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Abstract 

This thesis describes the design and fabrication of a wireless strain gage (WSG) 

prototype that utilizes a radio-frequency (RF) transponder for the compressor section 

of a gas turbine engine. The passive transponder will be printed, welded or deposited 

directly onto the compressor blades, and thus several key issues have to be addressed 

in the design of the distributed-element microwave circuit. Some of these issues are 

the temperature inside the engine, which may vary from 300 °F to 1,600 °F; the large 

"g" forces experienced by the blades rotating at 12,000 RPM; the RF transponder 

thickness, which should be below that of the boundary layer thickness (- 800 

microns) so the gas flow path through the engine is not affected. The footprint of the 

RF transponder circuit should not be larger than a few millimeters in any direction to 

accurately measure strain The proposed WSG concept employs a capacitive/inductive 

RF transponder design with a specific resonant frequency, which responds to a short 

band pulse of energy from a transceiver module, such that the return signal has been 

modulated by the strain transmitted by the component. The goal is to correlate the 

frequency shift of the modulated signal to the strain in the substrate. The specifics of 

the transceiver module are beyond the scope of this research. However, a literature 

review was conducted to determine some possible technologies and approaches to 

solve this problem. Specifically, this research explored four different approaches for 

the design and fabrication of RF transponders; including one based on thin film planar 

structures; one based on thick film technology; one based on a "free standing" 

structure with a buckled-beam capacitor and one with an antenna being the actual 

sensing element. Results from this investigation have shown that the "free standing" 

structures yielded the largest gage factor, i.e. - 1000, compared to the thin-film and 

thick-film transponders which had gage factors between 11 and 14. 
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CHAPTER 1 Introduction 

The current technology for measuring strain on compressor blades of a jet engine 

uses wire strain gages bonded onto the rotating components. The wire leads are then 

routed from the strain gages to the data acquisition system through a slip-ring 

assembly. Slip-ring systems are used extensively in the industry to collect data from 

rotating parts and have been the mainstay for many years. But assembling the 

equipment can be expensive and time consuming: from six to nine months and several 

million dollars (DeAnna 2000). Furthermore, several specific problems in contact 

slip-ring systems have been identified (Bates 1999), among which are inadequate 

capacity, size and reliability as well as the wear of the brush/ring contacts which 

makes the signal noisy and changes the electrical characteristic of the gages over time. 

Such performance degradation leads to high maintenance costs beyond the normal 

installation costs. In addition, the end of the rotating shaft has to be accessible to 

install the slip-rings; otherwise the slip-rings have to be installed in series between 

shafts (DeAnna 2000). All these disadvantages have motivated the development of 

non-contact systems to measure strain on compressor blades of gas-turbine engines, 

including telemetry systems. 

1.1 Gas-turbine engine environment 

The gas-turbine environment is a very challenging one for RF transponders in that 

it is characterized by high temperatures, large "g" forces on the compressor blades, 

high ambient radio-frequency (RF) noise and highly-conductive metallic materials. 

The challenges of the gas-turbine environment can be appreciated from Figure 1.1. 
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Figure 1.1 Typical components of a turbine engine (DeAnna 2000) 

As shown in Figure 1.1 , the turbine engine has several intricate gas flow paths 

which result in high gas velocities. The individual components that have to be 

instrumented include the fan blades, the inlet case, the low pressure compressor 

section, the high pressure compressor section, the burner section, the high and low 

pressure turbine sections, the exhaust duct and the exhaust duct nozzle (Pratt and 

Whitney 1982). Each section performs a specific function from compressing the air, 

mixing it with fuel, and burning the fuel-air mixture to accelerate the hot exhaust gas 

through the duct nozzle and generate thrust. 

The low pressure compressor region typically operates at temperatures below 400 

°F but the temperature increases in the engine as one move back until reaching the 

high pressure turbine section as shown in Figure 1.2 where the inlet temperatures can 

reach 1,600 °F for some large gas-turbine engines. 

2 
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Figure 1.2 Temperature profile for gas-turbine engine (Pratt and Whitney 1982) 

In addition to the high temperatures inside the engine, the blades can experience 

large "g" forces between 75,000 - 100,000 g (DeAnna 2000) for rotating components 

that operate at speeds approaching 12,000 rpm. Another important challenge inside 

the turbine engine is the propagation path of RF signals. Metallic objects in the 

propagation path may reflect RF signals. Depending on the frequency of operation 

and the thickness of the material of the turbine housing, RF propagation can be 

attenuated. The depth of penetration of an RF field is defined by 

s = 1 
~efJtO" (1) 

where f is the frequency of the field, a is the conductivity of the material and, Jl is the 

permeability of the conductor. It can be deducted from equation (1) that the skin depth 

at practical RF frequencies is much smaller than the thickness of the turbine engine 

casing. Therefore, it is not possible to transmit RF signals from inside the turbine 
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engine to an external signal processing system without line of sight access to the 

transponder circuit. 

Furthermore, another constraint for the development of a wireless strain gage 

concept is the resolution and sensitivity of the sensor, since the strain experienced by 

the blades can vary from a few microstrain to 1400 microstrain. Finally, the 

dimensions of the transponder are important for stability of the turbine engine. The 

blade can only accommodate a few micro grams of additional mass of the transponder 

and its thickness should be well below the gas phase boundary layer thickness ( ~ 800 

microns). 

1.2 Research objective 

This thesis describes the design and fabrication of a prototype passive radio­

frequency transponder that works as a wireless strain gage for gas- turbine engine 

applications. The research is focused on the development of a wireless strain gage to 

be used in the low pressure compressor section. Some studies (Gregory and Luo 

2000) have reduced the temperature dependence of thin film strain gages by 

combining active strain elements with positive and negative temperature coefficients 

of resistance. The scope of this research is limited to the development of a few 

techniques that can be used in the wireless strain gage concept to self-compensate 

strain measurements to reduce temperature effects, i.e. apparent strain. 

Additionally, the signal processing concept to be employed by the WSG system is 

beyond the scope of the research work The signal processing limitations were taken 

into account only for the design of the RF transponder. 

4 



1. 3 Wireless strain gage concept 

The ·wireless strain gage (WSG) concept consists of a passive RF transponder that 

is printed or welded onto the blade within the low pressure compressor section of the 

engine. The distributed-element microwave circuit consists of a strain gage, i.e. 

resonator, capacitive/inductive/resistive element, and a small antenna. A transceiver 

unit is located outside the turbine engine housing (See Figure 1.3). The placement of 

the Tx/R,"X antenna of the transceiver unit is chosen to be close to the instrumented 

blade without requiring major modifications to the casing. 

Figure 1.3 Location of RF transponder and transceiver 

Initially, the passive transponder receives a short wide-band pulse of energy from 

the transceiver unit. Then, the transponder modulates the input signal and returns an 

impulse response signal as shov·m in Figure 1.4. The response of the transponder 

changes as a function of strain in the blades. For the resonant circuit, a change in the 

capacitance due to strain changes the resonant frequency of the circuit and thus, 

provides a correlation of the frequency shift with strain. 

5 
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Figure 1.4 Wireless Strain Gage System 

For signal processing purposes, the passive transponder can be modeled as lumped 

parameter RLC resonant circuit and that the strain on the blade induces a change in 

the capacitance of the resonant circuit. The two key parameters for the design of the 

RF transponder are the gage factor G and the quality factor Q. 

The gage factor is the product of the quotient of change in resistance, capacitance, 

or frequency and strain E. This is : 

(2) 

where K can be resistance, capacitance or resonant frequency. The gage factor is a 

measure of the sensitivity of the sensor or a quantity change per unit applied strain. 

The quality factor is the ratio of energy stored per cycle vs. the energy dissipated 

in a cycle. For a resonant circuit, the quality factor measures how sharp a resonance 

is. The quality factor is very important since it determines how fast a system loses 

stored energy. 
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CHAPTER 2 Literature review 

This chapter discusses the different technologies reviewed previous to the 

proposal for a feasible design of a wireless strain gage. The intention of this literature 

review was to determine if there was some information on strain sensors that could be 

utilized in the development of the wireless strain gage concept. Information collected 

during the literature review determined the direction of this research, by either ruling 

out some of the technologies and/or techniques, or contributing to a combination of 

different devices to achieve a feasible wireless strain gage for the compressor section 

of a gas turbine engine. 

2.1 Surface Acoustic Wave (SAW) devices 

One of the technologies considered during the early stages of this research was the 

use of SAW devices for the wireless strain gage. Research on this family of devices as 

potential sensors started in the early 1970s. Some of the earliest studies on sensors 

using SAW devices were performed by Das (1978) and Wohltjen (1979), on sensors 

used to measure pressure and chemical properties of thin films respectively. SAW 

devices are also used as high performance signal processing elements such as filters 

and delay lines (Campbell 1989; Morgan 1991). 

It was our purpose to investigate the use of SAW devices as wireless and passive 

sensors. Some of these contactless sensors measure temperature (Schmidth et al . 

1994; Buf et al. 1994; Buff 2002), pressure (Pohl et al. 1997; Pohl and Seifertl 997) 

and torque (Wolff et al. 1996; Beckley et al. 2002; Kalinin 2004). The latter type of 

sensors has significance for our purposes since torque can be seen as a rotational force 

that causes stress on the surface of a given material. Some of the torque sensors based 

on wireless SAW devices are reviewed in the following sections. 
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2.1.1 Nature of surface acoustic waves 

The term SAW is used to describe a non-dispersive surface wave that is bound to 

the surface of a solid medium. This wave, discovered in the nineteenth century by 

Lord Rayleigh, has two particle displacement components: a surface normal 

component and a surface parallel component. As mentioned by Auld (1990), the 

particle displacements occur "both in the direction of wave propagation and 

perpendicular to the direction of propagation while normal to the substrate surface". 

Figure 2.1 shows the direction of propagation of a SAW. 

i 
Piezoelectric 

substrate 

Figure 2.1 Direction of propagation of SAW 

The particle displacements decay exponentially away from the surface. Most of 

the energy, i.e. more than 95%, is contained within a depth equal to one wavelength 

(Morgan 1973). The wave longitudinal velocity is determined by the substrate 

material and the cut of the crystal but it is typically in the range of 1500 to 4000 ms- 1
. 
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There are several types of acoustic waves (Hoummady et al. 1997) including shear 

horizontal surface acoustic wave (SH SAW), the shear horizontal acoustic plate mode 

(SH APM), the flexural plate wave (PFW) and the thickness shear mode (TSM) 

among others. However, these acoustic waves are beyond the scope of this research 

work and will not be considered further. 

2.1.2 Principle of operation of SAW sensors 

A SAW sensor consists of piezoelectric substrate with thin-film interdigital 

transducers (IDTs) and reflectors deposited on the surface (Morgan 1991). An IDT is 

a structure of overlapping metal fingers fabricated on the substrate usmg 

photo lithography. 

The electrical signal in the IDT induces a SAW on surface of the substrate due to 

the piezoelectric effect. LikeYvise, a SAW generates an electric charge distribution at 

the IDT, creating an electric response. Therefore, the IDT converts electrical energy 

to mechanical energy in the form of a SAW, and conversely the process is partially 

reversible. Based on this effect, the principle of operation of a SAW sensor relies on 

the acoustic wave propagating time, amplitude and phase velocity between IDTs and 

reflectors change with the variation of physical variables such as temperature, stress 

and pressure. 

2.1.3 Interdigital Transducer (IDT) 

An IDT consist of several interleaved electrodes made from thin metal lines or 

fingers deposited on a piezoelectric substrate as shown in Figure 2.2. As mentioned in 

the previous section, piezoelectricity in the substrate material is necessary for the 

operation of IDTs. 
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Figure 2.2 SAW delay line showing configuration of IDTs (Morgan 1973) 

The line width of the interleaved electrodes is typically equal to the spacmg 

between electrodes. Then, the periodicity of the IDT, L , is four times the linewidth of 

the electrodes as shown in Figure 2.2. As mentioned by Morgan (1973), when a 

voltage is applied to the IDT, a strain pattern of periodicity L is created. If the 

frequency is such that L is similar to the surface wave wavelength, the electrical 

energy is coupled into surface wave energy. 

The frequency of operation or synchronous frequency of the IDT is given by: 

(3) 

where: 

lo is the synchronous or resonant frequency 

v is the speed of the acoustic wave propagating on the substrate 

L is the periodicity of the IDT 

The IDT has N sections, each section of length (periodicity) L, so the total number 

of interleaved fingers is 2N + 1. Another important value is the aperture of the IDT, 
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W, which is related to the total capacity of the transducer as discussed later in this 

section. 

IDTs can be modeled by an approximate simplified theory (Smith et al . 1969). In 

this model, the IDT is considered an array of sources, each one being related to a 

piezoelectric plate transducer for launching bulk waves. Each bulk wave transducer is 

represented by an equivalent circuit in which a piezoelectric coupling constant has a 

value suitable for surface waves (Morgan 1973). Some of the necessary parameters to 

design an IDT for SAW sensors are obtained from this model. These parameters are : 

the static capacity per section (Cs), the piezoelectric coupling constant (k2), the 

resonant frequency (fa) and the number of sections (N). 

It must be noted that the piezoelectric coupling constant is an indicator of the 

effectiveness with which a piezoelectric material converts electrical energy into 

mechanical energy. So, when choosing a substrate material, the piezoelectric coupling 

constant should be as large as possible. Additionally, the static capacity per section is 

proportional to the aperture Wand is independent of the periodicity L (Farnell et al. 

1970). 

2.1.4 Wireless SAW devices 

Wireless interrogation of a SAW sensor is achieved by connecting an antenna to 

the IDT. The antenna receives a burst of energy, i.e. a high frequency electromagnetic 

wave, emitted from the interrogation unit. The IDT converts the electrical energy to 

mechanical energy as mentioned before, by the reverse piezoelectric effect. Figure 2.3 

shows a schematic of a wireless SAW device. 
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Figure 2.3 Schematic layout of a wireless SAW device (Reindl et al 1998) 

There are four basic designs of wireless SAW devices (Atashbar et al. 2003): 

delay line, reflective delay line, one-port resonator and t\vo-port resonator as shown in 

Figure 2.4 

Delay line Reflective delay line 

One-port resonator Tv.10-port resonator 

Figure 2.4 SAW device configurations 

A delay line consists of two IDTs. In this configuration, the acoustic wave 

launched by the electromagnetic signal propagates from the input IDT or port through 

the surface of the piezoelectric to the output port where the mechanical energy is 

converted back to an electrical signal. A slight variation of a delay line is a reflective 
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1 l·ne which instead of two ports it consists of only one IDT and a set ofreflectors 
de ay 1 

placed at a certain distance. The effect is that the SAW propagating from the input 

port is partially reflected back by the reflectors, generating echo pulses that arrive 

back to the IDT with a certain delay. When a strain E is applied in the x-direction 

along the length of the substrate of a SAW delay line, the change of geometry changes 

the propagation velocity (Grossman et al. 1996). The result is a change in the phase 

difference given by: 

!J.rp;k = !J.l;k _ !J.v ~ 1.24& 

rpik lik v 
(4) 

where: 

l is the distance between reflectors 

v is the wave propagation velocity 

This type of saw devices has been used as ID-tags for remote sensing identification 

applications (Nysen et al. 1986; Bulst and Ruppel 1994) and more specific 

information on the design of reflective delay lines can be found in Reindl et al. (1998) 

and Pohl (2000). 

As opposed to SAW delay lines, SAW resonators have the IDT(s) positioned in 

the middle of the cavity with reflectors on both sides as shown in Figure 2.4. A one-

port resonator has only one IDT which is connected electrically whereas a two-port 

resonator has two IDTs. The induced SAW has a resonant frequency fa given in Eq. 2. 

The response of a SAW resonator is a damped harmonic oscillation has shown in 

Figure 2.5. 
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Figure 2.5. Wirelessly interrogable SAW resonator (Pohl 1998) 

When the RF interrogation signal excites the resonator, the received burst of 

energy is stored in the cavities of the resonator. After the RF signal is switched off, 

the resonator uses part of the stored energy to generator a decaying pulse response. 

When a strain E is induced in the x-direction of the substrate of a SAW resonator, 

the effect is a change in the resonant frequency given by: 

11/0 = _ M + 11v ;c::; 1.248 
fo L v 

(5) 

where: 

L is the periodicity of the IDT 

v is the wave propagation velocity 

This type of SAW devices have been used for remote railroad car identification and 

torque measurements on rotating transmission shafts (Grossmann et al. 1996; Beckley 

et al. 2002; Kalinin et al. 2004), as well as other applications (Reindl et al. 1998; Pohl 

et al. 1998, 2000; Atashbar et al. 2003). 
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Figure 2.6 Comparison of RF responses of SAW delay lines and resonators 

2.1.5 Torque SAW sensors 

SAW devices have been used to measure torque on rotating shafts. SAW 

resonators are more popular than SAW delay lines when used in passive sensors since 

resonators have less insertion loss as opposed to delay lines (Kalinin 2004). However, 

both SAW reflective delay lines (Wolff et al. 1996) and SAW resonators (Grossmann 

et al. 1996; Beckley et al . 2002) have been used as remote sensors during the past 18 

years to measure torque for stress analysis and process control. 

Strain on the rotating shaft is proportional to the applied torque at +/- 45° angles 

with respect to the ax is of rotation. Typically, two SAW resonators are applied to the 

surface of the rotating shaft for differential measurement. Each SAW resonator has its 

own antenna wound around the shaft. The resonant frequencies of each resonator 

change in opposite direction when torque is applied . So by measuring the difference 

between the two resonant frequencies , the torque applied can be measured. 
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Additionally, temperature compensation can be achieved with this setup since a 

temperature change will affect both SAW sensors but the absolute difference in 

resonant frequency will remain the same. Figure 2.7 shows a typical setup for wireless 

torque measurements using SAW resonators. 
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Figure 2.7 Typical setup for wireless torque SAW sensors (Pohl and Seifert 1997) 

Kalinin et al. (2004) developed a commercial contactless torque sensor based on 4 

one-port SAW resonators using quartz as a piezoelectric substrate. The contactless 

system operates in the 430 to 430 MHz range with a sensitivity of 2.8 kHz/µstrain or a 

GF of approximately 6.5. 

The authors did not elaborate m the specifics of the design of this .sensor, 

however, to estimate the basic parameters, the frequency of operation has to be taken 

into account as well as the substrate material to determine longitudinal speed of the 

acoustic wave and the periodicity of the IDT. Using a SAW resonator operating in the 

430 MHz range using a Y+34° rotated cut of quartz as the propagation surface and 

assuming a 6000 mis longitudinal speed for this type of cut of quartz (Kushibiki et al. 

2002), the periodicity of the IDT is approximately 15 µm by equation (3). This 
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implies that the spacing between the IDT electrodes and the line width of the 

electrodes themselves is around one fourth of the periodicity or about 3.8 µm. 

Based on this literature review on SAW resonators as torque sensors, it was 

decided to explore this type of devices for the WSG concept. As it is shown in the 

ne>.'t section, a number of issues arose that were addressed in the design of a SAW 

resonator for gas-turbine applications. 

2.1.6 Proposed SAW design for the WSG concept and shortcomings 

To verify the feasibility of SAW devices as a wireless strain gage, an initial SAW 

generator design was proposed. First, a suitable substrate was needed for 

piezoelectricity. The substrate of choice was a thermoplastic fluoropolymer (PVDF or 

Polyvinylidene fluoride). The following tables (Precision 2007) show typical values 

for some properties of poled PVDF films. Highlighted are the properties that are most 

important for SAW devices. 

Table 2.1 Physical properties of PVDF 

Curie T empernmre 
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Table 2.2 Piezoelectric and acoustic properties of PVDF 

Piezo Strain Consrnnt (sh;;ar mod;; direction 1) 

Piezo Strain Conswnt (';h;;ar 1 ode direction .2) 

Piezo Strain Con·stnnt (thickne'>S mode) 

Piezo Stre·~s Com.rant (_ shear node direc ion I) 

Piezo Stress Constant (:,hear 11ode direction .2 ' 

dJi Uniaxialfilm: 22 pCN 

Bi-axial Film: 6 pCS 

cl3 ~ Uniaxi Film: 3 pCN 

Bi-axial F ilm: 5 I C.S 

cb -30 pC'N 

g3 , t .niaxia l Film: 0.- 16 Vm·~ 

Bi-axi·~ l Film: 

gn Uniaxial Film: 

Bi-axia l Film: 

Table 2.3 Electrical properties of PVDF 

CoerciYe Fidd Strength E ., 

There is some variation in the material properties, depending on the manufacturer, 

but some of the advantages and disadvantages of this material as a substrate can be 

directly assessed. 

Even though the acoustic waves travel at a slower speed (longitudinal speed = 

2250 mis) compared to other substrates which are not suitable for our purposes such 

as quartz or PZT, the piezoelectric coupling factor of PVDF ( kc = 14 %) is much 

higher relative to other substrates for SAW devices as lithium niobate or aluminum 

oxide which are not above 5 %. 
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The next most important component to be designed was the IDT since this will 

determine the resonant frequency of the SAW resonator. One of the design constraints 

for the development of a WSG was the operational frequency in the GHz range. The 

problem with SAW devices for our purposes was that the line width and spacing of 

the IDT electrodes are beyond the capabilities of most labs, especially if compressor 

blades are to be patterned. 

Specifically, using equation (3) and solving for the periodicity L , and using the 

longitudinal speed for PVDF (2250 mis) shown in Table 2.2, one can calculate the 

minimum line width and spacing of the IDT electrodes. If the frequency of operation 

needed needs to be at least 1 GHz, then the periodicity of the IDT is about 2.25 µm, or 

approximately 0.5 µm for line width and spaces. Any feature size below 1 µm 

becomes very difficult to fabricate on the convoluted surface of compressor blades. 

So, if 25 µm is the minimum feature size achievable, then the frequency of operation 

of the wireless strain gage using PVDF as substrate is around 22.5 MHz, which is 

well below the microwave range required. For a more details on the design parameters 

of the proposed SAW design, see Appendix A 

Because of the fabrication limitations, the idea of using SAW devices to develop a 

wireless strain gage was eliminated. Although, no additional research on this type of 

devices was pursued, this initial approach helped sort out to understand the fabrication 

constraints. Therefore, a different approach using thin film and thick film deposited 

sensors was explored to develop a wireless strain gage. Furthermore, two other 

approaches using "free standing" structures are explored and introduced in Chapter 4. 
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CHAPTER 3 Thin/thick film designs and simulations 

This chapter discusses the different designs used for both the thin film and thick 

film approaches and it addresses the importance of the simulations for the next stage 

of the research: the fabrication process. The simulations were used to make some 

important decisions regarding the type of materials and design parameters such as : 

dielectric material, the thickness of the metal layer, the line width and spacing of 

electrodes of the transducer and its general dimensions. The software tool used for 

simulations is called Sonnet Lite, which is an electromagnetic high frequency 

software that allows the simulation of many of the planar structures used in this 

research. The simulations were of great importance since they allowed us to pick the 

best combination of parameters, not spending extra time fabricating prototypes that 

would not comply with the requirements and constraints of the project. First, the 

design parameters of thin-film approach is presented, including multiple simulations, 

followed by the thick- film designs. 

3.1 Thin film approach: parallel capacitor vs interdigital capacitor 

The first approach explored was a thin film capacitor using a couple of interdigital 

electrodes, similar to the IDTs discussed in Chapter 2. The idea was to create a 

stacked capacitor by depositing a thin metal layer, followed by a dielectric material 

and then a second metal layer. The reason why these thin film metals have the shape 

of an IDT is because simulations showed a bigger change in capacitance when using 

interdigital shaped electrodes as compared to a typical capacitor made out of parallel 

plates. Figure 3.1 shows the layout of a parallel plate capacitor and capacitor using 

interdigital electrodes 
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Figure 3.1 Layout of parallel capacitor (left) and interdigital capacitor (right) 

For comparison purposes, the same strain was applied to both planar structures. 

The specifications of these two layouts are as follows: for the parallel capacitor, the 

overlapping area of the parallel plates is about 2 mm x 2mm and for the interdigital 

capacitor the line width of the interdigital fingers is about 150 µm by 2 mm long. For 

both designs, the dielectric material used is called polyimide with a thickness of 8 µm 

and a dielectric constant of 3 .5. It must be noted that the different dimensions just 

mentioned are not at the same scale in Figure 3.1 . 

The simulations showed that the parallel capacitor had a base capacitance of about 

17.6 pf and when the structure was strained by the value increased to 20.3 pF. 

Therefore using equation (2) and a strain value of 20,000 µstrain, the gage factor is 

about 7.6. The reason why such a large amount of strain was induced was that the 

version of the software tool Sonnet Lite was a free, limited one and it would not allow 

us to input smaller values of strain. Still, it was sufficient for the decision-making 

process since the same strain was applied to the interdigital capacitor. The simulation 

results for the interdigital capacitor design showed a base capacitance of about 4.9 pF 

and when the planar structure was strained the capacitance value increased to 6.5 pF, 
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ge factor of about 14. Therefore, the interdigital capacitor was chosen over the 
for a ga 

regular parallel plate capacitor design because of its lager gage factor. 

During the design of the interdigital capacitor, several parameters were varied to 

determine the best gage factor achievable by this type of planar structure. The 

parameters varied were the line width and spacing of the interdigital electrodes. Table 

3. l shows the two sets of parameters used in Sonnet to determine the best 

combination of line width and spacing. 

Table 3 .1 Sets of parameters for interdigital capacitor 

Line width (µm) Spacing (µm) Ratio line width/spacing 

Design 1 150 550 0.27 

Design 2 200 600 0.33 

The results of the simulations showed a slightly better gage factor for design 1 and 

are shown in Table 3.2. Additional plots of the simulations can be found in Appendix 

B. 

Table 3.2 Comparison of capacitance values and gage factors 

Base Strained AC (pF) µStrain Gage 

capacitance capacitance factor 

(pF) (pF) 

Design 1 4.921 6.491 1.57 22,222 14.35 

Design 2 6.496 8.066 1.57 19,230 12.56 
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from Table 3.2 it can be seen that the change in capacitance is the same and the 

n "'or this is that since the designs have different dimensions, when strain is 
reaso 1 ' 

applied the increase in the overlapping area of the interdigital fingers is the same, 

resulting in the same ~C. If the applied strain is the same in both designs, then the ~C 

\\~11 be different. In the end, the definition of the gage factor takes into account the 

change in capacitance with respect to the base capacitance and the strain. An 

additional interdigital capacitor design with a smaller line width and spacing ratio was 

simulated, yielding even a higher gage factor of about 15. As a result, it can be 

determined that the smaller the line width/spacing ratio the layer the larger gage 

factor. The limitation is the minimum feature size. As the line width and spacing 

between electrodes decreases, the fabrication process becomes more complicated as 

described in Chapter 5. Therefore, it was decided to use the parameters of design I. 

3.2 Thin film interdigital capacitor: design parameters and simulations 

In order to save time and resources, it was important to run some simulations 

before fabricating a prototype with the design parameters to be described in Table 3.3. 

During these simulations, not only the expected base capacitance value was estimated 

but also, the strained capacitance value (See Table 3.2 and Appendix B). Interestingly 

enough, the simulations showed in fact that the interdigital capacitor itself acted as a 

resonant structure. Unfortunately, its resonant frequency was outside the I - 2 GHz 

frequency of operation range desired. Therefore, an antenna element was added to the 

structure to try to shift that resonant frequency. 

First of all, the parameters used for both the simulation and fabrication of a thin 

film interdigital capacitor are show in Table 3.3 . For a visual representation of these 

design parameters, see Appendix B. 
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Table 3.3 Design parameters of thin-film capacitor 

Metal type Copper 

Metal thickness 1 µm 

Dielectric material Polyimide 

Dielectric constant 3.5 

Dielectric thickness 8µm 

Dielectric loss tan 0.003 

Electrodes line width 150 µm 

Electrodes spacing 550 µm 

Number of fingers 4 

Antenna length 6-7 mm 

Antenna width 1 mm 

Sonnet Lite calculates the capacitance by using the admittance and impedance 

formulas. The admittance formula can be use when the resistance of the capacitor is 

negligible. These formulas are given by : 

y = z -1 . c 

z =-l­
e j2efC 

where Ye is the admittance of the circuit 

Z is the impedance of the circuit 

f is the frequency 

C is the capacitance of the interdigital transducer 
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Combining equations (5 ) and (6), the capacitance can be written in terms of the 

admittance. This is : 

(8) 

Therefore, the capacitance plot given by Sonnet Lite is actually a plot of the 

admittance of the interdigital capacitor. This is shown in Figure 3.2. 
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Figure 3.2 Capacitance plot given by Sonnet Lite 
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As it was expected, it can be seen in Figure 3.2 that the capacitance value 

increases as the frequency increases, and the only reason for this is because of how 

the EM simulator calculates the capacitance. For our purposes, the estimated 

capacitance value was taken whenf is equal to 1, and these values are shown in Table 

3.2 for design 1. Additionally, it must be noted that the plot shows a spike when f is 
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close to zero. This is because the frequency is in the numerator in equation (8), which 

makes the estimated capacitor value go to infinite when/ is very small. 

Furthermore, when the simulation was swept from DC to 3 GHz, it was found the 

interdigital capacitor behaved like a resonant circuit. This is that a resonance 

condition was observed at a frequency when the admittance was at a maximum point. 

These can be seen by plotting either the real part of the admittance, called 

conductance (G), or the imaginary part, called susceptance (B). Figure 3.3 and 3.4 

show the resonance condition. 
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From the previous figures, the resonant condition is achieved at a frequency of 

2.91 GHz when the interdigital capacitor is not under stress. This compares to a 

resonant frequency of 2.58 GHz when the planar structure is strained. Using equation 

(2) to calculate the gage factor in terms of resonant frequency, it yields a value of 5 .1. 

This value compares to gage factor of around 14 when the only the capacitance value 

is taken into account. Furthermore, the resonant frequency of the strain and unstrained 

conditions are outside the desire frequency of operation. Therefore, an antenna 

element was added to the top layer of the interdigital capacitor to try to shift · the 

resonant frequency. 

Two different antenna lengths were used for simulations : 6 mm and 7 mm For 

fabrication reasons that are mentioned in the fabrication chapter of this thesis, the 

length of the antenna could not be any longer or smaller_ The results of the 

simulations using these two different antenna lengths are shown in Figure 3.5 . 
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Figure 3.5 Resonance condition for different antenna lengths 

It can be seen in Figure 3.5 that the resonant frequency of the interdigital capacitor 

is 1.39 GHz and 1.31 GHz, for an antenna length of 6 mm and 7 mm respectively. 

This frequency range is now within the 1 - 2 GHz range of operation needed. 

Finally, a couple more simulations were executed to determine the expected gage 

factor when using an antenna length of 6 mm and 7 mm. Previously, the gage factor in 

terms of frequency without an antenna element and at an operating frequency above 2 

GHz was about 5.1. Figure 3.6 shows the shift in the resonant condition when the 

interdigital capacitor including a 6 mm antenna was under about 20,000 µstrain. 
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The resonant frequency of the interdigital capacitor is 1-38 GHz and 1-24 GHz 

when the structure is at normal condition and when stress is applied respectively. This 

yields a gage factor of 4.56 which is very similar to the 5.1 gage factor obtained when 

the antenna element is not included. Therefore, the antenna is only shifting the 

resonant frequency to the desired range while keeping a similar gage factor in terms 

of frequency_ A similar gage factor was also obtained when the antenna length was 

increased to 7 mm 

The next step was to fabricate the thin-film interdigital capacitor using the design 

parameters previously mentioned following the fabrication steps described in Chapter 

5_ Next section of this chapter explains a different approach using a thick-film 

capacitor design_ 
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3.3 
Thick film interdigital capacitor: design parameters and simulations 

One of the issues never addressed in the previous design using thin films was the 

skin effect and its relation to the thickness of the metal film or skin depth. First, the 

skin effect is a phenomenon where the current density decreases exponential with 

depth from the surface of a conductor. Furthermore, the skin depth (b) is defined as 

the depth below the surface of a conductor at which the current density reaches ; of 

the current on the surface (Js). The skin depth is a variable that measures how far 

electrical conduction occurs in a conductor and as it is shown in equation (1), it 

depends on the frequency of operation. At DC, the skin depth can be neglected since 

the entire cross-section of the conductor is used for propagation. However, when it 

comes to higher frequencies of operation, the skin depth plays an important role to 

reduce losses. The higher the frequency of operation the smaller the skin depth is. For 

our purposes, since our target frequency is between 1 and 2 GHz, the thickness of the 

conductors can considerable decreased, as it was done in the thin-film approach, using 

a 1-µm metal film. 

It is important to note that the metal surface nearest to the dielectric material is the 

surface that carries the RF current. Therefore, RF currents are highest in the lower and 

upper surface of the top and bottom interdigitated electrode. Regardless of this, one of 

the issues of the thin-film approach was the thickness of the metal. Figure 3.7 shows a 

plot of the skin depths as function of frequency using copper as a conductor. 
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For a frequency of operation between 1 and 2 GHz, the minimum skin depth is 

between 1 and 2 µm. Therefore, the thickness of the film deposited in the previous 

design, falls short from the minimum skin depth to avoid large RF losses. 

Additionally, it is the rule of thumb to have at least 5 skin depths of conductor so 

most of the energy is contained and losses are minimized. As seen in Figure 3. 7, the 

5-skin depth mark for the 1 to 2 GHz range shows a minimum of 10 µm of film 

thickness. Based on this analysis, modifications to the thin film approach were made 

and a thick film design was developed. 

The thick film interdigital capacitor consisted of two 4-finger interdigitated copper 

electrodes with a dielectric in between, just like the previous thin film design. 

Similarly, the line width and spaces between the electrode fingers remained the same 

since the main issue to be addressed with the new approach was to reduce the skin 

effect. Table 3.4 summarizes the design parameters of the thick film approach. 
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Table 3.4 Design parameters of thick film capacitor 

Metal type Copper 

Metal thickness 10 µm 

Dielectric material Polyimide 

Dielectric constant 3.5 

Dielectric thickness 60µm 

Dielectric loss tan 0.003 

Electrodes line width 150 µm 

Electrodes spacing 550 µm 

Number of fingers 4 

Antenna length lOmm 

Antenna width 1 mm 

Basically, two main changes were made to the thin film approach; first, the metal 

thickness was increased to 10 µm to stay within the 5-skin depth mark given for a 1 to 

2 GHz operation. Additionally, the thickness of the dielectric layer had to be 

increased to more than 10 µm since this layer is not only deposited on the area where 

the fingers overlap to form the capacitor but also under the antenna (See Figure 3.8). 

This is that, the dielectric layer has to come down from the bottom metal layer to the 

ceramic strain beam, creating a small step on the surface where the top metal layer is 

deposited. If the dielectric is not at least as thick as the metal film, the step created is 

too large, so the deposition of the top electrode becomes more difficult and the joint 

between the antenna and the interdigital electrodes are at risk. Note that Figure 3.8 

does not show the step created when the dielectric layer is deposited. 
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These changes in the design changed not only the expected base capacitance and 

the resonant frequency of the sensor; the fabrication procedure had to be also changed 

since the film deposition time becomes too lengthy when the thickness of the metal 

increases. These issues and other observations are addressed in Chapter 5. 

Sonnet Lite was also used to simulate the response of the new design. First, the 

expected base capacitance and the change in capacitance when strain was applied 

were assessed. From basic theory of parallel capacitor plates, a decrease in the base 

capacitance was expected. Since the distance between the interdigital electrodes 

increases by almost a factor of 8 (from 10 µm in the thin film design to 60 µm in this 

approach), it was expected to see a decrease in the base capacitance of similar 

· magnitude. As mentioned before, the EM simulation tool calculates the capacitance 

base in the admittance, using equation (8). Figure 3.9 shows the plot given by Sonnet 

Lite when calculating the capacitance. 

33 



c.,rr.•IMl Plat 

ZI"' 50.D 1.2~---

l 15 Strained cap 

c 11 

a 
p 1 05 
a 

0.95 
a 

09 c 
e 
1 085 

(pF} 0.8 Unstrained cap 

0.75 

.Q 2 02 04 06 0.8 

Frequency (GH~) 

Figure 3.9 Capacitance plot for thick-film capacitor given by Sonnet Lite 

1.2 

As shown in the previous figure, the base capacitance (unstrained capacitance) is 

about 0.857 pF, which is 1/6 of the base capacitance value of the thin-film approach, 

i.e. 4.921 pF. Although, the new unstrained capacitance value is not eight times 

smaller, this new values is close to what was expected. When strain was induced on 

the thick-film capacitor, the capacitance increased to 1.083 pF. Therefore, using 

equation 2 and a strain value of about 20,000 µstrain, a gage factor of 11.87 was 

estimated. Table 3.5 shows a comparison between the capacitance and gage factor 

values of the thin-film capacitor and the new thick-film approach. 
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Table 3.5 Comparison of capacitance values and gage factors 

Base Strained AC (pF) µStrain Gage 

capacitance capacitance factor 

(pF) (pF) 

Thin-film 4.921 6.491 1.57 22,222 14.35 

capacitor 

Thick-film 0.857 1.083 .226 22,222 11.87 

capacitor 

Based on the simulation results sho~rn in Table 3.5 , the gage factor is smaller in 

the thick-film approach than the thin-film one. One hypothesis for this behavior is that 

since the dielectric layer is thicker, the strain applied to the bottom electrode of the 

capacitor does not transfer efficiently to the top electrode, undermining the change in 

capacitance and therefore, the gage factor. 

The thicker dielectric layer not only decreases the base capacitance value but also 

changes the resonant frequency of the circuit. A smaller capacitance value results in 

an increase in the resonant frequency. In the thin-film capacitor, a 6 - 7 mm long 

antenna was needed to shift the resonant frequency from the upper 2 GHz range to the 

1.30 - 1.40 GHz range. For the thick-film capacitor, it was expected that the resonant 

frequency would be increased by a factor of .J6 since the base capacitance decrease 

116 and the resonant frequency formula is f = 1/ ./LC. Therefore, the expected 

resonant frequency of thick-film capacitor was about 7.1 GHz. Simulations 

corroborated this estimation and it is shown in Figure 3 .10. 
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Figure 3.10 Resonant frequency of thick-film capacitor 

The resonant frequency of the thick-film capacitor given by Sonnet Lite is 7.225 

GHz, only about 0.1 GHz from the expected value. Figure 3.1 0 also shows the shift in 

the resonant frequency. When the thick-film capacitor is strained by about 20,000 

µstrain, the resonant frequency moves to 6.575 GHz, for an estimated gage factor of 

4.04, which is consistent with the gage factor obtained in the thin-film approach with 

no antenna element. Regardless of the gage factor, the resonant frequency was 

completely outside the 1 to 2 GHz range of operation targeted. Therefore, an antenna 

element was needed for the frequency range of interest. Naturally, the length of the 

antenna needed was expected to be longer than the 6-mrn long antenna used for the 

thin-film approach. Unfortunately, an antenna length of more than 10 mm was not 

possible because of the size limitations of the constant strain beam. If the antenna 

would be longer, the interdigital capacitor had to be placed too close to the wider part 

of the strain beam. 
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A simulation with an antenna length of 6 mm and 10 mm long was executed to see 

the effect in lengthen the antenna. Figure 3.11 shows the change in the resonant 

Cy of the thick-film capacitor when the antenna was added. [requen 
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Figure 3.11 Effect of the antenna in the thick-film capacitor resonant frequency 

A 6-rnm antenna made the resonant frequency to decrease to 3.3 GHz, whereas a 

10 mm antenna further lowered it to 2.6 GHz. Although this resonant frequency is still 

outside the desired range of operation, size limitations made the design remain with 

this antenna length for the fabrication stage. 

A final , simulation was executed using the chosen 10-mm long antenna to see the 

effect of strain on the capacitor and to have an estimation of the expected gage 

capacitor in terms of resonant frequency. Figure 3.12 shows the simulation results 

given by Sonnet Lite for an applied strain of about 20,000 µstrain . 
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Figure 3.12 Shift in resonant frequency when using a 10-mm antenna 

The resonant frequency of the capacitor shifted to 2.34 GHz, or a f:..f= 0.26 GHz 

when strain was applied and the estimated gage factor was 4.5. The gage factor is 

once again consistent with what had been seen so far in the previous simulations what 

led us to believe that either using a thin-film or thick-film approach, the gage factor 

that can be achieved with an interdigital capacitor is in the range of 4 - 5, and in terms 

of capacitance, the expected gage factor is around 11 anc;l 14. 

Therefore, two additional approaches were explored in order to increase the gage 

factor. This time, free standing structures were used to design a couple of 

transponders with the particularity that the sensing element is not completely attached 

to the surface of the substrate. Chapter 4 reviews the proposed designs, expected 

capacitance and projected gage factor. 
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CHAPTER 4 Free standing structure approach 

This chapter presents a different approach to solve the problem of the wireless 

. gage As mentioned in the previous chapters, the simulation results of the thin-stnun · 

film and thick-film capacitor designs yielded gage factors in the range of 11 - 14 for 

capacitance and gage factors between 4 -5 when measuring the shift in frequency with 

respect to a unstrained resonant frequency. It was of considerable interest to boost the 

gage factor as much as possible in order to maximize the resolution of the sensor, i.e. 

maximum capacitance or frequency change for a given strain value. Therefore, an 

additional literature review \Vas performed at this stage of the research to consider 

other types of transponder designs with improved gage factors. One the technologies 

explored was the passive sensors used in automobiles, specifically the strain 

monitoring systems used to develop smart tires or tires with integrated sensors that 

measure their pressure or deformation during service (Todoroki et al. 2003 ; Matsuzaki 

and Todoroki 2005, 2006). In addition, the concept of mechanical amplification was 

explored by means of a buckled beam scheme incorporated to a capacitive strain 

sensor used for torque measurements among other applications (Young and Ko 2004; 

Guo et al. 2004, 2005). At the end, a buckled beam capacitor design was proposed as 

well as several modifications to the initial design. 

The part of this chapter explains the second free standing structure investigated. In 

this case, the transponder was not formed by a capacitor or based on a capacitance 

change. Rather, the design proposed includes the use of an antenna as the sensing 

element. So by looking at the change in the tuning frequency of the antenna, the 

induced strain can be calculated. When strain is applied, the distance to ground along 

the antenna increases which modifies the frequency of operation of the antenna. 
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4.1 
Development of the buckled beam capacitor concept 

The idea of the buckled beam capacitor came from the combination of two 

applications previously developed by other researchers; a wireless strain monitoring 

system for tires (Todoroki et al. 2003), using capacitance and tuning frequency 

changes; and second, a high-grain mechanically amplified MEMS capacitive strain 

sensor using a buckled beam scheme developed by Young and Ko (2004). 

Todoroki (2003) proposed a wireless strain monitoring method that uses the tire 

itself as a sensor, attached to an oscillating circuit with a battery to activate it which 

made it a non-passive approach. Still, the steel wire belt of a tire is an electrically 

conductive material the rubber is a dielectric material, and all the structure together 

resembles a capacitor. Figure 4.1 shows the capacitor model of a steel wire belt of a 

tire. 

Dielectric constant c 

E 

. / 
Radtwa 

)" 

Distance d 

Figure 4.1 Capacitor model of a steel wire belt of a tire thread 
(Matsuzaki and Todoroki 2005) 

In this model, the capacitance is given by 

where: C is the total base capacitance 

s is the dielectric constant of rubber 
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5 
is the permittivity of free space (8.85 x lOE-12) 

0 

I is the length where the steel wire overlap 

dis the distance between two steel wires (center-to-center) 

r is the radius of a steel wire 

Later, the authors improved their own design to produce a passive wireless sensor 

and enhanced the tire capacitance by building an interdigital electrode shown in 

Figure 4.2. It must be noted that the tire thread is made of several layers of woven 

steel wires, so an interdigital electrode was constructed by connecting several steel 

wires to form the electrodes of the capacitor. 

Steel wire (lower layer ) Steel wire (upper layer) 

t= 4mm 

270mm 

Electrodes 

Figure 4.2 Tire specimen and interdigital electrode configuration 
(Matsuzaki and Todoroki 2005) 

As tension was applied in the longitudinal direction of the tire thread, the total 

capacitance of the structure increased because the space benveen wires decreased; 

therefore, the tuning frequency decrease by f = 1/ r;-;::; . The authors reported a 
/ 2tr....;LC 

base capacitance of 170 pF when the tire thread was not strained. This capacitance 

value increased to 260pF with 2000 µstrain applied. This was a ~C of 90pF which 
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yielded a gage factor of 264 in terms of capacitance. The authors also reported a 

t frequency of about 100 kHz since they used a 10 mH inductor to form a 
resonan 

ant circuit When the same amount of strain was applied, the resonant frequency reson · 

decreased to 85 kHz, for an estimated gage factor of 75 in terms of frequency. This is 

less than the gage factor in terms of capacitance as expected, since only the 

capacitance change is contributing the change in resonant frequency. This large gage 

factors led us to develop a capacitor made of small-diameter wires, with interdigitated 

electrodes, similar to the structure of a tire thread. 

The other important component of the buckled beam capacitor design came from a 

mechanically amplified capacitive strain sensor based on the buckled beam 

amplification scheme developed by Guo et al. (2004). Figure 4.3 shows the schematic 

diagram of this amplification scheme. 

·----
Sensing Beam 

Figure 4.3 Schematic of buckled beam amplification scheme 
(Guo et al. 2004) 

The principle of operation is based on the fact that when strain is applied, a small 

lateral displacement, Llx, is induced. If the buckling angle, o.., is small, i.e. less than 

10°, then the center deflection of the sensing beam, Llw, is larger than the lateral 

displacement, Llx, which results in a mechanical amplification. For their application, 

the authors determined that the best angle a was 5.7° based in their nominal gain and 
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. ors as a function of bucking angle. This was starting point for the present 
gain err 

. At the end the limitation in the footprint of the buckled-beam capacitor and 
design. ' 

the overlapping area of the interdigital electrodes determined the angle for our design 

as it is discussed in the following section. 

The authors fabricated a device using MEMS technology that had a sensitivity of 

282 af/µ£ , with a base capacitance of 0.44 pf, for an estimated gage factor of 640. 

Again, the large gage factor reported by the authors led us to explore the buckled 

beam approach to develop a capacitor, also using interdigitated electrodes. 

4.1.2 Design parameters 

For the design of the buckled-beam capacitor, several key factors were taken into 

account among which was the footprint of the sensor, the total base capacitance and 

the buckled-beam angle. As mentioned in the previous section, the buckled-beam 

angle with the largest amplification occurs when the buckled-beam is set at 6° from 

the horizontal axis. Such a small angle has several complications when designing the 

capacitor. Among the difficulties faced were the fact that the smaller the angle the 

longer the buckled beams. Longer buckled beams ·result in less space to place the 

interdigital electrodes, in this case made out of metal wires. The fewer interdigital 

wires, the smaller the capacitance is, which then leads to a smaller resonant frequency 

which may be outside the desired range of operation. Additionally, longer buckled 

beams mean that the ratio between center of deflection Llw and the distance w , i.e. the 

distance from the base of the interdigital wires to the horizontal of the buckled beams, 

is smaller. Thus, the capacitance change is smaller compared to shorter buckled 

beams. Therefore, as an initial design, it was decided to start with a buckled beam 

angle of 10° with respect to the horizontal axis as shown in Figure 4.4 . 
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Figure 4.4 Schematic of the buckled beam capacitor 

Several observations need to be made from Figure 4.4. It must noted that the 

number wires shown above are not the total number of wires used in the design and 

are only shown for reference purposes. Additionally, all the dimensions shown above 

are in millimeters and the buckled beam capacitor is represented by the thick white 

lines. 

Figure 4.4 also shows four circles; these circles are parts of the structure that need 

to be pinned to the strain beam. Thus, when strain is induced, the mechanical 

amplification of the buckled beam scheme would be transferred into a larger change 

in the overlapping length of the interdigital fingers , and therefore, yielding a larger 

change in capacitance. Furthermore, the joint points circled by 1 and 2 not only have 

to attach the top rail (non-grounded electrode) to the substrate, but also these joint 

points have to isolate the top rail from the substrate or ground plane. The reason for 
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that the antenna is meant to be connected to the top rail and then the tip of the 
this was 

would be grounded, grounding the entire top rail. Similarly, the joint points 
antenna 

. 
1 

d by 3 and 4 are parts of the structure that not only had the purpose of pinning 
c1rc e 

the bottom rail (grounded electrode) of the capacitor but also for grounding purposes. 

It is worth to mention at this point that the buckled beam capacitor was meant to be 

fabricated on titanium constant strain beams similar to the ceramic constant strain 

beams used to fabricate the thin-film and thick-film capacitors. More details on how 

the top and bottom rail of the buckled beam capacitor are pinned to the substrate are 

discussed in Chapter 5 

The following table summanzes the parameters of the initial buckled beam 

capacitor design. 

Table 4 .1 Parameters of initial buckled beam capacitor design 

Metal type Nickel 

Wire diameter (2r) SOµm 

Wire spacing 10 µm 

Wire distance center-to- 60µm 

center (d) 

Overlapping length (l) 400 µm 

Number of wires (N) 16 (8 in top rail and 8 in 

bottom rail 

Kapton tape (polyimide) was used as isolation. However, this dielectric material 

was not meant be used as the dielectric layer of the capacitor. Instead, kapton tape 

was used to isolate the interdigital wires from the titanium strain beam; otherwise, the 
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. and substrate would come in contact since both are made from conductive 
WI res 

· ls Therefore the top and bottom rails connected to the wires were located on 
matena · ' 

fan insulation layer of kapton tape. The dielectric that is between the wires of 
top o 

the interdigital capacitor is air ( c= 1 ). 

Finally, the initial design was arranged in such way so the buckled beam 

amplification scheme would be implemented. Both the top and bottom rails that form 

the capacitor were setup parallel to the horizontal axis of strain, i. e. the wire 

electrodes are perpendicular to the axis of strain. 

4.1.3 Expected base capacitance and gage factor 

Based on the design parameters, the total capacitance of the buckled beam 

capacitor can be determined, as well as the change in capacitance that would be 

introduced due to strain in the long axis of the titanium beam. 

Using equation (9) multiplied by the number of vv'ires in the interdigital capacitor, 

and the design parameters from Table 4.1, the capacitance is given by: 

(Unstrained base capacitance) C= 1r(l)(8.85 xl0-
12

)(400 x l0-
6
)(16-l) = 0.4

9
SSpF 

ln((60xl0-
6 

- 25 x l0-
6

) / ) 

/ 25 x10-6 

According to Figure 4.4, the distance w, from the base of the interdigital wires to 

the horizontal section of the buckled beam is 300 µm. When 100 µstrain is applied to 

the buckled beam capacitor, a displacement L1x= 0.2 µmis introduced. This is comes 

from the following calculations : 

. 300 x 10-6 

(Unstramed) x = = l.7013mm 
tan 10* 

46 



(Strained) x' = x(l + c) = x(l + lOO xl0-6
) = l.70l5mm 

& = 0.2µm 

The displacement Llx translates into a decrease in the distance w from 300 µm to 

298_8 µm, or a Llw= 1. 8 µm, which provides the mechanical amplification scheme of 

the buckled beam. 

As LJw changes the length in the region where the interdigital wires overlap the 

capacitance decreases. The wires overlapped 400 µm when no strain was applied and 

when the titanium beam is strained, the overlapping length decreases to 398.8µm. 

Similarly, using equation (9), the capacitance value when strained is given by: 

. . ) C tr(l)(8.85 xl0-12 )(398.8 x l0 -6 )(16-l) 
0494

" F 

1n < 60x10-6 
- 25 x 10-6

) I (Strained capacitance = ( ) = . :JP 

/ 25 x l0-6 

Therefore, ~C = 0.0015 pF for 100 µstrain, which yields a gage factor of 

approximately 30. It is important to note that the change in the overlapping length is 

the contribution of only one side of the buckled beam capacitor. So, if both top and 

bottom rails of the capacitor move similarly when strain is applied, then ~C =0.0030 

for a gage factor of about 60. The steps followed to fabricate the buckled beam 

capacitor are explained in Chapter 5. 

4.2 Antenna strain gage design 

The antenna strain gage concept was based on the idea that the resonant frequency 

of an antenna can vary depending on the distance between the whole length of the 

antenna and the ground plane. This phenomenon was observed in a very thin antenna 
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developed by Argon ST (formerly SDRC). In the initial configuration, an 8-
prototype 

nun long copper tape antenna was placed over a 50-µm layer of kapton tape. The 

ncy of resonance of the antenna was 4.83 GHz. Figure 4.5 shows the sketch of 
freque 

the initial configuration of the very thin antenna. 

Coppertape antenna element 

8 mm I 

Ground Plane 1 Layer ofKapton Tape (.00_" = 50 microns ) 

Figure 4.5 Side view of antenna element (not to scale); initial configuration 

Then, the design was modified so the antenna height was doubled over just one-

third of its original length. The result was a resonant frequency shift of 280 MHz, 

from 4.83 GHz to 5.11 GHz. A gage factor was not calculated from this design since 

no strain was introduced; rather, the distance between the antenna and the ground 

plane was increased during fabrication. Figure 4.6 shows the sketch of the antenna 

height modification. 

3mm 

1 Layers ofKapton at end of antenna 

Figure 4.6 Side view of antenna height modified configuration (not to scale) 
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A 5.8% change in frequency was observed in this prototype, compared to a 2.2% 

shift in frequency obtained by one of the designs of the buckled-beam capacitor (See 

Chapter 6, section 3). Based on these results, an antenna strain gage design was 

developed using the very thin antenna prototype and combining it with the concept of 

free standing structures. 

4.2.1 Antenna gage configurations 

As seen in the very thin antenna prototype, the length of the antenna was 8 mm, 

which yielded a frequency of resonance close to 5 GHz. For our study, we wanted to 

decrease the frequency of operation to at least below 3 GHz. Therefore, the first 

approach was double the length of the antenna to 16 mm One of the problems of 

using larger sensing elements is that the strain measurements are not a spot 

measurement of strain and rather and integration of the strain along the entire antenna 

element. 

The antenna \Vas made of tungsten wire with 50 µmin diameter. The material and 

diameter wire were chosen because small diameter ~d stiff er wires are not affected 

by large "g" loading, as long as the entire structure is thinner than the boundary layer 

of the gas path flow in a rotating blade. Additionally, a titanium frame was built 

around the antenna wire and it was designed only for protection purposes. Titanium 

was the material of choice since the constant strain beam was also made of titanium, 

so the fabrication process would be simplified. Finally, the initial configuration also 

included a diode so the frequency of resonance could be measured wirelessly. The 

diode would generate a second harmonic, with a frequency twice the fundamental 

frequency of resonance of the antenna; this would allow distinguishing the Rx signal 

49 



frorn the Tx signal. Figure 4.7 shows the top view of antenna strain gage design 

proposed. 

Antenna 16 mm long 

Frame 

~ 

t 
t 

I / 
./ 

/ . 
Dir.taucefrom fnuneto auteJUrn at lea!>t 5 wire diameters 

Diode should be l .5 to 3 mm from end of ;mtetma coruu•odell to tlte frame 

Figure 4.7 Top view of strain antenna design 

As shown in the previous figure, the antenna wire had to be kept at least 5 wire 

diameters from the frame so the frequency of resonance is not affected by the titanium 

frame that surrounds the wire. In addition, the diode needed to be placed between the 

antenna wire and the ground plane and at distance between 1.5 to 3 mm from the base 

of the antenna connected to the frame. Figure 4.8 shows a side view of the same 

design. It must be noted that a layer of kapton tape was placed at the tip of the antenna 

so it would not come in contact with the ground plane. 
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Titanium Beam 

Antenna 

Figure 4.8 Side view of strain antenna design 

Once the prototype was fabricated (See Chapter 5, section 4), the initial prototype 

was tested to measure its resonance frequency and the second harmonic produced, as 

well as the effect of strain and how much change in frequency would be obtained. 

Unfortunately, as discussed in Chapter 6, section 4, the expected frequency of 

resonance was about 3 GHz, which means that the backscattered signal would be 

twice as much that frequency. This required different filters , amplifiers and Tx/Rx 

antennas. Therefore, a slight change in the design was made by increasing the length 

of the antenna and increasing the starting height of the antenna from 25 µm to 75 µm 

to prevent the antenna from being too close to ground. 

The antenna was lengthened enough to move the resonance near the 2.4 GHz 

band. In this band, much higher power and cheaper amplifiers were available for RF 

measurements. Therefore, the length of the antenna was increased to 27 mm Figure 

4.9 shows a top and side view of the modified antenna gage design. 
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Figure 4.9 Top and side view of modified antenna gage design 

Three different prototypes were fabricated: one for the initial configuration and 2 

for the modified design. One of the prototypes fabricated using the modified 

configuration did not included a diode; instead a solderable wire was placed. The 

purpose of this wire was to be able to attach an external diode. More details on the 

fabrication of these prototypes in Chapter 5. 
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CHAPTER 5 Fabrication process 

This chapter discusses the different fabrication process used for all four different 

d 
·gns The first ones to be discussed are the fabrication steps for the thin-film and es1 · 

thick-film capacitors which are quite similar. Later in this chapter, the fabrication 

process for the free-standing structures is discussed. 

5.1 Fabrication steps of thin-film interdigital capacitor 

The fabrication of the thin-film interdigital capacitor involved several steps. 

Before the description of these steps, it is important to mention that the interdigital 

capacitors were deposited on ceramic constant strain beams. These substrates are 

fabricated with a material called YSZ (yttria-stabilized zirconia) . Figure 5 .1 shows one 

of the YSZ substrates used throughout the fabrication process. 

Axis of strain 

Figure 5 .1 YSZ ceramic constant strain beam 

The particular shape of the strain beams allows depositing the sensor anywhere on 

along the center line of the long axis of the substrate and still induce a constant strain. 

However, it was decided to place the interdigital capacitor as close as possible to the 
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O
f the strain beam, with the antenna element perpendicular to the axis of strain. 

center 

That is why there is a limitation in the length of the antenna to 6 to 7 mm; otherwise 

the sensor would be deposited too close to the narrower part of the beam or too close 

to the wider part. 

For the fabrication of these sensors, the YSZ substrate is cleaned by rinsing it with 

de-ionized water, acetone and methanol. Then, it is blown dry with nitrogen, followed 

by a bake for 10 to 15 minutes at 135° C. 

Then, a photolithography process is used to deposit both the bottom and top layers 

of the interdigital capacitor. For these purposes, a photomask with the sensor pattern 

was designed using AutoCAD according to the design parameters discussed in 

Chapter 3. First, LOR lOB polyimide is spin-cast on the substrate at 500 rpm for 15 

seconds followed by spinning at 2500 rpm for 45 seconds, resulting in a nominal 

thickness of lOµm. Then, the substrate is baked at 139° C for 15 seconds. Once the 

substrate cools down, SCI 827 photo-resist is spin-cast on the substrate, for 500 rpm 

for 15 seconds followed by spinning at 2500 rpm for 45 seconds. Then, the substrate 

needs to be baked for 2 minutes and 40 seconds at 110° C. Next, the photomask with 

the pattern is placed over the photo-resist layer and it is exposed to UV light for 6:45 

minutes. Care needs to be taken when exposing the substrate to UV light, not to over 

or under expose it. Next, AZ developer is applied to the exposed resist layer to 

achieve a clear and well-defined pattern. The last step in the photolithography process 

is to hard bake the substrate for 10 minutes at 13 9° C. After this process, the ceramic 

strain beam has a clear pattern of the sensor so a thin-film layer of metal can be 

deposited. 

The thin-film is deposited using a sputtering machine. The metal of choice is 

copper since it is a material that does not take long time to sputter, especially when 
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h
·ckness of the metal is around 1 µm. For more details on the sputtering process, 

the t i 

see Appendix C. After the metal is deposited, a process called lift-off is required 

Ve the additional metal deposited and have a clear metal interdigital electrode. 
remo 

Lift-off is achieved by soaking the substrate in acetone for a few minutes. Acetone 

attacks the LOR/photo-resist layer that remains under the metal layer and that is not 

part of the pattern. Figure S.2 summarizes the photolithography and lift-off processes. 

For more information on these procedures, see Gardner et al. (2001) 
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Figure S.2 Photolithography and lift-off process 

The process just described takes care of the bottom layer of the interdigital 

capacitor. Then, the dielectric material needs to be deposited. The material used is a 

LOR SOB polyimide that is also spin-casted on the substrate. Depending on the rpm's 

used, the thickness of the polyimide can vary. For our case, the LOR SOB was spin­

casted for 4S seconds at 1000 rpm, following the specifications of the manufacturer 

SS 



(MicroChem). The desired thickness of the dielectric is about 8 µm. Then the LOR 

SOB is baked above 250 °C. 

Next the process repeats for the top layer of the interdigital capacitor, following 

the steps previously described. The final, step in the fabrication process of this 

interdigital capacitor design is to sputter copper on the back of the beam for ground 

plane. Both the bottom and top electrodes are grounded through the edge of the 

ceramic strain beam. The sputtering process sputters copper all over the edge so at the 

end, both the antenna element and the large piece of metal of the bottom layer are 

connected to the ground plane. 

Figures 5.3 and 5.4 show the front and back views of a fabricated interdigital thin-

film capacitor with an antenna length of 7 mm. 

Figure 5.3 Front view of thin-film capacitor 
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Figure S.4 Back view of thin-film capacitor: ground plane 

Several issues had to be addressed during the fabrication process of the thin film 

capacitor. One of the biggest difficulties was de deposition of the dielectric material in 

between the metal layers. As mentioned before, a material called LOR SOB was used 

as the dielectric layer. This material needed to be fire up to above 2SO °C for about 2S 

minutes in order to change its properties, evaporate some of the compounds that make 

it sensitive to acetone. It is important to point out that during the lift-off process of the 

second metal layer acetone comes in contact with the LOR SOB dielectric layer. If this 

material is not heat up such high temperature, the dielectric layer is dissolved by 

acetone and when the second layer of metal is deposited, the interdigital electrodes 

may come in contact, shorting the capacitor. 

In the other hand, care was taken when firing up the LOR SOB. Some initial tests 

using this material showed that if the substrate is heated up too rapidly, bubbles 

develop on the surface of the ceramic substrate, specifically in the area where the 

LOR SOB was spin-casted. This is because the temperature of the LOR SOB is 

Increased so suddenly that the evaporated compounds get trapped in bubbles. 
S7 
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ally these bubbles disappeared when the substrate temperature reached 200 °C 
Eventu , 

but left a very rough and irregular surface. Such surface is not suitable for depositing 

the metal film, since the thickness of the film is only 1 µm and some of these 

. ularities were more than 1 µm thick. This is the reason why the temperature has irreg 

to be increased slowly, at a rate of about 8 °C per minute, during 25 minutes. Still, 

some bubbles developed on the surface of the ceramic substrate, especially on the 

edge of the substrate as shovvn in Figure 5.3, in the lower edge of the sensor area. 

Three different thin-film interdigital capacitors where fabricated during this stage. 

For pictures and more details on the remaining two interdigital capacitors, refer to 

Appendix D. 

5.2 Fab1;cation steps of thick-film capacitor 

The thick-film capacitor was fabricated following a process similar to that of the 

thin-film capacitor. Using photolithography was used to create the electrode pattern 

and then deposit a thin film by sputtering copper on the surface of the ceramic 

substrate. The only difference is that, this time, the thin-film electrode thickness was 

increased by electroplating. As mentioned in Chapter 3, the electrodes of the capacitor 

should be thicker to avoid the skin effect between 1 to 2 GHz. 

The electroplating was accomplished by connecting the negative terminal of a DC 

. power supply to the object. Likewise, the positive terminal of the DC power supply 

was connected to the platinum surface electrode. Figure 5.5 shows a schematic of the 

electrical circuit used for thickening the sputtered thin-film electrodes by 

electroplating. 
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Figure 5.5 Schematic of electric circuit for electroplating 

As shown in the previous figure, the anode was initially mad e of a platinum wire. 

Unfortunately, the surface area of the wire was much smaller than the surface of the 

capacitor electrodes to be plated. Therefore, the wire was substituted by a larger 

silicon wafer with a layer of platinum previously deposited. Additionally, the solution 

used for plating the thin films was cupric sulfate (CuS04) and water (5H20). Another 

observation for the electroplating process is that both the cathode and the anode need 

to be in parallel so copper is deposited evenly on the surface of the interdigital 

capacitor electrodes. 

Several attempts were made to find the best deposition rate and conditions. The 

deposition rate depends on the current applied to the circuit and the time the current 

runs through the circuit Likewise, the electric current depends on the applied DC 

voltage as well as, on the distance between the cathode and anode. In our 

experiments, this distance was no more than 4 cm and a variable current supply of 9 V 

was used to control the current. Some of our initial tests showed that the higher the 

deposition rate, the worse the definition of the electroplated metal lines. Thus, the 

contour of the original thin film becomes more distorted and metal grows beyond the 
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. . al boundaries of the metal. This is especially critical in the case of the 
ongtn 

. di.aital fingers since the spacing between the interdigitated electrodes is only a 
inter 1::» 

few rnicrorneters. Thus, better results were achieved by extending the deposition time 

and lowering the deposition rate. The best deposition rate in our experiments in terms 

of definition was 3µm/minute and this was achieved by applying 200 mA of current 

and keeping the cathode and anode distance at approximately 3 cm, requiring just 3 

minutes to achieve a total thickness of 10 µm. 

Once the lower metal layer was electroplated, a layer of kapton tape applied to 

form the dielectric. Ideally, the kapton tape should only be applied underneath the 

interdigitated fingers, to keep the antenna on top of the ceramic substrate, and not on 

top of the dielectric. Unfortunately, for the reasons previously mentioned in the design 

chapter, the kapton tape had to be placed underneath the upper metal layer as seen in 

Figure 5.6. 

Figure 5.6 Thick-film capacitor fabricated by electroplating 

After the kapton tape was applied, the upper thin-film layer was deposited using 

photolithography and sputtered copper deposited onto the surface of the ceramic 
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. b am Then the thin film was electroplated onto the copper using the same 
strain e · ' 

d re described above. The final steps in the fabrication of the thick-film 
proce u 

·tor were the deposition of the ground plane by sputtered copper on the back of 
capac1 

the ceramic substrate and make a physical connection from the top and bottom metal 

layers to the ground plane by applying silver paint on the edge of the ceramic beam. 

Once again, DC measurements were performed before the electrodes of the capacitor 

were shorted to ground. An additional thick-film capacitor was fabricated but the 

quality of the interdigital electrodes was not good enough since some of the fingers 

were shorted due to a too rapid deposition rate. Details on this prototype can be found 

in Appendix D. 

5.3 Fabrication steps of buckled beam capacitor 

The fabrication steps used for the implementation of the buckled beam capacitor 

were completely different from those used to fabricate the thin-film and thick-film 

capacitors. No photolithography steps or sputtering processes were involved since no 

thin films were necessary. Instead, small wires were mounted on a metal wire rail and 

were welded together to create a buckled beam interdigital capacitor. Moreover, the 

constant strain beams up to this point were made of YSZ (yttria-stabilized zirconia) but 

in the case of the buckled beam capacitor, titanium constant strain beams were used. 

The reason for this is that an electrical connection from one of the electrodes or rails 

of the capacitor to ground was required. Instead of sputtering copper onto the back of 

the ceramic strain beam, the titanium strain beam would act as ground plane itself. 

Figure 5.7 shows a cross-section of the buckled beam capacitor. In this figure, the 

huclded beam consisted of wires attached to the ground plane over the dielectric layer 

that serves as an isolating material. The dielectric material, in this case was a 25-µm 
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. k heet of kapton tape that was used to prevent the capacitor interdigital fingers 
thtC S 

from contacting the ground plane. Furthermore, as mentioned in the design section of 

the buckled beam approach, one of the rails/electrodes had to be grounded whereas 

the other rail was floating; both rails have to be attached to the titanium beam at the 

same time. 

wire cap, 
/~ antenna 

/. 

dielectric 
....•. titanium substrate 

'-...~ 
'-....., floating 

grounded 

Figure 5. 7 Cross-sectional view of buckled beam capacitor 

In order to attach the buckled beam rails to the titanium beam, a conductive and 

non-conductive connection were required for the bottom and top rails, since the first 

rail had to float and the other had to be grounded. Therefore, silver epoxy and non-

conductive epoxy were used for these connections respectively. 

The first step in the fabrication process was to roughen up the surface of the 

titanium beams using a piece of SiC paper to remove the oxide layer and make good 

electrical connections to ground. Then, a small piece of kapton tape applied to the 

surface approximately at 6 cm from the narrow end of the strain beam. Next, small 

cuts were made in the kapton tape so the top and bottom rails could be attached to the 

titanium substrate. Before attaching the electrodes to the rails the larger diameter 

wires had to be bent to form a 10 ° as specified by the design. The rails were too stiff 
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b d to the desired angle. Instead, as shown in Figure 5.8, both the top and bottom 
to en 

.
1 

ere bow-shaped. As a consequence, the mechanical amplification scheme of nus w 

the buckled beam was diminished. 

Figure 5.8 Photograph of buckled beam capacitor 

The next step in the fabrication was to apply a small drop of epoxy to the 

grounded and non-grounded rails. The material used for the conductive epoxy was 

Metaduc 1202 base, fabricated by Mereco Technologies, with 2 parts of epoxy per 1 

part of Metaduct 1202 activator. The most difficult part of fabricating the buckled 

beam capacitor was to make sure the interdigital electrodes did not contact each other 

and that the overlapping length was as close as possible to the 400 µm design length. 

Using a microscope, the top and bottom rails were align to the notches in the kapton 

tape, and small drops of epoxy were applied to the four joint points. As seen in the 

figure 5.8, large globs of silver and non conductive epoxy were used to pin the top 

and bottom rails which further decreased the amplification effect of the buckled beam 

Finally, the epoxy was let dried out for around 8 hours to make sure the buckled 

beams stayed attached to the titanium substrate when strain was applied. 
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Two additional buckled beam capacitor designs were developed as well. The 

uias that the original design did not yield the results and a number of parasitic 
reason .. 

capacitances were introduced during the fabrication process due to the large globs of 

Y 
These capacitances were of greater magnitude than the designed base epox. 

capacitance allowed in the design. Thus, the ~C was smaller with respect to the total 

base capacitance (including the parasitic capacitances), which led to a smaller gage 

factor. The modifications to the original buckled beam capacitor are described in 

Appendix E. 

The fabrication steps used in the modified designs were similar to those described 

above. However, the greatest difference was in the way the top and bottom rails were 

attached to the titanium substrate. For the last buckled beam design, laser welding was 

used instead of silver epO:\.'Y to attach the bottom rail to ground. Furthermore, the 

length of the buckled rails was shortened in one of the designs and the thickness of the 

kapton tape was increased to see the effect on the parasitic capacitances. Additional 

details are discussed also in Appendix E. 

5.4 Fabrication steps of antenna strain gage 

The steps followed to fabricate the prototypes, for the most, used a similar laser 

welding technique than the latest buckled beam design. Basically, the prototype 

consisted of 5 components : the titanium strain beam, the titanium frame, the tungsten 

antenna wire, a layer of kapton tape and a silicon diode. 

First, the surface of the titanium strain beam was roughed up with sand paper. 

Then, the frame was built with four small titanium shims, all of them welded by a 

laser beam. The next step was to attach the tungsten \Vire to the metal frame, also by 

means of a laser-welding machine. One of the most difficult steps in this process was 
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to attach the diode to the tungsten wire. This was done also by aiming the laser beam 

to the join of the wire and the surface of the silicon diode. Some of the diode material 

was removed and melted by the laser, so the melted material would attach the two 

pieces together. After these three pieces were all connected, a layer of kapton tape 

was placed on the substrate. Finally, the last step was to weld the frame to the 

substrate by shooting the laser beam at an angle of 45 degrees at the joint of the two 

pieces. The laser parameters used in every step of the fabrication process are included 

in Appendix F, as well as some observations and comments. 

Figure 5.9 shows the prototype fabricated with the initial configuration. Appendix 

G includes the two additional prototypes fabricated using a longer antenna wire and 

additional kapton tape layers. 

Figure 5.9 Antenna strain gage fabricated according to original parameters 
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CHAPTER 6 Testing and results 

This chapter explains the testing procedures used to verify the estimated 

capacitance, resonant frequency and gage factor for the different approaches used in 

this study. Most of the testing performed at URI was DC measurements because of 

the limited measuring capability at higher frequencies. High frequency measurements 

were performed by San Diego Research Center (SDRC), now Argon ST, since they 

had the appropriate filters, amplifiers, Tx/Rx antennas and signal processing 

equipment to test all of the prototypes fabricated at URI 

Before presenting the test results of the different capacitor and antenna designs, an 

initial assessment of the ceramic substrate was performed. The purpose was to 

determine the dielectric loss of ceramic substrate at these frequencies. It is important 

to note that these measurements were performed by SDRC but provided important 

insight when designing and fabricating the sensors. 

The loss tangent of the material was quite high, about -19 dBi peak gain. Such a 

low gain would impact the ability to measure the back-scatter signal. However, this 

was solved by using a Tx signal with a 20 to 30 dBm of power and placing the Tx 

antenna as close as possible to the strain beam under test. In addition, an antenna of 

similar dimensions was used for the thin-film and thick-film capacitors, i. e. 1 mm x 6 

- 10 mm was deposited on the ceramic substrate. Because the material was lossy, the 

antenna had a Q value of about 25. In order to track the back-scattered signal, a 

change in capacitance had to be as large as possible. 
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6.1 
Thin-film capacitor: analysis and results 

Capacitance measurements where performed on the three different thin-film 

capacitors by means of a capacitance meter with a resolution of 0.01 pF in the range 

of0.01to10 pF. The following procedure was used: the ceramic beams were clamped 

at the narrower end while applying stress to the wider end of the ceramic beam in 

bending mode. The ceramic constant strain beams used were designed to have the 

same strain along the longitudinal axis of the substrate. For this specific substrate, the 

strain introduced by deflecting the end 2 cm is about 800 µstrain. So the gage factor 

was estimated by relating the change in capacitance from the base capacitance when 

800 µm strain was applied. 

The capacitance measurements for the 3 thin-film capacitors fabricated are as 

follow: 

Table 6.1 Capacitance measurements of thin-film capacitors 

Antenna Unstrained Strained Gage Factor 
length (base cap (800 µs) t:.C (pF) 
(mm) pF) pF (G=t:.C/C· 1 /strain) 

6 (broken) •• • • • 13.15 
6 8.40 8.42 0.10 14.88 

7 7.25 7.30 005 8.62 

The thin-film capacitor was designed to have a base capacitance of about 4.9 pF. 

From the measurements above, it can be seen that two of the fabricated capacitors had 

a capacitance value above the aimed base capacitance whereas, the other capacitor 

had a very small base capacitance. The reason for the small capacitance of the latter 

capacitor with an antenna length of 6 mm (broken when strained) is that the 

interdigital fingers where not aligned correctly during fabrication. Thus, the 

overlapping area was smaller than originally designed and a decrease in the total 

ca · pac1tance was observed. In the other designs, the reason for the larger total 
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capacitance was that the dielectric layer would have to be thinner than the originally 

10 
µm design. Still, the gage factor of the two thin-film capacitors was about 14 

which is what was anticipated from the simulations. 

For the high frequency measurements, a test cable (micro-coax) was soldered to 

one of the fabricated sensors to verify the resonant frequency vs. strain behavior. 

Unfortunately, some of the deposited metal layer vaporized when in contact with the 

soldering iron. Even though the micro-coax was attached, no resonant frequency was 

found in any of the three the thin-film transponders. At first, it was believed that the 

ground plane was too thin so additional copper tape was placed on the bottom surface 

of one of the ceramic beams. Still, no discernible resonance between 1 to 6 GHz was 

observed. It was suspected that either the capacitor became shorted or the capacitance 

was so small that the resonant frequency was outside the frequency sweep previously 

performed. Therefore, the connection between the capacitor and the antenna was 

broken to measure only the resonance of the antenna which resulted in no antenna 

resonance. At this point it was determined that the skin depth might be an issue. Base 

on these experiments and skin depth calculations, it was concluded that the metal film 

had to be thickened to 10 micrometers if possible. The hypothesis here was that, 

maybe plating the ground plane with copper tape introduces losses; we believed that 

the reason was that when the ground plane was covered with copper tape, the electric 

field must first penetrate the lossy layer and the tape might not be making good 

contact with the ground plane. This led us to the development of a new approach with 

thicker films using an electroplating technique, to increase the thickness of the 

interdigital capacitor, antenna and ground in order to bypass the copper tape. 
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Thick-film capacitor: analysis and results 

Capacitance measurements were performed on one thick-film sensor smce 

interdigital electrodes of the second thick film sensor were shorted. This was 

corroborated by conductivity measurements. Once again, the measurements were 

performed by means of a capacitance meter with using a similar setup to the thin-film 

measurements. The ceramic beam was clamped at the narrower end while bending it 

at the wider end, introducing 800 µstrain for every 2 cm that the ceramic beam was 

bent. 

The result of the capacitance measurement for the thick-film capacitor as a 

function of strain is as follows: 

Table 6.2 Capacitance measurements of thick-film capacitor 

Antenna Unstrained Strained Gage Factor 
length (base cap (800 µs) /1C (pF) 
(mm) pF) pF (G=/1C/C ·1/strain) 10 ___ _ 

The thick-film capacitor was designed to have a base capacitance of about 0.85 

pF, and the fabricated thick film sensor had a capacitance of 0.90 pF. The resulting 

gage factor of the fabricated sensor was approximately 14, slightly higher than the 

gage factor of 12 obtained with the simulation. The fabrication of the thick-film 

capacitor was easier than the thin film because both the thickness of the dielectric 

(kapton tape) and the thickness of the film were well controlled. Thus, the fabricated 

sensor had very similar parameters to the ones used for simulation. 

Once again, the only accurate way to measure the resonant frequency of the sensor 

is to connect a test cable (2 connections: antenna element and ground) or by using a 
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diode to differentiate the input signal from the output signal by a doubling effect when 

using an RF pulse of energy. 

High frequency measurements showed at resonant frequency of 2.4 GHz under 

normal condition, i.e. unstrained condition. The targeted resonant frequency was 2.6 

GHz when using a 10 mm-long antenna. The fabricated sensor had a smaller resonant 

frequency, possible due to its slightly higher capacitance. The higher the capacitance 

for a given antenna length, the smaller the resonant frequency. When a strain of 800 

µstrain was applied, a shift of 7 MHz was observed. This change in the resonant 

frequency yielded a gage factor of 3.64, as opposed to a gage factor of 4.5 from the 

simulator. The hypothesis for this smaller gage factor was attributed to dielectric 

(kapton tape) not adequately transferring the strain to the sensor. 

These small gage factors led us to develop a totally different approach in order to 

boost the sensitivity of the strain gage. The design of free standing structures such as 

the buckled beam capacitor or the antenna strain gage, were the result of the pursuit 

for better resolution and a larger shift in the resonant frequency. 

6.3 Buckled beam capacitor: analysis and results 

To obtain a better understanding of the original buckled beam capacitor concept, a 

buckled beam sensor was analyzed as a 6-component circuit. Figure 6.1 shows the 

physical layout of the buckled beam capacitor and associated components that form 

the complete structure. 
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Figure 6 .1 Physical sketch of buckled beam capacitor; circuit components 

A circuit model was obtained from the physical model shown in Figure 6.2. In the 

circuit model, a fixed inductor was incorporated in place of the antenna. Ideally, the 

inductor forms a series resonant circuit with the variable interdigital capacitor (C3). 

The frequency of resonance enabled an accurate determination of C3 and the ~C due 

to flexing the beam. 

·' Fixed Inductor (Antenna) 

Figure 6.2 Circuit model of buckled beam capacitor 

The calculated component values are as follows : 
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Table 6.3 Buckled beam capacitor: component values 

Cl and C2 dominated the resonant circuit and prevented the small change in C3 

from shifting the resonant frequency since the capacitors appear in parallel with the 

variable interdigitated capacitor C3 . Ll and L2 tune the resonant frequency but did 

not reduce the shift in magnitude of the resonant frequency. Therefore, the problem 

with this circuit was the parasitic capacitances (Cl and C2) created by the non-

conductive epoxy that attached the top rail to the ground plane. 

On the other hand, the circuit model matched the measurements well. A 10 nH 

inductor was connected to the top rail of the buckled beam capacitor. The resulting 

LC network was measured as a shunt resonant circuit, shown in Figure 6.3. 

Co<L"'\. From Analyzer CoaxI9, Ana.1:--'zer -
10 nli Inductor 

...._ Buckled Beam Cap 

~ _,_,. RF Ground 
\/ ... ~ 

Figure 6. 3 Setup for measurements of buckled beam capacitor 

The resonance of the first buckled beam capacitor design was found 

approximately 880 MHz. When 800 µstrain was applied to the titanium beam, a very 
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small shift was measured (6 MHz), for a gage factor of 8.5 as compared to the 

expected gage factor of 60. Also, the resonance of the buckled beam capacitor was 

very low because of the large parasitic capacitances Cl and C2, which also degrade 

the gage factor since the contribution to the shift in frequency is largely due to the 

variable interdigital capacitor C3 . 

This provided motivation to modify the design to decrease the parasitic 

capacitances. As discussed in Appendix E, the thickness of the dielectric (kapton tape) 

was increased to 200 µm and the length of the top rail was decreased in the second 

design by increasing the number of fingers from 16 to 60 for the third buckled beam 

design. 

6.3.1 Second buckled beam cap design: shorter top rail 

The setup shown in Figure 6.3 was used to test the modified design of buckled 

beam capacitor. The nominal capacitance and ~C was measured by flexing the beam. 

A strong resonance at 1.503 GHz and a shift in the resonance of 1.565 MHz with 2 

cm of deflection were obtained for an applied strain of 800 µstrain. This yielded a 

gage factor of 51 , very close to the design value of 60. A shift in frequency of about 

4.1 % was both repeatable and stable. The calculated parasitic capacitance from the 

short (top rail) and the non-conductive epoxy was about 0.29 pF in total (Cl + C2). 

Adding the parasitic capacitance to the nominal capacitance from the interdigital 

capacitor (C3) gave a total capacitance of 0.66 pF. This compared favorably to the 

expected base capacitance of 0.62 pF. The deflected beam lowered the buckled-beam 

capacitor to 0.57 pF. The change in the buckled-beam capacitor is about 15% so the 

total circuit response was affected to some degree by the parasitic capacitance. 
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Lowering the parasitic capacitance further was difficult since the third buckled beam 

design included more wires which increased the base capacitance C3. 

6.3.2 Third buckled beam capacitor design 

The best results to date were achieved with the third buckled beam capacitor 

design. This design included 60 interdigital wires to form the capacitor, a 200 µm 

dielectric, a bottom rail that was laser-welded to the titanium beam and a smaller 

volume of non-conductive epoxy to keep the parasitic capacitance low. 

The buckled beam capacitor design appeared to have about 1.8 pF of capacitance. 

This was the total capacitance between the wires and the capacitance to ground from 

the top rail and the non-conductive epoxy. The targeted capacitance was 1.42 pF, so 

the actual capacitance of the fabricated buckled beam capacitor was close to that of 

the original design. The contribution of the parasitic capacitances was approximately 

40 pF. The resonant frequency was 953 MHz with a 10 nH inductor as shown in 

Figure 6.4. This resonance was expected due to the large total capacitance for this 

design. 
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Figure 6.4 Resonance of third buckled beam capacitor design; no beam deflection 

Bending the titanium beam approximately 10 mm (400 µstrain) moved the 

resonance to about 975 MHz (See Figure 6.5). This represents a shift in frequency of 

22 MHz, and resulted in a gage factor of 57. This was the largest gage factor achieved 

of all the approaches used to date. This is a 2.2% change in the resonant frequency. 
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Figure 6.5 Resonance of third buckled beam capacitor design; 400 µtrain 

6.4 Antenna strain gage: analysis and results 

A test fixture was put together to generate the fundamental excitation for the 

antenna strain gage prototypes. As mentioned in the antenna gage design section, it 

was expected that the resonant frequency would be around 3 GHz. Adjustments to the 

filters, amplifiers and Tx/R,-..,;: antenna were necessary since the original setup was 

tuned for a lower frequency of operation. 

The initial configuration using a 16-mm long antenna was illuminated from 1 

to 3.6 GHz but the second harmonic produced by the diode could not be found. It was 

possible that the antenna resonance was higher than 3.6 GHZ, which was the highest 

frequency attainable by the test fixture and capable to generate enough RF power. The 
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other hypothesis was that the diode might have not been working or that its response 

uldn' t be good enough to generate a second harmonic. wo 

Further analysis using a test cable on the antenna showed that its efficiency was 

only about 4%. With the diode connected, the second harmonic was also not possible 

to see, even knowing where to look around 6 GHz. The low efficiency was caused by 

the low conductivity of the ground plane which was made of titanium. 

One idea to get around this problem and still being able to use the titanium strain 

beams was to lengthen the antenna to move its resonance to the 2.4 GHz band. In this 

band, higher power amplifiers were available, so more power could be use to 

illuminate the antenna. 

Therefore, the design was changed as mentioned in Chapter 4, increasing the 

length of the antenna to 27 mm and putting a solderable wire instead of the fabricated 

(chip) diode to measure the frequency of resonance of the modified design. A second 

prototype included a chip diode on the antenna. 

The frequency of resonance measured in the modified prototype was exactly 

where it should be, around 2.44 GHz, measured by attaching a test cable to the 

solderable wire. The resonance moved about 360 MHz ·to 2.8 GHz with just 3 mm of 

deflection of the beam, i.e. 120 µstrain. Therefore, the estimated gage factor for this 

prototype was 1229, the largest gage factor seen during this investigation by far. 

Figure 6.6 and figure 6.7 show the frequency of resonance of the antenna gage 

with solderable wire with no strain induced and when it was flexed 3 mm 
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Figure 6.6 Resonance of antenna gage with solderable wire (no strain) 
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Figure 6.7 Resonance of antenna gage with solderable wire bent 3mm 

See Appendix H for a plot of the shift in frequency vs the amount of deflection. 
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The second prototype fabricated with a 27-mm antenna and a chip diode included 

showed no second harmonic visible from 4.7 to 5.2 GHz. Thus, and e:x.1ernal diode 

was attached to the antenna wire. This time a large second harmonic was visible at 

4_99 GHz. Two millimeters of deflection, i.e. 80 µstrain, moved the second harmonic 

up to about 5.32 GHz. So, the antenna gage was working only with an external diode, 

not with the chip diode made of a silica slab. Either the diode was not good enough at 

RF or the connection to ground planes was still weak, even though a copper tape was 

used between the diode and ground plane. Two spectrum plots are shown in figure 6.8 

and figure 6.9. The input to the spectrum analyzer was connected to the Rx antenna, 

i.e. a v.~deband horn, through two high-pass filters and a preamp. The Tx signal was 

manually stepped thru the band of interest, at the fundamental frequency and the 

spectrum analyzer was set for "Max Hold" in a 200 MHz band around the second 

harmonic of the fundamental frequency. The peak response was held on the screen. 

Figure 6.8 Second harmonic response - no beam deflection 
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Figure 6.9 Second harmonic response - 2 mm deflection 

Some additional details of these measurements are shown in Appendix I. 
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CHAPTER 7 Conclusions 

Strain measurements on compressor blades of jet engines are currently performed 

through wire strain gages routed to the acquisition system through a slip-ring 

assembly. However, slip ring systems tend to wear off, especially the brush/ring 

contacts which make the signal noisy. This performance degradation leads to high 

maintenance costs in addition to the high cost of installing slip-ring systems. 

Therefore, there is the need to develop non-contact systems to measure strain on 

compressor of jet engines. This thesis described the research work performed during 

the last year and a half to develop a prototype of a passive RF transponder that works 

as a wireless strain gage for gas turbine engines. The design, simulation, fabrication 

and testing of several prototypes have been described in the content of this thesis. The 

signal processing concept to be employed by the wireless strain gage system was 

beyond the scope of this research work. The passive transponder prototype needed to 

be printed, welded or deposited directly onto compressor blades; thus several key 

issues had to be addressed during the design of the transponder. Among these issues 

are the thickness of the transponder, the footprint and weight of the sensor and the 

large "g" loading experienced by the blades. 

The proposed wireless strain gage concept uses a shift in the frequency of the 

resonance of a capacitive/inductive transponder or antenna wire over a ground plane, 

to measure strain. The principle of operation of all the approaches explored by this 

investigation is the same: a pulse of energy within a shot frequency band is 

transmitted to the transponder which, depending on the surface strain, returns a signal 

with a different resonant frequency. A change in the capacitance or in the distance 

between the antenna wire and ground introduced by strain, changes the frequency; 

thus a gage factor can be calculated. 
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Four different approaches were used to develop a prototype with the largest gage 

factor possible. Initially, thin-film and thick-film capacitors were designed, simulated, 

fabricated and tested to determine the maximum possible change in capacitance 

using such planar structures. Thin-film capacitors were developed by 

photolithography and sputtering processes. Simulations showed that the interdigital 

capacitor was a resonant circuit itself, but its resonance was above the frequency of 

operation required by the signal processing module. Therefore, an antenna element 

was added to move the frequency of resonance to the 1 to 2 GHz range. 

Measurements \•vere performed at DC using a capacitance meter and a gage factor of 

14 was observed in terms of capacitance. It was expected that the gage factor in terms 

of frequency would be lower since only the capacitance change would contribute to 

the change in resonant frequency ; thus, the gage factor expected for the thin-film 

capacitor was around 5. Unfortunately, the skin depth of the thin-film capacitors was 

too thin to so the transponder was not able to operate in the 1-2 GHz range. No 

resonance was detected when high frequency measurements were performed. 

Therefore, a thick-film capacitor was developed to address the skin effect issue. 

It was expected that the thick-film capacitors would yield very similar gage 

factors, and when tested at DC, a gage factor of 4 and 11 were obtained in terms of 

resonant frequency and capacitance respectively. Since the thick-film capacitors 

required a thicker dielectric, the capacitance decreased, increasing the frequency of 

resonance of the transponder; therefore, longer inductive elements were required to 

decrease the frequency of operation. High frequency tests showed only a 7-MHz 

frequency shift out of a base resonance of 2.4 GHz, for a gage factor of about 3.7. 

This was probably due to the fact that a thicker dielectric was not correctly 

transferring strain from the surface of the substrate. 
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A third approach using a buckled beam amplification scheme combined with a 

capacitor made of interdigital wires yielded gage factors as large as 57. Parasitic 

capacitances introduced in the sensor during fabrication reduced the gage factor; the 

only contribution to a change in resonant frequency came from the variable 

interdigital capacitor and not from the parasitic capacitances. A laser-welding 

technique to attach the buckled beam capacitor to the titanium strain beam minimized 

the parasitic capacitances and boosted the gage factor close to 60. 

The last approach explored was the antenna strain gage design. This prototype 

correlated the change in the distance from the antenna to the ground due to strain, to a 

change in the tuning frequency of them antenna. Very large gage factors of around 

1000 were observed with this approach. Although, this approach had two main issues: 

first, the length of the antenna was about 27 mm which means that strain is measured 

over the entire length of the antenna; and second, the chip diode placed on the antenna 

did not work as expected. An external diode was needed to performed RF 

measurements. 

In summary, this research examined four different prototypes for the wireless 

strain gage concept, two of the using thin-film and thick-films and two more using 

free standing structures. It has been shown that the free standing structures yielded 

larger gage factors compared to the thin-film and thick-film capacitors. This is due to 

the fact that the free standing structures are only in contact with the substrate at one or 

two places and not over the whole structure. Therefore, if a large gage factor is what 

is needed by the signal processing system, the free standing approach is the best. On 

the other hand, thin-film and thick-film structures can be more easily fabricated than 

free standing structures, besides the fact that they can probably withstand the large 

"g" loading better. 
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CHAPTER 8 Future work 

1 Temperature compensation s. 
All the designs proposed by this research did not address an important factor such 

as the effect of temperature on the measurements. For the thin-film and thick-film 

capacitors, temperature becomes an issue; first, because the dielectric might not 

withstand high temperatures, but more importantly, the dielectric constant can vary as 

temperature changes. Therefore, a temperature compensation scheme is needed. One 

approach that can be used to compensate the temperature effect is the use of 

dielectrics, where the dielectric constant remains fairly constant for different 

temperatures or the combination of to dielectric with opposite dielectric constant 

behavior so the net effect cancels out the temperature effect. 

Another approach is the use of two different resonant elements. The temperature 

effect would affect the resonant frequency of both capacitors and antennas, but if the 

two signals are combined to obtain the difference in frequency, again the temperature 

effect is cancelled since what has been measured is not the individual resonant 

frequencies but the net resonant frequency difference. Figure 8.1 shows a sketch of an 

envisioned antenna gage with a second antenna for temperature compensation. 
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Antenna 
Frame 

~ 

--i-- Antenna 

1 Diode 

Di~1aucef1·om frnmeto antenna atlea~ 5 \'t'ire cliamcters 

Diode ~ilould be 1.5 to 3 mm frnm entl of ant.euua connected to tlle frame 

Figure 8.1 Antenna gage with temperature compensation approach 

8.2 Dynamic testing 

Throughout this investigation, all testing was performed with the strain beams 

stationary; this is that the substrates where not rotating, while the measurements were 

performed. Ultimately, if the prototypes developed in this thesis are to be modified 

and improved for rotating blades, dynamic tests ne~d to be performed. With a 

dynamic testing scheme, the signal processing issues can be addressed since the 

antenna of the sensor only passes the Tx antenna in an instant of time. A dynamic 

testing approach needs to determine the amount of strain that is introduced on the 

strain beam. 

A schematic of the proposed dynamic testing scheme is shown in figure 8.2 
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Sheet Metal Reflector 

Figure 8.2 Dynamic test setup for RF strain measurements 

The figure above shows a motor shaft could be use to spm the fabricated 

prototype. A flapper made of teflon would snap the transponder introducing certain 

amount of strain still to be investigated. An actual prototype for the dynamic test has 

been built and it is show in figure 8.3. 

Figure 8.3 Prototype for dynamic testing 
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APPENDIX A .SAW resonator design 

The lumped equivalent circuit of the SAW resonator near resonance is shown in 

the following figure. 

C t 

Figure A I Lumped equivalent circuit of a SAW resonator 

The input admittance of the IDT appears like a series resonant circuit in parallel 

with the transducer capacitance CT. The capacitance CT contributes to the major part 

of the reactance. The impedance Z(f) is then given by: 

= Ra (J) + ]Xa (J) + (j2nCr t l (Al) 

where Ga(f) and Ba(f) are the conductance and susceptance, and Ra(f) and Xa(f) are the 

resistance and the reactance respectively. 

I 

From the crossed-field model (Morgan 1976), Ga(f) and Ba(f) are given by: 
I 

(A2) 

(A3) 

where e = 2ef / f o 
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Jo is the resonant frequency 

c s is the static capacitance per section of the IDT in p F/m 

k 2 is the piezoelectric coupling factor of the substrate 

N is the number of sections of the IDT 

Ga(/) has a maximum atf = fo given by: 

where Cr = NCsW 

W is the aperture or length of the fingers of the IDT in meters 

(A4) 

According to Farnell et al. (1970), the capacitance per meter of a finger length is 

given by: 

(A5) 

where Cs is in (pF/m) , c 
0 

is the dielectric constant of the substrate and K as a 

empirical value given by 

K = 6.s(%)2 + 1.08(% )+2.37 (A6) 
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Figure A.2 shows the line width of the fingers (D) and the electrode section (L/2) 

which is half of the periodicity of the IDT when the line width and the spacing is the 

same. 

U 2 

Figure A.2 Cross-section of an electrode section 

The following equations from Morgan (1976) correspond to the senes 

combination of R, L, C 

R = 2k 
2 

Ga (Jo ) 
7r

2
f0Cs (2efoCT)2 

(A.7) 

(A.8) 

(A.9) 

where le is the effective cavity length (distance from cl?sest reflector on the left of 

IDT to closest reflector on the right ofIDT). 

Based on equations A. l thru A.9, the design parameters proposed were as follows: 

Finger line width (D): 25 µm 

Spacing between fingers(S) : 25 µm 

Number of IDT sections (N) : 12 

Number of total fingers: 25 
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Aperture of fingers (W) : 2.5 mm 

Number of reflectors: 50 

Effective cavity length Uc): 2.5mm 

Metal thickness: 1000 A 

Coupling factor {k2): 0.14 

The periodicity of the IDT will be 100 µm (2S+2D), therefore the resonant 

. 2250m / s 
frequency expected ts / 0 = = 22.5MHz 

lOOE-6m 

The value of the elements of the lumped equivalent circuit is as follows : 

R = 1.297 kQ 

L = 4.0289mH 

C= 12.4499 Ff 

Cs =54.43 pj!m 

Cr= 1.6326 pF 

Ga(fo) = 6.911 775£-5 mhos 
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APPENDIX B Design and simulations of thin-film interdigital capacitor 

Simulation results for interdigital capacitor design 1 and design 2 

Figure B. l and B.2 show the plots obtained from the simulation using Sonnet Lite. 

Theses simulations show the capacitance values included in Table 3.2 
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Figure B. l Strained and unstrained capacitance values for design 1 
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Figure B.2 Strained and unstrained capacitance values for design 2 
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As mentioned in Chapter 3, although the change in capacitance for design 1 and 2 

is the same, the base capacitance of the first design is smaller with a similar induced 

strain, which makes the gage factor larger compared to design 2. 

Visual representation of design 1 parameters 

The follo\~ring figures show a 3D dimensional view of the proposed interdigital 

capacitor design, as well as the top and bottom layers that form the electrodes of the 

capacitor. 

- - - Bottom layer 

:, Dielectric 

Figure B.3 3D view of interdigital capacitor 

It must be noted that the dimensions shown in Figure B.3 are not to scale. That is 

why the dielectric layer looks more than the 8 µm specified by the design parameters. 

Additionally, for simulation purposes, a larger lager of air was left on top and below 
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the planar structure. The reason for this is that the simulator sees every side of the 

virtual (transparent) box as a ground plane and it is important to keep the planar 

structure as far as possible from the walls. 

Axis of strain 
<:-=--·~-_r:.> 

~ Capacitor ground 
connection 

- ' 2000 · - - - - - - - - - - - - - - - - -

ho "'capacitor 

Antenna element connected to 
. / ground plane here 

Figure B.4 Bottom layer of interdigital capacitor 

' ' . .J 

Figure B.4 shows the bottom layer of the interdigital capacitor. It must be noted 

that the interdigital fingers (shown in green in figure above) are connected to ground 

through a large piece of metal (shown in red in figure above). In practice, this piece of 

metal will physically ground one side of the interdigital capacitor. As it will be 

discussed in Chapter 5, the interdigital capacitor is deposited on a ceramic constant 

strain beam, which is coated with a thin film of metal on the back to simulate a 
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ground plane. Therefore, the bottom layer is connected to ground by shorting the large 

piece of metal through the edge of the strain beam. 

~ Capacitor ground 
connection 

Figure B.5 Top layer of interdigital capacitor 

Figure B.5 shows the top layer of the interdigital capacitor. It must be noted that 

the interdigital fingers (shown in green in figure above) are connected to an antenna 

element (shown in red in figure above). The antenna will shift the resonant frequency 

to the desired frequency of operation. 

94 



APPENDIX C Sputtering procedure 

The following steps were used to deposit the different metal thin films. Prior to 

sputtering a background pressure between 4.9x10-6 Torr and 6.5x10-6 Torr was 

desired. 

Argon gas was introduced into the high pressure chamber after the throttle valve 

was closed and the Argon gas was introduced. The Argon introduced into the chamber 

was also monitored with the Pirani gage on the sputtering machine. 

The RF power level was increased and he reflected power must be kept close to 

zero using load and target tuning features. The tuners should adjusted until a stable 

plasma was reached, keeping the reflected power close to zero. Once again, Argon gas 

was decreased to 5-7 mTorr and the RF power level increased to the desired value. 

The surface of the metal targets is etched for 15 minutes before sputtering. Then 

the sample is rotated to the desired position underneath the target. The sputtering 

process time depends on the thickness of the metal desired. 

After sputtering is complete, wait for 30 minutes until targets and substrate holder 

cools and the chamber is vented. 

To vent the chamber, make sure ionization gage is closed, close Cryo Pump (HI 

VAC button), open tank and open vent knob, let the chamber reach 7.6 x 102 Torr. 

And finally pull up chamber. 

To pressurize back the chamber, pull down the chamber and close vent knob, hit 

Rough Pump. Every other pump should be closed and bring the chamber to 1 x 102 

Torr. Once the chamber reaches this pressure, close Rough Pump and Open Cryo 

Pump, switch on Pirani gage. 
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APPENDIX D Fabricated thin-film and thick-film capacitors 

Additional thin film capacitors 

Figures D. l and D.2 show two additional thin-film capacitors that were fabricated 

following the procedure described in Chapter 5. As shown in Figure D. l , the narrower 

part of the ceramic strain beam broke during testing due to excessive stress applied to 

the strain beam. 

Figure D. l Second fabricated thin-film capacitor on ceramic beam: 6mm 

The fabricated thin film-capacitor shown in the previous figure shows a lot more 

bubbles developed not only in the lower edge of the substrate but also close to the 

interdigitated fingers of the capacitor. It is believe that the reason for this was that 

temperature of the ceramic substrate reached 250 °C in less the 25 minutes previously 

specified. 

Another important detail during the fabrication process was the fact that once the 

bottom metal layer was deposited, at least the edge of this layer had to be protected 

before spin-casting LOR SOB for the dielectric layer. The reason for this is that for 
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capacitance measurements, access to the top and bottom metal layers is needed. 

Therefore, if LOR SOB is deposited on the entire surface without protecting the 

bottom metal layer, this layer gets buried underneath the dielectric and measurements 

are not possible. A small strip of uncovered metal can be seen on the top edge of the 

ceramic beam in the sensor area in Figure 5.3 and Figure D. l. This area was protected 

when depositing the dielectric material so a clear access to the bottom electrode was 

achieved 

Figure D.2 shows the third and last thin-film capacitor fabricated. In terms of 

quality, this last prototype had a clearer pattern, since almost no bubbles developed on 

the surface of the substrate, achieving a smoother surface to deposit the metal film for 

the top electrode. 

Figure D.2 Third fabricated thin film capacitor on ceramic beam: 6 mm 

A final comment on the fabrication of this type of capacitors is that before 

sputtering the back of the ceramic strain beams for the ground plane, measurements 

and testing had to be performed on the capacitors. This is because once the back of 
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the strain beam was sputtered with copper, the bottom and top electrodes are 

connected to ground and it is technically impossible to measure the capacitance of the 

interdigital electrodes since they are shorted. 

Additional thick film capacitors 

Following the same procedure described in Chapter 5, a second thick-film 

capacitor was fabricated with a faster deposition rate. This time, the deposition rate 

was 5µm/minute, applying an electric current of 350 mA for 2 minutes. Figure D.3 

shows the fabricated capacitor. It can be seen that the shape of the antenna was 

deformed as well as the shape of the interdigital fingers. 

DC measurements were not possible on this capacitor because the top and bottom 

metal layer were shorted out after electroplating. 

Figure D.3 Additional fabricated thick-film capacitor; antenna length: lOmm 
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APPENDIX E Additional buckled beam capacitor designs 

Some issues arose after the initial buckled beam was fabricated and tested, as 

described in Chapter 5 and further analyzed in Chapter 6. The biggest concerns with 

the buckled beam capacitor were the parasitic capacitances created when attaching the 

non-grounded electrode (top buckled rail) to the titanium beam; and the fact that the 

large globs of silver epoxy were preventing the grounded electrode (bottom buckled 

rail) from achieving the maximum displacement; thus decreasing the mechanical 

amplification which leads to as smaller b.C/C. Therefore, several observations to the 

initial fabricated buckled beam capacitor were made and some modifications were 

scheduled for the next designs. Figure E. l shows a close-up of the buckled beam 

capacitor 

' // 
\,/ 

~-~1'1:f:l'&l('ll'-­

Ground rail was laser· 
welded to Tl beam 

---- Shortertop rail to c::::) Increase 6.C/C 
.... . -" ..... - --- decrease parasitic c 

Double# of fingers 
- to increase base capacitance 

D 
Coopenvire and top 
rail were laser· 
welded together 

Figure E. l Buckled beam capacitor close-up and proposed modifications 

The previous figure shows the large globs of non-conductive and silver epoxy 

developed after small drops were put in place to hold the buckled rails to the titanium 

beam. The non-conductive epoxy globs create some parasitic capacitances (Cl and C2 

as shown in Figure E.2). The variable capacitance (C3) given by the interdigital 

electrodes was designed for 0.49 pF. As discussed in Chapter 6, it was estimated that 
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the nominal capacitance of the fabricated capacitor was close to 0.5 pf which is what 

was expect. The problem was that the magnitude Cl = 0.75 pf and C2= 1.5 pf were 

much larger than the actual variable capacitance given by C3 . Therefore, Cl and C2 

dominated the resonant circuit and prevented the small change in C3 from shifting the 

resonant frequency. 

In order to address the problem of the parasitic capacitances created by the non-

conductive or regular epoxy, it was suggested reducing the length of the top rail as 

well as increasing the thickness of the kapton tape to decrease these capacitances. By 

shortening the top rail and thickening the dielectric, the parasitic capacitances would 

shrink since, by a basic parallel capacitor theory, the distance between the top rail and 

the ground plane was increased and the area were the top rail and the titanium 

substrate decreases because of the shorter length. Figure E.2 shows a schematic of 

changes proposed to address the parasitic capacitances. 

Cc1111~tion to _;nt«1uu ( , ~i mm i.tt l ~turth) 
. (Ch. 

Ground Plane 

\";;ri.able C.ap (C3) Ground Rail (l l mdL2) 

Figure E.2 Schematic of modified buckled beam capacitor 

Unfortunately, the down side of these changes is that by shortening the top rail , 

the buckled beam amplification scheme modified. In this case, only the bottom rail 
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would contribute to change of capacitance. But the biggest concern of these 

modifications was that, if the buckled beam capacitor was arranged in a horizontal 

position with respect to the axis of strain, the non-conductive epoxy was not going to 

be able to hold the top electrode to the titanium beam. This is that, since there is no 

buckled beam, the top rail would tend to elongate as strain is apply to the substrate. So 

in order to corroborate that the changes in the design were going to decrease the base 

capacitances, the buckled beam capacitor was rotated 90°, so that now the capacitor is 

perpendicular to the axis of strain. The fabricated capacitor is shown in Figure E.3. 

Figure E.3 Fabricated capacitor with non-buckled shorter rails 

As seen in the figure above, the buckled beams of the bottom rail were also cut-off 

to make sure strain was transferred adequately. The fabrication steps were the same as 

for the original design with the exception that this time, instead of only 1 layer of 

kapton tape, 8 layers were placed to thickening the dielectric up to 200 µm. The 

overlapping length was also increased to 500µm to increase the variable base 

capacitance (C3) to 0.62 pF. The diameter and space between the interdigital wires 
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was the same as in the original design. Results of these modifications are discussed in 

Chapter 6. 

In addition to the previous modifications, a third design was proposed to address 

the issue of the large globs of silver epoxy used to hold the bottom rail to the titani urn 

substrate. Also, the number of interdigital fingers was increased from 16 to 60 to 

increase the variable base capacitance (C3) and the overlapping length was about 300 

µm. Using equation (9), C3 is given by: 

CJ = ;r(l)(8.85 x l0-
12

)(300 x 10-
6
)(60-1) = l.

4
GpF 

in( (60 x l0-
6 

- 25 x 10-
6

) / ) 

/ 25 x10-6 

The greatest modification was the substitution of silver epoxy with a difference 

approach. This time, instead of using a drop of silver epoxy, a laser-welding machine 

was used to attach the bottom rail to the titanium substrate. The fabrication procedure 

was once again similar to the steps followed by the other two designs: the titanium 

substrate was cleaned up using sanding paper, and then 8 layers of kapton tape were 

placed. The buckled beam scheme was used again since the bottom rail was attached 

by laser-welding, while the top beam still used non-conductive epoxy. This time, the 

non-conductive epoxy deposited was a smaller drop so it would not spread out to form 

large capacitances. Figure E.4 shows the fabricated buckled beam capacitor with 60 

interdigital fingers and using a laser-welding approach. 
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Figure E.4 Fabricated buckled beam capacitor with 60 interdigital fingers 

Several parameters can be modified in the laser-welding machine to achieve a 

better joint: the profile of the laser beam, the aperture, the frequency, the voltage, the 

time and the energy of the laser beam among others. All these parameters and some 

other observations are discussed in Appendix F. 
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APPENDIX F Laser-welding machine parameters 

Profile 
Voltage Time Freq. <!> Aperture Average 

(V) (ms) (Hz) (nm) (mm) E (J) 

R Est. 
aw Pulse Ref. 

E (J) E (J) 

Pyramid • • ___ ... __ __!_ --3.120 
3.160 

Basic 219 3.6 2.0 0.45 No 3.410 3.420 3.55 1* 

3.410 
3.400 

Pyramid 243 3.6 2.0 0.45 No 2.977 2.980 3.91 1* 
2.980 
2.970 

Pyramid 175 3.0 2.0 0.30 No 0.439 0.442 1.13 2* 

0.442 
0.432 

Pyramid 165 3.0 2.0 0.20 No 0.245 0.253 0.94 3* 
0.242 
0.240 

Pyramid 225 3.5 20 0.40 No 1.897 1.917 2.75 4* 
1.900 
1.875 

Pyramid 165 3.0 1.5 0.20 No 0.242 0.246 0.94 5* 

0.242 
0.239 

Pyramid 155 3.0 1.5 0.15 No 0.112 0.114 0.78 6* 

0.111 
0.111 

Pyramid 168 3.0 1 5 0.10 No 0.277 0.283 1.00 7* 

0.274 
0.275 

*Comments: 

1. No aperture needed. Parameters used to join thick Ti beam and thin Ti shim 

with a single laser shot. 

2. No aperture used. Parameters used to join to pieces of Ti. 

,., No aperture used. Parameters used to join thick Ti beam and thin Ti shim .) . 

using multiple laser shots at an angle of 45°). 

4. No aperture used. Parameters used to join thick Ti beam and thin Ti shim 

using a single laser shot. 

5. No aperture used. Parameters used to join thin Ti shim and Tu wire. 

104 



6. No aperture used. Parameters used to join thin Ti shim to diode. 

7. No gas, no aperture used. Parameters used to join ground rail to thick Ti beam. 

*Ti needs Argon at 40 psi. 
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APPENDIX G Fabricated antenna gage prototypes with modified parameters 

Figures G. l and G.2 show the fabricated prototypes using longer antenna wires 

and 3 additional kapton tape layers to increase the height of the antenna. 

Figure G. l Modified antenna gage with solderable wire 

The prototype shown in the figure above did not include a diode; instead a 

solderable wire used to attach an external diode was connected to the antenna wire. 

The figure below includes a diode and a layer of copper tape between the diode and 

the substrate for better contact. 

Antenna= 27 mm 

Figure G.2 Modified antenna gage with solderable wire 
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APPENDIX H Frequency shift vs deflection for antenna strain gage 

Fundamental Frequency Shift vs. Deflection 
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Figure H. l Frequency shift vs deflection for antenna gage 

12 13 

The figure above shows that the response of the antenna gage remains almost 

constant until it reaches more than 4mm of deflection. This means that the gage factor 

remains above a 1000 up to 160 µstrain or a deflection of 4mm; beyond that point the 

gage factor falls below 1000, with a minimum value about 546 when deflected 12 mm 

or 480 µstrain . Still the gage factor is very large as compared to the previous 

approaches. 
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APPENDIX I Additional antenna gage measurement details 

Tx amplifier output: +23.5 dBm (224 mW). This is the output power at the 

fundamental freq (about 2.45 GHz). Tx antenna gain at 2.45 GHz: +6.3 dBi. So, the 

total ERP (effective radiated power) is almost 1 watt (+29.8 dBm). 

The antenna strain gage was located 6" from the Tx antenna The antenna gage 

prototype had a gain at 2.45 GHz: -11.5 dBi (only 7% efficiency losing a lot of 

performance here). 

The Tx signal produced about 350 µWat the antenna gage terminal (about 2.6 mV 

in 50 ohrns).The 2nd harmonic generated by the 2.6 mV from the e:;...1emal diode is 

about -32 dBm This is the signal that is re-radiated by antenna gage. 

The antenna gage prototype had a gain at 4.9 GHz: about -9 dBi (a little higher at 

5 GHz than at 2.45 GHz). The -32 dBm second harmonic input to the -9 dBi antenna 

produced about -65 dBm at the output of the Rx horn antenna at a 6" range. (The R.-x 

antenna gain is +8 dBi). 
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