MEl\S IJRE Jl ll l\TA " 

;\ R [ Tll I·! I:: U\ T [ V I: TR U I~ " 
ARITll Rf:LATI V I: TRUC ' 

IH: i\ f( l NC I\ EA R [NC I\ I: t\ R l NC 

I\ I: A la NC B EA R I tJ C I\ EI\ RI NC 

3 O 2 3 0 PRI NT US INC " ii ii II • Ii II " ; X R ( I) , YB ( I) , X TA RC ( [ ) , Y TA RC ( [) , BM ( I) , BR( 
I), BA( I), RNG( I) 

3 0 2 4 0 LP RI NT US INC " ill/II • I.Ill " ; X B ( I) , YB ( I) , X TA RC ( I) , Y TA RC ( I) , BM ( I) , BR 
( I) , l3 A ( I) , RN G ( I) 
3 0 2 5 0 NEXT I 
30260 C LOSE 
3 0 2 7 0 LP RI N T CH R$ ( 1 2 ) 
3 0 3 0 0 RE TU RN 
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APPENDIX C 

Algorithm to Search from Ten Points 

.. 
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REN **** ***** * * * ****** * ** ** ***** ******** *** * **** * * ********* * **** 
I( l~M '' * 

\ () !ZI~ M * Till.R D PR OG RAM FOR Tlll : S [S - C C LI I I) 2 0 JU L 85 DI SK 1168 * 
\ I 1a:M "' PERFOR MS 1 5 ITERATl O NS F O R l\[C I \ AND LO W SEA RC ll * 
\ .~ RE M * * 
1 5 !Z EM **** k************ *********** ******* **** * ** ****************** 
2 () ll le F ll II L I·: : IJ E F IN T I - K 
3 tl J)[M XI\ ( 1 5 ), YB( 1 5 ) ,XT( 1 5 ), YT ( l )) , II( 1 5 ) , R( 1 5 ) , RNC ( 1 5 ) 
!1 0 DIM XTA RC (l5), YTARG(l 5 ), BA( l 5 ),IH1( 1 5 ) ,llR ( l 5 ) 
50 l'[=3 .l 4 1 5 9 :E PS [L ON= . 0 000l: COUNTALL=O: L 4IN = l 0 
6 0 I NPUT " O U T P UT FIL E NAME ", OUT FI LE $ :0UTFI L E$= 0UT FILE $ +". ASC " 
70 O P E N "O " , 11 2 , OUT F I LE S 
8 0 REM 
9 0 REM PA I RS OF STA R T ING POI N T S FOR LOW Sl~ A R CI! 

1 00 REM 
!L O DA TA l , 2 ,3,1, 2 ,1, 3 , 2 ,3,1 
1 20 DA TA 1, 2 ,3, 2 ,1,3,1,3, 2 , 4 
l 3 0 RE M 
1 40 RE M PAIRS O F S TA RTING POINT S FO R H IG H S EAR C H 
l 5 0 RE M 
1 60 DA TA 1 5 , 14, 13, 15, 15, 14, 14, 13, 13, 1 6 
l 7 0 DA TA l 5 , l 4 , l 3 , 14 , 1 3 , l 5 , l 3 , 1 4 , l 5 , 1 6 
1 80 INPU T "E NTER HIGH OR LOW SEA RCH (ll OR L )",HL $ 
19 0 IF HL $ = "H" THE N RESTOR E 1 60 ELSE RES TOR E 11 0 
2 00 FOR I=l TO 10: READ RO(I): P RINT RO (l):NEXT 
2 10 FOR I = l TO 10: READ RN(I):PRINT RN(I): NEXT 
220 DEF F NC O S D(X)=COS(X*PI/180) 
2 30 DEF FN S I ND(X)=SIN(X*PI/1 8 0) 
2 40 DE F FNATND(X)=l80/PI*ATN(X) 
2 5 0 ALPHA=(3-SQR(S))/2:PRINT "ALPHA ", A LPHA 
2 6 0 F O RM AT 1 $ = " fl Ill! II !Ill • fl II ft It/! II • 111111 It/I I! • 11/f II 

II 1111 • 11111! 11 11 " 
270 GOSUB 30000 :REM INPUT DATA FROM DI SK FILE 
2 80 IN=l4:REM RN=3 
2 90 FOR IR= l TO 10 
300 RO=RO(IR):RN=RN(IR):PRINT 112,RO,RN:FL AG=O 

111111 • Ill! II 

3 10 LPRINT:LPRINT:LPRINT "TRIAL: ";IR:LPRINT "RO = : ";RO:LPRINT "RN=: 
II; RN 

320 LPRINT TIMES 
330 LPRINT "ITERATION RO RN DEL TA RO DEL TA RN 

S SE" 
340 Ll=O:L4HOLD=L4IN:COUNT=0 :REM L4 NEEDED TO BE VARIED 
350 YY=RO: Z Z=RN 
360 GOSUB 6000:FX =ES S 
370 GOSU B 3000 
3 8 0 Y= RO: Z= RN 
3 9 0 F 0 R K = 1 TO 1 5 : P RI N T " K : " ; K 
400 L4=L4HOLD/K:IF L4<2 THEN L4=2 
4 1 0 F 0 R J = 1 TO 2 : P RI N T " J L 4 : " ; J , L 4 
420 REM SET LAMBDA ON ACCELERATION LEG 
430 Xl=Ll:X4=L4 
440 GOSUB 1000 
450 REM PRINT "X,Y,FXY ",YY,ZZ,FX2 
460 IF J=l THEN GO S UB 10000 ELSE GOSUB 11000 
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11 70 NEXT , I 

4 8 0 D I:: L TA R 0 = 1\ ll S ( I\ NC ( lJ ) - Y ) : D E L TA RN= A ll S ( I< NC ( l 1, ) - Z ) 

11 9 0 LL' R l NT US [NG L·' 0 RM AT I $ ; K , Y , Z , D ELTA RO , ll EL TARN , ES S 
5 0 () P R I N T LI S I N C F lJ RM A T l $ ; K , Y , i'. , ll E L TA 1\0 , LJ E I. TA RN , I ~ S S 
5 l ll REM 
520 Rl~ M PRINT Rr~SIJLTS OF ITERA TION TO !) [ SK r'ILE 
530 REM 

5 L+ 0 P R I N T I/ 2 , U S I N C F 0 RM A T l $ ; K , Y , i'. , D E \, TA R 0 , I l I·: L TA RN , E S S 
5 5 0 RE~\ 

560 REM P RINT FLA G lS SO LUTION IS REACllEll AT THIS ITE l\ATl ON 
5 7 0 REM 
580 IF DELTAR0(.()6 AND DELTARN < . 06 AND FLAG = O THEU LPRUlT " SOLUTION 
": F L AG= ! 

590 IF K)=2 AND ESS)20 T llEN L4 l!OLD = L41lOLD/2 : GOTO 350 
600 NEX T K 
6 1 0 L PRINT "FUN CTIONA L EVA LUA TIONS: "; COUNT 
620 NEX T IR 
630 LPRINT:LPRINT:LPRINT TlME $ 
6 4 0 L P RI N T " TO TA L F U N C T I 0 N AL EV AL U A TI 0 N S : " ; C 0 U N TA L L 

650 EN D 
1000 RE M 
1001 REM 
1 002 REM ****** SUBROU TINES ****** 
100 3 REM 
1 0 19 REM 
10 20 REM GOLDEN SEC TION SEARCH 
l 0 2 1 REM 
104 0 X2=Xl+ALPHA*(X4-Xl) 
10 50 X3 = X4 - ALPHA*(X4 - Xl) 

1060 X=X3 : GOSUB 1430:FX3=FX 
1090 X=X2:GOSUB 1430:FX2=FX 
1 1 2 0 F 0 R I J = 1 TO 2 0 
11 25 PRINT IJ; 
1130 IF FX3 < =FX2 THEN GOSUB 1 340 

ELSE GOSUB 1 390 
1140 IF ABS(FX2-FX3)<EPSILON THEN PRINT :R ETURN 
11 50 NEXT IJ 
13 30 REM LPRINT I,X2,FX 2 ,FX3, X3 -X2 
133 3 PRINT 
133 5 RE TU RN 
133 6 REM 
1337 REM 
1340 REM ELIMINATE X l 
1341 REM 

1345 X l= X2:X2=X3 : FX2 =F X3 
1357 X3=X4 - ALPHA*(X4 - Xl) 

136 0 X=X3:GOSUB 14 30:FX3=FX:RETURN 
1370 REM 
l 3 7 2 REM 
1 3 9 0 REM EL I M I N A T E X 4 
l 39 1 REM 
1392 X4 =X 3:X3=X2:FX3=FX2 
139 8 X2 = X l+ ALPHA* (X4- X l) 
1400 X=X2:GOSUB 1430:FX2=FX:RETURN 
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J l, 2 0 REM 
\ L12 l REM 
1430 RE M FUNCTIONAL EVALU AT IO N 
I t, 3 S 
1440 
1 4SO 
l 4 6 0 
l 4 7 0 
l 4 80 
14 90 
3000 
30 10 
3 0 l l 
30 1 2 
30 13 
3014 
301S 
3016 
3020 
3030 
3100 
3200 
4000 
4001 
4010 
4020 
4030 
4040 
sooo 
SOOl 
SOlO 
S020 
S030 
SOSO 
S060 
6000 
600S 
6010 
6012 
6014 
6020 
6030 
6040 
60SO 
6060 
606S 
6070 
6074 
607S 
6076 
6080 
6090 
6100 
6120 
6200 

REM 
ZZ=Z+NEGG Z/A BSG*X 
YY=Y+NEGGY/ARSG* X 
REM P RI N T " Y Y , Z Z , A I) S G " ; Y Y , Z Z , A ll S C 
GOS UB 6000 : FX = l::SS : RETUl\N 
REM 
REM 
RE M CO MPUTE GRADIENT 

REM 
G RO=O: G RN =O 
FOR I =O TO 14 
C RO= C RO+ ( l - I/ l 4 ) / R( I) * F NS IND ( BA ( 0) - B ( I) ) * ( B ( I) - BA ( I) ) 
C RN= G RN+ I/ l 4 / R( I) * F NS IND ( BA ( l 4 ) - B ( I) ) * ( B ( I) - BA ( I) ) 
REM PRINT "301S GRO , GRN ";GRO, GRN 
NEXT I 

GY=G RO: GZ=G RN 
REM PRINT "GRADIEN T , GY ,G Z ";GY,G Z 
REM 
REM 
REM COMPUTE ABS VALUE OF GRADIENT 
REM 
ABSG=SQR(GY*GY+GZ* GZ ) 
REM PRINT "ABS GRADIENT " ABSG 
REM 
REM 
REM COMPUTE NEGATIVE GRADIENT 
REM 
NEGGY=-GY:NEGGZ=-G Z 
REM PRINT "NEGATIVE GRADIENT "; NEGGY ,NEGGZ 
RE TURN 
REM 
REM 
REM FUNCTIONAL EVALUATION 
REM 
ESS=O:COUNT=COUNT+l:COUNTALL=COUNTALL+l 
XSTART=XB(O)+YY*FNSIND(BA(O)) 
YSTART=YB(O)+YY*FNCOSD(BA(O)) 
XEND=XB(IN)+ZZ*FNSIND(BA(IN)) 
YEND=YB(IN)+ZZ*FNCOSD(BA(IN)) 
FOR I=O TO IN 
XT(I)=(l-1/IN)*XSTART+I/IN*XEND 
YT(I)=(l-1/IN)*YSTART+I/IN*YEND 
DX=XT(I)-XB(I):DY=YT(I)-YB(I) 
B(I)=FNATND(DX/DY):R(I) =S QR(DX*DX+DY*DY) 
REM 
REM COMPUTE SUM OF SQUARES OF ERROR 
REM 
ER=BA( 1)-B( I): ESS=ESS+ER*ER 
NEXT I 
REM PRINT "RO,X,SSE ",RO,X,ESS 
RE TU RN 
REM 
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6300 REM 
l 00 0 0 RE M J LE SS Tl!AN 2 
!0001 RE M CO MPU TI:: CONJUGATE GRA DIENT 
I 0 0 02 REM 
10 0 10 OLD NEGCY=NEGCY:O LD NECCZ = NEG GZ : OL DABSC=ABSG:Y = YY:Z =ZZ 
10020 GOSUB 3000 : REM COMP U TE G RADI ENT 
10030 ALP HAJ =ABSC*ABSG/O LD ABSG/O LD ABS G 
10040 REM PRIN T " ALP HA J "; A L P l! AJ 
1 00 50 NECC Y= NECGY +ALP l! AJ*OLDN EC CY:NE CCZ = NEC GZ+ ALP HAJ*OLD NEGCZ 
1 00 60 REM PRI NT " NE W GRADI EN T ";NE GGY , NEGCZ 
l 0 0 7 0 RE TU RN 
l 008 0 REM 
1 00 90 REM 
l l 00 0 RE M J EQU AL TO 2 
11001 REM COMPUT C: GRA DIE N T 
11 0 10 OLD NEC GY= NECG Y:OLDNE CCZ= NEGC Z : OLDAB SG= A BSC : Y= YY : Z= ZZ 
11 02 0 GOS U B 3 000 : REM COMP U T E GRADI ENT 
1 1 0 7 0 RE TU RN 
11l0 0 RE M 
1 1 1 1 0 REM 
3 0000 REM INPUT DATA F ROM FILE 
3 000 5 REM 
3 001 0 I NPUT "E N TER DA TA FILE ",FILE$ 
3 0015 F IL E$=F ILE $+".ASC" 
3 00 2 0 OPEN "I", /l l,FILE$ 
30030 INPUT #1 ,RUNNO $ ,SPEEDBLU E ,MANEUV E R,SPEEDTA RC ET,COURSETARCET,TI 
M ES TEP , RO , BE AR TO TA RC 
3 0 0 3 2 F 0 R I = 0 TO 1 4 
30034 IN PUT 11 1, XB(I) ,YB(I) ,XTARG(I) ,YTARG(I) ,BM(I) ,BR(I) ,BA(I) ,RNG(I 
) 
30036 NE X T I 
3 0040 LPRI NT DATE $ :LPRINT "RUN NUMBER: ";RUNNO$:LPRINT 
30045 RETURN: REM&&&&&&&&&&&&&&&&&&&&&& 
3 0046 REM 
3 0 0 47 REM ALL INPUTS CAN BE PRINTED AS AN OPTION 
3 004 8 REM 

LP RINT "SPEE D BLUE ( NMI): "; SPEEDBLUE 
REM LPRINT "MANEUVER: ";MANEUVER 
LPRINT "SPEED TARGET: ";SPEEDTARGET 
IF COURSETARGET=20 THEN LPRINT "COURSE TARGET: 
IF COURSETARGET=-20 THEN LPRINT "COURSE TARGET: 
LPRINT "TIME STEP (HIN): ";TIMES TEP 
L p RI N T II RO ( NM I ) : II ; RO 

110" 
070" 

3 0 050 
3 0060 
30070 
30080 
30090 
3 0100 
3 0 110 
30120 
3 0130 

LPRINT "BEARING TO TARGET: ";BEARTOTARG:LPRINT:LPRINT 
PRINT II MEASURED 

A" 

3 01 4 0 L PRINT" MEASURED DATA" 

DA T 

30150 PRINT II TRACKER TARGET ARI TH RELATIVE TRUE" 
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6 J OO REM 
10000 REM J LE SS THAN 2 
tOOOl REM COMPUTE CONJUGATE GRADIENT 
10002 REM 
10010 OLDNEGGY = N EGG Y:OLDNE GGZ= NEGG Z :OLD A BSG = AB SG :Y=Y Y : Z=ZZ 
1 0 020 GO SUB 3000 : REM COMPUTE GRADI ENT 
10030 ALPHAJ=AB SG *ABSG/OLDAB SG/OLD A BSG 
10040 REM PRINT "ALPHA J ";ALPHAJ 
10050 NEGGY=NEG GY+ALPHAJ*OLDNEGGY:N EG GZ= NEGGZ+ALPl!AJ*OLDNEGGZ 
10060 REM PRINT "NEW GRADIENT "; N EG GY, NEGGZ 
l 0 0 7 0 RE TU RN 
10080 REM 
10090 REM 
11000 REM J EQUAL TO 2 
11001 REM COMPUTE GRADIENT 
11010 OLDNEGGY = NEGGY:OLDNEGG Z= NEGG Z :OLDABSG = ABS G :Y=YY:Z= ZZ 
11020 GOSUB 3000 : REM COMPUTE GRADIENT 
1 1 0 7 0 RE TU RN 
11100 REM 
11110 REM 
30000 REM INPUT DATA FROM FILE 
30005 REM 
30010 INPUT "ENTER DATA FILE ",FILE$ 
30015 FILE$=FILE$+".ASC" 
30020 OPEN "I" ,/fl ,FILE$ 
30030 INPUT #l,RUNNO$,SPEEDBLUE,MANEUVER,SPEEDTARGET,COURSETARGET,TI 
MES TEP, RO, BEAR TO TARG 
3 0 0 3 2 F 0 R I= 0 TO 1 4 
30034 INPUT If 1 ,XB( I), YB( I) ,XTARG( I), YTARG( I), BM( I) ,BR( I) ,BA( I), RNG( I 
) 
30036 NEXT I 
30040 LPRINT DATE$:LPRINT "RUN NUMBER: ";RUNNO$:LPRINT 
30045 RETURN: REM &&&&&&&&&&&&&&&&&&&&&& 

30046 REM 
30047 REM ALL INPUTS CAN BE PRINTED AS AN OPTION 
30048 REM 

LPRINT "SPEED BLUE (NMI): ";SPEEDBLUE 
REM LPRINT "MANEUVER: ";MANEUVER 
LPRINT "SPEED TARGET: ";SPEEDTARGET 
IF COURSETARGET=20 THEN LPRINT "COURSE TARGET: 
IF COURSETARGET=-20 THEN LPRINT "CU-URSE TARGET: 
LP RIN T "TIME STEP (MIN): ";TIMES TEP 
LP RI NT " RO ( NM I) : " ; RO 

110" 
07 O" 

30050 
30060 
30070 
30080 
30090 
30100 
30110 
30120 
30130 

LPRINT "BEARING TO TARGET: ";BEARTOTARG:LPRINT:LPRINT 
PRINT " MEASURED 

A" 

30140 LPRINT" MEASURED DATA" 

DAT 

3 0 1 5 0 P RI N T " TRACK E R TARGET 
TARGET 

ARI TH RELATIVE TRUE" 
30160 LPRINT" TRACKER 
30170 PRINT " XB YB 
RANGE" 
30180 LPRINT" XB 

RANGE" 
30190 PRINT 

YB 

ARI TH RELATIVE TRUE" 
XT YT BEARING BEARING BEARING 

XT YT BEARING BEARING BEARING 
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30200 LPRINT 
3 0 2 I 0 F 0 R I = 0 TO l 4 
3 0 2 3 0 PRINT US LNG " I! 1111 • II II " ; X B ( l) , YB ( I) , X TA RC ( l) , Y TA KG ( [) , BM ( I) , 11 R( 
I), BA( I), RNG( I) 

30240 LPRINT US ING " 111111 . 1111 "; XB(I) , Y8(I),XTARC(I),YTARG(I) , llM(I),BR 
( I) , 13 A ( I) , RN G ( I) 

30250 NEXT I 
30260 CLOSE 
30270 LPRLNT CHR$( 1 2) 
30300 RETURN 
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I REM ***** * ***************** * *********************************** 
1 0 REM* FOURTH PROGRAM FOR THl-:SIS - STAT 23 AUC S5 DISK //6S * 

2 0 REM * * 
JO REM * 
4 0 REM * 
5 0 REM * 
6 0 REM * 
70 l\EM * 

S IMULATED CONJUGATF: GRA Dil': NT SEARCll 

PROGRAM COLLECTS STATIST[CS ON EFFECTIVENESS OF 
SIMULATED CONJUGATE GRADIENT SEARCH 

* 
* 
* 
* 
* 

75 REM***** **** *********** ** * **** ******************************** 
SO DIM K2( 15) , Y2( 1 5) , Z2( 1 5 ) ,DR02( 1 5) , DRN2( 1 5 ) , SSE2( 1 5) 
90 DIM COUNTER l( 16) 
I 0 0 DIM K l ( l 5 ) , Y 1 ( l 5 ) , Z 1 ( l 5 ) , D RO I ( l 5 ) , D RN l ( I 5 ) , SS E l ( l 5 ) 
l l 0 REM 
1 20 INPUT "E N TER TEST DISTANCE ",TEST DI S Tl RE M STOPPIN G DISTANCE 

FOR SEARC H 
1 30 INPUT " EN TER CONTOUR 

- 14 
II' CONTOUR REM GEOMETRY NUMBER l 

l 4 0 REM 
150 LP RI NT II TEST DISTANCE l II' TES TD IS Tl 
l 6 0 L p RI N T II c 0 N TO u R II ' c 0 N TO u R 
170 FIRSTFILE$=FIRSTFILE$+" .ASC": SECONDFILE$=SECONDFILE$+" .A SC " 
l SO COUNT=O :BADSTOP=O:MI SSE D=O 
1 9 0 REM 
200 REM INPUT FIL ES NAMES FOR EACH CONTOUR AND TRUE MINIMUM OF F UNCT 
ION 
2 l 0 REM 
220 IF COUNTOUR(l3 THEN ROTRUE=9 
230 IF CONTOUR=! THEN RNTRUE=7.73:FF $= "B:OUTPUT1L":SF $= "B:OUTPUT 1H" 
240 IF CONTOUR=2 THEN RNTRUE=l2.2:FF$="B:OUTPUT2L":SF$="B:OUTPUT2 H" 
250 IF CONTOUR=3 THEN RNTRUE=ll.ll:FF$="B:OUTPUT3L":SF$="B:OUTPUT3H" 
260 IF CONTOUR=4 THEN RNTRUE=l4.l:FF$="B:OUTPUT4L":SF$="B:OUTPUT4H" 
270 IF CONTOUR=5 THEN RNTRUE=3.97:FF$="B:OUTPUT5L":SF$="B:OUTPUT5H" 
2SO IF CONTOUR=6 THEN RNTRUE=9.55:FF$="B:OUTPUT6L":SF$="B:OUTPUT6H" 
290 IF CONTOUR=7 THEN RNTRUE=6.65:FF$="B:OUTPUT7L":SF$="B:OUTPUT7H" 
J 00 IF CON TOU R=S THEN RNTRUE=9. 4 2: FF$=" B: OUTPUTS L": SF$=" B: OUTPUTS H" 
3 10 IF CONTOUR=9 THEN RNTRUE=S.3:FF$="B:OUTPUT9L":SF$="B:OUTPUT9H" 
J 20 IF CONTOUR= 10 THEN RN TRUE= 10. 32: FF$=" B: OU TP TlOL": SF$=" B: OU TP Tl OH 

3 3 0 I F C 0 N TO U R = 1 1 THEN RN TR U E = 5 • 6 8 : F F $ = " B : 0 U TP T 1 1 L" : S F $ = " B : 0 U TP T 1 1 H" 
340 IF CONTOUR=l2 THEN RNTRUE=S.36:FF$="~:0UTPT12L":SF$="B:OUTPT12H" 

350 I F CONTOUR=l3 THEN RO TRUE= 4: RNTRUE=4 .67: FF$="B :OUTPT13L": SF$="B 
: OU TP T l 3 H" 
360 IF CONTOUR=l4 THEN ROTRUE= 4:RNTRUE=8.22:FF$="B:OUTPT14L":SF$="B 
: OUTPT 14H" 
370 FIRSTFILE$=FF$+" .ASC": SECONDFILE$=SF$+" .ASC" 
380 LPRINT II FIRST FILE II ,FIRSTFILE$ 
390 LPRINT II SECOND FILE II' SECONDFILE $ 
4 00 FI RS TF I LE$= FF$+". ASC": S ECONDF ILE$= SF$+". ASC" 
410 LPRINT 
4 20 LP RIN T " NUMBER DELTA 
DELTA DELTA" 
430 LPRINT" TRIAL ITERATIONS RN 1 

RN2 R02 II 
440 OPEN "I" ,Ill ,FIRSTFILE$ 
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t, 5 0 I N P U T II 1 , D D A TE $ , N N A M E $ _ 
460 PRINT DDATE$,NNAME$ 
t, 7 0 REM 
480 Rlrn LOOP FOR LOW SEARCH FILE 
4 9 0 REM 
5 0 0 F 0 R I 0 N E = l TO l 0 
5 l 0 INPUT II l , RO l , RN 1 
520 PRINT ROl,RNl 
5 3 0 F 0 R J = l TO 1 5 
5 40 REM 
550 REM READ RESULTS OF 15 ITERATIONS 
560 REM 
570 INPUT 111,Kl(J) ,Yl(J) ,Zl(J) ,DROl(J) ,DRNl(J) ,SSEl(J) 
580 REM PRINT Kl(J) ;Yl(J) ,Zl(J) ,DROl(J) ,DRNl(J) ,SSEl(J) 
590 NEXT J 
600 OPEN "I" ,112 ,SECONDFILE$ 
610 INPUT fl2,DDDATE$,NNAME$ 
620 PRINT DDDATE$,NNAME$ 
6 30 REM 
640 REM LOOP FOR HIGH SEARCH FILE 
6 50 REM 
6 6 0 F 0 R I T W 0 = 1 TO 1 0 
670 COUNT=COUNT+l 
6 8 0 IN P U T II 2 , RO 2 , RN 2 
6 9 0 PRINT RO 2 , RN 2 
7 00 REM 
710 REM READ RESULTS OF 15 ITERATIONS 
7 20 REM 
7 3 0 F 0 R J = 1 TO 1 5 
7 4 0 IN PU T II 2 , K 2 ( J ) , Y 2 ( J ) , Z 2 ( J ) , D RO 2 ( J ) , D RN 2 ( J ) , SSE 2 ( J ) 
7 5 0 REM PRINT K2 ( J) ; Y 2 ( J) , Z 2 ( J) , D RO 2 ( J) , D RN 2 ( J) , SSE 2 ( J) 
760 NEXT J 
770 REM FIRST TEST 
780 PRINT "COUNT: ";COUNT 
7 9 0 F 0 R J = 1 TO 1 5 
800 REM 
810 REM COMPUTE DISTANCE BETWEEN SEARCHES AT EACH ITERATION 
8 20 REM 
830 DISTANCE=SQR((Y2(J)-Yl(J))-2+(Z2(J)-Zl(J))-2) 
840 REM PRINT J;DISTANCE,DRN2(J) ,DRNl(J) ,DR02(J) ,DROl(J) 
850 REM PRINT J;DISTANCE 
860 IF DISTANCE<=TESTDISTl THEN PRINT" OK",J,DISTANCE:COUNTERl(J) 
=COUNTERl(J)+l :GOSUB 1040:GOTO 890: REM PRINT STATUS AT TIME SEARCH 
ES STOP 
870 NEXT J 
880 GOSUB 1290 REM SEARCHES DO NOT CONVERGE IN 15 ITERATIONS 
8 9 0 REM 
900 NEXT ITWO 
9 1 0 CLOSE fl 2 
9 20 NEXT IONE 
930 CLOSE 
9 40 REM 
950 REM PRINT SUMMARY STATISTICS 
9 6 0 REM 
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9 7 0 GO SU8 141 .0 
9 8 0 L l' RI N T CI l R$ ( I 2 ) 
990 EN D 
! 0 0 0 Rt:M 
l 0 l 0 l( EM 

1 0 2 0 REM * **** * SU J\ROU TINES ****** 
1 03 0 REM 
1 040 REM DI STANC E F ROM OPTI MUM AT SO LU TION 
1 050 RE M S t: ARC HES CONVERG ED TO S TOPPING CRITE RION 
I 060 REN 1. COMPUT E ERROR 
1070 REM 2 . DET ERMINE IF S O LU TION ACCEP TAB LE 
1 08 0 RE M 3 . S E T FLAGS IF S TOP PE D TOO S OON 
1 0 9 0 REM 4. PRINT RE SULT S 
l LOO REM 
I 110 OKL=O:OKH = O:SOLUTION = O 
1 l 2 0 X D I S TL = D RN l ( J ) - RN T RU E 
11 3 0 YDI S TL=DROl(J)-ROTRUE 
I l 4 0 X DI S TH= D RN 2 ( J) - RN TRUE 
l LSO YDI S TH= D R0 2 (J)-ROTRU E 
l l 6 0 LP RI NT C 0 UN T, J , D RN 1 ( J) , D RO l ( J ) , D RN 2 ( J) , D RO 2 ( J ) 
1170 PRINT COUNT,J,XDISTL,YDISTL, XDI S TH,YDI S TH 
l l 8 0 P RI N T C 0 UN T , J , D RN 1 ( J ) , D RN 2 ( J ) , D RO 1 ( J ) , D RO 2 ( J ) 
l l 9 0 IF SS E 1 ( J ) < S SE 2 ( J ) THEN D 1 = D RO 1 ( J ) : D 2 = D RN 1 ( J ) 

ELSE D 1 = D RO 2 ( J) : D 2 = D RN 2 ( J) 
1 20 0 IF DROl(J) ( =.06 AND DRNl(J) < =. 06 TH E N PRI N T "SOLUTION ON LOW": 
OK L= 1 
1 2 10 IF D R02(J)(=.06 AND DRN2(J) (= .0 6 THE N PRI NT "SOLUTION ON HIGH" 
: OK H= l 
1220 IF Dl<=.06 AND D2<=.06 THEN 
1 2 30 IF SOLUTION=O THEN LPRINT " 

PRINT "SOLUTION II :SOLUTION=! 
NO SOLUTION": BADS TOP= BADS TO 

P+ l 
1 2 40 PRINT "Dl,D2,SSE1,SSE2 ";Dl,D2, S SEl(J),SSE2(J) 
1 2 5 0 'RE TU RN 
1260 REM 
1 2 70 REM 
1 2 80 REM 
1 2 90 REM SEARCHES DO NOT CONVERGE TO S TOPPING CRITERION IN 15 ITE 
RA TIONS 
1 3 00 REM 
1 3 10 J=lS:SOLUTION=O 
13 2 0 COUNTER1(16)=COUNTER1(16)+1 
l 3 3 0 LP RI NT C 0 UN T, J , D RN 1 ( J) , D RO 1 ( J) , D RN 2 ( J) , D RO 2 ( J) , "N 0 
1340 PRINT COUNT,J ,DRNl(J) ,DROl(J) ,DRN2(J) ,DR02(J) ,"NO 
1 3 50 IF DROl(J) < =.06 AND DRNl(J) < =.06 THEN LPRINT" 
T I O N ON LOW": SOLUTION= 1 
1 36 0 I F DR02(J) < =.06 AND DRN2(J) ( =.06 THEN LPRINT" 
TI O N ON HIGH": SOLUTION= 1 
1 3 70 IF S OLUTION=! THEN MISSED=MISSED+l 
1 3 8 0 RE T U RN 
l 3 9 0 REM 
140 0 RE M 
1410 REM PRINT SUMMARY RESULTS OF 100 TRIAL S 
14 20 REM 
1 4 30 LPRINT:PRINT 

134 

SOL U TION" 
SOLUTION" 

SOLU 

SOLU 



14 40 LPRINT " NUMl'\ER NU MBIO R" 
1 450 LPRINT "I TERATIONS TRAI L S " 

1 4 6 0 F 0 R J = 1 TO l 6 
1470 PRINT J,COUNTER!(J) 
1 480 LPRINT J, COUN TERl(J) 
1 490 NEXT J 
1 500 LPRINT:PRI NT 
1 5 10 PERCEN TSUC CESS= l-(BAD STOP + COUNTr:R l (l6))/100 
1 520 LP RINT " PERCENT SUC CE SS ";PERCE NTSU CCESS 
1 530 REM :COMPUTE AVE RAGE NUMBER OF ITERAT ION S 
1 540 TOTAL = O:FO R J = l TO 1 5:TOTAL = TOTAL+COUNTERl(J)*J:NEXT J 
1 550 TOTAL = TOTAL+l5*COUNTE R1(16): AVE RAGE = TOTAL/ 100 
1 560 LPRINT USING"\ \ll/1 . llil ";"A VERAGE II 
I T E RATIONS" ,AVERAGE 

1 570 LPRINT:LPRINT "DID NOT RE COG NIZ E SOLUTION " ;MISSED 
1 58 0 LP RINT :LP RINT " STOPPED TOO EARLY "; BADSTOP 
l 5 9 0 RE TU RN 
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I REM ************************************************************* 
2 REM * * 
10 Rl::M * BUILD FILE OF STJ\TIST[CJ\ L [NFO FOR Tlll·:srs * 
1 5 REM* MEAN AND STANDARD DEVlATlO N * 
1 6 REM* 27 AUG 85 DI SK 114 9 PRINT- ST * 
l 8 REM * * 
19 REM ********************** ****** ********************************* 
2 0 REM 

30 INPUT "E NT l::R FILE NAM E ",OUTFIL E$ 
40 OUTFILE$=0UTFILE$+" . ASC " 
42 OPEN "I", 115 , 0 UTFILE $ 
43 INPUT 115 ,0U TFILE$ 
46 INPUT "E NTER THE DATA TIT LE ",TITLE $ 
47 LP RINT " "TITL E$ , ,DATE $ 
48 L PRINT 
4 9 LP RI NT II SUCCES S l TE RA TI 0 NS 
B AD S TO P N 0 S 0 L U TI 0 N " 
5 0 F 0 R J = 1 TO 1 4 
80 INPUT 115 ,J,A, B ,C,D 
81 A=A*lOO 
82 E=l00-A-C-D 
83 REM COMPUTE S UM AND SUM OF SQUA RES 
84 Tl=Tl+A:SSl=SSl+A*A 
8 5 T2= T2 +B: SS2 =SS2 +B*B 
86 T3=T3+C:SS3=SS3+C*C 
87 T4=T4+D:SS4=SS4+D*D 
88 T5=T5+E:SS5=SS5+E*E 
89 LPRINT USING " /Ill /lltll . 1111 

1111 11/l";J,A,B,C,D,E 
90 NEXT J 
95 REM COMPUTE AVERAGE AND STANDARD DEVIATION 
100 Al=Tl/14:SDl=SQR((l4*SSl-Tl*Tl)/14/13) 
1 1 0 A2 = T2 / 14 : SD 2 =SQ R( ( 14*SS2- T2 * T2) / 1 4 / 1 3) 
130 A3=T3/14:SD3=SQR((l4*SS3-T3*T3)/14/13) 
140 A4=T4/14:SD4=SQR((l4*SS4-T4*T4)/14/13) 
145 A5=T5/14:SD5=SQR((l4*SS5-T5*T5)/14/13) 
150 LPRINT 

II/Ill . II/I 

160 LPRINT 
1111. 1111 

USING"\ \\ \ /Ill.II/I 1111/1./l/I 

170 LP RIN T 
/Ill.II/I 

180 LPRINT 
185 LPRINT 
190 LPRINT 
1100 CLOSE 
1110 END 

II/I .II/I"; DUMMY$, "AVG" ,Al ,A2 ,A3 ,A4 ,A5 
USING"\ \\ \ /Ill.II/I 1111/l./lfl 

1111. /Ill"; DUMMY$'" SD ", SDl I SD2 'SD3, SD4, SD5 
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