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then be gauged with predictive models that integrate multiple datasets and include

probabilistic estimates of shoreline response to climate change.
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Wallace and Anderson (2010) provided evidence of similar probabilities of
intense hurricane strikes throughout the Gulf of Mexico and Caribbean during the late
Holocene. Extending this comparison to include proxy-based storm records from sites
throughout the mid-Atlantic and New England coastlines indicates general consistency
throughout the entire basin (Figure 1.13). The landfall probability at Quonochontaug
Pond (0.45%) is notably similar to those estimated from storm-induced overwash
along the Gulf, Caribbean, and mid-Atlantic coastlines, particularly for locations with
high overwash thresholds that are assumed to reflect only intense hurricane strikes.
The similarities imply that on millennial time scales, the probability of a direct strike
by the most rare and energetic storms is relatively constant for individual coastal

locations.

1.64 Millennial-scale variability

The cumulative frequency of overwash deposits at Quonochontaug Pond
(Figure 1.14) shows periods of increased hurricane activity between 1635 A.D. and the
present (~1 deposit per century) and 1400-2150 cal. yr BP (~0.7 deposits per century).
A relative lull in activity is observed between these intervals, with only one deposit
preserved in over 1000 years. While Woodruff et al. (2008b) have noted a potential for
undercounting storm events during periods when sedimentation rates are low, this
pattern is in general agreement with millennial-scale variability observed in
reconstructions of intense hurricane activity along the mid-Atlantic and Gulf coasts,
and in the Caribbean (Figure 1.15).

Similarity in the timing of overwash at sites in the North Atlantic has been

noted by previous workers (Scileppi and Donnelly, 2007; Woodruff et al., 2008b) but
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to our knowledge, this is the first study to observe this pattern in New England. At
Quonochontaug Pond, the period of decreased overwash prior to the instrumental
record is more protracted and we see no indication of a peak in hurricane activity
around 1000 A.D. noted by Mann et al. (2009), yet a comparison of the records show
remarkable similarity nonetheless (Figure 1.15).

The basin-wide decrease in activity prior to 400 cal. yr BP at first suggests that
overall hurricane occurrences were lower during this interval, although this
interpretation is inconsistent with findings by Boldt et al. (2010) who show a relatively
constant tropical cyclone frequency in southern New England during the last 2000
years (Figure 1.10). There is also no evidence of a drop in eustatic sea level at this
time that might account for wide-scale and synchronous change to individual barrier
systems at coring sites throughout the North Atlantic (Kemp et al., 2011). Boldt et al
(2010) proposed that collectively, these reconstructions indicate a relatively
unchanging tropical cyclone frequency with variations only in the number of intense
hurricane landfalls during the late Holocene. Our record from Quonochontaug Pond,
RI provides additional support for this hypothesis, particularly given the proximity of
the two sites in southern New England and the similar periods of observation.

The observation that millennial-scale patterns of overwash in the western
North Atlantic are synchronous suggests that these changes are climatically driven.
Past studies that have examined climatic influences on North Atlantic tropical
cyclones consider the North Atlantic Oscillation (NAQO), El Nino/Southern Oscillation

(ENSO), and sea surface temperature (SST) to be the primary factors that influence
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the occurrence and intensity of hurricanes on interannual time scales (Sabbatelli and
Mann, 2007; and references therein).

Liu and Fearn (2000) and Elsner et al. (2000) have postulated that millennial-
scale variability in overwash records from the Gulf coast can be explained by changes
in the intensity of the NAO, which affects the track of storms by changing the position
of the Bermuda High. The result is an anti-phase (seesaw) pattern in major hurricane
activity that oscillates between the Gulf and Atlantic coastlines on long time scales.
Scileppi and Donnelly (2007), noting a similarity between records in western Long
Island and those from the northern Gulf coast, suggest instead that landfall patterns are
related to overall storm frequency as opposed to storm track, emphasizing the need for
additional records to test the competing hypotheses. The general agreement between
our record from Quonochontaug Pond, and those from the Caribbean, Gulf coast, and
mid-Atlantic corroborates this pattern at an additional site in the northeastern U.S.
Overall, the similarity between the available records shows no obvious anti-phase
relationships that would suggest a storm steering influence on landfall patterns at these
time scales.

A recent synthesis of proxy-based hurricane reconstructions has attributed a
period of peak hurricane activity around 1000 A.D. to the reinforcing effects of La
Nina and relatively warm SSTs in the tropical North Atlantic (Mann et al., 2009). The
reconstruction was supported by a statistical model of Atlantic tropical cyclone
activity constrained by proxy reconstructions of past climate changes. As noted above,
however, we see no evidence of increased activity at Quonochontaug Pond during the

Medieval Warm Period (between A.D. 950-1250) or for that matter a decrease during
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the tropical Pacific. Additional reconstructions from New England will be necessary to

explore this potential correlation.
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coring, and chronological techniques. Dordrecht, The Netherlands: Kluwer
Academic Publishers, pp. 137-153.
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Figure 1.3 Sedimentological data from core QP-19. Dy grain size is the particle size
below which 90% of the sample lies. Peaks in grain size correlate with dense layers
with high iron (Fe) content and low organic carbon. Grey shading indicates coarse-
grained layers interpreted as overwash deposits.
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Figure 1.7 Chronostratigraphic age markers for QP-25 and QP-17. Black arrows show
AMS-radiocarbon dates calibrated to calendar ages before 1950. Blue and green
arrows show the position of PCB/DDT and fossil pollen horizons respectively, as
reported by Ford (2003). The spike in "*’Cs activity at 14.5 cm in core QP-17 (red
arrow) corresponds to a peak in atmospheric nuclear weapons testing in A.D. 1963.

45



DI[4,3} grain size (um)

QP-17 QP-19 QpP-25
0 50 100 0 50 100 150 0 50 100

T — F T 1

100 —

Depth {cm)

150 —

200 —

250 —

Figure 1.8 Mean grain size data for cores QP-17, QP-19, and QP-25. Tie lines indicate
distinct features in the data used to correlate between cores.
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Figure 1.9 Age-depth relationship for core QP-19 based on correlations from dated
cores. Error bars for calibrated '*C dates represent + 1o age uncertainties (Table 1.2).
One '“C date at 56-57 cm (marked by *) was not included in the age model. The
position of the A.D. 1963 '*’Cs peak, A.D. 1940 PCB/DDT pollution increase, and the
rise in Ambrosia pollen (indicating A.D. 1700) are also noted. Shading denotes
position and approximate thickness of overwash deposits identified in QP-19. Ages in
parenthesis indicate dates of historic hurricanes.
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Figure 1.14 Cumulative frequency of overwash deposits at Quonochontaug Pond since
~2200 cal. yr BP. Error bars indicate maximum and minimum 1o uncertainties of
deposit ages. Periods of enhanced hurricane activity noted by grey shading.
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Figure 1.15 Similarity in the timing of overwash deposition from North Atlantic
records. Cumulative frequency of overwash deposits from Quonochontaug Pond, RI,
compared to Mattapoisett Marsh, MA (Boldt et al., 2010), Alder Island Marsh, NY
(Scileppi and Donnelly, 2007), Western Lake, FL (Liu and Fearn, 2000), and Laguna
Playa Grande, PR (Donnelly and Woodruff, 2007). Note the period of decreased
activity between ~400 and ~1000 cal. yr BP that is synchronous among records
thought to reflect intense hurricane landfalls.
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Analysis System (DSAS) version 4.0NAn ArcGIS extension for calculating
shoreline change (USGS Open-File Report No. 2008-1278): U.S. Geological
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Table 2.2 Digital vector shorelines and uncertainties used for DSAS calculations.

Survey Date  Shoreline type  Source Uncertainty (m)
04/01/54 t-sheet NOAA 10.8
04/22/54 t-sheet NOAA 10.8
09/02/63 air photo RI Geological Survey/URI 5.1
09/07/63 air photo RI Geological Survey/URI 5.1
10/15/63 air photo RI Geological Survey/URI 5.1
04/11/75 air photo RI Geological Survey/URI 32
04/14/75 air photo RI Geological Survey/URI 3.2
03/11/85 air photo RI Geological Survey/URI 32
03/22/85 air photo RI Geological Survey/URI 3.2
03/27/85 air photo RI Geological Survey/URI 32
03/29/85 air photo RI Geological Survey/URI 3.2
09/25/00 Lidar USGS 2.3
04/08/04 air photo RI Geological Survey/URI 3.2
04/10/06 air photo RI Geological Survey/URI 3.2
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Table 2.3 Annualized shoreline change rates (m yr'') for proxy' and datum-based>
shoreline time series at each beach profile transect. End-point rate (EPR), linear
regression rate (LRR), and weighted linear regression (WLR) of vector shorelines
were calculated using DSAS v. 4.2. Bold text indicates methods whose results most
closely compare with regression of MHW shoreline positions. Annual variability is
expressed as the average of the standard deviation of shoreline positions from the
annual mean. Note that the variability of MHW shorelines is an order of magnitude
larger than annualized rates of change.

LRR of MHW Annual variability of

EPR" LRR' WLR' shorelines’ MHW (m)
mis 036  -027  -0.10 -0.11 3.18
wkg 062 -0.53  -0.28 -0.04 3.09
est-1 046 <029 031 0.18 5.53
est-2 113 -091 -0.47 -0.36 4.50
cha-bw  -0.49  -0.48  -0.28 0.27 7.51
cha-tb  -0.88  -0.57  -0.23 0.14 4.17
grh 2114 098 -0.62 -0.93 4.20
mst -120  -1.07  -0.76 -0.64 3.08
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Table 2.4 Average uncertainties (in meters) for New England and Mid-Atlantic HWL
shorelines as estimated by Hapke et al. (2010). Total shoreline position uncertainty is
computed by summing of the individual terms in quadrature.

Shoreline position T-sheets T-sheets Air photos Lidar
uncertainties (1800-1950s) (1960-1980s)  (1970-2000s) (1997-2000)
Georeferencing 4 4 - -
Digitizing 1 1 I -
T-sheet survey 10 3 - -

Air photo - - 3 -
HWL uncertainty 4.5 4.5 4.5 -
Lidar uncertainty - - - 23
Total uncertainty 11.7 6.8 5.5 2.3
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Figure 2.2 Representative beach profiles and sample calculations. Consecutive profiles
are overlain to indicate (a) volume changes that occurred between February 26 and
March 11, 2008 at site est-1 (East Beach) and (b) retreat of MHW shoreline position
between November 1 and November 15, 1990 at Green Hill Beach (grh).
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Figure 2.6 Average monthly shoreline positions from (a) est-1 and (b) grh profile sites
showing shoreline maximum during summer months and minimum in winter months.
Error bars show + 1 standard deviation. Prior to averaging, the time series data were
detrended by subtracting the best-fit line from each measurement.
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(i)

(iii)

(iv)

v)

Incorporation of lidar datasets into local shoreline change analysis.
Establishment of a high-accuracy geodetic control network for independent
assessment of elevation data models and long term monitoring of coastal
subsidence.

Terrestrial-based lidar to quantify short-term topographic changes and relate
them to underlying sand transport mechanisms.

Inclusion of tidal variability in SLR assessment using VDatum transformation
grids.

Management tools that integrate multiple coastal datasets to predict coastal

vulnerability to sea level rise.
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Figure 3.4 Example of how linear error (L.E.) associated with different elevation data
sources is projected onto the land surface given a 1-meter inundation level (from
Gesch, 2009).
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Dean and Maurmeyer (1983), combined with published estimates of regional sea level
change (Donnelly et al., 2004; Engelhart et al., 2009) and assuming a depth of closure
at 12 m. Although the assumption of an equilibrium profile that keeps pace with sea

level rise is a simplification of the natural processes, we find it suitable for estimating

changes in x;, on millennial time scales.
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hurricane strikes for the Gulf of Mexico over the late Holocene. Geology, 38(6),
511-514.

Woodruff, J.D.; Donnelly, J.P.; Mohrig, D., and Geyer, W.R., 2008. Reconstructing

relative flooding intensities responsible for hurricane-induced deposits from
Laguna Playa Grande, Vieques, Puerto Rico. Geology, 36(5), 391-394.
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Figure Al. Assessment of advective-settling model using the 1938 New England
hurricane deposit. a) Dys grain-size of A.D. 1938 deposit in each core. b) Particle
settling velocities for grain sizes shown in (a) using the relationship developed by
Ferguson and Church (2004). Dashed line shows average <hy> of 2.54 m. Grey
shading indicates model distribution for range of wave heights noted on the south
shore during the 1938 hurricane (4.1-5.2 meters). Figure after Woodruff et al. (2008).
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