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ABSTRACT 

 

 Filter feeding bivalves, such as the eastern oyster, Crassostrea virginica and the 

blue mussel, Mytilus edulis are valued for their role in the marine nitrogen cycle; 

specifically, their ability to facilitate the process of denitrification (reduction of nitrate 

to an inert N2 gas), and thereby the removal of reactive nitrogen from the system. 

Historically, these organisms have been victim of overharvesting along much of the east 

coast, however Rhode Island has undergone a vast expansion of oyster production 

through the development of a prosperous aquaculture industry within the state, 

potentially contributing to the restoration of this valuable ecosystem service. However, 

the success of all of Rhode Island oyster populations (wild, resorted, cultured) are 

threatened by anthropogenic stressors, such as warming waters and increased nitrogen 

loads into coastal habitats, which many interrupt and/or alter the rates at which C. 

virginica and M. edulis are able to perform the process of nitrogen removal. Of 

particular concern is incomplete processes of denitrification that may lead to an 

accumulation of nitrous oxide (N2O), a potent greenhouse gas with global warming 

potential nearly 300 times more powerful than that of carbon dioxide.  

Warming waters are also known to favor common oyster pathogens such as 

Haplosporidium nelsoni, H. costale and Perkinsus marinus. The combination of high 

temperature and nitrogen loads is likely to cause physiological stress to these organisms, 

leading to increased susceptibility of the organisms to pathogens and, therefore, further 

impacting the environmental benefits provided by bivalves.  



   

 

 The goal of this study was to investigate how the combination of current and 

projected temperatures and nitrogen loads may impact the health status, rates of nitrogen 

removal (N2 production), and rates of N2O production of C. virginica and M. edulis. 

This was accomplished through separate studies conducted on C. virginica and M. 

edulis. Two types of experiments were performed with C. virginica: Experiment 1, 

which was a controlled, laboratory-based study, in which organisms were maintained in 

a gradient of ammonium nitrate levels (20µM, 40µM, 70µM, 100µM), crossed by 

contrasting temperatures (18°C, 24°C) (i.e. 8 combinations total). Organisms were 

maintained in these conditions for 3 months, and rates of denitrification and N2O 

production were measured at 3 time points over the incubation period in order to 

determine how these gas productions may change with time of exposure to experimental 

conditions. Upon completion, prevalence of three common oyster pathogens listed 

above was determined in a subsample of oysters from each treatment.  A similar 

mesocosms experiment was performed with blue mussels with slightly different 

experimental conditions (5µM, 10µM, 1.5µM, 25µM and 18°C, 21°C), selected based 

on biological and ecological differences between oysters and mussels. 

With the realization that C. virginica tolerates much more variation in 

environmental conditions within their habitat than just temperature and nitrogen, 

Experiment 2 was performed, and consisted of two (2016 & 2017), 3-month field 

manipulations in which oysters where maintained in contrasting ends of the estuarine 

gradient of Point Judith Pond, in Narragansett, RI were performed. At each location, 

organisms were deployed in experimental setups and left at either ambient or enriched 

(20µM) conditions. Oyster growth and mortality and water quality measurements were 



   

 

made at selected time points over the 3 month period and, upon completion, 

experimental organisms were brought back to the laboratory for a single incubation at 

ambient conditions (18°C, unenriched site water) in Year 1 (2016), and at contrasting 

temperatures and high nutrient levels (18°C, 24°C, and 100µM) in Year 2 (2017). The 

goal was to reveal how previous exposure of oysters in the field to different 

environmental factors (salinity, pH, chlorophyll-a, oxygen, temperature, and nutrient 

loading) may have impacted the rates of gas production (N2 and N2O) under high 

temperature and nitrogen loading. In 2017, a random subset of experimental organisms 

were sacrificed and analyzed for the prevalence of common oyster pathogens.  

The major hypotheses for this study included: (1) Temperature will initially 

increase rates of denitrification of both C. virginica and M. edulis. (2) Increased nitrogen 

loads will increase rates of denitrification and nitrous oxide production of both C. 

virginica and M. edulis; (3) The combination of warming and high nitrogen levels over 

long terms will compromise the health of the organism, causing physiological stress for 

both C. virginica and M. edulis, and higher nitrous oxide accumulation (possibly via 

incomplete denitrification). 

Several major conclusions emerged from this study. Based on both mesocosms and 

field experiments, temperature appeared to be an initial driver of denitrification for C. 

virginica, however long-term exposure may act as a stressor, possibly inhibiting the 

process, indicated by the greater level of mortality within warmer laboratory treatments, 

over time (F48,71=4.80, p=0.001), and general lack of enhanced rates in association with 

temperature for both experiments. Additionally, increased temperature may lead to 

increased N2O production, indicated by the field study (F=-2.76, p=0.014). The 



   

 

combination of nitrogen loading and warming appears to promote N2 consumption, as 

opposed to denitrification (N2 production), (F16,23=5.21, p=0.011; F=-2.92, p=0.010; lab 

and field study respectively) as well as increased N2O production of C. virginica over 

time (F16,23= 4.10, p=0.024; lab study).  

M. edulis generally supported net denitrification (nitrogen removal) in all tested 

scenarios of nitrogen availability and temperature (average rate across treatments: 28.01 

(+/- 23.93) mmol m-2 day-1), which indicates a greater role of N removal than previously 

reported, as most past studies have focused solely on sedimentary denitrification. 

Nitrous oxide production was greatest in the cooler treatments (F48,71=5.17, p=0.027) 

throughout the M. edulis examination. However, with only ¼ of the nitrogen 

availability, M. edulis produced N2O similar in range of C. virginica. Finally, in most 

conditions, both species produce N2 at several orders of magnitude greater than N2O, 

indicating that environmental benefits of filtering feeding bivalves, at this time, greatly 

outweigh the negative effects caused by the tested anthropogenic stressors.  
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INTRODUCTION 

 

1.1 Ecosystem services provided by bivalves  

The eastern oyster, Crassostrea virginica, and the blue mussel, Mytilus edulis, 

are both ecologically, commercially, and culturally relevant species within the waters 

of New England. These marine resources have been an integral part of the area’s coastal 

landscape since Native Americans first began harvesting these bivalves over 3000 years 

ago (Rick et al. 2014), denoting their long standing cultural value. Additionally, these 

reef-forming organisms provide a number of ecosystem services, including the 

provision of habitat and food for other significant marine species (Coen et al. 2007); the 

stabilization of sediments, which mitigates against erosion and storm surge events 

(Meyer et al. 1997); and the improvement of water quality through their filtration 

capabilities (Newell 2004).  

Historically, shellfish populations have endured significant overharvesting in 

New England waters, but the success of the aquaculture industry has resulted in an 

expansion of oyster production within the area in more recent times (Beutel 2018). 

Oyster aquaculture endeavors within Rhode Island specifically, have increased nearly 

300% in the last decade (Alves 2005; Beutel 2018). This translates into over 8 million 

oysters being sold for consumption, with net profits of nearly $5.5 million, and almost 

200 farming jobs in 2015 (Beutel 2018). Blue mussel cultivation is also a growing 

industry within the state, although to a lesser extent than oysters (Beutel 2018). 
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1.2 The increasing threat of pathogens to shellfish populations 

This substantial increase in cultured shellfish populations has become 

challenged by outbreaks of several diseases, including the protistan pathogens 

Haplosporidium nelsoni, H. costale (Taylor et al. 2016), and Perkinsus marinus 

(Smolowitz 2013); as well as the bacterial pathogen Roseovarius crassostreae 

(Boettcher et al. 2005; now named Aliiroseovarius crassostreae). Specifically, P. 

marinus, the causative agent of Dermo disease (Mackin & Owen 1950), and H. nelsoni, 

which causes MSX disease (Haskin et al. 1966) have resulted in high levels of oyster 

mortality along the entire United States east coast (Burge et al. 2014).  H. costale is the 

causative agent of SSO disease (Stokes and Burreson 2001) and was first identified 

along the U.S. east coast in the 1960s (Andrews et al. 1962), yet the known range of the 

parasite is not as wide as that of H. nelsoni (Wang et al. 2010).  

Dermo disease began causing large mortalities within the Gulf of Mexico in the 

1940s and quickly spread up the coast, into the Chesapeake and Delaware Bays. Disease 

continued to intensify and spread northward over the next 40 years, eventually finding 

its way as far north as New Hampshire and Maine (Burge et al. 2014). The causative 

agent of MSX disease (H. nelsoni) is an introduced parasite (Burreson et al. 2000), first 

identified in Delaware Bay in the late 1950s (Haskin et al. 1966). Similar to Dermo, 

MSX spread up the coast and intensified in the decades to follow (Burge et al. 2014).  

Temperature is a known driver of both diseases (Ford & Tripp 1996), and it is thought 

that increases in the average winter water temperatures during the 1990s contributed to 

the northward expansion and increased prevalence and intensity of these parasites (Cook 

et al. 1998; Hofmann et al. 2001, Ford & Smolowitz 2007).  
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The interactions between the host and pathogen with the environment strongly 

dictate disease dynamics and outbreaks (Harvell et al. 2004, Mydlarz et al. 2006). 

Environmental stressors such as ocean warming and hypoxia are thought to compromise 

invertebrate resistance to disease, yet understanding the direct and indirect effects of 

this stress upon immunity remains complex and elusive (Mydlarz et al. 2006). Because 

diseases threaten the success of the aquaculture industry and ecosystem function, there 

has been notable investments towards the development of selectively bred disease 

resistant lines of oysters, in addition to much research on the mechanisms of disease 

resistance (Gómez-Chiarri et al. 2015). The development of selective breeding 

programs began in the 1990s on the Atlantic coast, with the goal of breeding oysters 

resistant to both Dermo and MSX disease (Calvo et al. 2003). Results thus far have been 

encouraging, but environmental uncertainties remain the major challenge for disease 

pressure and host susceptibility (Degremont et al. 2015).  

Parasites such as trematodes, parasitic copepods, and shell-boring polychaetes 

are the major threats to blue mussel health (Buck et al. 2005). However, despite the 

growing commercial market of the blue mussel, the effects of its parasites and pathogens 

are less well studied within Rhode Island. This provides the opportunity in research to 

not only more thoroughly understand the challenges that oysters are currently 

experiencing, but also decrease the gap in knowledge of the host-pathogen relationship 

of the blue mussel within Rhode Island waters.  

 

1.3 Human impacts on the marine environment 
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 Global surface ocean temperatures are predicted to rise 1.3 – 2.6°C by 2100 due 

to rising greenhouse gas concentrations in the atmosphere (Mora et al. 2013). While the 

recent range expansion of several shellfish diseases within New England may be in 

response to pathogens favoring warmer waters (Harvell et al. 1999; Harvell et al. 2002; 

Burge et al. 2014) there are many other environmental parameters that also affect 

bivalve disease susceptibility, such as decreased dissolved oxygen (Keppel et al. 2015), 

decreased pH (Keppel et al. 2015), and inputs of anthropogenic pollutants, such as heavy 

metals (Parry & Pipe 2004). Additionally, increased temperature may affect the host 

itself, as warming waters are known to compromise the growth of young bivalves, 

promote mortality, and increase respiration rates (Dove & Sammut 2007; Dickinson et 

al. 2012; Matto et al. 2013; Mackenzie et al. 2014).  

Furthermore, much of New England’s coastal waters are threatened by 

anthropogenic nitrogen inputs via wastewater and septic system discharge and runoff 

(Craig 1994, Malham et al. 2009; Carmichael et al. 2012). Excess nitrogen is known to 

cause stress in benthic organisms, such as oysters and mussels, directly, through 

ammonia toxicity (Hand & Poxton 1993; Gray et al. 2002) and indirectly, through the 

promotion of hypoxia (Galloway et al. 2008; Diaz & Rosenberg 2008). Moreover, the 

current warming of coastal waters can potentially exacerbate the effects of nitrogen 

loading through increased water column stratification and therefore restriction of 

physical flushing, which inhibits the mixing of nutrients and replenishment of oxygen 

to benthic organisms (Diaz & Rosenberg 2008).  

 

1.4 Nitrogen cycling and nitrous oxide production by shellfish 
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Bivalves, including C. virginica and M. edulis, are extremely efficient filter 

feeders (Newell 2004), which make them active participants in the marine nitrogen 

cycle, and particularly have a significant role in nitrogen removal via denitrification and 

nutrient retention (Kellogg et al. 2014). Denitrification is the anaerobic reduction of 

nitrate (NO3
-) to an inert, dinitrogen gas (N2), which exists as the major component of 

the atmosphere (Knowles 1982) (Figure 1).  

 Bivalve-mediated nitrogen removal in the form of denitrification is performed 

by microbes within the gut and/or exterior of the shellfish (Newell et al. 2002). The 

anaerobic environment of the oyster gut allows for microbial-mediated reduction of 

reactive nitrogen (NO-
3) pollution, to N2 gas, and thereby removal from the marine 

ecosystem (Figure 1). Although there is a growing body of work highlighting that 

oysters are a quintessential source of denitrification in marine and estuarine 

environments (Smyth et al. 2013; Kellogg et al. 2013; Humphries et al. 2015; Caffrey 

et al. 2016), the rates and controls of this process are not well constrained at this time 

(Kellogg et al. 2014). Dynamic environmental conditions, such as dissolved oxygen, 

chlorophyll–a, and temperature, are likely to play a part in determining these rates 

(Carmichael et al. 2012, Symth et al. 2013, Humphries et al. 2016). The amount and 

form of nitrogen (N) available to induce denitrification is also a factor, and it is possible 

that the combination of environmental factors and excess nitrogen within the marine 

environment, these rates can further be altered.  

Nitrous oxide (N2O), a potent greenhouse gas with a global warming potential 

265 times more powerful than that of carbon dioxide (IPCC 2014), is a byproduct in the 

first step of nitrification (Goreau et al. 1980, Bange et al. 2010) (Figure 1). Further, 
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incomplete denitrification processes may result in an excess accumulation of N2O 

(Zumft 1997). Denitrification may terminate prematurely for a number of reasons, 

including non-ideal environmental factors for the process, such as oxygen 

concentrations greater than 3µmol L-1, and lack of organic carbon availability (Babbin 

et al. 2015), or the absence of the required enzymes in members of the microbial 

communities, such as nitrous oxide reductase (nosZ), which reduces N2O to N2 (Jenkins 

et al. 2008). The few studies that have attempted to quantify N2O emissions of marine 

invertebrates found that filter-feeding organisms are potentially large emitters 

(Heisterkamp et al. 2010 & 2013). This is due to the ability to harbor a large amount of 

N2O producing bacteria in their guts (Karsten & Drake 1997, Stief et al. 2009 & 2010, 

Heisterkamp et al. 2010 & 2013) combined with the ideal in situ conditions of the 

organisms’ gut, including anoxia, high concentrations of labile carbon, and presence of 

NO3
- and nitrite (NO2

-) (Drake et al. 2006). Therefore, shellfish populations may be a 

significantly overlooked source of N2O in certain environmental conditions. 

Furthermore, the role of shellfish in N2O production becomes increasingly more 

complex due to environmental stressors and the threat and presence of the before 

mentioned pathogens.  

  Shellfish pathogens are hypothesized to influence nitrogen cycling by 

compromising the health of their hosts. Oysters’ innate immune system responds to both 

pathogen presence and environmental stressors (Guo et al. 2015). Thermal stress is 

known to down regulate functional genes of C. virginica, such as those associated with 

growth (Guo et al. 2015), presumably to allow the organism to allocate more energy to 

respond to that stressor. Furthermore, exposure to a combination of stressors, for 
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example, temperature and pollution (Lanning et al. 2006), and temperature and pH 

(Keppel et al. 2015), have shown to cause high levels of mortalities and/or chronic 

effects of energy metabolism, when compared to a single stressor.  Therefore, we 

hypothesize, that if C. virginica is exposed to a combination of anthropogenic stressors 

(high T + high N), their efficiency to respond to pathogens is likely to be compromised, 

as well as other functional responses such as the ability to facilitate N removal through 

filtration. Therefore, attempting to more clearly establish the connection between an 

organisms’ health status and biogeochemical function, as well as, discerning the rates 

at which this gas may be produced under current and future environments is essential in 

order continue to benefit from the ecosystem system services which bivalves provide. 
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PROJECT OBJECTIVES 

 

 The goal of this study was therefore, to test how warming waters and increased 

nitrogen loads affect the eastern oyster, Crassostrea virginica and the blue mussel, 

Mytilus edulis, with regard to health status, rates of nitrogen removal, and nitrous oxide 

production and/or consumption. The study utilized both laboratory experiments and a 

field study to advance understanding of how multiple aspects of environmental change 

interact while impacting shellfish health and biogeochemical functions. The major 

hypotheses for this study included: (1) Increased temperature (T) will initially increase 

rates of denitrification (N2 production) of both C. virginica and M. edulis. This is 

expected due to higher temperatures promoting higher filtration rates.  (2) Increased 

nitrogen (N) loads will increase rates of denitrification and N2O production of both C. 

virginica and M. edulis. (3) The combination of high T and high N over long terms will 

compromise the health of the organism, causing physiological stress for both C. 

virginica and M. edulis, and higher N2O production (possibly via incomplete 

denitrification). 
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CHAPTER 1 

Nitrogen loading and warming: Understanding how a combination of stressors may 

impact Crassostrea virginica’s nitrogen cycling capabilities and health status  

 

MATERIALS AND METHODS 

 

Experiment 1: (Laboratory study) 

2.1: Overview 

Controlled laboratory experiments examined the effects of nitrogen and 

temperature on C. virginica’s health status and rates of denitrification and N2O 

production using a gradient of nitrogen levels and two contrasting temperatures for a 

period of 3 months. The nitrogen (NH4
+NO3

-) gradient used for C. virginica incubations 

was 20µM, 40µM, 70µM, and 100µM (enrichment above ambient seawater), and the 

contrasting temperatures were 18°C and 24°C. These target nitrogen concentrations are 

based on the observed range of total nitrogen in Narragansett Bay (Oviatt et al. 2002), 

and temperature levels represent current and projected summer bottom temperatures 

within Narragansett Bay (Mora et al. 2013). Ammonium nitrate (NH4
+NO3

-) was 

chosen, due to both nitrogen species being common anthropogenic inputs to coastal 

environments via wastewater and septic systems (Galloway et al. 2003; Galloway et al. 

2008).  This experiment therefore included 8 different combinations of N and T, each 

analyzed in triplicate, for a total of 24 experimental tanks (Figure 2). Each tank initially 
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housed 10 organisms. Juvenile oysters (1.5 inch, ~3.8cm) were purchased from Bluff 

Hill Cove Oyster Farm, located in Narragansett Rhode Island in June 2017 for this 

laboratory experiment. Organisms were maintained within these tanks, under 

experimental conditions for approximately three months (June – September 2017). The 

following parameters were measured during the experiment:  growth (length, width), 

wet weight, temperature, dissolved oxygen, pH, salinity, NH4
+ concentration, and on 

select days denitrification (N2) and N2O production rates. 

 

2.2: Controlled laboratory experimental setup  

Experimental organisms were typically maintained in 7L, glass aquaria, in a 

controlled environmental chamber (Holman Engineering) set to 18°C at the Marine 

Sciences Research Facility (MSRF) at the Graduate School of Oceanography, 

Narragansett, Rhode Island. All experimental aquaria sat within water baths, in order to 

ensure a more consistent water temperature among each experimental unit (Figure 2). 

Filtered seawater pumped directly from Narragansett Bay was stored in large 100L 

reservoir containers, enriched with ammonium nitrate (NH+
4NO-

3) to target levels, and 

pumped to each experimental aquarium utilizing a MasterFlex© multi-channel 

peristaltic pump, with the target flow rate of 7mL min-1.  

Temperature in the aquaria for the 24°C treatments was controlled by two 

submersible heaters (EHEIM Jager Aquarium Thermostat Heater, 75 watts) within the 

water bath. Submersible pumps (Hydro Empire ©) were utilized to ensure even 

distribution of the heated water around each experimental bivalve aquarium. To avoid 

isolative segregation, there were three water baths per temperature treatment, and 
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aquaria of the various nitrogen levels were randomly placed within these water baths 

(Hurlbert 2009; Cornwall et al. 2016). There were two representative nutrient reservoirs 

per nitrogen treatment, which allowed for the random interspersion of nitrogen inputs 

among the aquaria (Figure 2). Based on the target flow rate of 7mL min-1, the target 

turnover time for each experimental aquarium was approximately 24 hours, and the 

large nutrient reservoirs were refilled roughly twice per week.  

 

2.3: Bivalve growth, mortality and health  

 Shellfish were randomly assigned within each experimental aquarium. Growth 

(length and width) and biomass (weight) measurements were made monthly, as well as 

immediately prior to each incubation event. Organisms were fed 70 µl of Reed 

Mariculture Shellfish Diet © daily (Monday – Friday) and the tanks checked for 

mortalities. Deceased individuals were removed from the experimental aquaria as 

necessary and when possible, these tissues were preserved for disease analysis (detailed 

in Section 2.9). Upon completion of Experiment 1, a subset of remaining organisms 

from each treatment (n=5) were analyzed for pathogen prevalence, as detailed below in 

Section 2.8.  

Water quality parameters such as dissolved oxygen, (DO), pH, salinity, 

temperature, and nitrogen (ammonium) were measured weekly as specified in Section 

2.4. Water changes of the tanks were performed as necessary to maintain target 

experimental parameters, which on average resulted in every two to three weeks.  

 

2.4: Incubation procedure for measurement of gas production rates 
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  Approximately 12 hours prior to an incubation event (Day 5, 53, 89) all 

experimental organisms were transferred from the 7L glass aquaria to 2L plastic tanks 

(Freund Containers) and allowed to acclimate overnight, with continued flow from the 

peristaltic pump (Figure 3). Three (2L, plastic – Freund Containers) filtered seawater 

tanks (no organisms, no enrichment) were also added to the 18°C water baths and served 

as controls.  

Water quality parameters were measured from each tank and nutrient reservoir 

on the morning prior to, and following, each 6-8 hour incubation period. Water quality 

parameters included dissolved oxygen (DO), pH, temperature, salinity and dissolved 

inorganic nitrogen (ammonium: NH4
+). DO and pH were measured with an Orion © 

RDO / pH handheld monitoring probe, calibrated prior to use. Salinity was measured 

with a handheld refractometer (Fisher Scientific) and temperature with a simple 

handheld thermometer. Dissolved inorganic nitrogen samples were taken by collecting 

60mL of seawater from each tank via a syringe, and filtering the sample through a 

0.22µm EMD Milipore MillexTM filter, intro a pre-labeled sampling vial and 

immediately frozen in -20°C freezer until analysis.   

 Once all the initial water quality measurements were recorded, the pump was 

stopped and a gas-tight, foam lined, screw top lid was secured to each 2L incubation 

tank, thereby eliminating gas exchange with the outside atmosphere. Lids were 

equipped with a 12 cm inflow line, which attached to a peristaltic pump (MasterFlex © 

L/S variable speed drive) via approximately 2 meters of Tygon MasterFlex © tubing, 

(1/8 inch inner diameter, Cole Parmer); and an outflow line secured with a three-way, 

stopcock male valve, which was able to connect to the 60mL syringes used for gas and 
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nutrient sampling (Figure 3). The inflow and sampling lines in the gas tight caps were 

maintained in the upper and lower portion of the tank, respectively, to promote mixing 

during the sampling time points (Figure 3). 

Immediately after the lids were secured, a small amount of water (<5mL) was 

manually pulled via a 60mL syringe and discarded to rid the outflow line of air and/or 

water from any previous sample. Next, 60mL of water was pulled from each of the 27 

tanks (3 controls, 24 experimental). Once a sample was collected from each incubation 

tank and the three-way valves were back in the “off” position, the peristaltic pump, set 

to 10 mL min-1, was allowed to run for 6 minutes, thereby replacing the sampled water, 

with fresh seawater from the appropriate nutrient reservoir. After 6 minutes, the pump 

was once again halted until the next sampling time point, approximately 1.5 hours later; 

this procedure continued for a total of 4 time points.  

Each of the 60mL samples were aliquoted into two 12mL Labco© Exetainers, 

by removing the exetainer cap, and taking precaution to slowly and steadily transfer the 

sample from the syringe to the exetainer to discourage mixing and avoid bubble 

formation. Water within each exetainer was then immediately fixed with 50% 

(weight/volume) zinc chloride (Sigma Aldrich) to terminate any biological activity that 

could potentially alter gas concentrations within the sample. These samples were then 

stored upside-down, underwater, at 17°C until they were analyzed on a Membrane Inlet 

Mass Spectrometer (MIMS) for N2 concentration (detailed in Section 2.5). The 

remaining water within each sampling syringe was discarded until the 20mL mark, at 

which point, the syringe was secured with a three-way valve in the “off” position. These 

syringes were then stored overnight in a cooler on ice [average temperature 8.2 (+/- 
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0.05) °C] until they were analyzed for nitrous oxide (N2O) concentration using gas 

chromatography (Section 2.6).  

 

2.5: Sampling processing – Denitrification rates 

 Water samples were analyzed for dinitrogen (N2) gas concentrations using a 

Membrane Inlet Mass Spectrometer (MIMS) located at the University of Connecticut 

(Groton, CT) and the N2/Ar method (Kana et al. 1994). N2 production rates were 

determined using linear regressions of concentration versus time of the incubation based 

on 4 (duplicate) data points. If the regression line had a R2 ≥ 0.65 then a production rate 

was considered significant (Prairie 1996). The changes in N2 over the course of the 

incubation were then normalized to the gram wet weight of oyster biomass that existed 

in each tank during the experiment. Positive rates are indicative of net denitrification 

within the tank during the incubation period (Kana et al. 1994), while negative rates 

indicate N2 consumption exceeds production (i.e. N2 fixation) (Purvaja et al. 2008). 

 

2.6: Sampling processing – Nitrous Oxide Production 

 Within 12 hours of an incubation event, the 20mL water samples in the syringes 

(previously stored on ice) were equilibrated with 15mL of ultra-high purity helium 

(AirGas) following methods detailed in Moseman-Valtierra et al. (2015). After the 

helium addition into the syringe, the sample was vigorously shaken for 60 seconds, to 

equilibrate the dissolved gases within the water sample equilibrating into the headspace. 

The 20mL of water was then discharged, and the temperature and salinity of each 

sample was measured and recorded. The 15mL headspace left in the syringe was then 
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stored in a refrigerator until analysis on a Gas Chromatograph (Shimadzu GC-2014), 

for a maximum of 4 days after an incubation event.  

 Nitrous oxide concentration values of each sample were corrected for the 

dilution of the gas phase and the equilibrate distribution of N2O between gas and water 

phases according to the following equation presented by Walter et al (2010):  

) / ] 

 Where  is the dissolved concentration of nitrous oxide (nmol L-1); is the 

solubility coefficient for N2O (mol L-1 atm-1);  is the dry gas mole fraction of N2O in 

the sample headspace (ppb);  is the atmospheric pressure (1atm);  is the volume of 

water phase (Ml);  is the volume of the headspace (Ml);  is the gas constant (L atm 

K-1 mol-1); and  is the temperature upon equilibration (K). (Weiss and Price 1980; 

Walter et al. 2010; Garate 2016).  

 Nitrous oxide production rates were then determined using linear regressions of 

concentration versus time of the incubation based on 4 data points. Similar to N2, if the 

regression line had an R2 ≥ 0.65 then a production rate was considered significant 

(Prairie 1996). The changes in N2O over the course of the incubation were then 

normalized to the gram wet weight of oyster biomass that existed in each tank during 

the incubation period. 

 

2.7: Sampling processing – Dissolved inorganic nitrogen  

 Pre- and post- incubation water samples were kept frozen until the morning of 

analysis. Standard colorimetric techniques were utilized to determine ammonium 

concentrations (Solorzano 1969). An Orion Aquamate 7000 VIS Spectrophotometer© 
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was used for dissolved ammonium concentrations; and nitrite and nitrate samples were 

analyzed by the Marine Science Research Facility (Narragansett RI) with a QuickChem 

QC8500 automated ion analyzer (Lachat ©).  

 

2.8: Pathogen prevalence and intensity  

Upon completion of the laboratory study, all remaining experimental organisms 

were shucked, and small samples of gill, mantle, and rectum were collected, stored in 

95% ethanol, and stored in a -80°C freezer until DNA extraction and analyses. Pathogen 

(P. marinus, H. nelsoni, H. costale) prevalence and intensity were determined for a 

subset of 30 randomly selected individuals per treatment. This was completed using a 

modification of a quantitative polymerase chain reaction protocol (qPCR) (Proestou et 

al. 2016), carried out by the Aquatic Diagnostic Laboratory at Roger Williams 

University, Bristol, RI.  

 

2.9: Statistical Analysis 

The goal of this laboratory experiment was to test whether environmental drivers 

(nitrogen, temperature) can considerably and predictability affect oyster growth, 

mortality, pathogen prevalence, and rates of denitrification and nitrous oxide 

production. Critical thresholds of nitrogen and/or temperature were defined as those 

which significantly decreased C. virginica performance as defined by a decrease in N2 

and an increase in N2O production, or increased mortality. Preliminary analyses were 

done via Three-Way ANOVAs, testing the effect of temperature, N-level, and/or time; 

therefore, Two-Way ANOVAs were used to analyze N level and time at each 
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temperature separately; and One-Way ANOVAs investigated both temperature and N-

level (independently), at each time point. When statistically different significant 

differences arose, a Tukey’s HSD test followed. A Principal Component Analysis 

(PCA) was used to test potential correlations between water quality parameters and 

mortality as well as the rates of denitrification and nitrous oxide production.  

 Denitrification rates from incubation 3 (day 89) were excluded from statistical 

analysis due to the belief that the experimental setup was compromised. During this 

portion of the study, one section of one roller of the MasterFlex © peristaltic pump 

became loose and therefore 1) wore down tubing at an accelerated and unpredictable 

pace, and 2) allowed a large amount of air to be pumped into certain aquaria. Statistical 

analysis, as described above, was still performed for N2O samples, due to the belief that 

air bubble accumulation did not skewed this data as severely as the N2/Ar method (Kana 

et al. 1994; Eyre et al. 2002; Humphries et al. 2016).   

 

Experiment 2 (Field Manipulation) 

2.10 Overview: Response to N addition across a dynamic estuarine gradient 

 Since multiple environmental variables affect oyster health and function, a field 

component was also carried out in order to examine how oysters respond to increased 

nitrogen inputs under dynamic estuarine conditions. Point Judith Pond (Narragansett, 

RI) was chosen as a field site due to active oyster aquaculture practices (Beutel 2018) 

and because it experiences a wide range of tidal influence. Tidal mixing is strongest at 

the southern end of the pond (closer proximity to open ocean) and weakens northward 

(Figure 4). This field site was used to test how C. virginica responds to experimental 
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nitrogen loading with regard to pathogen resistance and denitrification efficiency under 

complex field conditions. This field investigation was carried out in both Summer 2016 

and 2017 for approximately four months each, targeting peak periods for oyster growth. 

 

2.11: Field location 

 Point Judith Pond (41°N 24’N; 71°W 31’W) is an 8 km estuary which connects 

on its seaward end to Block Island Sound (Figure 4). This system experiences semi- 

diurnal tides, with flood tides approximately 2-3 m in height. This tidal range allows for 

the introduction of cold, oligotrophic water, which decreases the temperature of the 

water by 2-6°C and chlorophyll concentrations as much as 80% (Rheault and Rice 

1996). There are significant variations in salinity, oxygen, temperature, and chlorophyll 

over spatial and temporal tidal cycles (CRMC 1999). Billington Cove Marina served as 

the northern field site (hereafter referred to as “northern site”) and Bluff Hill Cove 

Oyster Farm served as the southern site (“southern site”). 

 

2.12: Field deployment and nitrogen additions   

 Oysters were deployed in experimental containers (buckets) at contrasting ends 

of the estuarine gradient of Point Judith Pond and were either enriched with organic 

nitrogen or left at ambient conditions. Experimental oyster containers were made from 

5-gallon buckets, sturdy plastic netting with 13mm openings to allow for flow, and 

weights attached to the bottom to secure the experimental unit in place (Figure 5). 

Nitrogen amendments in the enriched treatment were in the form of Milorganite slow 

release pellet fertilizer (Worm et al. 2000), with the overall enrichment goal of 20µM, 
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based on the assumption the Milorganite fertilizer was composed of 10% inorganic 

nitrogen (~2% phosphorus). Six buckets were deployed at each location (3 per 

treatment, ambient or control and nitrogen enriched), and each housed 30 randomly 

assigned juvenile oysters, purchased from Bluff Hill Cove Oyster Farm, (approximately 

3.5cm length) to start both years’ experiments. Experimental buckets and oysters were 

deployed on June 24, 2016 and June 8, 2017 for each of the respective field 

manipulations. Buckets were grouped by treatment (ambient vs. enriched) to limit the 

introduction of N addition into the ambient setups. Replicates of the same treatment 

were grouped approximately 1 meter apart, and the treatment groups were spaced 

approximately 10 meters from one another at both locations.  

 

2.13: Oyster growth, survival, and health 

 Observations of mortality of each experimental bucket were made 1-3 times per 

week for the entire duration of both field deployments. Deceased organisms were 

removed as necessary, and the remaining tissues preserved for pathogen presence when 

possible. Monthly measurements of growth (cm) using calipers, and wet weight (g), 

using a portable 600g balance (Fisher Scientific), were made on each oyster. Growth 

(length, weight) measurements were made biweekly in 2016, and monthly in 2017. 

 

2.14: Water quality parameters  

 Water (≤60mL) was collected from discrete samples, by using tubing fitted to a 

syringe (~3 meters in length), which allowed collection from each experimental bucket. 

In both years’ experiments, samples were analyzed for dissolved inorganic nitrogen 
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concentrations and compared between locations, treatments, and tidal heights. In 2016, 

a YSI © 6 Series Multiparameter Water Quality Sonde (Model 6920VS) was used to 

monitor water quality parameters. Due to limited instrument availability, the sonde was 

deployed for alternating 2 week periods at each of the two field locations, from August 

to October. The instrument was position approximately 5m from the ambient bucket 

setups. Measurements of dissolved oxygen (DO), salinity, chlorophyll, temperature and 

pH were recorded every 15 minutes, and calibration occurred as recommended by the 

manufacturer (every 4-6 weeks). For a more detailed temporal analysis, a 12-hour 

sampling day of each experimental unit at each location allowed for the comparison of 

environmental factors between location, enrichment treatment, and tidal height. This 

was achieved by calibrating the instrument to record a measurement every minute, and 

at each sampling point the sonde was positioned within the experiment unit for 5 

minutes. The data from the middle recording (minute 3) was used for analysis for all 

timepoints. Timepoints were chosen based on approximate high and low tide levels (US 

Harbors). Additionally, a discrete water sample was collected from each bucket during 

each 5 minute sonde recording. This 12-hour profile occurred on September 23, 2016.  

The field portion of the experiment was concluded on and incubations for measurement 

of gas rates were performed on October 15, 2016. 

 In 2017, an additional water quality sonde (YSI © EXO2) was obtained and 

deployed exclusively at the northern field site while the 6 series sonde (Model 6920VS) 

was stationed at the southern site. Both probes were deployed from June to August and 

set to take measurements of DO, salinity, chlorophyll, temperature and pH every 15 

minutes. Due to calibration issues with the YSI sonde located at the southern field site, 
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that instrument was reading pH values too high; therefore, differences in value are able 

to be compared between treatments at the site, however true pH measurements are 

invalid. Instruments were calibrated approximately every 5 weeks. Additionally, water 

samples collected for DIN (NO2
-, NO3

-, NH4
+) analysis were collected from each 

experimental bucket, each month, at high and low tide. The field portion of the 

experiment was concluded and incubations for measurements of gas rates were 

performed on September 5, 2017.  

 

2.15: Denitrification potential and nitrous oxide production of oysters from 

contrasting estuarine sites  

 Upon completion of both years’ field seasons, three randomly selected oysters 

from each experimental bucket (both locations) were collected for a laboratory 

incubation to measure potential denitrification and N2O production rates as described in 

Section 2.4. These procedures were conducted at the Marine Life Science Facility in the 

Graduate School of Oceanography. In both years, oysters were incubated in tanks which 

reflected their original field locations (northern site vs. southern site), as well as their 

field treatment (ambient vs. enriched). While these factors remained the same, 

modifications in environmental controls were applied to the 2016 and 2017 incubation 

setups as described below.  

 The goal of the 2016 field oyster incubation experiment was to discern how 

short-term field conditions (location and organic fertilization treatment) impacted an 

oyster’s physiological ability to denitrify in unaltered, Point Judith Pond waters (i.e. 

collection of site water from both locations). The site water from both locations (~100L) 
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was collected via multiple 25L carboys, from the surface and in proximity to the ambient 

treatment field buckets. Alongside the collected site water, oysters from each bucket 

(both locations and treatments; n = 3) were randomly selected to participate in the 

incubation event to follow. Once in the laboratory, oysters were placed into 2L 

incubation tanks (three per treatment), as described in Section 2.4 and unenriched site 

water was allowed to flow into each experimental tank, as well as the control tanks, 

which contained no organisms (Figure 6). Organisms were allowed to acclimate 

overnight, and approximately 12 hours later, the incubation began. Oysters were kept at 

a control temperature of 18°C for the entirety of the incubation. The procedure for 

incubation and measurement of denitrification and nitrous oxide rates of production was 

as described in Sections 2.4 – 2.7.  

 The 2017 field oyster incubation took into consideration more complex 

environmental stressors.  The goal of this year’s field oyster incubation was to 

understand how short-term field conditions (location and organic fertilization treatment) 

impacted an oyster’s physiological ability to potentially remove nitrogen when exposed 

to a “pulse” of intense nitrogen, as well as observing how current and projected oceanic 

temperatures (18°C and 24°C, respectively) may influence these potential rates of 

denitrification and/or nitrous oxide production.  

Randomly selected oysters (n = 6) from each field bucket were divided in two 

groups of 3 and placed in incubation tanks labeled according to field location (northern 

and southern) and treatment (ambient and enriched) and incubation temperature (18°C 

and 24°C). Tanks were filled with 100µM NH4
+NO3

- (enrichment above seawater), 

filtered seawater (Figure 7). Therefore, each laboratory temperature treatment 
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contained 12 experimental tanks (treatments: northern field enriched, northern field 

ambient, southern field enriched, southern field ambient; 3 replicates per treatment). 

Additionally, 3 control tanks (no organisms) were incubated at 18°C. All 27 incubation 

tanks (24 experimental, 3 control) received a continued flow of 100µM NH4
+NO3

- pulse 

of nitrogen for an acclimation period of approximately 48 hours. The procedure for 

incubation and measurement of denitrification and nitrous oxide rates of production was 

as outlined in Sections 2.4 – 2.7.  

 

2.16: Pathogen prevalence and intensity under dynamic environmental conditions 

 Remaining field oysters from 2017 were processed for prevalence and intensity 

of common pathogens (P. marinus, H. nelsoni, H. costale) as described in Section 2.8.  

 

2.17: Statistical analysis of data from field experiments  

 Three-way ANOVAs were utilized to test the effect of location, N level (field 

enrichment), and time of exposure to field conditions on oyster performance parameters 

and environmental parameters. In 2016, two-way ANOVAs initially examined the 

effect of location and N level on nitrogen cycling rates, with one-way ANOVAs 

following in order to further analyze the interaction terms. Due to an altered 

experimental set up in 2017, nitrogen cycling rates were analyzed with three-way 

ANOVAs, due to the two-temperature treatment setup for the incubation. Therefore, 

field location, field enrichment, and incubation temperature were analyzed within these 

results, with two-way ANOVAs following for further analysis of location and N level 

for each incubation temperature.  
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Principal Component Analyses (PCA) were used to investigate the relationship 

of organisms’ long or short environmental conditions with rates of denitrification and 

nitrous oxide production for both years’ data. 
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RESULTS 

 

Experiment 1: Impact of N & T on oyster DNF potential, N2O production, and health 

3.1: Growth, mortality and pathogen prevalence 

 The N addition treatments (100 and 40 µM) experienced significantly higher 

mortality compared to the control (20µM, F96,143= 4.85, p=0.003) (Figure 8). Moreover, 

the 24°C / 100µM (most extreme conditions) treatment had the highest percentage of 

mortality, and the 18°C / 20µM (least extreme conditions), the lowest (F96,143= 3.00, 

p=0.034). Growth (length) and biomass was not significantly different between any of 

the 8 treatments. Overall, mortality was low, with only 8% of the total organisms 

perishing throughout the entirety of the experiment. 

When mortality was analyzed at each temperature independently, N-level (2-

way ANOVA, F48,71= 9.14, p=<0.0001) and time of exposure (F48,71= 6.33, p=0.0001) 

significantly impacted mortality within the 24°C experimental tanks, with the 100µM 

treatments having significantly higher mortality compared to the 20µM for the majority 

of the experiment (Table 1, Figure 8, Appendix 1 & 2). Most mortalities in the 24°C 

treatments were observed during the final days (between days 59 and 90 and between 

days 90 and 99) of the 3-month experiment (Figure 8). These time intervals showed the 

highest levels of mortality compared to the first time period (F96,143= 3.45, p=0.006) 

(Appendix 1 & 2).  Within the cooler (18°C) treatments, the 40µM tanks experienced 

the highest level of mortality and the 20µM the lowest (Figure 8, Appendix 1 & 2).  

The water quality parameters within the tanks of the highest mortality (24°C, 

100µM) showed a noticeable rise in temperature, and decrease in both DO and pH when 
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the rise in mortality occurred (~Day 55-60). When considering the lowest mortality 

treatment in the warmer tanks (24°C, 20µM) this trend did was not as pronounced 

(Figure 9). When making the same comparison within the cooler treatments, the highest 

mortality tanks (40µM) had consistently lower pH and DO levels for the large portion 

of the experiment, when compared against the 20µM (lowest mortality) tanks (Figure 

9). The PCA results revealed that DO and pH values are often tightly correlated with 

one another (Figure 12), and by Day 53 (Incubation 2), the change of DO and pH 

(during the incubation) is also tightly correlated with the percentage of deceased 

organisms at that time period (Figure 12). This also aligns within a reasonable 

timeframe with the drop in the average DO and pH within the 24°C tanks (~Day 55), as 

well as the spike in mortality in the 24°C tanks (~Day 51) (Figure 9).  

Results from qPCR analysis displayed no detectable levels of P. marinus, H. 

nelsoni, or H. costale in the subsample of oysters collected upon completion of 

Experiment 1 (data not presented).  

 

3.2: Water quality parameters in laboratory experiment (Experiment 1) 

Average water quality conditions in experimental aquaria (overall) 

 Average water temperatures across the eight treatments were consistently in 

range of the target (18°C or 24°C) with no more than 1.1°C variation over the course of 

the three-month lab experiment (Table 2). DO, pH, and salinity values were all in range 

typical of estuarine parameters throughout the entirety of the experiment (Table 2).  All 

parameters with the exception of salinity, significantly changed with time (Appendix 

3, Table 3); specifically, tanks became warmer, less oxygenated, more acidic, and more 
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enriched (higher NH4
+ concentrations) over the course of Experiment 1, presumably due 

to exposure to the controlled conditions (Appendix 4). Additionally, pH was 

significantly higher in aquaria with the warmest treatment (F48,71= 48.89, p<0.0001) 

while the highest N treatment (100µM) had significantly lower pH (F48,71= 9.81, 

p<0.0001). Finally, there was a significant interaction between target temperature and 

N-level such that the cooler tanks with highest N levels (18°C, 70 & 100µM) were the 

most acidic (F48,71= 13.56, p= <0.0001). DO also displayed a significant interaction 

between temperature and nitrogen treatments (Appendix 3 & 4), specifically 18°C, 

70µM treatment experienced the lowest oxygen levels overall, and the 18°C 40 & 20µM 

and 24°C, 70µM treatments exhibiting significantly highest DO levels than all other 

treatments (F48,71= 5.71, p= 0.001) (Appendix 3).  

 

Change in water quality over the course of N2 and N2O incubations  

 Due to the metabolic activity of the oysters and microbes within gas-tight tanks, 

dissolved oxygen declined over the course of the incubations for measurement of gas 

rates.  During the first measurement, when oysters had been exposed to the incubation 

conditions for nearly 4 hours (day 5) starting values of DO, averaged for all treatments, 

started at 5.25 (0.28) mg/L, and ended at 3.40 (0.24) mg/L. Two of the treatments (24°C, 

40 & 100µM) experienced temporary hypoxic (≤3.00 mg/L) conditions (Table 4); this 

did not occur for oysters that had been exposed to experimental conditions for a longer 

period of time (53 or 89 days).  Warmer temperature treatments (24°C) experienced the 

largest drop in DO during the first measurement (Day 5) (F16,23= 9.10, p=0.008) (Table 

5, Appendix 5). By Day 89, oxygen values remained more similar (average starting: 
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5.46(0.22) mg/L; ending: 4.51(0.20) mg/L), and hypoxia was not observed in any of the 

treatments (Table 4). Water in the incubation tanks with oysters exposed to the lowest 

nutrient levels (20µM) showed a significantly higher decrease in pH during N2 and N2O 

incubations than water in the 100µM treatment (Table 4). The change in DO and pH 

within the control tanks (18°C, no N additions, no oysters) was minor, in comparison, 

with the average change in DO being 0.15(+/-0.20) mg/L, and average change in pH -

0.02(0.02) overall.  

  

3.3: Denitrification (N2) rates 

 Rates of oyster denitrification were generally variable with both positive (net N2 

production) and negative (net N2 consumption) values (Figure 10). Rates were 

significantly but non-linearly impacted by N treatment (3way ANOVA, F32,47= 3.47, 

p=0.027) (Appendix 6 & 7), with the 40µM tanks displaying significantly higher rates 

overall than the 70µM treatment. Rates were also significantly impacted by the 

interaction of temperature, N level, and time (F32,47= 3.31, p=0.032) (Appendix 6 & 7).  

Thus, highest denitrification rates were not found in the highest N levels, contrary to 

our hypotheses. Largest denitrification rates (positive and negative) were found in the 

warmest temperature (24oC) treatment (Figure 10). 

When examining each time point independently, denitrification rates were 

initially similar across all treatments (Day 5, Table 6). By 53 days, denitrification rates 

in oysters exposed to nitrogen enrichment at 24oC were impacted by N level 

(F16,23=6.68, p=0.004) (Table 6, Appendix 8), with tanks with oysters exposed to the 

lowest nutrient levels (20 and 40µM) exhibiting significantly higher denitrification rates 
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than the 70 µM treatment (Figure 10). The interaction of temperature and N level was 

also significant on Day 53 (F16,23=5.21, p=0.011) (Table 6, Appendix 8), with the 

highest rates of denitrification displayed within the high temperature, low nutrient tanks 

(24°C, 20 & 40 µM); and the lowest rates within a high temperature, moderately high 

nutrient tank (24°C, 70µM) (Figure 10, Appendix 7).  

Data from the third incubation (Day 89) was not included in any analysis, due 

to an unreliable MasterFlex pump allowing air flow into a number of tanks, which is 

known to greatly skewed N2/Ar analysis on a membrane inlet mass spectrometer (Kana 

et al. 1994; Eyre et al. 2002; Humphries et al. 2016).  

  

3.4: N2O production rates 

N2O production rates displayed variability, with rates ranging from N2O 

consumption to production (Figure 11). There were significant interactions between 

temperature and time (F48,71=4.07, p=0.023) as well as between N level and time 

(F48,71=3.05, p=0.013) (Appendix 6 & 7). Overall, warmer and/or higher N-enriched 

tanks resulted in higher N2O production with longer-term exposure to conditions 

(Figure 11, Appendix 4).  

N2O production patterns differed between the two temperature treatments 

(Figure 11). At 24oC, N level significantly and consistently increased N2O production 

(F24,35=3.90, p=0.021), with 100µM being significantly higher than the 70µM treatment 

(2way ANOVA, Tukey’s HSD) (Figure 11, Appendix 7). Longer exposure to 

conditions (time) also led to significantly higher N2O production rates within the 24°C 

treatments (Figure 11, Appendix 7), such that the moderate to high nutrient tanks (40, 
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70, 100 µM) switched from N2O consumption at Day 5 (Incubation 1) to N2O 

production Days 53 and 89 (Incubation 2 & 3) (Figure 11). There was more variability 

and less predictive patterns observed in the 18°C treatment tanks (Figure 11), however 

the 70µM treatment on Day 89 was significantly higher than it was on Day 5 (Appendix 

7), indicating that exposure to N level may factor into N2O production.  

 When each of the three incubation time points were analyzed independently 

from one another to examine the effect of N level and temperature, initially (Day 5), 

lower temperature treatments resulted in higher rates of N2O (F16,23=7.22, p=0.016), 

(Table 7, Figure 11, Appendix 8). By Day 53 (Incubation 2), N level became the 

significant factor within the results (F16,23=4.10, p=0.025) (Table 7, Figure 11, 

Appendix 8), with the 100µM treatments producing significantly more of the 

greenhouse gas compared to the 20 or 40µM treatments (Tukey’s HSD: µM: 100A, 

70AB, 20B, 40B). Day 89 (Incubation 3), overall displayed higher production rates 

when compared to the start of the experiment (Figure 11), but values were not 

significantly related to any of the experimental factors (Table 7). 

 

3.5: Relationship between N2 and N2O production rates and environmental 

conditions   

 A PCA was used to test correlations between the average, and pre- and post- 

incubation water characteristics on rates of C. virginica nitrogen gas production. For 

oysters that had been exposed to experimental conditions for 5 days, 58% of the 

variation able to be described (Figure 12). Rates of denitrification were most closely 

related to temperature (average, and incubation) while N2O production was closely 
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related to the decrease in DO over the course of the incubation for measurement of gas 

rates (Figure 12). Other factors appear to be correlated with N2O rates include the 

change of NH4
+ and final pH values over the course of the incubation (Figure 12). 

Denitrification and N2O production were found to be inversely related (Figure 12).  

 For Day 53 (Incubation 2), the PCA was able to describe 46.9% of the variation 

within the results (Figure 12). Similar to Day 5 (Incubation 1), rates of denitrification 

and nitrous oxide production were once again inversely related within the Incubation 2 

results (Figure 12). Contrary to Incubation 1, rates of denitrification were most closely 

related to incubation factors, such as the ending DO and pH values. Denitrification was 

also very closely related to the average flow rate leading up to the Day 53 experiment 

(Figure 12). Also, the rates of N2O production measured for Day 53 were more closely 

correlated to average factors (within the 7L aquaria), such as temperature and pH. N2O 

was also related to the observed temperature during the incubation (Figure 12).  

 

Experiment 2: Response to N along a dynamic estuarine gradient 

3.6: Growth, mortality, and oyster pathogen prevalence 

 Location significantly affected oyster growth rates in terms of size (F8,11= -3.38, 

p=0.009) and biomass gains (F8,11=-3.12, p=0.014) in 2016 (Table 8), with the oysters 

in the southern site growing faster in regard to both metrics, by 1.2 mm month-1 and 2.5 

g month-1, respectively (Figure 13 & 14). Neither N-level, nor the interaction between 

N-level and location significantly affected growth rates (Figure 13 & 14). Oyster 

mortality in the field was not affected by location (F8,11= -0.09, p=0.934), N-level 

(F8,11=-0.26, p=0.800), nor the interaction of these two factors (F8,11= 1.30, p=0.231).  
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Contrary to 2016, the north site supported significantly higher C. virginica 

growth rates (F8,11 =2.74, p=0.002) and biomass (F8,11 = 3.07, p=0.001) (Table 8, Figure 

13 & 14) by 1.5 mm month-1 and 1.9 g month-1, respectively, when compared to the 

southern site in 2017 (Appendix 9). Across both years, organic nitrogen enrichment 

resulted in greater biomass by 1.2 g month-1 on average (F=5.35, p=0.034) (Appendix 

9, Figure 14).  

 Mortality remained low in the 2017 field season (~12% overall), and did not 

differ by location (F8,11=-0.70, p=0.503), N-level (F8,11=-2.16, p=0.062), or the 

interaction between the two (F8,11=0.44, p=0.669). There were no detectable levels of 

P. marinus or H. nelsoni were observed in the tested oysters. The parasite H. costale 

was detected in 7.5% of the oysters (indicating low levels of intensity); however there 

was no effect of location (F8,11= -0.26, p=0.803) or N-level (F8,11= -0.26, p=0.803) on 

the prevalence of the disease. 

 

3.7: The dynamic environment of Point Judith Pond 

 On average, the northern location was warmer, less saline, had higher Chl-a, and 

lower DO levels than the southern site in 2016 (Table 9). Additionally, the northern 

location experienced a larger range in pH, chl-a, and DO (Table 9). 

 The 2016 12-hour profile of environmental conditions allowed for the analysis 

of the effect of location, N-level, and tidal height on the environment experienced by 

the oysters within a single day (Table 10, Figure 15, Appendix 10 & 11). During this 

sampling day, the general difference observed between sites during 2016 (Table 9) held 

true, with the northern location being warmer (3 Way ANOVA, F40,47=10.71, 



   

33 

 

 

p<0.0001), less saline (3 Way ANOVA, F40,47= -20.96, p=<0.0001), experiencing 

higher Chl-a levels (3 Way ANOVA, F40,47= 5.61, p=<0.0001), and lower NH4
+ (3 Way 

ANOVA, F40,47= -2.51, p=0.016) (Appendix 10 & 11). Additionally, temperature 

(F40,47= -2.85, p=0.006), DO (3 Way ANOVA, F40,47= -2.37, p=0.0226), and pH (3 Way 

ANOVA, F40,47= -2.42, p=0.020) were significantly higher at high tide than at low tide 

(Figure 15, Appendix 10 & 11).   

Similar environmental trends were observed in 2017 when both sites were 

monitored simultaneously. The northern field site on average was once again warmer, 

less saline, experienced higher chlorophyll levels, and also generally had less dissolved 

oxygen (Table 11, Figure 16). All four environmental parameters showed significant 

differences between location, month and tidal heights, confirming Point Judith Pond as 

a dynamic system, both spatially and temporally (Appendix 12 & 13). On average, the 

northern field site also experienced higher concentrations of dissolved NH4
+, NO3

-, and 

NO2
-, with NH4

+ being the major DIN species at both locations in 2017 (Table 12). 

Trends in field parameters largely stayed the same between the 2016 and 2017 field 

seasons, with the exception of NH4
+, which was higher in the southern site in 2016 and 

in the northern site in 2017 (Table 13).  

 

3.8: Denitrification (N2) rates 

 Location (F8,11= -5.05, p=0.001) and the interaction between location and N-

level (F8,11= 4.69, p=0.001) significantly affected denitrification rates of oysters from 

the 2016 field experiment (Figure 17). Specifically, field-enriched oysters from the 

southern site exhibited higher rates of denitrification than oysters from any other 
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treatments (Figure 17). The opposite trend appears for the northern location’s oysters 

(F4,5= 6.43, p=0.006), with organisms kept at ambient conditions denitrifying at higher 

rates on average than those which received N additions in the field (Figure 17).  

 In 2017, when potential denitrification rates were measured from oysters via 

exposure to a pulse of high N levels (100µM), the denitrification rates were generally 

an order of magnitude higher than those from 2016. However, there was a significant 

interaction between incubation temperature and field N-level at the Southern Location 

(F=-2.87, p=0.021) (Table 14, Appendix 14). Oysters in the 18°C southern site, 

enriched treatment and the 24°C northern site ambient treatment displayed the highest 

rates (Figure 17 & 18). The 24°C incubated oysters which had received organic N 

enrichment in the field, from both the northern and southern site, switched from a net 

source of N2 (i.e. net denitrification) at 18°C, to a net sink of N2 at 24°C (Figure 18). 

This was not true for the oysters who were maintained at either field location under 

ambient (low N) conditions (Figure 18).  

 

3.9: N2O production rates 

 Nitrous oxide was not detected for oysters from the 2016 field trial (data not 

shown).  

Oysters from the 2017 field experiment that were exposed to a pulse of 100µM 

NH4
+NO3

-, showed production of N2O. Overall, production rates were low (≤0.30 nmol 

N2O g wet weight-1 hr-1) (Figure 19). However, N2O production was higher at warmer 

temperatures, from the oysters which were maintained at the northern location (F=-2.81, 

p=0.021) (Table 14, Figure 19, Appendix 14 & 15). 
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3.10: Relationship between N2 and N2O production rates and field environmental 

conditions  

 A PCA was utilized with both the 2016 and 2017 field data (separately), in order 

to observe potential correlations between environmental factors and N2 and N2O gas 

production. In 2016, 76.88% of the variation was able to be described (Figure 20). 

However, very few factors appeared tightly correlated to denitrification rates. The two 

factors that were somewhat related included the percentage of oyster mortality observed 

in the field, and evening low tide NH4
+ values (Figure 20). Factors that the PCA found 

inversely related to rates of denitrification included evening low tide pH and DO, 

evening high tide Chl-a, and morning low tide chl-a (Figure 20). In 2016, the only DIN 

species that was able to be analyzed was NH4
+, and the only factors that were used for 

the PCA were the long term field conditions (no incubation conditions).  

 In 2017, 62.46% of the variation was able to be described with field data and 

pre– and post– incubation characteristics (Figure 20). Rates of denitrification were most 

closely related to field DIN concentrations, including July high tide NH4
+, June high 

tide NO3
-, and August low tide NO3

-. Denitrification was also related to one incubation 

factor, which was post – incubation DO (Figure 20). N2O production was most closely 

correlated to DIN incubation factors, which were pre-, post -, and overall change in 

NH4
+ concentrations during the incubation experiment. Field factors that showed 

correlation to N2O production were June high and low tide NO2
- concentrations (Figure 

19). Finally, the PCA revealed that rates of denitrification and rates of nitrous oxide 

production appear to be inversely related (Figure 20).  
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DISCUSSION 

4.1: Overview of major findings 

 As hypothesized, temperature initially resulted in increased rates of 

denitrification, as Experiment displayed higher rates in the warmer (24°C) tanks on Day 

5 (Incubation 1). Experiment 2, 2017 results also indicate that temperature is a partial 

driver of N2O production as well. Compromised health from long term exposure to 

increased temperature may be associated with these findings, as organisms maintained 

longer term in warmer treatments succumbed more frequently with time (Figure 8). 

It was initially thought that increased N loads would increase rates of both 

denitrification and nitrous oxide production. Results indicate that nitrogen loads appear 

to influence N2O production in a more linear response compared to denitrification rates, 

which switch between sinks and sources of N2 (Figure 10). In Experiment 1, the 24°C 

treatments show a clear trend of higher N2O rates with higher N levels in the later 

incubations (Day 53, 89), also indicating that exposure (time) influences production 

rates. However, this trend did not hold true for Experiment 2, where field enrichment 

had no additional effect on potential N2O production (Figure 19), most likely due to the 

pulse of 100µM NH4
+NO3

- dominating the response.  

Finally, the interaction of high T + high N resulted in inhibited rates of 

denitrification. In Experiment 1 and 2, long term N enrichment (70 & 100 µM and field 

fertilization, respectively), combined with warming (24°C), resulted in a switch of net 

N2 production (denitrification) to consumption (nitrogen fixation). In regard to N2O 

production, Experiment 1 showed increased greenhouse gas production at high N levels 

in the warmer treatments, and Experiment 2, the oysters which experimented higher N 
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loads in the field produced more N2O on average when incubated at a higher 

temperature.  

 

4.2: Prolonged exposure to warmer temperatures may inhibit denitrification and 

favor N2O production of C. virginica 

 

In regard to the impact of temperature to the health of C. virginica’s health 

status, it was thought that prolonged exposure to higher temperatures would induce 

stress, and eventually compromise the organisms’ health, leading to higher rates of 

mortality and/or increased susceptibility to pathogens. Experiment 1 indicated that there 

is an association with high T (24°C) and mortality, as organisms maintained in the 

warmer aquaria succumbed more frequently with time (i.e. exposure to stressor), and N 

level (100µM) (Table 1, Figure 8, Appendix 1 & 2). Further investigation of the 

change of water quality parameters revealed that an increase in temperature and drop in 

DO and pH occurred within the same time frame in which the 24°C / 100µM 

experienced a spike in mortality (Figure 9), indicating that the experimental factors 

(high T + high N) induced several expected changes of water parameters (DO, pH), 

possibly resulting in physiological stress of the organisms and their eventual demise. 

This was not the case for highest mortality treatment (40µM) within the cooler tanks, 

which did not experience a noticeable difference of DO or pH drop from the treatment 

with the lowest morality (20µM) (Figure 9). This was further verified with the PCA 

analysis For Day 53, which indicated the relationship between mortality and the change 

of both DO and pH (Figure 12). There was no clear association of pathogen presence 
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with organisms maintained within higher temperature aquaria and/or location, 

suggesting that physiological stress from poor water quality alone was enough to induce 

oyster mortality.  

It was hypothesized that warmer conditions may favor N2O production (possibly 

via incomplete denitrification) due to compromised health of the organism. In regard to 

N2O production, exposure to increased temperature and nitrogen were significant 

factors (Appendix 6), as observed most clearly under warmer conditions (in 24°C tanks) 

where our hypothesis of higher N2O emissions with higher N loads and warmer 

conditions was generally supported (Figure 11, Appendix 7). Further, supporting our 

hypothesis, N2O production was significantly higher (p=0.014) during the Experiment 

2, 2017 incubation experiment within the 24°C tanks compared to the cooler, 18°C 

treatments (Figure 19, Appendix 15). The N levels used for Experiment 2 (2017) were 

intentionally high in attempt to test potential thresholds of N loading, and therefore 

represent quite extreme scenarios. Results from both Experiment 1 & 2 therefore 

indicates that C. virginica N2O production is dependent on N availability, as well as the 

duration in which they are exposed to increased warming.  

The hypothesis of higher temperatures resulting in higher rates of denitrification 

were not supported for C. virginica. In the short-term during the laboratory experiment 

(Day 5, Incubation 1), the experimental warming (24°C treatments) resulted in 

significantly higher N2 production rates (Figure 10). However, this association of 

higher denitrification rates with higher temperatures was not exhibited in any prolonged 

exposure to temperature. Oysters maintained in either high temperature tanks (24°C) in 

later incubations (Figure 10) did not exhibit higher denitrification rates.  
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Oysters maintained in the field (Experiment 2) withstood a wide range of 

environmental factors, including temperature, in both years’ studies. The northern site 

was on average warmer (~23 – 25°C), yet the southern location experienced a wider 

range of T on average (~17 – 23°C) (Table 9, Figure 15 & 16, Appendix 11 & 13). 

This further justifies that these organisms are physiologically capable of withstanding 

temporary temperature changes within their natural habitats (Shumway 1996), and 

places Experiment 1’s chosen temperature range (18°C, 24°C) into a realistic context. 

Similar to Experiment 1, the warmer field locations in Experiment 2 (northern field site 

in the 2016 and 2017 field incubation) (Figures 16, 18) did not exhibit higher 

denitrification rates. These results suggest that temperature is only one of several drivers 

of nitrogen fluxes associated with shellfish. The lack of a prolonged effect of 

temperature on denitrification may be explained in part by higher temperatures 

promoting higher shellfish filtration rates (Ehrich and Harris 2015) but long-term 

exposure to higher temperatures may become a stressor to the organism, as highlighted 

in the mortality data previously.   

The different response of these two N transformations to warming, specifically, 

the inhibition of denitrification versus promotion of N2O with prolonged exposure to 

warming, warrant further consideration. N2O has multiple potential sources in addition 

to what is produced as a byproduct of denitrification. Such processes include the 

oxidation of NH4
+ to NO3

- during the first step of nitrification (Goreau et al. 1980), 

dissimilatory reduction of nitrate to ammonium (Smith and Zimmerman 1981), and as 

a byproduct during nitrifier – denitrification (Wrage et al. 2001). It is also likely that 

coupled nitrification – denitrification is a factor, due to favorable conditions for both 
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processes (Wrage et al. 2001), and the well supported idea that shell biofilm is a major 

contributor to bivalve – associated N2O production (Svenningsen et al. 2012; 

Heisterkamp et al. 2013). Additionally, N2 production rates calculated for this study, 

reflected both N2 fixation and denitrification. Further analysis of the different pathways 

may reconcile the lack of predictable relationship between N2 and N2O production 

within the data. 

The PCAs revealed an inverse relationship of denitrification and N2O, 

production within the Incubation 1, Incubation 2, and 2017 Field Incubation datasets 

(Figure 12 & 20), suggesting that N2 and N2O may be viewed as alternative products 

of one pathway in regard to C. virginica nitrogen cycling. These data suggest that C. 

virginica will either facilitate the full process of denitrification, acting as a sink of N2O 

(Chapuis-Lardy et al. 2007), or the N-removal process will terminate early, leading to 

an accumulation of the greenhouse gas. Furthermore, in Experiment 1, temperature was 

initially related to N2 production and inversely related to N2O production (Day 5 / 

Incubation 1), but overtime (Day 53 / Incubation 2), that relationship switched (Figure 

12). Therefore, the results presented here likely indicate that the longer C. virginica 

experiences extreme and/or rapid warming scenarios: (1) denitrification rates largely 

depends on N availability and time scale of high T exposure; results indicated that rates 

may not be significantly enhanced and may even possibly experience a decrease and (2) 

N2O production is likely to continue to rise under conditions of high nitrogen 

availability. 

 

4.3: Nitrogen cycling of C. virginica likely depends on duration of N exposure  
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We hypothesized that increasing N loads would enhance both denitrification and 

N2O production rates of C. virginica due to potentially a more active microbial gut 

community and greater N availability. Our results, however, results only partly support 

this notion, as denitrification did not appear to be enhanced by increasing N loads. The 

effects of N level are more pronounced within the N2O production rates. When 

considering the Experiment 1, the 24°C treatments begin to show a clear, linear trend of 

higher N with higher N2O rates, starting at Day 53 (Incubation 2), and becoming 

significant by Day 89 (Incubation 3) (Figure 11). Additionally, N level (p=0.021), time 

(0.001), and N level X time (p=0.006) were all significant factors within the warmer 

incubation tanks in Experiment 1, indicating that long term exposure to high N loads 

results in higher rates of N2O production by C. virginica, likely due to increased nutrient 

availability for the nitrogen cycling microbes (Kroeze and Seitzinger 1998) within the 

tank and/or oyster gut.  

When considering denitrification rates, Experiment 1 resulted in very few N-

related trends. In some cases, N level did increase rates; for example, in Incubation 2, 

the 24°/ 20µM and 24°/ 40µM showed higher N levels resulting in higher denitrification 

rates, on average (Figure 10). Observing this trend in the warmer tanks is likely caused 

by a more active microbial community (Kroeze and Seitzinger 1998; Lindermann et al. 

2016). However, seeing the trend at lower N levels (20 & 40µM) opposed to the higher 

N levels (70 & 100 µM), where there is no difference and/or reversal of N2 production, 

is unexpected (Figure 10). This finding can potentially be explained by a limited 

microbial population size within Experiment 1, as filtered seawater (~1 micron) was 
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used throughout the 3 month experiment, therefore reducing the introduction of new 

microbes within the aquaria. Specifically, the microbial enzymes found in marine 

sediments, which mediate the process of denitrification may be lacking: nitrate 

reductase (Nar), nitrite reductase (Nir); nitric oxide reductase (Nor), and nitrous oxide 

reductase (Nos) (Zumft 1997).   

Laboratory nitrogen enrichments were in reasonable range of the target, as 

ambient seawater, on average, had a NH4
+ concentration of 40.82 (+/-4.01) µM. 

Subtracting that value from the averaged nutrient reservoir concentrations, presented in 

Table 2, results in average NH4
+ concentrations of 24.09, 53.32, 72.99, and 96.68 µM 

for the 20, 40, 70, and 100 µM reservoirs, respectively. NO3
- was also a nitrogen species 

that was added as part of this enrichment, but those concentration values were not tested. 

We acknowledge that these enrichment levels are high in referenced to N inputs that 

Narragansett Bay currently receives (Oviatt 2017), and higher than typical Point Judith 

Pond values (Moran et al 2014), yet they are not unrealistic values that these systems 

have received historically (Oviatt et al. 2002; Moran et al. 2014).  

Water samples collected from each experimental bucket during Experiment 2 

(2016 & 2017) largely did not fully capture the increased enrichment level within those 

which received fertilizer additions (both locations). This is likely due to the dynamic 

nature of the system and the difficulty which arose when attempting to take discrete 

samples within a strong, tidally driven environment. Had there been a monitoring probe 

or a long term sonde that had the ability to measure DIN concentrations, there may have 

been more accurate readings for Experiment 2, as we did see some significant findings 

associated with N additions; for example, biomass when considering both year’s data 
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(F=5.35, p=0.034; Appendix 9, Figure 14), and denitrification from 2017’s incubation 

(F=-2.92, p=0.010; Appendix 14, Figure 18), suggesting the N additions were at least 

marginally successful.  

The field experiment (Experiment 2), partially supported the original hypothesis 

of denitrification increasing with N loads. The 2016 field results showed significantly 

higher denitrification rates from oysters who received enrichment in the southern field 

site when compared to their ambient counterpart, however this this trend was not found 

at the northern site (Figure 16). The 2016 southern field oysters were larger by both 

metrics (Figure 13 & 14) than those from the northern site, potentially linking the larger 

sized organisms with more abundant denitrifiers (i.e. more microbial biomass). This 

positive correlation of invertebrate N2O production and biomass has been found in a 

number of past studies (Stief & Eller 2006; Stief et al. 2009; Stief & Schramm 2010), 

and is driven by the organism’s increased gut size being able to hold more N2O 

producing microbes.  

In the 2017 field experiment, there is a trend of higher denitrification rates for 

both the northern and southern oysters, who received field organic N enrichment, within 

the 18°C treatments (Figure 18); however, this trend does not hold true for the 24°C 

treatments. Finally, comparing the rates from 2016, which were not given incubation N 

enrichments, to the rates in 2017, which were given a 100µM NH4
+NO3

- incubation 

enrichment, rates of denitrification were an order of magnitude higher in 2017, showing 

what may happen when oysters receive a high spike in N loads (100µM) compared to a 

more realistic and slow dilute of N inputs, like in the 2016 data, suggesting that a 

response to N may only be evident at high enrichment levels.  
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While Experiment 2, 2017’s enrichment level is less than half of the typical total 

DIN (~35 µM) within Point Judith Pond, the northern most section of the system has 

experienced groundwater N concentrations as high as 1470 µM (total DIN; 99.8% 

NH4
+) (Moran et al 2014). These high concentrations are found further north than the 

northern site used for Experiment 2, and are within an area closed to shellfishing (RI 

DEM 2017). Overall, the findings suggest that denitrification is related to N availability, 

as expected, but the rates associated with the process appear to be controlled by many 

addition complex environmental factors, most prominently temporal DIN availability, 

as highlighted by the PCA analysis (Figure 20).   

 

4.4: The combination of stressors (high T + high N) may inhibit denitrification and 

favor N2O production of C. virginica  

 

A surprising interaction was found between the interactions of stressors (high T 

+ high N) on denitrification rates, were observed in both laboratory and field 

experiments. Experiment 1 and Experiment 2 (2017) both showed that with a 

combination of long-term N enrichment (70 & 100µM; field fertilization, respectively) 

and warming (24°C), oyster denitrification switched from N2 production (i.e. 

denitrification) to consumption (Figure 10 & 18). N2 consumption indicates net 

nitrogen fixation (at rates exceeding denitrification rates) and results in the production 

of NH3 (ammonia, i.e. reactive N) (Purvaja et al. 2008), therefore recycling reactive 

nutrients back into the system, as opposed to removal through denitrification. This 

switch from N removal (net N2 production) to N production (net N2 consumption) did 

not occur within the lower nutrient treatments of Experiment 1, nor the oysters left at 
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ambient conditions (of either field location) within the 2017 Experiment 2 field 

manipulation (Figure 10 & 18).  

The 2016 field denitrification rates (Experiment 2) show a more subtle but 

similar trend to Experiment 1 and 2017 Experiment 2 (Figure 17). The southern field 

site experienced an average temperature of 19.2°C over the course the entire 2016 field 

deployment, and oysters which received N loading denitrified at significantly higher 

rates than those left at ambient (low N) conditions within the southern location. 

However, the northern location, which experienced an average temperature of 24.4° 

during the field deployment displayed the opposite trend, with oysters which received 

enrichment in the field denitrifying at a lower rate, on average, than those left at ambient 

locations (Figure 17).  

While it is counter intuitive that an increased concentration of reactive N would 

lead to decreased rates of denitrification, a number of factors may be responsible for 

this switch from N2 production to N2 consumption. In Experiment 1, we saw tanks with 

the highest mortality levels within the high T + high N treatments (Figure 8), and also 

a noticeable diverge of DO and pH (decrease, both factors) within these tanks (Figure 

9). N loading into coastal habitats often results in decrease pH and DO values within 

the system (Diaz and Rosenberg 2008).  It is not unreasonable to assume that the field 

manipulations (N additions) within the enriched buckets created differences in localized 

water quality within the experimental units, very much similar to what was observed in 

Experiment 1 (Figure 9). Additionally, DO and pH are both known drivers of N cycling 

processes, including denitrification. This fact, combined with the findings that tanks 

with high enrichment experienced high mortality (Experiment 1), suggest that localized 
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effects of N loading appear to cause physiological stress, as a result of altered water 

parameters, and this stress may also tie into C. virginica’s ability to facilitate the 

denitrification process, as seen in both Experiment 1 and 2. It also appears that exposure 

time to these factors is an important aspect of these findings.  

In regard to N2O production, Experiment 1 showed that temperature and N level 

were both significant factors, but at different times within the experiments (Table 7). 

Furthermore, in Experiment 2 (2017), oysters which experienced higher N loads within 

the field (Table 12), produced more N2O, on average, when incubated at a high 

temperature (Figure 19). Similar to the denitrification data, these results suggest that 

the threshold for N, on N2O production, is dependent upon temperature, but also the 

duration of N exposure (Figure 11 & 19, Appendix 6). Specifically, increased exposure 

to T and N leads to increased N2O production and decreased N removal (denitrification) 

rates.  

The environmental data collected in Point Judith Pond for the 2016 and 2017 

field experiment indicate that the system experiences temperatures of 24°C or above for 

approximately 5.3 days at the southern site, and 38.6 days at the northern site. The 

typical range of DIN (~35 µM, Moran et al. 2017) within most of Point Judith Pond is 

well under the concentrations where we observed these negative effects (particularly N2 

consumption) of the combined stressors of high T + high N, however it does raise 

concern for oysters in the northern portion of the system, as the northern most portion 

of Point Judith has measured groundwater N loads as high as 1470 µM (Moran et al. 

2017). It could also be assumed that temperatures in this location are similar to what 

was measured in the northern field site.  
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Currently, aquaculture and shellfishing activities are prohibited in this area of 

extremely high N (and presumable high T). While this restriction is based on human 

safety in regard to shellfish consumption, the results presented here may suggest that 

the closure may also be advantageous for the environment. By limiting the amount of 

oysters within this area (through aquaculture restrictions), it may also limit shellfish 

N2O production, as well as increased nitrogen fixation rates.  

Based on the findings of this study, oyster populations (wild, restored reefs, 

aquaculture practices) within Point Judith Pond appear to be a net benefit to the system, 

as typical DIN values are low, and the system does not experience temperatures above 

24°C for long durations of the year, therefore limiting the combination of severe 

stressors on the organisms. If shellfish operations were expanded in the northern most 

portion of the system (further north than the northern study site), there would first need 

to be a vast reduction of N inputs, in order to avoid an increase of N2O production of 

the bivalves.  

 

4.5: Potential implications  

Historically, Narragansett Bay has received N loads as high as 100µM in the 

northern end of the watershed (Oviatt et al. 2002), but the inputs have been reduced to 

approximately 40µM in more recent times (Oviatt et al. 2017). If we average all 100µM 

N2O production rates (18°C and 24°C) measured in Experiment 1, convert the values to 

a unit of area (m2), upscale the values to yearly production rates and finally, multiply 

the values by approximately 1/4 the area of Narragansett Bay (estimated area effected 

by high N), the final value is an astonishing 7.391E+11 µM N2O yr -1. The same 
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conversions with the 40µM data, result in a final value of 2.13E+11 µM N2O yr -1; and 

while this value is still high, it nearly a 30% reduction of N2O emissions, highlighting 

the large-scale implications and importance of reducing anthropogenic N loads into 

coastal estuaries.  

In order to understand the role of bivalves on the N cycle, it is important to 

understand the conditions affecting these rates. Oysters are very much valued for their 

water purification capabilities (Kennedy and Newell 1996; Newell 2004; Newell and 

Koch 2004; Grizzel et al. 2008; Dame 2012), and in scenarios which potentially 

decrease and/or eliminate this ecosystem service warrant further consideration. These 

conclusions suggest that there is a threshold (>18°C + >40µM) to which oysters may 

not facilitate denitrification to their full potential, possibly due to physiological status 

of the organism in response to a combination of stressors, a change in their microbial 

community, or in response to the effects that the interaction of high T + high N has 

within the environment. While the average temperature within Narragansett Bay is 

slowly rising (Narragansett Bay Estuary Program 2017), the system as a whole has 

undergone a vast reduction of N inputs in recent times (Narragansett Bay Estuary 

Program 2017), thereby reducing the number of anthropogenic stressors to our coastal 

habitats. This is reassuring, as oyster production is continuing to rise within Rhode 

Island, and therefore can still benefit both the economy and the environment.  

Overall, the findings presented in this study have the potential to aid in decision 

making regarding how to maximize the greatest economic and ecosystem benefits from 

aquaculture and restored reefs. For example, shellfish managers can identify coastal 

areas which will promote growth of C. virginica, and therefore benefit Rhode Island’s 
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aquaculture market, as well as target eutrophic areas for restored reef projects, with the 

goal of N reduction either through oyster denitrification or nutrient retention. It also 

highlights the importance of monitoring (and reducing when necessary) the N inputs 

into coastal habitats, as we may experience the inhibition of important ecosystem 

services and/or an increase in greenhouse gas emissions from valued coastal resources, 

in scenarios of excess N.
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CHAPTER 2 

Impact of nitrogen addition (N) and warming (T) on Mytilus edulis N cycling 

capabilities 

 

MATERIAL AND METHODS 

 

5.1: Overview 

 Controlled laboratory experiments were used to investigate the effects of the 

increased nitrogen loads and rising temperatures on M. edulis’ nitrogen cycling ability, 

and therefore potential contribution to global climate change due to nitrous oxide (N2O) 

production. This goal was achieved by establishing a gradient of ammonium nitrate 

(NH4
+NO3

-) inputs at two temperatures. The N gradient used for M. edulis incubation 

experiments was 5µM, 10µM, 17.5µM, and 25µM (enrichment above seawater), and 

the temperatures were 18°C and 21°C. Ammonium (NH4
+) and nitrate (NO3

-) are both 

common anthropogenic nitrogen species, and most often enter coastal environments 

through wastewater and septic systems (Galloway et al. 2003; Galloway et al. 2008). 

With the realization that M. edulis is bivalve species sensitive to environmental change 

and/or stress (Carrington et al. 2009; Jones et al. 2009 & 2010; Dijkstra et al. 2011; 

Sorte et al. 2017), the goal was to test whether small alterations to their ecosystems can 

potentially translate to large environmental problems. Therefore, the nitrogen gradient 

chosen for the experiments is only a fraction of the actual observed range of N 

concentrations into Narragansett Bay (Oviatt et al. 2002); and contrasting temperatures 

represent current average bottom temperatures of Narragansett Bay (Nixon et al. 2009) 
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and the lower end of projected global surface temperatures by 2100 (Mora et al. 2013). 

This experiment therefore included 8 different combinations of N and T, and each was 

analyzed in triplicate and maintained for 3 months (Figure 2).  

To start this laboratory investigation, each experimental mussel tank contained 

11 organisms. Mussels (~2.5 cm in size) were purchased from American Mussel 

Harvesters in Jamestown Rhode Island during December 2016. After being randomly 

placed within the tanks, organisms were marinated under the set conditions (described 

above) from January – March. Incubations of the organisms for measurements of N2 

and N2O production rates occurred on day 0, 51, and 103.  

 

5.2: Controlled laboratory experimental setup 

 The experimental 7L glass aquaria were maintained within a controlled 

environmental chamber (Holman Engineering) at the Marine Science Research Facility 

(MSRF), located at the Graduate School of Oceanography, Narragansett, Rhode Island. 

The environmental chamber was set to a controlled temperature of 18°C. The 

experimental aquaria, which contained the organisms, sat within large water baths to 

maintain consistent temperatures among each experimental unit (Figure 2). 21°C 

treatment tanks also contained a submersible heater (EHEIM Jager Aquarium, 

Thermostat Heater, 75 watts) within the water bath, as well as submersible pumps 

(Hydro Empire ©) to distribute the heated water evenly around the higher temperature 

tanks (Figure 2). Temperature was monitored every 2 – 4 days and the heaters were 

adjusted as necessary to maintain the target warming conditions.  
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 Filtered seawater from Narragansett Bay was stored in large 100L reservoir 

containers, and enriched with pre-prepared aliquots of ammonium nitrate (NH+
4NO-

3). 

Water from these nutrient reservoirs was pumped into the appropriate mussel tanks 

using a MasterFlex © multi-channel peristaltic pump. The flow rate was adjusted as 

necessary to achieve a target turnover rate of 24 hours for each experimental tank. Based 

on this turnover rate, nutrient reservoirs needed to be refill roughly twice per week.  

 To avoid pseudorepliation, there were three water baths per temperature 

treatment, and tanks of four target nitrogen levels were randomly placed within each 

water bath. Additionally, there were two nutrient reservoirs per nitrogen level in order 

to allow for the interspersion of nitrogen inputs among the various treatments (Figure 

2) (Hurlbert 2009; Cornwall et al. 2016).  

 

5.3: Blue mussel growth, morality and health  

 After being randomly assigned among each experimental tank, initial mussel 

size (length and width) and biomass (wet weight) measurements were made on each 

organism. These measurements were also made monthly, as well as prior to each of the 

three incubation events (Day 5, 53, 105). Growth rates were later averaged across the 

treatments. Organisms were fed 70 µl of Reed Mariculture Shellfish Diet © Monday – 

Friday and the tanks were also checked for mortalities. Deceased individuals were 

removed from the aquaria as necessary.  

Water quality measurements (dissolved oxygen (DO), pH, salinity, temperature, 

and dissolved inorganic nitrogen (NH4
+)) were measured weekly for each tank and 

nutrient reservoir. Complete water changes for the aquaria were performed as necessary 
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in order to maintain target parameters, which on average resulted in every three to four 

weeks.  

 

5.4: Incubation procedure for measurement of gas production rates  

 Approximately 12-16 hours prior to an Incubation event (Day 5, 53, 105) all 

experimental organisms were transferred from the 7L glass aquaria to the 2L, plastic 

tanks (Freund Containers) where they were allowed to acclimate overnight. Flow from 

the peristaltic pump continued during this period. During the time of transfer, three 

filtered seawater tanks (no organisms, no enrichment) were added to the 18°C water 

baths to act as controls. The morning of each incubation event, initial water quality 

parameters were recorded for each tank and nutrient reservoir, including: dissolved 

oxygen and pH using a handheld monitoring probe (Orion © RDO / pH), salinity with 

a handheld refractometer (Fisher Scientific), and temperature (handheld thermometer). 

Due to an issue with the monitoring probe, pH was not able to be recorded for the third 

incubation (Day 105). Additional samples included dissolved NH4
+ concentration, 

obtained from filtering 60mL of water from each tank through a 0.22µm EMD Milipore 

MillexTM filter, which were stored on ice until frozen in -20°C conditions. The same 

procedure was repeated immediately after the incubation, in order to observe the overall 

changes. 

 Once all initial sampling concluded, the pump was stopped, and each incubation 

tank was fitted with a gas-tight, screw top lid which thereby eliminated gas exchange 

with the outside atmosphere. These gas tight lids contained an 12 cm inflow line which 

connected to their respective nutrient reservoirs via the peristaltic pump via 
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approximately 2 meters of Tygon MasterFLex © tubing (1/8 inner diameter, Cole 

Parmer), and a 30 cm sampling line that was secured with a three-way stopcock, male 

valve, allowing for the connection of a 60mL sampling syringe (Figure 3). The inflow 

line was maintained in the upper portion of each 2L tank, while the sampling line existed 

in the lower portion in the hopes of promoting mixing during each sampling time point 

(Figure 3).  

 Immediately following the securing of the lid; as well as prior to each sampling 

time point, a small amount of water (<5mL) was pulled from each tank and discarded. 

This was a precaution, to rid the sampling line of any air and/or water from the previous 

sample. Next, 60 mL of water was sampled from each of the 27 tanks (24 experimental, 

3 controls), after which the three-way valves were positioned back in “off” direction. 

Finally, the peristaltic pump, which was set to a rate of 10 mL min-1, was turned back 

on and allowed to flow for 6 minutes, this resulted in replacing the sampled water 

promptly after each time point. The pump was once again paused until this entire 

procedure was repeated again, approximately 1.5 hours later for the next sampling point. 

A total of 4 time points were collected from each experimental tank during the 

incubation events.  

 All but 20mL of the sampled water from each time point was then carefully 

aliquoted to two 12mL Labco© Exetainers. It was of high priority to avoid any bubble 

formation into the Exetainer during this transfer, as this would greatly skewed dissolve 

gas concentrations within the sample, which is especially a concern for N2 (g). Each 

exetainer was immediately fixed with a 50% (weight/volume) zinc chloride (Sigma 

Aldrich) solution in order to terminate any potential gas concentrations alterations via 
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biological activity. These samples were then stored upside-down, underwater, at 18°C 

until analyzed on a Membrane Inlet Mass Spectrometer (MIMS) for N2 concentrations 

(detailed below in Section 5.5). The remaining 20mL of sampled water was stored 

overnight in a cooler and under ice (average temperature: 8.5 (+/- 0.3) °C) until they 

were prepped and analyzed for nitrous oxide (N2O) concentration (detailed in Section 

5.5). 

 

5.5: Sample processing – Dissolved nitrogen gas (N2O and N2)   

 The morning after each incubation, the 20mL of water stored in the syringes 

(under ice) were prepped in order to be analyzed for N2O concentrations on a 2014 

Greenhouse Gas Chromatograph (Shimadzu). 15mL of ultra-high purity helium 

(AirGas) was added to each syringe, (following methods presented by Moseman-

Valtierra et al. 2015) and then vigorously shaken for 60 seconds in order to equilibrate 

the dissolved gases within the water sample into the inert, helium headspace. The water 

portion of the sample was then discharged, and the temperature and salinity of each was 

measured and recorded for later calculations. The remaining 15mL helium headspace 

samples were stored in the refrigerator until analysis. All samples were analyzed on the 

Gas Chromatograph within four days of collection. Concentrations of each samples 

were corrected for the dilution of the gas phase and the equilibrate distribution of N2O 

between gas and water phases as outlined in Chapter 1 (Weiss and Price 1980; Walter 

et al. 2010, Garate 2016).  

 The Exetainer samples were analyzed for dinitrogen (N2) gas concentrations 

using a Membrane Inlet Mass Spectrometer (MIMS) located in the Marine Science 
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Research Facility (MSRF) located at the Graduate School of Oceanography 

(Narragansett RI). The N2/Ar method was followed (Kana et al. 1994). Analysis 

typically occurred within 2 weeks of collection. This timeframe excludes the third time 

point; due to complications with the instrument these samples were analyzed 

approximately 2 months after collection and analyzed using a MIMS located at the 

University of Connecticut (Groton Ct).  

 For both N2O and N2 concentrations, fluxes were determined using linear 

regressions of concentration versus time. If the regression line had a R2 ≥ 0.65 then a 

flux was calculated (Prairie 1996). Positive fluxes of N2 were indicative of net 

denitrification (Kana et al. 1994), and positive fluxes of N2O indicated production from 

the organisms during the incubation. These values were then normalized to the gram 

wet weight of mussel biomass within each tank during time of sampling.  

 

5.6: Sample processing – Dissolved inorganic nitrogen  

 Water samples collected from each tank prior to and following the incubation 

experiments were kept frozen at -20°C until the morning of analysis. Dissolved 

ammonium (NH4
+) was analyzed with an Orion Aquamate 7000 VIS Spectrophotometer 

©, using standard colorimetric techniques (Solorzano 1969).  

 

5.7: Histology 

 Upon completion of this long-term lab study, a subsample of remaining 

organisms (n=5) were sacrificed and fixed for histology, using standard procedures 



   

57 

 

 

(Howard et al. 2004). Cross sections of the organisms were prepared and analyzed by 

the Aquatic Diagnostic Laboratory at Roger Williams University, Bristol, RI. 

 

5.8: Statistical Analysis 

 Three-way ANOVAs were used to examine the impact of temperature, N level, 

and time (exposure to experimental conditions) on mortality rates, water quality 

parameters, and nitrogen gas production (N2 and N2O). To further clarify the interaction 

terms, in regard to denitrification and nitrous oxide production rates, two-way ANOVAs 

analyzed the effect of N-level and time at each temperature; and one-way ANOVAs 

were used to investigate both temperature and N level (independently) at each 

incubation time point. Tukey HSD tests followed when significant differences were 

revealed. A Principal Component Analysis (PCA) was performed for each incubation 

time point, in order to reveal possible correlations between environmental conditions 

and nitrogen gas production rates. The overall goal was to determine whether there are 

critical thresholds which result in a decrease in M. edulis’ performance – which is 

defined as a significant decrease in N2 (denitrification) and/or an increase in N2O 

(greenhouse gas production). 
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RESULTS 

 

6.1: Growth, mortality, and health 

Changes in biomass of M. edulis were significantly dependent upon N level 

within the 18°C treatments (F8,11=5.12, p=0.028), with the organisms in the 17.5 µM 

tanks (moderately high N) displaying the fastest growth among the four N levels. N 

level had no impact within the 21°C treatments (F8,11=0.76, p=0.546). Temperature 

(F16,23=0.81, p=0.380) nor N level (F16,23=1.41, p=0.276) had an impact on the biomass 

gain.  

On average, M. edulis grew in the 0.2 – 0.6 mm/month range throughout the 

laboratory experiment. There was no significant difference in shell growth rates between 

different N levels within either the 18°C or 21°C treatments (F8,11=0.54, p =0.665; 

F8,11=1.19, p -0.372, respectively). Furthermore, neither temperature (F16,23= 0.009, 

p=0.925) nor the interaction of temperature and N level (F16,23=0.38, p=0.770) had an 

effect of the shell growth rates.  

 Overall, the percentage of deceased organisms was low, with less than 7% of the 

total organisms to start the experiment perishing, and no single treatment experiencing 

greater than 30% mortality on average (Figure 21). Nitrogen level (3 way ANOVA, 

F80,119=8.86, p=<0.0001) and time of exposure (3 way ANOVA, F80,119=2.79, p=0.031) 

both significantly impacted the percentage of moribund mussels (Appendix 16 & 17). 

When the data was analyzed at each temperature, independently, mortality was 

significantly dependent upon N level within both the 18°C (2 way ANOVA, F40,59=4.06, 



   

59 

 

 

p=0.001) and 21°C (F40,59=6.77, p=0.0008) treatments (Table 15), with the highest N 

levels having the highest mortality, expect at the warmer temperature when there was 

only significantly higher mortality within the 17.5 µM treatments (Figure 21, 

Appendix 17). Temperature had no significant impact for any mortality observation 

(Figure 21), although it is noteworthy that there was no mortality for mussels within 

the most extreme conditions (21°C / 25µM tanks).  When the lowest and highest 

mortality levels for each temperature treatment (5µM, 17.5µM, respectively for 18°C; 

and 25µM, 17.5µM, respectively for 21°C) were compared against the water parameters 

of the tanks (DO, pH, NH4
+), there were very few divergences of the water quality 

between the nutrient levels (Figure 22). Within the cooler, 18°C tanks, one difference 

between the 15µM (lowest mortality) and the 17.5µM (highest mortality) treatments, 

was that the latter experienced a temporary, yet large drop in DO to 5.18 (+/- 0.85) 

around day 16. In the following weeks, (~day 30), is when the spike in mortality levels 

occurred within those tanks as well. Otherwise, pH and NH4
+ in the 18°C treatments, 

and all parameters of the warmer (21°C) tanks were very similar between the high and 

low mortality levels of each temperature (Figure 22).  

 

6.2: Water quality parameters 

Weekly water quality conditions in experimental aquaria  

 Average water temperatures were within range of the target by 0.6°C across the 

eight treatments (Table 16). On average, dissolved oxygen ranged from approximately 

7.0 – 7.8 mg/L, pH was generally 7.50 or greater, and salinity was 34.4ppt, on average, 

over the 3 month experiment (Table 16), indicating a well oxygenated, slightly basic, 
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and high saline environment for experimental organisms. On average, NH4
+ was in the 

50 – 65 µM range (Table 16). Oxygen was differed significantly between N level 

treatments (3 way ANOVA, F 176, 263 = 10.44, p=<0.0001) (Appendix 18), such that the 

lower nutrient tanks (5 and 10 µM) exhibiting the highest DO levels, higher nutrient 

tanks (17.5 and 25µM) exhibiting the lowest (Table 17, Appendix 19) (Tukey’s HSD 

(µM: 5A, 10A, 25AB, 17.5.B).  

 

Change in water quality over the course of N2 and N2O incubations 

 Over the course of the three incubations, no experimental treatment experienced 

hypoxic conditions (<3.00 mg/L) (Table 18). The largest decreases in oxygen occurred 

during Incubation 1 (Day 2) due to the gas-tight closure of the tanks for approximately 

4 hours. Average (overall) starting DO levels for Incubation 1 were 10.56(0.03) mg/L 

and ending values were 6.02(0.14) mg/L. By Incubation 2 (Day 103), although the 

average starting values for DO was much lower (4.95(0.31) mg/L), the overall drop in 

oxygen over the course of the incubation was much smaller (Table 18), with final values 

averaging 4.24(0.23) mg/L.  The decrease in DO during Incubation 1 (F16,23=26.51, 

p=<0.0001), differed significantly according to temperature treatments, with the higher 

temperature treatment experiencing larger decrease in oxygen. Neither temperature nor 

N level had any effect on the change of DO within Incubation 2 or 3 (Table 19, 

Appendix 20).  

Following the same trend as DO, the decrease in pH was not as severe in 

Incubation 2 compared to Incubation 1, however no data for pH was able to be collected 

for Incubation 3 (Table 18). The change in pH in both Incubation 1 (F16,23= 29.24, 
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p=<0.0001) and Incubation 2 (F16,23=10.58, p=0.005) varied between temperature 

treatments, with the higher temperature treatment resulting in a larger drop in pH for 

both instances (Table 19, Appendix 20).  

Changes in NH4
+ concentrations were highly variable, ranging from production 

to uptake (Table 18), with both temperature and N level having no impact on the 

production or consumption of NH4
+ in any of the three incubations (Table 19).  

 

6.3: Denitrification & N2O Production Rates 

M. edulis’ rates of denitrification over the course of the three incubations (103 

days) were highly variable (Figure 23). Rates did not significantly differ with regard to 

N level, temperature or time (Table 20, Figure 23, Appendix 21& 22). 

 Both temperature (F48,71= 5.17, p=0.027) and N level (F48,71=3.22, p=0.030) 

significantly influenced rates of N2O production (Appendix 22 & 23), such that the 

lower temperature (18°C) and higher N levels (Tukey’s HSD: µM: 25A, 17.5AB, 10AB, 

5B) resulted in increased N2O production rates. Over the course of the three incubations, 

M. edulis consistently produced N2O. There was never an instance of N2O consumption 

(Figure 24). Highest rates (average: 0.66 +/- 0.21 nmol g wet weight -1 hr -) were seen 

during Incubation 2 (Day 48) under the 18°C temperature and highest N level (25 uM) 

(Figure 24). On average, N2O production within the 21°C treatments showed little 

variation, and were generally in the 0.1 – 0.2 nmol g wet weight -1 hr -1 range (Table 

21, Figure 24). 
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6.5: Relationship between N2 and N2O production rates and environmental 

conditions  

 PCAs were utilized in order to discern correlations between environmental 

characteristics, over both long (average tank conditions) and short-term (incubation 

conditions), and M. edulis nitrogen gas production. During Incubation 1 (Day 2), 55.3% 

of the variation within the data was able to be explained. Rates of denitrification and 

N2O production were very tightly correlated with one another and with the average tank 

pH prior to the first incubation (Figure 25). Denitrification and N2O rates were inversely 

related to many incubation factors, including NH4
+ concentrations as well as pre-

incubation DO (Figure 25).  

 During Incubation 2 (Day 53) 44.5% of the variation within the data was able to 

be explained through a PCA (Figure 25). Denitrification rates were most tightly 

correlated to the average tank temperature prior to Incubation 2 and the change in DO 

during the incubation (Figure 25). N2O rates were almost completely independent of 

any factor, according to the PCA results, but most closely align with final NH4
+ 

concentrations during Incubation 2; production rates were found to be inversely related 

to DO and pH values (Figure 25). Denitrification and N2O rates showed no correlations 

to one another (Figure 25).  

 Finally, for Incubation 3 (Day 105), 39.5% of the variation within the data was 

able to be explained utilizing a PCA. Rates of denitrification were most closely 

correlated to the percentage of mortality leading to Incubation 3 and the average DO 

leading into the incubation (Figure 25). N2O production rates were correlated to the 

change in concentration of NH4
+ during Incubation 3 (Figure 25). Finally, similar to 
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Incubation 2, denitrification and N2O were not correlated in the Incubation 3 results 

(Figure 25). 

 



   

64 

 

 

DISCUSSION 

 

7.1: Overview of major findings 

 

The original hypothesis was that both temperature and N level would increase rates 

of nitrogen gas production. The results indicate that M. edulis nearly always supports 

net N2 production (i.e. denitrification, and therefore N removal) at low (≤ 25µM) 

nutrient conditions. However, the response to warming and N additions is inconsistent, 

as N2 production rates were similar across all treatments and time. Additionally, it was 

found that nitrogen is a very strong driver of N2O production of M. edulis, as a relatively 

small increase of N inputs (+20µM NH4
+NO3

-) led to a significant increase in production 

rates. Finally, higher M. edulis N2O production rates were exhibited at the cooler (18°C) 

temperature treatment, which many be a reassuring finding when considering the 

anticipated ocean warming trends.  

 

7.2: M. edulis exhibits high potential for denitrification  

 

Initial hypotheses of this study included that warming would initially increase 

denitrification rates, as would higher N loads, and the combination of the two 

anthropogenic stressors, with time, lead to incomplete denitrification processes and 

higher N2O production. While M. edulis showed a wide range of denitrification 

potential, with average rates ranging from N2 consumption (i.e. net nitrogen fixation), 

of -83.6 nmol g wet weight-1 hr-1, to high rates of N2 production (i.e. net denitrification) 
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of 295.8 nmol g wet weight-1 hr-1; the hypothesized relationships to N and T were not 

observed within this experiment. Therefore, it appears that though M. edulis does nearly 

always show net N2 production, we have yet to see a strong, consistent response to 

warming or N additions. However, this study does generally support N removal via 

denitrification by M. edulis at low nutrient (≤ 25µM) conditions (Figure 23). 

 It is important to note that this experiment took place from January– March 

2017, with experimental organisms collected on December 29, 2016. A study which 

examined the microbial communities of C. virginica found that season (winter) 

negatively impacted the structure and richness within the organism, with temperature 

being the driving factor (Pierce et al. 2016).  Based on these findings, the gut 

microbiome of experimental M. edulis potentially could have been low during the time 

of year which the experiment took place. M. edulis facilitates N cycling processes, but 

the nitrogen transforming microbes, ingested by the organism, are what actually carry 

out the conversion (Wahl et al. 2012; Steif et al. 2013; Mouton et al. 2016). Therefore, 

it is possible that the rates measured in this study many not fully represent denitrification 

potential of M. edulis due to a less abundant, less active and/or less sensitive microbial 

gut community. 

 Despite the lack of strong response of M. edulis-associated denitrification to N 

and T, this study provided a step to fill in the gap in knowledge by quantifying 

denitrification rates associated with M. edulis in and of themselves. Most, if not all, 

previous studies which quantify N removal rates of M. edulis focus either on: the 

assimilation of nutrients within the organism and thereby removal once harvested 

(Edebo et al. 2000; Lindahal et al. 2005), or denitrification within the sediment 
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underlying mussel beds (Kaspar et al. 1985; Gilbert et al. 1997, Christenson et al. 2003; 

Stadmark and Conely 2011). Kaspar et al. 1985 measured in situ denitrification rates of 

sediments underlying a mussel farm (via an acetylene block technique) and found that 

mussel presence can potentially enhance sedimentary denitrification rates as much as 

5.22 mmol m-2 day-1, when compared to a reference site (Kaspar et al. 1985). When the 

rates measured within this study are converted to similar units and averaged across all 

treatments and incubation times, the final value is 28.03 +/- 23.93 mmol m-2 day-1. 

While this value shows high variability, it does indicate that M. edulis may have a larger, 

direct role in N removal than previously thought.  Nonetheless, M. edulis plays a strong 

ecological engineering role in many coastal habitats (Jones et al. 1994), and therefore 

increasing substrate area for denitrification to occur, as well their ability to filtrate and 

retain nutrients from the water column may be the primary means by which they affect 

N removal.  

 

7.3: Sensitivity of M. edulis N2O production to N addition and surprising response 

to warming  

 

The effect of N level followed the initial hypothesis, with higher N 

concentrations (µM) producing higher N2O emissions (Tukey’s HSD: 25A, 17.5AB, 

10AB, 5B) (Figure 24). The gradient of N used for this experiment is small relative to 

actual DIN levels within Point Judith Pond (Moran et al. 2014), and Narragansett Bay 

as a whole (Oviatt et al. 2002; 2017), indicating that production rates within a natural 

system may be much larger in magnitude. While denitrification (N removal) potential 
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of M. edulis is orders of magnitude higher than N2O production across all experimental 

treatments (Figure 23 & 24), this negative effect of N level on greenhouse gas 

production should be considered as Rhode Island expands its efforts of blue mussel 

cultivation. 

Overall, temperature and N level both had a significant impact on M. edulis’ 

N2O production rates (p=0.027; 0.030, respectively) (Appendix 22), but they did not 

display the predicted synergism. Temperature had the opposite effect than predicted, 

with cooler 18°C treatments producing more of the greenhouse gas than the higher, 

21°C treatments (Figure 24). The negative effect of increased temperature (21°C) on 

N2O production may be reassuring given anticipated warming trends (Mora et al. 2013). 

It is plausible that the increased temperature (21°C treatments) induced stress on the 

organism to a point where functional responses, such as filtering were compromised 

(Guo et al. 2015). This may explain the unanticipated findings of N2O production in the 

cooler treatments. 

A number of water quality parameters, besides temperature, may be influencing 

these findings. For example, during Incubation 2, the 18°C / 25µM treatment tanks 

exhibited the highest average N2O production rate and was significantly higher than the 

21°C / 25µM treatment (Figure 24), with the final pH values of Incubation 2 being 

consistently more acidic within the cooler (18°C) tanks (Table 18). The opposite 

relationship of ending pH values and temperature treatments existed for Incubation 1 

(Table 18) where N2O production rates were not significantly different. Decreased pH 

is a well-known driver of increased N2O production within soils (Tate 1995; Cuhel et 

al. 2010), and potentially can explain why the lower temperature treatments, particularly 
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the 25µM enrichment, resulted in higher N2O production when compared to its warmer 

counterpart (Figure 24). Additionally, low DO concentrations can result in higher N2O 

via a disruption in the denitrification process (Robertson et al. 1995; Baumann et al. 

1996) and during Incubation 2, the 18°C / 25µM treatment was considerably less 

oxygenated than the 21°C / 25µM treatment (Table 18). It is counter intuitive that the 

cooler treatment would display lower pH and DO values, as increased temperature 

should theoretically increase respiration rates and therefore decrease both DO and pH. 

However, if the warmer temperature did compromise the health status of the organisms 

to a point where filtering abilities were reduced, the water quality within the cooler 

treatments would make sense, which presumably contained healthier and fully 

functional organisms.  

With M. edulis aquaculture practices being a relatively new endeavor within the 

state of Rhode Island (Beutel 2018), the data provided in this document, as well as past 

studies, are important considerations in future spatial planning of farmed mussel beds. 

Future studies that would like to expand on this work, should attempt to quantify a larger 

array of N-cycling processes, such as nutrient assimilation and coupled nitrification-

denitrification within the organism, rates of organic matter deposition from organism to 

sediment, and denitrification and dissimilatory nitrate reduction to ammonium within 

the underlying sediments across a gradient of environmental conditions. Overall, despite 

an unexpected trend with temperature, this data adds to the growing body of work which 

highlights filtering feed bivalves as potentially overlooked emitters of N2O (Stief et al. 

2009 & 2010; Heisterkamp et al. 2010 & 2013; Svennningsen et al. 2012; Garate 2016), 
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and that there are many complex factors that impact M. edulis’ N cycling rates and 

capabilities.
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CONCLUSION 

 

Bivalves increase benthic pelagic coupling processes and therefore are active 

participants in the marine nitrogen cycle (Newell 2004). There are many pathways in 

which organisms such as C. virginica and M. edulis many remove, recycle, or regenerate 

reactive nutrients within their habitat (Kellogg et al. 2014). However, variables based 

on location, health status and environmental stress have made it difficult to determine 

rates associated with these processes. This study attempted to address these unknowns, 

including the impact of a combination of environmental stressors (N and T) on filter 

feeding bivalves, and how those factors would interact to facilitate N removal 

(denitrification) and greenhouse gas production (N2O). Additionally, we attempted to 

survey the health status of organisms under a gradient of N levels and contrasting 

temperatures in attempt to reveal whether a connection existed with bivalve 

biogeochemical function.   

To place the nitrogen transformation rates (denitrification and N2O production) 

measured within this study into context, the rates were compared to a number of coastal 

habitats and invertebrates. Much variation existed between the studies from which 

denitrification rates were compared (Kellogg et al. 2014; Humphries et al. 2016; Caffrey 

et al. 2016) but were generally were in the same order of magnitude for both C. virginica 

and M. edulis (Table 22). In the majority of experimental conditions both organisms 

typically support net denitrification, with M. edulis appearing to be an efficient net N2 

producer at low nutrient conditions. However, denitrification rates did not follow 
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simple, linear patterns that were expected with increasing N level and/or increased 

temperature, further highlighting that the rates associated with process are dependent on 

a suite of interacting, environmental factors in addition to common stressors (N & T) 

within coastal environments.  

Nitrous oxide production of both C. virginica and M. edulis fell with a 

reasonable range with many marine invertebrates studied by Heisterkamp et al. 2010 

(Heisterkamp et al. 2010) (Table 23) but are drastically minor when related to coastal 

sediments in different environments (Murray et al. 2015, and references therein). To 

compare to global estuarine environments, the highest measured N2O production rates 

from each species (1527.76 and 1.08 nmol N2O m-2 hr-1 for oysters (Experiment 2,Year 

2) and mussels, respectively) were upscaled to the total area of current (oyster) 

aquacultured waters within Rhode Island (~275 acres, Beutel 2018) and revealed that 

N2O emissions from bivalves within the state is minuscule in comparison (6.56E-7 and 

4.66E-10 TG N2O-1 yr-1, oysters, mussels respectively). Based on the rates across 

different N and T treatments examined in this study, this showed that Rhode Island 

aquacultured bivalves are not likely to produce feedback on climate via N2O production, 

except under high N loads. The magnitude of this will also depend on species, as well 

as exposure to temperature.  

It is noteworthy that N2O production rates were similar between C. virginica and 

M. edulis within this study, despite M. edulis experiencing a lower gradient of N and a 

less severe warming scenario (Figure 11, 19, 24). Overall, N level is the stronger driver 

of N2O production for both C. virginica (Figure 11), and M. edulis (Figure 24). 

Temperature is not consistently important for C. virginica N2O production, based on the 
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positive relationship exhibited in Experiment 2 (Figure 19), yet largely lacking 

correlation within Experiment 1 (Figure 11). M. edulis N2O production exhibited an 

opposite relationship with temperature than expected (Figure 24), which may be tied to 

compromised health in the warming scenarios.   

In this manuscript, several prominent conclusions emerge: 1) rates of N removal 

largely surpass rates of greenhouse gas production for both bivalve species (Figures 10, 

11, 23, 24), indicating that the benefits of the recent increase in oyster and mussel 

production within Rhode Island outweigh the costs associated with it under the range of 

conditions we tested; 2) M. edulis appears to be a less efficient facilitator of 

denitrification, when compared to C. virginica, as a fraction of N inputs produce nearly 

identical N2O emissions (Figures 11, 24), suggesting the process of denitrification is 

more likely to be carried to completion by microbes associated with C. virginica; 3) the 

combination of high N and high T, lowers (Figure 17) or induces a switch from net N2 

production to N2 consumption  (Figures 10, 18) for C. virginica. This was not observed 

for M. edulis (Figure 23), possibly due to the reduced stressors in the M. edulis 

experiments. However further investigation of this finding is warranted in scenarios of 

increased levels of nitrogen and temperature, as results are based upon a fraction of the 

N and T which C. virginica experienced within this study; and finally 4) this study 

focused on the macro-organisms which facilitate N cycling processes, it would be 

greatly beneficial for future studies to include analysis of the microbes who actually 

perform the process (Wahl et al. 2012; Stief et al. 2013; Mouton et al. 2016) to determine 

how environmental stress impacts the abundance and assemblage of the organisms’ gut 

microbiome, therefore having a more complete picture of these complex processes.
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TABLES & FIGURES 

 

Table 1: Results from a Two-Way ANOVA testing the effect of N-level and time of 

exposure on the percentage of mortality of C. virginica at each temperature (Experiment 

1) 

 

  

% Mortality C. virginica (Experiment 1) 

Testing the effect of N level and time 

18°C  24°C 

F48,71-value p- value F48,71 -value p- value 

N Level 2.01 0.125 9.14 <0.0001 

Time 0.75 0.589 6.33 0.0001 

N Level X Time 0.14 0.999 1.04 0.434 
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Table 2: Average water parameters (based on weekly sampling) over the course of the 3 month C. virginica laboratory experiment 

(Experiment 1); levels not connected by the same letter are significantly different, based on Tukey’s HSD post-hoc tests.  

 

Treatments: 

  

Average (+/- SE) water quality parameters  

Temp 

(C)  

N Level 

(uM) 
Temperature (C)  DO (mg/L) pH Salinity NH4

+ (µMl) 

18 20 17.9 (0.08) B 7.62 (0.25) A 7.66 (0.02) A 31 (0.00) 76.02 (3.80) A 

18 40 17.9 (0.09) B 7.64 (0.33) A 7.68 (0.03) A 31 (0.00) 102.45 (3.32) A 

18 70 17.9 (0.08) B 6.91 (0.12) B 7.55 (0.01) B 31 (0.00) 103.39 (7.36) A 

18 100 17.9 (0.05) B 7.08 (0.11) AB 7.54 (0.02) B 31 (0.00) 105.37 (13.21) A 

24 20 22.9 (0.09) A 7.41 (0.10) AB 7.69 (0.02) A 31 (0.00) 82.38 (1.46) A 

24 40 23.0 (0.12) A 7.28 (0.11) AB 7.67 (0.02) A 31 (0.00) 93.33 (12.10) A 

24 70 22.9 (0.05) A 7.61 (0.10) A 7.74 (0.02) A 31 (0.00) 107.56 (4.87) A 

24 100 22.9 (0.04) A 7.35 (0.18) AB 7.65 (0.02) A 31 (0.00) 109.85 (12.43) A 

Target and 

Observed: Average NH4
+  

(+/-SE) 

20 µM 40 µM 70 µM 100 µM 

64.91 (7.12) 93.14 (7.99) 113.81 (8.53) 137.50 (10.70) 

Tukey's HSD (nutrient reservoirs)  C BC AB A 
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Table 3: Two-way ANOVA results, testing the effects of, N-Level and time on weekly water quality parameters at each temperature 

treatment of C. virginica experimental tanks over the course of 3-month experiment (Experiment 1) 

 

Experiment 1, Weekly Water Quality Measurements  

  

18°C 24°C 
DO pH NH4

+ DO pH NH4
+ 

F40, 59 p-value F48, 71 p-value F 24, 35 p-value F40, 59 p-value F48, 71 p-value F 24, 35 p-value 

N Level 5.07 0.004 15.91 <0.001 2.296 0.103 1.48 0.234 5.591 0.002 1.992 0.142 

Time (Days) 2.32 0.073 13.75 <0.001 15.689 <0.001 1.46 0.232 12.190 <0.001 19.26 <0.001 

N Level X Time 0.379 0.963 1.01 0.464 1.57 0.199 0.679 0.760 0.966 0.503 0.435 0.848 
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Table 4: Average (+/- SE) pre-, post-, and overall change in water quality parameters over the course of each C. virginica incubation 

experiment 

 

Water quality parameters over course of incubation (Average +/- SE)  

Treatments: 

  
Incubation 1 (Day 5)  

  

  
Dissolved oxygen 

(mg/L) 
 pH  NH4

+ (µM) 

Temp 

(C)  

N 

Level 

(uM) 

  
Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 

18 20   
6.50 

(0.21) 

5.17 

(0.30) 

-1.33 

(0.11) 
  

7.42 

(0.05) 

7.19 

(0.05) 

-0.22 

(0.02) 
  

52.32 

(8.28) 

53.69 

(6.11) 

1.37 

(8.01) 

18 40   
5.89 

(0.51) 

4.03 

(0.74) 

-1.86 

(0.28) 
  

7.42 

(0.04) 

7.18 

(0.02) 

-0.24 

(0.04) 
  

95.48 

(10.68) 

88.95 

(6.59) 

-6.53 

(4.19) 

18 70   
5.20 

(0.09) 

3.47 

(0.29) 

-1.73 

(0.20) 
  

7.08 

(0.03) 

7.13 

(0.01) 

-0.19 

(0.02) 
  

120.96 

(2.19) 

140.33 

(16.94) 

19.37 

(15.17) 

18 100   
4.90 

(0.10) 

3.73 

(0.34) 

-1.17 

(0.33) 
  

7.29 

(0.03) 

7.11 

(0.01) 

-0.18 

(0.03) 
  

147.70 

(10.20) 

142.65 

(4.81) 

-5.05 

(13.48) 

24 20   
5.62 

(0.10) 

3.64 

(0.21) 

-1.98 

(0.36 
  

7.37 

(0.01) 

7.07 

(0.04) 

-0.30 

(0.02) 
  

73.80 

(3.19) 

65.37 

(2.19) 

-8.42 

(2.23) 

24 40   
4.58 

(0.04) 

2.09 

(0.27) 

-2.49 

(0.30) 
  

7.30 

(0.01) 

7.04 

(0.01) 

-0.26 

(0.02) 
  

114.43 

(10.68) 

106.75 

(13.80) 

-7.68 

(3.20) 

24 70   
5.09 

(0.33) 

3.09 

(0.29) 

-1.99 

(0.12) 
  

7.35 

(0.03) 

7.09 

(0.02) 

-0.25 

(0.02) 
  

137.59 

(10.59) 

109.48 

(8.43) 

-28.11 

(2.38) 

24 100   
4.21 

(0.50) 

1.96 

(0.43) 

-2.25 

(0.16) 
  

7.24 

(0.04) 

7.06 

(0.01) 

0.18 

(0.04) 
  

154.12 

(9.80) 

163.59 

(10.37) 

9.47 

(16.19) 

 

 

 

  

Incubation 2 (Day 53)  
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Treatments: 
  

Dissolved oxygen 

(mg/L) 
 pH  NH4

+ (µM) 

Temp 

(C)  

N 

Level 

(uM) 

  
Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 

18 20   
5.87 

(0.31) 

4.75 

(0.10) 

-1.11 

(0.38) 
  

7.60 

(0.03) 

7.44 

(0.05) 

-0.16 

(0.02) 
  

45.07 

(3.23) 

45.07 

(0.33) 

0.00 

(3.20) 

18 40   
5.88 

(0.29) 

5.11 

(0.34) 

-0.76 

(0.15) 
  

7.59 

(0.02) 

7.50 

(0.04) 

-0.09 

(0.02) 
  

59.35 

(5.26) 

46.96 

(5.23) 

-12.39 

(6.26) 

18 70   
6.07 

(0.43) 

5.33 

(0.43) 

-0.74 

(0.04) 
  

7.08 

(0.01) 

7.49 

(0.02) 

-0.06 

(0.02) 
  

62.54 

(1.21) 

70.58 

(6.47) 

8.04 

(6.45) 

18 100   
5.63 

(0.31) 

5.47 

(0.43) 

-0.17 

(0.17) 
  

7.52 

(0.02) 

7.47 

(0.04) 

-0.05 

(0.02) 
  

98.48 

(9.80) 

93.41 

(2.29) 

-5.07 

(12.03) 

24 20   
5.84  

(0.6) 

5.18 

(0.23) 

-0.66 

(0.50) 
  

7.57 

(0.05) 

7.47 

(0.01) 

-0.10 

(0.04) 
  

36.52 

(5.04) 

45.72 

(7.01) 

9.20 

(4.15) 

24 40   
4.73 

(0.09) 

4.02 

(0.12) 

-0.71 

(0.21) 
  

7.50 

(0.01) 

7.42 

(0.01) 

-0.08 

(0.01) 
  

45.07 

(2.48) 

56.09 

(2.59) 

11.01 

(4.41) 

24 70   
5.23 

(0.14) 

4.42 

(0.09) 

-0.81 

(0.16) 
  

7.49 

(0.01) 

7.41 

(0.02) 

-0.08 

(0.01) 
  

69.57 

(9.44) 

54.93 

(4.46) 

-14.64 

(6.74) 

24 100   
4.54 

(0.65) 

3.88 

(0.14) 

-0.66 

(0.51) 
  

7.47 

(0.02) 

7.39 

(0.01) 

-0.08 

(0.03) 
  

106.45 

(10.03) 

102.68 

(14.12) 

-3.77 

(7.02) 

Treatments: 

  Incubation 3 (Day 89)  

  
Dissolved oxygen 

(mg/L) 
 pH  NH4

+ (µM) 

Temp 

(C)  

N 

Level 

(uM) 

  
Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
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18 20   
6.95 

(0.37) 

5.23 

(0.35) 

-1.72 

(0.28) 
  

7.80 

(0.01) 

7.49 

(0.07) 

-0.30 

(0.07) 
  

54.57 

(6.42) 

50.58 

(2.56) 

-3.99 

(4.49) 

18 40   
6.11 

(0.64) 

5.34 

(0.65) 

-0.76 

(0.22) 
  

7.70 

(0.02) 

7.54 

(0.06) 

-0.15 

(0.04) 
  

59.28 

(5.75) 

47.32 

(4.61) 

-11.96 

(5.71 

18 70   
4.85 

(0.13) 

4.31 

(0.24) 

-0.54 

(0.11) 
  

7.08 

(0.01) 

7.51 

(0.04) 

-0.09 

(0.03) 
  

41.59 

(4.27) 

50.00 

(1.88) 

8.41 

(4.74) 

18 100   
3.87 

(0.34) 

3.41 

(0.39) 

-0.46 

(0.10) 
  

7.49 

(0.02) 

7.45 

(0.02) 

-0.04 

(0.03) 
  

54.28 

(4.88) 

52.46 

(6.57) 

-1.81 

(2.41) 

24 20   
6.00 

(0.29) 

5.15 

(0.40) 

-0.85 

(0.13) 
  

7.60 

(0.02) 

7.49 

(0.04) 

-0.12 

(0.02) 
  

32.03 

(2.96) 

45.36 

(1.54) 

13.33 

(3.28) 

24 40   
5.31 

(0.22) 

4.50 

(0.13) 

-0.80 

(0.10) 
  

7.57 

(0.01) 

7.47 

(0.01) 

-0.10 

(0.03) 
  

45.94 

(3.92) 

42.10 

(1.54) 

-3.84 

(5.64) 

24 70   
5.67 

(0.31) 

4.57 

(0.47) 

-1.11 

(0.16) 
  

7.56 

(0.04) 

7.47 

(0.04) 

-0.09 

(0.01) 
  

66.30 

(5.12) 

52.46 

(2.05) 

-13.84 

(7.08) 

24 100   
4.95 

(0.38) 

3.53 

(0.18) 

-1.43 

(0.24) 
  

7.50 

(0.02) 

7.39 

(0.01) 

-0.11 

(0.02) 
  

64.78 

(3.79) 

71.30 

(6.12) 

6.52 

(3.39) 
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Table 5: Results from Two-Way ANOVAS, testing the effect of temperature and N-level on the change of water quality parameters 

over the course of each C. virginica incubation (Experiment 1) 

 
Change in water parameters over the course of each C. virginica incubation 

Testing the effect of Temperature and N-Level 

 
Incubation 1 (Day 5) 

Change in DO (mg/L) Change in pH Change in NH4
+ (µM) 

F16,23-values p-values F16,23-values p-values F16,23-values p-values 

Temp 9.10 0.008 2.70 0.120 1.65 0.217 

N-Level 1.15 0.360 2.31 0.115 0.21 0.888 

Temp * N-Level 0.58 0.632 0.58 0.637 2.38 0.108 

 
Incubation 2 (Day 53) 

Change in DO (mg/L) Change in pH Change in NH4
+ (µM) 

F16,23-values p-values F16,23-values p-values F16,23-values p-values 

Temp 0.003 0.954 4.93 0.041 0.23 0.638 

N-Level 0.56 0.649 0.35 0.788 0.47 0.708 

Temp * N-Level 0.53 0.671 1.25 0.326 2.70 0.080 

 

Incubation 3 (Day 89) 

Change in DO (mg/L) Change in pH Change in NH4
+ (µM) 

F16,23-values p-values F16,23-values p-values F16,23-values p-values 

Temp 1.27 0.277 2.05 0.172 0.48 0.499 

N-Level 2.17 0.132 4.00 0.0272 1.81 0.186 

Temp * N-Level 6.65 0.004 3.22 0.051 4.32 0.021 
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Table 6: Results from a Two-Way ANOVA, analyzing the effect of temperature and N level on rates of denitrification for C. virginica 

incubation experiments (Day 5, 53). Day 89 was excluded from analysis due to a technical issue. 

C. virginica denitrification rates (Experiment 1) 

Testing the effect of Temperature and N level  

  

  

Incubation 1 (Day 5) 

  

Incubation 2 (Day 53) 

  

Incubation 3 (Day 89)  

F16,23-value p-value F16,23-value p-value F16,23-value p-value 

Temp 4.46 0.051 0.0003 0.988   

N Level 0.22 0.883 6.68 0.004 X X 

Temp * N Level 1.01 0.413 5.21 0.011   

 

 

Table 7: Results from a Two-Way ANOVA, analyzing the effect of temperature and nitrogen treatment on rates of nitrous oxide 

production for each C. virginica incubation experiment (Day 5, 53, 89). 

C. virginica N2O production rates (Experiment 1) 

Testing the effect of Temperature and N level  

  

  

Incubation 1 (Day 5) 

  

Incubation 2 (Day 53) 

  

Incubation 3 (Day 89)  

F16,23-value p-value F16,23-value p-value F16,23-value p-value 

Temp 7.22 0.016 1.70 0.210 0.64 0.437 

N Level 1.14 0.365 4.10 0.025 2.44 0.102 

Temp * N Level 1.52 0.249 0.34 0.799 2.36 0.110 
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Table 8: Results from a Two-Way ANOVA, analyzing the effect of location and N level on C. virginica growth rates, biomass gains, 

and % mortality for Experiment 2, analyzed each year (2016 & 2017)  

 

Experiment 2, Growth and Mortality 

  

2016 2017 
Growth Rates Biomass Gains % Morality Growth Rates Biomass Gains % Morality 

F 8,11 
p-

value 
F 8,11 

p-

value 
F 8,11 

p-

value 
F 8,11 

p-

value 
F 8,11 

p-

value 
F 8,11 

p-

value 

Location -3.38 0.009 -3.12 0.014 -0.09 0.934 2.74 0.025 3.07 0.015 -0.70 0.503 

N Level  0.54 0.603 -1.84 0.1026 -0.26 0.800 -0.92 0.385 -1.40 0.199 -2.16 0.062 

Location X N Level 0.60 0.565 -0.42 0.683 1.30 0.233 -0.03 0.979 0.52 0.616 0.44 0.669 
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Table 9: Average water quality parameters of 2016 field season, as well as range in conditions (Experiment 2, 2016) 

 

Northern Location 
August 22 – September 1, 2017 

  Temp (°C)  Salinity (ppt) pH Chl-a (µg/L) DO (mg/L) 

Average (+/- SE) 25.79 (0.03) 29.71 (0.05) 7.88 (0.005) 12.33 (0.18) 6.69 (0.05) 

Min 23.65 22.67 6.63 2.00 3.19 

Max 27.77 30.38 8.21 32.65 10.78 

  

Southern Location 
September 2 – 12, 2017 

  Temp (°C)  Salinity (ppt) pH Chl-a (µg/L) DO (mg/L) 

Average (+/- SE) 22.18 (0.05) 30.54 (0.02) 8.00 (0.003) 3.85 (0.05) 7.25 (0.04) 

Min 19.17 23.53 7.65 0.70 4.7 

Max 25.18 31.02 8.26 16.83 10.81 

  

Northern Location 
September 12 – 22, 2017 

  Temp (°C)  Salinity (ppt) pH Chl-a (µg/L) DO (mg/L) 

Average (+/- SE) 23.03 (0.03) 29.65 (0.02) 8.20 (0.009) 39.95 (1.27) 6.71 (0.07) 

Min 20.92 25.57 7.57 5.31 1.49 

Max 25.14 30.33 8.77 478.72 11.14 

  

Southern Location 
September 27 – October 13, 2017  

  Temp (°C)  Salinity (ppt) pH Chl-a (µg/L) DO (mg/L) 

Average (+/- SE) 17.35 (0.03) 30.60 (0.02) 8.03 (0.002) 11.10 (1.46) 8.12 (0.02) 

Min 13.34 24.46 7.82 0.24 5.64 
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Max 20.27 31.27 8.25 54.28 10.96 
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Table 10: Results from a Two-Way ANOVA which analyzed the effect of N level and tidal height on the environmental measurements 

at each location, from a “one day profile” sampling event in the 2016 field season (Experiment 2, Year 1) 

 

Experiment 2 (2016) All Day Profile 

  

Northern Location 
Temp (°C) DO (mg/L) Salinity pH Chl-a (ug/L) NH4

+ 

F 20,23 p-value F 20,23 
p-

value 
F 20,23 

p-

value 
F 20,23 

p-

value 
F 20,23 

p-

value 
F 20,23 

p-

value 

N Level  0.05 0.964 -0.06 0.951 1.45 0.162 -0.08 0.933 -1.44 0.164 -0.40 0.693 

Tidal Height -0.59 0.561 -2.87 0.009 0.12 0.907 -1.34 0.194 -0.24 0.811 -1.63 0.119 

N Level X 

Tidal Height 
-0.36 0.724 0.61 0.546 0.63 0.537 -0.42 0.679 0.94 0.356 -0.34 0.739 

             

  

Southern Location 
Temp (°C) DO (mg/L) Salinity pH Chl-a (ug/L) NH4

+ 

F 20,23 p-value F 20,23 
p-

value 
F 20,23 

p-

value 
F 20,23 

p-

value 
F 20,23 

p-

value 
F 20,23 

p-

value 

N Level  0.55 0.585 0.32 0.750 0.80 0.435 1.00 0.328 1.27 0.220 -1.12 0.277 

Tidal Height -3.07 0.006 -2.12 0.046 -1.90 0.071 -2.36 0.028 -0.80 0.434 1.32 0.201 

N Level X 

Tidal Height 
0.43 0.669 -0.13 0.899 0.77 0.448 0.41 0.685 1.03 0.316 0.33 0.741 
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Table 11: Results from 2017’s field season (Experiment 2), highlighting the significant differences between location, month, and tidal 

height on environmental parameters 

 

Experiment 2 (2017) Environmental Parameters 

  

Northern Location 
Temp (°C) DO (mg/L) Salinity pH Chl-a (ug/L) 

F 824,829 p-value F 824,829 p-value F 824,829 p-value F 824,829 p-value F 824,829 p-value 

Month 71.308 <0.0001 62.042 <0.0001 815.328 <0.0001 25.653 <0.0001 237.540 <0.0001 

Tidal Height 2.649 0.104 4.417 0.035 15.231 0.0001 0.445 0.504 7.476 0.006 

Month X 

Tidal Height 
0.670 0.511 8.150 0.0003 15.501 0.002 0.303 0.738 12.201 <0.0001 

  

  

Southern Location 
Temp (°C) DO (mg/L) Salinity pH Chl-a (ug/L) 

F 824,829 p-value F 824,829 p-value F 824,829 p-value F 824,829 p-value F 824,829 p-value 

Month 53.155 <0.0001 13.598 <0.0001 821.121 <0.0001 231.698 <0.0001 3.875 0.021 

Tidal Height 0.094 0.759 0.060 0.806 0.049 0.823 1.308 0.253 0.488 0.485 

Month X 

Tidal Height 
14.187 <0.0001 0.737 0.478 4.256 0.014 3.024 0.049 0.025 0.974 
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Table 12: 2017 Field DIN averaged values for location, treatment, month, and tidal height; Average range of each location overall listed 

along bottom  

  
Experiment 2: 2017 Field DIN (Average +/- SE) 

June  July  August 

Concentration 

(µM): 
NH4

+ NO3
- NO2

-  NH4
+ NO3

- NO2
-  NH4

+ NO3
- NO2

- 

Northern Ambient Low 
22.58 

(1.81) 

8.49 

(3.52) 

0.04 

(0.04) 
 21.02 

(2.51) 

0.24 

(0.18) 

0.08 

(0.04) 
 23.06 

(3.57) 

0.38 

(0.15) 

0.10 

(0.01) 

Northern Ambient High 
22.89 

(2.88) 

4.81 

(1.97) 

0.03 

(0.01) 
 28.13 

(2.18) 

0.20 

(0.07) 

0.09 

(0.04) 
 51.60 

(5.33) 

0.94 

(0.17) 

0.08 

(0.04) 

Northern Enriched Low 
23.24 

(1.23) 

44.4 

(18.13) 

0.15 

(0.08) 
 27.96 

(1.25) 

0.09 

(0.02) 

0.07 

(0.02) 
 24.00 

(1.51) 

0.77 

(0.57) 

0.09 

(0.04) 

Northern Enriched High 
25.07 

(3.11) 

19.33 

(12.13) 

0.05 

(0.01) 
 23.02 

(2.98) 

2.63 

(1.16) 

0.10 

(0.03) 
 38.44 

(0.49) 

1.10 

(0.46) 

0.02 

(0.02) 

Southern Ambient Low 
31.51 

(8.00) 

10.00 

(4.14) 

0.09 

(0.01) 
 25.33 

(4.87) 

0.48 

(0.08) 

0.08 

(0.04) 
 25.29 

(3.51) 

0.31 

(0.07) 

0.10 

(0.04) 

Southern Ambient High 
20.58 

(1.630 

11.52 

(9.33) 

0.04 

(0.04) 
 23.42 

(2.83) 

0.56 

(0.05) 

0.09 

(0.04) 
 19.64 

(3.42) 

0.33 

(0.08) 

0.09 

(0.01) 

Southern Enriched Low 
22.67 

(2.57) 

9.06 

(3.35) 

0.09 

(0.02) 
 19.33 

(1.86) 

0.26 

(0.16) 

0.06 

(0.04) 
 27.64 

(3.42) 

0.44 

(0.20) 

0.05 

(0.03) 

Southern Enriched High 
30.18 

(2.83) 

0.39 

(0.18) 

0.01 

(0.01) 
 35.15 

(5.48) 

0.37 

(0.03) 

0.12 

(0.01) 
 29.73 

(5.83) 

0.07 

(0.05) 

0.10 

(0.04) 
 

 NH4
+:  NO3

-:  NO2
-: 

Northern Range 

(Overall): 
21.02 - 51.60 µM 

 
0.09 - 44.4 µM 

 
0.04 - 0.15 µM 

Southern Range 

(Overall): 
19.33 - 35.15 µM 

 
0.07 - 11.52 µM 

 
0.01 - 0.12 µM 
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Table 13: Average (+/- standard error) parameters between two field seasons (Experiment 2) 

 

 

2016 Average (+/-SE) Field Conditions 
Northern Location Southern Location 

Temperature (°C) 24.4 (0.04) 19.2 (0.05) 

Salinity (ppt) 29.7 (0.02) 30.6 (0.01) 

pH 8.04 (0.001) 8.01 (0.002) 

Chla (ug/L) 25.9 (0.07) 16.7 (0.92) 

DO (mg/L) 7.44 (0.06) 7.80 (0.02) 

NH4
+ (µM) 19.74 (1.31) 24.02 (1.10) 

2017 
  

Northern Location Southern Location 

Temperature (°C) 24.21 (0.33) 21.41 (0.50) 

Salinity (ppt) 29.83 (0.75) 31.91 (0.11) 

pH 6.91 (0.00) X 

Chla (RFU) 5.16 (0.53) 1.17 (0.27) 

DO (mg/L) 6.12 (0.45) 7.69 (0.19) 

NH4
+ (µM) 27.73 (1.13) 25.87 (1.45) 
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Table 14: Results from a Two-Way ANOVA analyzing the effects of incubation temperature and field treatment on rates of Experiment 

2, Year 2 (2017)’s denitrification and nitrous oxide production at each field site (Northern & Southern Location)  

 

Experiment 2, 2017 Incubation  

  

Northern Location Southern Location 
Denitrification 

Rates 
N2O Production 

Denitrification 

Rates 
N2O Production 

F 8,11 p-value F 8,11 p-value F 8,11 p-value F 8,11 p-value 

Incubation Temp -0.45 0.665 -2.81 0.022 2.20 0.058 -0.93 0.377 

Field Treatment 1.10 0.304 0.36 0.729 0.04 0.970 0.74 0.480 

Inc Temp X Field Treatment -1.38 0.205 -0.30 0.775 -2.87 0.021 -0.34 0.745 
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Table 15: Results from a Two-Way ANOVA testing the effect of N-level and time of exposure on the percentage of mortality of M. 

edulis at each temperature (Experiment 1) 

 

  

% Mortality M. edulis 

Testing the effect of N level and time 

18°C  24°C 

F40,59-value p- value F40,59-value p- value 

N Level 4.06 0.001 6.77 0.0008 

Time 1.83 0.142 1.10 0.372 

N Level X Time 0.69 0.723 0.59 0.840 
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Table 16: Averaged water quality parameters over the course of M. edulis’ 3 month laboratory experiment 

Treatments: 
  

Average (+/- SE) water quality parameters overall  
  

Temp (C)  N Level (uM)   Temperature (°C)  DO (mg/L) pH Salinity NH4
+ (µM) 

18 5   17.5 (0.04) B 7.30 (0.05) BC 7.76 (0.16) A 34.4 (0.00) 52.46 (4.24) A 

18 10   17.5 (0.05) B 7.59 (0.11) AB 7.57 (0.16) A 34.4 (0.00) 55.00 (3.37) A 

18 17.5   17.5 (0.06) B 7.03 (0.12) C 7.49 (0.11) A 34.4 (0.00) 54.85 (1.64) A 

18 25   17.5 (0.03) B 7.46 (0.21) ABC 7.57 (0.16) A 34.4 (0.00) 64.23 (6.12) A 

21 5   20.5 (0.15) A 7.82 (0.04) A 7.74 (0.15) A 34.4 (0.00) 53.64 (3.24) A 

21 10   20.4 (0.15) A 7.45 (0.11) ABC 7.79 (0.16) A 34.4 (0.00) 58.25 (2.65) A 

21 17.5   20.5 (0.15) A 7.13 (0.11) BC 7.74 (0.11) A 34.4 (0.00) 59.74 (0.53) A 

21 25   20.4 (0.18) A 7.18 (0.22) BC 7.69 (0.10) A 34.4 (0.00) 57.47 (3.33) A 

 

 

Table 17: Two-way ANOVA results, testing the effects of, N-Level and time on water quality parameters at each temperature treatment 

of M. edulis experimental tanks over the course of 3-month experiment  

 

M. edulis, Weekly Water Quality Measurements  

  

18°C 21°C 
DO pH NH4

+ DO pH NH4
+ 

F88, 131 p-value F56, 83 p-value F 32,47 p-value F88,131 p-value F56, 83 p-value F 32,47 p-value 

N Level 4.72 0.004 0.46 0.711 1.80 0.167 16.71 <0.0001 0.06 0.982 0.77 0.518 

Time (Days) 5.19 <0.0001 5.18 0.0003 1.80 0.166 13.46 <0.0001 1.87 0.102 10.64 <0.0001 

N Level X Time 1.29 0.178 0.21 0.999 1.52 0.184 0.74 0.822 0.04 1.000 3.06 0.009 
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Table 18: Average (+/- SE) pre, post, and overall change in water quality parameters over the course of each M. edulis incubation 

experiment 

 

Water quality parameters over course of incubation (Average +/- SE)  

Treatments: 

  
Incubation 1 (Day 2)  

  

  
Dissolved oxygen 

(mg/L) 
 pH  NH4

+ (µM) 

Temp 

(C)  

N 

Level 

(uM) 

  
Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 

18 5   
10.49 

(0.03) 

6.24 

(0.09) 

-4.26 

(0.12) 
  

8.03  

(0.01) 

7.51 

(0.02) 

-0.52 

(0.02) 
  

26.88 

(5.07) 

47.14 

(12.84) 

20.25 

(17.81) 

18 10   
10.53 

(0.05) 

6.75 

(0.15) 

-3.77 

(0.20) 
  

8.02  

(0.01) 

7.57 

(0.01) 

-0.46 

(0.02) 
  

61.80 

(10.83) 

61.45 

(7.02) 

-0.35 

(17.75) 

18 17.5   
10.47 

(0.11) 

6.44 

(0.12) 

-4.03 

(0.19) 
  

8.03  

(0.01) 

7.54 

(0.02) 

-0.49 

(0.01) 
  

76.11 

(11.44) 

70.53 

(8.33) 

-5.59 

(3.50) 

18 25   
10.65 

(0.06) 

6.74 

(0.08) 

3.90 

(0.12) 
  

8.04  

(0.00) 

7.58 

(0.02) 

0.46 

(0.02) 
  

78.21 

(6.17) 

94.97 

(8.33) 

16.76 

(14.24) 

21 5   
10.53 

(0.03) 

5.77 

(0.35) 

-4.76 

(0.37) 
  

8.03 

 (0.01) 

7.45 

(0.03) 

-0.59 

(0.03) 
  

30.73 

(11.94) 

68.78 

(14.46) 

38.06 

(22.77) 

21 10   
10.59 

(0.05) 

5.16 

(0.37) 

-5.43 

(0.42) 
  

8.04  

(0.01) 

7.40 

(0.05) 

-0.64 

(0.06) 
  

47.14 

(9.06) 

79.26 

(1.51) 

32.12 

(7.75) 

21 17.5   
10.51 

(0.10) 

5.44 

(0.15) 

5.07 

(0.22) 
  

8.04  

(0.01) 

7.44 

(0.02) 

-0.60 

(0.03) 
  

78.56 

(12.69) 

79.61 

(6.53) 

1.05 

(11.16) 

21 25   
10.72 

(0.06) 

5.65 

(0.08) 

-5.07 

(0.13) 
  

8.03  

(0.00) 

7.42 

(0.02) 

-0.62 

(0.02) 
  

340.77 

(31.17) 

486.71 

(44.50) 

145.94 

(72.90) 
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Treatments: 

Incubation 2 (Day 53)  

  
Dissolved oxygen 

(mg/L) 
 pH  NH4

+ (µM) 

Temp 

(C)  

N 

Level 

(uM) 

  
Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 

18 5   
7.07 

(0.40) 

4.64 

(0.63) 

-2.43 

(0.49) 
  

7.70 

(0.10) 

7.53 

(0.05) 

-0.18 

(0.06) 
  

84.76 

(13.51) 

68.16 

(2.99) 

-16.61 

(10.63) 

18 10   
8.02 

(0.13) 

5.03 

(0.63) 

-2.99 

(0.77) 
  

7.62 

(0.11) 

7.53 

(0.08) 

-0.09 

(0.04) 
  

124.74 

(18.24) 

97.48 

(9.43) 

-27.26 

(9.52) 

18 17.5   
7.86 

(0.68) 

5.24 

(0.83) 

-2.62 

(0.16) 
  

7.46 

(0.01) 

7.46 

(0.05) 

-0.00 

(0.06) 
  

84.84 

(4.67) 

101.04 

(9.71) 

16.19 

(7.60) 

18 25   
6.14 

(0.52) 

4.72 

(0.52) 

-1.41 

(0.26) 
  

7.59 

(0.11) 

7.48 

(0.06) 

-0.11 

(0.05) 
  

76.17 

(4.16) 

95.00 

(11.31) 

18.84 

(7.77) 

21 5   
6.65 

(0.37) 

5.32 

(0.12) 

-1.33 

(0.29) 
  

7.90 

(0.02) 

7.63 

(0.02) 

-0.27 

(0.00) 
  

63.12 

(9.39) 

78.65 

(7.84) 

15.53 

(17.22) 

21 10   
6.50 

(0.69) 

4.64 

(0.55) 

-1.86 

(0.22) 
  

7.82 

(0.07) 

7.52 

(0.09) 

-0.30 

(0.02) 
  

76.25 

(6.69) 

82.28 

(3.33) 

6.03 

(9.93) 

21 17.5   
7.31 

(0.27) 

4.99 

(0.47) 

-2.33 

(0.32) 
  

7.80 

(0.10) 

7.60 

(0.05) 

-0.20 

(0.06) 
  

95.58 

(6.68) 

91.12 

(5.79) 

-4.46 

(5.48) 

21 25   
7.64 

(0.25) 

4.72 

(1.03) 

-2.92 

(0.97) 
  

7.74 

(0.14) 

7.57 

(0.09) 

-0.17 

(0.07) 
  

91.12 

(5.79) 

94.10 

(3.23) 

2.97 

(3.56) 

Treatments: 

  Incubation 3 (Day 105)  

 Dissolved oxygen 

(mg/L) 
  pH   NH4

+ (µM) 

Temp 

(C)  

N 

Level 

(uM) 

  
Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 
  

Pre-

Incubation 

Post-

Incubation 

Overall 

Change 

18 5   
4.14 

(0.93) 

3.24 

(0.70) 

-0.91 

(0.37) 
  no data   

51.20 

(3.3) 

59.58 

(3.71) 

8.38 

(0.82) 
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18 10   
4.24 

(0.66) 

4.54 

(0.49) 

-0.30 

(0.46) 
    

63.00 

(1.01) 

63.22 

(2.05) 

0.22 

(1.37) 

18 17.5   
5.63 

(0.31) 

3.62 

(0.22) 

-2.02 

(0.16) 
    

66.33 

(4.00) 

67.52 

(1.12) 

1.19 

(4.94) 

18 25   
4.34 

(1.30) 

4.30 

(0.57) 

-0.04 

(0.74) 
    

63.29 

(2.15) 

65.59 

(1.27) 

2.30 

(3.41) 

21 5   
4.81 

(1.26) 

4.27 

(0.99) 

-0.54 

(0.29) 
  

no data 

  
72.86 

(8.61) 

79.62 

(7.47) 

6.75 

(4.39) 

21 10   
5.51 

(0.57) 

4.75 

(0.42) 

-0.76 

(0.16) 
    

55.20 

(1.58) 

57.65 

(1.89) 

2.45 

(2.90) 

21 17.5   
5.56 

(0.42) 

4.83 

(0.42) 

-0.74 

(0.09) 
    

59.66 

(1.52) 

60.10 

(1.91) 

0.45 

(4.86) 

21 25   
5.34 

(0.30) 

4.40 

(0.42) 

-0.94 

(0.12) 
    

59.43 

(1.52) 

59.21 

(3.26) 

-0.22 

(4.78) 
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Table 19: Results from Two-Way ANOVAS, testing the effect of temperature and N-level on the change of water quality parameters 

over the course of each M. edulis incubation experiment 

 

Change in water parameters over the course of each M. edulis incubation 

Testing the effect of Temperature and N-Level 

  

Incubation 1 (Day 2) 

 Change in DO (mg/L) Change in pH Change in NH4
+ (µM) 

F16,23-values p-values F16,23-values p-values F16,23-values p-values 

Temp 26.51 <0.0001 29.24 <0.0001 3.36 0.085 

N-Level 0.06 0.981 0.13 0.930 2.00 0.154 

Temp X N-Level 1.25 0.324 1.23 0.332 1.22 0.334 

  

Incubation 2 (Day 53) 

 Change in DO (mg/L) Change in pH Change in NH4
+ (µM) 

F16,23-values p-values F16,23-values p-values F16,23-values p-values 

Temp 0.33 0.5741 10.58 0.005 0.73 0.404 

N-Level 0.38 0.767 1.67 0.213 1.21 0.338 

Temp X N-Level 1.97 0.160 0.86 0.481 3.05 0.059 

  

Incubation 3 (Day 105) 

 Change in DO (mg/L) Change in pH Change in NH4
+ (µM) 

F16,23-values p-values F16,23-values p-values F16,23-values p-values 

Temp 0.06 0.811 

no data.  

0.04 0.840 

N-Level 2.42 0.104 1.01 0.416 

Temp X N-Level 3.08 0.058 0.10 0.959 
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Table 20: Results from a Two-Way ANOVA, analyzing the effect of N level and time on rates of denitrification for both temperatures, 

during each M. edulis incubation experiment (Day 2, 53, 105). 

 

M. edulis denitrification rates  

Testing the effect of Temperature and N level 

  

Incubation 1  

(Day 2) 
  

Incubation 2  

(Day 53) 
  

Incubation 3  

(Day 105) 

F 16,23 p value   F 16,23 p value   F 16,23 p value 

Temperature 0.07 0.789   0.245 0.626   1.53 0.230 

N level 0.10 0.954   0.179 0.908   0.34 0.790 

Temp X N Level 1.14 0.360   0.072 0.974   2.00 0.150 

 

 

 

Table 21: Results from a Two-Way ANOVA, analyzing the effect of N level and time on rates of nitrous oxide production for both 

temperatures, during each M. edulis incubation experiment (Day 2, 53, 105). 

 

M. edulis Nitrous Oxide Production Rates  

Testing the effect of Temperature and N level 

  

Incubation 1  

(Day 2) 
  

Incubation 2  

(Day 53) 
  

Incubation 3  

(Day 105) 

F 16,23 p value   F 16,23 p value   F 16,23 p value 

Temperature 0.07 0.786   3.48 0.080   2.00 0.176 

N level 0.13 0.934   2.05 0.147   2.50 0.095 

Temp X N Level 0.91 0.454   1.89 0.170   0.676 0.579 
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Table 22:  Comparison of C. virginica and M. edulis denitrification rates measured within in this study to past literature 

 

Denitrification rates 
Environment / species Rate N2 / m2 / hr Reference 

restored oyster reef  500 Kellogg et al 2013 

restored oyster reef  581.9 (164)  Humphries et al 2016 

aquaculture operation  346.1 (168.6)  Humphries et al 2016 

cultch  60.9 (44.3)  Humphries et al 2016 

bare sediment  24.2 (10.1)  Humphries et al 2016 

Crassostrea virginica (laboratory) 40.6 Caffery et al 2016 

Results presented in this document  
avg umol N2 / m2 / hr (+/- SE) 

Crassostrea virginica 86.27 (13.69) Chapter 1, Experiment 1, Year 1 

Crassostrea virginica 426.88 (111.21) * Chapter 1, Experiment 1, Year 2 

Crassostrea virginica 327.86 (82.73) ** Chapter 1, Experiment 1 

Mytilus edulis 344.52 (128.28) ** Chapter 2 

*reflects only N2 production values 

**averaged across all timepoints, and reflects only N2 production values 
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Table 23: Comparison of C. virginica and M. edulis N2O production rates measured within in this study, to other marine invertebrates 

measured by Heisterkamp et al 2010 

 

N2O production in other marine inverts (Heisterkamp et al 2010) 

Species (common name) N2O (nmol /g /hr) (+/- SD) 

Ascidia sp. tunicates 0.043  (0.024) 

Carcinus maenas European green crab 0.369  (0.137) 

Pagurus bernhardus hermit crab 0.020 (0.018) 

Corophium volutator mud shrimp 0.955 (0.664) 

Echinocyamus pusillus pea urchin 0.040 (0.027 

Echinocardium cordatum sea potato (urchin) 0.069 

Scrobicularia plana marine bivalve 0.302 (0.083) 

Cerastoderma edule cockle 0.126 

Mytilus edulis blue mussel 0.269 (0.280) 

Macoma balthica salt water clam 1.098 (1.066) 

Polyplacorphora chiton 0.471 (0.237) 

Littorina littorea periwinkle 0.237 (0.208) 

Hinia reticulata dog whelk 0.608 (0.265) 

Gibbula sp. small sea snail 0.107 (0.037) 

Hydrobia ulvae mud snail 5.440 (1.822) 

Arenicola marina lug worm 0.045 (0.032) 

Lepidonotus squamatus scale worm 0.666 

Nephtys hombergii catworm 0.082 (0.053) 

Nereis diversicolor ragworm 0.398 (0.319) 

Litopenaeus vannamei whiteleg shrimp 0.183 (0.066) 

Results presented in this document  

avg nmol N2O / g wet weight /hr (+/- SD) 
Crassostrea virginica field 2016 manipulation X 
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Crassostrea virginica field 2017 manipulation 18°C  0.013 (0.050) 

Crassostrea virginica field 2017 manipulation 24°C  0.119 (0.107) 

Crassostrea virginica lab experiments 18°C  0.195 (0.377) 

Crassostrea virginica lab experiments 24°C  0.112 (0.313) 

Mytilus edulis lab experiments 18°C  0.217 (0.214) 

Mytilus edulis lab experiments 24°C  0.137 (0.080) 
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Figure 1: Main aspects of the contribution of the eastern oyster to the marine N cycle. As the 

organism uptakes NO-
3 rich water, its microbial gut community intercepts and converts it to an 

inert N2 gas through the process of denitrification (NO3
- 
→NO2

- → NO + N2O → N2). 

Denitrification is tightly coupled to nitrification (NH4
+ → NH2OH → NO2

- → NO3
-). There are 

two opportunities for N2O production: (1) as an intermediate gas in denitrification and (2) as a 

byproduct during nitrification. 
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Figure 2: Layout of experimental tanks for laboratory portion (Experiment 1) of the study. Aquaria of varying nutrient levels were 

randomly placed within a water bath, and maintained at either 18°C or 24°C. Each aquarium contained 10 organisms to start. For the 

mussel experiments (Chapter 2), the gradient of N levels was reduced to 5µM, 10 µM, 17.5 µM, and 25 µM and maintained at either 

18°C or 21°C.  
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Figure 3: Depiction of incubation tank (same set up for oysters Experiment 1 & 2 and mussels) 
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Figure 4: Map depicts Point Judith Pond. Red stars mark the two field locations (Experiment 2), 

located at contrasting ends of the estuarine gradient of the Pond. 
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Figure 5: Experimental bucket setup for field component for Experiment 2 
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Figure 6: Incubation setup for Field 2016 oysters (Experiment 2, Year 1) 

 

 

 
Figure 7: Incubation setup for Field 2017 oysters (Experiment 2, Year 2) 
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Figure 8: Effect of nitrogen enrichment on oyster mortality at two different temperatures. 

Percentage of mortality for each measured time period in Experiment 1; both figures show the four 

N levels and different letters denote significant effect N-level within each observation 

(independent of temperature and time; letters correspond with p and F values under each 

observation) 
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Figure 9: C. virginica mortality in relation to water quality parameters of experimental aquaria:  Figures to the left represent % 

mortality and corresponding water quality parameters (temperature, oxygen, pH, respectively), over time within the lowest (20µM) and 

highest (40µM) mortality levels within the cooler (18°C) treatments. Figures to the right represent the same parameters within the 

warmer (24°C) treatments; the lowest level of mortality occurred in the 20µM treatments, and the highest in the 100µM 
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Figure 10: Effect of nitrogen enrichment on denitrification rates in oysters incubated at two 

different temperatures (T).  Denitrification rates were measured after 5, 53, and 89 days of 

incubation in the different experimental conditions. Different letters denote significant effects of 

Temperature X N level X Time (days). Incubation 3 (Day 89) was excluded from analysis due to 

issues with the experimental setup. 
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Figure 11: Effect of nitrogen enrichment on N2O production rates in oysters incubated at 

two different temperatures (T).  N2O production rates were measured after 5, 53, and 89 days of 

incubation in the different experimental conditions. Different letters denote significant effects of 

Temperature X N level X Time (days). 
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Figure 12:  Results from a Principal Component Analysis for Day 0 and Day 48 of the oyster incubation experiments; Day 84 was 

excluded due to reason believe technical difficulties with experimental setup. 
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Figure 13:  Crassostrea virginica growth rates from 2016 & 2017’s field experiments. Displayed 

on each graph are results from a Two-Way ANOVA analyzing the effect of location and N-level 

on each year’s data 
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Figure 14:  Crassostrea virginica biomass rates from 2016 & 2017’s field experiments. Displayed 

on each graph are results from a Two-Way ANOVA analyzing the effect of location and N-level 

on each year’s data 
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Figure 15: Results from 2016 field “all day profile” – examining the differences in environmental 

factors between location, N-level, and tidal height  
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Figure 15 (CONT.): Results from 2016 field “all day profile” – examining the differences in 

environmental factors between location, N-level, and tidal height
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Figure 16: Environmental factors from the 2017 field season, displayed by location and tidal height
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Figure 17: Crassostrea virginica denitrification rates from the 2016 field oyster incubation; organisms were incubated at 18°C and 

received flow from unenriched site water; Results from a Two-Way ANOVA analyzed the effect of field location and field N-level is 

displayed in the upper left corner; letters denote significant differences among treatments 
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Figure 18: C. virginica denitrification rates (2017 field experiment).  
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Figure 19: C. virginica nitrous oxide production rates (2017 field experiment) 
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Figure 20: Principal Component Analysis for 2016 & 2017 field oyster incubations (Experiment 2) 
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Figure 21: Effect of nitrogen enrichment on mussel mortality at two different temperatures 

Percentage of mortality over the course of the mussel laboratory experiment; the upper portion 

represents the 18°C treatments at each N level over time (days), and the lower portion the 21°C 

treatments. Two-way ANOVAs were used to test the effect of N level and time (independent of 

temperature) 
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Figure 22: M. edulis mortality in relation to water quality parameters of experimental aquaria: Figures to the left represent % 

morality and corresponding water quality parameters (temperature, oxygen, pH, respectively), over time, within the lowest (5µM) and 

highest (17.5µM) morality levels within the cooler (18°C) treatments. Figures to the right represent the same parameters within the 

warmer (21°C) treatments; the lowest level of mortality occurred in the 25µM treatments, and the highest in the 17.5µM 
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Figure 23: Effect of nitrogen enrichment on denitrification rates in mussles incubated at two 

different temperatures (T).  Denitrification rates for each incubation event (Day 2, 53, 105) for 

M. edulis’ laboratory experiment. Each Incubation time point for18°C treatments are represented 

in the upper portion and 21°C in the lower portion of the figure. N Levels are depicted along the 

bottom 
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Figure 24: Effect of nitrogen enrichment on N2O production rates in mussels incubated at 

two different temperatures (T).  N2O production rates for each incubation event (Day 2, 53, 105) 

for M. edulis. Letters denote significant effects of Temperature X N Level X Time.
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Figure 25: Results from a Principal Component Analysis for each M. edulis incubation over the course of the 3 month laboratory 

experiment. 

. 
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APPENDIX 

Appendix 1: Results from a Three-Way ANOVA testing the effect of temperature, N-level, and 

time on cumulative percent mortality of C. virginica through the laboratory experiment 

(Experiment 1, Days 35, 59, 90, 99). 

 

C. virginica percentage of mortality (Experiment 1)  

Testing the effect of Temperature, N Level, & Time 

  

  

F96,134-value p-value 

Temp 0.53 0.467 

N Level  4.85 0.004 

Temp * N Level 3.00 0.035 

Time 3.45 0.007 

Temp * Time 0.64 0.672 

N Level * Time 0.57 0.889 

Temp * N Level * Time 0.25 0.998 

 

Appendix 2: Tukey HSD post-hoc results indicating the significant differences which arose from 

the three-way ANOVA analyzing the effect of Temperature, N-level and Time on C. virginica % 

mortality (Experiment 1). Significant factors were N level, Temperature X N level, and time.  

 

C. virginica % Mortality (Experiment 1) 

Effect of N level (F96, 143 =4.85, p=0.0035) 

Level (µM)   Least Sq. Mean 

100 A 0.07 

40 A 0.06 

70 AB 0.05 

20 B 0.003 

Effect of Temp X N level (F96, 143 =43.00, p=0.0345) 

Level (°C / µM)   Least Sq. Mean 

24,100 A 0.10 

18,40 AB 0.08 

24,70 ABC 0.06 

18,100 ABC 0.04 

18,70 ABC 0.04 

24,40 ABC 0.03 
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24,20 BC 0.006 

18,20 C 0.000 

Effect of Time (F96, 143 =3.455, p=0.0065) 

Level (days)   Least Sq. Mean 

99 A 0.08 

90 A 0.08 

59 AB 0.04 

35 AB 0.04 

4 AB 0.03 

0 B 0.00 

*Levels not connected by the same letter are significantly different  
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Appendix 3: Three-way ANOVA result, testing the effects of temperature, N-Level, and time on weekly water quality measurements 

of C. virginica experimental tanks over the course of 3-month experiment (Experiment 1) 

 

 

Weekly water quality for C. virginica laboratory experiment (Experiment 1)  

Testing the effect of Temperature, N Level, & Time 

  

Temperature (°C)  DO (mg/L) pH NH4
+ (µM) 

F48,71-

value 
p-value 

F48,71-

value 
p-value 

F48,71-

value 
p-value 

F48,71-

value 
p-value 

Temp 3372.18 <0.0001 0.94 0.334 48.89 <0.0001 0.20  0.653 

N Level  0.11 0.955 2.07 0.111 9.81 <0.0001 3.90  0.0143 

Temp * N Level 0.15 0.932 5.71 0.001 13.56 <0.0001 0.36  0.785  

Time 25.95 <0.0001 2.60 0.042 25.28 <0.0001 34.79  <0.0001  

Temp * Time 16.76 <0.0001 1.48 0.217 0.94 0.459 0.59  0.559  

N Level * Time 0.09 1 0.48 0.918 1.23 0.265 1.23  0.308  

Temp * N Level * Time 0.08 1 0.47 0.926 0.75 0.726 0.64  0.700  
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Appendix 4: Tukey HSD post-hoc results indicating the significant differences which arose from the three-way ANOVA analyzing the 

effect of Temperature, N-level and Time on the average water quality parameters (Temperature, DO, pH, NH4
+) over the course of the 

3-month, C. virginica laboratory-based study (Experiment 1) 

 

C. virginica water quality over the course of 3-month laboratory experiment (Experiment 1) 

Temperature   Dissolved Oxygen (mg/L)   pH   NH4
+ (µM) 

Effect of Temperature (F112, 

167=3372.18, p=<0.0001) 

  Effect of Temperature X N 

Level (F80, 119 =16.76, 

p=<0.0001) 

  Effect of Temperature (F96, 143 

=48.89, p=<0.0001) 

  Effect of N Level (F48, 71=3.90, 

p=0.0143)       

Level   
Least Sq. 

Mean 
  

Level (°C, 

µM) 
  

Least Sq. 

Mean 
  

Level 

(°C) 
  

Least Sq. 

Mean 
  

Level 

(µM) 
  

Least Sq. 

Mean 

24 A 22.92  18,40 A 7.64   24 A 7.69   100 A 93.53 

18 B 17.91  18,20 A 7.62   18 B 7.61   70 AB 87.22 

Effect of Time (F112, 167 

=25.95, p=<0.0001) 

 24,70 A 7.61           40 AB 83.68 
 24,20 AB 7.41   

Effect of N Level (F96, 143 =9.81, 

p=<0.0001) 

  20 B 70.41 

Level 

(days) 
  

Least Sq. 

Mean 
 24,100 AB 7.35     

Effect of Time (F48, 71=34.79, 

p=<0.0001) 
55 A 21.17  24,40 AB 7.27   

Level 

(µM) 
  

Least Sq. 

Mean 
  

68 A 21.16  18,100 AB 7.08   40 A 7.68   
Level 

(days) 
  

Least Sq. 

Mean 

41 B 20.66  18,70 B 6.91   20 A 7.68   31 A 105.53 

17 C 20.13  
Effect of Time (F80, 119 =2.60, 

p=0.0420) 

  70 A 7.64   17 B 89.56 

10 C 20.02    100 B 7.60   41 C 56.04 

24 C 19.98  Level 

(days) 
  

Least Sq. 

Mean 
  Effect of Temperature X N 

Level (F96, 143 =13.56, 

p=<0.0001) 

  

  31 C 19.78  10 A 7.60     
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Effect of Temperature X 
Time (F112, 167=16.76, 

p=<0.0001) 

 41 AB 7.49   

Level 

(°C, 

µM) 

  
Least Sq. 

Mean 
  

 17 AB 7.31   24,40 A 23.01   

Level 

(°C, 

days) 

  
Least Sq. 

Mean 
 31 AB 7.28   24,100 A 22.90   

24,68 A 24.31  24 B 7.14   24,70 A 22.90   

24,55 AB 24.18  

  

  24,20 A 22.87   

24,41 B 23.43    18,100 B 17.91   

24,17 C 22.40    18,70 B 17.91   

24,10 C 22.26    18,20 B 17.91   

24,24 C 22.04    18,40 B 17.90   

24,31 C 21.78    Effect of Time (F96, 143 =25.28, 

p=<0.0001) 

  

18,55 D 18.15      

18,68 D 18.02    
Level 

(days) 
  

Least Sq. 

Mean   

18,24 D 17.91    55 A 21.17   

18,41 D 17.88    68 A 21.16   

18,17 D 17.85    41 B 20.66   

18,10 D 17.78    17 C 20.13   

18,31 D 17.77    10 C 20.02   

  
   24 C 19.98   

    31 C 19.78   

*Levels not connected by the same letter are significantly different  
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Appendix 5: Tukey HSD post-hoc results indicating the significant differences which arose from 

the two-way ANOVA analyzing the effect of Temperature and N level on the change of water 

quality parameters (DO, pH, NH4
+) for each C. virginica incubation timepoint (Day 5, 53, 89) 

(Experiment 1)  

 

C. virginica change in water quality over the course of each incubation 

event (Experiment 1) 

Incubation 1 (Day 5) 

Change in DO (mg/L)   Change in pH   Change in NH4
+ (µM) 

Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

  
Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

  
Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

18,100 A  -1.17   18,100 A  -0.18   18,70 A 19.37 

18,20 A  -1.33   24,100 A  -0.18   24,100 A 9.47 

18,70 A  -1.73   18,70 A  -0.19   18,20 A 1.37 

18,40 A  -1.86   18,20 A  -0.22   18,100 A  -5.05 

24,20 A  -1.98   18,40 A  -0.24   18,40 A  -6.53 

24,70 A  -1.99   24,70 A  -0.25   24,40 A  -7.69 

24,100 A  -2.25   24,40 A  -0.26   24,20 A  -8.42 

24,40 A  -2.49   24,20 A  -0.30   24,70 A  -28.11 

Incubation 2 (Day 53) 

Change in DO (mg/L)   Change in pH   Change in NH4
+ (µM) 

Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

  
Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

  
Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

18,100 A  -0.17   18,100 A  -0.05   24,40 A 11.01 

24,20 A  -0.66   18,70 A  -0.06   24,20 A 9.20 

24,100 A  -0.66   24,40 A  -0.08   18,70 A 8.04 

24,40 A  -0.71   24,70 A  -0.08   18,20 A 0.00 

18,70 A  -0.74   24,100 A  -0.08   24,100 A  -3.77 

18,40 A  -0.76   18,40 A  -0.09   18,100 A  -5.07 
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24,70 A  -0.81   24,20 A  -0.10   18,40 A  -12.39 

18,20 A  -1.11   18,20 A  -0.16   24,70 A  -14.64 

Incubation 3 (Day 89) 

Change in DO (mg/L)   Change in pH   Change in NH4
+ (µM) 

Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean   

Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

  
Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

18,100 A  -0.46 
  

18,100 A  -0.04   24,20 A 13.33 

18,70 A  -0.54   24,70 A  -0.09   18,70 A 8.41 

18,40 AB  -0.76   18,70 A  -0.09   24,100 A 6.52 

24,40 AB  -0.80   24,40 AB  -0.10   18,100 A  -1.81 

24,20 AB  -0.85   24,100 AB  -0.11   24,40 A  -3.84 

24,70 AB  -1.11   24,20 AB  -0.12   18,20 A  -3.99 

24,100 AB  -1.43   18,40 AB  -0.15   18,40 A  -11.96 

18,20 B  -1.72   18,20 B  -0.30   24,70 A  -13.84 

**Levels not connected by the same letter are significantly different  
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Appendix 6: Results from a Three-Way ANOVA testing the effect of temperature, N level, and 

time on rates of denitrification and nitrous oxide production of C. virginica during Experiment 1 

 

C. virginica rates of denitrification & N2O Production (Experiment 1) 

Testing the effect of Temperature, N level & Time 

  

  
Denitrification Rates   

N2O Production 

Rates 

  F-value p-value    F - value p-value 

Temp   2.53 0.121   1.39 0.243 

N Level   3.47 0.027   1.79 0.162 

Temp * N Level   2.28 0.098   1.59 0.205 

Time    0.39 0.535   2.59 0.086 

Temp * Time   2.6 0.117   4.07 0.023 

N Level * Time   2.46 0.081   3.05 0.013 

Temp * N Level * Time   3.31 0.032   1.21 0.317 
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Appendix 7: Tukey HSD post-hoc results indicating the significant differences which arose from 

the three-way ANOVA analyzing the effect of Temperature, N level, and time rates of 

denitrification and N2O production of C. virginica (Experiment 1). Day 89 was excluded from the 

denitrification analysis due to experimental error  

 

C. virginica Rates of Denitrification and Nitrous Oxide Production 

(Experiment 1) 

Denitrification Rates 
  

Nitrous Oxide Production Rates 
  

Level (°C, 

µM, days) 
  

Least Sq. 

Mean 
  

Level (°C, 

µM, days) 
  

Least Sq. 

Mean 

24,40,53 A 314.86   18,70,89 A 0.76 

24,40,5 A 157.92   24,100,53 AB 0.62 

24,70,5 A 143.50   24,100,89 ABC 0.47 

24,20,53 A 135.52   18,100,53 ABC 0.41 

24,100,5 AB 101.561   18,40,5 ABC 0.31 

18,100,5 AB 57.40   18,70,5 ABC 0.29 

24,20,5 AB 41.46   24,20,5 ABC 0.25 

18,20,5 AB 31.70   18,100,89 ABC 0.23 

18,100,53 AB 26.70   18,20,5 ABC 0.21 

18,40,53 AB 20.85   24,70,53 ABC 0.21 

18,20,53 AB 20.76   24,40,89 ABC 0.17 

18,70,53 AB  -22.14   18,40,89 ABC 0.17 

24,100,53 AB  -57.93   24,70,89 ABC 0.16 

18,40,5 AB  -80.01   18,100,5 ABC 0.10 

18,70,5 AB  -139.87   24,40,53 ABC 0.07 

24,70,53 B  -350.00   18,20,89 ABC 0.06 

  

  24,20,89 ABC 0.05 

  18,20,53 ABC 0.01 
  24,20,53 ABC  -0.04 

  18,70,53 ABC  -0.04 

  24,40,5 ABC  -0.11 

  24,100,5 ABC  -0.14 

  18,40,53 BC  -0.18 
  24,70,5 C  -0.38 

*Levels not connected by the same letter are significantly different  
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Appendix 8: Tukey HSD post-hoc results indicating the significant differences which arose from 

the two-way ANOVA analyzing the effect of Temperature and N level at each incubation time 

point (independently) of denitrification and N2O production of C. virginica (Experiment 1). Day 

89 was excluded from the denitrification analysis due to experimental error  

 

C. virginica rates of denitrification and N2O production for each incubation 

event (Experiment 1) 

Incubation 1 (Day 5) 

Denitrification Rates (nmol / g wet 

weight / hr) 
  

N2O production Rates (nmol / g 

wet weight / hr) 

Level (°C / 

N level) 
  

Least Sq. 

Mean 
  

Level (°C / 

N level) 
  

Least Sq. 

Mean 

24,40 A 157.92  18,40 A 0.31 

24,70 A 143.50  18,70 A 0.29 

24,100 A 101.56  24,20 A 0.25 

18,100 A 57.40  18,20 A 0.21 

24,20 A 41.46  18,100 A 0.10 

18,20 A 31.70  24,40 A  -0.11 

18,40 A  -80.01  24,100 A  -0.14 

18,70 A  -139.87   24,70 A  -0.38 

Incubation 2 (Day 53) 

Denitrification Rates (nmol / g wet 

weight / hr) 
  

N2O production Rates (nmol / g 

wet weight / hr) 

Level (°C / 

N level) 
  

Least Sq. 

Mean 
  

Level (°C / 

N level) 
  

Least Sq. 

Mean 

24,40 A 314.86   24,100 A 0.62 

24,20 A 135.52   18,100 A 0.41 

18,100 AB 26.70   24,70 A 0.21 

18,40 AB 20.85   24,40 A 0.07 

18,20 AB 20.76   18,20 A 0.01 

18,70 AB  -22.14   24,20 A  -0.04 

24,100 AB  -57.93   18,70 A  -0.04 

24,70 B  -350.00   18,40 A  -0.18 

Incubation 3 (Day 89) 

Denitrification Rates (nmol / g wet 

weight / hr) 
  

N2O production Rates (nmol / g 

wet weight / hr) 

        
Level (°C / 

N level) 
  

Least Sq. 

Mean 

      18,70 A 0.76 

      24,100 A 0.47 
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      18,100 A 0.23 

      24,40 A 0.17 

      18,40 A 0.17 

      24,70 A 0.16 

      18,20 A 0.06 

        24,20 A 0.05 

**Levels not connected by the same letter are significantly different  
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Appendix 9: Summary of growth, biomass, and morality over the course of two field seasons (Experiment 2 - 2016 & 2017), anazlyed 

with a Three-Way ANOVA, testing the effect of location, N level, and field season (year).  

 

Comparison of C. virginica growth and mortality rates: 2016 and 2017 field data (Experiment 2) 

Testing the effect of Location, N-level, and Year 

  

  

Growth Rates 

 

Biomass Gain 

 

% Mortality 

F-value p-value F-value p-value F-value p-value 

Location 0.34 0.571 0.28 0.606 0.19 0.670 

N Level  0.25 0.622 5.35 0.034 1.79 0.199 

Location * N Level 0.08 0.776 0.00 0.996 1.79 0.199 

Year 5.43 0.033 21.12 0.0003 0.09 0.770 

Location * Year 16.79 0.001 18.95 0.001 0.08 0.777 

N Level * Year 1.14 0.302 0.32 0.578 0.79 0.386 

Location * N Level * Year 0.11 0.742 0.43 0.522 0.78 0.391 
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Appendix 10: Results from a Three-Way ANOVA which analyzed the effect of location, N-level, and tidal height on the environmental 

measurements from a “one day profile” sampling event in the 2016 field season (Experiment 2) 

 

Full day profile of 2016 field characteristics (Experiment 2) 

Testing the effect of Location, N Level, & Tidal Height 

  
Temperature (°C)  

  

DO (mg/L) 

  

Salinity (ppt) 

F40,47-value p-value F40,47-value p-value F40,47-value p-value 

Location 10.71 <0.0001 -0.35 0.726 -20.96 <0.0001 

N Level  0.48 0.635 -0.22 0.824 1.42 0.163 

Location * N Level -0.43 0.673 -0.50 0.621 0.05 0.961 

Tidal Height -2.85 0.007 -2.37 0.023 -1.58 0.122 

Location * Tidal Height 2.16 0.037 -0.57 0.572 1.70 0.097 

N Level * Tidal Height 0.15 0.884 -0.36 0.721 0.98 0.331 

Location * N Level * Tidal Height -0.56 0.578 -0.25 0.804 -0.35 0.730 

  

  

pH 

  

Chl-a (µg/L) 

  

NH4
+ (µM) 

F40,47-value p-value F40,47-value p-value F40,47-value p-value 

Location -0.30 0.769 5.61 <0.0001 -2.51 0.016 

N Level  0.48 0.635 -1.34 0.189 -0.84 0.408 

Location * N Level -0.62 0.540 -1.54 0.132 0.75 0.458 

Tidal Height -2.42 0.020 -0.30 0.762 -1.08 0.286 

Location * Tidal Height 0.17 0.867 -0.18 0.861 -2.96 0.005 

N Level * Tidal Height -0.13 0.900 1.02 0.312 0.67 0.507 

Location * N Level * Tidal Height -0.58 0.568 0.86 0.395 0.19 0.847 
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Appendix 11: Tukey HSD post-hoc results indicating the significant differences which arose from the three-way ANOVA analyzing 

the effect of Location, N level, and Tidal height on environmental parameters of Point Judith Pond for the 2016 all day profile 

(Experiment 2) 

 

Experiment 2: 2016 all day profile of environmental parameters  

Temperature (°C)   pH 

Level (Location, N level, Tidal 

Height) 
  

Least 

Sq. 

Mean 

  
Level (Location, N level, Tidal 

Height) 
  Least Sq. Mean 

Northern, Ambient, High A 22.91   Southern, Ambient, High A 8.06 

Northern, Enriched, High A 22.86   Northern, Ambient, High A 8.03 

Northern, Enriched, Low A 22.83   Southern, Enriched, High A 8.02 

Northern, Ambient, Low A 22.79   Northern, Enriched, High A 7.99 

Southern, Ambient, High B 21.95   Southern, Ambient, Low A 7.93 

Southern, Enriched, High B 21.93   Northern, Enriched, Low A 7.90 

Southern, Ambient, Low B 21.47   Northern, Ambient, Low A 7.85 

Southern, Enriched, Low B 21.29   Southern, Enriched, Low A 7.84 

              

DO (mg/L)   Chl-a (µg/L) 

Level (Location, N level, Tidal 

Height) 
  

Least 

Sq. 

Mean 

  
Level (Location, N level, Tidal 

Height) 
  

Least Sq. Mean 

Northern, Enriched, High A 7.71   Northern, Enriched, High A 27.46 

Southern, Ambient, High A 7.66   Northern, Enriched, Low AB 20.24 

Northern, Ambient, High A 7.64   Northern, Ambient, Low AB 17.21 

Southern, Enriched, High A 7.44   Northern, Ambient, High AB 12.92 
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Southern, Ambient, Low A 6.56   Southern, Ambient, Low B 2.70 

Southern, Enriched, Low A 6.47   Southern, Ambient, High B 2.59 

Northern, Enriched, Low A 6.37   Southern, Enriched, High B 2.47 

Northern, Ambient, Low A 5.61   Southern, Enriched, Low B 1.58 

              

Salinity (ppt)   NH4
+ (µM) 

Level (Location, N level, Tidal 

Height) 
  

Least 

Sq. 

Mean 

  
Level (Location, N level, Tidal 

Height) 
  

Least Sq. Mean 

Southern, Ambient, High A 30.90   Southern, Enriched, Low A 26.57 

Southern, Enriched, High A 30.89   Southern, Ambient, Low AB 24.67 

Southern, Ambient, Low A 30.81   Southern, Enriched, High AB 24.18 

Southern, Enriched, Low A 30.70   Northern, Enriched, High AB 24.00 

Northern, Ambient, Low B 29.99   Northern, Ambient, High AB 22.38 

Northern, Ambient, High B 29.96   Southern, Ambient, High AB 20.65 

Northern, Enriched, High B 29.93   Northern, Ambient, Low AB 16.95 

Northern, Enriched, Low B 29.91   Northern, Enriched, Low B 15.62 

*Levels not connected by the same letter are significantly different  
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Appendix 12: Results from 2017’s field season (Experiment 2), highlighting the significant differences between location, month, and 

tidal height on environmental parameters 

 

 

  2017 field water quality (Experiment 2) 

  Testing the effect of location, month, and tidal height on 2017's field parameters  

  Temperature (°C)   Salinity (ppt)   DO (mg/L)   Chl-a (RFU)  

    

F1923,1934-

values 
p-values 

  

F1923,1934-

values 
p-values 

  

F1923,1934-

values 
p-values 

  

F 923,1934-

values 
p-values 

Location   1349.96 <0.0001   1160.55 <0.0001   240.71 <0.0001   147.30 <0.0001 

Month   147.74 <0.0001   637.37 <0.0001   81.38 <0.0001   1.56 0.211 

Location*Month   26.29 <0.0001   816.42 <0.0001   22.45 <0.0001   5.64 0.004 

Tidal Height   209.63 <0.0001   41.04 <0.0001   10.07 0.0015   15.15 0.001 

Location*Tidal Height   118.41 <0.0001   2.33 0.127   5.62 0.018   5.97 0.015 

Month*Tidal Height   5.37 0.0047   7.38 0.0006   21.57 <0.0001   1.62 0.198 

Location*Month 

*Tidal Height   
0.19 0.825 

  
10.51 <0.0001 

  
4.25 0.014 

  
1.48 0.228 
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Appendix 13: Tukey HSD post-hoc results indicating the significant differences which arose from the three-way ANOVA analyzing 

the effect of Location, Month, and Tidal height on environmental parameters of Point Judith Pond for the 2017 field season 

(Experiment 2) 

 

Experiment 2: 2017 environmental parameters 

Temperature (°C)   DO (mg/L) 

Level (Location, Month, Tidal 

height) 
  

Least Sq. 

Mean   
Level (Location, Month, Tidal 

height) 
  Least Sq. Mean 

Northern, July, Low A 25.04   Southern, June, Low AB 8.07 

Northern, July, High AB 24.75   Southern, July, Low A 8.06 

Northern, August, Low B 24.66   Southern, June, High AB 8.00 

Northern, August, High B 24.62   Southern, July, High AB 7.89 

Northern, June, Low C 23.36   Northern, June, Low ABC 7.54 

Southern, August, Low C 23.07   Northern, June, High ABC 7.46 

Northern, June, High CD 22.86   Southern, August, High B 7.29 

Southern, July, Low D 22.50   Southern, August, Low C 6.81 

Southern, June, Low E 21.56   Northern, August, High D 6.14 

Southern, August, High E 21.48   Northern, July, High E 5.59 

Southern, July, High F 20.51   Northern, July, Low E 5.46 

Southern, June, High G 19.34   Northern, August, Low F 4.50 

      

Salinity (ppt)   Chl - a (RFU) 

Level (Location, Month, Tidal 

height) 
  

Least Sq. 

Mean   
Level (Location, Month, Tidal 

height) 
  Least Sq. Mean 

Northern, August, Low A 32.43   Northern, August, High A 7.39 

Northern, August, High A 32.34   Northern, July, High AB 6.33 

Southern, July, High AB 32.29   Northern, June, High ABCD 4.88 
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Southern, July, Low ABC 32.11   Northern, August, Low C 4.59 

Southern, August, High BC 31.98   Northern, July, Low C 4.09 

Southern, June, High ABCD 31.92   Northern, June, Low BCDE 3.68 

Southern, August, Low D 31.64   Southern, July, High CDEF 2.56 

Southern, June, Low CD 31.53   Southern, June, Low DEF 1.35 

Northern, July, High E 28.96   Southern, August, High F 0.87 

Northern, June, High E 28.90   Southern, July, Low EF 0.80 

Northern, July, Low F 28.28   Southern, June, High EF 0.80 

Northern, June, Low F 28.04   Southern, August, Low F 0.65 

*Levels not connected by the same letter are significantly different  
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Appendix 14: Results from a Three-Way ANOVA analyzing the effect of incubation temperature, field location, and field N-level on 

the rates of denitrification and nitrous oxide production of the 2017 field oyster incubation 

 

2017 field results: denitrification and N2O production rates (Experiment 2) 

testing the effect of incubation temperature, field location, and field N-level on C. virginica rates of denitrification 

and N2O production 

  
Denitrification   Nitrous Oxide 

F-values p-values   F-values p-values 

Incubation Temperature 1.11 0.285   -2.76 0.014 

Field Location -0.49 0.629   0.76 0.460 

Incubation Temperature * Field Location -1.78 0.093   -1.56 0.138 

Field N-level 0.85 0.406   0.75 0.465 

Incubation Temperature * Field N-level -2.92 0.010   -0.44 0.665 

Field Location * Field N-level 0.80 0.434   -0.20 0.845 

Incubation Temperature * Field Location * Field N-level 0.84 0.413   0.01 0.991 
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Appendix 15: Parameter estimates of denitrification and N2O production rates (Experiment 2, 2017)  

 

Experiment 2: 2017 Denitrification and Nitrous Oxide Production Rates 

  Denitrification Rates   Nitrous Oxide Production Rates 

Term Estimate 
Std 

Error 

t 

Ratio 

Prob> 

|t| 
  Estimate 

Std 

Error 

t 

Ratio 

Prob> 

|t| 

Intercept 34.14 17.73 1.93 0.07   0.07 0.02 3.46 0.003 

Field Location[Northern]  -8.73 17.73  -0.49 0.63   0.01 0.02 0.76 0.46 

Field Treatment[Ambient] 15.13 17.73 0.85 0.41   0.01 0.02 0.75 0.47 

Field Location[Northern]*Field Treatment[Ambient] 14.24 17.73 0.80 0.43    -0.004 0.02  -0.2 0.85 

Incubation Temperature[18] 19.61 17.73 1.11 0.29    -0.05 0.02  -2.76 0.01 

Field Location[Northern]*Incubation Temperature[18]  -31.63 17.73  -1.78 0.09    -0.03 0.02  -1.56 0.14 

Field Treatment[Ambient]*Incubation Temperature[18]  -51.77 17.73  -2.92 0.01    -0.01 0.02  -0.44 0.67 

Field Location[Northern]*Field 

Treatment[Ambient]*Incubation Temperature[18] 
14.90 17.73 0.84 0.41    -0.0002 0.02  -0.01 0.99 
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Appendix 16: Results from a three way ANOVA, analyzing the impact of temperature, N level, 

and time on M. edulis mortality rates 

 

M. edulis mortality rates 

testing the effect of temperature, N level, and time 

    F 80,119 p-value 

Temp   0.29 0.592 

N Level    8.86 <0.0001 

Temp * N Level   1.32 0.273 

Time   2.79 0.032 

Temp * Time   0.31 0.870 

N Level * Time   0.98 0.478 

Temp * N Level * Time   0.32 0.984 

 

 

Appendix 17: Tukey HSD post-hoc results indicating the significant differences between N levels 

on M. edulis % mortality.  

 

M. edulis % Mortality 

Effect of N level F80,119 =8.86, p=<0.0001 

Level (µM)   Least Sq. Mean 

17.5 A 0.11 

25 B 0.03 

10 B 0.01 

5 B 0.003 

*Levels not connected by the same letter are significantly different  
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Appendix 18: Results analyzing the effect of temperature, N level, and time on the average water quality parameters of M. edulis’ 

aquaria over the course of the 3 month experiment  

Average water quality parameters over the course of M. edulis laboratory experiment  

Testing the effect of Temperature, N Level, & Time 

  

  Temperature (°C)    DO (mg/L)   pH   NH4
+ (µM) 

  
F176,263-

value 
p-value   

F176,263-

value 
p-value   

F112,167-

value 
p-value   

F64,95-

value 
p-value 

Temp   6822.38 <0.0001  0.48 0.492  1.35 0.248  0.07 0.793 

N Level    1.06 0.367  10.44 <0.0001  0.26 0.857  1.72 0.171 

Temp * N Level   0.24 0.872  6.80 0.0002  0.23 0.876  1.12 0.347 

Time   10.59 <0.0001  12.97 <0.0001  4.99 0.0001  8.65 <0.0001 

Temp * Time   3.05 0.001  2.77 0.003  1.81 0.103  1.49 0.227 

N Level * Time   0.07 1.000  1.37 0.111  0.06 1.000  1.62 0.129 

Temp * N Level 

 * Time 
  0.07 1.000   0.86 0.676   0.17 0.999   2.55 0.014 
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Appendix 19: Tukey HSD post-hoc results indicating the significant differences which arose from the three-way ANOVA analyzing 

the effect of Temperature, N-level and Time on the average water quality parameters (Temperature, DO, pH, NH4
+) over the course of 

the 3-month, M. edulis laboratory-based study 

 

M. edulis water quality over the course of 3-month laboratory experiment 

Temperature (°C)  DO (mg/L)  pH  NH4
+ (µM) 

Level 

(°C, µM, 

days) 

  

Least 

Sq. 

Mean 

 
Level 

(°C, µM, 

days) 

  

Least 

Sq. 

Mean 

 
Level 

(°C, µM, 

days) 

  

Least 

Sq. 

Mean 

 
Level 

(°C, µM, 

days) 

  

Least 

Sq. 

Mean 
21,17.5,61 A 21.10  21,5,28 A 8.56  18,5,75 A 8.08  21,5,48 A 78.51 

21,10,61 AB 21.03  21,5,56 AB 8.40  21,10,56 A 8.01  21,10,56 A 76.80 

21,5,61 ABC 20.97  18,10,28 AB 8.38  21,5,56 A 8.01  21,17.5,48 A 72.67 

21,17.5,75 ABC 20.90  21,10,28 AB 8.38  18,17.5,56 A 7.96  21,25,48 A 69.24 

21,25,61 ABC 20.87  18,17.5,28 AB 8.35  21,5,69 A 7.96  18,17.5,48 A 68.94 

21,5,75 ABC 20.80  18,5,28 ABC 8.17  21,17.5,56 A 7.95  18,25,61 A 68.84 

21,10,75 ABC 20.73  21,10,56 ABCD 8.12  21,5,48 A 7.95  18,25,48 A 68.64 

21,25,75 ABC 20.73  21,17.5,28 ABCD 8.11  18,10,56 A 7.94  18,5,56 A 67.43 

21,17.5,16 ABC 20.67  21,5,69 ABCD 8.11  21,5,61 A 7.94  18,25,28 A 67.02 

21,25,16 ABC 20.67  21,5,16 ABCD 8.06  21,17.5,69 A 7.93  21,10,48 A 64.40 

21,10,16 ABC 20.63  21,25,28 ABCD 8.05  18,10,48 A 7.92  18,10,48 A 63.70 

21,17.5,69 ABC 20.60  18,10,56 ABCD 8.04  21,10,69 A 7.92  18,17.5,28 A 61.48 

21,5,16 ABC 20.57  21,5,3 ABCD 7.99  18,10,61 A 7.91  21,17.5,28 A 61.08 

21,17.5,48 ABC 20.57  18,25,28 ABCD 7.97  18,25,56 A 7.91  21,17.5,61 A 57.35 

21,17.5,56 ABC 20.53  18,25,56 ABCD 7.97  21,10,61 A 7.91  21,25,28 A 56.34 

21,17.5,20 ABC 20.50  21,17.5,56 ABCDE 7.87  18,5,48 A 7.91  18,10,28 A 56.04 

21,5,48 ABC 20.50  18,17.5,48 ABCDE 7.83  21,5,75 A 7.901  21,25,56 A 54.43 
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21,5,56 ABC 20.50  18,10,16 ABCDE 7.81  18,25,69 A 7.90  18,10,61 A 52.51 

21,5,69 ABC 20.50  18,25,69 ABCDE 7.79  21,17.5,61 A 7.89  18,25,56 A 52.41 

21,10,69 ABC 20.47  21,5,7 ABCDE 7.79  21,25,56 A 7.89  18,5,48 A 52.41 

21,10,48 ABC 20.43  21,10,69 ABCDE 7.77  21,25,69 A 7.883  21,10,28 A 50.19 

21,25,69 ABC 20.43  18,10,7 ABCDE 7.77  21,10,75 A 7.88  21,25,61 A 49.89 

21,10,20 ABC 20.43  21,17.5,69 ABCDE 7.74  18,25,48 A 7.88  21,5,61 A 47.87 

21,10,56 ABC 20.43  18,10,48 ABCDE 7.73  21,10,48 A 7.87  21,17.5,56 A 47.87 

21,25,48 ABC 20.40  21,5,48 ABCDE 7.69  21,17.5,75 A 7.86  18,10,56 A 47.77 

21,5,20 ABC 20.40  21,5,0 ABCDE 7.69  18,10,69 A 7.86  18,5,28 A 47.37 

21,25,20 ABC 20.37  21,5,61 ABCDE 7.67  18,5,61 A 7.86  18,17.5,61 A 47.17 

21,25,56 ABC 20.37  18,5,56 ABCDE 7.65  18,5,69 A 7.85  21,5,28 A 44.95 

21,25,0 ABC 20.33  18,25,48 ABCDE 7.63  21,17.5,48 A 7.84  21,5,56 A 43.24 

21,17.5,0 ABC 20.33  18,10,61 ABCDE 7.62  18,17.5,75 A 7.84  18,5,61 A 42.63 

21,10,0 ABC 20.30  18,5,20 ABCDE 7.61  18,17.5,69 A 7.83  18,17.5,56 A 41.83 

21,5,0 ABC 20.27  18,25,7 ABCDE 7.57  18,17.5,61 A 7.83  21,10,61 A 41.63 

21,17.5,3 ABC 20.23  21,25,69 ABCDE 7.56  18,10,75 A 7.83        

21,5,28 ABC 20.23  21,10,16 ABCDE 7.54  21,25,48 A 7.82       

21,25,3 ABC 20.20  18,17.5,56 ABCDE 7.54  21,25,75 A 7.81       

21,17.5,7 ABC 20.20  21,25,56 ABCDE 7.51  21,25,61 A 7.80       

21,10,3 ABC 20.17  18,17.5,61 ABCDE 7.48  18,25,75 A 7.80       

21,5,3 ABC 20.17  18,5,69 ABCDE 7.45  21,17.5,7 A 7.77       

21,17.5,28 ABC 20.13  18,5,16 ABCDE 7.45  18,25,61 A 7.77       

21,5,7 ABC 20.13  18,10,20 ABCDE 7.41  18,5,56 A 7.73       

21,25,28 BC 20.03  18,10,75 ABCDE 7.39  21,25,7 A 7.69       

21,10,28 BC 20.03  18,25,3 ABCDE 7.39  21,10,7 A 7.68       

21,10,7 BC 20.03  21,17.5,61 ABCDE 7.39  18,5,0 A 7.63       

21,25,7 C 20.00  21,25,16 ABCDE 7.37  18,17.5,48 A 7.62       

18,10,61 D 17.73  21,10,3 ABCDE 7.34  21,5,7 A 7.44       

18,5,61 D 17.70  18,10,69 ABCDE 7.34  21,10,0 A 7.29       

18,17.5,61 D 17.67  18,17.5,69 ABCDE 7.32  18,25,0 A 7.29       

18,25,61 D 17.67  18,25,16 ABCDE 7.30  18,5,7 A 7.28       
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18,5,16 D 17.67  18,25,0 ABCDE 7.30  18,10,0 A 7.23       

18,17.5,16 D 17.67  21,10,7 ABCDE 7.29  18,17.5,0 A 7.20       

18,25,16 D 17.67  18,5,48 ABCDE 7.28  21,5,0 A 7.03       

18,17.5,69 D 17.63  21,10,61 ABCDE 7.28  21,25,0 A 6.93       

18,10,16 D 17.63  21,5,75 ABCDE 7.27  21,17.5,0 A 6.92       

18,17.5,75 D 17.60  21,17.5,3 ABCDE 7.26  18,25,7 A 6.46       

18,10,69 D 17.60  21,25,3 ABCDE 7.24  18,10,7 A 6.32       

18,25,69 D 17.60  21,10,20 ABCDE 7.23  18,17.5,7 A 6.19       

18,5,0 D 17.60  18,5,7 ABCDE 7.19              

18,17.5,0 D 17.60  21,10,48 ABCDE 7.18             

18,5,69 D 17.60  18,25,61 ABCDE 7.15             

18,17.5,56 D 17.57  18,17.5,75 ABCDEF 7.10             

18,10,0 D 17.57  18,25,20 ABCDEF 7.08             

18,10,56 D 17.57  18,10,0 ABCDEF 7.07             

18,5,56 D 17.57  18,17.5,7 ABCDEF 7.05             

18,17.5,3 D 17.53  21,25,7 ABCDEF 7.05             

18,25,0 D 17.53  21,10,75 ABCDEF 7.05             

18,25,56 D 17.53  18,17.5,20 ABCDEF 7.03             

18,5,75 D 17.50  18,5,61 ABCDEF 7.01             

18,25,20 D 17.50  21,17.5,48 ABCDEF 7.01             

18,5,3 D 17.50  21,17.5,16 ABCDEF 6.99             

18,5,20 D 17.50  21,17.5,75 ABCDEF 6.99             

18,17.5,20 D 17.47  18,10,3 ABCDEF 6.98             

18,10,20 D 17.47  18,25,75 ABCDEF 6.97             

18,10,75 D 17.47  21,25,61 ABCDEF 6.96             

18,10,3 D 17.43  18,5,0 ABCDEF 6.96             

18,17.5,48 D 17.40  21,25,48 ABCDEF 6.89             

18,25,3 D 17.40  21,25,75 ABCDEF 6.85             

18,25,75 D 17.37  21,5,20 ABCDEF 6.83             

18,10,48 D 17.37  21,25,0 ABCDEF 6.82             

18,5,48 D 17.37  18,5,3 ABCDEF 6.81             
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18,25,48 D 17.33  18,5,75 ABCDEF 6.74             

18,5,7 D 17.33  21,10,0 ABCDEF 6.71             

18,17.5,7 D 17.30  21,17.5,7 ABCDEF 6.69             

18,5,28 D 17.30  21,25,20 ABCDEF 6.68             

18,17.5,28 D 17.30  18,17.5,0 BCDEF 6.54             

18,25,28 D 17.30  21,17.5,20 CDEF 6.22             

18,25,7 D 17.30  21,17.5,0 DEF 6.19             

18,10,28 D 17.30  18,17.5,3 EF 5.95             

18,10,7 D 17.30  18,17.5,16 F 5.18               

**Levels not connected by the same letter are significantly different  
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Appendix 20: Tukey HSD post-hoc results indicating the significant differences which arose from 

the two-way ANOVA analyzing the effect of Temperature and N level on the change of water 

quality parameters (DO, pH, NH4
+) for each M. edulis incubation timepoint (Day 2, 53, 105) 

M. edulis change in water quality over the course of each incubation event 

Incubation 1 (Day 2) 

Change in DO (mg/L)   Change in pH   Change in NH4
+ (µM) 

Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

  
Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

  
Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

18,10 A  -3.77  18,25 A 7.58  21,25 A 145.95 

18,25 A  -3.90  18,10 AB 7.57  21,5 A 38.06 

18,17.5 AB  -4.03  18,17.5 ABC 7.54  21,10 A 32.12 

18,5 AB  -4.26  18,5 ABC 7.51  18,5 A 20.25 

21,5 AB  -4.76  21,5 ABC 7.45  18,25 A 16.76 

21,25 AB  -5.07  21,17.5 ABC 7.44  21,17.5 A 1.05 

21,17.5 AB  -5.07  21,25 BC 7.42  18,10 A  -0.35 

21,10 B  -5.43   21,10 C 7.40   18,17.5 A  -5.59 

Incubation 2 (Day 53) 

Change in DO (mg/L)   Change in pH   Change in NH4
+ (µM) 

Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

  
Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

  
Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

21,5 A  -1.33  18,17.5 A 0.003  18,25 A 18.84 

18,25 A  -1.41  18,10 AB  -0.09  18,17.5 A 16.19 

21,10 A  -1.86  18,25 AB  -0.11  21,5 A 15.53 

21,17.5 A  -2.33  21,25 AB  -0.17  21,10 A 6.03 

18,5 A  -2.43  18,5 AB  -0.178  21,25 A 2.97 

18,17.5 A  -2.62  21,17.5 AB  -0.20  21,17.5 A  -4.461 

21,25 A  -2.92  21,5 AB  -0.27  18,5 A  -16.61 

18,10 A  -2.99  21,10 B  -0.30  18,10 A  -27.26 

Incubation 2 (Day 105) 

Change in DO (mg/L)   Change in pH   Change in NH4
+ (µM) 
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Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean   

Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

  
Level 

(°C / 

µM) 

  

Least 

Sq. 

Mean 

18,10 A 0.30           18,5 A 8.38 

18,25 AB  -0.04          21,5 A 6.75 

21,5 AB  -0.54          21,10 A 2.45 

21,17.5 AB  -0.74     
No 

data. 
    18,25 A 2.30 

21,10 AB  -0.76          18,17.5 A 1.19 

18,5 AB  -0.91          21,17.5 A 0.44 

21,25 AB  -0.94          18,10 A 0.22 

18,17.5 B  -2.02           21,25 A  -0.22 

**Levels not connected by the same letter are significantly different  
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Appendix 21: Results from a three way ANOVA, analyzing the effect of temperature, N level, and time on rates of denitrification for 

each M. edulis incubation experiment (Day 2, 53, 105). 

 

M, edulis denitrification rates 

testing the effect of Temperature, N Level & Time 

    F48,71 - value p-value 

Temp   1.04 0.312 

N Level   1.02 0.394 

Temp * N Level   1.03 0.387 

Time   1.19 0.312 

Temp * Time   1.01 0.371 

N Level * Time   0.99 0.442 

Temp * N Level * Time   0.94 0.477 

 

Appendix 22: Results from a three way ANOVA, analyzing the effect of temperature, N level, and time on rates of nitrous oxide 

production for each M. edulis incubation experiment (Day 2, 53, 105). 

 

M, edulis N2O production rates 

testing the effect of Temperature, N Level & Time 

    F48,71 - value p-value 

Temp   5.17 0.027 

N Level   3.22 0.031 

Temp * N Level   1.47 0.224 

Time   1.52 0.229 

Temp * Time   1.71 0.191 

N Level * Time   1.31 0.272 

Temp * N Level * Time   1.62 0.162 
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Appendix 23: Tukey HSD post-hoc results indicating the significant differences which arose from 

the three-way ANOVA analyzing the effect of Temperature, N level, and time rates of 

denitrification and N2O production of M. edulis  

 

M. edulis Rates of Denitrification and Nitrous Oxide Production  

Denitrification Rates 
  

Nitrous Oxide Production Rates 
  

Level (°C, 

µM, days) 
  

Least Sq. 

Mean 
  

Level (°C, 

µM, days) 
  

Least Sq. 

Mean 

18,25,2 A 295.76   18,25,53 A 0.66 

18,5,105 A 219.14   18,25,105 AB 0.30 

21,5,2 A 207.29   18,17.5,53 AB 0.27 

18,25,105 A 206.25   21,25,105 AB 0.22 

21,10,5 A 184.28   18,17.5,105 AB 0.21 

21,17.5,53 A 168.81   18,10,105 AB 0.20 

18,10,3 A 163.48   18,5,2 B 0.19 

18,10,105 A 161.86   21,10,2 B 0.18 

21,17.5,2 A 145.31   21,17.5,105 B 0.18 

18,17.5,2 A 134.17   21,17.5,2 B 0.16 

21,17.5,105 A 120.93   21,17.5,53 B 0.15 

18,5,2 A 93.54   18,10,53 B 0.15 

21,10,53 A 88.82   18,25,2 B 0.15 

21,25,2 A 78.57   18,10,2 B 0.14 

21,5,53 A 70.09   21,25,53 B 0.14 

18,10,53 A 51.36   21,5,53 B 0.13 

18,5,53 A 49.93   21,10,53 B 0.13 

21,10,105 A 48.34   18,5,53 B 0.12 

21,25,105 A 9.44   21,25,2 B 0.12 

18,17.5,53 A 0.00   18,17.5,2 B 0.12 

21,25,53 A  -21.21   21,5,105 B 0.12 

21,5,105 A  -30.94   18,5,105 B 0.11 

18,25,53 A  -52.59   21,5,2 B 0.10 

18,17.5,105 A  -83.64   21,10,105 B 0.03 

*Levels not connected by the same letter are significantly different  
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