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ABSTRACT 

The prediction of the dynamic response of pedestrian bridges under human-

induced excitation is a challenge in the design of pedestrian bridges, caused by the 

wide range of variables and the complex interaction effects. The use of new, 

lightweight materials, like FRP, and the trend to design long span and slender 

constructions lead to structures more sensitive to dynamical impact, which caused 

some vibrational problems at newly built bridges in the recent past. This brought 

increased attention to this topic.  

The present thesis aims to analyze the dynamic properties of the new material 

fiber reinforced polymer (FRP), to estimate the changes they cause in the dynamic 

response of respective constructions and to validate the current guidelines. The first 

part of the research includes a literature review in terms of pedestrian loading, their 

interaction with the structure, the characteristics of FRP and the specification of the 

current guidelines. In order to analyze the dynamic properties and the effects on the 

dynamic response, the second part presents a parametric analysis of simplified bridge 

structures and their dynamic response to different loads induced by pedestrians. In 

order to classify the new composite material, the estimated mechanical properties and 

dynamic characteristics are compared to the traditional material steel. 

FRPs are significantly lighter and less stiff than steel. The first property leads to a 

higher fundamental frequency, the later one counteracts this effect. The actual 

fundamental frequency of the unloaded system, which is also the main component in 

the dynamical evaluation specified in the AASHTO guideline, depends on the ratio 

stiffness to weight. In contrast to steel, FRP is more sensitive to human-induced loads. 



 

 

The additional mass of the pedestrians changes the fundamental frequency of the 

system significantly, due to the high ratio of live load to construction weight. This 

circumstance is disregarded by the current guidelines, which might have led to the 

vibrational problems at newly built pedestrian bridges. Furthermore, the lateral-

synchronization-phenomenon, which is also not mentioned in the guidelines, has a 

significant impact on lively footbridges. A general approach for the consideration of 

the additional impact is introduced. 
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CHAPTER 1 

INTRODUCTION 

1.1 Statement of the problem 

During the last two decades, the dynamic behavior of pedestrian bridges under 

human-induced excitation attracted considerable interest, caused by several incidents, 

in which the excited oscillations of newly built bridges exceeded the level of 

serviceability and endangered the safety of the structure. The accumulated appearance 

of these dynamical problems is related to the recent developments in the construction 

of pedestrian bridges. The trend for longer spans and greater slenderness in 

combination with the use of new, light materials reduces the natural frequencies of the 

structures and increases their sensitivity to dynamic loads in the range of walking 

frequencies. The reported oscillation problems from all over the world prove that the 

current guidelines and design codes regarding the design of pedestrian bridges are 

unsatisfactory in terms of human-induced excitations of light and slender 

constructions. The aim of this study is to analyze the dynamical behavior of pedestrian 

bridges built out of fiber reinforced polymer (FRP), a representative for the newly 

used materials in the construction of bridges, and to point out their specifications and 

their differences to traditional construction materials. 
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1.2 Significance of the Study 

 

Pedestrian bridges sometimes span considerably long distances and, in 

combination with the advantage of comparatively low design loads and the recent 

aesthetic request for greater slenderness and lightness, they present an opportunity for 

innovative architectural and engineering design, using new systems and materials. 

Therefore, common features of recent footbridges are “long span, light materials and 

increasing slenderness” [27]. All three of these attributes result in a reduced natural 

frequency of the structure. The reduced natural frequency, in turn, causes a higher 

sensitivity of the structure to dynamic forces induced by pedestrians, because the 

natural frequency of the structure drops into the range of frequencies of human 

walking. “For the design of slender footbridges, the vibration serviceability under 

pedestrian excitation is often the governing criterion” [55]. Consequently, this should 

be given special attention during the design process and should also be acknowledged 

in the corresponding guidelines and design codes. Predicting the response of 

pedestrian bridges to human-induced excitation is an exceedingly complex process, 

including the variability of human walking parameters and effects of human-structure 

and human-human interaction. 

In order to simplify the design process, current guidelines (AASHTO) are limited 

to general restrictions of the structural natural frequency [1, 2, 3]. By doing this, the 

guidelines neglect the complexity of the phenomena appearing during a human-

induced excitation of bridges.  

Some codes of practice (e.g. OHBDC, BS5400, Eurocode 5, Setra) [4] propose 

instead a deterministic moving force model, which is also insufficient to describe all 



 

3 

 

aspects of the system. The true importance and complexity of the topic have been 

brought to the attention of civil engineers by an increasing number of reported 

vibration serviceability problems in newly built pedestrian structures under pedestrian 

loading.  

A number of pedestrian-excited laterally unstable bridges reported all over the 

world over the past decades, including the London Millennium Footbridge and the 

Clifton Suspension Bridge, focused the attention towards the actual human walking 

mechanisms and the unique human-structure interaction. It also started a series of 

researches with the aim of identifying the underlying mechanisms leading to dynamic 

instability [47]. Extensive research in several fields over more than a decade has 

improved the understanding of the problem and has enabled the development of better 

modeling and simulation tools. The main component in these new models, which has 

been neglected in earlier approaches and is responsible for the vibration problems, is 

the human-structure interaction (HSI). The influence of this component increases with 

a higher ratio of live load to construction weight, which grows automatically due to 

the low density of the new materials and the increased slenderness of the structures. 

The HSI includes changed dynamical properties of the structure due to the additional 

weight and damping effects of the pedestrians as well as interdependency of the 

structural movement and the induced pedestrian load. The latter one occurs 

particularly in the lateral direction. It is also known as synchronized lateral excitation 

and leads to unusually high loads and great lateral displacements. The effects of the 

dynamic components of the pedestrian load are significantly higher at slender and 

light constructions, like, for instance, constructions out of fiber reinforced polymer. 
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Composite materials, like “Fibre-Reinforced Polymers (FRPs) are an 

increasingly popular option for the construction of bridges as they possess high 

strength to weight properties and good durability qualities” [40]. However, the 

advantage of the reduced weight compared to traditional materials in combination with 

the also reduced stiffness is regarding the dynamic properties a detriment – the 

structure is more sensitive to human-induced oscillations. 

1.3 Methodology 

Predicting the response of pedestrian bridges to human-induced excitation is an 

exceedingly complex process, including the variability of human walking parameters 

and effects of human-structure and human-human interaction. Even though 

approaches for the modeling of the multi-physics system of a bridge loaded by a 

crowd of pedestrians are available, the proposing of such a model is not the aim of this 

research. The present research analyses the specific dynamical properties of fiber 

reinforced polymer pedestrian bridges. In this context, the parameters and components 

of pedestrian loads, including the effects of the human-structure interaction, have been 

estimated based on a literature review, simplified and solitary applied to generalized, 

simulated bridge constructions out of fiber reinforced polymers. The aim of this 

stepwise proceeding is the clarification of the different response mechanisms due to 

the different inputs and thus, a better understanding of the general dynamic response 

of lively bridges.  The analysis has been made with the FE-Program ABAQUS. For a 

reliable categorization of the material, the same simulations have been made with 

comparable steel constructions. The differences between the two materials are 
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analyzed and presented. Finally, the results are compared with the current guidelines 

and the corresponding requirements are validated. 

1.4 Structure 

The present thesis follows a simple structure. The second and third chapters 

include a literature review. The second chapter deals with fiber reinforced polymer 

and presents the production and composition, the properties and characteristics, and 

the applications of these materials. The third chapter gives an overview of the 

pedestrian walking loads. It is divided into three parts: individual level, collective 

level, and multi-physics level, which present the different considerable aspects of 

dynamic loads induced by a crowd on a flexible structure. The fourth chapter presents 

the requirements of the design code, which is the base for the model development. 

During the fifth chapter, the development of the computer model and the choice of 

variables are explained and general settings are described. The results are presented 

and evaluated in chapter six. It points out the specifications of FRPs and the 

differences between FRPs and steel. Furthermore, a validation of the current 

guidelines is performed and an improved  approach is presented. A summary of the 

research as well as an outlook for the possible future of this field of study is part of the 

conclusion in chapter seven.
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CHAPTER 2 

REVIEW OF LITERATURE: FIBER REINFORCED POLYMER 

2.1 Composites 

Composite materials have been used for 6000 years and the trend is still 

developing and increasing. The first application of composite materials was made by 

the Egyptians in form of straw-reinforced clay bricks.  Since then, a great progress has 

been achieved, especially in the last decades. New materials with a great range of 

improved characteristics have been developed and are used in numerous fields.  

A composite material consist of at least two constituent materials, which are 

mixed at a nano-, micro- or macroscopic level. The constituents are not soluble, form 

unambiguous phases, and have significantly different physical or chemical properties. 

The combined material has characteristics different from the individual initial 

components. [8, 15, 58] The aim of the composition is to combine the benefits of the 

different initial materials, to create materials, which are, for instance, stronger, lighter 

or less expensive in comparison to traditional materials. Normally, composite 

materials consists of two main components, a matrix material, strengthened by a 

reinforcing phase. The best-known example for a composite material in the field of 

civil engineering is reinforced concrete. As a combination of concrete and steel, it 

combines the high pressure capacity and low costs of the concrete with the high tensile 

stress capacity of the expensive steel, which leads to an economic, efficient and high 

capacity material. Even though concrete is the most used composite material in the 

field of civil engineering, the expression composites normally refers to advanced 

composite materials, like fibre-reinforced polymer (FRP). These advanced composite 
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materials were primarily developed for aerospace to enhance the performance of 

commercial and military aircraft and they still play a significant role in the field of 

aerospace as well as in other engineering fields. “However, in recent years composite 

materials have become particularly attractive for civil engineering infrastructure 

applications due to their exceptional strength and stiffness-to-density ratios and 

superior physical properties. Considerable advances have been made in the use of 

composite materials in the construction and building industries, and this trend will 

continue. Fibre reinforced polymer (FRP) composites are now widely used in civil 

engineering applications” [8] 

2.2 Materials 

“Polymer matrix-based composites are essentially composed of fibres embedded 

in polymeric matrices.” [38]. For both of these phases, polymer matrices and fibres, 

different materials are available – with changing material characteristics and 

combinability. The properties of the final materials are controlled by the properties of 

the initial materials, but also by the bonding conditions between them. Therefore, the 

interface area can be seen as the third phase. There are numerous materials available; 

however, this chapter is focused on the fiber-reinforced polymer materials used in 

bridge engineering.  

 

2.2.1 Matrix materials 

The matrix materials provide the foundation for composite materials. “The matrix 

materials, […], are responsible not only for covering the reinforcements (thereby 

protecting them from environmental and chemical damage) but also for the 
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elimination of fibre wearing and crushing that can be caused by deformation: they fix 

the fibres in position, which is crucial, as the reinforcing materials could otherwise 

easily slip out or become damaged through wear. The matrix materials also act as 

load transferring media: they transfer the load in an orthogonal direction from the 

fibre axis.” [8] 

Polymers used in bridge constructions can be divided into the three major types: 

thermosetting, thermoplastic and elastomeric. The different materials require different 

procedures for their manufacture, but they all require two main components, the resin 

and curing agent. All three materials are used for constructions, but thermosetting 

polymer dominate the market. 

“The thermosetting polymer consists of long chain molecules, which are cross-

linked in a curing reaction. The network so formed and the length and the density of 

the molecular units are a function of the chemicals used in the manufacture of the 

polymers, and the cross-linking is a function of the degree of cure of the polymer. Both 

the network and the cross-linking will have an influence on the mechanical and in-

service properties of the material. Furthermore, the degree of cure is a function of the 

temperature and the length of the polymerisation (curing) period.” [8] 

Thermosets in general are brittle at room temperature, that is why there is a need 

for reinforcement, but they have also a number of useful characteristics. Unlike 

thermoplastics, the properties of thermosets improve with increasing temperature, at 

least until a certain temperature threshold, at which the properties starts to degrade. 

However, this threshold is significant higher than the corresponding degradation point 

for thermoplastics. [8, 10, 14] 
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Common materials are polyester thermoset resins, phenolic resins, vinyl ester 

resins and epoxy resins.  “Polyester is one of the earliest types of thermoset and is 

widely used in FRP composites” [8]. Due to their great mechanical properties and their 

high resistance to environmental degradation, epoxy resins are the most important 

polymers in structural civil engineering. Another advantage of epoxy resins is the 

absence of styrene, which minimises the toxic emission during the production process 

and the resulting possibility of an ‘open-mold’ technology. Epoxy resins are more 

expensive than other thermosetting polymers, but they show remarkable mechanical 

properties and great material characteristics, what makes the cost-performance ration 

equal and the material favourable. Vinylesters are unsaturated esters of epoxy resins 

and have similar mechanical and in-service properties to epoxy resins. Due to the 

differences in the chemical composition, vinylesters are more flexible and have higher 

fracture toughness. [8, 21, 44, 57, 58] 

For polymers, to reach their full mechanical properties, it is essential that they 

have reached a nearly complete polymerisation. Therefore, it is important that the 

correct mix ratio is obtained between the resin and its curing agent. Since the curing 

reaction is influenced by heat, the site temperature should be given some attention. 

Once the reaction is finished, the resins do not melt, soften upon reheating or dissolve 

in solvents. [8, 57] 

 

2.2.2 Reinforcement materials 

The main function of the reinforcement is the strengthening of the matrix material by 

carrying the load along its length. “A wide range of amorphous and crystalline 
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materials can be used to form fibres, but in bridge engineering the three fibres which 

are generally used are the glass fibre, the aramid fibre and the carbon fibre.” [8]. A 

main component for the properties of the composites is the aspect ratio 

(length/diameter) of the fibers used as reinforcement and their orientation and fraction. 

The choice for type, amount, length, orientation and other properties depend on the 

matrix characteristics, the intended application and the necessary load capacity. One 

distinction to categorize reinforcements is the size of the used fibers. It can be differed 

between macro-, micro- and nanoscale reinforcement. Macroscale reinforcement is the 

most common type of reinforcement. Glass fibers, carbon fibers and aramid fibres are 

widely used to reinforce polymers for the application in the field of civil engineering. 

Usually they are used as CF fiber bundles (tows), glass fiber bundles (rovings), 

continuous strand mats and nonwoven surfacing veils. Glass fibers can be produced 

with tailored properties to meet specific applications. CF have also attractive 

properties “such as low weight, high strength and high modulus, fatigue resistance 

and vibration damping, corrosion resistance, good friction and wear qualities, low 

thermal expansion, and thermal and electrical conductivity” [8]. All three types of 

fibers have slightly different characteristics and can be chosen with respect to 

particular application. It is also possible to use a mix of different types of fibers to 

combine their advantages. [8, 15, 44] 

Independently of type and material of the used reinforcement, it is most important to 

adapt matrix and reinforcement to each other. The bonding between the two phases is 

decisive to ensure that the composite system as a whole gives satisfactory 

performance. [8, 15, 22, 24] 
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2.3 Properties 

2.3.1 General Characteristics 

Accompanying the great importance of traffic and transportation, there is a 

growing concern with respect of the maintenance of the related infrastructure. The 

reparation, rehabilitation and replacement of old bridge structures is one of the main 

tasks in the field of civil engineering. The deterioration of reinforced concrete and 

steel bridges, especially when exposed to aggressive and hostile environments that are 

invariably encountered to traffic related constructions, lead to the need for durable, 

high strength and high stiffness materials. The result was the establishment of 

advanced composite materials as structural material in civil engineering. “These 

materials can provide significant advantages over conventional materials for the 

construction of bridges” [8]. Advanced composites have a higher resistance to 

oxidation than steel and a better freeze-thaw resistance than concrete, which might 

have been the initial reason for the introduction of FRP composite materials into the 

field of civil engineering. Nevertheless, FRPs provide a wide range of convenient 

characteristics, which led to a fast establishment of these materials. The resistance to 

corrosion and the freeze-thaw resistance result in low maintenance requirements and 

an enhanced service live. This applies also for harsh and corrosive environments, 

common at traffic related structures. The durability is even further improved, because 

also the fatigue performance is good. The high durability and resistance reduces the 

live cycle costs and is especially useful for areas with limited access. On the other 

hand, one of the main disadvantages is also related to this topic, which is the 

reprocessing. The high resistance of the material makes the reprocessing through 
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either mechanical or chemical recycling difficult. In these days this is an important 

aspect which has to be considered during the planning of respective constructions. 

FRPs provide a reduction of the dead load and a subsequent increase in live load 

rating. Related to this point is the advantage of a faster installation. Due to the reduced 

weight, the components are light and can be assembled easy and fast. Prior to shaping 

FRPs are liquids with low viscosity. As a result, their processing is relatively cheap 

and easy and they can be produced with complex shapes. It enables also the 

production of complete structural components  under factory conditions, because they 

can be easily transported and installed. In comparison to concrete FRPs have also a 

good creep behavior that facilitates the design and planning process. [8, 21, 30, 46] 

Another advantage of FRPs is the high versatility that means the possibility of 

adapting the material properties perfectly to the requirements of the intended 

application and function. Materials can be obtained with high strength, stiffness, and 

excellent impact strength. The actual stiffness is lower than the one of steel or 

concrete, but due to the reduced weight, the stiffness-weight ratio is better. Even the 

requirements for fire- and high-temperature-resistance of construction materials are 

fulfilled by the composites satisfactory, “due to their resistance to burning and 

minimal smoke and toxic fumes production” [8]. Additional tailorable characteristics 

are acoustic and thermal insulation as well as thermal conductivity. On the other hand, 

higher initial costs of materials can be considered as disadvantage, but considering the 

higher strength and the whole-life costs, these costs are more than compensated. 

However, “composite materials are often predominantly composed of the most 

expensive construction materials.” [8] The relation of mechanical properties and costs 
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of the most commonly used constructional materials are presented in the following 

figure. It can be seen, that composites are relatively expensive, but provides better 

mechanical properties than most of the other available materials. 

 

 

Figure 1: Relationship between costs and properties of constructional materials [8] 

 

 

2.3.2 Mechanical Properties 

It has been previously established that FRPs are highly versatile. This fact 

complicates the determination of general, or even average mechanical properties. 

Depending on the used materials, the composition and the manufacturing process a 

wide range of mechanical properties, as Young’s modulus, density and tensile stress 

capacity, are possible to create. “The mechanical properties of FRP composites are 

dependent upon the ratio of fibre and matrix material, the mechanical properties of 
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the constituent materials, the fibre orientation in the matrix, and ultimately the 

processing and methods of fabrication” [8].  

Not all of these attractive properties can be achieved at the same time; therefore, 

the design should be done carefully, since it can be efficiently optimized in 

contribution to the individual application. A main factor for the actual realisation are 

the costs. This factor limits the range of properties of FRPs used for constructions.  

The tensile strength can still vary between the strength of mild steel and values higher 

than the ones of prestressing steels. The specific strength, which is often used to 

compare materials, can be 40–60 times that of high-strength steel. [8] A collection of 

values of the most important mechanical properties for different types of FRPs 

available in the current literature is presented in the following table: 
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High strength carbon fibre-epoxy 
matrix (unidirectional 

1.55 137.8 1550 9.06 101.9 [8] 

High modulus carbon fibre – 
epoxy matrix (unidirectional) 

1.63 215 1240 13.44 77.5 [8] 

E-glass fibre – epoxy matrix 
(unidirectional) 

1.85 39.3 965 2.16 53.2 [8] 

Kevlar 49 fibre – epoxy matrix 
(unidirectional 

1.38 75.8 1378 5.60 101.8 [8] 

Carbon fibre – epoxy matrix 
(quasi-isotropic) 

1.55 45.5 579 2.99 38 [8] 

Sheet moulding compound (SMC) 
composite (isotropic) 

1.87 15.8 164 0.96 8.9 [8] 

Glass fibre – vinylester composite 
(randomly orientated fibres, 
fibre/matrix=67% 

1.84 19.3 269 1.07 14.9 [8] 

Glass fibre – vinylester composite 
(randomly orientated fibres, 
fibre/matrix=67% 

1.80 15.8 166 0.89 9.40 [8] 

Table 1: Mechanical properties of FRP materials 
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One additional aspect has to be considered during the design of fiber reinforced 

polymer constructions. Depending on the orientations and type of the used fibers, the 

mechanical properties of reinforced composites vary accordingly to the three different 

dimensions of space. It is a well-known fact in the field of reinforced concrete. The 

application to the advanced composite materials gets more complicated, since the 

reinforcement is much more variable and several combinations and applications are 

available. The anisotropic behavior of composite material has to be taken into account 

during the design and the dimensioning of construction parts. [8] 

2.4 Applications 

2.4.1 General Aspects 

Since the middle of the last century FRP composite materials have been used 

foremost in the aerospace and automotive industries, due to their advantageous 

material characteristics. Although FRP materials have been used in the manufacturing 

of a wide range of fields, like cars, boats, tanks and missiles, their us in civil 

engineering applications is still relative recent.  The fact that FRP composites, unlike 

steel, do not corrode in concrete led in the end to the first application in civil 

engineering: glass fiber reinforced polymer rods were used as reinforcements in 

concrete. [52] “Since the late 1980s, FRP rebars have been used more extensively in 

concrete structures, especially in highway bridge decks, because of their resistance to 

corrosion. For the same reason, FRP composites have been used more and more 

widely when repairing and retrofitting deteriorated bridge superstructures, to 

reinforce bridge decks, girders and piles, and when replacing structural members 

(e.g. decks).” [8] 
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2.4.2 FRP pedestrian bridges 

For the construction of bridges, FRP profiles were first used for short-span 

pedestrian bridges. The first FRP pedestrian bridge was 12 m long and was built by 

the Israelis in 1975 [3.3]. Since then FRP profiles have been increasingly used in the 

decks and superstructure members of bridges and hundreds of FRP bridges have been 

built worldwide. Nevertheless, a problem in the design of a pure FRP decks is the low 

modulus of FRP composite materials and therefore the relatively low stiffness of the 

material, which leads to high deflections. Other materials, like concrete, can be added 

to increase the stiffness of the deck, keeping the total weight low. The new material 

with improved characteristics made also the development of new construction types 

and styles possible. On the one hand are combinations in form from hybrid bridges 

with other traditional or newly developed construction materials and on the other the 

bridge designs based on the particular characteristics of the material. [52] 

 

2.4.3 FRP vehicular bridges 

Seven years after the installation of the first pedestrian FRP bridge and based on 

the gained knowledge the first FRP vehicular bridge was built in China in 1982. It 

spanned 20.7 m and was 9.2 m wide. [58] In the early 1990s followed further FRP 

deck systems, mainly used for short-span bridges with light traffic. The development 

of FRP bridges in the US was accelerated by a program of the US Federal Highway 

Administration (FHWA) for the development of cost-effective innovative material 

applications in highway bridges [46]. FRP deck configurations can be cellular, 

sandwich, honeycomb or hybrid. For each of these configurations different versions 
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and products are available. As already mentioned in the case of pedestrian bridges the 

low stiffness can be a problem and the addition of further materials might be 

necessary. [52] 

 

2.4.4  Hybrid constructions 

“Hybrid constructions are built to enable two or more structural materials to take 

full advantage of their superior properties.” [8] 

2.4.4.1 FRP reinforced concrete bridge decks 

The first application FRP composite materials was the reinforcement of concrete 

structures. Due to the corrosion of steel reinforcement, worsened by the traffic and 

deicing salts, FRP composite materials are an attractive alternative as reinforcement 

material. Due to the lower production costs, GFRP reinforcement is the most common 

material, but carbon FRP and aramid FRP are also used. The actual durability of FRP 

reinforced bridge decks is still a concern, because there are no in-situ test results 

available and the laboratory tests are not sufficient descriptive. [52] 

 

2.4.4.2 FRP stay-in-place formworks for bridge construction 

Another form of FRP-concrete combination is the FRP-SIP formworks, which 

“serve as formworks for fresh concrete during construction and as reinforcement 

during service.” [52]. The advantages of this system are, that the formwork does not 

have to be removed, is lightweight and provides a crack control for the concrete. There 

is no need for an additional reinforcement; nevertheless, the respective concrete slab is 

normally made of fiber reinforced concrete (FRC) for crack control. Both, open 
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profiles for bridge decks and closed forms for bridge columns, are in use. A major 

point in the design of such structures is to assure the bond between FRP-SIP formwork 

and the concrete. [44, 52] 

 

2.4.4.3 FRP Bridge Decks 

An attractive solution to combine the advantages of different materials is a FRP 

bridge deck. The substructure as well as girders and trusses are built in reinforced 

concrete or steel, to assure the stiffness and reduce the deflection of the bridge. To 

build the bridge deck in FRPs is attractive, because it reduces the weight remarkable 

and creates a higher live load capacity. [8, 30] 

 

2.4.4.4 FRP cable-stayed bridges 

FRP cable-stayed bridges can be produced in both ways, as hybrid constructions 

and as all FRP constructions. The limitations of the span of traditional steel and 

concrete materials, due to the self-weight, and the problems of sag effect and corrosion 

problems at steel cables, can be avoided by the use of FRP composite materials. The 

use of advanced composite materials might enable engineers to build super-long-span 

cable-stayed bridges. [52] 

 

2.4.5 Rehabilitation and Reparation/ Retrofitting 

As previously mentioned the rehabilitation and retrofitting of deteriorated, 

damaged or substandard bridges is nowadays one of the most important issues for the 

civil engineer with even growing importance. Besides the trend of building new 
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bridges with composite materials for an improved durability, reinforced polymer 

composites have been established as a viable and competitive alternative for the 

reparation, rehabilitation and retrofitting of existing constructions. For this application 

FRP is a very attractive solution, because of the exceptional strength-to-weight ratios 

and the quick and easy installation. The constructions can be retrofitted effectively, 

without long traffic constrictions. Flexural strengthening is one of the commonly used 

procedure, where FRP strips, bars, fiber fabrics or sheets are adhesively bonded to the 

soffit of the bridge girders or decks. Alternatively, “FRPs can also be wrapped around 

concrete columns or piers to increase their capacity and ductility” [52] and to build a 

barrier to prevent further steel corrosion. Another way to strengthening an existing 

bridge for increased traffic is the replacement of deteriorated reinforced concrete 

decks with FRP decks. Due to the reduced construction weight, the live load capacity 

can be considerable improved. The change of weight, stiffness and natural frequency 

has to be considered. [8, 22, 24] 
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CHAPTER 3 

REVIEW OF LITERATURE: PEDESTRIAN WALKING LOADS  

3.1 Introduction 

Determining live loads correctly is a main challenge in the design of each human 

build structure. The dimensions should be in an economic range and the safety of the 

users still has to be assured. Unlike dead loads, the distribution of live loads is not 

defined and the distributions with the maximum impact for different load 

combinations have to be estimated. In addition, depending on the individual 

characteristics of the live loads, aspects like dynamic response, fatigue and cumulative 

failure have to be considered during the design process. The correct specification of all 

possible loads is essential for a successful design. The design codes provide specified 

values for the different types of loads as design loads, based on experiences and the 

actual state of knowledge. These values are conservative estimations to give the 

designer reliable numbers for the design of safe constructions.  

However, the peculiarity of live loads – moving, varying, and temporary – makes 

a generalization tedious. A compromise has to be found to assure a safe structure, 

without making it an uneconomical design, due to an overestimation of the load and 

the following dimensions. It gets even harder when, additional to the amount, the 

duration, impact and dynamic effects have to be considered. Traffic loads are 

especially hard to describe sufficient, due to the fact that they consist of an 

accumulation of many individual elements.  
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Because of the great importance and the major size of their shares at the live loads 

on bridges and other traffic areas, there is a great database for the impact of motorized 

traffic on structures. Numerous tests and studies regarding this topic have been 

conducted and led to a well-established model to compute traffic loads.  

For non-motorized traffic, like pedestrians and bicyclists, such a detailed and 

convincing load model does not exist. Caused by small loads, compared to a car or a 

train, and less occurrence the pedestrian load has not got any special attention and thus 

is why there is a lag in the database and knowledge regarding the dynamical 

components of pedestrian loads. Pedestrians on footbridges and on each other kind of 

bridges or official walkways are, like humans on structural elements in general, often 

assumed as moderate live loads of a static nature. Therefore, structures constructed for 

such loads are often build with slender dimensions, overlooking or underestimating 

the possibility of a dynamic load and that the corresponding serviceability might 

determine the design dimensions. Additionally, the recent aesthetic trend requests for 

light and slender structures, which results in new constructions with reduced mass, 

stiffness and damping. Combined with the development and use of new materials, for 

example FRP, which are characterized by reduced weight and stiffness, this led to the 

construction of footbridges that are extremely sensitive to vibrations. The large 

oscillations of the so-called ‘lively footbridges’ have attracted the attention of the 

structural engineers and researchers, especially since these incidents have 

compromised the serviceability and structural safety of the constructions.  

An unexpected phenomenon occurring at these bridges is the synchronous lateral 

excitation (SLE). Until then the focus was mainly directed towards the effects of 
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vertical excitation. However, incidents like the closure of the London Millennium 

Footbridge in 2000 have raised the awareness for the lateral excitation and the related 

synchronization. These incidents have also shown that the pedestrian load is much 

more complex than we have assumed before and that the approaches for the design of 

such bridges have to be adjusted. For a targeted adaption of the guidelines, the 

complex system of a footbridge loaded with a crowd of pedestrians and the resulting 

phenomena have to be analyzed and understood. 

 “The interaction between the structure and the crowd walking on it, and among 

the pedestrians within the crowd, gives rise to a multi-scale multi-physic complex 

dynamic system. The latter is characterised by collective phenomena that are not only 

due to the features of the single system components but also to their interactions. 

Specifically, the crowd behaviour, in particular the pedestrian force exerted on the 

structure, affects the structural dynamic properties and response, and the latter 

modifies the behaviour of the pedestrian walking on the moving structural surface.” 

[49] 

First, the understanding and modelling of such complex phenomena require the 

consultation of several research fields of a multidisciplinary frame. Even though the 

resulting problem (lively footbridges) is a topic in the field of civil engineering, 

neither are the description of the walking process, nor the crowd behavior are located 

in this field of study. Besides the civil engineering aspects, contributions from 

biomechanics, transportation, physics, applied mathematics and even biology and 

psychology have to be taken in consideration.  For a clear arrangement of the 

combination of these different fields and for an easier understanding of the multi-scale 
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multi-physic complex dynamic system, the system has to be split into different levels, 

corresponding to an increasing degree of complexity. The first level is the individual 

level, which presents the behavior of a single pedestrian. This level provides the 

information regarding walking parameters and the time-load function of a single 

pedestrian. The second level is the collective level. Based on the assumption that the 

structure is loaded by a crowd and not a single pedestrian, the crowd behavior and the 

occurring phenomena are analyzed, the changes in the behavior of a single pedestrian 

are elaborated and the conditions for the accumulation of the single pedestrian forces 

to a crowd force are estimated.  

The last and most complex level is the multi-physic level and it deals with the 

crowd-structure interaction. In detail, the last level contains the analysis of the change 

of dynamical properties of the structure due to the pedestrians and the influences of a 

moving structure to the walking behavior of the pedestrians. [49] 

All three levels are presented in the following paragraphs.  

3.2 Individual Level: Single Undisturbed Pedestrian 

3.2.1 General Characterization 

There are various types of dynamic loads produced by human activities. Both, 

transient and periodic loads are possible. The former might be a single impulse, 

caused, for instance, by landing on the floor after jumping from an elevated position or 

bumping against a wall. The latter is usually the result of the more common forms of 

human motion: walking, running, skipping and dancing. This is a wide categorization 

and for the analysis of particular structures, the categories have to be specified. The 

different types of motion include foot stamping and body rocking at a concert for 
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stadiums and rhythmic skipping during fitness classes for a gymnasium. For the 

purpose of a load model for pedestrian bridges the considerable motion categories can 

be reduced to walking and running. In the time of big sport events like city marathons 

and the increasing popularity of jogging as sportive leisure activity both, walking and 

running have to be taken into consideration. There are some significant differences 

between the two, regarding the load-time function, pacing rate, speed, motion 

sequence and dynamic impact factor. [7] 

 

3.2.2 Walking Parameters 

The basic component of human induced dynamic loads is the walking force of a 

single, undisturbed pedestrian. Since the presence of other pedestrians and the motion 

of the walking surface generally affect the walking behavior of pedestrians, an 

unimpeded behavior has to be generated for the measurement of the neutral 

parameters. The walking behavior of a pedestrian can be considered as unimpeded, 

when a single pedestrian is walking on a fixed ground. The velocity of a pedestrian 

walking undisturbed like this is generally referred to as free speed. In the past there 

have been made numerous researches concerning the walking parameters, mainly in 

the fields of biomechanics and transportation, but more recently also in the field of 

structural engineering. The tests have been performed in order to collect reliable data 

concerning the following parameters.  

The measurement of the walking parameters is an elaborate process, because the 

walking parameters vary strongly, caused by a wide range of factors. The walking 

parameters are influenced by both, physiological and psychological factors. The 
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physiological factors contain the biometric characteristics of the walker, like body 

weight and height, age, gender and fitness. In addition, the walking parameters’ 

variability is also contributed by cultural and racial differences, travel purpose and 

type of walking facility and other psychological factors. Furthermore, the test results 

depend on the method of measurement.  

Because of the wide range of influence factors, the aim of the test conduction should 

be the collection of data to estimate the walking parameters of a person with average 

biometric characteristics and under average conditions. The actual variability of the 

parameters can be taken into account by the consideration of the probability function. 

Generally, the Gaussian probability density function is assumed the best fit for the 

measured data [59]. The median in combination with the standard deviation is 

sufficient as the base for a detailed and realistic simulation of the load.  

Nevertheless, it is worth stressing that the geographical location of the structure should 

be taken into closer consideration, due to the fact, that even the average values vary 

strongly between different countries and cultural regions. [25, 36] For instance,  

“Japanese people are expected to walk with a higher frequency than European, as a 

consequence of both their different lifestyle and smaller average body dimension.” 

[15]. In the following the parameters necessary to describe the walking process 

sufficient are described and the average values for these parameters, collected from 

data out of a series of publications, are presented. 
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3.2.2.1 Frequency 

Since pedestrian walking is a periodic load, the main parameter to describe 

walking is the frequency fp.  Sometimes it is also referred to as pacing rate fs and is 

given as footfalls per second [FF/s] or, regarding its nature as loading frequency more 

adequately expressed, in Hz. In each case, it has to be differentiated between the 

vertical frequency fpv and the lateral frequency fpl. The former is intended as the 

walking frequency and describes the number of times a foot touches the ground in a 

time unit. Therefore, it can be measured in steps per time unit and it is relevant for the 

vertical excitation. The lateral frequency on the other hand describes the number of 

times the same foot touches the ground and its value is therefore half the vertical 

frequency. In the analysis of the lateral excitation of the structure this parameter is 

determining and hence, caused by the increasing number of lateral excitation incidents 

at lively footbridges, of growing interest. The two frequencies are strictly related by 

the factor of 2, thus the lateral frequency can be derived from the existing data for the 

walking frequency. 

Source μfpv [Hz] σfpv [Hz]  μfpl [Hz] 

Butz et al. [11] 1.84 0.126  0.92 

Kerr and Bishop [23] 1.90 n.a.  0.95 

Matsumoto et al. [31] 2.00 0.173  1.00 

Pachi and Ji [35] 1.83 – 2.00 0.11 – 0.135  0.92 – 1.00 

Ricciardelli [39] 1.84 0.172  0.92 

Sanhaci and Kasperski [43] 1.82 0.12  0.91 

Zivanovic et al. [A26] 1.87 0.186  0.94 

Schulze [20] 2.00 0.13  1.00 

Kramer [20] 2.20 0.3  1.10 

Table 2: Walking Frequencies: vertical (v) and lateral (l) 
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As shown in Table 2, the walking frequency ranges between 1.5 and 2.5 Hz. 

Consequently, the mean (μ) of the Gaussian normal distributions is often assumed as 

2.0 Hz with varying standard deviations (σ). For jogging and running the walking 

frequencies rise with the higher pace and they also vary stronger, due to the individual 

biometric characteristics of the pedestrian. For normal jogging the pace rate ranges 

between 2.4 and 2.7 Hz and for sprinting it may be as high as 5.0 Hz. Considering 

public places like bridges and walkways, the expected frequencies can be limited to 

3.5 Hz. [7] 

 

3.2.2.2 Velocity 

Another characteristic of walking is the movement forward. This movement can be 

easily described by the walking velocity vs. As already mentioned the considerable 

property in this section is the free speed that describes the velocity of an undisturbed 

pedestrian on a fixed ground. As mentioned above the values vary, caused by 

psychological and physiological influences, as well as the geographic areas. The 

waling velocity is also the topic of a wide range of publications and the results of 

numerous tests are available. [49] 
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Source μvs [m/s] σvs [m/s] 

Fruin [16] 1.40 0.15 

Hankin and Wright [19] 1.60 n.a. 

Koushki [26] 1.08 n.a. 

Lam et al. [28] 1.19 0.26 

Older [34] 1.30 0.30 

Pauls [36] 1.25 n.a. 

Ricciardelli et al. [39] 1.41 0.224 

Sanhaci and Kasperski [43] 1.37 0.15 

Sarkar and Janardhan [39] 1.46 0.63 

Tanariboon et al. [11] 1.23 n.a. 

Virkler and Elayadath [51] 1.22 n.a. 

Weidmann [53] 1.34 n.a. 

Table 3: Walking Velocity (vs) 

 

 

3.2.2.3 Stride Length 

Another way to describe the pedestrian propagation is the step or stride length ls. 

It is normally given in m. Like the other parameters it varies due to a number of 

influence factors, but above all it is depending on the biometric characteristics, like 

body height and weight, the length of the legs and the walker’s fitness. The stride 

length is the walking parameter to whose statistical description the smallest number of 

works are devoted.  

 

Source μls [m] σls [m] 

Sanhaci and Kasperski [43] 0.75 0.07 

Wheeler [54] 0.75 n.a. 

Ricciardelli et al. [39] 0.768 0.098 

Table 4: Stride Length (ls) 

 

 



 

29 

 

This might be because the three parameters, frequency, velocity and step length, 

are coupled by the fundamental law   [49] and therefore just two of them 

are necessary to describe the walking process sufficient. [7, 49] 

 

3.2.2.4 Correlation 

The law  describes how two of the parameters determine the third 

one, but caused by the complexity of the walking behavior it is difficult to find 

relationships between the three walking parameters. Nevertheless, relations between 

frequency and velocity have been proposed 

by Butz et al.:       [11] 

by Ricciardelli et al.:      [39] 

and by Bertram and Ruina:   [48] 

Ojeda et al. gave the relation between velocity and stride length as 

           [33] 

where a and b are subject-specific constants. 

Table 5: Correlation of pacing rate, forward speed and stride length [7] 
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 Even though these relations are not well established, the walking velocity is 

generally assumed as related to the walking frequency, as well as walking velocity and 

step length, while step length and walking frequency can be considered as 

uncorrelated. [49] Based on test results and average correlations can be estimated, as 

presented in the following figure. 

 

3.2.3 Walking Loads 

During walking, the pedestrian exerts dynamic forces on the ground. These forces 

include components of all three directions: vertical, horizontal-lateral and horizontal-

longitudinal. They are produced by the combination of a normal and a shear stress 

field applied on the ground. As expected the vertical component has the highest 

magnitude of the three, but the recent experiences show that the horizontal 

components can not be neglected. The actual load-time function is affected by the 

individual walking parameters, the weight of the pedestrian as well as his footwear, 

the surface conditions and measuring techniques. Many studies have focused on the 

Figure 2: Correlation Forward Speed and Stride Length [7] 
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walking force, thus numerous and detailed data are available, measured with force 

plates or treadmills. The load-time function is affected by a lot of factors, but the 

pacing rate is the parameter of the greatest importance. The walking frequency is 

dispositive for the general shape of the load-time function and also influences the 

dynamic impact factor. There are three significant characteristics of the load-time 

function, which are changing with an increasing pacing rate. [49] 

 

3.2.3.1 The Load-Time Function of the Vertical Component 

During walking with a medium frequency the load-time function of a single step 

has normally the shape of a saddle, characterized by two observable load maxima. 

Caused is this feature by the general walking sequence, where the foot steppes with 

the heel, what causes the first maximum, and pushes off with the ball of the foot, 

resulting in the second maximum. With an increasing walking frequency width the 

trough between the two maxima is shrinking so that this particular “feature disappears 

with increasing pacing rate and degenerates to a single maximum of sharp rise and 

descent when the person is running.” [7]. At a really slow pacing rate the function has 

the shape of a block, caused by the decreasing impact factor. The slow loading of the 

foot eliminates the amplification of the load caused by the step and push off 

movement, that is why the load-time function stays even during the foot is loaded. 
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The maximum load:  

With an increasing walking frequency, the load maximum increases. This is 

caused by the load impact factor. A rapidly applied load causes generally larger 

stresses than those that would be produced if the same load would have been applied 

gradually.  This dynamic effect of the load is referred to as impact and the ratio 

between the weight of the element and its dynamically increased load is referred to as 

impact factor. With a rising pacing rate the speed of the foot stepping on the ground is 

also increasing, therefore the impact factor rises and maximum load ascends.  “While 

for strolling with a frequency below 1 Hz the maximum load hardly exceeds the weight 

of the person, it increases by a quarter or a third for 2 Hz and by a half around 2.5 

Hz; at about 3.5 Hz the maximum reaches about double the weight of the test person. 

[...] For fast running the maximum load can increase to three times the weight.” [7] In 

Figure 3: Load-Time Function: Vertical Component [29] 
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the vertical case, the fundamental frequency is controlling and harmonics amplitude of 

the harmonics are less than about 30 per cent.  [7]  

 

 

 

Figure 4: Load-Time Function: various pacing rates and pavements [7] 
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Duration of foot contact: 

The last considerable characteristic is the contact duration of the single foot and 

the ground contact considering both feet. During walking, at each time one of the feet 

is touching the ground. In case of the load-time function this can be seen by the 

overlapping of the contact duration and load. One foot is being unloaded while the 

other one is being loaded, before the now unloaded foot is moved for the next step. 

This leads to a time variation of the total dynamic load during walking, which has 

components in the 2nd and 3rd harmonic – maxima of the function appears also at the 

double and triple of the pacing rate. In contrast to the walking behavior, the behavior 

during running is characterized by an interrupted ground contact. The contact times of 

the two feet are separated by periods with no contact to the ground. [29] 

For one approach of the mathematical idealized formulation of the dynamic load, 

they differ between ‘continuous ground contact’ and ‘discontinuous ground contact’. 

The load, excited by walking, which exhibits an overlap of the individual contact 

times of either foot and produces therefore a continuous ground contact, can be 

idealized by the following expression: [11] 

 

where:  G = weight of the person (generally assumed to G = 800 N) 

  ΔG1 = load component (amplitude) of 1st harmonic 

  ΔG2 = load component (amplitude) of 2nd harmonic 

  ΔG3  = load component (amplitude) of 3rd harmonic 

  fs = pacing rate 

  φ2 = phase angle of the 2nd harmonic relative to the 1st harmonic 
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  φ3 = phase angle of the 3rd harmonic relative to the 1st harmonic  

In most cases the forced vibration induced to simulate a walking person is 

governed by just one harmonic and the phase angles become immaterial. The force 

component of the 1st harmonic is given in the literature as:  

  for  

    for . 

If the 2nd and 3rd harmonics are considered, both force components are often assumed 

as     

with the approximated phase angle of 

 . [11] 

It is also possible to describe the function in a more general form as a Fourier series: 

    [11] 

where:   G = weight of the person (generally assumed to G = 800 N) 

αi = Dynamic Load Factors of the ith harmonic (i.e. ratio of the 

force amplitude to G) 

  i = the order number of the harmonic 

  fs = pacing rate 

  φi = phase angle of the ith harmonic relative to the 1st harmonic 

In the case of the discontinuous ground contact, the description of the load-time 

function within one period has to be differentiated between the duration with contact 

to the ground and without contact to the ground. The former one, “generally 

characterized by a single load maximum, can be expressed by a sequence of semi-

sinusoidal pulses” [49]. The function within one period is given by: 
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   [49] 

with:  kp = Fp,max/G = dynamic impact factor 

  Fp,max = peak dynamic load 

  G = weight of the jogger (generally assumed to G = 800 N) 

  tp  = contact duration 

  Tp = 1/fs = pace period. 

But each of these deterministic descriptions is not sufficient in the detailed 

description of the single pedestrian load, affected by the intra-subject variability. In 

addition to the already mentioned psychological, physiological and environmental 

variables, which influence the walking parameters of an individual pedestrian, the 

loading varies at each step. In fact, pedestrians are not able to reproduce the loading of 

one step exactly. To a certain extent the loading follows a randomness, which can be 

acknowledged by the statistical characterization of the walking variables as means of 

the probability density function within a periodic force model, or by describing the 

force in terms of its Power Spectral Density (PSD). [49, 7] 

 

3.2.3.2 The Load-Time Function of the Horizontal Component 

The horizontal components of the loading from human walking or running are 

much smaller as the vertical component. But so are the design values for these 

components too and in the case of lively footbridges they may become a problem. It is 

worth pointing out that especially the so-called ‘Synchronous Lateral Excitation’ [49] 

effect has become a problem in a number of cases, because it leads to pedestrians 

walking in step, which in turn leads to the in phase accumulation of the dynamic 
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forces of the individual persons. The lateral component of the walking force is 

produced by the sway of the person’s center of gravity. This sway occurs due to the 

small distances between the feet and the centerline of the body and the altering 

movement of the center of gravity in correlation with the load shift from one foot to 

the other. The lateral loading can be described as: 

   [49] 

where:   G = weight of the person (generally assumed to G = 800 N) 

  αi = Dynamic Load Factors of the ith harmonic 

  i = the order number of the harmonic 

  fs = pacing rate 

  φi = phase angle of the ith harmonic relative to the 1st harmonic. 

 

Only a few researches report results concerning the dynamic load factor of the 

lateral component, but a dominance of the first and third harmonics has been found. 

[7, 49] Bachmann and Ammann have also quoted the value of “4 per cent of the static 

weight” [32, 5] as the lateral dynamic loading during normal walking. 

The longitudinal component, even though it is larger than the lateral component, 

is in the structural analysis often neglected, due to the great stiffness of line-like 

structures in the longitudinal direction. The load-time function of all three 

components, vertical, lateral and longitudinal are presented in the following figure: 
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3.3 Collective Level: Human-Human Interaction 

3.3.1 General Characterization 

Theoretically, the loading induced by a number of pedestrians can be described 

by the accumulation of the load-time functions of the walking loads produced by the 

individual participants. However, for the description of the actual loading this 

approach is not sufficient, due to the human-human interaction.  Even this component 

of the complex phenomenon ‘crowd induced walking load’ has a comparatively small 

impact, it is worth pointing out some aspects, which influence the walking load 

slightly and might even change the outcome of the dynamic response analysis.  

Figure 5: Load-Time Function: Vertical, Lateral and Longitudinal Component [49] 
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3.3.2 Analysis Level 

3.3.2.1 General Aspects 

“Crowd modelling can be distinguished into microscopic-level and macroscopic-

level, based on the level at which crowd analysis is being performed.” [42] The 

former describes how each individual within a crowd reacts to its surrounding and 

therefore to the surrounding individuals and their behavior. In addition, described in 

latter level, group dynamics can be observed, which leads to “a complex and 

coordinated collective behavior”[25] and indicates an interaction that exceeds the 

reaction of an individual to its surrounding. This phenomenon is known as emergent 

behavior. Among others, it is responsible for the formation of walking lanes and the 

prevention of collisions. Besides the description of the behavior of an average crowd, 

coincidentally compounded of independent individuals, it is worth to consider public 

events like demonstrations or city marathons. Because of the shared goal or walking 

purpose, the cohesiveness within the crowd and the interaction between the 

individuals gets stronger and influences also the resulting walking load. [10, 9, 2] All 

of the three cases are briefly described in the following paragraphs.  

 

3.3.2.2 Microscopic-Level 

The individuals in a crowd interact with their environment; “they unconsciously 

alter their behavior in line with the response of neighbouring entities” [25]. This 

interaction, even though it is unconscious, follows a set of simple rules to assure the 

realisation of the personal goals without a discrepancy with the social norms. An 

average walking pedestrian moves towards a goal destination and aims to stay as close 
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as possible to the shortest route between his origin and the aspired destination. Inside a 

train station, individuals tend to move towards an entry or exit, walking on a bridge, 

they head to the other side. Even though each individual has his own goal destination 

and motion tendency, on their way they keep a distance to persons and obstacles in 

order to prevent collisions and, out of comfort, they avoid sudden changes in direction 

and velocity. The pedestrians have to adjust their routs according to these rules and the 

walking parameters are affected by them.  

In contrary to the free speed, the walking parameters, especially the velocity, of a 

person moving in a crowded area are not determined by the person’s abilities and 

wishes, but additionally by the crowd density (number of pedestrians per unit of area) 

and the general velocity of the crowd. With an increasing crowd density, each 

pedestrian has less space to its disposal, the strived distance to each other is not 

realisable anymore and the walking velocity has to be reduced to avoid collisions.  

In addition, assuming a crowded scenario, passing of the foregoing pedestrian is 

not possible; the pedestrian with the lowest walking velocity determines the speed of 

the whole crowd or at least the people behind him. In conclusion, the average walking 

velocity in a crowded scenario is smaller than the average free speed. The other 

walking parameters, correlated to the velocity, might change too, but not necessarily 

on the same scale. [25] 

 

3.3.2.3 Macroscopic-Level 

Even though each individual is self-organized and its walking behavior inside a 

crowd seems to follow just the described rules to avoid collision, forming a crowd, 
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they appear to share common motion dynamics and together “they portray a complex 

and coordinated collective behavior” [25]. An example for these crowd dynamics is 

the forming of uniform walking lanes in crowds with groups of opposite moving 

directions, even without communication or a leadership. This emergent behavior is the 

subject of several researches with the purpose to investigate the underlying mechanism 

that allow this unity in the crowd. Collective crowd behavior arises in swarms or 

crowds with certain class of entities (e.g. insects, human, animals, etc.) and follows 

some physical laws. That is why there are models in both fields, biology and physics, 

available.  

From the biology point of view, individuals in a crowd resemble the entities in a 

swarm. They observed that each entity acts independent and conform to a set of rules, 

while as a whole the swarm acts in a sophisticated way and forms something like a 

collective ‘group-mind’, which helps individuals to reach their goals. One aspect of 

this model is the “natural reflect that is deeply rooted in each entity (specifically 

human) to conform to social norm” [25].   

On the contrary, associating crow behavior with the laws of physics, the crowd is 

assumed as a homogenous mass of bodies. “The idea of relating the motion of crowd 

with fluid, liquid or electrons in aerodynamics, hydrodynamics or continuum 

mechanics respectively, has generated many research in crowd analyses since the past 

years. Accordingly, physics-inspired studies assume that the individual in a crowd 

tends to follow the dominant flow of the crowd and thus, the motion of highly dense 

crowd resembles fluid. Hence, theories and methods in fluid mechanics are adopted to 

comprehend the flow of human crowd. In another physics-inspired example, the 
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kinetic theory of gases is applied to model the sparse and random interaction forces 

amongst individuals in a crowd.”[25]. In the field of physics the individuals are 

characterized as non-thinking particles whose motions are dictated by external forces.  

Both approaches gain convincing results and share similar understanding and 

perspectives. Nevertheless, existing models are insufficient in understanding the 

interaction between individuals and their environment in total. Additionally, they do 

not take the possibility of subgroups and their influence on the crowd behavior into 

consideration. [25] Social interactions such as walking in pairs or in groups and the 

resulting harmonization of the walking parameters to each other leads in average to a 

smaller velocity. 

 

3.3.2.4 Special events 

The accumulation of the walking loads of a group of pedestrians is coincidental. 

The maxima and minima of the individual load-time functions are randomly shifted to 

each other and the result is a nearly constant load function, because the peak values 

compensate each other. A higher risk for line-like structures poses crowds marching in 

step, because in that case, the accumulation is not coincidental anymore and the 

maximum of the resulting load function is the sum of the single load function maxima. 

Therefore, the synchronization of the pedestrians within a crowd is a hazard, which 

has to be considered during the dynamic analysis.  

There have been some accidents in history, where soldiers marched in step over 

slender bridges and combination of the summed loads and a marching frequency close 

to the natural frequency of the structure led to a resonance response and eventually to 
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the collapse of the structure. Nowadays the risk of people marching in step is still 

existing, even though it is likely that they are not soldiers but demonstrators or 

participants of an big event, supported with music or drums and marching in step with 

the music. Even a bridge that has been designed to carry motorized traffic and 

therefore great loads can be affected by such an event. [49] 

Another kind of public event that should be considered is sport events, especially 

marathons. The risk of these is not the synchronization but the changed walking mode. 

Jogging and running produce higher amplitudes in the load function than walking and 

an accumulation of these loads might result in considerable high loads. However, the 

crowd density in this scenario is noticeable lower, because the increased speed 

demands greater distances to surrounding peoples. As a result, the summed load would 

not be significant higher. In an approach for a simplified dynamic analysis of slender 

bridges, the scenarios of special and public events and the resulting loads should be 

included.  [7] 

“In order to complete the introductory overview of the topic of interest, an 

additional issue to be considered arises by the onset of panic conditions, which 

substantially modify the crowd dynamics.” [49]. In addition to aspects of a save 

evacuation panic conditions can lead to an increased crowd density and hence to 

higher loads. However, since synchronization does not occur in panic conditions and a 

high crowd density restricts the movement of individuals it is less a dynamic but more 

a general load problem and hence this issue is not of particular interest in this text.  

[7, 49] 
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3.3.3 Simplifications 

In the field of structural engineering, especially for a structural analysis, the 

detailed analysis of a microscopic level is not expedient. The used measurements for 

walking parameters found in literature usually refer to averaged quantities and within 

a crowd occurs a assimilation. Additionally, the focus is normally at the general crowd 

behavior and if it has influence on the resulting load. “One of the main feature of 

crowd behaviour is that the walking velocity is affected by the crowd density, namely 

the higher the crowd density, the lower the walking velocity. Many studies have been 

directed to the determination of a law that links the walking velocity to the crowd 

density.” [49].  

For a computational simulation of a pedestrian crowd on a structure, the adjusted 

walking velocity is worth to consider. A crowd can be described by three main 

variables. q [ped/ms] is the flow, namely the number of pedestrians passing a cross-

section of an area in a unit of time. v [m/s] is the average walking velocity and ρ 

[ped/m2] is the crowd density. The three parameters are related by the fundamental 

relation   [32] and are graphical represented by fundamental diagrams. 
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Looking at the diagram some relevant quantities regarding crowd behavior can be 

identified: 

- Until the critical density ρc is reached the pedestrians are unimpeded and walk 

with constant free speed vM. 

- For higher densities ( ) the walking speed decreases with increasing 

density. 

- The highest flow occurs at the combination of a capacity speed vca and a 

capacity density ρca. 

- ΡM is the maximum admissible density corresponding to null speed and flow. 

“The values of the aforementioned variables are not expected to be universal, 

since walking behaviour is influenced by a great number of microscopic factors, such 

as age, culture, gender, travel purpose, type of walking facility and single or multiple 

walking direction, as observed for the walking parameters at the individual level.” 

Figure 6: Flow-Density Fundamental Diagram [10] 
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[49] Nevertheless, based on experimental measurements some authors have proposed 

approaches to describe the correlation between density and velocity.  

 

Another approach introduces factor to account for the influence on the walking 

velocity of both psychology and physiological level. 

  [50] 

where:      (jam density)  

  (surface occupied by motionless ped) 

     

  (average free speed) 

 

Figure 7: Speed-Density Relations [10] 

Table 6: Coefficients of Geographic Area and Travel Purposes [50] 
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All the relations refer to a one-directional flow. Adding a contrariwise flow leads 

to a reduction of the flow capacity, due to passing pedestrians. [49] 

 

3.4 Multi-Physic Level: Human-Structure Interaction 

3.4.1 General Characterization 

The interaction between human and structure is a sophisticated process in which 

various components and phenomena are included. Bridges are complex constructions 

and several mechanisms contribute to their dynamic response. The dynamic properties 

of a structure are hard to predict and depend on materials, construction dimensions, 

weight and general assembly of the structure, as well as the realization of the details.  

Due to occupants and the specific characteristics of human bodies, these dynamic 

properties are additively changed. On the other hand, the loading function of a crowd 

in motion, which is also complex and related to many variables, can be decisively 

influenced by the interaction with the respective construction. This was brought to 

particular attention in the field of structural engineering by the opening event of the 

London Millennium Footbridge in June 2000. Here caused this interaction the great 

oscillation amplitudes in lateral direction. Since then a great number of researches 

have dealt with this topic and some interesting correlations and connections have been 

detected. Overall, two main parts of the interaction have been identified: in the context 

of dynamic response analysis, they can be described as positive and negative damping 

effects, as described in the following.  
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3.4.2 The Positive Damping Effect 

In the field of dynamical analysis, damping describes the dissipation of energy 

due to several effects like material dissipation and connections. Besides the dynamic 

load impact and the positive feedback effect, which is presented in the following 

paragraph, pedestrians have also a positive that means stabilizing effect on the 

structure. Contrary to other dynamic loads, like wind, earthquakes, etc., traffic loads 

add additionally to the load input also a mass component to the hypothetical single 

degree of freedom system and, in case of pedestrians, it changes also the damping 

coefficient. One of the main components in a dynamical analysis is the mass. In the 

case of a single degree of freedom system, it is directly related to the natural 

frequency. To model a bridge construction as a SDOF system the equivalent mass has 

to include the added mass of the occupants. The relative ratio of the mass of the 

occupants to the structure is significant; in some cases, it can reach values higher than 

1.0, which means that the weight of the occupants exceeds the weight of the empty 

structure. The changes in the dynamical analysis, especially the natural frequency, are 

relevant. [41] 

Additionally, caused by the unique body characteristics of humans, the 

pedestrians influence the damping coefficient of the considered system. “… the 

occupant acts as a dynamic spring-mass-damper system attached to the empty 

structure thereby affecting the dynamic properties of the combined system.” [41] The 

case of stationary people is well known. Here it can be differed between people in 

different postures, like sitting or standing, with straight or bent knees. The different 

results for these postures give the explanation for the effect.  



 

49 

 

The human body is not rigid and has spring-like characteristics, due to the joints, 

like knees and ankles. Even though it is unconscious, the people counteract the 

appearing vibrations due to the softness and flexibility of their bodies. The effect 

increases in the case of bent knees in comparison to the case of the straight knees. That 

validate the theory of people as spring-mass-damper. In the case of walking people, 

the effect is less well known and established. In addition to the spring-mass-damper 

approach, which applies also on walking people, another approach to explain the 

effect has been published. It claims, that the “humans’ inability to synchronise their 

pace with vertically moving surfaces causes the vibration to diminish.” [49]. The 

actual effect might be a combination of both theories. [11, 20, 49] 

In each case it is important to account for the effect within a dynamical analysis, 

because neglecting to do so “may result in an overestimation of the dynamic response 

of a structure, and as a result, a more costly structural design.”[41] It is of great 

importance, because experiments demonstrate that the described effect, meaning 

occupants at a bridge, can change the damping factor of the system by a factor of 10. 

The difficulties are in the estimation of the applicable values for specific cases, since 

they depend on several parameters, among others on the relative ratio of the average 

walking frequency of the occupants to the natural frequency of the empty structure and 

the relative ratio of the mass of the occupants to the structure. It is worth stressing out 

that the effect of additional damping applies in this form just on the vertical direction. 

In the lateral direction contrary effects can occur. [41] 
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3.4.3 The Negative Damping Effect – Synchronization 

Incidents like the closure of the London Millennium Footbridge after great 

vibrations at the opening event or the excitation of serious vibrations at the Auckland 

harbour Bridge in New Zealand, an eight-lane motorway bridge, due to a crossing 

political march, brought the negative damping effect caused by pedestrians to attention 

of structural engineers. A similar self-excitation mechanism is known in the field of 

wind-engineering, where vortexes result alternating forces, which causes initially 

small oscillations to build up. The effect is called negative damping, because it 

amplifies the dynamical response of the structure, instead of reducing it. It is also 

called positive feedback. “The phenomenon of ‘synchronization’ by which people 

respond naturally to an oscillating bridge when this has a frequency close to their 

natural walking or running frequency is a feature of this phenomenon.” [32] 

When a bridge is loaded with a crowd of pedestrians small lateral motion might 

occur, caused by the random lateral walking forces. The human body is sensitive to 

lateral motions and automatically he attempts to re-establish the balance by moving 

Figure 8: Frequencies and Damping Ratios due to the Positive Damping Effect [41] 
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his body in the opposite direction. This reaction leads to changes in the walking 

behavior of the pedestrian. Firstly, the lateral width between the feet increases, 

because the pedestrian has to counteract the lateral acceleration of the pavement, and 

that leads to higher lateral forces. Secondly, the pedestrian synchronise his walking to 

the swaying frequency, that is the natural frequency, of the structure.  

The enlarged load, adjusted to the resonance frequency, causes in turn an 

increased motion of the structure. The threshold at which a pedestrian starts to 

synchronize with the oscillation varies from person to person, which is why the 

number of synchronized people growth gradually. Consequently, the motion of the 

structure increases respectively. “Of course, because of adaptive nature of human 

being, the girder amplitude will not go to infinity and will reach a steady state.” [17] 

Mainly, the induced force is restricted by the physiological limitation of the step width 

and characteristic of humans to stop walking when the motion is high enough to scare 

them. 

The requirements for a synchronous lateral excitation are a natural frequency of 

the structure close to the average walking velocity and initial motions higher than the 

thresholds. In case of the vertical direction and therefore for a frequency around 2 Hz 

the threshold is 8-12 mm. For lateral vibrations with a frequency of about 1 Hz the 

threshold seems to be 4-6 mm [6]. This consonance to the research of Arup [32] 

following the Millennium Bridge incident. The low lateral threshold confirms the 

human sensitivity to lateral vibrations and underlines the importance of this effect, 

because even massive concrete bridges can be affected. The graph confirms also the 
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trend that people synchronize with each other, even when there is no pavement 

motion.      

 

“They also found that the lateral forces of the feet-apart gait are phase 

synchronized to the structure and approach 300N amplitude per person, which these 

researchers pointed out is four times the Eurocode DLM1 value of 70N for normal 

walking.” [32]. The general conclusion to this topic is to avoid natural structural 

frequencies in the range of the walking frequency and its third harmonic. This rule 

might not be adequate, because it leads to unnecessary heavy and costly constructions, 

Figure 9: Probability of Synchronization [49] 
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and eliminates innovative designs and the use of new materials. A model to consider 

this effect has to be found. [5, 6, 17, 32, 49] 
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CHAPTER 4 

REVIEW OF LITERATUR: DESIGN CODE REQUIREMENTS 

4.1 General Aspects 

Design codes and guidelines formulate requirements for buildings and 

constructions to ensure their structural safety and durability as well as serviceability. 

Their aim is to establish standards for the design of structures and a general level of 

safety, especially for public constructions. Design codes and guidelines differ within 

different countries and are separated in different fields, materials and construction 

types. The most relevant guidelines for pedestrian bridges and FRP pedestrian bridges 

available in the United States are AASHTO Guide Specifications for Design of 

Pedestrian Bridges [2], AASHTO LRFD Guide Specifications for the Design of 

Pedestrian bridges [3] and AASHTO Guide Specifications for Design of FRP 

Pedestrian Bridges [1]. The following paragraphs summarizes the requirements and 

restrictions formulated by these guidelines. 

 

4.2 Definition and Application 

The AASHTO (American Association of State Highway and Transportation 

Officials) claims that pedestrian bridges “shall be designed for specified limit states to 

achieve the objectives of safety, serviceability, including comfort of the pedestrian 

user (vibration), and constructability with due regard to issues of inspectability, 

economy, and aesthetics” [3] and their formulated requirements are meant to reach this 

goal.  
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The Guide Specifications apply for pedestrian bridges, which is defined as a 

bridge “intended to carry, primarily pedestrians, bicyclists, equestrian riders and light 

maintenance vehicles, but not designed and intended to carry typical highway traffic” 

[3]. Consequently, the bridges has to be designed considering both a live load 

representing a dense pedestrian crowd and a maintenance vehicle. The configuration 

of the latter one can be determined by the Operating Agency; alternatively, there are 

design values available in the guidelines. The vehicle load has to be applied, even 

without a vehicle allowance, but it can be neglected, provided vehicular access is 

physically prevented. [1] Bicyclists are not expected to induce design-controlling 

loads that is why they are not further considered within the guidelines. The equestrian 

load is also not expected to control the design of the total structure, but can produce a 

significant patch load due to a high hoof pressure during a canter of the horse, which 

may control only the deck design. [3] Thus is why this load case can be also neglected 

within this research.  

 

4.3 Design Loads 

4.3.1 Pedestrian Live Load 

The  guidelines demand the application of a uniform pedestrian loading to the 

walkway area. “This loading shall be patterned to produce the maximum load effects.” 

[3]. The actual values vary within the different specifications and guidelines, but are 

generally based on the maximum credible pedestrian load. Due to physical limits, the 

maximal load induced by pedestrians is restricted. It depends on the compounding of 

the crowed and if individual movement is still possible. Are standing crowd can have a 



 

56 

 

high pedestrian density that cannot be reached within pedestrian traffic. 85 psf (4.07 

kN/m²), which is proposed in [1], is considered “a reasonably conservative service 

live load that is difficult to exceed with pedestrian traffic” [1]. Other guideline 

specifications provide higher values, but allow reductions based on loaded length or 

area, considering the lower probability that a big area is crowded on a maximum level. 

In cases of special events or locations, for instance close to stadiums with big sport 

events, this reduction might not be appropriate and includes an unnecessary risk.  The 

following table presents the pedestrian live load design values provided by different 

guidelines. 

 

Guideline [kN/m²]     ([psf]) comment 

[1] 4.07     (85) Exceeds 400 ft²: w=85∙(0.25+(15/√A)) 

[2]              (90) 
Consideration of dynamic load allowance is not 
required with this loading 

[3] 4.07     (85) 
average person occupying 2 ft² (.186 m²) of bridge deck 
area 

Table 7: Pedestrian Live Load 

 

 

 

4.3.2 Vehicle Live Load 

As mentioned above pedestrian bridges has to be designed for an occasional 

single maintenance vehicle. This applies regardless a vehicle allowance. Just in the 

case where the vehicle access is physical prevented the corresponding load can be 

neglected during the design. If the Operating Agency determines a specified vehicle 

configuration, this can be used for the design. In all other cases, the AASHTO 
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Standard H-Truck shall be used. Depending on the width of the walking area the 

following values has to be applied [1]: 

 Clear deck width from 6 ft to 10  ft: H-5 Truck   = 10,000 lb  (44.48 kN) 

 Clear deck width over 10 ft:  H-10 Truck = 20,000 lb  (88.96 kN)  

The combination of pedestrian and vehicle load can be neglected. The considered 

Truck has to be placed to produce the maximum load effects. 

 

4.3.3 Wind Load 

Regarding the considered guidelines, the wind loads are the only live loads, 

which has to be applied in the horizontal direction. The wind load has to be applied in 

a 90° angle to the longitudinal direction of the structure and “shall be applied to the 

projected vertical area of all superstructure elements, including exposed truss 

members on the leeward truss.” [1]. The following intensity should be used for the 

design [1]: 

 For Trusses and Arches:  75 psf (3.59 kPa) 

 For Girders and Beams:  50 psf (2.39 kPa) 

4.4 Design Details 

Besides the recommendations for design loads the guidelines provides also 

requirements for design details, like deflection limitations and instructions regarding 

vibrations, to assure the structural safety and serviceability.  
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4.4.1 Deflection 

The present guideline formulates limitation for deflections in relation to the 

corresponding span to assure users and observer a secure feeling and restrict the 

stresses in secondary construction members due to the movement. “Members shall be 

designed so that the deflection due to the service pedestrian load does not exceed 

1/500 of the length of the span.” [1]. The same value applies for cantilever arms due to 

the pedestrian live load and for the horizontal deflection due to lateral wind load. 

These values are more liberal than the AASHTO highway bridge values (1/1000), 

recognizing the differences between vehicle and pedestrian loads. While the maximum 

load, which is applied for the calculation of the maximum deflection, is expected to 

appear frequently, the maximum loading due to pedestrians and the resulting 

deflection is expected to be exceptional. [1] 

The limitation of maximal deflections correlates also with the vibration sensitivity 

of the structure. The structural stiffness, which is required to reach minimal 

deflections, ensures at the same time the fulfilment of the demanded vibration 

limitations. The reduction of the vertical deflection criterion for bridges out of 

traditional materials such as steel, concrete, wood, and aluminum, would cause a drop 

of the structural natural frequency, potentially below the threshold of 3 Hz, which 

represents the “comfort level of pedestrians and runners” [1]. Due to the reduced 

weight of FRP in comparison to traditional materials, one can satisfy the minimum 

vertical natural frequency criterion even with a more liberal deflection criterion. 

Nevertheless, due to the serviceability in terms of observable high deflections, the 

limitation of the maximal deflection applies unmodified to FRP pedestrian bridges. 
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4.4.2 Vibrations 

The requirements in terms of vibration restrictions are divided in vertical and 

horizontal directions. To avoid any issues regarding vibrations the AASHTO 

guidelines restrict the fundamental frequency of pedestrian bridges.  “To avoid any 

issues associated with the first and second harmonics” [1] the fundamental frequency 

of pedestrian bridges should be higher than 5 Hz in the vertical direction. “The range 

of the first through the third harmonic of people walking/running across pedestrian 

bridges is 2 Hz to 8 Hz, with the fundamental frequency being from 1.6 Hz to 2.4 Hz.” 

[1]. Thus the fundamental frequency of traditional pedestrian bridges is restricted to 

values higher than 3 Hz.  

In all other cases, like “pedestrian bridges with low stiffness, damping, and mass, 

such as bridges with shallow depth, lightweight (such as FRP), etc., and in areas 

where running and jumping are expected to occur on the bridges, the design should be 

tuned to have a minimum fundamental frequency of 5 Hz (in the vertical direction) to 

avoid the second harmonic.” [1]. In the horizontal direction the fundamental frequency 

of the pedestrian bridges should be higher than 3 Hz to avoid issues due lateral motion 

involving the first and second harmonics. Additionally, the aspect ratio (length/width), 

which also influences the lateral dynamic response of the construction, higher than 20 

should be avoided. Finally, the fundamental frequencies in horizontal and vertical 

direction should be different “to avoid potential adverse effects associated with the 

combined effects from the first and second harmonics in these directions” [1]. 

If the aimed fundamental frequency cannot be reached by changes at structural 

level, for instance by changing stiffness, construction weight etc., additional effective 
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measures to reduce the vibrations are “stiffening handrails, vibration absorbers, or 

dampers” [1].  
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CHAPTER 5 

MODEL DEVELOPMENT 

5.1 General Aspects 

The purpose of this research is the estimation of the dynamical response behavior 

of FRP pedestrian bridges. As shown in the previous chapters the live load induced by 

a crowd of people, especially the dynamic part of it, is a complex phenomenon and 

hard to predict. The establishment and increasing use of advanced composite 

materials, namely fiber reinforced polymers, for civil engineering constructions and 

the related changes of dynamic properties and dynamic response behavior of these 

constructions, makes this topic to an important issue for the assurance of the safety 

and serviceability of newly build structures. In the corresponding design codes this 

topic is solved by giving general limitations for the natural frequency of structures.  

This research is meant to analyze the dynamical response behavior of FRP 

pedestrian bridges. One major aspect of this analysis is the comparison to a traditional 

construction material. Due to its similarity regarding mechanical properties and 

general application, the used material is steel. The comparison is firstly a possibility to 

evaluate the results and estimate the specific material characteristics by determining 

the differences. Secondly, it verifies the model, since steel is a well-known material 

and the results might provide information about the quality of the used model. The 

final goal of the analysis is to check the accuracy of the recommendations given by the 

design code and, if necessary, to formulate an improved approach. 

The current chapter presents the development of the test series and the model 

itself. It explains the general setting, presents the chosen parameters and their 
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respective calculations and points out limitations and restrictions regarding the test and 

the results. 

5.2 Simplifications 

5.2.1 General System 

One part in the process of the model development was the simplification and 

generalization of the bridge structure. The aim was to find a model, which represents 

the characteristics of an average pedestrian bridge. Several parameters have to be 

chosen during the design of bridges, including the construction type, the number, 

profile and dimensions of the main girders, the cross-sectional beams and the deck and 

pavement design. Especially the first two points made a generalization of bridge 

properties complicated. Consequently, the final analysis has been made with an 

simplified girder system.  

The common structural system of pedestrian bridges is a single span, traversed by 

two main girders, connected by secondary crossbeams, carrying the deck construction 

including pavement and handrails. Since the deck construction has a minor influence 

on the structural properties considered in this research and has, on the other hand, a 

wide range of variables in design and composition independent from the girder 

material, the analyzed system has been reduced to a girder system, consisting out of 

two main girders and the connecting crossbeams. In order to identify the dynamical 

properties of FRP pedestrian bridges this reduction to the main constructional 

members has been necessary to determine the particular specifications of this material 

without the influences of deck constructions and materials and other design 

components, which might have changed the results. 
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5.2.2 Load Application 

As presented in chapter 3 the load induced by pedestrian crowds on a flexible 

structure is a complex phenomenon, which includes several interactions and countless 

variables. To model this phenomenon sufficiently a multi-physical and extensive 

model is necessary. The development of such a model falls outside the scope of this 

paper. The aim of the research is to identify the different components of the dynamic 

response and the evaluation of the guideline requirements. In order to do this, the load 

is applied separately for the different components and, in order to estimate the 

maximum values, a uniform distributed and an harmonic load is assumed. The latter 

one does not represent an average pedestrian loading, but it represents a maxima 

crowd load, with pedestrians walking in step, which represents the conditions of the 

‘worst case’ in terms of a dynamic response. 

 

 

 

Figure 10: Construction Type (ABAQUS Model) 
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5.3 Model parameters 

5.3.1 Construction Type 

 The modelled bridges are one span pedestrian bridges, with no camber, spanning in 

the range of 10.00 m to 25.00 m and are 2.00 m wide. The range of analyzed lengths 

corresponds to the normal length of average one span, beam bridges. The width is 

within the average width of pedestrian bridges, but comparatively small, in order to 

acknowledge the fact that small width to length ratios cause vibrational problems in 

lateral direction.  The regarded constructions consist of two or three main I-shaped 

girders, connected with crossbeams in T-shape and half the height of the main girders.  

 

 

 

 

Figure 12:Model construction - FRP 1 (ABAQUS Model) 

 

 

 

 

Figure 11: Model Construction - FRP 2/Steel (ABAQUS Model) 
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5.3.2 Materials 

The bridge models are designed for the use of three different materials. As stated 

earlier, the traditional material, which is used, is steel, with average material 

properties. The selection of the FRP mechanical properties is challenging, due to the 

wide range of available properties. In order to investigate the effects of the single 

properties, two hypothetical fiber reinforce polymer materials with different stiffness, 

meaning different Young’s moduli, are used in the simulation. The properties of the 

three materials are presented in the following table: 

Material Density [kN/m³] Young’s modulus [MPa] ν 

FRP 1 1.75 50000 0.2 

FRP2 1.75 175000 0.2 

Steel 7.85 200000 0.3 

Table 8: Material Properties 

 

5.3.3 Girder 

5.3.3.1 Main Girder 

The dimensions of the main girders are based on the deflection limitations of the 

guidelines. Assuming the maximal pedestrian live load of 4.07 kN/m² and the maximal 

deflection of L/500 and based on the formula 

   [18]  

to calculate the deflection, the necessary moment of inertia can be estimated as 

   . 

To maintain the comparability between the materials as well as between the 

different spans the ratio of the moments of inertia in Y- and Z-direction is nearly 
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constant and the thickness of flanges and webs remains constant with increasing span 

within one material. Due to the low stiffness of the FRP 1 the proceeding leads to 

uneconomic big girders, what is why in case of this material three, instead of two, 

girders are used. The dimensions as well as the general properties of the used girders 

are given in the figures and tables A1, A2, A3 and A4 in the appendix.  

 

5.3.3.2 Crossbeams 

The crossbeams are chosen as T-Profiles of the half height of the main girders and are 

placed with a spacing of around 2.00 m. There main task is the prevention of the 

torsion of the main girders and the distribution of unsymmetrical loads. In case of an 

actual construction, the dimensioning might be unsatisfactory, but it is chosen in terms 

of comparability. The dimensions of the used crossbeams are given in table A5 and 

A6. 

5.3.3.3 Boundary Conditions 

The abutments are placed beneath the ends of each main girder. The aim is to 

prevent movement in all of the three directions without producing any constraints. 

Vertical displacement is restricted at each abutment, two abutments provide support in 

lateral direction and two of the abutments prevent the longitudinal displacement. The 

following graphic presents the disposition of the boundary conditions.  

Figure 13: Boundary Conditions (ABAQUS Model) 
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5.4 Analysis Steps 

5.4.1 General Aspects 

In order to determine the dynamic properties of the different materials and the 

relating bridge models the analysis includes several steps to determine the single 

effects and influences. The following paragraphs describe briefly the proceeding and 

the respective settings used in the ABAQUS simulation. 

 

5.4.2 Step 1: Natural Frequency 

During the first step, the natural frequency of the modelled structure is estimated. 

In order to identify the influences of the material properties on the fundamental 

frequency of the structure no further loads or preconditions are applied. To see the 

development of the frequencies and modes this analysis step is made for all spans and 

materials and includes the first seven modes of the structures. It is expected that the 

development follow the general laws of structural dynamics. This step provides also a 

first classification in terms of the range of fundamental frequencies and therefore a 

base for the following steps. 

 

5.4.3 Step 2: Additional Mass 

As mentioned in the chapter 3, the additional mass of the pedestrians changes the 

properties of the single degree of freedom system and therefore, the fundamental 

frequency of the structure. This effect is analyzed by a stepwise-applied mass and the 

calculation of the respective fundamental frequencies. The applied mass represents a 

load, which ranges between 0 kN/m² and 4 kN/m². The highest values equals the 
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maximal pedestrian load. The load is assumed uniformly and an even distribution over 

the two or three girders is considered. 

 

5.4.4 Step 3: Dynamic Response (harmonic loading) 

To test for the dynamic response to the pedestrian loading the steady state of the 

structure is estimated, over a wide range of frequencies and with a stepwise applied 

dynamic load. The initial condition of this step is a maximal loaded (4.0 kN/m²) 

structure, to acknowledge the changed fundamental frequency, and stepwise a 

dynamic load, considering the impact factor related to different walking frequencies, is 

applied. In vertical direction, the first applied dynamic load is 0.8 kN/m², which is 

equivalent to an impact factor of 1.2, which correlates to walking frequencies of 1.6 

Hz to 2.0 Hz and the static load of 4.0 kN/m². The next load steps are 1.6 kN/m², 2.4 

kN/m² and 3.2 kN/m² that acknowledges the increasing impact factor with increasing 

walking frequency.  

The tested frequencies embrace the range of 1 Hz to 5 Hz to include walking 

frequencies from slow walking up to running. Since the applied load is harmonic and 

uniform, it represents a crowd marching in step, which is not realistic, but produces 

maximal response values. In horizontal direction, which is analyzed separated from 

the vertical direction, the load steps are 0.2 kN/m², 0.16 kN/m², 0.12 kN/m², 0.08 

kN/m² and 0.04 kN/m².  
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CHAPTER 6 

FINDINGS AND RESULTS 

6.1 Introduction 

Following the analysis steps presented in the previous chapter, the results and the 

respective explanations and conclusions are presented. In the first part, the results are 

presented systematically and are related to the basic principles of structural dynamics. 

The focus is on the general characteristics of the dynamical behavior of the 

constructions, their general dependencies and the differences between the different 

materials. The second part includes an evaluation of the guidelines based on the 

conclusions of the first part. The third part presents a new approach for the guidelines 

in contribution to the findings of part two. 

6.2 Results 

6.2.1 Fundamental Frequencies 

6.2.1.1 General Aspects 

Considering a single-degree-of-freedom (SDOF) system, meaning a system with 

a single displacement variable, the rate at which the system chooses to oscillate in this 

direction is called natural or fundamental frequency. The natural frequency is 

governed by the mass and stiffness of the system. In terms of an undamped system the 

relation can be described as 
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where k is the stiffness and m is the mass of the system. A bridge structure is 

much more complicated, it has several motion variables and therefore, it has to be 

approximated as a multi-degree-of-freedom (MDOF) system. In the case of MDOF 

systems, each degree of freedom is related to its own natural frequency. Each of these 

modes of vibration is associated with a particular deformation shape known as the 

mode shape. Due to the high complicity of MDOF systems the calculation of the 

natural frequencies is more complicated. The circular natural frequencies of an MDOF 

system are the square roots of the eigenvalues of ; the general dependencies are 

equal to the SDOF equation.  

During the research, the natural frequencies of the model constructions are 

estimated. The first seven modes are considered. In order to evaluate the dynamical 

response under human induced excitation the natural frequencies in vertical and lateral 

direction are decisive. The first seven modes of the constructions include the first three 

modes in lateral direction, the first two modes in vertical direction and the first two 

modes of a torsional motion. The order of the seven modes is equal over all span 

lengths and for all materials. Just the second vertical mode and the second torsional  

mode have similar values regarding their respective natural frequencies and represent 

the sixth and seventh mode of the structure in turns. Illustrative for all considered 

structures the mode shapes of the FRP 1 and FRP 2 bridges with 20.00 m span are 

presented in the following table.  
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Mode FRP 2/Steel FRP1 

1 

 

Figure 14: Mode 1 - FRP 2/Steel 

 

Figure 15: Mode 1 - FRP 1 

2 

 

Figure 16: Mode 2 - FRP 2/Steel 

 

Figure 17: Mode 2 - FRP 1 

3 

 

Figure 18: Mode 3 - FRP 2/Steel 

 

Figure 19: Mode 3 - FRP 1 

4 

 

Figure 20: Mode 4 - FRP 2/Steel 

 

Figure 21: Mode 4 - FRP 1 
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Mode FRP 2/Steel FRP1 

5 

 

Figure 22: Mode 5 - FRP 2/Steel 

 

Figure 23: Mode 5 - FRP 1 

6 

 

Figure 24: Mode 6 - FRP 2/Steel 

 

Figure 25: Mode 6 - FRP 1 

7 

 

Figure 26: Mode 7 - FRP 2/Steel 

 

Figure 27: Mode 7 - FRP 1 

Table 9: Mode Shapes (FRP 1, FRP 2/Steel) 

 

 

 

 

 

 

 

 

 

 



 

73 

 

 

6.2.1.2 Unloaded system (Analysis-step 1) 

The comparison of the natural frequencies of the unloaded systems gives a first 

overview of the dynamical properties of the different materials. The table A5 with the 

detailed data is included in the appendix. The following graphs present the 

development, with increasing span, of the natural frequencies of the first lateral, 

vertical and torsional mode, respectively, which represents the first three modes of the 

structure. The curves for the three materials are printed in the same graph, in order to 

simplify the comparison. 

 

Figure 28: Fundamental Frequencies - Mode 1 - lateral 
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Figure 29: Fundamental Frequencies - Mode 2 - vertical 

 

 

 

Figure 30: Fundamental Frequencies - Mode 3 - torsional 
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The natural frequencies of the structures depends mainly on the parameters mass 

and stiffness. The mass consists of the construction weight and depends on the mass 

distribution. The stiffness of the applied system consists of the mechanical material 

properties, the characteristics of the profile, type and span of the structural system. 

The effects of three of these parameters can be seen in these graphs.  

The first considerable parameter is the span. The curves of all three materials 

have similar shapes, because the dependency of the natural frequency to span is 

material independent. The dependency is in general complex, since the span influences 

more than one included parameter. The stiffness of a dynamical system can be 

calculated as 

    [18] 

Where α is a factor depending on the statically system. Thus, the natural 

frequency is dropping with increasing span. Since the moment of inertia I is also 

estimated based on the span length L (see chapter 5.3.3.1 Main Girder), the 

interdependency between the stiffness and the length L is even more complicated. 

Additionally the span also dictates the mass, since the construction weight is closely 

related to the span, because of both, the span and the resulting profile dimensions. The 

continuity with which the curves of all materials develop shows that the proceeding to 

model comparable systems has been sufficient. Minor discontinuities can be explained 

by the stepwise increase of the moment of inertia and the changes in the cross beam 

spacing.  

The next considerable parameter, which is in order to estimate the material 

depending dynamical properties of greater importance, is the stiffness of the material, 
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namely the Young’s modulus E. The equation above shows, the stiffness of the 

structure is proportional to the Young’s modulus. However, it has to be considered 

that the moment of inertia depends also on the material properties, so the actual 

correlation is not linear. An increase of the structure’s stiffness leads to higher natural 

frequencies. This can be easily observed in the direct comparison of the two FRP 

materials, whose properties differ just in terms of stiffness. This aspect requires 

consideration during the design process of FRP constructions, because advanced 

composite materials vary strongly regarding their mechanical properties and a reduced 

natural frequency can cause resonance related problems.  

Although the FRP materials have significant smaller Young’s moduli than steel, 

the model structures built out of these materials have still higher natural frequencies 

than the respective ones out of steel. This circumstance is caused by the third 

considerable parameter, the mass. The assumed materials have significantly differing 

densities, which is decisive for the mass to be applied. The actual mass of the 

dynamical system is the product of span, profile area and density. The span is for all 

material the same, profile area and density are material depended. FRP 2 and steel 

have similar stiffnesses and have therefore similar profiles. In conclusion, their main 

difference is the density. As it can be seen clearly, this property has a major influence 

on the structure’s natural frequency. A reduced density causes an increased natural 

frequency, which can be seen as a major advantage of advanced composite materials, 

because it counteracts the effects of the reduced stiffness. Since the factor between the 

materials’ densities is higher than the one of the stiffness, the influence of the density 
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is higher, which is the explanation, why the natural frequencies of the FRP materials 

are higher than the one of steel.  

One additional aspect can be seen in these curves regarding the construction form 

itself. The constructions out of FRP 1 are designed with three instead of two girders. 

This has not a big influence in vertical direction, because the structure’s stiffness is the 

sum of the individual girders. In horizontal direction, the impact of this change of 

construction is much higher. Due to the reduced spacing and the reduced length of the 

crossbeams, the connection between the individual girders increases which leads to an 

improved stiffness in this direction. The respective position of the corresponding curve 

is therefore higher in the lateral direction than in the vertical.  

The development and relation to each other of the different modes respectively 

for the different materials are presented in the following graphs. The significant 

similarity proves the comparability of the used models, which is important for the 

following analysis steps. 

 

Figure 31: Fundamental Frequencies - FRP 1 
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Figure 32: Fundamental Frequencies - FRP 2 

 

 

 

 

Figure 33: Fundamental Frequencies - Steel 
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6.2.1.3 Loaded Systems (Analysis-step 2) 

Even though the mechanical properties of fiber reinforced polymer lead to 

increased natural frequencies, which is positive in terms of the resistance against 

human induced excitations, FRP constructions are still more sensitive to these loads, 

due to high live load to construction weight ratios.  

Unlike wind or earthquake live loads, pedestrian live loads add an additional mass 

to the dynamical system. When pedestrians enter a bridge construction, their weight is 

added to the oscillating mass; they become a part of the system.  This changes in turn 

the dynamical properties of this system. As it is shown above, the fundamental 

frequency of a dynamical system is directly correlated to its mass. A change of mass, 

in this case an increase, leads to a drop of the frequency. In order to analyze this 

effect, the modelled construction are stepwise loaded with a uniform load, up to the 

maximal pedestrian load of 4.00 kN/m². The natural frequencies of the changed 

systems are calculated and presented in the following graphs. Shown are exemplary 

the graphs for the spans 10.00 m, 15.00 m, 20.00 m and 25.00 m. The complete data 

are available in the appendix.  

 

 Mode 1: lateral Mode 2: vertical 

FR
P

  1
 

 

Figure 34: Natural Frequencies, loaded 
System, FRP 1, lateral 

 

Figure 35: Natural Frequency, loaded System, 
FRP 1, vertical 
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FR
P

 2
 

 

 

Figure 37: Natural Frequencies, loaded 
System, FRO 2, vertical 
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Table 10: Fundamental Frequencies - loaded system 

 

 

As shown in the graphs, the fundamental frequency of the structure drops 

significantly due to the additional load. The maximum load of 4 kN/m2 reduces the 

frequency of the structure in all materials by a factor of 2, or in the case of FRP 2 by a 

factor of 4. Even though the actual values are not representative for actual bridge 

constructions, because the ratio of construction weight to load and therefore the 

change of mass would be smaller due to the neglected deck and additional 

construction elements, but the influence of this effect is still decisive and cannot be 

neglected. Due to the small density of FRP, the ratio of construction weight to applied 

load is much higher, which causes the respectively great change of the frequencies. 

Figure 36: Natural Frequencies, loaded 

System, FRP 2, lateral 

Figure 38: Natural Frequencies, loaded 

System, Steel, lateral 
Figure 39: Natural Frequencies, loaded 

System, Steel, vertical 
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The influence on the FRP 1 material is smaller than the one on FRP 2, because the 

additional girder used in the first case increases the construction weight and therefore 

decreases the ratio of construction weight to live load. The relationship between the 

different materials can be seen in the following graphs. 

 

 Mode 1: lateral Mode 2: vertical 
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Figure 40: loaded system, 10.00 m, lateral Figure 41: loaded system, 10.00 m, vertical 

Figure 42: loaded system, 20.00, lateral Figure 43: loaded system, 20.00 m, vertical 
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6.2.2 Dynamical Response 

6.2.2.1 General Aspects 

The response of a structure to dynamical loads can be divided into two parts – the 

transient response and the steady state response.  

“The transient response is a vibration at the natural frequency of the structure. It 

can be thought of as a free vibration initiated by the onset of the applied load, which 

disturbs the structure from its equilibrium position. It is called transient because the 

damping causes it to die away quite quickly. In relatively short-duration events, the 

transient response can be a significant part of the total, cut it is often neglected when 

considering long-duration loads. The nature of the steady state response will vary 

with that of the applied loading, and will continue for as long as the loading.” [56] 

Pedestrian loading can be classified as long duration load. The transient response 

can be neglected, at least in terms of a general analysis. The greatest hazard due to a 

dynamical load is an effect called resonance. If the exciting frequency of the harmonic 

loading is close to natural frequency of the respective structure, the amplification 

factor of the equivalent static load is growing significantly. The natural frequency of a 

structure and its relation to the loading frequency is therefore of decisive importance 

in the design process. The difficulty of pedestrian loading is the high variability. The 

load applied by a crowd of pedestrians is normally not harmonic, due to the individual 

parameters of the pedestrians. In the case of randomly distributed walking parameters 

and phase angles, the dynamic part of the load does not have a great impact, because 

the minima and maxima of the individual pedestrian loads compensate each other. 

However, in the case of synchronously walking, intentional (marching) or 
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unintentional (lateral synchronisation), the load amplitudes accumulate and the 

resulting load is near a harmonic load. This scenario causes the greatest deformations 

and therefore, the analysis deals with harmonic, uniformly distributed loads, as an 

approximation of a uniformly distributed crowd walking in step. In this way, the 

“worst case” is presented. 

 

6.2.2.2 Dynamic Response (Analysis-step 3) 

The steady state analyses of the spans 10.00 m, 15.00 m, 20.00 m and 25.00 m are 

representative presented in the following figures. As the maximum range of human 

walking, the frequencies from 1.0 Hz to 5.0 Hz are presented. The detailed data is 

available in the table A10 in the appendix. 
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Figure 44: Dynamic Response, 10.00 m, lateral 

 

Figure 45: Dynamic Response, 10.00 m, vertical 
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Figure 46: Dynamic Response, 15.00 m, lateral 

 

Figure 47: Dynamic Response, 15.00 m, vertical 
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Figure 48: Dynamic Response, 20.00 m, lateral 

 

Figure 49: Dynamic Response, 20.00 m, vertical 
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Figure 50: Dynamic Response, 25.00 m, lateral 

 

Figure 51: Dynamic Response, 25.00 m, vertical 

Table 11: Dynamic Response, lateral and vertical, 10.00 m, 15.00 m, 20.00 m, 25.00 m 

 

As expected the maximum values appear at the frequencys equal to the 

fundamental frequencys of the structure. It can be seen, that the natural frequency of 

the loaded FRP 2 structure dropped to the same value as the one of the steel structure, 
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even though the natural frequency of the unloaded system is much higher. The 

importance of this fact can be seen in this graphs.  Since the girder profiles in vertical 

direction are dimensioned for equal displacements, the similar maximum values are 

also as expected. The differences of the FRP 1 material can be justified by the changed 

stiffness parameters as a consequence of the additional girder. 

6.3 Guideline Evaluation 

The results and conclusions of the previous paragraphs enables to identify some 

insufficiencies in the current guidelines, regarding the handling of human induced 

excitations on FRP pedestrian bridges. As it is shown above, the effects of the material 

characteristics of advanced composite materials on the dynamic properties of 

respective structures equalize each other. Since the reduced density leads to higher 

frequencies, it compensates the drop of the frequency due to the smaller stiffness of 

FRP materials. The final natural frequency depends on the ratio of stiffness to density.   

The fundamental frequencies of FRP bridge constructions, at least of the applied 

models, are in the same range as respective steel structures, or even higher. 

The guidelines require for FRP constructions, as well as for steel structures, 

fundamental frequencies higher than 5 Hz and 3 Hz for the vertical and lateral 

direction, respectively. This limitation is meant to avoid great displacements due to a 

resonance response. It applies to the unloaded structure, which, regarding the results of 

this research, seems to be inefficient. The additional mass induced by a crowd of 

pedestrians can causes a drop of the natural frequency by a factor of 2 to 4. 

Consequently, even an apparently safe structure with a natural frequency higher than 5 
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Hz, could drop into the critical frequency range close to the walking frequency, due to 

the additional mass applied by pedestrians.  

The guideline is in the case of steel structures well established, what might imply 

that in the threshold of 5 Hz a sufficient amount of redundancies is included. In the 

case of FRP structures, the impact of the additionally applied load is much bigger, due 

to the reduced construction weight and the resulting high live load to construction 

weight ratio. The neglecting of this effect might be part of the problem, which led to 

the vibration related serviceability problems in the recent past, and a revision of the 

respective guidelines should be considered. 

The lateral component of the walking load is small, comparatively to the vertical 

component, and, due to the connection between the girders and the additional 

construction elements, the stiffness in lateral direction is often higher. Nevertheless, 

the main part of the recent vibrational problems appeared in lateral direction. The 

problem refers to bridges with great spans, which is why the present research does not 

present considerable results – the major deformations appear in the vertical direction. 

However, it can still be recognized, that, based on the recent past, the elision of lateral, 

pedestrian live loads cannot be justified.  
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CHAPTER 7 

CONCLUSION 

7.1 Summary 

In order to keep guidelines efficient and practicable, they have to be adjust 

continuously to recent trends and developments. It has to be an ongoing process, in 

which the current requirements are evaluated and verified or improved. This applies 

especially to the field of civil engineering, because these constructions involve high 

investments and include a high hazard in the case of failure. This research points out 

that the current guideline regarding FRP pedestrian bridges under human induced 

excitation requires such an adjustment.  

This circumstance has been indicated by several oscillation problems all over the 

world and has been confirmed by the estimated data. Depending on the density to 

stiffness ratio of the used material, the dynamical properties of FRP bridges are similar 

to the ones of steel structures – the natural frequency is in the same range. 

Nevertheless, FRP pedestrian bridges are more sensitive to dynamical pedestrian 

loading, due to the high impact of additional load on the natural frequency. The 

additional mass of the pedestrians changes the dynamical properties of the 

construction and the natural frequency drops in the range  of human walking, what 

might lead to high deformations due to resonance.  

The current guideline limits the natural frequency of the unloaded system and 

neglect the human-structure interaction. It also does not cover all aspects of the 

complex pedestrian loading, particularly the lateral component of the load, which 



 

88 

 

leads to the most vibrational issues in the recent past, is not included in the guideline’s 

requirements. Therefore, an adjustment of the guidelines is suggested. 

7.2 Future Work  

 

The phenomenon of a pedestrian crowd walking on a bridge structure is 

extremely complex, hard to simulate sufficient and still not completely understood.  

However, the reliable prediction of the dynamic response of bridges and pedestrian 

bridges in particular, is of great importance in order to realize economic and efficient 

structures without serviceability problems. The presented research works with 

simplifications and generalizations in order to understand the influence of the different 

parameters.  A conservative estimation of the maximal deformations lead to safe but 

uneconomic constructions. The used load cases represent a theoretical scenario and the 

resulting deformations represent a maximal threshold.   

Further researches regarding this topic, and especially the estimation of  more 

realistic load cases and their  probability distribution, are necessary to develop a 

reliable and economic guideline. Additionally, the interaction between humans and 

bridge structures are still not completely understood and could be the topic of several 

additional researches. This is of particular interest, since the dynamic response of 

pedestrian bridges due to human induced excitation is often the governing factor in the 

design of FRP bridges.
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APPENDICES 

A1: Profile Main Girders 

 

A2: Girder FRP 1 [mm] 

L h b tf tw A Iy Iz

10 350 175 35 35 22050 369153750 32513542

11 380 190 35 35 24150 484006250 41368542

12 410 205 35 35 26250 620593750 51719792

13 440 220 35 35 28350 780806250 63685417

14 475 238 35 35 30800 1000101667 79843294

15 505 253 35 35 32900 1217985417 95711966

16 535 268 35 35 35000 1465479167 113569076

17 565 283 35 35 37100 1744472917 133532747

18 600 300 35 35 39550 2112299583 159643750

19 630 315 35 35 41650 2466027083 184576875

20 660 330 35 35 43750 2857239583 211990625

21 690 345 35 35 45850 3287827083 242003125

22 725 363 35 35 48300 3842466250 280459831

23 755 378 35 35 50400 4364850000 316508190

24 785 390 35 35 52325 4907966510 348832240

25 815 408 35 35 54600 5547587500 397641471  
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A3: Girder FRP 2 [mm] 

L h b tf tw A Iy Iz

10 280 140 25 15 10450 129367083.3 11512083.33

11 305 152.5 25 15 11450 170573854.2 14863190.1

12 330 165 25 15 12450 219733750 18810000

13 355 177.5 25 15 13450 277549895.8 23401341.15

14 385 192.5 25 15 14650 359345520.8 29830481.77

15 410 205 25 15 15650 438680416.7 36011666.67

16 435 217.5 25 15 16650 528921562.5 42993632.81

17 460 230 25 15 17650 630772083.3 50825208.33

18 485 242.5 25 15 18650 744935104.2 59555221.35

19 510 255 25 15 19650 872113750 69232500

20 535 276.5 25 15 21100 1042295833 88229831.77

21 565 282.5 25 15 21850 1201186771 94097513.02

22 590 295 25 15 22850 1374740417 107134166.7

23 615 307.5 25 15 23850 1564262813 121323164.1

24 640 320 25 15 24850 1770457083 136713333.3

25 665 332.5 25 15 25850 1994026354 153353502.6  

A4: Girder Steel [mm] 

L h b tf tw A Iy Iz

10 285 143 30 20 13050 158616563 14658203

11 310 155 30 20 14300 209019167 18826042

12 335 168 30 20 15550 269140521 23720443

13 360 180 30 20 16800 339840000 29400000

14 385 193 30 20 18050 421976979 35923307

15 410 205 30 20 19300 516410833 43348958

16 435 218 30 20 20550 624000938 51735547

17 460 230 30 20 21800 745606667 61141667

18 490 245 30 20 23300 911244167 73857292

19 515 258 30 20 24550 1066709271 85712630

20 540 270 30 20 25800 1238940000 98775000

21 565 283 30 20 27050 1428795729 113102995

22 590 295 30 20 28300 1637135833 128755208

23 615 308 30 20 29550 1864819688 145790234

24 640 320 30 20 30800 2112706667 164266667

25 665 333 30 20 32050 2381656146 184243099  
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A5: Profile Crossbeam 

 

A6: Crossbeams [mm] 

L h b tf h b tw h b tf

10 175 88 25 143 71 25 140 70 25

11 185 93 25 155 78 25 153 76 25

12 208 104 25 168 84 25 165 83 25

13 223 111 25 180 90 25 178 89 25

14 235 118 25 193 96 25 193 96 25

15 253 126 25 205 103 25 205 103 25

16 265 133 25 218 109 25 218 109 25

17 280 140 25 230 115 25 230 115 25

18 295 148 25 245 123 25 243 121 25

19 310 155 25 258 129 25 255 128 25

20 330 165 25 270 135 25 277 138 25

21 350 175 25 283 141 25 283 141 25

22 363 181 25 295 148 25 295 148 25

23 375 188 25 308 154 25 308 154 25

24 390 195 25 320 160 25 320 160 25

25 408 204 25 333 166 25 333 166 25

FRP 1 FRP2 Steel
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A7: Natural Frequencies - Unloaded System [Hz] 
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A8: Fundamental Frequencies – Loaded System – lateral [Hz] 

FRP 1  0 1 2 3 4 

10 5.642 3.4662 2.7194 2.3122 2.0461 

15 4.4818 3.0814 2.4955 2.1511 1.9191 

20 3.9157 2.8887 2.3917 2.0876 1.875 

25 3.2659 2.5221 2.1287 1.876 1.6961 

      FRP 2  0 1 2 3 4 

10 7.6943 3.3831 2.5198 2.0965 1.8182 

15 5.8937 3.0047 2.2825 1.9134 1.6796 

20 5.3765 3.0351 2.348 1.9825 1.748 

25 4.7072 2.8426 2.2296 1.8947 1.676 

      Steel  0 1 2 3 4 

10 4.1133 2.8385 2.2994 1.9723 1.7576 

15 3.2 2.4252 2.0311 1.7824 1.6072 

20 2.8305 2.2726 1.952 1.7374 1.5809 

25 2.5533 2.1162 1.8467 1.6593 1.5197 

 

 

A9: Fundamental Frequencies – loaded System – vertical [Hz] 

FRP 1  0 1 2 3 4 

10 10.464 6.4304 5.0454 4.2901 3.7964 

15 6.9531 4.7851 3.8764 3.3419 2.9818 

20 5.1933 3.8395 3.1816 2.7783 2.496 

25 4.1533 3.2164 2.7181 2.3971 2.1681 

      FRP 2  0 1 2 3 4 

10 16.659 7.3264 5.4571 4.5403 3.39378 

15 11.045 5.6355 4.2814 3.5893 3.1507 

20 8.3064 4.7013 3.6387 3.0731 2.7099 

25 6.6296 4.0213 3.1574 2.6843 2.3752 
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steel  0 1 2 3 4 

10 8.4995 5.8667 4.7529 4.0769 3.6332 

15 5.7148 4.3341 3.6309 3.1868 2.8738 

20 4.262 3.4281 2.9472 2.6246 2.3891 

25 3.411 2.8368 2.4801 2.2311 2.045 

 

 

A10: Fundamental Frequencies – loaded System – 10.00 m [Hz] 

vertical 0 1 2 3 4 

FRP 1 10.464 6.4304 5.0454 4.2901 3.7964 

FRP 2 16.659 7.3264 5.4571 4.5403 3.39378 

Steel 8.4995 5.8667 4.7529 4.0769 3.6332 

      lateral 0 1 2 3 4 

FRP 1 5.642 3.4662 2.7194 2.3122 2.0461 

FRP 2 7.6943 3.3831 2.5198 2.0965 1.8182 

Steel 4.1133 2.8385 2.2994 1.9723 1.7576 

 

 

A11: Fundamental Frequencies – loaded System – 20.00 m [Hz] 

vertical 0 1 2 3 4 

FRP 1 5.1933 3.8395 3.1816 2.7783 2.496 

FRP 2 8.3064 4.7013 3.6387 3.0731 2.7099 

Steel 4.262 3.4281 2.9472 2.6246 2.3891 

      lateral 0 1 2 3 4 

FRP 1 3.9157 2.8887 2.3917 2.0876 1.875 

FRP 2 5.3765 3.0351 2.348 1.9825 1.748 

Steel 2.8305 2.2726 1.952 1.7374 1.5809 
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