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ABSTRACT 

In practice, the design of pot bearing steel 

plates is usually based on assuming that stresses be­

neath the plate are uniformly distributed. There is 

also no consideration given to the effect of shear 

stresses transmitted through the interface between the 

surfaces of the Plates and the supporting concrete 

abutment. 

However, in this analytical investigation, the 

behavior of pot bearing steel plates supported by con­

crete abutment was studied using finite elements 

analysis. There were no special assumptions made 

concerning stresses beneath the plate. Nevertheless, 

the interface between the surf aces of the steel plate 

and the concrete abutment was simulated using vertical 

and horizontal interface spring elements. Normal and 

shear stresses were permitted to be transferred through 

the interface with slip occurring beyond some limiting 

shear strenqth value. 

Different shear transfer conditions were induced 

and stresses resulting in the bearing system were 

studied using axisymmetric and plane strain solution 

methods. Results indicated that assuming uniform stress 
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distribution beneath the plate is rather too conserva­

tive. However, results from different shear transfer 

conditions showed that the effect of shear transfer is 

practically insignificant for design purposes. 

iii 



ACKNOWLEDGEMENTS 

I am greatly indebted to and wish to thank with 

sincere gratitude: 

Dr. Everett E. McEwen, my major professor, for his 

constructive and valuable guidance in the preparation of 

this thesis, and for his teaching and advice throughout 

my graduate studies. 

Professor Cheng-Jung Chang, Professor Charles Nash, 

and Professor Martin Sadd for their assistance in so many 

ways. 

Professor Fadel Al-Kazily for his invaluable help 

in preparation for my thesis defense. 

My parents, Mr. and Mrs. Arouri, for their love, 

sacrifice, encouragement, and unlimited support. 

My sister Rima Arouri, and my friends Georgette 

and Samia Kiriaki for all the help they gave me in 

assembling the thesis to its final form. 

Mrs. Donna Brightman for her concern and good will. 

The University of Rhode Island Computer Laboratory, 

for the use of their facilities. 

Mrs. Frances Harvey for typing the final draft of 

my thesis. 

iv 



CHAPTER 

1 

2 

3 

4 

TABLE OF CONTENTS 

INTRODUCTION . 

PREVIOUS ANALYSIS AND SCOPE OF STUDY 

2.1 Previous Analysis of 
the Bearing System 

2.2 Scope of Study 

THE FINITE ELEMENT METHOD 

3.1 Historical Review . 

3.2 Finite Element Proc~dure 

3.2.1 
3. 2. 2 
3.2.3 
3.2.4 

The Grid System . . . . . . 
Elements Variety . . . 
Displacement Functions . 
Formulation of Stiffness 
Matrix and Load Matrix . . . . . 

3.3 A General Purpose Finite Element 
Program (NONSAP) ... 

3.3.1 Element Types 
3.3.2 Material Models 

MODELING OF THE BEARING SYSTEM . . 

4.1 Capacity and Dimensions .. 

4.2 The Finite Element Grid System 
for the Different Shear Transfer 
Conditions 

4.3 Possible Solution Methods . 

PAGE 

1 

4 

4 

5 

10 

11 

13 

14 
16 
17 

25 

28 

29 
37 

42 

44 

48 

53 

4.3.1 The Axisyrrunetric Solution 53 
4.3.1.1. Axisymrnetric elements 
4.3.1.2. Axisyrnrnetric loading 

4.3.2 The Plane Strain Plane Stress 
Solution . 58 

4.3.2.1. Plane strain elements 
4.3.2.2. Plane stress elements 
4.3.2.3. Plane strain plane 

stress loading 
4.3.3 A Comparative Look at the 

Proposed Solution Methods 62 

v 



CHAPTER 

5 

6 

7 

MATERIAL ELEMENT MODELS . 

5.1 Steel Elements .. 

PAGE 

63 

64 

5.1.l Linear Elastic Isotropic Model. 65 

5.2 Concrete Elements 66 

5.2.1 von Mises Yield Condition . 69 
5.2.2 ~eviatoric Stress Invariants 70 

5.3 Interface Elements 

5.3.1 
5. 3. 2 

The Case of Zero Shear Transfer 
The Case of Infinite Shear 

5.3.3 
Tran sf er 
The Case 
Through 

with Shear Transferred 

5.3.3.1. 

5 . 3 . 3 . 2 . 

Interface Elements 
Linkage element by 
Ngo and Scordelis 
Two-dimensional 
interface element by 
Ghaboussi, Wilson, 
and Isenberg 

MODELING OF BEARING SYSTEM 
INTERFACE ELEMENTS . . . 

Interface Spring Elements 6.1 

6.2 Interface Spring Elements Stiffness 

6.2.1 Example Problem . 

6.3 The Bearing System Modeled 
Interface Spring Elements 

6.4 A Nonlinear Description 

6.5 Remarks . . . . . . 
EFFECT OF SHEAR TRANSFER 

7.1 Assumed Different Shear 
Transfer Conditions 

7.2 Results and Discussion . 

of 

with 

Slip 

. . 

7.2.1 Effect of Shear Transfer on 
the Pot Bearing and Masonry 

. . 

73 

74 

75 

76 

84 

84 

91 

94 

101 

117 

118 

123 

123 

134 

Steel Plates Deformation 135 
7.2.2 Effect of Shear Transfer on 

the Pot Bearing and Masonry 
Steel Plates Bending Stresses . 138 

7.2.3 Effect of Shear Transfer on 
the Normal and Shear Stress 
Distribution in the Concrete 
Abutment 165 

Vl. 



CHAPTER 

8 SUM.MARY AND CONCLUSIONS . 

LIST OF REFERENCES 

APPENDIX A 

A.l Formulation of the Linkage Element by 
Ngo and Scordelis 

A.2 Formulation of the Two-Dimensional Interface 
Element by Ghaboussi, Wilson, and Isenberg 

A.2.1 Plane Interface Element 

A.2.2 Axisymmetric Interface Element 

APPENDIX B 

B.l Horizontal Interface Spring Element 
Stress - Strain Diagrams for the 
Different Slip Conditions 

B.2 Normal Stresses transferred through 
the Vertical Interface Spring Elements 

B.3 Normal Stresses transferred through 
the Interface Spring Elements for the 
Different Shear Transfer Conditions 

APPENDIX C - BEARING SYSTEM ~.ATERIAL PROPERTIES 

C.l Pot Bearing and Masonry Steel Plates 

C.2 Concrete Abutment 

BIBLIOGRAPHY 

vii 

PAGE 

184 

190 

194 

210 

218 

221 



NO. 

3.1 

3.2 

3.3 

3.4 

6.1 

6.2 

6.3.a 

6.3.b 

6.4.a 

6.4.b 

6.5.a 

6.5.b 

LIST OF TABLES 

Some typical types of elements 

Truss element material models 

Two-dimensional material models 

Three-dimensional material models 

Plane strain solution. Averaged 
bending stresses (Ksi) in the top 
elements of the upper beam. Gauss 
integration points 2 and 4 •• 

Plane strain solution. List of relative 
vertical and horizontal displacements 
between various nodes adjacent to the 
interface zone (inches). 

Vertical interface spring elements 
cross-sectional areas 

Horizontal interface spring elements 
cross-sectional areas . 

Axisymmetric solution. Averaged bending 
stresses (Ksi) in top of the pot bearing 
steel plate. Gauss integration points 
2 and 4. 

Plane strain solution. Averaged bending 
stresses (Ksi) in top of the pot bearing 
steel plate. Gauss integration points 
2 and 4 

Axisymmetric solution. Averaged bending 
stresses (Ksi) in top of the masonry 
steel plate. Gauss integration points 
2 and 4. 

Plane strain solution. Averaged bending 
stresses (Ksi) in top of the masonry 
steel plate. Gauss integration points 
2 and 4. 

viii 

PAGE 

18 

38 

39 

41 

98 

100 

102 

103 

106 

. 107 

. 108 

109 



NO. 

6.6.a Axisymmetric solution. Averaged 
vertical stresses (Ksi) in concrete 
elements. Gauss integration points 

PAGE 

2 and 4. 110 

6.6.b Plane strain solution. Averaged 
vertical stresses (Ksi) in concrete 
elements. Gauss integration points 
2 and 4. . 111 

6.7.a Axisymrnetric solution. Averaged shearing 
stresses (Ksi) in concrete elements. 
Gauss integration points 2 and 4. 112 

6.7.b Plane strain. Averaged shearing stresses 
(Ksi) in concrete elements. Gauss 
integration points 2 and 4. 113 

6.8 Effect of using interface spring elements 
on maximum bearing system stresses modeled 
to represent the cases of infinite and 
zero shear transfer conditions for axi­
symmetric and plane strain solution 
methods. . 116 

6.9 Shear stresses transferred through the 
horizontal interface spring elements in 
the case of infinite shear transfer. . 119 

7.1.a Infinite shear transfer condition 127 

7.1.b Shear transfer condition resulting from 
assuming the horizontal spring elements 
equal 70% of the maximum shear stress 
transferred in the infinite shear transfer 
condition 128 

7.1.c Shear transfer condition resulting from 
assuming the horizontal spring elements 
equal 50 % of the maximum shear stress 
transferred in the infinite shear transfer 
condition. . 129 

7.1.d Shear transfer condition resulting from 
assuming the horizontal spring elements 
equal 30 % of the maximum shear stress 
transferred in the infinite shear transfer 
condition. 130 

7.1.e Zero shear stress condition 131 

ix 



NO. 

7.2 Percentage of change in the shear 
stresses transferred through the 
interface spring elements in both 
the axisymmetric and plane strain 
solutions . 

7.3.a Axisymmetric solution. Vertical and 
horizontal displacements in top of 
the triangular steel elements 
adjacent to the interface zone .. 

7.3.b Plane strain solution. Vertical and 
horizontal displacements in top of 
the triangular steel elements 
adjacent to the interface zone .. 

7.4.a Axisymmetric solution. Averaged bending 
stresses (Ksi) in the top of the pot 
bearing steel plate. 

7.4.b Plane strain solution. Averaged bending 
stresses in the top of the pot bearing 
steel plate. Gauss integration points 
2 and 4 . 

7.5.a Axisymmetric solution. Averaged bending 
stresses (Ksi) in the top of the masonry 
steel plate. Gauss integration points 
2 and 4 . . 

7.5.b Plane strain solution. Averaged bending 
stresses (Ksi) in the top of the masonry 
steel plate. Gauss integration points 
2 and 4 •• 

7.6.a Axisymi~etric solution. Averaged vertical 
stresses (Ksi) in concrete elements. 
Gauss integration points 2 and 4 .. 

7.6.b Plane strain solution. Averaged vertical 
stresses (Ksi) in concrete elements. 
Gauss integration points 2 and 4 .. 

7.6.c Axisymmetric solution. Percentage of 
change in averaged normal concrete 
compressive stresses .. 

x 

PAGE 

. 132 

. 140 

. 142 

. 149 

150 

. 157 

. 158 

. 169 

. 170 

. 172 



NO. 

7.7.a Axisymmetric solution. Averaged shear 
stresses (Ksi) in concrete elements. 
Gauss integration points 2 and 4. . 175 

7.7.b Plane strain solution. Averaged shear 
stresses (Ksi) in concrete elements. 
Gauss integration points 2 and 4. . 176 

7.8.a Axisymmetric solution. Average decrease 
of concrete shear stresses in conjunction 
with the average decrease of shear 
stresses transferred through the inter-
face zone. . 177 

7.8.b Plane strain solution. Average decrease 
of concrete shear stresses in conjunction 
with the average decrease of shear stresses 
transferred through the interface zone. 178 

7.9.a Axisymmetric solution. Concrete yield 
status in different shear transfer 
conditions. 182 

7.9.b Plane strain solutikn. Concrete yield 
status in different shear transfer 
conditions. 183 

A.l Linkage element's global stiffness matrix .. 197 

A.2 Plane interface element global stiffness 
matrix for nondilatant mat~rials. 205 

A.3 [B] matrix in the axisymmetric element 
strain - displacement relation. . 208 

A.4 Axisymmetric interface element global 
stiffness matrix for nondilatant material. 209 

B.l Horizontal interface spring elements 
stress - strain relation . 212 

B.2 Horizontal interface spring elements 
stress - strain relation . 213 

B.3 Horizontal interface spring elements 
stress - strain relation . 214 

xi 



NO. 

B.4 Normal stresses transferred through 
the vertical springs . 

B.5.a Axisymrnetrical solution 

B.5.b Plane strain solution 

xii 

PAGE 

. 215 

216 

217 



NO. 

1.1 

2.1 

2.2 

2.3 

3.1 

3.2 

3.3 

3.4 

3.5 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

LIST OF FIGURES 

Bearing System 

Beam on elastic foundation model 
used in the previous analysis 

Bearing system finite element two-dimensional 
model used in the previous analysis . 

Actual and assumed stress distribution in 
the concrete beneath the masonry plate 

Actual structure and finite element 
grid system . 

Beam element 

Truss element in space 

Possible two-dimensional finite 
element analysis 

A general two-dimensional element . 

Three-dimensional solid model . 

Axisymmetric cylindrical model 

Two-dimensional 1-inch wide model . 

Dimensions of 150-Kips bearing system 

Finite element grid system for tr.e 
zero shear transfer case 

Finite element grid system 
for the continuum case 

Finite element grid system for the 
bearing system including interface 
spring elements . 

xiii 

PAGE 

3 

7 

8 

9 

15 

23 

30 

32 

33 

43 

45 

46 

47 

49 

51 

52 



NO. 

4.8 Cylindrical coordinates . 

4.9 Top view of the axisymrnetric section 
of the pot plate 

4.10 Distribution of the axisymmetrical 
model nodal loads . 

4 .11 Top view of the plane - strain or 
plane - stress section of the pot plate 

4.12 Distribution of the plane strain 
or plane stress nodal loads 

5.1 Typical concrete compressive 
stress - strain_ curves . 

5.2 General stress components . 

5.3 Linkage element . 

5.4 Two-dimensional interface element . 

5.5 Interface element displacements . 

5. 6. a Stress - strain relation in the normal 
direction . 

5. 6. b Stress - strain relation in the 
tangential direction 

6.1 Vertical and horizontal 
interface spring elements . 

6. 2. a Vertical spring stress - strain diagram 

6. 2 .b Horizontal spring stress - strain diagram 

6.3 Spring element 

6.4 case vf infinite shear transfer 

6.5 Case of zero shear transrer 

6.6.a Two beams with infinite shear transfer 
condition . 

6.6.b Two beams with zero shear transfer 
condition . 

xiv 

PAGE 

55 

55 

57 

60 

61 

67 

71 

78 

80 

81 

83 

83 

85 

87 

87 

88 

92 

93 

95 

96 



NO. PAGE 

6.6.c Two beams with 
interface spring elements . 97 

6.7 Top part of the bearing system 
including interface spring elements . . 105 

7.1 Axisymmetric solution. Shear stress 
distribution along the horizontal 
interface spring elements . 133 

7.2 Axisymmetric solution. Horizontal 
displacement curves for the different 
shear transfer conditions . 144 

7.3 Axisymmetric solution. Vertical dis­
placement curves for the different 
shear transfer conditions . 145 

7.4 Axisymmetric solution. Deformation of 
the top nodes of the triangular steel 
elements adjacent to the interface zone . 146 

7.5.a Plane strain solution. Horizontal dis­
placement curves for the different 
shear transfer conditions . 147 

7.5.b Plane strain solution. Vertical displace­
ment curves for the different shear 
transfer conditions . 148 

7.6 Percentage of change in bending stresses 
in top of the pot bearing steel plate . . 152 

7.7.a Axisymmetric solution. Bending stress 
distribution in top of the pot bearing 
plate . 153 

7.7.b Plane strain solution. Bending stress 
distribution in top of the pot bearing 
plate . . 154 

7.8 Bending stresses along a normal line 
through elements at the center of the 
pot bearing and masonry plates . 155 

7.9.a Axisymmetric solution. Distribution of 
averaged bending stresses in top of the 
masonry plate. Gauss integration points 
2 and 4 . 160 

xv 



NO. 

7. 9. b Plane strain 
distribution 
steel plate. 
2 and 4 . 

solution. Bending stress 
in top of the masonry 
Gauss integration points 

, 7.10.a Axisyrnrnetric solution. Bending stress 
distribution along a vertical line 
passing through the critical section 

PAGE 

161 

of the masonry steel plate 163 

7.10.b Axisyrnrnetric solution. Bending stress 
distribution along a vertical line 
passing through the end steel elements 
of the masonry steel plate 164 

7.11.a Axisyrnmetric solution. Averaged normal 
stresses in concrete elements. Gauss 
integration points 2 and 4 167 

7.11.b Plane strain solution. Averaged normal 
stresses in concrete elements. Gauss 
integration points 2 and 4 168 

7.12 Axisyrnrnetric solution. Averaged shear 
stresses in concrete elements. 
Gauss integration points 2 and 4. 174 

A.l Geometry of the 2-D interface element . 200 

A.2 Interface element relative displacements 
in local coordinates 201 

B.l Horizontal interface spring elements 
stress - strain diagram (not to scale) 211 

c. 1 Concrete stress - strain diagram . 219 

XVl 



CHAPTER 1 

INTRODUCTION 

Pot bearing steel plates have been successfully 

used for many years in bridges with varying span and 

magnitude. Pot bearing steel plates can be physically 

described as steel plates containing a circular disc of 

an elastomeric material confined in a pot. A "masonry" 

steel plate is usually placed beneath the pot to distrib-

ute stresses to the supporting concrete abutment as shown 

in fig. (1.1). The width and length of the masonry plate 

are sized to keep the stresses in the concrete less than 

an allowable value to avoid failure of the concrete. 

Normally, for design purposes, a uniform distribution of 

concrete stresses beneath the masonry plate is assumed. 

The thickness of the masonry plate is controlled by 

bending stresses. It is assumed that the critical sec-

tion of the masonry plate is near the end of the pot 

bearing. Allowable concrete stresses as given by 

AASHTO [l] vary from 0.30 fc' to a maximum of 0. 60 f ' c 

depending on the ratio of the supporting concrete area 

to the loaded concrete area, where f ' is the compressive c 

strength of the concrete. The large allowable values 

attempt to take account of the effect of confining 

pressure on the failure strength of the concrete. 
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Allowable steel stresses are taken as 0.55 of the yield 

stress. Bearing plates of this type permit the bridge 

girders to expand due to temperature without developing 

large lateral forces at the supports. They also distrib­

ute vertical reactions through the pot to the masonry 

plate below. 

Although the bearing system designed according to 

the normal design procedure described above does in fact 

show great performance in actual situations, _it should be 

expected that allowable bending stresses in the critical 

section of the masonry plate would be very large because 

of the uniform stress distribution beneath the masonry 

plate. 

Results from previous analysis indicated that 

stresses beneath the masonry plate actually have shown 

little lateral stress distribution. Therefore, from the 

basic knowledge of structural analysis it is expected 

that the maximum stress in the critical section of the 

masonry plate should actually be lower than the design 

stress. Hence, those findings are examined extensively 

in this investigation in an attempt to study the effect 

of shear transfer between the surf ace of the masonry 

plate and the concrete abutment, on the stresses of the 

bearing system. 
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CHAPTER 2 

PREVIOUS AN.A.LYSIS AND SCOPE OF STUDY 

2.1 PREVIOUS ANALYSIS OF THE BEARING SYSTEM 

There have not been many publications about the 

analysis of the bearing system considered in this investi­

gation. However, during the year 1979, a finite element 

analysis of the bearing system was conducted by 

Dr. E. E. McEwen at the University of Rhode Island [2], 

The structural system was modeled as a two-dimensional 

elastic solid, and also as beam on elastic foundation, 

fig. ( 2 .1) and ( 2. 2) . Results of analysis indicated that 

for plates designed according to standard practice, there 

is in fact little lateral stress distribution in the con­

crete support beneath the masonry plate as shown in 

fig. (2.3). The plate thickness had little effect on con­

crete stresses until it becomes 2 or 3 times the normal 

design thickness. Since there is little lateral stress 

distribution, the bending stresses in the plate are quite 

small. Plates that are one-half the normal thickness have 

stresses less than the allowable. Results also indicated 

that stresses in the concrete are extremely high approach­

ing the applied pressure on the bearing, and this is due 

to the little lateral stress distribution. However, as 
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between the steel masonry plate and the concrete abutment 

was represented by vertical and horizontal interface 

Serina elements. The horizontal interface spring elements 
~ _, 

transfer shear until an ultimate shear strength value is 

reached, where the bond between the steel and concrete 

elements breaks and slip takes place. Slip along the 

interface was described as a nonlinear function, and dif-

ferent shear transfer conditions were assumed. The study 

was conducted using finite element analysis with the aid 

of the general-purpose finite element computer program 

NONSAP {4] (Nonlinear Structural Analysis Program). 
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CHAPTER 3 

THE FINITE ELEMENT METHOD 

Although it is approximate, the finite element 

method is regarded today as the most powerful and 

systematic way of performing stress analysis. Its power 

lies in the fact that it could be applied on very highly 

complex and irregular structures. 

The reason behind giving this method the name 

finite element is simply attributed to the procedure, 

which consists of dividing the continuum of the structure 

to be analyzed into finite elements. The number, shape, 

and size of those elements could vary depending on the 

shape and complexity of the structure. However, it is 

noteworthy here to point out that accuracy of the results 

increases by increasing the number of the elements and 

reducing their sizes. All the elements connected togeth­

er by nodes on their boundaries are called a ~grid 

system", which is supposed to be a finite element model 

that should accurately represent the actual structure. 

Nevertheless, it is necessary to assume adequate dis­

placement functions to represent the internal displace­

ment of each element such that compatibility is satisfied 
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along common nodes and boundaries. 

Generally speaking, the finite element method is 

composed of two major solution steps. 1) The element 

solution dealing with the individual elements. Adequate 

displacement functions are assumed for the different 

types of elements, such that internal displacements of 

each element are uniquely described in terms of nodal dis­

placements. Nodal strains are acquired through the deri­

vation of nodal displacements and then related to symbolic 

nodal stresses through a stress - strain relation. Using 

energy methods, we could construct a relationship between 

nodal forces and nodal displacements represented by a 

stiffness matrix for each individual element. 2) The 

system solution which is simply combining the stiffness 

matrices of all the individual elements to construct the 

structure stiffness matrix. The system solution is inde­

pendent from the different types of elements used to 

model the structure. 

3.1 HISTORICAL REVIEW 

Authors of different finite element textbooks dis­

agreed on selecting a time period as a start of the 

finite element method of analysis. Moe suggested that 

the concept of the method was "originally introduced" by 

Argyris in a series of papers published in 1954-55 [5]. 

On the other hand, Cook [6] refers to the year 1906 as 
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the start of the concept which the finite element method 

was based on. Researchers suggested the "lattice analogy" 

to solve the continuum problems by approximating the con­

tinuum by a regular mesh of elastic bars. Others like 

Gallagher [7] consider the period from 1850 to 1875 as 

the "logical starting point" of a review of the history 

of the finite element method. During this period, the 

framework analysis developed due to the work of Maxwell, 

castigliano, and Mohr, among others. Framework analysis 

is the base of matrix analysis on which the finite ele­

ment solution depends to a great extent. 

Finite element method is part of a science that 

depends for its progress on the experiences and accom-

plishments of past generations. However, progress was 

extremely slow due to difficulties concerning the solu­

tion of algebraic system of equations with many unknowns. 

Since mid 1950's there has been a concurrent and rapid 

development of matrix analysis methods and electronic 

digital computers, and the finite element method was put 

into practical use. Many important conferences have been 

devoted exclusively to these subjects, and the first text­

books appeared in 1967 and 1968 [5]. By 1976, about 

two decades after engineering applications began, there 

have been more than 7000 publications about the finite 

element method [6]. General purpose computer programs of 

finite element analysis are now extensively dispersed 
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in practice. 

3.2 FINITE ELEMENT PROCEDURE 

The finite element method is an extension of the 

stiffness or displacement method. However, unlike 

skeletal structures, there are now well defined joints 

where equilibrium of forces can be established. In 

finite element method, the continuum is divided into 

elements of different shapes and sizes, and each element 

is bounded by artificial nodes (internal nodes could 

exist as well). The system of elements is called the 

grid system which represents the finite element model 

that approximates the actual structure. Each node in 

the grid system has a number of degrees of freedom, 

which combined, give a number of algebraic equations to 

be solved numerically so that the analysis would be 

completed. 

It is worthwhile mentioning at this point that 

there are three types of commonly used elements, [8], 

1) Displacement element, using assumed displacement 

functions, forms the majority of known finite elements; 

2) Equilibrium element, based on assumed stress functions; 

and 3) Hybrid element, which is based on both assumed 

displacement and stress functions. Elements (2) and (3) 

are used to a much lesser extent. As described in the 

next chapter, displacement elements are used in the 

modeling of the bearing system. 
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3.2.l THE GRID SYSTEM 

A continuum is divided into two-dimensional 

finite elements, which are separated by straight or 

curved lines and bounded by nodal points (internal nodal 

points could exist), or it could be divided into three­

dimensional finite elements, which are separated by flat 

or curved surfaces. The shapes, sizes, material proper­

ties and thicknesses of the elements within the grid 

system could vary. Therefore, the finite element method 

could handle problems involving nonhomogeneous proper­

ties, complex geometry and support conditions, and 

various types of loading situations. 

A cantilever beam, shown in fig. (3.1.a), is 

loaded uniformly at its edge. The continuum is approxi­

mated by a grid system, shown in fig. (3.1.b), composed 

of triangular (two-dimensional) elements separated by 

straight lines, and each element is bounded by three 

nodal points at its corners. The uniform load on the 

actual structure is represented by a load system applied 

at the nodes. Boundary conditions are satisfied through 

carefully selected characteristics of the boundary nodal 

points representing the fixed end of the cantilever beam. 

In many problems, only one type of element is 

needed to construct a grid system of a structure. Never­

theless, it is also possible to mix elements of different 

types, as will be shown in the next chapter, where the 

steel bearing system is divided into linear elastic 
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Fig . 3 . 1 Actua l structure and finite e l ement gri d s y stem . 
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isotropic elements, the concrete abutment is divided into 

nonlinear elasto-plstic isotropic elements, and both are 

connected by interface spring elements. 

3.2.2 ELEMENTS VARIETY 

As mentioned in previous sections, the power of 

the finite element method lies in its ability to repre­

sent highly complex structures of homogeneous, as well as 

nonhomogeneous properties. However, for the results of 

the analysis to be sufficient, analysts should be very 

careful in selecting finite element models to represent 

the structures they wish to analyze. 

There is a large element variety of different 

shapes and properties available for the finite element 

solution. Hence, it is important to realize that it is 

totally up to the analyst to select the elements which 

best represent the structure. 

It is not intended here to ~iscuss in depth the 

available elements, but the intention is to present some 

of the simple and important ones. Available elements 

could be separated into three main categories: 1) one­

dimensional, 2) two-dimensional, and 3) three­

dimensional. Moreover, elements belonging to each of the 

three mentioned categories also vary in shape, number of 

degrees of freedom, number of nodes~ all could have 

different material properties depending on the problem. 
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some of the elements used in modeling the bearing system 

will be discussed with more depth in later chapters. 

Table (3.1) presents some of the simplest types of one-, 

two-, and three-dimensional elements as examples of 

available ones [5]. 

The nodal degrees of freedom normally ref er to the 

displacements and rotations. The order of the element 

stiffness matrix is usually equal to the number of degrees 

of freedom in the element, that is because each degree of 

freedom produces an algebraic equation with one unknown, 

usually the displacement. The degrees of freedom could 

also represent relative displacements as shown in 

Appendix A. 

3.2.3 DISPLACEMENT FUNCTIONS 

Once the grid system is constructed and the ele­

ments are selected, then it is very important to select 

what is called a "displacement function" which represents 

internal element displacements expressed in terms of nodal 

displacements. Displacement functions must be selected 

such that compatibility along the boundaries of adjacent 

elements is satisfied. 

A displacement function could be defined as an 

interpolation function which describes the element 

internal displacement in terms of the nodal displacements. 

Discussion of displacement functions of three 
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-
Element Typical No. of Degrees of 

application nodes freedo-m at 
each node 

- - Trusses 2 Bar 1 

Beam ~ ~ Frames 2 3 
'J 

Triangular; t Plane 

constant _6- stress 3 2 

strain 

Triangular; t Plane 

D linear stress 6 2 

strain t_ 
- t-

Quadri- b_ lateral; Plane 
plane stress 4 2 
stress 

- t t 

Rectan- v t gular; _z Plate 

bending bending 4 3 

I I 

Table ( 3.1 ) Some typical types of elements ( continued on 
next page) 
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Typical No. of Degrees of 

Element application nodes freedom at 
each node 

Re ct-

Q 
Cylindrical 

angular shells, 4 5-6 
shell folded 
element plates 

I 

i Trun- i Axi-
cated I ! symmetric 2 3 
cone shells 

I t i 

Ring; 
Axi-tri- i 

t symmetric 2 3 angular I 
section LSUS- solids 

i t t 

-

Table ( 3.1) continued 



Trian­
gular; 
bending 

Tetra­
hedron 

Prism 

Element 

I 

t 
I I I 

I 

I/ 
-Jf----;t 
/ 

7 t It 

-
I - -t 

Table ( 3.1 ) c ontinued 

Typical No. of 
application nodes 

Plate 
bending 3 

Three­
dimen­
sional 
stress 

Three-
di men-
siona l 
stre ss 

4 

8 

Degrees of 
freedom at 
each node 

3 

3 

3 

20 



dimensional elements will not be necessary in the scope 

of this thesis; however, they follow the same pattern 

considering that they have three coordinates to work 

with rather than one (one-dimensional elements) or two 

(two dimensional elements.) . 

There are two ways in which displacement 

functions could be given, 1) a simple polynomial with 

undetermined coefficients, or 2) directly in terms of 

shape functions. 

21 

1) If the displacement function is given by a simple 

polynomial with undetermined coefficients, terms for 

all nodal displacements could be acquired by substi­

tuting the coordinates of the corresponding nodes in 

the polynomial. A number of equations will result 

equal to the number of element degrees of freedom. 

The only unknowns in the resulting system of equa­

tions are the undetermined coefficients of the 

original polynomial equation. By solving for the un­

known coefficients and substituting in the original 

polynomial, we find that the undetermined coefficients 

were transformed to become the relevant parameters of 

the nodal displacements, called the shape functions. 

Let u(x) be the polynomial representing a displace­

ment function, for the one-dimensional beam element 

shown in fig. ( 3. 2) . 
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u(x) 

( 3. 1) 
e (x) 

where e is the first partial derivative of u(x) 

representing nodal rotations. 

Expressing (3.1) in matrix notation, 

u(x) = [G] {a } (3.2) 

2 3 T where [G] = [l x x x ] ; {a } = {a 1 a 2 a 3 a 4 } 

As shown, the number of degrees of freedom equals 

the number of undetermined coefficients in (3.1). 

Subs ti tu ting the coordinates of nodes 1 and 2 in 

(3.1), we acquire terms for the corresponding 

nodal displacements, (u1 , e
1

, u 2 , 8 2 ). 

@ x = 0 u = ui 

@ x = L 

resulting 

0 0 

1 

= 1 L 

0 1 2L 

in short form 



23 

1------- x 

Fig. (3.2) Beam element. 



Ud = [D] {a } 

where {6} = nodal displacements. 

solving (3.3) for {a} will result 

{a} = [D]-l {6} 

Substituting (3.4) in (3.2) will result 

u(x) = [G] [D]-l {6} 

Let [N] = [G] [D]-l 

then the displacement function becomes 

u(x) = [N] {6} 

where [N] = [Nl N2 N3 N4 ] 

and 

( 3 • 3) 

( 3 • 4) 

( 3 • 5) 

( 3. 6) 

( 3 • 7) 

N1 , N2 , N3 and N4 are the shape functions for the 

corresponding element degrees of freedom. It could 

be easily verified that Ni is equal unity only at 

node (i), and zero at all other nodes. That gives 

us the displacement field over an element when node 

(i) is given unit displacement while keeping all 

other nodes fixed. 

For displacement functions of two-dimensional ele­

ments given in terms of simple polynomials, the 

analyst could use the Pascal triangle [8] to 

determine the combination of terms which should be 

24 
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used. 

2) Displacement functions could also be given directly 

in terms of shape functions as shown in (3.7). There 

are interpolation functions which state the shape 

functions directly, avoiding all the work seen in 

equations (3.2) to (3.7). This is done by replacing 

(a's) in equation (3.1) by (N's) as seen in 

equation (3.7). Many polynomial functions such as 

the Lagrange polynomial and the Hermitian polynomial 

[8] among others, could be used to represent a 

displacement function. Shape functions for most 

available elements can be found tabulated and 

ready for use; in fact many are used in general 

purpose finite element computer programs. 

3.2.4 FORMULATION OF STIFFNESS MATRIX AND LOAD MATRIX 

The next step which immediately follows the 

formulation of the displacement function, is to find 

nodal strains and stresses. Those strains and stresses 

will be used to construct the stiffness matrix of the 

element and its equivalent nodal forces. A general 

brief description of the procedure used to formulate 

the element stiffness matrix will be presented in this 

section. The principle of minimum total potential 

energy will be used in the formulation. 

As shown in the above section in equation (3.7), 

the displacements are expressed in terms of the nodal 



displacements by the use of the shape functions which 

are functions of the coordinates. The strains are 

calculated b ¥ making appropriate differentiation of the 

displacement function, thus 

{d = [B] {6} ( 3 • 8) 

where {E} = strain matrix 

[B] = appropriate derivative of [N] 

The stresses are related to the strains by the 

[C] matrix, which is called the elasticity or the 

property matrix . 

{a} = [C] {E} (3.9) 

Substituting (3.8) in (3.9) 

{a} = [C] [B] {6} (3.10) 

Total potential energy (IT) is the sum of the strain 

energy (U) and the potential energy (V) , thus 

II = U + V 

The strain energy 

1 f T U = 2 {E} {a} 
vol 

d vol 

Substituting (3.8) and (3.10) in (3.12) 

U = ~ f {6} T [B]T [C] [B] {6} 
vol 

d vol 

(3.11) 

(3.12) 

( 3. 13) 
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The potential energy is 

V = -f {u }T { q } 
vol 

d vol 

where {u } is taken from equation (3.7) 

and {q } is the distributed load matrix 

.v = f Ud T [N]T { q } 
vol 

d vol 

substituting (3.13) and (3.15) in (3.11) 

IT = 1 f {L}T [B]T [C] 
2 vol 

f {L} T [N]T {q } 
vol 

[B] {6 } 

d vol 

d vol 

(3.14) 

( 3 .15) 

(3.16) 

The principle of stationary potential energy 
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requires that the first partial differential of the total 

potential energy with respect to any nodal displacement 

must be zero. Thus, the equilibrium condition to be 

satisfied is, 

o IT ax = o (3.11) 

Substituting (3.16) in (3.17) 



oII = 
aE 

or 

J [B] T [C] [B] Ud 
vol 

- J [N]T {q} dvol = 0 
vol 

d vol 

[K] { 6 } - { P } = 0 

where 

[K] is the element stiffness matrix and 

{ P } is the equivalent element nodal force 

[K] = f [B] T [C] [B] 
vol 

{p } = f [N]T q 
vol 

d vol 

d vol 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

3. 3 A GENERAL PURPOSE FINITE ELEMENT PROGRAM (NON SAP) 

As described in the sections above, the finite 

element method of analysis involves rather.lengthy and 

complex computations. In practice, structures might 

have hundreds or even thousands of nodes resulting in 
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stiffness matrices of very large orders. Hence, it is 

impossible to perform the analysis without the aid of 

digital computers. However, many general-purpose finite 

element programs have been developed to perform the 

analysis in a matter of minutes of computer time for 

large problems. The analy sis of the bearing system in 
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this thesis was performed by NONSAP [ 4] , a general-

purpose nonlinear finite element structural analysis pro­

gram. Several element types as well as a selection of 

material models are available in this program. 

3.3.1 ELEMENT TYPES 

There are three types of elements available for 

use in NONSAP: (1) truss elements, (2) two-dimensional 

elements, and (3) three-dimensional elements. Since 

elements used in modeling the bearing system were two­

dirnensional, special attention will be given to this 

type of element in this section. 

(1) Truss Elements 

A truss element is one-dimensional, has two 

nodes, and is only capable of transmitting axial 

forces, see fig. (3.3). For the truss element, the 

following formulations have been incorporated into 

NONSAP: 

a) Linear elastic, small displacement analysis. 

b) Small displacement analysis with material non­

linearities only. 

c) Updated Lagrangian, but assuming small strains 

(with large displacements). 

Since the material models considered are 

only defined for small strains, small strains are 

assumed in the calculation of stresses, and the 

changes in the cross sectional areas of the truss 



Node 1 

/ 
_____ ___v(x y '7) 

l' l'~l 

2 
u 

--- x 
Node 2 

ul & u2 = 
x x 

nodal displacements 
in local coordinates. 

u ,u ,u = displacement components 
x Y z in global coordinates . 

"):;'. 
. c ig. ( 3. 3) Truss element in snace . 
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element is neglected during deformation. 

(2) Two-dimensional Elements 

The two-dimensional elements available in 

NONSAP are: 1) Plane stress elements, with the 

assumption that out of plane shears and stresses are 

negligible. 2) Plane strain elements where the out 

of plane strains are negligible. 3) Axisymmetrical 

elements. Figure (3.4) demonstrates examples of 

possible finite element analysis involving the dif­

ferent types of two-dimensional elements. 

For the two-dimensional elements the follow­

ing formulations have been incorporated into NONSAP: 

a) Linear elastic, small displacement analysis. 

b) Small disolacement analysis with material non­

linearities only. 

c) Total Lagrangian formulation. 

d) Updated Lagrangian formulation. 

All formulations are described in the NONSAP 

commentary by Bathe, Wilson and Iding [4]. 

All two-dimensional elements in NONSAP could 

have from 3 to 8 nodes depending on the nature of 

the problem and the choice of the analyst. 

Figure (3.5) represents a general two-dimensional 

element with the nodal points numbered as shown. 



-·--·-
--· "-:) . l radian 

~xi - symmetric finite 
element model of 

y 

y 

a ring . 

Plane stress finite 
element mode l of 
a cantilever b eam 

Plane strain finite 
element model of a 
concrete a butment . 

rig. ( 3 . 4 ) Poss ible two - di me nsiona l finit e e l eme nt 

ana lysis . 
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z 
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5 

2 I . 
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I 
integration 
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\ 

H' . - ig. ( 3 • 5) A general two-dimensional element. 
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A system of natural coordinates (r,s) were 

given to the element such that r = +l along edge 

(1-8-4), and r = -1 along edge (2-6-3); while 

s = +l along edge (2-5-1) and s = -1 along edge 

(3-7-4). The global coordinate is given in 

cartesian coordinates (y,z); however, polar co-

ordinates could also be used. 

Let (u , 6 ) and (u , 6 ) represent the displace-
y y z z 

ment functions, nodal displacements in the y-

direction and the z-direction respectively. The 

displacement function for the element, expressed in 

matrix notation, is: 

(3.22) 
[

h1 , ... ,h8 ,o, ... ,OJ 

0, ... ,O,h
1

, ... ,h
8 

where h. is the shape function associated with 
l 

node i, given directly in terms of the element 

natural coordinates (r,s). 

Rewriting (3.22) in short form 



35 

Recalling (3.7), we notice that the shape function 

matrix [NJ is expressed in global coordinates, while 

in (3.23) of NONSAP, shape functions are expressed 

in terms of the element natural coordinate system 

as shown in (3.22). However, derivatives of the 

shape functions 
I 

are needed to evaluate the [BJ 

matrix in equation (3.8) which evaluates the nodal 

strains in the global coordinate system. 

The derivatives needed are: 

au ah _y_ 0 0 0 6 ay ay y 

au ah _y_ 0 0 0 0 az 32 
= (3.24) 

au 8h z 
0 0 0 6 ay- ay z 

au ah z 
0 0 0 0 az az 

The derivatives in (3.24) are calculated using a 

Jacobian transformation, where the chain rule 

relating (y,z) to (r,s) derivatives is: 

(3.25) 

where J is the Jacobian operator, written as 



[~ 
3z 

3r ar 
J = (3.26) 

Cl y 3z 
8s as 

Inverting J and multiplying it by both sides of 

(3.25), we get 

3 3z 3z 3 
Cl y 8s -a-r ci r 

1 = det J 

3 -~ Cly _£_ 
az 3z ar () S 

where the Jacobian determinant is 

det J = (Cly 3r ~ ] - (~ 3s 3s ~ ] 3r 

(3.27) 

(3.28) 

Once the derivatives are evaluated, the [B) matrix 

could be determined. Following the formulation 

incorporated in NONSAP, the stiffness matrix could 

be evaluated to complete the analysis . 

(3) Three-dimensional Elements 

The general three-dimensional element in 

NONSAP is an 8 to 21 variable-number-nodes element. 

For this element, the following formulations have 

been incorporated in NONSAP: 

a) Linear elastic small displacement analysis. 

b) Small displacement analysis with material 

nonlinearities only. 

36 



The formulation of the three-dimensional 

element is similar to the formulation of the two­

dimens ional element, with the consideration of 

the difference in the element shape function. 

3.3.2 MATERIAL MODELS 
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Several different material models, presented in 

the NONSAP commentary [4], were incorporated in NONSAP. 

The material model library of NONSAP [9] is shown in 

tables (3.2), (3.3), and (3.4) for the truss element, 

two-dimensional element, and the three-dimensional 

element respectively. 

Nevertheless, NONSAP has been written to accept 

material models not currently available in the NONSAP 

material model library, where the overlay subroutines 

for the new material model must be provided by the user. 



FORMULATION MATERIAL MODEL 

Linear analysis Linear elastic 

Materially nonlinear Nonlinear elastic 
only 

Updated Lagrangian Linear elastic 
formulation and nonlinear 

elastic 

Table (3.2) Truss element material models. 

··-· 

w 
00 



FORMULATION 

Linear analysis 

Materially nonlinear 
only 

MATERIAL MODEL 

Linear isotropic and 
linear orthotropic 

Variable tangent moduli. 

Curve description model 
(plane strain or axi­
symmetric only.) 

Curve description model 
with tension weakening 
(plane strain only) 

Elastic-plastic, von Mises 
yield condition. 

Elastic-plastic, Drucker 
Prager yield condition. 

Table (3.3) Two-dimensional material models (continued next page) 

w 
l.D 



FORMULATION 

Total Lagrangian 
formulation 

Updated Lagrangian 
formulation 

Table (3.3) Continued 

MATERIAL MODEL 

Incompressible nonlinear 
elastic, Mooney-Rivlin 
material (plane stress 
only). 

Elastic plastid, von Mises 
yield condition. 

Variable tangent moduli. 

Linear isotropic. 

Linear orthotropic. 

Linear isotropic. 

.i::. 
0 



FORMULATION MATERIAL MODEL 

Linear analysis Linear isotropic 
elastic 

Material nonlinearity Curve description 
only model 

Table (3.4) Three-dimensional material models. 

""' I-' 
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CHAPTER 4 

MODELING OF THE BEARING SYSTEM 

Consider a concrete abutment loaded in several 

locations by steel or concrete girders. The load is 

transferred vertically by pot bearing plates as described 

in chapter 2. For analysis purposes, a single bearing 

is considered to act on an isolated block of concrete as 

shown in fig. (4.1). A three-dimensional solid model 

will require a great calcula_tion effort and computer time 

because of its complexity. However, the complexity of 

the problem could be reduced significantly by the use of 

the following models as possible approximations. 

1) The bearing system could be represented by an axi­

symmetrical solid which requires that the pot bearing 

plate and the masonry plate have a circular shape and 

requires the concrete block to have a cylindrical shape. 

Then the finite element grid system representing the 

bearing systere could be composed of a number of two­

dimensional axisyr!unetric elements instead of three­

dimensional solid elements. 2) Another approximation is 

to take a 1-inch strip through the bearing system and 

analyze it as a two-dimensional plane strain or plane 



Pot 

/ 
bearing plate 

Masonry plate 

Fig. (4.1) Three-dimens i ona l 5olid mode l 
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stress model. Example problems have been executed to 

examine the different approximations of the three­

dimensional solid, and a discussion is presented in 
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sec. (4.3). The axisymmetric cylindrical model and the 

1-inch wide two-dimensional model are shown in fig. (4.2) 

and fig. (4.3) respectively. 

4.1 CAPACITY AND DIMENSIONS 

The bearing system used in the analysis has a 

vertical capacity of 150 kips. The dimensions selected 

for the bearing system used in the analysis are based on 

recommended values for the structural design by the 

manufacturing company [10] as shown in fig. (4.4). As 

for the concrete block there are no recommendations except 

that the AISC design manual [11] recommends that the width 

of the bearing plate be at least 2 inches less than the 

width of the support, which is concrete in this case. The 

depth of the concrete was selected so that the stress dis­

tribution on the top of it will not be affected by the 

boundary conditions applied at the nodal points at the 

bottom supports. For the axisymmetric model, all square 

surfaces are changed to circular such that, referring to 

fig. (4.4), (A) is the radius of the pot bearing plate, 

(B) is the radius of the masonry plate, and (C) is the 

radius of the concrete surface. 
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Uniformly applied load 

Circular pot bearing 
olate 

plate 

Concrete 
cylinder 

Fig. (4.2) Axisymmetric cylindrical model 
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Uniformly applied load 

Pot bearing plate 

Masonry plate 

I 

Concrete 

Fig. (4.3) Two-dimensional 1-inch wide model 
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Fig. ( 4 • !l ) Dimensions o f 150-Kips 

c 
g 

·1 

C-i'lches 

l .O .00 

·1 

Pot bea:-ing 
p:!.ate 

Masonry plate 

Concrete 

r-i'lCh<!!S 

3 .69 

~LOO 

bearing system 

47 



4.2 THE FINITE ELEMENT GRID 
SYSTEMS FOR THE DIFFERENT 
SHEAR TRANSFER CONDITIONS 

Preliminary studies have shown that bending 

stresses in the bearing plates and the stress distribu­

tion in the concrete are significantly affected by the 

shear transfer between them. Under small loads, the 

steel bearing plate and the concrete structure tend to 

behave as a continuum, but as the load increases, the 

shear transferred increases as well until it reaches a 

48 

critical limit where the steel plate starts to slip over 

the surface of the concrete. 

In this investigation the effect of the shear 

transfer will be discussed in depth in later chapters by 

the use of three different models which represent the 

three different cases of shear transfer. Since the bear-

ing system is symmetric about the vertical central axis, 

only half of each model will be analyzed to save calcula-

tion effort and computer time. 

The following are the three cases of shear 

transfer: 

1) The case of zero shear transfer. There is no shear 

force transferred along the contact zone between the 

steel masonry plate and the concrete abutment. The 

finite element grid system shown in fig. (4.5) 

consists of 165 nodes and 132 elements. The inter-

face zone is represented by stiff springs (one-
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dimensional truss elements) which only transfer axial 

stresses. The springs are linear-elastic; they have 

to be very stiff so that the relative displacement 

between the steel and concrete connected elements be 

zero in the vertical direction representing perfect 

contact . 

2) The case of infinite shear transfer. In this case 

the steel plates and the concrete abutment are 

assumed to behave as a continuum. The masonry plate 

elements are connected to the concrete elements 

directly through their nodal points as shown in 

fig. (4.6), where the shear will always be transfer­

red without any breakage in the bonds between the 

steel and the concrete. The finite element grid 

system consists of 150 nodes and 117 elements. 

3) The case of variable shear transfer conditions. The 

model shown in fig. (4.7) demonstrates that vertical 

and horizontal spring elements were added to transfer 

stresses in the corresponding directions along the 

interface zone between the surfaces of the masonry 

plate and the concrete abutment. Shear will be 

transferred to the concrete until it reaches a 

specified ultimate shear strength value, where the 

bonds will break and the masonry plate will start to 

slip over the surface of the concrete abutment. 

Characteristics of all material elements are presented 
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presented in chapter 5. 

3 POSSIBLE SOLUTION !-1.ETHODS 4. 
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As mentioned above, the three-dimensional solid 

model representing the bearing system could be approxima­

ted by either a symmetric cylindrical model so that an 

axisymmetrical solution is performed, or by a two­

dirnensional 1-inch wide model where a plane strain or a 

plane stress solution is performed. By the use of either 

one of the above mentioned approximations, a significant 

amount of calculation effort and computer time will be 

saved. The axisymmetric model without doubt is the best 

physical approximation of the three-dimensional solid 

model; however, a discussion of the possible solutions is 

presented in this section. 

4.3.1 THE AXISYMMETRIC SOLUTION 

The axisymmetric cylindrical model used in this 

type of solution is shown in fig. (4.2), and the finite 

element grid systems used in the analysis are demonstra­

ted in fig. (4.5), fig. (4.6), and fig. (4. 7), with the 

condition that axisymmetrical elements be used, and the 

model has to be loaded axisymmetrically. 

4.3.1.1 AXISYMMETRIC ELEMENTS 

An axisymmetric finite element is in the form of 

a ring of constant cross-section as shown in fig. ( 3. 4) . 



The element is usually described in a cylindrical co­

ordinate system whose axis of symmetry is the (z-axis) 

and for which radial distances are defined by the co­

ordinate (r) and the circumferential coordinate is de­

scribed by an angle 9 as shown in fig. (4.8). However, 

in this investigation the axisymmetric set of elements 

will be selected such that (z-axis) will be the axis of 

symmetry, (y-axis) is the radial direction and 

e = 1 radians as shown in fig. (4.9). The nodal points 

of the element are, in fact, nodal circles. Thus, the 
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analysis of axisymrnetric solids for axisymmetric loads is 

a two-dimensional problem since the displacement field 

can be described by just two components on the cross-

section, the radial (u ) and axial (u ) displacements. 
y z 

The strain components are radial (E ) , axial (E ) , y z 

circumferential ( E
6
), and shearing (y ) strains. The yz 

corresponding stress comoonents are a , a , 0
6

, and T 
- - y z yz 

Circumferential stresses and strains exist because the 

uniform radial displacement increases the circumf er en-

tial (or hoop) length [7]. 

4.3.1.2 AXISY~h~ETRIC LOADING 

As shown in fig. (4.2) and fig. (4.3), the uni­

form load is applied directly to the elastomeric disc 

which is 8 inches in diameter. Referring to fig. (4.9) 

(A) is the loaded area where 



z 

axisymmetrical element 
( top surface ) 

fig. ( 4.B ) C.il.l..;d rical coordinates . 

Pot plate 
( top v iew ) 

rig. ( 4.9 ) Top v iew o f th e axisymmetric section or the 
pot plate. 

55 



56 

8 
A = L: 

i=l 
A. 

l 
( 4. 1) 

and if (P) is the uniformly applied, load, then the 

resultant load is (R), where 

R = P · A 

but since the analysis is done by the finite element 

( 4 • 2) 

method, then nodal forces (L , n = 1 to 9) have to be 
n 

calculated. The method followed in this study is to 

calculate the resultant load (R.) applied on each area 
l 

(A.) shown in f~g. (4.9), and then distributing them on 
l 

the nodal points. 

Let r. be the y-coordinate (radial) of the ith nodal 
l 

point, such that r 1 = 0, r 2 is the y-coordinate of 

point 2, etc., then 

= 

substituting (4.3) in (4.4), 

( 4 • 3) 

( 4 • 4) 

( 4 • 5) 



Node number 
n 

1 
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3 
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n=l 
L 

n 
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i=l 

Load ( L ) 

R. 
1 

l.1 
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Generalizing (4.5), 

A . = 
J_ 

i = 2 to 8 ( 4 • 6) 

then the resultant load (Ri) is 

R. = P ·A. 
J_ J_ 

( 4 • 7) 

Nodal loads are calculated by proportioning the resultant 

load of each element surface area . It is assumed that 

2 
the centroid of Ai is 3 r 2 along the y-axis, where for 

(r.+l -r.) 
Ai, the centroid is at i 

2 
i (i = 2 to 8). 

The nodal load distribution for the axisyrnrnetrical model 

is shown in fig . ( 4 . 10) . 

4.3.2 THE PLANE STRAIN PLANE STRESS SOLUTION 

The two-dimensional 1-inch wide model used in this 

type of solution is shown in fig. (4.3). The finite ele-

ment grid systems for the plane strain or plane stress 

solution are the same used for the axisyrnrnetrical problem. 

However, plane strain or plane stress elements are used 

instead of axisymmetrical elements. The uniform load is 

distributed evenly among the nodal points of the loaded 

surface e x cept for the ones which are on its edges as 

explained i n sec. ( 4 . 3 . 2 . 3) . 
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3 2 1 PLANE STR.Z\IN ELEMENTS 4. • • 

consider the plane strain element shown in 

f . (3.4); the element is fixed aa_, ainst displacement in ig. 

the x-direction. Under this concition, the longitudinal 

strain ( s x) is zero, as well as the shear stresses (T ) yx 

4.3.2.2 PLANE STRESS ELEMENTS 

A plane stress element is shown in fig. (3.4). 

The element is assumed to be very thin so that the in-

Plane stresses (0 and 0 ) and the shearing stresses y z 

(T and T ) are constant across the thickness (t) . zy y z 

Nevertheless, the out-of-plane stress ( 0 ) and the shear 
x 

stresses (T yx and r
2

x) are assumed to be negligible. 

4.3.2.3 PLANE STRAIN PLANE STRESS LOADING 

A top view of the loaded pot plate is shown in 

fig. (4.11), considering that a 1-inch wide strip was cut 

out from the bearing system so that it could be analyzed 

as a two-dimensional model representing the structure. 

All areas shown in fig. (4.11) are 1-inch wide and of 

equal lengths (b). If the uniformly applied load is (P), 

then the resultant load (R.) in equation (4.7) is eaual 
l -

for all areas. The nodal load d i stribution for the plane 

strain or plane stress model is shown in fig. (4.12). 



Fig. ( 4.11 ) Top view of the plane-strain o r plane-stress 
section of the pot plate. 
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4.3.3 A COMPARATIVE LOOK AT THE 
PROPOSED SOLUTION METHODS 

62 

It has been mentioned earlier that an axisymmetri-

cal solution would seem to be the best approximation to 

analyze the three-dimensional solid system shown in 

fig. (4.1), from a physical point of view. However, 

analytically, the characteristics of the elements dis­

cussed in section (4.3) indicate that in plane strain or 

plane stress problems, the internal work is always 

associated with three strain components in the coordinate 

plane (y, z) . The stress component normal to this plane, 

(out-of-plane stresses), is not involved due to zero 

values of either the stress or the strain. In the axi-

symmetric problem, any radial displacement automatically 

induces a strain in the circumferential direction. As 

the stresses in this direction are non-zero, this fourth 

component of strain and of the associated stress has to 

be considered. Nevertheless, in a~y solution method, 

internal work in a structure should always balance the 

external work to satisfy the equilibrium condition. 

Hence, stresses in the bearing system are expected to be 

larger when using a olane stress or olane strain solution 

method , [ 12 ] . 



CHAPTER 5 

.MATERIAL ELElflENT MODELS 

The modeling of the bearing system has been 

discussed in chapter (4), however, the discussion of the 

material element models which represent the properties 
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and behavior of the different materials used in the 

construction of such a structure, is left to this chapter. 

The different ~aterials used in the construction 

of the bearing system are divided into three main groups, 

1) steel, which is used to manufacture the pot bearings 

and masonry plates, 2) concrete, which is usually used 

to build abutments for such structures, and 3) material 

model to si~ulate the interface between the steel masonry 

plate and the concrete abutment. It is noteworthy here 

to point out that there is no such material that exists 

in nature; however, it is essential for the completion of 

this investigation to develop certain material models 

which best approximate the behavior of the interface zone 

depending on which case of shear transfer is being inves­

tigated, see sec. (4.2). Since it is assumed that the 

load will be uniformly applied in all loading stages at 

all times, there were no material elements used to 

represent the elastomeric material, see chapter (1) 



Nevertheless, a complete discussion of the elastomeric 

material properties and behavior is presented in the 

National Cooperative Highway Research Program Report 

248 [13]. 

5.1 STEEL ELEMENTS 

All bearing plates used in the bearing system 

under investigation are fabricated from ASTM A-36 steel, 

the pot being machined from a solid steel plate to pro­

vide complete security and eliminate welding and distor­

tion problems. All surfaces internal and external are 

treated with a 10 mil epoxy coal tar paint system to 

resist corrosion. 
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According to the manufacturing company, Spencer 

Dynamics [10], bending stresses used in the design of the 

bearings are a maximum of 16 Ksi; due to the rather 

conservative stressing method and design assumptions, 

actual stresses are about half this value. Thus, the 

bearing plates can be supplied proof-loaded to twice the 

rated capacity specified for the bearing system, under 

investigation, as 150 Kips. Hence, if the bearing was 

loaded uniformly by a relatively small load, such as 

3500 Psi, the steel plate will not yield, and it will 

always stay in the elastic range. With respect to the 

above-mentioned information, a linear elastic isotropic 

material model was used to represent all the steel ele-
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ments of the pot bearing and masonry plates. 

l l LINEAR ELASTIC ISOTROPIC MODEL 5. . 

This model assumes that the elements of the 

constitutive matrix are constant, i.e., independent 

of magnitude or history of stresses and strains. 

The material (property) matrix, which relates element 

strains to element stresses in (3.9), is formed from 

the two elastic constants E (Young's modulus of 

elasticity) and v (Poisson's ratio) [ 9] • 

For axisymmetric analysis the material matrix is, 

cl c2 0 c2 

c2 cl 0 c2 
[ c] = ( 5 . 1) 

0 0 c3 0 

c2 c2 0 cl 

where 

c E (5.1.a) = 
3 2(1 + \) ) 

c2 
2vc

3 (5.1.b) = (1 - 2v) 

cl = c2 + c3 (5.1.c) 



and the corresponding stress o and strain s vectors 

are, for example, in small displacement analysis at 

time (t) 

t 0 } • 
XX I 

respectively. 

5. 2 CONCRETE ELEMENTS 

No one mathematical model can describe the actual 

behavior and strength of concrete materials because it 

is very complex, however, the properties that are essen-

tial to the problem being considered will be represented 

by a simple model. 

Typical concrete compressive stress - strain 
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curves are shown in in fig. (5.1) obtained by appropriate 

strain measurements on c y linder tests at moderate test­

ing spees on concrete 28 days old, for various c y lin­

der compressive strength f' [ 14] . All curves shown in 
c 

the figure have somewhat similar character. They 

consist of an initial relatively straight elastic 

portion, then begin to curve to the horizontal, reachi.ng 

the maximum compressive strength at a strain of approx-
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jJnately 0.002 in/ in, and finally show a descending 

branch. This is described as the elastic - plastic 

behavior of the concrete, which i .s attributed to the 

fact that under uniformly applied load, increasinq at 

a moderate speed, micro cracks within the concrete 

will take place and become larger as the load increases. 

When the internal stresses in the concrete reach the 

ultimate compressive strength, the concrete will crush. 

The yielding stress of the concrete is approximately 

0 4 5 f I to 0 • 5 0 f I [ 14] • . c c 

The slope of the initial straight elastic por-

tion of the stress - strain curve is denoted as the mod-

ulus of elasticity (E ) of the concrete, which could be c 

calculated, with reasonable accuracy, from the empirical 

eauation 

E = 33 w3/ 2 If""' Psi c c 
( 5 • 2) 

where w is the unit weight of the ha.rdened concrete in 

pcf. Equation ( 5. 2) has been obtained by testing struc­

tural concretes with values of w from 90 to 155 pcf. 

TPnsile strength (ft) i .s a more variable property 

than compressive strength, and is about 0.10 f' c to 

0.15 f~ [14]. It has been found to be proportional 

to I F c . 

ft = 6. 7 

The ACI code has indirectly used 

~ psi for normal-weight concrete and c 



= s.7 If' for all light-weight concrete (ACI-11.2). 
ft c 

There are two elastic-plastic material models 

available in the NONSAP library, elastic-plastic 

von Mises yield condition, and elastic-plastic Drucker 

Prager yield condition, see table (3.3). However, the 

latter is formulated for an elastic - perfectly plastic 

material behavior; hence the concrete element in this 

investigation will be represented by the elastic-plastic 

von Mises yield condition element material model, 

assuming that it is the best approximation of the 

concrete stress - strain curve discussed above. 

5.2.l von MISES YIELD CONDITION 

The von Mises yield criterion considers the 

octahedral shearing stress as the key variable for 
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causing yield of materials which are pressure independent. 

It states that yielding begins when the octahedral 

shearing stress reaches a critical- value, K, which is 

defined as the yield stress in pure shear, such that the 

octahedral shearing stress is, [3]: 

1 oct = ./} J 2 = A K 

where (J 2 ) is the second invariant of the deviatoric 

stress vector. The material yielding function is 

obtained by reducing (5.3) to the simple form 

( 5 . 3) 



(5.4) 

5. 2 . 2 DEVIATORIC STRESS INVARIANTS 

consider the general stress matrix [ 0 .. ] where 
l] 

0 '[ '[ 
y yz yz 

[ 0 .. ] 
i 1,2,3 ( 5. 5) = '[ 0 '[ = 

l] zy z xz j 

'[ '[ 0 xy xz x 

for the solid shown in fig. (5.2), and let the principal 

stresses be defined as 0 1 , 0 2 , and 0 3 . 

The deviatoric stress vector which represents a 

state of pure shear is defined by 

[s .. ] = [ 0 .. ] - 0 [ o .. ] 
lJ lJ m lJ 

where 

1 
0 = -3 ( 0 + 0 + 0 ) m y z x 

and 0 .. is the Kronecker delta such that lJ 

+l if i = j 
0 .. = lJ 

0 if i 'I j 

The invariants of [S .. ] are obtained by setting the 
lJ 

( 5. 6) 

determinant of [ s . . - s o . . ] equal to zero, resulting in 
lJ lJ 

the cubic equation 

( 5. 7) 
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where J
1

, J 2 , and J 3 are the three invariants of the 

deviatoric stress vector. 

solving (5 · 7) ' 

J = s + s + s = 0 1 y z x 

J = ! [o - o )
2 + (o - o ) 2 + (o - o ) 2 ] 2 6 y z z x x y 

s T T y yz yx 

J3 = det. T s T zy z zx 

T T s xy xz x 

If the coordinate axis (y, z, x) coincide with the 

principal directions where s
1

, s 2 , and s
3 

are the 

principal deviatoric stresses, then 

J2 (s12 + s22 + s32 ) 1 2 = = 6[ 0 1 - o 2) 

+ (o -3 
°i) 2] 

J3 = ! (S 3 + s 3 + s 3 = sl s2 s3 3 1 2 3 

(5.8.a) 

(5.8.b) 

(5.8.c) 

(5.9.a) 

(5.9.b) 

(5.9.c) 

However, in a uniaxial tension test, yielding will occur 

when o 1 = o z and o 2 = o 
3 

= O , where o 
1

, o 2 , o 
3 

are the 



73 

principal stresses. Substituting in (5.9.b), 

(5.10} 

and substituting (5.10} in (5.4}, 

2 
oz 

= -3- ( 5 .11} 

Then the general von Mises yield function is written, 

from (5.8.b} and (5.11}, as 

f(J 2 } = ! [(a - a >
2 + (a - a )

2 + 
6 y z z x 

2 
(a -a} ] 

x y 

( 5 .12} 

However, equation (5.12} only represents the simplest 

form of the yield function because it depends fully on 

the proposed hardening rule for work-hardening materials. 

A complete description of the NONSAP formulation of the 

elastic - plastic, von Mises yield criterion is presented 

in the NONSAP corrunentary [ 4 ] and ref. [ 9] . 

5 • 3 INTERFACE ELEMENTS 

This investigation is primarily concerned with 

the study of the effect of the shear transfer between 

the masonry plate and the concrete abutment, on the 

stress distribution in the concrete, and on the steel 

bearing plates bending stresses. The analysis is done 
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bY considering the three cases of shear transfer 

presented in sec. (4.2), however, because of their 

great importance, the interface material models for each 

case will be discussed separately in this section. 

5. 3 .1 THE CASE OF ZERO SHEAR TRANSFER 

The finite element grid system representing this 

case is shown in fig. (4.5) where the contact zone be­

tween the masonry steel plate and the concrete is 

modeled by very stiff spring elements. 

The springs shown in the grid system are actually 

one-dimensional truss elements with one degree of free­

dom on each side, and they are only capable of transfer­

ring axial stresses. Hence, only vertical stresses will 

be transferred from the masonry steel plate elements to 

the concrete elements. Since the springs are very stiff, 

their axial displacement will approach zero, so that 

the vertical displacements of the - connected nodes of the 

steel and concrete elements will be approximately equal, 

minimizing any portion of the vertical stresses absorbed 

for the springs axial deformation. However, since 

there will be no horizontal stresses (shear stresses) 

transferred, there will be nothing to prevent the 

bearing plates from slipping over the concrete surface. 

There are two material models available in the 

NONSAP element library for truss elements, linear 

elastic or nonlinear elastic, see table (3.2). 



However, since vertical springs here are only used to 

transfer vertical stresses, they will be represented by 

the linear elastic material model. 

The stiffness matrix of each spring is 
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[K] = AE [ l 
L -1 

(5.13) 

where 

A= the cross sectional area of the spring, 

calculated to be proportional to the connec-

ted areas of concrete and steel elements. 

E =Young's modulus of elasticity 

L = length of the spring. 

It is noteworthy to point out that the stiffness of the 

springs is increased by selecting a very large (E) , so 

the magnitudes of the area (A) and the length (L) of the 

springs will have very little significance. 

5.3.2 THE CASE OF INFINITE SHEAR TRANSFER 

The finite element grid system representing this 

case is shown in fig. (4.6) where no special considera­

tion has been given to model the interface between the 

steel and the concrete. As shown in the grid system, 

the steel elements are directly connected to the 

concrete elements through their nodal points. In other 

words, the interface elements in this case are nothing 



but the common nodal points of the two different 

materials. Hence, not only vertical stresses will be 

transferred, but shear stresses will be transferred 

infinitely as well, so that the steel bearing plates 

and the concrete will behave as a continuum. 

5.3.3. THE CASE WITH SHEAR TRANSFERRED 
THROUGH INTERFACE ELEMENTS 

The behavior of the interface between material 

elements is one of great complexity because of the dif­

ficulty in finding the most suitable function that 

describes the slip. Straight interface elements with 

linear description of slip between rock joints were 

first introduced by Goodman, Taylor and Brekke (1968) 

[15]. The bond behavior between steel and concrete was 

simulated by Ngo and Scordelis (1967) [16], with the 

help of linear springs placed between element nodes. 

However, this method leads to incompatibilities between 

nodes if higher order finite elements were used. 

Ghaboussi, Wilson and Isenberg ( 19 6 9) [ 17, 18] , have 

also formulated an interface element covering a wide 

range of joint properties. Schafer (1975) [19], has 

developed straight bond elements with linear and para­

bolic behavior of slip. In 1977, Buragohain and 

Shah [20,21] proposed curved isoparametric line and 

axisymmetric interface elements with zero thickness to 
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. ulate curved surfaces and parabolic variation of slip. s1m 

None of the interface elements mentioned above 

Used in this investigation. They were studied in was 

order to help in developing the interface spring elements 

used to simulate the behavior of the interface zone be­

tween the masonry steel plate and the concrete abutment. 

It has been found that there are two different general 

approaches in modeling the interface zone. It could be 

represented by interface spring elements simply transfer-

ring horizontal and vertical stresses, or by two-

dimensional finite elements. In either approach, the 

slip could be described by either linear or nonlinear 

functions as long as compatibility conditions are satis-

fied. In the following two sections, two different inter-

face elements, each representing a different approach, 

will be introduced. The discussion of the interface 

spring elements used to simulate the interface zone in 

the bearing system will be left to chapter (6). 

5.3.3.l LINKAGE ELEMENT BY 
NGO AND SCORDELIS 

The "linkage element" shown in fig. (5.3) consists 

of two linear springs parallel to a set of orthogonal 

local axes H and v. For generality, the linkage element 

can be oriented at any arbitrary angle 8 with the global 

horizontal y-axis. The linkage element has no physical 

d' imension at all, and only its mechanical properties are 



Global 
coordinates 

z 

v 

Fig. (5.3) Linkage element. 
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of importance. Th ~efore, it can be placed anywhere in 

the structure without disturbing its geometry. The 

formulation of the stiffness matrix is presented in 

Appendix A. 

5.3.3.2 TWO-DIMENSIONAL INTERFACE ELEMENT 
BY GHABOUSSI, WILSON AND ISENBERG 

At the interface of a structure there can be a 
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significant change in stiffness of the different elements. 

In the case of crack closing in a nonlinear problem, the 

normal stiffness across the crack surf aces becomes 

infinite, causing numerical problems. However, those 

problems can be avoided by transforming the equilibrium 

equations in terms of both absolute and relative dis-

placements rather than in terms of absolute displace-

ments only. Ghaboussi, Wilson and Isenberg suggested 

the formulation of a two-dimensional interface element 

which involves two relative nodal displacements as shown 

in fig. (5.4). The nodal displacements associated with 

the interface element are shown in fig. (5.5), where 

u's and 6's represent the absolute and relative displace-

ments respectively. Notice that if the interface thick-

ness h is considered to be very small compared to the 

size of the upper and lower two standard finite elements, 

then the assumption that strains do not vary in the thick­

ness direction is valid. The physical behavior of the 



upper standard 
2-D finite 
element 

8 * 8 stiffness 
matrix 

n 

U I {:, 
n n 

Interface 
element 

z 

y 

Global coordinate 
system 

/ 
u , 6 s n 

s 

Lower standard 
2-D finite element 

8 * 8 stiffness 
matrix 
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two-dimensional interface element involves separation 

and slip along the contact zone. The stress - strain 

relations in the normal and horizontal direction are 

shown in fig. (5.6.a) and fig. (5.6.b) respectively. 

When the shear stress transferred along the 

interface reaches a certain ultimate shear strength 

value, T , it will slip, not being able to transfer any 
u 

more shear. The interface element cannot carry tension 

stresses, therefore separation along the interface is 

allowed; however, stiffness in the normal direction 

increases after the crushing of irregularities along 

the contact zone. 
c In the case of smooth surfaces, € 
n 

is considered to be equal to zero, see fig. (5.6.a). 

82 

The formulation of the two-dimensional interface element 

is presented in Appendix A. 
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CHAPTER 6 

.MODELING OF BEARING SYSTEM 

INTERFACE ELEMENTS 

Preliminary studies have shown that under small 

loads the bearing system would tend to behave as a 

continuum. However, as the load increases, larger 

normal and shearing stresses would be transferred along 

the interface zone between the masonry steel plate and 

the concrete abutment. When the shear stress reaches a 

certain ultimate shear strength value, the bond between 

the steel and concrete elements would break, causing the 

masonry plate to slip over the concrete surface. 
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Some of the interface elements which could pos­

sibly represent the interface of the bearing system were 

mentioned in sec. ( 5 . 3 . 3) . However, vertical and 

horizontal interface spring elements are proposed here 

to serve that purpose. 

6 .1 INTERFACE SPRING ELEMENTS 

The proposeC. method of using vertical and 

horizontal interface spring elements reauires the steel 

and concrete elements adjacent to the interface zone to 

have the shape shown in fig. (6.1). Each vertical 
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vertical interface 
spring element 

Fig. (6.1) Vertical and horizontal interface 
spring elements. 



spring is assumed to be a linear - elastic one­

dimensional element transferring normal stresses along 

its axis. On the other hand, each horizontal spring is 

assumed to be a nonlinear elastic - plastic one­

dimensional element which stays in the elastic range un-

til the shear transferred through it reaches an ultimate 
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shear strength value where it starts to deform nonlinear-

ly indicating the start of slip. The stress-strain 

diagrams for vertical and horizontal interface spring 

elements are shown in fig. (6.2.a) and (6.2.b) 

respectively. 

The stiffness matrix for the spring element 

shown in fig. (6.3) is defined as [8]: 

[ 

+l 

-1 

-1] 
+l 

( 6. 1) 

where KS = spring stiffness 

ES = spring modulus of elasticity 

AS = spring cross sectional area 

LS = length of the spring 

and the spring stiffness equation is given as 

( 6 • 2) 
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where F
1

, u 1 and F 2 , u 2 represent spring forces and dis­

placements at nodes 1 and 2 respectively. 

From equation ( 6. 2) we get 

Es As 
(ul - u2) Fl = LS 

(6.3.a) 

and 

Es As 
(-ul + u2) F2 = Ls-

(6 . 3.b) 

since F
1 

arid F 2 are equal and opposite, equations 

(6.3.a) and (6.3.b) could be rewritten symbolically as 

force in the spring element where F S = 
ESAS 

ks = spring stiffness constant = 
LS 

65 = spring relative displacement. 

Rearranging (6.4), 

1 
tis = ks . F s 

( 6. 4) 

Equation (6.5) indicates that the spring stiffness 

constant controls its relative displacements. If AS 

and L8 were assumed to be kept constant, the spring 

relative displacement will depend on the value of the 
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spring modulus of elasticity Es. 

Referring back to the vertical and horizontal 

stress~strain diagrams shown in fig. (6.2.a) and 

fig. (6.2.b), if perfect contact was assumed between the 

masonry plate and the concrete abutment, the rela-

tive displacements of the vertical interface spring 

elements are expected to be very small approaching zero; 

therefore, ESV should be assigned a very large value 

'which approaches infinity. Since the masonry plate is 

not restrained in the horizontal direction and because 

different displacement functions were assumed for the 

steel and concrete elements adjacent to the interface 

zone, when the shear transferred is less than the 

ultimate shear strength, the relative displacements in 

the horizontal interface spring elements are not expec-

ted to approach zero; however, they are very small. 

Therefore, ESH should be assigned a large value but 

significantly less than Esv· However, when shearing 

stresses transferred through the horizontal springs 

reach the ultimate shear strength value, those springs 

will start to slip having large relative displacements 

indicating that the slip modulus, EP, should be 

assigned a very small value . 

Nevertheless, there remain two critical unsolved 

problems. Firstly, what are the values of the moduli of 

elast · · icity discussed above? Secondly, what is the shear 
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strength in the horizontal interface spring elements? 

2 INTERFACE SPRING ELEMENTS STIFFNESS 6. 

~he vertical spring element stiffness has to be 

91 

large enough so that the relative vertical displacements 

approach zero. However, if the interface zone is too 

thin, a large normal stiffness might cause an ill­

conditioning problem resulting from dividing a very big 

number by a very small one. The spring stiffness con-

stant was defined in equation (6.4), showing that an ill-

conditioning problem will arise if Es >> Ls. It was 

recommended that the interface normal stiffness be equal 

5 to 10 times the stiffness of the adjacent elements [6]. 

The horizontal interface spring element stiffness 

could be determined by either a classical theoretical 

"exact" solution, or experimentally. However, a theo-

retical solution might involve tedious lengthy calcula-

tions, and expe'r imental results might complicate the 

problem by adding more variable parameters. Therefore, 

the procedure adopted here for determining the hori-

zontal spring stiffnesses involves trying different 

values, then comparing the outcoming results against 

those of known solutions, such as the infinite shear 

transfer case with ESH equals infinity, and the case of 

zero shear transfer with E equals zero. The interface 
SH 

zone f h or t e infinite and zero shear transfer cases 

modeled as shown in fig. ( 6. 4) and fig. ( 6. 5) respectively. 
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Fig. (6.4) Case of infinite shear transfer. 
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l EXAMPLE PROBLEM 6.2. 
Two steel beams laying on top of each other were 

94 

analyzed, assuming infinite shear transfer and zero shear 

transfer conditions modeled as shown in fig. (6.6.a) and 

. (6.6.b) respectively. Then the two beams were fig. 

modeled by including the vertical and horizontal inter-

face spring elements. The stiffness of the vertical 

springs was assumed to equal 10 5 times the stiffness of 

the adjacent steel elements. However, the model in 

f . (6.6.c) was analyzed assuming different horizontal ig. 

spring stiffnesses and the results were compared against 

those of models representing the infinite and zero shear 

transfer cases. A plane strain solution was assumed for 

all computer runs. 

Bending stresses in the top elements of the upper 

beam (results from the various computer runs) were 

averaged and listed in table (6.1). Generally speaking, 

bending stresses were larger in the zero shear transfer 

case than in the infinite shear transfer case. Thus, 

for the model which includes interface spring elements, 

results converged toward representing the infinite shear 

transfer or the zero shear transfer cases,depending on 

the value of E 
SH" 

When ESH was set to equal 500 Ksi, the averaged 

negative bending stresses in the center elements (7, 8, 

and 9) were about 1.1 to 1.7 % larger than in the zero 



~ z 

11 2 3 4 5 6 7 8 9 10 11 12 13 

I 1 I I I I I I I I I I I I 2 3 4 5 6 7 8 9 10 11 12 

~~~m 141 I I I I I I I I I I I I 2 6 

J 
l 

Bottom 
beam 

l 37 48 .... 
A A .... 

Steel: E 29000 Ksi 

\) = 0.25 

Fig. (6.6.a) Two beams with infinite shear transfer condition. 

y 

l.O 
Ul 



z .. 
3 4 5 6 7 8 9 10 11 12 13 

3 4 5 6 7 8 9 10 11 12 

-~-L~~~~+-~-+~~-1-~--f~~-t--~--f~~t-~-t~--'26 Top ---+- _beam 

51 
50 

24 
38 

~~-r(L~r-~-r~~r-===f====f=.===t====t====t====f=====f~==J}2..__Ele.38 -- 52 

-+---~-----l-----+---l--

,,A. ...,.,, 

Fig. (6.6.b) Two beams with zero shear transfer condition. 

_Bottom 
beam 

-.,. ... y 

\.0 

°' 



Vertical 

Node 

Horizontal 
spring 
no.62 

Vertical 
spring 
element 
no.38 

1 2 3 4 5 6 7 8 9 10 11 

1 2 3 4 5 6 7 8 9 10 11 

13 14 23 

Fig. (6.6.c) Two beams with interface spring elements. 

12 13 

12 

24 

Top 
beam 

Node 
no.64 

Bottom 
Beam 

Horizontal 
spring 
element no. 
85 

\.0 
-....) 



I 
Esv ESH ELEMENT NUMBER Model 

description (Ksi) (Ksi) 7 8 9 10 11 12 

Infinite 
shear 00 00 -38.94 -36.82 -32.29 -24.25 -12.16 -2.61 
transfer 

29*10
8 

29*10
8 

-40.15 -37.91 -33.32 -25.45 -13.18 -2.96 
Includes 
vertical & II 29000 -40.81 -38.68 -34.25 -26.34 -13.70 -3.09 
horizontal 
interface II 17500 -41.56 -39.42 -34.95 -26.92 -14.05 -3.19 
spring 
elements II 5000 -45.67 -43.35 -38.49 -29.77 -15.81 -3.74 

II 500 -61. 80 -58.48 -51. 62 -39.99 -22.15 -5.81 

Zero 
29*10

8 shear 0 -61.14 -57.76 -50.71 -38.78 -21.14 15.48 
transfer 

Table (6.1) Plane strain solution. Averaged bending stresses (Ksi) in the top 
elements of the upper beam. Gauss integration points 2 and 4. 

\ END 
OF 
BEAM 

l.O 
00 



shear transfer case, but that difference increased in 

the end elements (10, 11, and 12) to about 3.0 to 5.6%. 

When ESH was set to equal 29000 Ksi, the averaged 

negative bending stresses in the center elements 

(7, 8 and 9) were about 4.6 to 5.7% larger than in the 

infinite shear transfer case, but that difference 

increased in the end elements (10, 11, and 12) to about 

8.0 to 15.5%, and those results would not vary by much 

if ESH was increased beyond 29000 Ksi; see results ob­

tained when ESH was set to equal 29 * 10
8 

Ksi in 

table ( 6 • 1) • Results indicated that bending stresses 

tend to be more uniformly distributed along the beam if 

interface spring elements were used. They also tend to 

be slightly larger as a result of the reduction in the 

average thickness of the beams enforced by using tri-

angular elements adjacent to the interface zone as shown 

in fig. ( 6 . 6 . c) . Relative vertical and horizontal dis-

placements for some of the adjacent nodes along the 

interface zone are listed in table (6.2). 
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Based on the results presented above, the inter­

face spring elements material properties could be approx­

imated. For the vertical springs the modulus of elasti-

. 8 
city, ESV' equals 29 * 10 I<si. However, for the horizon-

tal springs, if shear transferred is less than the ulti­

mate shear strength, and ESH equal to 29000 Ksi will be 

adequate so that no slip will occur. If shear stresses 



-----, 
with 
inte rface 27 - 40 38 - 41 32 - 4 5 33 - 46 34 - 47 38 - 51 39 - 52 

Nodes in models spri ng e l e me nts 

wit hout 
inte rfa c e 27 - 40 28 - 4 2 32 - 50 33 - 5 2 34 - 54 38 - 62 39 - 64 
spring el ements 

Mo d e l Esv ESH Relative 

description displacement 
(Ksi ) (Ksi ) ( inc he s ) 

Infinite t. H 0.0 0 . 0 0 . 0 0.0 0 . 0 0 . 0 0.0 
shear 00 m 

tr a n s fer tw 0 . 0 0.0 0 . 0 0.0 0 . 0 0 . 0 0 . 0 
f----- + - --

29 * 10
8 t\11 - 0 . 00 11 - 0. 0013 - 0. 00011 0 . 0 - 0 . 00011 +0.0013 +0.0011 

In c ludes 29000 

i nt e rfa c e t. V 0.0 0.0 0.0 0.0 0 . 0 O. G 0.0 
spri ng - --- - ------- -
e l e me nts 29 * 10 8 ll fl -0 . 064 - 0 . 0 62 - 0.016 0.0 +0.016 +0.062 +0.064 

500 
t. V 0 . 0 0 . 0 0.0 0.0 0 . 0 0 . 0 0.0 

f----- --t-- -- ---- ---·---- t-
Ze ro 

29 * 10
8 AH -0 . 059 -0. 0 56 - 0.00 16 +0 . 01 8 +0 . 03 7 +0.092 +0 . 094 

s he ar 0 .0 
tr a n s fer f\V 0 . 0 0.0 0.0 0.0 0 . 0 0.0 0 . 0 

Tabl e ( 6 . 2 ) Pl a ne strain s o lutio n . 
Lis t o f r e lative ver ti c a l and ho rizont a l displacements be tween var i o us nod e s adj acent t o the inte rface zo ne (inche s) . 

I-' 
0 
0 
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transferred in the horizontal springs reach the ultimate 

shear strength value, then an ESH equal to 500 Ksi will 

be adequate to represent a slip condition. The cross­

sectional areas and lengths of the springs were calcula­

ted to be geometrically proportional to the elements 

adjacent to the interface zone. 

6.3 THE BEARING SYSTEM MODELED WITH 
INTERFACE SPRING ELEMENTS 

A finite element grid system of the bearing system 

modeled with vertical and horizontal interface spring 

elements was shown in fig. (4. 7). The bearing system was 

analyzed assuming different interface spring elements 

stiffness values; results were compared against those of 

bearing system models representing zero and infinite 

shear transfer conditions, shown in fig. ( 4. 5) and 

fig. (4.6) respectively. The analysis was carried out 

using axisyrnrnetric and plane strain solution methods. 

Interface spring elements were assumed to be 

0.25 inches long, and their cross-sectional areas were 

calculated to be geometrically proportional to the steel 

and concrete elements adjacent to the interface zone. 

Vertical and horizontal springs calculated cross­

sectional areas for both solution methods were listed in 

tables (6.3.a) and (6.3.b) respectively . The vertical 

springs modulus of elasticity assumed to be 10 5 times the 

adjacent steel elements modulus of elasticity, equals 



vertical 
spring 
element no. 

63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 

Axisymmetric solution 

. 2 
A -in s 

0.01 
0.04 
0.09 
0.14 
0.18 
0.22 
0.27 
0.32 
0.36 
0.40 
0.45 
0.50 
0.54 
0.58 
0.63 
0.68 
0.72 
0.76 
0.81 
0.86 
0.90 
0.94 
0.99 
1. 04 
1. 08 
1.12 
1.17 
1. 22 
0.31 

Plane strain 
solution 

. 2 
A -in s 

0.125 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.125 

Table (6.3.a) Vertical interface spring elements 
cross-sectional areas. 
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Horizontal Axisymmetric solution Plane strain 

spring solution 
element no. A -in 2 

A -in 
2 

s s 

92 1. 00 1.25 

93 0.12 0.25 

94 0.20 0.25 

95 0.30 0.25 

96 0.38 0.25 

97 0.48 0.25 

98 0.56 0.25 

99 0.66 0.25 

100 0.74 0.25 

101 0.84 0.25 

102 0.92 0.25 

103 1. 02 0.25 

104 1.10 0.25 

105 1. 20 0.25 

Table (6.3.b) Horizontal interface spring elements 
cross-sectional areas. 
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8 
29 * 10 Ksi. The horizontal springs modulus of elasti-

Was assumed to equal 29000 Ksi representing the 
citY 

infinite shear transfer condition (initial no slip 

modulus, ESH), and 29 Ksi representing the zero shear 

transfer condition (slip modulus, EP), see fig. (6.2.a) 

and fig. ( 6 . 2 . b) . 

Results from the analyzed models representing the 

infinite and zero shear transfer conditions with and 

without using the interface spring elements for both 

solution methods, were compared and tabulated. Averaged 

bending stresses in top of the pot bearing were listed 

in tables (6.4.a) and (6.4.b); averaged bending stresses 

in top of the masonry plate were listed in tables (6.5.a) 

and (6. 5. b); averaged concrete vertical stresses were 

listed in tables (6.6.a) and (6.6.b); averaged concrete 

shearing stresses ~ . .,ere listed in tables ( 6. 7. a) and 

(6.7.b); refer to fig. (6.7). Generally speaking, results 

indicated that negative bending stresses in the pot bear­

ing and the masonry steel plates were slightly lower in 

models which included the interface spring elements. 

That could be attributed to the fact that horizontal 

interface spring elements actually connect nodes adjacent 

to the interface zone rather than connecting adjacent 

surfaces, hence the shear transferred along the interface 

would be concentrated in those springs instead of being 

uniformly distributed. Therefore the restraint against 
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ESV ESll Element number 
Model description 

(Ksi) (Ksi) 1 2 3 4 5 6 7 c 9 10 

Infinite shear 
transfer without 

00 00 -8.65 -8.30 -7.88 
interface spring 

- 7.43 -6.84 -6.10 -5.13 -3 .37 -1.07 -0.08 

elements 
1------------ ---- -- -------1 --- ----1-------- 1----- --t------ 1-------- - ·--- --

Infinite shear 
transfer with 29 • 10 8 29000 
interface spring 

-8.59 -8.26 -7.87 -7 .43 -6.83 -6.07 -5.09 -3. 32 -1. 06 -0.08 

elements 

Zero shear transfer 
29 • 10 8 

without interface 0 -9.63 -9.20 -8. 73 -8 .20 -7.53 -6.71 -5.65 -).78 -1. 31 -0.16 

spring elements 
-

Zero shear transfer 
29 • 10 8 

with interface 29 ~9.53 -9. 12 -8.70 - 8.19 -7.52 -6.68 -5 .59 -) . 71 -1.29 -0.16 

spring elements -- -----= - -~------ - -----

Table (6.4.a) Axisymrnetr· ic solution. Averaged bending stresses (Ksi) in top of the pot bearing steel plate. 
Gauss integration points 2 and 4. 

I-' 
0 
O"I 



Esv ESll Eleme n t number 
Model description 

(Ksi) (Ksi) l 2 3 4 5 6 7 8 9 

Infinite shear 
transfer without 

00 ro -9. 74 -9 . 60 -9 . 33 -8.90 -8.30 -7.50 -6.42 - 4.47 -1.77. 
interface spring 
elements 

Infinite shear 
transfer with 29 • 10 8 29000 -9.38 -9.3J - 9. 15 -8.78 -8.20 -7 . 40 -6. 31 -4 . 37 -1 . 72 interface spring 
elements 

Zero shear transfer 
29 • 10 8 without interface 0 -10.35 -10.21 -9.92 -9.47 -8.84 -8 . 00 -6.87 - 4.84 -2.02 

spring elements 
1----

Zero shear transfer 
29 • 10 8 

with interface 29 - 10.02 -9 . 89 - 9 . 63 -9.20 -8 . 58 -7.75 -6.62 -4.6 4 -1. 92 
spring elements 

Table (6.4.b) Plane strain solution . Averaged bending stresses (Ksi) in top of the pot bearing steel plate. 
Gauss integration points 2 and 4 . 
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Model description 
ESV ESH Element number 

(Ksi) (Ksi) 21 22 23 21 25 26 27 28 29 30 31 32 33 34 

Infinite shear 
transfer without 
interface spring 00 00 ~o.84 -0.85 -0.84 -0.81 -0.75 -0.68 -0.71 -0 . 97 -1.43 - 2 . 02 -2.97 -0.78 +0.05 +0.03 

elements 
f--~~~~~~~~-------+--~~--~--t--~~~-+~~--;c-~~ .-~~-t-------~~~-;1---~+--~~-.-~~--+~~~r---~-t-~~-+-~~--ic--~~+-~~-+ 

Inf i nite shear 
transfer with * 8 
interface spring 29 10 29000 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.46 - 0.77 -1 . 26 -1 . 82 -2.56 -0.47 +0.13 +0.08 

element 
r----~~~~---~--~--t--~~--~-~~~~--;1-~~+-~~-+-~~-- -~~-+~~--;c-~---<~~-+--~~-1-~----+-~~1---- --1~~---1~~-~-~~~4 

Zero shear transfer 8 . without interface 29 * 10 0 +0.36 +0.32 +0.28 +0.25 +0.22 +0.19 +0 . 05 -0.33 -0.98 - 1.78 -2.91 -0.85 -0.22 +0.06 
I spring e le men ts 
>-- -----t--- -- --~-~~~--lc---~~1--~~-1--~~+-~~-1-~--1-~~-t-~~--1-~~--+~~---j 

: z~ro ~hear transfer 8 
I with interface 29 * 10 29 +0.85 +0.81 +0.77 +0 . 71 +0.63 +0.54 +0.33 -0.11 - 0.78 -1.52 -2.37 -0 . 36 +0.14 +0.07 
~ spring elements 

Table (6.5 . a) l\xisymmetric solution. Averaged bending stresses (Ksi) in top of the maso nry steel plat e . 
Gauss integration points 2 and 4. 
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Esv ESll Element number 
Mo d e l description 

(Ksi) (Ksi) 21 22 2) 24 25 26 27 28 29 JO )1 

-- 1-----J· 
Infinite shear 
transfer without 

00 00 -0. 77 -0 . 76 -0. 73 -0 . 68 -0.61 -0.52 -0.52 -0.76 -1. 31 -2.06 -3.26 interface spring 
elements 

Infinite shear 
transfer with 29 • 10 8 29000 - 0.34 - 0. 34 - 0.26 -0.21 -0 . 18 -0 . 16 -0 . 23 -0.53 -1. 10 -1.82 -2.73 interface spring 
elements 

Zero shear transfer 
29 • 10 8 without interface 0 + l . 01 +0.99 +0.97 +0.94 t0.90 +0.86 +0. 71 +0.30 -0 . 46 -1. 44 -2.69 

spring elements 

Zero shear transfer 
29. 10 8 

with interface 29 +l. 43 + 1. 41 +l.38 +l.32 +l.24 + 1. 15 +0.94 +0.48 -0 . 25 -1.09 -1.82 
spring elements 

Table (6 . 5.b) Plane strain solution. Average d bend i ng stresses (Ksi) in top of the masonry steel plate. 
Gauss integration points 2 and 4. 
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Model description 

Infinite s hear 
transfer without 
interface spring 
e lements 

Esv 
(Ksi) 

ESll 

(Ksi) 161 

-1.648 

162 163 164 

-1 .7 57 -1.576 - 1 . 390 

Element number 

165 166 167 168 169 170 

-1.094 -0.825 -0.504 -0 .294 -0 . 130 -0.034 

---+----- ~-------ji-------<----~ 

Infinite shear 
transfer with 
interface spring 
elements 

29 • 10 8 29000 -1.739 -1. 854 -l .654 -I . 440 -1.114 -0.833 -0.509 - 0.272 

1- - · -1-------t- 1 1---·-i--· -1- -+ 1---- - 1 
Zero shear transfer 
without interface 
spri ng elements 

29 • 10 8 
0 -2.050 - 2.169 -1.917 

~ 4 
Zero shear transfer 
with interface 
spring elements 

29 • 10 8 29 -2.129 -2.254 -1.985 

-1. 651 -1.243 -0.850 

-1.693 -1 .25 4 -0.883 

'!'able (6.6.a) Axisymmetric solution. Averaged vertical stresses (Ksi) in co nc r e t e elements. 
Gauss integra tion points 2 and 4. 

-0 .3 92 -0.169 

-0.356 -0. 141 

-0.104 -0.012 

-0.051 +0.029 

-0.045 +0.028 

1--' 
1--' 
0 



.--- -

ESV ESll 
Element number 

Mode l description -
(Ksi) (Ksi) 161 162 163 164 165 166 

Infinite shear 
transfer without 

00 00 -2.675 -2 . 583 -2.35 7 -2.0 95 -1.690 -1.290 interface spring 
elements 
----

Infinite shear 
transfer with 29 • 10 8 29000 -2.718 -2.63 4 -2.39 8 -2 .112 -1.680 -1.271 
interface spring 
e l e ments 

Zero shear transfer 
29 • 10 8 without interface 0 -2 .999 -2.8 79 -2 .587 -2.235 -1.700 -1. 1 50 

spring elements 

Zero s hear transfer 
29 • 10 8 

with interface 29 -3 .028 -2.90 4 - 2.600 -2.229 - 1. 677 -1 .129 
spring elements 

Table (6.6.b) Pla~e strain solution . Averaged vertical stresses (K si) in concrete elements. 
Ga uss integration points 2 and 4. 

167 168 

-0.787 -0 . 448 

-0_776 -0. 418 

-0.519 -0.223 

-0 . 496 -0.201 

169 

- 0.198 

-0.164 

-0.049 

-0.054 

170 

-0 .020 

+O. 013 

+0.097 

+0.085 

I-' 
I-' 
I-' 



----------·~--------~----~-.------.----~--------·~---------------------------------------~ 

. . Esv E5 11 Element number 
Mode l desc r1pt1 o n 

(Ksi) (K si ) 161 162 163 164 16 5 166 167 168 169 170 
~-------------+------l---·~-+-------+-~-~---t-------t-·~---t-----t------11-------11-------l-----+-----l 

In finite s hear 

tratnsffer witho ut ~ ~ +0 . 2718 +0.2101 +0 . 3894 +0 . 4005 +0.4861 +0.4300 +0.3835 +0.2313 +0.1118 +0.0246 
in e r ace spring 
el e me nts 

Inf.init e s he ar 

~ ratns ff er with _ 29 • 10 8 29000 +0. 2873 +0.22 16 +0.41 55 +0.4271 +0.5028 +0.4262 +0.3719 +0.2200 +0.0878 +0.0145 
in er ace spr1ng 
el e me nt s 

J Zer o shear transfer 8 
~ without interface 29 * 10 0 +0.2940 +0.1570 +0 . 3194 +0.3034 +0.4010 +0.3657 +0.3081 +0.1195 +0.0193 -0.0114 
I spring e l e ments 
I 
i----· --+--·----+-----+-----+-----+-----t-----l----·----11-----..... -----1 
I 
1 Zero shear transfer 8 

with inter fa ce 29 • 10 29 +0.30 56 +0 .1668 +0.3454 +0.3337 +0.4276 +0.3864 +0.3207 +0.1075 +0.0139 -0.0116 
: s pring e lements 

Tab l e ( 6 .7. a ) Axisymme tri c solution. Averaged s hearing st re sses (Ksi) in concrete elements. 
Gauss inte gration points 2 and 4. 

..... 

..... 
N 



.------

Esv ESll 
Element number 

Model description 
(Ksi) ( Ksi) 161 162 

-l 
163 164 165 

- - -
Infinite shear 
transfer without 

= w +O. 1700 +0.2449 +0.5261 +0.5469 +0.6971 
interface spring 
elements 

- f----- --------1-------- t------

Infinite shear 
transfer with 29 • 10 8 29000 +0.1637 +0.2549 +0.5494 +0.5724 +0. 7110 
interface spring 
elements 

--

Zero shear transfer 
29 • 10 8 

without interface 0 +0.136:l +0.1502 +0.3945 +0.382Q +0.5325 
spring elements 

----- ---l 

Zero shear transfer 
29 • 10 8 with interface 29 +0.1463 +o .1737 +0 .4351 +0.4324 +0.5750 

spring elements 

Table (6.7.b) Plane strain. Averag ed shearing stresses (Ksl) Jn concrete elements . 
Gauss integration points 2 and 4. 

166 167 168 

+0.6271 +0.5861 +0.3392 

+0.6179 +0.5631 +0.3224 

----j 

+0.4834 +0.3985 +0.1251 

1------------~ 

+0.5119 +0.4319 +0. 131 7 

169 

+0.1580 

+0.1295 

-0.0118 

-0 . 0041 

170 

+0 .0301 

+0.0139 

-0.0387 

-0.0337 

-

I-' 
I-' 
w 
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plates bending would be higher. Add to that in the case 

shear transfer the fact that a horizontal spring of zero 

modulus of elasticity equalling 2 9 Ksi is small but not 

zero makes the plates bending restraint even higher. 

Notice that the effect of using interface spring elements 

on bending stresses was different in the two-beams ex­

ample problem presented in sec. (6.3.1). However, here a 

different structure is considered, and the interface 

spring elements connect steel to concrete rather than 

. steel to steel. The concrete negative vertical and pos-

itive shearing stresses were lower in models which inclu-

ded interface spring elements due to the lower bending 

stresses resulting in those models as discussed above. 

Reduction of steel plate bending against the concrete 

surface would cause less compression in the vertical 

spring elements. Furthermore, in the model representing 

the case of infinite shear transfer, a vertical spring 

8 modulus of elasticity equal to 29 * 10 is very large but 

not really infinite. Add to that for the case of infinite 

shear transfer, the fact that a horizontal spring modulus 

of elasticity equal to 29000 Ksi is considerably less than 

infinity. Therefore, shear stresses transferred to the 

concrete would be lower. Effect of using interface spring 

elements on the maximum averaged stresses in the bearing 

system modeled to represent the cases of infinite and zero 

shear transfer conditions for the axisymmetric and plane 



· solution methods, is summarized in table (6.8). strain 
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In general, the use of interface spring elements induces 

a larger effect on the bearing stresses in the plane 

strain solution than in the axisynunetric solution, be­

cause the horizontal springs have no effect on the 

circumferential stresses which are induced by circumfer­

ential displacements in the axisyrnmetrical solution and 

neglected in the plane strain solution. Furthermore, 

the averaged maximum bending stress in top of the 

masonry plate, was the most to be affected by the use of 

the interface spring elements. That portion of the 

masonry plate being relatively thin and close to the 

interface zone, it has been the part of the bearing sys-

tern most affected by the geometrical change of the ele-

ments adjacent to the interface zone. Notice that the 

pot plate is modeled with the part of the masonry plate 

beneath it as a continuum acting as a thick plate. 

Based on the discussion presented above, it has 

been found that for those specified interface spring 

element lengths and cross-sectional areas, the vertical 

springs modulus of elasticity equalling 29 * 10 8 Ksi 

provides a satisfactory interface normal stiffness. For 

the horizontal interface spring elements, a modulus of 

elasticity equalling 29000 Ksi provides a satisfactory 

no l' · s lp interface horizontal stiffness, and a value 



r ""'i l 
Maximum Maximum Maximum Maximum 
averaged averaged averaged averaged 

Shear bending bending vertical shearing 
Solution transfer stress in stress in stress in stress in 
method condition top of pot top of concrete concrete 

bearing masonry elements elements 
plate 

% % % % % 
- -- F · - -- --·--- - ·- . - -~--- ·~--- - - . ··- -. -~--- · -

Infinite 
shear -0.7 -13.8 +5.2 +3.3 
transfer 

Ax isymmetric 
Zero 
shear -1. 0 -i8.6 +3.8 +6. 2 
transfer 

Infinite 
shear -3.7 -16.3 +l. 9 +2.0 

Plane tr an sf er 

strain Zero 
shear -3.2 -32.3 + 0. 9 +7. 4 
transfer 

Table (6.8) Effect of using interface spring elements on maximum bearing system 
stresses modeled to represent the cases of infinite and zero shear 
transfer conditions for axisymmetric and plane strain solution 
methods. 

f-' 
f-' 

°' 



! ling 29 Ksi could satisfactorily be considered as 
equa 

the full slip modulus. 

6
• 4 A NONLINEAR DESCRIPTION OF SLIP 
~ 

The masonry steel plate will start to slip when 
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shear stresses transferred through the horizontal inter­

face spring elements reach an ul tirnate shear strength, 

where slip will actually occur in the individual spring 

elements. The ultimate shear strength in the horizontal 

spring interface elements used in the bearing system 

will be defined as the point on the spring' s stress -

strain diagram where the modulus of elasticity starts to 

decrease nonlinearly from the no slip modulus equalling 

29000 Ksi, indicating start of slip, until it reaches 

the full slip modulus equalling 29 Ksi, indicating 

complete slip of the spring element, see fig. (6.8). The 

exact ultimate shear strength in the horizontal springs 

is not known; however, it will be assumed that it equals 

X% 0f the maximum shear stress value transferred in any 

horizontal interface spring element in the model repre-

senting the case of infinite shear transfer condition, 

where slip is not allowed. Shear stresses transferred 

through the horizontal springs in the model representing 

infinite shear transfer condition in both axisyrnmetric 

and plane strain solution methods 

table ( 6 · 9) , refer to fig. ( 6. 7) . 

are listed in 

In both solution 
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methods the maximum shear stress transferred appeared to 

·n spring element no. 102, where in the axisymmetric 
be 1 

solution it equals 1.39189 Ksi, and in the plane strain 

solution it equals 1.29987 Ksi. The value of X was sel­

ected randomly to equal (30, 50, and 70). Data for the 

stress - strain relation of the different induced slip 

conditions for both solution methods is presented in 

Appendix B. 

6. 5 REMARKS 

It should be noted that the moethod of represent-

ing the interface by the use of the interface spring ele-

ments proposed here involves a physical change in the 

geometry of the structure. Note also that the thickness 

of the interface cannot be let very small approaching zero 

as in reality, because if it is, an ill-conditioning 

problem will occur, resulting from dividing the large 

normal modulus of elasticity by the small length of the 

spring when the normal stiffness of the interface becomes 

very large in the case of joint closing or perfect 

contact. 

There has been no tension cut-off consideration 

for the vertical interface spring elements to account for 

the separation of the masonry plate and the concrete abut-

ment. Results from analyzing a model representing the 

case of zero shear transfer condition, (horizontal inter-



r-
' spring 

element 
number 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

Axisymmetric solution 
Tran sf erred 
shearing stress 

+O. 633897D - 01 

+0.336047D + 00 

+0. 603019D + 00 

+0. 785314D + 00 

+0 .100999D + 01 

+0 .114836D + 01 

+0.1300280'+ 01 

+0 .133951D + 01 

+0 .136297D + 01 

+0 .134815D + 01 

+0 .139189D + 01 

+0 .133600D + 01 

+0 .126027D + 01 

+0 .125103D + 01 

Plane strain 
solution 
Transferred 
shearing stress 

+0. 440319D + 00 

+0. 317365D + 00 

+0. 494136D + 00 

+0. 663890D + 00 

+0. 838462D + 00 

+0. 999273D + 00 

+0 .113609D + 01 

+0 .121588D + 01 

+0.124478D + 01 

+0 .126545D + 01 

+0 .129987D + 01 

+0 .126031D + 01 

+0 .116754D + 01 

+0 .114125D + 01 

Table ( 6. 9) Shear stresses transferred through the 
horizontal interface spring elements 
in the case of infinite shear transfer. 

119 
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spring elements not included, see fig. (4.5)), have 
face -

that all vertical springs along the interface were 
shown 

in compression except for the end spring. That end spring 

in tension was taken out of the model and the analysis 

was repeated. Resulting normal stresses in the vertical 

spring elements are listed in table (B.4) of Appendix B. 

The elimination of that end vertical spring does not have 

8 significant effect on the resulting stresses in the 

bearing system, because in the early loading stages, 

(initial load increments), before the spring goes in 

tension, ' it is only expected to transfer a very little 

portion of the normal stresses to the concrete elements. 

Normal stresses transferred through vertical interface 

spring elements (model including horizontal and vertical 

interface spring elements, see fig. (4.7)), for different 

shear strength value along the interface, were listed in 

tables (B.5.a) and (B.5.b) for an axisymmetric and a 

plane strain solution method, respectively, see 

Appendix B sec. (B.3). Results indicated that when the 

slip along the interface was described as a nonlinear 

function, separation of the masonry plate from the 

concrete became more obvious due to the nonlinear varia-

tion of the bending stresses along the steel plate ele­

ments; the explanation of that behavior will be left for 

Chapter 7. Notice that because the masonry plate is 



121 

e d to be rigidly connected with the concrete abut­
assuro 

t (no tension cut-off) , very large tension could 
men 

in some of the vertical interface spring elements appear 

due to the multiplication of positive relative displace-

ments by the large normal stiffness values, refer to 

equation (6.4). However, there appeared to be some in­

consistencies in the results where vertical springs along 

the interface alternated from negative to positive 

unrealistically. 

Referring to fig. ( 6 .1) , notice that vertical 

spring elements located in the inter£ ace similar to 

spring B tend to become in tension (separation) before 

springs similar to spring A. Moreover, in the interface 

zone where separation is not likely to happen, springs 

similar to spring B in fig. (6.1) will have larger com-

pression stresses than springs similar to spring A. 

Those inconsistencies are due to the geometry of the 

interface where it was modeled such that elements 

adjacent to the interface were altered to have a tri-

angular shape so that nodes such as j and k in fig. (6.1) 

could be connected by a horizontal interface spring 

element as shown in fig. ( 6. 1) . Problems resulting from 

the geometry of the interface could be resolved by using 

interface spring elements having a geometry similar to 

the l' inkage element shown in fig. ( 5. 3) , where there 
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will be no need to change the geometry of the steel and 

Crete elements adjacent to the interface. The inter-
con , 

face behavior described above could also be improved by 

considering tension cut-off for the vertical interface 

elements, so that the separation of the masonry plate 

and the concrete abutment would be allowed along the 

interface. Nevertheless, for an axisymmetr ic model, a 

special interface element could be used to account for 

displacements in the circumferential direction, see 

element formulation in Appendix A, sec. (A. 2) . 
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CHAPTER 7 

EFFECT OF SHEAR TRANSFER 

It is customary to analyze the bearing system 

assuming either infinite or zero shear transfer condi-

tions without paying much attention to the effect of the 

shear transfer. However, simulating the pehavior of the 

interface between the masonry steel plate and the 

concrete abutment by the method proposed in the previous 

chapter, the bearing system was analyzed with different 

shear transfer conditions. 

7 .1 ASSUMED DIFFERENT SHEAR 
TRANSFER CONDITIONS 

Shear stresses transferred through the horizontal 

spring elements will keep increasing as the load incre-

ments applied on the bearing system increase until slip 

starts in those spring elements whose ultimate shear 

strength value is reached. Since the slip is described 

by a nonlinear relation, spring elements which started 

to slip will transfer nonlinearly decreasing shear stress 

increments. Hence, the shear stress transferred through 

a horizontal spring element depends on its ultimate shear 

strength value, such that larger shear stresses will be 
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transferred through horizontal interface spring elements 

with higher shear strength values. 

The horizontal spring elements ultimate shear 

strength value is not known. However, three different 

shear transfer conditions were induced by assuming the 

horizontal interface spring elements ultimate shear 

strength value to equal 70%, 50%, and 30% of the maximum 

shear stress value transferred in the infinite shear 

transfer condition, see Appendix B, sec. (B.l) for 

complete information about the formulation of the 

horizontal spring elements stress - strain relations for 

the three ultimate shear strength values. The bearing 

system was analyzed under those different shear transfer 

conditions and results were compared against those of 

infinite and zero shear transfer conditions. Both axi-

I 

symmetric and plane strain solution methods were consid-

ered, and the bearing system was loaded by 3.5 Ksi uni-

forrnly applied load in all computer runs. For all shear 

transfer conditions, horizontal spring elements shear 

stresses, slip status, and the slip modulus were listed 

in tables (7 1 ) • •a I (7.1.b), (7.1.c), ( 7 . 1. d) and ( 7 . 1. e) , 

see fig. ( 6. 7) . The average percentage c.hange in the 

shear stresses transferred through the interface for the 

different shear transfer conditions with respect to the 

shear stresses transferred through the interface in the 

infinite shear transfer condition, are listed in 
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table ( 7. 2) . 

shear stresses transferred in the horizontal 

interface spring elements near the end of the interface 

are higher because as the plates bend under the uni­

formly applied load, the end steel elements of the rel­

atively thin masonry plate would tend to slip over the 

concrete. Therefore, slip will occur first in those 

horizontal spring elements transferring larger shear 

stresses. As the ultimate shear strength of the springs 

is decreased, more of them would slip and shear stresses 

transferred through the interface zone would decrease 

nonlinearly because of the nonlinear slip function, 

see stress - strain curve in Appendix B, fig. (B.l). 

Shear stress distributions for the different shear 

transfer conditions were approximated by the continuous 

curves shown in fig. (7.1), where T represents the 
u 

ultimate shear strength for the horizontal springs and 

tmax represents the maximum shear stress transferred in 

the infinite shear transfer condition. Notice that 

shear stresses become more uniformly distributed as 

the ultimate shear strength of the horizontal spring 

elements decreases. 

Shear stresses transferred through the horizontal 

interface spring elements are higher in the axisymmetric 

solution than in tlie olane strain solution because of 
.i: 

shear stresses resulting from the circumferential 
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d
. placements, which are not restrained by the horizontal 1s . 

spring elements in the axisymmetric elements. Therefore, 

the horizontal spring elements in the axisymmetric solu­

tion will slip earlier, causing more reduction in the 

shear stresses transferred in the interface zone than 

in the plane strain solution for the same reduction in 

the spring elements ultimate shear strength, see 

table (7.2). Hence, in the shear transfer condition 

where Tu was reduced to equal 30% of Tmax' and in the 

zero shear transfer condition, shear stresses transferred 

through the horizontal interface spring elements became 

larger in the plane strain solution than in the axisym-

metric solution. 

From a physical point of view, it is expected 

that slip should occur only in those horizontal spring 

elements which are near the end of the interface zone; 

however, results from both solution methods indicated 

that when the horizontal spring elements ultimate shear 

strenoth was as high as 70% of T , slip still occurred - max 

in spring elements closer to the center, see 

table (7.1.b). Therefore, the horizontal interface 

spring elements shear strength value is expected to be 

higher than 70 % of T 
max Nevertheless, the assumed 

shear strength values sufficiently represent various 

shear transfer conditions. 
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Table (7.1.a) Infinite shear transfer condition 

.- .Axisymmetric solution Plane strain solution 

5pring 
Shear Slip Shear Slip ,..iement Slip Slip 
stress modulus stress modulus number 
(Ksi) 

status (Ksi) (Ksi) status (Ksi) 

+0.0633897 No 29000 +0.440319 No 29000 92 slip slip 

93 +0.336047 II II +0.317365 II II 

94 +0.603019 " II +0.494136 II II 

95 +0.785314 " II +0.663890 II II 

96 +1.00999 " " +0.838462 " " 

97 1.14836 " " +0.999273 " " 

98 1. 30028 II II +1.13609 II II 

99 1.33951 " II +1.21588 " " 

100 1.36297 II II +1.24478 II II 

101 1.34815 II II +1.26545 II II 

102 1. 39189 II II +l. 29987 II II 

I 103 1. 33600 II II +l. 26031 II II 

I 104 I 1.26027 ,, 
" +1.16754 II II 

105 l 1.25103 " II +1.14125 " " 
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ble (7.1.b) Shear transfer condition resulting from 
Tasuming the horizontal spring elements equal 70% of the 
asximum shear stress transferred in the infinite shear 
ma d . . 
transfer con it1on . 

. - Axisyrnrnetric solution Plane strain solution 

spring Shear Slip Slip Shear Slip Slip 
element stress modulus stress modulus 
number (Ksi) 

status (Ksi) (Ksi) status (Ksi) 

+0.0639190 No 29000 +0.441935 No 29000 92 slip slip 

93 +0.355382 II II +0.330101 " " 

94 J+0.649642 " " +0.520400 " " 
I 

95 l+0.861154 " " +0.707766 " " 

Slipped 2900 +0.907023 " " 96 i+l.01219 

97 +1.10441 II 290 +1.00361 Slipped 290 

98 +1.13225 " 290 +l. 00921 II 290 

99 +1.17219 II 29 +l. 09659 II 29 

100 +1.17417 II II +1.10061 II II 

101 +1.17449 II II +1.10356 " " 

I 
102 +1.17560 " " +1.10626 " II 

103 +1.17308 " " +1.10512 II II 

i 
1 

104 +1.13836 II 290 +1.10111 II " 

105 +1.13021 II 290 +1.09927 II II 
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ble (7.1.c) Shear transfer condition resulting from 
Ta urning the horizontal spring elements equal 50% of the 
assimum shear stress transferred in the infinite shear 
max d. . 
transfer con ition. 

,...... 
Axisymmetric solution Plane strain solution 

spring 
Shear Slip Shear Slip element Slip modulus stress Slip modulus number stress status status (Ksi) (Ksi) (Ksi) (Ksi) 

No No +0.0664691 29000 92 slip +0.464894 Slip 29000 

93 +0.483019 II II +0.456233 II II 

94 +0.785027 Slipped 290 +0.674586 Slipped 2 9 0 0 

95 +0.835160 II 29 +0.772402 II 290 

96 +0.855361 II II +0.801996 II 29 

97 +0.866509 II II +0.817552 II " 

98 +0.875867 " " +0.833375 II II 

99 +0.882820 II II +0.844934 " " 

100 +0.887012 II II +0.853055 " II 

101 +0.889261 " II +0.859819 " " 

102 +0.891770 II " +0.865047 " " 

103 +0.889983 II " +0.864591 II II 

104 +0.886308 " II +0.861204 II " 

105 +0.883179 " II +0.858193 II " 

! 

' I 

l 
i 
I 

' ' 
I 
j 
I 

i 
I 
i 
! 
l 
' I 
~ 
i 

I 
I 
I 
' I 

I 
I 
! 
I 
I 
I 
! 
I 

! 
I 
i 
I 
! 

I 

I 
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T ble (7.1.d) Shear transfer condition resulting from 
asuming the horizontal spring elements equal 30 % of the 

asximum shear stress transferred in the infinite shear 
ma d' . transfer con ition. 

I 

Plane strain solution j Ax.isymmetric solution 
Spring , ~~~~~~~~~~S-l_i_p~--11 ~S-h_e_a_r~~~~~~~~~~~ 
element Shear Slip_ Sl. Slip 

stress rrodulus '11 stress ip modulus number ·1' status status 
(Ksi) (Ksi) 1 (Ksi) (Ksi) l l 

92 

93 

94 

95 

96 

97 

98 

. 99 

100 

101 

102 

103 

104 

105 

+0.0694736 ~~ip 
+0.502030 Slipped 

+0.522173 " 

+0.539746 " 

+0.557222 " 

+0.571878 " 

+0.584116 II 

+0.593045 II 

+0.598572 II 

+0.601955 II 

+0.604980 II 

+0.603457 II 

+0.598822 II 

+0.593708 II 

I 
29000 I +0. 437055 Slipped 

I -
29 l+0.474454 II 

I 
II J+0.496576 

II j+0.519480 

II +0.542826 

" 1+0.565416 
I 

" 1+0.585614 
! 

II l+0.601413 
I 

" l+o.613039 
i 

II i+0.621925 
i 

II j+0.628754 
i 

II l+0.629735 
I 

II 1+0.626008 

II l+0.621533 
j 

II 

II 

II 

II 

" 

II 

II 

II 

II 

II 

II 

" 

290 

29 

II 

II 

" 
II 

II 

II 

" 
II 

II 

II 

II 

" 
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Table (7.1.e) Zero shear stress condition 

.- Axisymmetric solution I Plane strain solution 

Spring I Shear Slip Slip I Shear Slip Slip 
element stress rrodulus j stress rrodulus 
number (Ksi) 

status (Ksi) (Ksi) status (Ksi) 
! - 92 +0.00262226 slipped 29 +0. 0120080 slipped 29 

93 +0.0293357 II II I +o. 0510859 II II 

I 

94 +0.0612690 II II I +0. 0899531 " II 

95 +0.0883243 " II I +0.121343 II " 

96 +0.112601 II II I +0.162615 II II 

97 +0.132979 II II +0.194923 II " 

98 +0.149670 II II +0.223000 " II 

99 +0.161191 " II +0.245191 II II 

100 +0.168472 II " +0.261605 II II 

101 +0.173255 II II +0.273976 II II 

102 +0.176532 II II +0.282719 II II 

103 +0.174406 II II +0 . 284153 " II 

104 +0.167586 " " +0.279378 " II 

105 +0.158688 II II +0.271861 II II 

! 



Horizontal spring elements 
shear strength values with 
respect to the maximum 
shear transferred in the 
infinite shear transfer 
condition 

( % ) 

70% 

50% 

30% 

0 

Table (7.2) 

-----, 
Change in the shear stresses transferred through the 
interface spring elements 

Axisymrnetric solution Plane strain solution 

( % ) ( % ) 

-5.75 -4.07 

-15.63 -11.21 

-37.10 -31.81 

-88.75 -80.74 

I-' 
w 
IV 
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Notice that the shear stresses transferred through 

the horizontal interface spring elements are actually the 

springs forces defined in equation (6.4). However, in 

this discussion those spring forces are assumed to re­

present the shear stresses transferred through the inter­

face zone between the masonry steel plate and the 

concrete abutment. 

7. 2 RESULTS AND DISCUSSION 

It is worthwhile mentioning at this point that 

results presented here do not necessarily represent the 

"exact solution" for the bearing system problem because 

of the different assumptions taken in developing the 

finite element model representing the structure. However, 

all variable parameters were kept constant with the excep­

tion of varying the shear transfer condition along the 

interface zone between the masonry steel plate and the 

concrete abutment. 

The effect of varying the shear transfer condition 

on the deformation and bending stresses in the steel 

plates as well as on the stresses in the concrete abutment 

Will be presented in the following sections. Material 

properties used in analyzing the bearing system are 

presented in Appendix C. 



EFFECT OF SHEAR TRANSFER ON 
THE POT BEARING AND :tv":.ASONRY 
STEEL PLATES DEFORMATION 
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since the pot bearing and the masonry steel plates 

a ssumed to behave as a continuu~, the effect of shear are 

transfer was studied by examining the deformation of a 

horizontal section taken along the masonry steel plate 

passing through nodes 53 to 67, which are the top nodes 

of the triangular steel elements adjacent to the inter­

face zone, see fig. ( 6. 7) . Vertical and horizontal dis-

placements of the nodes along the horizontal section 

resulting from axisymmetric and plane strain solutions 

are listed in tables (7.3.a) and (7.3.b) respectively. 

Results from sec. ( 7 .1) have shown that shear 

stresses transferred through the horizontal interface 

spring elements have higher values beneath the end of the 

masonry steel plate for all shear transfer conditions. 

Maximum shear stress appeared to be . in spring element 

no. 102 which is under the section where the pot bearing 

ends and the masonry steel plate extends freely on top of 

the concrete surface. The non-uniform shear stress dis-

tribution could be physically attributed to the fact that 

the pot bearing and the masonry plates tend to bend over 

the concrete surf ace such that the end steel elements 

OUld slip over the concrete surf ace and separate away from 

it. Horizontal displacement curves for the different shear 

transfer conditions in the axisymmetric solution are 



shown in fig. · (7.2). Notice that the horizontal dis­

placements along the masonry plate are actually con­

trolled by the nonlinear function which describes the 
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slip along the interface zone, see Appendix B (sec. (B.l)). 

consider the approximated shear stress distribution 

curves along the interface zone, shown in fig. (7.1), 

for the axisymmetric solution. In general, it was found 

that the shear stress increases along the interface zone 

until it reaches a maximum value, which was in all shear 

transfer conditions in the horizontal interface spring 

element no. 102 located under the portion of the bearing 

system where the pot bearing ends and the masonry steel 

plate extends freely on top of the concrete surface, see 

fig. (6.7). Referring back to fig. (7.2), it was found 

that horizontal displacements near the center of the 

masonry plate elements above the portion of the interface 

where low shear stresses are transferred, were small. 

As the shear stress increased along the interface, the 

horizontal displacements of the masonry plate increased 

as well. Notice also that the maximum horizontal dis-

placement in the masonry plate was near the part where 

the pot bearing ends and above the portion of the inter­

face where maximum shear stresses were transferred. 

However , the horizontal displacements increased non-

linearly along the masonry plate depending on the non­

linear stress - strain relation that describes the slip 

along th . . e interface zone, see fig. (B.l). If the 
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ultimate shear strength value of the horizontal interface 

spring elements was lowered, slip along the interface 

would increase depending on the slip modulus. Neverthe­

less, at a low ultimate shear strength, (Tu = 30% Tmax' 

or T = 0), most of the horizontal interface spring 
u 

elements were in the full slip range (slip modulus equals 

29 Ksi) and the horizontal displacements tend to increase 

"linearly" along the masonry plate, see fig. (7.2); refer 

to tables (7.1.d) , and (7.1.e). Hence, the end of the 

horizontal displacement curve, representing the displace-

rnents of the end part of the masonry plate, became more 

uniform. At the case representing infinite shear trans-

fer condition, the maximum horizontal displacement 

appeared at node no. 62 and was about 18.72% higher than 

the horizontal displacement at node no. 67 located at the 

end of the masonry plate. However, in the case represent-

ing the zero shear transfer condition, the horizontal 

displacement at node no. 62 was only about 8.04% higher 

than at node no. 67. 

It appeared that if high shear stresses are trans­

ferred along the interface zone, they act as a restraint 

against the deformation of the pot bearing and the 

masonry steel plates. As the ultimate shear strength of 

the horizontal interface spring elements was lowered, the 

masonry plate slipped over the concrete surf ace as 

discussed above, where the horizontal displacements 

increased nonlinearly along the plate. Since the plates 
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1 elements were assumed to be linear isotropic, the 
5 tee 

nonlinear increase of the horizontal displacements along 

the plate must be attributed to the bending of the plate. 

The vertical displacement distribution curves of the 

masonry steel plate for the different shear transfer 

conditions in the axisymmetric solution are shown in 

fig. (7.3). 

The masonry plate was assumed to be rigidly connec-

ted to the concrete abutment, therefore, separation of the 

masonry plate steel elements from the concrete elements is 

not allowed. Therefore, general deformation curves of the 

masonry steel plate shown in fig. (7.4) for different 

shear transfer conditions did not look as one would expect. 

Horizontal and vertical displacement distribution curves 

for the plane strain solution are shown in figs. (7.5.a) 

and (7.5.b) respectively. Notice the difference in 

results due to absence of circumferential stresses and 

strains; however, the effect of shear tr an sf er on the 

deformation of the pot bearing and the masonry steel 

plates is the same for both the axisymmetric and the 

Plane strain solution methods. 

7.2.2 EFFECT OF SHEAR TRANSFER ON THE POT BEARING 
AND MASONRY STEEL PLATES BENDING STRESSES 

It was shown in the previous section how shear 

stresses transferred through the interface zone control 

the behavior of the steel plates represented by a 



section taken along the masonry steel plate. Results 

indicated that as the ultimate shear strength of the 

horizontal spring elements decreases, slip along the 

interface increases and so does the horizontal and 

vertical displacement of the steel plate elements. 

Therefore, it could be stated at this point that shear 

stresses transferred through the interface actually act 

as a restraint against plates bending. Hence, it is 

expected that bending stresses in the pot bearing and 

the masonry steel plates would increase if the shear 

stresses transferred along the interface zone are 

decreased. 

Averaged bending stresses in the top of the pot 

bearing were listed in tables (7.4.a) and (7.4.b) for 

the axisymmetric and the plane strain solution methods, 
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respectively. Results showed that the averaged negative 

bending stresses increased nonlinearly in the pot bearing 

steel elements above the portion of the interface zone 

which slipped. For example, results from the plane 

strain solution showed that bending stresses in elements 

nos. 1,2, and 3, in the case T = 70% T have actually, u max' 

even though insignificantly, decreased with respect to 

resulting bending stresses from the infinite shear 

transfer condition. In element no. 4, the bending stress 

has only increased by O .11%, and in element no. 5 the 

bending stress has only increased by 1.00%. Referring to 



Table (7.3. a) nxisyn~etric so lution. Vert i cal a nd hori zontal displa c ements in top of the triangular steel element s 
adjacent to the interface zone. 

Node number 

Shear Displace 53 5 4 55 ~ 6 57 
c , 

transfer ment J :>8 59 60 
condition (inch) 

---- - - ----- --+--·- ---------------t---· ··------······t----~-=-1 

Infinite V -0.00638 - 0.00637 - 0 . 00629 -0.00hl5 -0.00596 -0.00572 -0.0054 4 -0.005 13 
shear 
transfer H 0.0 +0 . 000076 +0.0001 48 +0.000216 +0.000279 +0.00033 4 +0 .000378 +0.000407 

I ~~=~~ f=~~=~s V -0.096 42 -0.0064 1 -0.00633 -0.006 19 -0.0060 0 -0. 00 576 -0.00548 -0.00516 

reduced by 
5 _75 1 II 0.0 +0.000077 +0.0 001 50 •0.000220 +0.000285 +0.000342 +0 .0003 89 +0.000421 

t-------------11-------J._ _____ __,1-------~~-------t-------+-------+-~--~~-t--~----+-------t 

Shear stress 
transferred V -0.00659 -0.00659 -0.00650 - 0.00636 -0.00616 -0. 00 590 -0.00561 - 0 . 00527 

reduced by 
1 5 _63 1 II 0.0 +0 . 000084 +0.000164 +0.0002 4 2 +0.000316 +0.000384 +O.OO P438 +0.000476 

~==~~f=~~=~s v -0.006 78 - 0 . 00678 -0.00669 -0 .006 53 -0.0063 1 -0.00604 -0.00 573 -0 . 00537 

reduced by 
37 1 II 0.0 +0.000095 +0.000 105 +0.000273 +0.000355 +0.00 04 28 +0.00048 8 +0 . 000 530 

~~=~~f=~~=~s V - 0.00708 -0.0070 6 -0.00696 -0. 00 ~78 -0.00655 - 0.00625 -0 . 00 591 -0 .00 553 

reduced by 
88 . 75 1 II 0.0 +0 . 000112 +0.0002 17 +0.000318 +0.00041 1 +0. 0004 94 +0.000 562 +0.000611 

-- - - · - - -

v = vertica l displaceme nts 

H horizontal displacements 
1--' 

""' 0 



Cont inuation of Table (7.3 . a ) 

6 1 62 63 64 

- 0.00481 - 0.00447 -0.00 413 -0.00378 

+0.000420 +0.00042 2 +0.000418 +0.0004 05 

-0 . 00483 -0.00449 - 0.00414 -0 . 00377 

+0.000437 +0.0 00441 +0.000438 +0.000424 

-0. 00492 -0.00455 . - 0.004Jn -0.00 379 

+0 . 000497 +0.000505 +0.000 5 06 +0.000496 

-0 .00499 -0 . 004 6 1 -0 . 00421 - 0.00380 

+0.000555 +0 . 000566 +0.000 57 0 +0 . 000 562 

-0 . 00512 -0 . 00470 - 0.00426 -0.00381 

+0 .0 00642 +0.000659 +0.000667 +0.000 663 

65 66 

- 0 . 0034 4 - 0 .00313 

+0.000381 +0.0003 57 

-0.00343 -0.00312 

+0.000398 +0.000372 

-0 . 00Hl -0 . 00307 

+0.000473 +0.000449 

-0 . 00 339 -0 . 0030 2 

+0 . 000 5 41 +0.000518 

-0.00336 -0.00294 

+0.000645 +0.0006 23 

67 

-0.00286 

+0.000343 

- 0.00284 

+0.000358 

-0 .0 0276 

+0.000434 

- 0.00268 

+0.000502 

-0.00255 

+0.000606 

...... 
ti::. 
I-' 



Ta bl e ( 7.3 .b) Plan e stra in so lutio n . Ve rt i ca l a nd ho rizontal displace ment s in top o f the triangular stee l el e ments adjacent 
to the inte rface zone . 

,-. - -·-- I 

Node number 

S hea r Displ a c e-
t rans f er: men t s 
conditio n (in c hes) 

I nf i nit e 
shear 
tran s fer 

S hea r st re ss 
transferred 
reduced b y 
4.07 % 

v 

II 

v 

II 

53 54 

-0.0ll3 -0. 0113 

0.0 +0. 000096 

-0 .011.3 -0.0113 

o.o I +0.000091 

55 56 

-0. 0112 -0.0110 

+0.000209 +0.000315 

-0 .0112 -0.0110 

+0.000210 +0.000317 

57 58 59 60 

-0.0107 - 0 . 0104 -0 . 0100 -0.0095 

+0 . 000416 +0.000509 +0 . 000591 +0 . 000657 

-0.0108 -0.0104 -0.0 100 -0 . 0096 

+0 . 000419 +0.000 5 15 +0.000600 +0 . 000670 
-----t~-~~----+-- -~t-~~--~~-r-~~~~~--t-~~~--~~t--~~~~~-+-~~~~~-+~~~~~~t 

Shea r stre s s 
transferr e d 
reduced by 
11. 21% 

v 

II 

-0. 0115 

0.0 

-O.Ol.15 -0.0114 

+0.000103 +0.000224 

-0. 011 2 -0.0109 -0.0105 -0.0101 -0 . 0096 

<·O. 000341 +0.000458 +0 . 000569 +0 . 000668 +0.000750 

-· ·~-...~~------~~t-----~--.-.~~~-~-~-+~-------+--------+-~----~-+--------+--------+--~--~~--. 
Shear stress 
transferred 
reduced by 
31.8li 

Shear stress 
tr a n s f e rred 
reduc e d by 
80.74 % 

v 

II 

v 

II 

-0.0117 

0.0 

-0.01 20 

0.0 

-0.0117 -0.0115 

+0 . 000120 +0.000259 

-O.Oll9 -0.0118 

+0.000162 +0.000321 

-0.0113 -0. 0110 -0. 0106 -0.0102 -0.0097 

+0.000393 +0.000 523 +0.000645 +0.000753 +0 .000843 

-0 . 0116 -0. 0112 -0.0108 -0.0103 - 0 . 0098 

+0.000476 +0.000625 +0.000762 +0.000885 +0.000986 

-----------L--·-·----~- ~ 

I-' 
.~ 

l\.J 



Continuation of Table (7 . J . b) 

61 62 63 64 

f----
- 0 . 0090 - 0.0085 - 0 . 0079 - 0. 0074 

+0 . 000703 +0.000733 +0 . 000752 +0.000756 

-0.0090 - 0.0085 - 0 . 0079 - 0 . 0073 

+0 . 000720 +0 . 000753 +0 .000773 +0.000777 

-0 .0091 -0.0085 - 0.0079 -0. 0073 

+0.000810 +0.000852 •0.000881 +0.000891 

-0.0091 -0.0085 - 0.0079 - 0.0072 

+0.000910 +0.000957 +0.000990 +0 .0 0100 

- 0 . 0091 -0 . 0085 - 0 . 0078 - 0 . 0071 

+0.00106 +0 . 00112 +0.00116 +0 .00 118 

65 66 

- 0 . 0068 - 0.0062 

+0.000743 +0.000726 

-0 .0068 -0 .0062 

+0.00076 +0 . 000741 

-=--
-0 . 0067 -0 .0061 

+0.000881 +0.000866 

- 0 . 0065 -0.0059 

+0 . 00100 +0.00098 

-0 . 0064 -0.0057 

+0.00118 +0 . 00117 

67 

-0.0057 

+0.000717 

-0.0057 

+0 . 0007 31 

-0.0055 

+0.000858 

-0.0053 

+0.00098 

-0.0050 

+0.00116 

f-' 
.i::. 
w 
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Table ( 7. 4. a ) Axisymmetric solution. Averaged be~ding stresses (Ksi) 
top of the pot bearing steel plate . 

Element 
no . 

Shear I 1 I 2 I 3 I 4 I 5 
transfer 
condition 

Infinite 
shear transfer -8 . 59 - 8.26 -7.87 -7.43 -6.83 

T = 70% T -8.60 -8.27 -7.90 -7.48 -6 . 91 u max 
T = 50% T -8.72 -8 . 42 -8.09 -7.69 -7 .11 u max 
T = 30 % T -9.06 -8.72 -8.34 -7 . 89 -7.27 u max 
Zero -9.53 -9.12 -8 . 70 -8.19 -7.52 shear trans f er 

T = ultimate shear strength for the horizontal 
u interface spring elements 

1 max =maximum shear stress transferred in the 
infinite shear transfer condition 

I 6 

-6 . 07 

-6 . 16 

-6.34 

-6.46 

-6.68 

I 7 I 8 I 

-5.09 -3.32 

-5.18 -3.40 

-5.32 -3.50 

-5.42 -3.58 

-5.59 -3. 71 

in the 

9 I 

-1.06 

-1.10 

-1.16 

-1. 21 

-1.29 

10 

-0.08 

-0.09 

- 0.11 

- 0 .13 

-0.16 

t--' ,.,. 
l.O 



Table (7 . 4 . b ) Plane strain solution . Averaged bending s tresses (Ksi ) 
in the top of the po t bearing steel plate. 
Gauss integration points 2 and 4. 

Element 
Shear no. 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 tr-ans fer 
condition 

Infinite 
shear transfer -9.38 I -9.33 I -9.15 I - 8.78 I - 8 .20 I -7.40 I -6. 31 I -4 . 37 I -1 . 72 

T = 70% T I -9 . 35 I -9 . 30 I -9.14 I -8 . 79 I -8.24 I - 7 .4 7 I -6. 40 I -4. 4 5 I -1.77 u max 

T = 50% T I - 9.23 I -9 . 24 I -9 .17 I -8.91 I -8 . 42 I - 7 .65 I -6.55 I - 4 .5 7 I -1. 8 4 u max 

l = 30% T I -9 . 48 I -9.4 7 I -9.36 I u max -9.04 I -8.49 I - 7 .68 I -6.5 7 I -4.59 I -1. 87 

Zero shear-
l -10.02 I -9.89 I -9.63 I -9.20 I -8.58 I -7.75 I -6.62 I -4.64 I -1. 92 transf ei:-

I 

I 

I 

I 

I 

I 

10 

- 0 . 2 4 

-0.25 

-0 . 28 

-0 . 29 

-0. 31 

I-' 
Ul 
0 
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table (7.1.b) and fig. (6.7), notice that slip did not 

occur in the horizontal interface spring elements beneath 

steel elements nos. 1, 2, 3, and 4, while the horizontal 

spring beneath steel element no. 5 has just slipped with 

a slip modulus equalling 2900 Ksi. That indicates that 

shear stresses do in fact restrain bending of the steel 

plates. The percentage change of negative bending 

stresses in the top of the pot bearing plate steel ele­

ments is shown in fig. (7.6). Bending stresses increase 

nonlinearly along the pot bearing steel elements follow­

ing the nonlinear slip function. When all the horizontal 

interface spring elements are in full slip (slip modulus 

equal 29 Ksi), bending stress along the pot bearing steel 

elements tends to change linearly because the modulus of 

slip becomes the same in all horizontal spring elements. 

Bending stress distribution curves for the different shear 

transfer conditions are shown in fig. (7.7.a) and 

fig. (7.7.b) for the axisymmetric and the plane strain 

solution methods, respectively. However, the effect of 

varying the shear transfer conditions on the negative 

bending stresses along the top of the pot plate is 

practically insignificant, due to the thickness of the 

plate which is assumed to behave with the masonry plate 

as a continuum. Figure (7.8) represents the change of 

the bending stresses, along a vertical section taken 

through the center of the pot bearing and the masonry 
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steel plates, for the infinite and zero shear transfer 

conditions. for triangular steel elements, bending 

stresses in Gauss integration points 3 and 4 were aver-

aged. It appeared from fig. (7.8) that the increase in 

the bending moment at the center of the plate is actually 

due to the increase of the positive bending stress at 

the bottom of the masonry steel plate. 

Bending stresses resulted in the steel elements at 

the top of the masonry steel plate from different shear 

transfer conditions, were averaged and listed in 

tables (7.5.a) and (7.5.b) for the axisymrnetric and plane 

strain solution methods, respectively. ?esults indicated 

that shear transfer affects the masonry steel plate in 

two ways: 

1) The portion of the masonry plate under the pot bear-

ing. Notice that bending stresses in the top of the 

masonry plate in that region are very small because 

they are restrained by the pot bearing olate due to 

the assumption that both plates behave as a continuum. 

However, as the ultimate shear strength of the 

horizontal interface sorina elements was redcued, - ~ 

negative bending stresses in that region of the 

masonry plate started to decrease, converging toward 

becoming positive bending stresses as the slip in the 

interface increased. Bending stress distribution 

curves, for both solution methods, are shown in 



Tabl e ( 7.5 . a ) t.xisymme trical s o lution. l\veraqed bending stresses (Ksi ) in the t op o f the 
maso n ry stee l plate . Gauss int egrat i on po ints 2 and 4 . 

~~ transfer no. 21 22 23 24 25 2() 
conditio n 

Infinite s hear - 0 . 36 - 0 . 36 -0.36 - 0 . 36 - 0.36 - 0.)6 tra nsfer 

T = 70% [ -0 . 31 - 0.31 -0 . 30 -0.29 -0 .2 8 - 0 .2 8 u max 

1 = 50% I - 0 . 0 4 -0.03 - 0.02 -0.0 0 +0.01 - 0.01 u max 

•t = 30% ., +0.31 +0 . 30 +0 . 30 +0.29 +0 .26 +0. 2 1 
u max 

Zero shear +0 .8 5 +0. 81 +0. 77 +0. 7 1 +0.63 +0.54 transfer 

TU ultimate s hear strength value for the hor izo ntal 
inter fa c e spring e l eme nts . 

max = maximum s hear s tress transferred in the 
i n finit e s hear tra n sfe r condit i o n. 

27 28 29 30 31 

- 0.46 - 0.77 -1. 26 - 1. 82 - 2 . 56 

- 0 . 38 - 0 . 70 - 1. 22 - 1 .79 -2.50 

- 0 . 15 -0.51 - 1 . 07 - 1 .70 -2. 4 fi 

+0.04 -0.35 -0. 95 - I . 62 - 2 . 40 

+0.13 - 0. 11 -0. 7 8 -1. 52 -2 . 37 

32 33 

-o 4 7 I 
. ! 

+0 .1 3 

-0.38 +O . 19 

-0.39 +0.16 

- 0.37 +0 .16 

-0.36 +0 . 14 

34 

+0.08 

+O. 10 

+0 . 09 

+0.08 

+0.07 

I-' 
lJl 
-...) 



Table (7.5.b) Pl a ne strain solutlon. Averaged be nding stresses (Ksi) in the t o p of the maso n r y steel plate . 
Gaus s integration points 2 a nd 4. 

-~-.-· ·· , · -· - - -·-------- - - -- -

Shear Ele me nt 

transfer ~10 • 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

condition ~ 

Infinite shear - 0. 34 -0.34 
transfer 

-0.26 -0.21 -0. 18 -0 . 16 -0.23 - 0 .53 -1. 1 0 -1. 82 -2 . 73 -0.39 +0.29 +0.18 

r = 70% L - 0.30 -0.30 -0 .2 1 -0 . 15 - 0 . 11 -0.08 -0. 15 -0.46 -1.04 - 1. 73 -2.66 -0. 25 +0 . 39 +0.22 
u ma x 

T = 5 0 % L +0.02 +0 . 04 +0.16 t0 . 25 +0. 31 +0 . 33 +0.23 - 0 .13 -0.78 - 1 .58 -2 . 4 5 -0 . 17 +o. 41 +0 . 22 
u max 

1 = 3 0 7, r +0.56 +0 . 56 +0 . 65 +0.70 +0.70 +0.66 +0.52 +0.12 -0 . 56 - 1. 37 -2 . 1 7 - 0 . 02 +0.47 +0.23 
ll 1nax 

Zero s hea r +l. 4 3 +l. 41 +l.38 +l.32 + l. 2 4 + l. 15 
transfer 

+0.94 +0.48 -0.25 - 1.09 -l . 82 +0 .1 5 +0.53 +0 . 24 

·-----'------·--

...... 
lJ1 
(X) 
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figs. (7.9.a) and (7.9.b). Considering the plane 

strain solution, in the shear transfer condition 

where T = 70% T , bending stresses in the too u max -

of the masonry plate under the pot bearing were all 

negative; the minimum negative bending stress ap-

peared to be in steel element no. 26, lying exactly 

above the horizontal interface element where slip 

has started with a slip modulus equal to 290 Ksi, 

see table (7.1.b) and fig. (6.7). In the shear 

transfer condition where T = 50% T , the bending 
u max 

stresses became positive in element no. 22 and 

started to increase nonlinearly until they peaked 

in steel element no. 26, which lies above the 

horizontal interface spring element where slip has 

started with a slip modulus equal to 290 Ksi. 

Nevertheless, in the case representing zero shear 

transfer, the positive bending stresses were uni-

forrnly distributed along that portion of the inter-

face zone because most horizontal spring elements 

slipped with a uniform slip modulus. Thus as the 

ultimate shear strength value of the horizontal 

interface spring elements decreases, the pot bear-

ing and the masonry plate modeled as a continuum, 

will have an increasing bending moment in the center, 

refer to fig. ( 7. 8) . 
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Zl The portion of the masonry steel plate extending free­

ly on top of the concrete abutment . Figure (7.9.a) 

and figure (7.9.b) indicated that a high negative 

bending stress value existed in element no. 31 

located in the position where the pot bearing ends 

and the masonry steel plate starts to extend freely 

on top of the concrete surface. Referring to 

fig. (7.2) and fig . (7 . 3), this behavior could be 

explained physically. Notice that horizontal dis­

placements of the nodes located at that critical 

section, (element no. 31), are larger than the 

horizontal displacements which are at the extreme 

end of the masonry steel plate, see sec. (7.3 . l). 

Hence, large negative bending stresses were developed 

at that portion of the masonry plate. However, when 

the ultimate shear strength value of the horizontal 

interface spring elements was reduced, slip of the 

extreme end part of the masonry steel plate over the 

concrete surface increased and so did the horizontal 

displacements; therefore, the negative bending stress 

in element no. 31 decreased. As for the extreme end 

of the masonry plate, notice that positive bending 

stresses increased in the steel elements located at 

that end of the plate, as the ultimate shear strength 

value of the horizontal interface spring elements 

was decreased. 
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Bending stress distribution along vertical lines 

passing through the critical section and the end steel 

elements of the masonry plate is shown in fig. (7.10.a) 

and fig. (7.10.b) respectively. 

The ef feet of shear transfer on the bending 

165 

stresses of the pot bearing and masonry steel plates is 

the same for the axisymmetric and the plane strain solu-

tion methods. However, the numerical difference in the 

result is attributed to the fact that the horizontal 

interface spring elements do not affect the deformation 

in the circumferential direction in the axisyrnmetric 

solution; therefore, circumferential stresses and 

strains are not affected. Circumferential or in general 

out-of-plane strains are assumed to equal zero in the 

plane strain solution. 

7.2.3 EFFECT OF SHEAR TRANSFER ON THE 
NOR!v'T..AL A~TD SHEAR STRESS DISTRIBUTION 
IN THE CONCRETE ABUTMENT 

The effect of shear transfer on the vertical and 

horizontal deformation as well as on the bending of the 

steel plates on top of the concrete abutment surf ace, 

was examined in the previous sections. Vertical dis-

Placement distribution curves along the masonry steel 

Plate for different shear transfer conditions were shown 

in fig. (7.3) and fig. (7.5.b) for the axisymmetric and 

the Plane strain solution methods, respectively. The 

general deformation curve representing the deformation 
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of the masonry steel plate under different shear transfer 

assumptions for the axisym..~etric solution was shown in 

fig. (7.4). Generally speaking, all deformation curves 

indicated that as the ultimate shear strength of the 

horizontal interface spring elements was decreased, 

vertical displacements of the masonry steel plate tend 

to increase in the direction normal to the surf ace of the 

concrete near the center and decrease toward the end, 

with respect to results achieved from the infinite shear 

transfer condition. Furthermore, it has been shown in 

sec. (7.2.2), that the masonry steel plate tends to bend 

over the concrete surf ace at the section of the plate 

which is above the position where slip starts in the 

interface zone. Averaged vertical stresses along the 

concrete elements nos. 161 to 170, (selected about 

1.25 inches below the concrete surface to avoid direct 

effect from the interface spring elements and the modeling 

of the interface), for the different shear transfer condi­

tions were listed in tables (7.6.a) and (7.6.b) for the 

axisymmetric and plane strain solution methods . Results 

generally indicate that normal (compression) stresses 

increased in the center of the concrete abutment and 

decreased at the end, see fig. (7 .11. a) and fig. (7 .11. b). 

However, with a closer look at the results it was found 

that maximum increase in the concrete normal stresses for 

all shear transfer concitions appeared to be at the 
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Table (7 .6.a) Axisywnetric solution. Av era g ed vertical stresses (K si ) in concrete elements 
Ga uss integration po ints 2 and 4. 

Shear 
Element 

transfer no. 
161 16 2 163 

co ndition 

Infinite shear 
-1.739 - 1.8 5 4 -1.654 

transfer 

T = 70% T -1 .748 -1.870 -1.682 
u max 

T = 50% I -1.81 1 -1 .971 -1.779 
u ma x 

., = 30% ., -1.936 -2.087 -1.860 
u max 

Zero shear 
-2.129 -2 .254 -1. 985 

transfer 

1 
u 

ultimate shear strength in t h e 
hor izonta l interface sprlnq eleme nts 

T max maximum s hea r transferred in the 
infinite shear transfer condition. 

164 165 lf>6 167 168 169 

- ] . 4 40 - l. 114 - 0.833 -0 . 509 -0 .27 2 -0 .104 

-l.468 -1.125 - 0 . 824 - 0.495 -0.265 -0 . 101 

- l.541. -1.170 - 0. 8 )4 -0.449 - 0.226 -0.085 

- l.f>02 -1. 204 - O.A36 - 0.410 - 0.192 -0 . 070 

- 1.691 - 1 .254 -0.883 -0.356 -0. l 41 - 0.045 

170 

-0.012 

-0.010 

+0.002 

+0.014 

+0 .028 

I-' 
O"\ 
l.O 



Table ( 7 . 6. b ) Pla ne strai n solution. Averag e d vertical stresses 
Gauss integration points 2 and 4 . 

Shear Element 

tra nsfer no. I 161 I 162 I 163 I 164 I 165 I 166 
condition 

--= 

Infi n ite shear -2.718 -2 . 63 4 -2.398 -2 . .112 -1.680 - l. 271 
transfer 

= 70% -2 . 72 1 -2.639 -2. 414 -2 . 133 -1.684 -1.252 
u max 

= 50% - 2 . 755 -2.710 - 2 .4 93 - 2.] 8 J - 1. 701 -I ;230 
ll max 

= 30% -2. 862 -2.792 - 2.536 - 2. 20 1 -1 . 692 - l. 189 
u max 

Zero shear 

I - 3.028 I -2 . 90 4 1. -2.600 I - 2 . 22 9 I - 1 .677 I -l. 129 
transfer 

( Ks i) in co ncre te elements . 

I 16 7 I 168 I 169 I 

-0 . 776 -0 . 418 -0.164 

- 0 . 760 - 0 . 412 - 0.162 

-0.675 -0.342 -0 . 127 

-0 . 599 -0.285 - 0 . 099 

I - 0.496 I ~~~:_L-0. 05~ 
-----

170 

+0.013 

+0.014 

+0. 010 

+0.060 

+0.085 

I-' 
-..J 
0 
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concrete element under the horizontal interface spring 

elements which fully slipped (slip modulus equal 29 Ksi). 

The percentage changes in the concrete elements normal 

compressive stress resulting from the different shear 

transfer conditions, with respect to results from the 

infinite shear transfer condition, were listed in 

table (7.6.c) considering an axisymmetric solution. In 

the shear transfer condition where T = 70% T , maxi-u max 

mum increase in the average normal compressive stress 

appeared to be in element no. 164 which is aligned 

vertically with horizontal interface spring elements 

nos. 9 9 and 10 0, see fig. ( 6. 7) . P.eferring to 

table (7.1 . b), notice that element no. 99 was the first 

horizontal spring element in the full slip range (slip 

modulus eauals 2 9 Ksi) . Similarly, in the shear transfer 

condition where T = 50% T , maximum change appeared in u max 

element no. 163 which is aligned vertically with horizon-

tal interface spring elements nos. 96 and 97. Referring 

to table (7 .1. c) , notice that elements 96 and 97 have :":ully 

slipped. Maximum change in this case did not appear in 

concrete element no. 162, even though it is below the 

horizontal spring element no. 95 which wa_s the first in 

the full slip range. ' However, since average stresses 

Were considered, it came out that for maximum change in 

normal compression stresses to appear in one of those 

analyzed concrete elements, both horizontal interface 
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Table ( 7. 6 .. c) Axisyrnmetric solution. Percentage of change 
in averaged normal concrete compressive 
stresses. 

Shear transfer condition 
concrete 
element T = 70 % T T =-= 50% T T = 3_{) % T '.[ = 0 
number 

u max u max u max u 

% % % % 

161 +0.52 +4.14 +11. 33 +22.43 

162 +0.86 +6.31 +12.57 +21. 57 

163 +l. 69 +7.56 +12.45 +20.01 

164 +l. 94 +7.01 +11.25 +17.57 

165 +0.99 +5.03 +8.08 +12.57 

166 -1. 09 +0.12 +0.36 +6.00 

167 -2.83 -13.36 -24.15 -42.98 

168 -2.64 -20.35 -41. 67 -92 . 91 

169 -2.97 -22.35 -48.57 -231.11 

170 -16.67 -120.00 -216.67 -333.33 

[Notice: Change > 100 % should indicate a change from 
compression to tension.] 

t = ultimate shear strength in the horizontal u 
interface spring elements. 

T max = maximum shear transferred in the infinite 
transfer condition. 

shear 
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spring elements aligned vertically with it must be in 

full slip range. Notice similsrly that when T = 30% T , u max 

maximum change in concrete normal compressive stress ap­

peared in element no. 162 near the center, and in the 

case of zero shear transfer the maximum change appeared 

in concrete element no. 161, at the center, because in 

this case all horizontal interface spring elements slipped 

by assumption. NoTilal stresses near the edge of the 

concrete abutment decreased as shown due to the increase 

of plate bending. 

Shear stresses in concrete elements nos. 161 to 170 

for all shear tr an sf er conditions, were listed in 

tables (7.7.a) and (7.7.b). Results indicated that shear 

stresses in the concrete decreased as the ultimate shear 

strength value of the horizontal interface spring ele-

ments was lowered. That is because the masonry plate was 

allowed to slip more over the surf ace of the concrete 

while less shear stresses were transferred to the concrete 

abutment. The average decrease of concrete shear stresses 

in conjunction with average decrease of the shear stresses 

transferred through the interface zone for the axisym-

metric and the olane strain solution methods were listed 

in table (7.8.a) and (7.8.b) respectively. Shear ·stress 

distribution curves for the different shear transfer 

conditions in the axisymmetr ic solution are shown in 

fig· ( 7 .12) . Generally speaking, the shear stress 
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Tabl e (7 . 7.a ) Axisymmetric solution. Av0 ran e d shear stre s sP s ( Ksi ) in c o ncr e te e l e me nts . 
Gauss i n tegration poin t s 2 and 4. 

Shear Elemen t 

transfer no . . 161 1 62 163 16 4 165 166 167 1 68 

condition 

Infinite shear 
tra nsfer +0.2 8 73 +O . 2216 +0 .4 155 +0.4771 +0. 5028 +0 .4 262 +0 .37 19 +0.2200 

1 = 70% T +0.2 8 78 +0.2160 +0. 40 7 4 • 0. 4 2 14 +0. 5014 +0.42 4 5 +O . 36 41 +0. 21 27 
u ma x 

T = 50% l +0.2 8 42 +O. 1903 +0 . 39 19 +0 . 39 78 +0.479 1 +0.4 140 +0 . 3535 +0 . 1792 
u ma x 

1 = 30% 1 +0.2907 +0 .1835 +0.3737 +0.3717 +O. 4S83 +0 . 4027 +0. 3402 +0.1501 
u max 

Ze ro s hear +0 . 3056 +0 . 166 8 +0.3.45 4 +0.3337 +0.4276 +0 . 30 6 4 +0 . 3207 +0.1075 
transfer 

- - - -

r = ultimate shear strength of th e 
u horizonta l inte rface spring e l e ments. 

T = max i mum s hear transf e rred i n t he 
max infinite s he ar transf e r condition. 

169 

+0.087 8 

+0.0842 

+0 . 0635 

+0 . 0 44 8 

+0 . 0 1 39 

.. 

170 

+0.0145 

+0 . 0133 

+0.005 3 

- 0.0 01 8 

-0 . 0116 

- --

f'-1 
-.J 
Ul 



Table (7.7.b) Plane strain solution. Ave raged shear stresse s (K si ) in concrete e l ements. 
Gauss integration points 2 a nd 4. 

~ 161 162 163 I fi4 165 166 167 168 
n 

. 

Infinite shear +0.1637 +0.2549 +0.5494 +0.5724 +0.7 110 +0.6179 +0.5631 +0 . 322 4 transfer 

l = 70% r +0 . .1638 +0 . 2532 +0.5424 •0. S677 · +0 .7108 +0.6153 •·O. 550fi •0.3144 u max 

l = 50% T +0 . .152 4 +0 . 222 7 +0.5218 +0.5373 +0.6736 +0.588) +0.5213 +0.2577 u max 

1 = 30% I +0.1428 +0.2046 +0.4867 ·1·0. 4944 +0.633A +0.5575 +0.4854 +0.2072 
u max 

Zero shear 
+0.1463 +0.1737 +0.4351 +0.4324 +0.5750 +0.511.9 +0.4319 +0 . .I 3 1 7 

transfer 

169 

+0.1295 

+0. 1258 

+0.0840 

+0.0499 

- 0. 0041 

170 

+0.0139 

+0.0125 

- 0 . 00 40 

-0.0172 

-0.0337 

!-" 
~.J 

O'\ 



Table (7.8.a) 

Shear transfer 

Axisymmetric solution. Average decrease of concrete shear 
stresses in· conjunction with the average decrease of shear 
stresses transferred through the interface zone. 

Average decrease in shear stresses Average decrease in 

. 

condition transferred through the interface concrete shear stresses zone % ..._____ _________ 

!.--

T = 70% T 5.75 
u max 

Tu = 50% Tmax 15.63 

T 

T 

T 
u 

T max 

' 37.10 = 30% T 
u max 

= 0 88.75 
u 

= ultimate shear strength in the 
horizontal interface spr~ng elements. 

maximum shear transferred in the 
infinite shear transfer condition. 

% 

1. 41 

7.26 

12.13 

19.45 

- -

f--' 
-...J 
-...J 
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Shear 

Table (7.8.b) Plane strain solution. Average decrease of concrete shear 
stresses in conjunction with the average decrease of shear 
stresses transferred through the interface zone. 

Average decrease in shear stresses 
transfer transferred through the interface Average decrease in 

condition zone concrete shear stresses 
% 

T 

T 

T 

T 

- ·---

u 

u 

u 

u 

= 

= 

= 

= 

T 
u 

1 
max 

% 

70 % T 4.07 max 

50% T 11. 21 max 

30% T 31. 81 

0 

max 

80.74 

ultimate shear strength in the 
horizontal interface spring elements. 

maximum shear transferred in the 
infinite she ar transfer condition. 

l. 07 

8.80 

16.75 

28.17 

I-' 
-....) 

00 
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distribution curves indicate that shear stresses drop 

with different slopes depending on the ultimate shear 

strength of the horizontal interface spring elements. 

For lower shear strength value, the shear stresses in 

concrete elements 161and162, see fig. (7.12) dropped 

with a steeper slope; however, the variation of the 

curve along the concrete elements became more consistent 

for the different shear transfer conditions, where at 

element no. 162; concrete shear stresses started to 

increase as positive bending stresses increased at the 

bottom steel elements of the masonry plate, see 

fig. ( 7 . 9 . a) and ( 7 . 9 . b) . (Plane strain and axisym-

metric solution methods showed similar behavior in all 

conditions.) Maximum shear stress in the concrete ele-

ments for all shear transfer conditions appeared in 

element no. 165, which is beneath the critical section 

in the masonry plate. Beyond concrete element no. 167, 

beneath the unloaded concrete surface, shear stresses 

dropped very steeply. 

It is worthwhile at this point to examine the 

effect of the variation in the concrete yield status 

resulting from different shear transfer conditions. The 

concrete has been modeled as an elastic - plastic model 

With strain hardening properties, see sec. (5.2), and 

Was assumed to follow von Mises yield criterion, 
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sec. (5.2.1), which considers the octahedral shearing 

stress as the key factor of causing the yield in the 

concrete. The yield status for concrete elements 

nos. 161 to 170 is presented in tables (7.9.a) and 

(7.9.b), resulting in the axisyrmnetric and plane strain 

solution methods, respectively. Notice that yield is 

defined as the point on the concrete stress ~ strain 

diagram where normal stresses and strains are in the 

elastic -plastic range in a uniaxial compression test. 

However, that is not exactly the case for the concrete 

abutment being considered in this study because of an 

internal lateral confining pressure corning from sur­

rounding elements. Therefore, yield status shown in 

tables (7.9.a) and (7.9.b) does not really mean that 

concrete has actually yielded, but as mentioned above, 

it means that, based on the concrete material constants 

taken from a uniaxial compression and tension tests, 

see Appendix C (sec. (C.2)), concrete would have yielded 

at that level of stress. Thus, results indicated that 

as the shear stresses transferred through the interface 

zone decreased, concrete elements at the edge of the 

abutment would stay in the elastic range. Notice that 

this is consistent with the results of normal and shear 

stress distribution in the concrete elements. Whereas 

the shear stresses transferred through the interface 

zone decreased, normal compressive and shear stresses 
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at the edge of the concrete abutment decreased as shown 

in figs. no. (7 .11.a), (7 .11.b) and (7 .12). 



182 

Tab l e ( 7 . 9. a ) Ax isyrnmetric solut ion . Concrete y ie l d 
status in diffe rent shear transfer 
cond i tions. 

shear 
transfe r Concre t e y ie ld status 
condition 
~ 

Ele- Gaus s Infinite T = 70 % T = 50 % T = 3 0% 
u u u 

ment integ . shear T = 0 u 
no. point tr an s f er T T T ma x max max 

2 p lastic plastic p lastic p l a stic p last i c 
161 4 II " " If Ii 

2 " " " " " 162 4 If " " If If 

2 If If " II II 

163 4 II II ll " " 

2 If 

I 
If " If If 

164 4 II ll a " " 

2 " 1 fl " " I If 

165 4 " " If " I ll 

l 
i i 

2 i " I " " II I " ! 166 
4 I If 

I " " II I If 

! ! 

2 I II T II 

l 
II " i If 

167 ' I 

4 ii l 
" " " ! II 

! 
! 

l l 

l I I I I 
2 " If " If 

I 
" 168 

4 I " 
I 

" II " ela stic I 
! 

I i 

I 
I 

--1 

2 If " II If elastic I 169 ! 
I 4 II I I! " e lastic e lastic 

2 i " If elastic elastic e last i c 170 
4 If \elastic elast i c elast i c e lastic I 

! ··--



Table (7. 9 .b) 

shear 
transfer 
condition 

Ele- Gauss 
ment integ. 

point ' no. i 

! 

161 
2 
4 

2 I 

162 I 
4 ! 

i 

2 j 
163 4 

J_ 

2 ! 

164 i 
4 ! 

f---- -·- f--·--

2 165 
4 

2 166 
4 

') 

167 
,;. 

4 
t-

I 

2 
I 168 

4 

2 169 
4 

I 

" 
I 170 ,;. 

4 
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Plane strain solution. Concrete y ield 
status in different shear transfer 
conditions. 

Concrete yield status 

-~-

Infinite T = 70 % T = 50 % T = 30 % 
shear u u u 0 T = 
tr an sf er T T T u max max max 

plastic plastic plastic plastic plastic 
II " " " II 

II " II " " 
" II II " " 
II fl II II " 
" II fl II II 

ti !I II " II 

" fl " II II 

" II II II " 
II II " II II 

II " 

+-+ 
II " 

II " " " 

II ll " ! I 

l 

. 

" II I :• II 

II if " II II 

" " elastic " elastic 
--·---·--

fl " elastic elastic elastic 
fl " elastic elastic elastic 

elastic elastic elastic elastic elastic 
elastic elastic elastic elastic plastic 

- -·- · - ···--··· . -····-----·- '-~ - - .. ... . . -



CHAPTER 8 

SUMM.ARY AND CONCLUSIONS 
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The standard procedure followed in practice for the 

design of the bearing system, is to assume that concrete 

stresses beneath the masonry plate have a uniform distri­

bution. However, a previous finite element analysis of 

the bearing system has shown that there is in fact a 

little lateral distribution in concrete stresses beneath 

the masonry plate. It has also shown that bending stress-

es of opposite sign can result in the unloaded area of the 

masonry plate if tension forces can develop between the 

plate and the concrete, as might be the situation with 

anchor bolts. Therefore, the finite element analy sis was 

carried out in this study to examine the effect of the 

shear transfer along the interface between the masonry 

plate and the concrete. 

The anslysis conducted here is based on the assump­

tion that shear stresses continue to be transferred along 

the interface zone until a certain ultimate shear strength 

is reached, then the bonds between the steel and concrete 

elements will break causing the masonry steel plate to 

slip over the surface of the concrete abutment. Vertical 

and horizontal interface spring elements were used to 
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simulate the behavior of the interface with a nonlinear 

aescription of slip. The stiffnesses of the inter£ ace 

spring elements selected to represent varying shear trans­

fer conditions, were based on trying different values and 

comparing outcoming results against those of the known 

infinite and zero shear transfer conditions. The ultimate 

shear strength value for the horizontal inter£ ace spring 

elements was randomly set to equal 70%, 50%, and 30% of 

the maximum shear stress transferred through the horizon­

tal spring elements in the infinite shear transfer condi­

tion. The analysis was carried out by using both axisym­

metric and plane strain solution methods. 

Results of the study show that: 

1) The behavior of stresses and deformation of the bear­

ing system was essentially the same in both the axi­

symmetr ic and the plane strain solution methods. 

However, the numerical difference_ in the results 

could be attributed to the displacement in the circum­

ferential direction in the axisymmetric elements. 

Nevertheless, the axisymmetric solution represents a 

more realistic approximation of the actual three­

dimensional solid structure and shows that compression 

stresses in the concrete are not as high as anticipa­

ted in the previous finite element analysis of the 

bearing system. 
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Z) As the ultimate shear strength of the horizontal 

interface spring elements decrease~, the masonry plate 

starts to slip increasingly and bend over the concrete 

abutment. Bending stresses in top of the bearing 

plate in the area beneath the uniformly applied load 

were not significantly affected by the slip. However, 

bending stresses increased greatly in the unloaded 

portion. Positive bending stresses increased in the 

masonry plate more significantly, however, negative 

bending stresses appeared in the masonry steel ele­

ments beneath the end of the pot bearing plate. 

Nevertheless, those negative bending stresses de­

creased as the masonry plate was permitted to slip. 

Therefore, it could be stated that bending stresses 

could change signs in the critical section of the 

masonry plate, if tension forces can develop between 

the olate and the concrete. 

3) The increased bending in the plate resulting from the 

decrease of the shear stresses transferred through the 

interface, cause the compression stresses transferred 

to the concrete near the center of the abutment to 

increase, and to decrease in the area beyond where the 

load ends. This leads to the conclusion, at least for 

the geometry considered here, that the applied load 

is transferred to the concrete essentially by direct 

compression with little lateral distribution of load. 
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It also results in significant bending action occur­

ring at the end of the plate if it is permitted to 

deform. Hence, shear stresses transferred through 

the interface zone plate a restraining role against 

the bending action of the plates. 

4) Shear stresses in the concrete decrease if less shear 

is transferred through the interface. However, it has 

been noticed that there has been no significant change 

in the concrete shear stress distribution, at least 

for the nonlinear slip function used in this study. 

Examining the results from a practical vie~point, 

they indicate the following: 

1) In the case where the ultimate shear strength in the 

horizontal interface spring elements equals 70% of the 

maximum shear stress transferred in the infinite shear 

transfer condition, shear stresses transferred through 

the interface decreased, on the average, only about 

5.75% in the axisymmetric solution, and about 4.07% 

in the plane strain solution. However, slip occurred 

in approximately 70% of the interface spring elements, 

representing 70% slip of the interface zone, 20% being 

in the full sl~p range in both solution methods. 

Physically, that represents a lot of slip for that low 

reduction in the shear stresses transferred in the 

interface. Therefore it might be concluded that 

interface spring elements with a shear strength value 
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less than 70% would not be considered practical. 

Results from the case where T = 70% T , did not 
u max 

vary by much from the infinite shear transfer condi-

tion. Hence, when T > 7 0 % T , the change in bear-
u max 

ing stresses with respect to the infinite shear 

transfer condition will be practically insignificant. 

2) The maximum bending stresses in the critical section 

of the masonry plate are considerably less than those 

obtained when assuming a uniform stress distribution 

beneath the plate. When analyzed as a circular plate 

with central constraint by assuming uniform stress 

distribution [22], resulting maximum bending stress 

at the critical section was equal to 15.12 Ksi 

compared to -2.56 Ksi resulting in the axisymrnetric 

solution, table (7.5.a). When the free portion of the 

masonry plate was analyzed as a cantilever beam, 

resulting maximum bending stress at the critical 

section came out to be -13.71 Ksi, compared to 

-2.73 Ksi in the plane strain solution, table (7.5.b) 

Based on the above findings, it could be concluded, 

at least for the interface spring elements used in this 

study, that the effect of shear transfer in the interface 

zone does not have practical significance on the design 

Of the bearing system. However, results indicated that 

the normal procedure followed in the design of pot 
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bearings is too conservative. A circular or parabolic 

function representing the normal stress distribution in 

the concrete beneath the masonry plate could probably 

give a safe and more economical design than assuming 

uniform stress distribution. However, more research is 

needed to define an exact stress distribution function. 

Finally, results indicated that stresses in the 

concrete supporting structure are actually less than the 

resulting stresses from plane solution methods. Hence, 

failure level of the concrete is higher than anticipated 

due to existing lateral out-of-plane and in-plane 

confining pressure in the three-dimensional solid 

structure. 
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APPENDIX A 

A.l FORMULATION OF THE LINKAGE ELEMENT 
BY NGO AND SCORDELIS 

194 

For the linkage element shown in fig. (5.3), let 

the springs in elements local axes H and V have the 

stiffness KH and KV respectively. 

The stress - strain relation is given by: 

(A .1) 

where €H and sv are the components of the relative 

strain in the spring connecting points I and J. oH and 

av are the corresponding stress components. Note that 

the strain components are shown in the elements local 

coordinates and they are positive when the spring con-

necting points I and J is in tension. 

Rewriting (A.l) symbolically: 

(A. 2) 

where oL and s L are the springs stress and strain 

components written in local coordinates, and [KL] is 

the spring's stiffness matrix in local coordinates. 
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However, if the spring's stiffness matrix is to be added 

to the structure stiffness matrix, it has to be trans-

ferred into global coordinates. 

Let the transformation matrix, (A], relate the strains 

and displacements as such, 

(A. 3) 

G where o are displacements of joints I and J written in 

global coordinates. 

Substituting (A.3) in (A.2), 

(A. 4) 

The transformation matrix (A] is an orthogonal matrix 

by definition, therefore its transpose equals its 

inverse. 

Multiplying (A] transpose, by both sides of (A.4), 

(A. 5) 

but 

(A. 6) 

where cr G are the stresses at nodes I and J written in 

global coordinates. 
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Rewriting (A. 5) , 

(A. 7) 

However, the element stress - strain relation in global 

coordinates is 

(A. 8) 

where [KG] is the global stress - strain relation . 

By comparing matrices of equations (A.7) and (A.8), 

,it must be concluded t h at the global stiffness matrix for 

the linkage element is defined as 

(A. 9) 

or 

-c s 

[KG] 
-s -c 

r OH K:J 
[-SC 

-s c 
= 

c -s -c -s 
SC] (A.10) 

s c 

The linkage element global stiffness matrix is shown in 

table (A. l). 

Note that in this element formulation a linear 

stress - strain relation was assumed to describe the 

relationship between bond slip and bond stress, see 



2 2 
KH c +KV s 

symmetric 

Table (A . l) Linkage element's global stiffness matrix 

KH s c - KV s c 
2 2 

-K c - K s -K8 s c + KV s c 
H v 

KH s 
2 

+ KV c 
2 

-K8 s c + KV s c -K s 2 
- K c 

2 
H v 

2 2 
KH c + KV s KH s c - KV s c 

KH s 
2 2 

+ Kv c 

f--' 
\0 
-.J 



. equations (A.2) and (A.8). It was suggested here th~t 

KH and KV values are not easily determined but they 

could be found experimentally. 
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A.2 FORMULATION OF THE TWO-DIMENSIONAL INTERFACE 
ELEMENT BY GHABOUSST, WILSON AND ISENBERG 

A.2.1 PLANE INTERFACE ELEMENT 

The interface element uses relative displace-

ments as the independent degrees of freedom. The dis-

placement degrees of freedom adjacent to the interface 

199 

have been transformed in the top continuum element into 

relative displacements between the two sides of the slip 

surface. The transformation relations are as follows: 

T B 
+ !::, u yi u y Q, yi 

T B 
+ 6 u zi = u z .Q, zi 

(A.11) 
T B 

+ 6 u yj = u yk yj 

T B 
+ !::, u zj = u zk zj 

where 6. 's represent relative displacements, and uT's 

B and u 's represent nodal displacements of the top and 

bottom continuum elements, respectively, following the 

notation shown in fig. (A.l). 

To avoid numerical difficulties, the element 

stiffness was formulated in the element's local co-

ordinates and then was transformed into g lobal co-

ordinates, see fig. (A.2). The element thickness, h, 

is small relativ e t o the size of the continuum elements, 

therefore, the relativ e displacement is considered 



Top continuum 
element 

2-D 
interface 
element -

z 

Global coordinates 
k 

u . 
YJ 

1
6 . 

"-=;;.._-- u . z J - Vl 
i r /:, . -___ ....... \ 

,;.i- ---A 
.,..- \ Ll. 

\ !::. . ...l ' uzk YJ i\ :._i __ 

Bottom 
continuum 
element i 

j 

Fig. (A.l) Geometry of the 2-D interface element. 

200 



Fig. (A. 2) 

z 

y 
Global coordinates 

n' l;; 

s' !;; 

2 
l;; =Fl n 

Interface element relative 
displacements in local 
coordinates. 
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constant across the thickness. However, the normal and 

tangential displacements, 6 and 6 are considered to n s 

vary linearly along the elements as follows: 

= N. 6 . + N. 6 . 
l Ill J DJ CA.12) 

6 s = N . 6 . + N. 6 . 
l Sl J SJ 

where N. and N . are the linear shape (interpolation) 
l J 

functions at nodes i and j respectively. 

N. 
1 1 l; ) = 2 -

l 

N. 
1 1 + l; ) = 2 J 

(A.13) 

where l; is a nondimensional coordinate, see fig. (A.2). 

The plane interface element is assumed to have only 

two strain components, the normal component, E , and the 
n 

tangential component, E , and they are related to the s 

relative displacements through the following relations: 

1 6 E = n h n 

1 
(A.14) 

E = 6 s h s 

Substituting equations (A.12) and (A.13) in (A.14) 

results in the strain-displacement relations for the 

element: 
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6. . 
Ill 

0 (l+ E,;) 

~::~ 1 [1: 0 (1: 0 J = 2h (A.15) 
(1 - E,: ) 0 6. . 

Il] 

6. . 
SJ 

written symbolically as 

{ c: } = [B] {6.} (A.16) 

The stresses are related to the strains through the 

material property matrix [C] , 

(A. 1 7) 

Notice that the material property matrix represents a 

nondilatant element meani ng that there is no volume 

change due to shearing strains, and therefore, the 

shear and normal components of deformation are un-

coupled. C and C are nonlinear functions. nn ss 
In 

relating stress to deformation in the direction normal 

to the element, three distinct stages are defined, 

refer to fig. (5.6.a). 

1) Separation, C = C = 0 when c: > 0. nn ss n 

2) Crushing of the surface irregularities, if 

3) 

any, C nn 
c = E ( c: < E 

c n n 

Contact, C = Ef ( c: nn n 

< 0) • 

c < € ) • 
n 
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The tangential stress - strain relationship is assumed to 

be elastic~perfectly plastic using a Mohr-Coulomb yield 

criterion, [3], refer to fig. (5.6.b): 

c = G for cr < c + cr tan cp 
SS S n 

C = 0 for cr = c + cr tan cp 
SS S n 

(elastic) 

(plastic, cr has reached s 

the ultimate shear 

strength) 

where G is the interface element shear stiffness, and 

c and cp are the cohesion and the angle of friction, 

respectively. 

The element stiffness matrix in the local coordinates 

(s,n) is formed as follows: 

[B]T [C] [B] d l 
VO 

(A .18) 

The global element stiffness matrix is: 

(A.19) 

where [T] is the transformation matrix containing the 

direction cosines. 

The complete global element stiffness matrix for 

a nondilatant material is shown in table (A.2). 



Table (A.2) Plane interface element global stiffness matrix 
for nondilatant materials. 

2A1 
2A

3 Al A3 

L I 
2A2 A3 A2 

6h 
2A1 2A

3 

symmetric 2A2 

where A1 = C a
2 + C b2 and l a=y;-(y . -y . ) 

SS nn J l 

a
2 + C b2 l 

A = C b = y;-(z.-z . ) 
2 nn SS J l 

A = (C - C ) ab 
3 nn ss 

[\.) 

0 
lT1 
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A. 2. 2 AXISYMMETRIC INTERFACE ELEMENT 

A similar joint element has been developed for 

axisymmetric problems, where the integration in 

equation (A.18) is carried out over the volume of the 

axisymmetric element, which includes the circumferential 

direction also. 

The geometry and the independent degrees of tree-

dom for the axisymmetric element are exactly as shown in 

fig. (A.l) and fig. (A.2) r except that the global y-axis 

is substituted by the global radial r-axis. However, the 

strain displacement relation now involves three equa-

tions: 

1 
6 E: = h n n 

1 
6 (A. 2 0) E: = h s s 

1 B 6 
i:: e = -(u + __£) 

r r 2 

where i:: 8 is the circumferential strain component and u~ 

is the radial displacement of the surf ace of the bottom 

elements as shown in fig. (A.l). 

The axisymmetric displacement functions are defined as: 

6 = Nl 6 + N2 6 
rj r ri 

6 = Nl 6 + N2 6 zj z zi 

B 
Nl 

B + N2 
B (A. 21) u - . u ri 

u rj r 



The strain-displacement may be expressed as: 

6 ri 

6 zi s n 
6 

s = [B] rj 
s 6 

S8 
zj 
B u . ri 
B u rj 

where [B] is shown in table (A. 3) • 

The stress-strain relation is defined as: 

= 

c nn 

0 

0 

0 

c 
SS 

0 

0 

0 
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(A. 22 ) 

(A. 23 ) 

where C and C are defined as in equation (A.17), and nn ss 

c88 is added to account for the stress and strain 

components in the e direction, but its physical meaning 

is not clear and is assumed to equal zero. 

The global stiffness matrix for the axisym-

metric element is shown in table (A.4). For more 

details see the source [17,18]. 



Table (A. 3) 

s --(1-s) 
h 

1 c 
2 -(1-s) 

h 

1 - s 
~ 

l 

[B] matrix in the axisymmetric element strain - displacement relation. 

c s i ( 1 + o 0 0 Fl(l-s) --(1+s) 
h 

s 5 ( 1 + s) f(l+s) 0 0 -(1-s) 
h 

0 1 + s 0 1 - s 1 + s 
2r. r. r. 

J l J 

where s = sin e and c = cos e. 

rv 
0 
00 



Table (A.4 ) Axisymmetric interface element global stiffness matrix 
for nondilatant material. 

A2( s2c +c2C )+ c2c 
nn ss 

A2sc (C - C ) 
ss nn 

2 2 
AB( s C

00
+c css )+coc00 

A2 (c 2c +s 2c ) ABsc(C - C ) 
nn ss ss nn 

2 2 2 2 B (s C
110

+c C
6
s) +D c 80 

symmetric 

where A2 = ~ (r . - 3r.) c2 = L 
and 

3h2 J l 2(r. -r . ) 2 
J l 

/\Bs c ( C +C ) 
ss nn 

/\B(c 2C +s 2c ) 
nn ss 

B2sc(C - C ) 
ss nn 

B2(c 2C +s 2C ) 
nn ss 

2r .2 

+ 

2 2c c00 

0 

2CDCee 

2 4c c08 

(ri - 3rj) r. -r . 
log 

J l 

2r. 2 
2 L D2 = L 

(rj-3ri) 
l log B = -:.-:2 ( 3r . - r.) 2 + 

3h J l 
r. - r. 

2(rj-ri) J l 

r.r . 

2coc80 

0 

2 
20 cee 

l1CDCee 

2 
20 cee 

r. 
(_1_) 

r. 
l 

r. 
(-_l_l 

r. 
l 

r. 
L L J l log (_]_) AB = --2 (r . + r. l CD = r. + r. -2 r. - r . r. 3h l J J l 

2(rj-ri) J l l 

N 
0 
l.O 



APPENDIX B 

B.l HORIZONTAL INTERFACE SPRING ELEMENT 
STRESS - STRAIN DIAGRAMS FOR THE 
DIFFERENT SLIP CONDITIONS 

The stress - strain diagram, shown in fig. (B. l), 
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describes the proposed nonlinear slip relation presented 

in sec. ( 6 . 5) . The ultimate shear strength, T , equals 
u 

X% of the maximum shear values, T , transferred max 

through the horizontal spring elements in the model 

representing infinite shear transfer condition (no · slip 

condition). 

Data for the stress - strain relation assuming 

70 %, 50 %, and 30 % of T are shown in tables (B.l), max 

(B.2), and (B.3), respectively, for both axisymmetric 

and plane strain solution methods, where 

TB = T + 0.10 T u u 

T9 = T + 0.20 T u u 

T 10 = T + 0.30 T 
u u 

T 11 = 29000 Ksi. 

T 
u 



'- 1 

T 11 

El = 29000 Ksi. (no s li p mod ulus, 
Tl.0 

ESH) 
l g 

r 8 

E = 2 
2900 Ksi 

E = 290 Ksi T = T 
3 u 7 

E = 29 Ksi (full slip 
4 modulus, EP) 

£2 E) [ 4 

E 2 

E5 

1-1 '' j 
r 8 

I -
'4 

1 J 

'2 
11

1 

l l = 

I 2 = 

I = 
3 

I = 4 

's = 

I 
I 
I 
I 
I 
I I I 

I 

£9 £10 ' 11 

-T 1J 

-T 10 

-T9 

- '8 

- T7 (ultimat e shear s tr eng th, 

1 6 = 0.0 

Fig . (B. l) llo rj zonta l interface spr.inq e l e ments stress - str.i.dn diaqr a m (no t t o sca l e ). 

r u) 

[\.) 

I-' 
I-' 



Table (B.l) Horizontal interface spring elements stress - strain relation 

( T = 70% T ) 
u max 

Axisymmetric solution Plane strain solution 

Shear stress 
Strain Shear stress Strain (Ksi) (Ksi) 

I T 1 
= -0. 2900D + 05 €1 = -0. lOOOD + 04 Tl = -0. 2900D + 05 € 1 = -0. lOOOD + 04 

T2 = -0 .1267D + 01 € 2 = -0. 3763D - 02 T2 = -0 .1183D + 01 € = -0. 3514D - 02 2 

T3 = -0 .1169D + 01 € 3 = -0. 4032D - 03 T3 = -0 .1092D + 01 € = -0. 3765D - 03 

I 3 

i T 4 = -0.1072D + 01 € 4 = -0.6719D-04 T4 = -0 .1001D + 01 € = -0. 6275D - 04 4 
I 
I 

-0.9743D+OO -0. 3360D - 04 -0. 9099D + 00 € -0. 3138D - 04 : T 5 = €5 = TS = = 5 
I 

, T = 0.0 
6 €6 = 0.0 T6 = 0.0 € = 0.0 6 

' 
T7 = +0. 9743D + 00 € 7 = +0. 3360D - 04 T7 = +0. 9099D + 00 € 

7 = +0. 3138D - 04 
I 

+0 .1072D + 01 I T = € 8 = +0. 6719D - 04 T8 = -0 .1001D + 01 € = +0. 6275D - 04 
I 8 8 

i T 9 = +0 .1169D + 01 € 9 = +0. 4032D - 03 T9 = +0 .1092D + 01 € = +0. 3765D - 03 9 
I 
' T =+0.1267D+01 c: 10 = +0. 3763D - 02 T 10 = +0 .1183D + 01 € = +0. 3514D - 02 ! 10 10 

; T =+0.2900D+05 €11 = +0. lOOOD + 04 T 11 = +0. 2900D + 05 € = +0. lOOOD + 04 ' 11 11 I 
I 

.... -

N 
I-' 
N 



Table (B.2) Horizontal interface spring elements stress - strain relation 

(T = 50% T ) 
u max 

Ax isymmetric solution Plane strain solution 

Shear stress Strain Shear stress Strain (Ksi) (Ksi) 

Tl =-0.29000+05 El = -0 .10000 + 04 Tl = -0. 29000 + 05 El = -0 .10000 + 00 

T2 = -0.90470+ 00 E2 = -0. 26880 - 02 T2 = -0. 84490 + 00 E2 = -0. 25100 - 02 

T3 = -0. 83510+ 00 E3 = -0.28800- 01 T3 = -0 . 77990 + 00 E3 =-0.26860-03 

T4 = -0. 76550 + 00 E4 = -0. 48000 - 04 T4 = -0.71490+00 E4 = -0. 44530 - 04 

T5 = -0. 69S90 + 00 ES = -0. 24000 - 04 TS = -0. 64990 + 00 E5 = -0. 22410 - 04 

T6 = 0.0 E6 = 0.0 T,.. = 0.0 E6 = 0.0 
0 

T7 = +0. 69S90 + 00 E7 = +o. 24000 - 04 T7 = +0.64990 + 00 E7 = +0.22410 - 04 

T8 = +o. 76Sso + oo E8 = +o. 48000 - 04 TB = +0. 71490 + 00 E8 = +0. 44530 - 04 

T9 = +0. 83Sl0 + 00 E9 = +o. 28800 - 03 T9 = +o. 77990 + oo E9 = +o. 2 6 s 60 - o 3 

T 10 = +0.90470+00 ElO = +0. 26880 - 0 2 TlO = +0.84490 + 00 ElO = +0.25100-02 

T 11 = +0. 29000 + 05 Ell = +0 .10000 + 04 Tll = +0.29000+05 ~l = +0 .10000 + 04 

- N 
1--' 
w 
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Table (B.3) Horizontal interface spring elements stress - strain relation 

(T = 30 % T ) 
u max 

Axisymmetric solution Plane strain solution 

Shear stress 
Strain Shear stress 

Strain ' 
(Ksi) (Ksi) 

Tl = -0. 29000 +OS £1 = -0. 10000 + 04 Tl = -0. 29000 + 05 £1 = -0 .10000 + 04 

T2 = -0.S42SD + 00 £ 2 = -0.16130 - 02 T = -0.S069D + 00 E = -0 .1S06D - 02 
2 2 

T3 = -0. 50110 + 00 E 3 =-0.172SD-03 T3 = -0.46SOD + 00 E = -0. 16140 - 03 3 

T4 = -0.4S93D + 00 E 4 =-0.2SSOD-04 T4 = -0.42900+ 00 E =-0.26S9D-04 
4 

TS = -0.41760+00 ES =-0.14400-04 TS = -0. 39000 + 00 E = -0. 134 SD - 04 
s 

T6 = 0.0 E 6 = o.o T6 = 0.0 E = 0.0 
6 

T7 = +0.41760+00 E 7 = +0.14400 - 04 T7 = +0.39000 + 00 E = +0.134SD - 04 
7 

T8 = +o. 4 s 9 3o + oo ES = +0.2SSOD - 04 TS = +0.42900 + 00 E = +0.26S9D - 04 
I s 

T9 = +O.SOllD + 00 E9 = +0. 172 SD - 0 3 T9 = +0.46SOD + 00 E9 = +0 .16140 - 03 

TlO = +0. 542SD + 00 ElO = +0.16130 - 02 T lO = +0. S069D + 00 E 
10 = +o .1so60 - 02 

I 
I 

' Tll = +0. 29000 +OS Ell = +0 .10000 + 04 Tll = +0.29000 +OS E : 
11 = +o .10000 + 04 

'I 

j 
N 
f--' 
.i::. 



B.2 NORMAL STRESSES TRANSFERRED THROUGH THE VERTICAL 
SPRINGS 

[Zero shear transfer condition, interface spring 

elements not included, see model in fig. (4.6)]. 

Table (B.4) 
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Element Axisymmetric solution Plane strain solution 

number normal stress normal stress 
(Ksi) (Ksi) 

49 -1.167 -6.162 

50 -2.529 -6.133 

51 -2.293 -6.006 

52 -2.259 -5.869 

53 -2.174 -5.626 

54 -2.051 -5 . 314 

55 -1.880 -4.900 

56 -1.702 -4.474 

57 -1. 516 -3.993 

58 -1.344 -3.518 

59 -1.142 -2.963 

60 -0.894 -2.300 

61 -0.603 -1.479 

62 -0.237 -0.345 
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B.3 NORMAL STRESSES TRANSFERRED THROUGH THE INTERFACE 
SPRING ELEMENTS FOR DIFFERENT SHEAR TRANSFER 
CONDITIONS 

[Model including vertical and horizontal interface spring 
e 1 eme n ts , see fig . ( 4 . 7 ) ] 

Table (B.5.a) Axisymmetrical solution 

Shear tr an sf er condition 

Infinite 
Ele-
ment 

_shear T =70 % T T =50% T T =30 % T T = 0 u max u max u max - u transfer 
No. normal normal normal normal normal 

63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 

T = u 
T max 

stress stress stress stress stress 
(Ksi (Ksi) (Ksi) (Ksi) (Ksi) 

-0.915 -0.933 -1. 042 -1.248 -1.761 
-5.361 -5.791 -6.845 -5.568 -4.708 
-1. 788 -1. 785 -2.105 -3 . 300 -2.599 
-4.679 -4.025 +3.784 -1.817 -4.262 
-1. 723 -1.905 -22.187 -0.574 -2 . 438 
-4.832 -1.697 +31.958 -1.491 -5.065 
-1. 722 -2.273 -59.087 +1.034 -2.496 
-4.550 +3.542 +70 . 720 -41.590 -5.829 
-1. 610 -7 . 381 +19.958 +2.908 -2.727 
-4.427 +15.750 +50.946 +1.403 -6.962 
-1.527 -34.895 +24.029 +4.351 -3.654 
-4.032 +38.064 +46.323 +2.393 -8.129 
-1.332 -51. 762 +15.642 +5.100 -4.944 
-3.686 +58.717 +40.820 +3.145 -9.457 
-1.195 -12.325 +22.031 +5.202 -7.152 
-3.243 +62.942 +35. 728' +3.248 -10.579 
-1. 000 -6.096 +22.433 +4.662 -9.0239 
-2.881 +70.695 +30.962 +3.315 -11.407 
-0.892 -5.617 +19.140 +3.924 -10.460 
-2.507 +7.694 +26.124 +3.010 -11.690 
-0.727 -2.671 +16.311 +3.152 -11.180 
-2.064 +85.153 +22.071 +2.984 -11.308 
-0.547 -5.530 +3.736 +l. 683 -12.223 
-1.572 +8.570 +15.316 +2.115 -10.129 
-0.367 -35.947 +l.405 -15.321 -11.986 
-1.14 7 +86.424 +11. 073 +3.269 -8.762 
-0.319 -30.019 -0.883 -16.605 -10.738 
-0.313 +92.199 +8.748 +6.275 -6.226 
-2.382 +87.26 +6.027 +13.576 -21.039 

horizontal spring element ultimate shear strength 

= maximum shear stress transferred in the infinite 
shear transfer condition. 
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Table (B.5.b) Plane strain solution 

Shear transfer condition 

' Infinite =70% =50% =30% =O shear l l l l l l l 

Ele u max u max u max u 

ment transfer 

No. normal normal normal normal normal 
stress stress stress stress stress 
(Ksi) (Ksi) (Ksi) (Ksi) (Ksi) 

63 -1.364 ':""l. 369 -1. 416 -1.550 -1. 999 
64 -4.55 -5.082 -6.070 -6.937 -4.474 
65 -1. 722 -1. 726 -1. 733 -17.891 -2.576 
66 -4.359 -4.676 -1. 428 +27.431 -6.426 
67 -1.580 -1. 875 -6.758 + 0. 858 -3.925 
68 -4.229 -3.761 +16.420 +22.889 -10.498 
69 -1.552 -2.265 t-109.058 + 9. 432 -6.821 
70 -4.131 -1. 741 +69.742 +30.534 -16.512 
71 -1. 390 -2.868 + 6.321 +21. 470 -10.958 
72 -3.940 +4.643 +80.078 +37.442 -24.079 
73 -1.267 -15.20 -25.887 +36.933 -17.494 
74 -3.704 +19.59 +77.945 +42.887 -33.007 
75 -1.040 -120.666 +34.326 +42.105 -25.794 
76 -3.408 +55.226 +93.568 +46.181 -42.719 
77 -0.887 -74.80 +31.201 +43.595 -37.095 
78 -3.098 +82.65 +89.954 +45.965 -52.161 
79 -0.675 -100.511 +33.788 +42.128 -48.063 
80 -2.753 +115.649 +88.112 +44.344 -60.351 
81 -0.536 -119.365 +60.118 +38.942 -58.056 
82 -2.430 +138.208 +91.130 +40.828 -66.099 
83 -0.330 -131.684 +61.653 +34.480 -65.075 
84 -2.011 +150.684 +90.387 +37.016 -68.180 
85 -0.182 -116.761 +59.572 +28.520 -71.055 
86 -0.154 +121. 849 +85.393 +32.725 -66.223 
87 -0.042 -164.974 +39.417 +23.483 -71.458 
88 -1. 097 + 92.090 +75.788 +29.516 -62.174 
89 +0.003 -135.337 +29.616 +20.582 -67.508 
90 -0.376 +104.763 +71.362 +28.235 -54.250 
91 -1.120 +107.798 +66.791 +27.476 -43.894 
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APPENDIX C 

BEARING SYSTEM MATERIAL PROPERTY CONSTANTS 

C. 1 POT BEJ..RING AND ~.ASONRY STEEL PLATES 

Steel plates have been represented by isotropic 

linear elastic elements with the following material prop-

erty constants: 

1) Steel modulus of elasticity, E = 29000 Ksi 

2) Poisson's ratio, v = 0.25 

C. 2 CONCRETE ABUTMENT 

Concrete elements have been modeled as an 

elastic - plastic material model following the von Mises 

yield criterion. Material property constants were taken 

from approximating the concrete stress - strain diagram 

resulting from a uniaxial compression test, see 

fig. (C.l), where: 

1) Concrete modulus of elasticity (elastic range), 

E = 3605 Ksi. 
c 

2) Poisson's ratio, v = 0.180 

3) Yield stress in simple tension, 

ft= 0.1548 Ksi. 

4) Strain hardening modulus, Et = 2454.5 Ksi. 

(Approximated as tangent modulus at fc.) 



4 

3 
·rl 
Ul 
~ 

I I / 
Ul 
Ul 2 (J) 
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0.001 
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~ 
- Approximate 

Experimental curve ---
------------

\_ 
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For this investigation, the compressive strength 

of the concrete, f ~ is taken as 4 Ksi, and the tensile 
c ' 

strength, ft' as 0. 09 f ' c Initial y ield is taken to be 

43 % of the max imum strength such that 

f = 0.43 f I 

t t 

and 
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