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ABSTRACT

Sentiment analysis within the Natural Language Processing (NLP) field is
an active area of research that attempts to classify pieces of text in terms of
the opinions expressed. A sub-specialization in this area focuses on classifying or
identifying biased text and is growing more important in the era of “fake news.”
There are many methods used across researchers so it can be difficult to find a
entry point into the field. Not only are there different machine learning methods
applied, text embedding techniques have grown in recent years making it difficult
to determine the correct avenue to use in research.

This thesis explores different embedding techniques as well as training several
machine learning models using sentences from the news annotated using Amazon’s
Mechanical Turk (AMT) as either “Unbiased” or “Biased.” Overall, this thesis
endeavors to provide an overview of what is currently being done in the field but
gathered in one place. The embedding techniques used in this paper focus on
predictive models: word2vec, GloVe, and fastText. With each word embedding
Support Vector Machines, Neural Networks, Convolutional Neural Networks, and
Recurrent Neural Networks. Results show no front-runner in terms of classification

accuracy but can still serve as a reference or jumping off point for future research.
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CHAPTER 1

Introduction

News publications try to be as objective and as unbiased as possible. In the
past several years, there has been an increased focus on bias/objectivity in news
articles. Because of this increased focus, it is of growing importance to be able to
accurately identify bias when it is presented.

Bias can be investigated at multiple levels in news: news outlet, article, sen-
tence, and word. Bias at the news outlet level usually entails what pieces the outlet
decides to cover and how articles are featured on their websites and newspapers.
At the article level, it is somewhat similar. What perspectives are used, the title,
and which photographs are chosen can all contribute to the article’s bias. At the
sentence level, the syntax and semantics plays an important role in contributing
to bias. Finally, the word level clearly is based on what words are chosen.

The focus of this exploration is at the sentence level with the goal to determine
whether a supervised machine learning model can predict with an accuracy higher
than random guessing whether a sentence is biased. This study only focused on
bias explicitly found at the sentence level, excluding bias created by selection [1]
and omission. Overall, the study includes what is shown in Figure 1 with multiple

methods examined during phase I and II.

News 3 Word > Machine Learning
Articles Embeddings Models

Phase I Phase II Phase III

Figure 1. Process of exploration of classifying sentence bias in news articles with
machine learning models.

There are four main reasons for this study. First, constructing an annotated



dataset on bias is important for the Natural Language Processing (NLP) commu-
nity. Like many (NLP) problems, there is a lack of annotated data freely available.
Many researchers have had to rely on creating their own datasets to test their
theories. This is a time consuming process and most of the time the dataset is
not large which may raise concerns about generalizability of the machine learn-
ing model. For example, Ganter and Strube [2] curated their dataset from one
of Wikipedia’s dumps (backups that Wikipedia creates and makes publicly avail-
able). They then filtered the dump finding any sentence labeled with a ”weasel”
tag (Wikipedia specified tag for marking a sentence that is noncommittal and will
need to be edited). After further curation, they ultimately only had 500 training
sentences and 500 test sentences. Ganter and Strube ended up with a very limited
dataset, which was then not made public even though it could have helped further
research in this area. It is important in NLP tasks to make the manually created
datasets available for future use, which will be a result of this study.

The second justification for the study is there is currently no published lit-
erature on comparing different word embedding techniques in bias classification
tasks. There are many ways to do word embeddings (count vectors, term fre-
quency, co-occurrence matrix, continuous bag of words, term frequency-inverse
document frequency, skip-gram, etc.). Each may be more or less appropriate for a
specific topic. While researchers usually use what they deem best for their data,
there are not published comparisons in each field. As a result, researchers new to
the field must start from scratch to determine the best model. Using this study to
compare a variety of embeddings in the topic of sentence level bias detection will
help future researchers.

Thirdly, there are several reasons for investigating a variety of machine learn-

ing methods for determining bias. Primarily, it is to determine which supervised



machine learning model, if any, is accurate at detecting sentences that are bi-
ased. Several related studies have been conducted but have only focused on one
or two machine learning models for classification. For example, Hirning et. al.
3] tested classifying biased sentences with using only a Convolutional Neural Net-
work (CNN). Then there are many others who classified ideology (pro/con, Is-
raeli/Palestinian, for/against, and democrat/republican) but with only one or two
machine learning models. Greene and Resnik [4], Somasundaran and Wiebe [5],
and Park et. al. [6], tested with a Support Vector Machine (SVM) for their classi-
fication. Ahmed and Xing [7] used an SVM and a couple different Latent Dirichlet
Allocation (LDA) models for their classification. Lin et. al [8] also used an SVM
and added two different Naive Bayes models. Because previous research has not
compared various machine learning models, this study will help future researchers
determine the best model to use.

Finally, this research is to investigate whether detecting biased sentences auto-
matically is possible. Currently, there is no way to automatically check a sentence
for bias, meaning several previous studies have had to rely on manual annotation
at either the document or sentence level (Niven [9], Yano et. al. [10], Gentzkow
and Shapiro [11], and Groseclose and Milyo [12]). Providing an automatic way
to identify bias at the sentence level could help researchers who are looking to
analyze, general readers who are trying to stay informed, and journalists who are

trying to remove bias from their own work.
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CHAPTER 2

Literature Review

There are several topics that were researched with the primary focus being
previous work in bias detection with machine learning. Additional research was
done to ensure data quality when using Amazon’s Mechanical Turk for sentence

annotation. The research for both is described in the following two sections.

2.1 Bias Detection

There is a large amount of research into the general topic on sentiment analy-
sis as evidenced by the 1.5 million search results for ”sentiment analysis” in Google
Scholar. Sentiment analysis is defined as ”"the process of computationally identi-
fying and categorizing opinions expressed in a piece of text, especially in order to
determine whether the writer’s attitude towards a particular topic, product, etc.,
is positive, negative, or neutral.” A sub-category within sentiment analysis is bias
analysis which is also widely researched. As the definition indicates, there are
several pieces involved in these kinds of analyses: text data, studied attitude, and

computation.

2.1.1 Data

A big issue with many Natural Language Processing tasks is the amount of
annotated data available. It is time consuming and costly to annotate new data
and there are few annotated data sets published. Many researchers therefore rely
on curating and annotating there own data. In order to do this, researchers have
used several methods.

One of the most straightforward ways to obtain labeled data is by using data

that has already been labeled. Lin et. al. [1], Greene and Resnik [2], and Ahmed



and Xing [3] all used articles from http://www.bitterlemons.org which are arti-
cles that "reflect a joint Palestinian-Israeli effort to promote a civilized exchange
of views about the Israel-Arab conflict and additional Middle East issues among
a broad spectrum of participants.” They used this because each article was pre-
labeled by the editors as Palestinian or Israeli. Ahmed and Xing used additional
data from previous researchers [4] [5]. Both of these data sources were blog posts
which were categorized as either ”right-ideology” or ”left-ideology.” For research
into fake news detection, Wang used sentences that were human labeled and eval-
uated by politifact.com for truthfulness. [6] Finally, Lin et. al. used the MPQA
dataset (http://mpqa.cs.pitt.edu) which is derived from a variety of foreign news
documents. [7]

Another way is to create the labeled data by making assumptions about the
source of the dataset and map assumed sentiment or bias to each sentence. Greene
and Resnik [2] did this by capturing data from ”pro- and anti-death penalty web
sites and manually checking, for a large subset, that the viewpoints expressed
in documents were as expected.” Similarly, Somasundaran and Wiebe [8] ”down-
loaded several debates” from the following domains: Existence of God, Healthcare,
Gun Rights, Gay Rights, Abortion, and Creationism. With each one they then
"manually map[ped] debate-level stances to the stances for the domain.” Several
other researchers [9] [10] [11] [12] utilized congressional data (speeches, debates,
and general coverage) and essentially mapped party (democratic or republican)
to ideology (comservative or liberal). A final mapping method used by Ganter
and Strube [13] and Recasens et. al. [14] is to use Wikipedia data dumps which
are copies of all Wikipedia pages with meta data. The meta data includes edits
made to each page where each edit has a corresponding tag to indicate the rea-

son for editing. Recasens et. al. focused on edits with an NPOV (neutral point



of view) dispute. Ganter and Strube parsed out any sentences that were edited
with a "weasel” tag. Both papers then used the flagged data as their biased or
non-factual dataset.

Finally, one of the most difficult ways to have annotated data is to have it
manually annotated. In order to increase the amount of labeled data, Ganter
and Strube [13] supplemented with manual annotations. For their research, four
annotators annotated the same 100 sentence. Other researchers in this area who
also employed in person annotators are Niven [15], Park et. al. [16], and Wilson
et. al. [17]. Using in person annotators does not scale well so there have been
several researchers that utilized crowdsourcing services. Recasens et. al. [14] and
Yano et. al. [18] both has their data annotated using Amazon’s Mechanical Turk.
In addition to using Mechanical Turk, Sayeed et. al. [19] used CrowdFlower.

A summary of each each of these methods as well as data totals for each paper

can be found in Table 1.

2.1.2 Bias Type

The bias type studied varies across researchers. A large part of the research
[12] [15] [16] [17] [19] focuses on a spectrum of positive to negative bias. Niven
[15] used simply the binary labels of positive/negative. Lin et. al. [12] and
Park et. al. [16] divided it into three categories of positive/negative/neutral and
positive/negative/other, respectively while Wilson et. al. had four categories:
positive/negative /neutral /both. A similar labeling, for/against, was used by both
Greene and Resnik [2] and Somasundaran and Wiebe [8].

Other researchers chose political labels such as Israeli/Palestinian [1] [3] or
conservative/liberal [3] [11] [18]. Gentzkow and Shapiro [9] and Groseclose and
Milyo [10] did not focus on categorical data but instead used discrete scores to

measure bias. Finally, Lin et. al. [12] and Niculae et. al [20] researched bias



sdnois yysysy Q. porejouuy OOA\ UOTJeULIOJU] [6T] ‘T 10 pookeg
I70°T pojejouuy s180d 301 82110 [81] T 10 owex

786'8 pojejouuy VOJIN [L1] e 90 wos[Ip

SO[OI}Ie G, pojejouTy SMON IoARN [91] ‘Te 10 qIeq
SOOI ()L pojejounty SIOUYDIMG A}IRJ UO SOOIy SMON [GT] weAIN
0£¢ pojejouuy eIpodis[IA\ [F1] ‘e 30 suoseooy

GEC'C paddery erpodiIpy [F1] ‘T8 30 suoseooy

9ve pejgjouuy eIpodiyI [€1] oqnuyg pue wjuen

000°T poddeyy eTpad{py [€1] 2qnuyg pue Toyues)

— paddey ssex8uonuad() [21] Te "o ur]

oIv'e | (Temo[qpmor))) pajejouuy sojeqo(] [eUOISSaISu0)) [TT] Te "1 IeAAT

918‘, poddeiy S91R(S(] [RUOISSAISUO)) [TT] T8 "1 IeAAT

— (ssquey yuryy) padde]y | se0Inog RIPSJ pur soyoeadg [RUOISSIISUO)) [0T] OATIIAl pue 9s0[2es01x)

— poddeyy PI009Y [RUOISSAISUO)) [6] ondeyg pue moyzjuex)

sysod gez‘n poddeiy SUTRTOP O UI S9)RQAP | [8] 9OIA\ PUR URIRPUNSRUWIOY
000°TT~ payejouy A[SNOIAI] VOdIIN [L] T8 30 ury
008°Z1 pojejouuy A[SNOIADIJ woo joejrjrjod [9] Suepn

sysod 000G~ pajejouly A[SNOIARIL] sysod 3o1q sury pue pawyy

SYUSTWNIOP TS

pajejouuy A[SNOIASI]

SI10°SUOWS[IS)II( MMM

g
¢| Sury pue powrqy

sjuewInoop (0T 1~

podden

sogIsqom Ayeuad yjpeop

|
|
JIUSOY pUR SUIIX)

SIUWNIOP L6,

pojejouny A[SNOIADL]

WMO.WQOEQMHQQQR—.\,PBE

[
[
4
4

IUSOY pPUR SUIOIX)

00081~

porejouuy A[SNOIADI]

SI0°SUOTIO[IONII MMM

[1] e 90 ury

S9OUdjUSS #

POYISIN UoIjejouuy’

20an0g eje(

JOYDIeaSoY

"SYSB) JULWIULS 0] UOIYRIND ®)ep SNOIASId U0 UOIJRUWLIOJUl ATewuing ' o[qe],




selection rather than focusing on the syntactic or semantic level.

2.1.3 Machine Learning

Different embedding techniques and machine learning models are used by
sentiment analysis researchers. In order to utilize machine learning models, the
first step is to embed the document into a vector space, which is essentially a
transformation of the text (strings) into a numerical format. This is done so
that it can be used by machine learning models. Researchers employ different
embedding strategies that either rely on standard count based vectorizers such as
word frequencies [3] or Term Frequency - Inverse Document Frequency (TF-IDF)
[16]. Or, a newer approach is to use predictive word embeddings such as word2vec
[6] [11] [21] [22], and GloVe [23]. Some even create their own feature space [2] [§]
[14] [17] for the data.

Once the data is in a format that can be interpreted by the machine learning
models, researchers have employed a wide variety of models to test their theories.
Two common models researchers use are Support Vector Machines (SVMs) [1] [2]
[3] [6] [8] [16] and Logistic Regression [6] [11] [14]. Other standard models used
are Naive Bayes [1] Recurrent Neural Networks (RNN) [11], Bidirectional Long
Short-Term Memory (Bi-LSTM) [6], Linear Discriminant Analysis (LDA) [3], and

Convolutional Neural Networks [6].

2.2 Mechanical Turk
In order to obtain high quality annotations, there are many recommendations
given by researchers who conducted data quality studies specifically using crowd

sourcing services like Amazon’s Mechanical Turk (AMT).

10



2.2.1 Swuccinct Instructions

Before initiating a crowdsourcing task, there are several researchers that think
it is important to make guidelines for annotators that are understandable and suc-
cinct. Since crowd sourcing typically means non-experts are performing the task,
Callison-Burch and Dredze [24] argue it is ”critical to convey instruction appro-
priately” and that ”instructions should be clear and concise.” Other researchers,
Sabou et. al. [25], Snow et. al. [26], and Mellebeek et. al. [27], have followed the
same guideline and [25] claims that simple instructions will help "lead to better
results.”

It has also been recommended by Snow et. al. [26] and Le et. al. [28] that
the instructions given to annotators should include examples. There should be
one example per category, i.e. if the annotators chose between ”positive” and
"negative,” there should be one "positive” example and one "negative” example

shown to the annotator before they start the task.

2.2.2 Number of Annotations

When a crowdsourcing task is created, it has been recommended by Sabou et.
al. [25] to only let the annotator annotate one Human Intelligence Task (HIT) at
a time. Mellebeek et. al. [27] also follow this same guideline and in their research

on opinion sentence classification, only have one sentence per HIT.

2.2.3 Number of Categories
It is recommended by Sabou et. al. [25] that ”annotators should not be asked

to choose from more than 10, ideally seven, categories.”

2.2.4 Gold Standard
Several papers agree that it is important to include ”gold standards” into

the annotation set in order to ensure data quality. [24] [25] [29] [30] [31] Oleson
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et. al. [30] suggests that the choice of gold units ”should focus on those with
objective, irrefutable true answers.” In addition, the true answers ”should encom-
pass as wide/even of a distribution as possible; no single response category should
dominate the gold unit distribution.”

The gold standard annotations can also be used to reject worker submissions
if they do not get above a certain accuracy on the gold standards. Kittur et. al.
[29] says to include items that can be explicitly verified. Sabou et. al. [25] states
there should be 20% gold data per task while Oleson et. al. [30], used different
golden ratios (1:7, 1:8, 1:10, and 1:17) and found that the optimal golden ratio
is dependent upon the amount of work a single worker can do. They mention
this dependency since it can affect the accuracy if the worker can "have a higher

recollection gold” and they could therefore "put less effort into non-gold units.”

2.2.5 Pilot Job

It is recommended before starting the main Mechanical Turk task to run a
pilot job. This is in order to determine the average time per task and tie that
into adequate compensation per HIT. [25] Running pilot jobs first also enables
the requestor to fine tune the crowdsourcing process without investing too much
money. Feng et. al. [32] suggest that since ”there is not a one-size-fits-all solution
as the best practice,” the pilot job can be used to obtain the ”optimal parameters”

that are used in the ”large-scale submission phase.”

2.2.6 Filter Workers

There are several methods to filter workers on a task: location, approval rate,
number of HITs approved, age, employment status, household income, education,
language, marital status, daily internet usage, weekly exercise amount, etc. There

is also the ability in Mechanical Turk to filter out workers who do not pass an
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initial qualification test. Mellebeek et. al. [27] even imposed a time limit for their
translation task on the initial test to prevent workers from using online translation
tools.

Researchers agree in using worker filters [24] [25] [28] [30] [31] [27] [33] [34]
in order to improve data quality and in some cases, lower costs. As Hsueh [34]
notes, ”workers are not usually specifically trained for annotation, and might not

be highly invested in producing good quality annotations.”

2.2.7 Annotator Agreement

Several papers suggest [24] [26] [27] [31] [32] [34] having each HIT redundantly
completed by by different workers. Snow et. al. collected 10 annotations per HIT,
Feng et. al. paid for 5 per HIT, and Mellebeek et. al. and Akkaya et. al.
had 3 per HIT. Even researchers not using Mechanical Turk employ the multiple
annotation strategy. For example Ganter and Strube [13] used four people, ”one of
the authors, two linguists, and one computer scientist” to annotate 100 sentences
each.

When a task on Mechanical Turk is set up to receive multiple annotations
per HIT, in post processing, majority voting can be used to obtain higher quality
annotations. As Hsueh et. al. [34] discovered, ”using multiple noisy annotations
from different non-experts can still be very useful for modeling.” Also, Mellebeek
et. al. [27] confirmed the validity of using a majority voting scheme for AMT
annotations to obtain better annotations and showed that it is comparable to

expert annotations.
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CHAPTER 3

Methodology

The study is constructed into three stages: data collection/curation, word em-
beddings, and machine learning exploration. Each stage is broken up into sections

and described below.

3.1 Data

Similar to previous studies [1] [2] [3] [4] [5] [6], A new dataset from online news
articles was tested. The articles were pulled from 7 different outlets from various
sections listed in Figure 2. It is important to have a variety of outlets to pull from;
some of which may have limited to no bias, other may have significant bias. This
is to help ensure the dataset has enough representative examples of biased and

unbiased sentences, which is important during the machine learning phase.
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Figure 2. Media bias chart with collected news outlets highlighted in pink.

Unfortunately, it was difficult to find enough articles for the news sources
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listed in the lower left-hand corner of Figure 2 so sentences from a liberal news
source that contains misleading or incorrect facts are missing from the dataset.
Additionally, The National Enquirer only had about 2 or 3 articles per day with
less than 20 sentences each so a partisan new source with inaccurate facts is also
missing.

For each of the highlighted news sources, 5 dates were randomly chosen from
the past 5 years (2013 - 2017) using www.random.org/calendar-dates/. The pa-
rameters used for choosing those dates are shown in Figure 3. 5 dates were chosen
because after a preliminary investigation of the news sources, the sources generate
between 10 and 90 articles per day or about 300 to 3,000 sentences. This amount
is sufficient to reach the goal of 15,000 sentences annotated. The 5 year range was
chosen in order to cover two U.S. administrations, Presidents Obama and Trump.

The dates generated are:

April 9, 2013
May 27, 2014
December 4, 2014
June 27, 2016
October 10, 2017

3.1.1 Collection

Once news sources and dates were determined, the collection process began
with a "News” Google search by date using the inurl: tag to specify the news
source. This was done for the seven news sources and five random dates defined
above, for a total of 35 searches. For each search, all article URLs were collected.
For each URL, outlineapi.com was used to pull clean data from the site. Most

websites contain advertisements and noisy data and this method provided a way
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Random Calendar Date Generator

This form allows you to generate random calendar dates. The randomness comes from atmospheric noise, which for many purposes is
better than the pseudo-random number algorithms typically used in computer programs.

Step 1: The Dates

Pick a total of 5 random date(s) {(maximum 25).

The date(s) should fall between | 1 sarvary [ 2013 B
and | 31 December 2017 [ (both inclusive).

Only valid calendar dates will be chosen. Multiple dates will be printed on separate lines and ordered chronologically. The form supports
dates from 15 October 1582 (the first day of the Gregorian calendar) to 31 December 3000.
Step 2: Select Weekdays
Which days of the week should be included?
Mondays Tuesdays Wednesdays Thursdays Fridays
| Saturdays ~| Sundays
Step 3: Choose Date Format

How would you like the date(s) to be displayed? [date formats]

Day first: Month first: Year first:

~31/01/2008 * ©1/31/2008 12008-01-31 (IS0 B601) *
“131 January 2008 “\January 31, 2008 712008 January 31
Thursday, 31 January 2008 Thursday, January 31, 2008

Formats marked * use double digits for days and months {e.g., 01 for January).

Figure 3. Random date generator. The randomness comes from atmospheric noise,
which for many purposes is better than the pseudo-random number algorithms
typically used in computer programs. (www.random.orq/calendar-dates/')
to obtain cleaner data. The date accessed was added to each article’s information
and the full file was stored as a JSON. The article collection process is shown in
Figure 4.

While there is much content for each article (URL, author, text, images, and
metadata), the relevant attributes needed were article URL, author, title, date,
domain, text, and date accessed. For information on the total number of articles

and sentences collected, see Appendix A.

3.1.2 Pre-Processing

Once the articles for all defined news sources and dates were collected and
stored as a JSON, each file was inspected to ensure all the necessary attributes
were defined (URL, author, title, date, domain, text, and date accessed). If any
information was missing, i.e. author or date, it was manually added. This process

involved going to the article URL (that is stored in the JSON) and adding the
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Algorithm Gather News Articles

1: # Collect article bodies across all news sources and dates
2: procedure COLLECTSOURCES(sources, dates)

# Input Variables
4: sources <— array of seven news source site host names
5: dates «— array of five random dates

# Procedure Body

6

7 for all source in sources do

8: for all date in dates do

9 collect Articles(source, date)

10: # Collect individual article bodies for a single source and date pair
11: procedure COLLECTARTICLES(source, date)

12: # Input Variables
13: source <— source domain for news site to retrieve articles from
14: date +— Date from which to retrieve articles

15: # Procedure Body

16: url < build Google News search URL with source and date
17: articleURLArray <+ empty array for storing article URLs
18: resultsBody < HTTP GET first page of search results

19: articleURLArray < parse article URLs from resultsBody

20: while more pages exist do

21: resultsBody <+ HTTP GET next page

29: articleURLArray < parse article URLs from resultsBody
23: for all article in articleURLArray do

24: articleBody < cleanArticle(article)

25: save articleBody to JSON file

6: # Remove extraneous text from article page (ads, navigation, etc.)
7: procedure CLEANARTICLE (article)

8 # Input Variables
9: article < article URL

30: # Procedure Body

31: outlineURL <+ build outlineapi.com URL with article

32: articleBody +— HTTP GET clean article body with outlineapi.com
33: return article Body

Figure 4. Algorithm for collecting news articles.
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missing content directly to the the JSON. The articles were grouped into folders
by news source and then by date.

For each date, all articles were read into a Pandas DataFrame using Python
3.6. The relevant information was parsed out (URL, author, title, date, domain,
text, and date accessed) and stored in a master DataFrame. The text was parsed
into sentences using the Natural Language Processing Toolkit (NLTK). Each sen-
tence was stored in the master DataFrame with its author, title, date, domain, and
date accessed. Each date was then separated out by news source and 150 sentences
were randomly subsampled without replacement. For most dates, this would result
in a total of 1050 sentences. The samples were then combined, shuffled, and saved
in csv format.

As a final stage in pre-processing, all sentences were manually inspected to
ensure accurate parsing with NLTK. There were several common issues that were

manually corrected:

e Section headings were sometimes included in the subsequent sentence and

were removed.
e Quotations were not always matched so they were added in as appropriate.
e Two or more sentences were sometimes parsed together so one was removed.

e If a sentence was completely enclosed in parentheses, the parentheses were

removed.
e Incomplete sentences were removed.
e Article metadata, such as author contact information, were removed.

e List of instructions, such as an exercise workout, were removed.
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Batch # Sentences | Avg. Annotation Time (sec) | # Workers | # Final Sentences
Gold Batch 1 | 200 22 15 52
Gold Batch 2 | 174 20 19 34

Table 2. Summary information for Gold Standard Sentences. “# Final Sentences”
is the number of sentences were all annotators were in agreement (i.e. all five
annotations were either “Biased” or “Unbiased”)

After the manual inspection, each date was reduced to 876 sentences and
broken into two segments of 438 sentences each. Gold standard sentences described

in section 3.1.3 were then added to each segment for a total of 524 sentences to be

annotated per batch.

3.1.3 Gold Standard Sentences

As discussed in section 2.2.4, it is common practice to include gold standards
in order to evaluate annotator work. To create the gold standard sentences, 500
sentences were subsampled from all dates and all news sources. The same pre-
processing steps were applied as outlined in section 3.1.2 (manual file inspection,
NLTK sentence parsing, manual sentence inspection/correction/removal). At the
end of preprocessing, there were a total of 374 sentences which were broken into
two batches of 200, Gold Batch 1, and 174 sentences, Gold Batch 2.

Each batch was then submitted to Amazon’s Mechanical Turk (AMT) for an-
notation. (For information on AMT task instructions, see section 3.1.4.) As rec-
ommended in 2.2.6, qualifications were used in order to filter out workers. Workers
had to have a location of the United States, a HIT Approval Rate (%) for all Re-
questers’ HITs greater than 80, and a Masters qualification. Each sentence was
awarded $0.01 and annotated five times by different workers (1000 annotations for
Gold Batch 1 and 870 annotations for Gold Batch 2). The total cost of annotating
374 sentences was $37.40 (includes MT fees).

After annotating each gold batch, the results were filtered to include only

sentences that received a unanimous label. The process is outlined in Figure 5. As
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Algorithm Refine Gold Sentences
1: # Given all gold sentences find those with unanimous
2: # worker votes from AMT
3: procedure REFINESENTENCES(uniqueSentences, goldResults)

4: # Input Variables
: uniqueSentences <— unique sentences from gold data set
6: goldResults < full result set for gold sentences, all workers

-1

# Sentences with unanimous votes (result array)
8: goldUnanimous < empty array to start

9: # Procedure Body

10: for all sentence in uniqueSentences do

11: sentencelResults +— results for sentence from gold Results

12: resultCounts <— count of results for Biased and Unbiased in sentence
13: if resultCounts == 1 then

14: # Only one result count means all worker votes were unanimous
15: add to goldUnanimous

16: return gold Unanimous

Figure 5. Algorithm for filtering to final gold sentences.

shown in Table 3.1.3, there were 52 sentences from Gold Batch 1 and 34 sentences
in Gold Batch 2 with all annotations the same. The distribution of labels is
illustrated in Figure 6. It is clear from the chart that the “Biased” label is almost

twice as frequent as the “Unbiased” label.

3.1.4 Annotation

Sentence annotation was done using Amazon’s Mechanical Turk (AMT). AMT
is an online, crowdsourcing market place where a Requestor can submit Human
Intelligence Tasks (HITs) to be performed by humans. To submit a HIT, the Re-
questor needs to design the layout, create instructions, and enter task properties
such as reward, number of annotations, and qualifications. Figure 7 shows the
general information a worker sees about the task. In addition to setting up basic
task information, all annotations for this project were priced at $0.01 per sentence.
For the non-gold standard sentences, 3 annotations were requested per each sen-

tence. The requirements of the non-gold batches were the location of the worker
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Figure 6. Distribution of labels for Gold Batch 1 and Gold Batch 2.

Describe your HIT to Workers

Title
Is this sentence biased?

Describe the task to Warkers. Ba as spedific as possible, e.g. "answer a survey aboul movies", instead of "shart survey”, sa Workers know what to expect

Description o
Analyze the bias of the provided sentence based on the given criteria

Give more detail about this task. This gives Workers a bit more information before they decide to view your HIT.

Keywords
sentiment, bias

Provide keywords that will help Workers search for your HITs.

Figure 7. Basic information shown to AMT workers of HIT.

is the United States, they have a HIT Approval Rate (%) for all Requsters” HITs
greater than 80, and the Number of HITs Approved is greater than 5,000. These
requirements were used because they could help filter out “bad faith” workers and

these qualifications did not incur additional cost. A “bad faith” worker is a worker

who completes HITs by providing a label but without reading the sentence.

The next step in creating HITs was to provide instructions for the task. The
instructions contained an overview of the project, steps that the worker needs to

do to complete a HIT, rules and tips, and additional comments. The complete

instructions used for every batch is in Figure 8.

In addition to instructions, researchers [7] [8] believe it is important to include
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Overview

In this job, you will be presented with sentences that are pulled from different news articles and editorials over the past 5 years. Review the sentences to determine if there
is any bias so we can have a greater understanding about the overall bias of news sources.

Steps
1. Read the sentence.
2. Determine if the sentence is biased or unbiased.

Rules & Tips

The sentences can be classified as biased or unbiased:

Biased means some aspects of the sentence demonstrate prejudice in favor of or against something. Biased sentences will tend to lean in a certain direction.
The direction can be positive, using words to indicate praise, recommendations, or a favorable comparison. Or, the direction can be negative using words to
show criticism, insults, or negative comparison.

Unbiased means that the sentence only has neutral, unprejudiced, impartial facts.

Note:
. The main focus should be on word choice. Sentences can be unbiased even if it shows a favorable/unfavorable outcome (*He won with B0% of the vote"). The same sentence would
be biased if it included prejudice in favor ("He won by a landslide 80% of the vote") or prejudice against something ("Unfortunately, he won by 80% of the vote").

[

. Sentences that are purely factual (quotations) are not necessarily Unbiased - consider whether the fact/news itself is Biased or Unbiased and select one of those when possible.

©

Watch out for words or phrases that introduce bias such as legendary, acclaimed, award-winning, innovative, cult, perverted, extremist, controversial, some people say, it
is believed, most feel, supposed, interestingly, clearly, of course, fortunately, despite, expose, claim, lip of the iceberg, twist of fate, iately, in the past, sometimes, efc.

>

| appreciate your interest in this project. In order to keep data quality consitent, gold standard sentences are included in the batch. Your work will be approved if you achieve 80%
accuracy or higher when compared to the gold standard.

Figure 8. Instructions provided to each AMT worker.

examples for each label. This project only had two labels: “Biased” and “Unbi-
ased.” According to previous researchers, there should therefore be one example
that demonstrates a “Biased” sentence and a second example that demonstrates
an “Unbiased” sentence. Using this framework was impractical for this project
because while there are only two labels, there are several different types of bias
that cannot all be covered in one example sentence. According to Recasens et.
al. [9], there are two main types of bias: framing and epistemological. They say
framing bias “is realized by subjective words or phrases linked with a particular
point of view” and epistemological bias “is related to linguistic features that sub-
tly (often via presupposition) focus on the believability of a proposition.” Within
these categories, Recasens et. al. explains several sub-categories: factive verbs,
entailments, assertive verbs, hedges, subjective intensifiers, and one-sided terms.
For each sub-category, a biased example, unbiased example, and reasoning was
included in the instructions (see Figure 9).

All annotation batches had the same set-up, excect for the gold standard

batches which had slightly different qualifications and more annotations per sen-
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Sentence Bias Analysis Instructions (Click to expand)

Pick the best sentiment, Biased or Unbiased, based on the following criterion:

Biased Unbiased Reasoning

the research revealed the research indicated "revealed" presupposed truth

after he murdered after he killed "murder” entails killing in an unlawful, premeditated way
claim say "claim" casts doubt on the certainty of the proposition

will decrease may have a lower rate "may have a lower rate" reduces the committment to the truth
fantastic reproductions accurate reproductions "fantastic” adds subjectiveness

pro-life or pro-choice abortion-rights opponents or abortion-rights advocates "pro-life” and "pro-choice" are one-sided terms

 Examples taken from: Reacasens, M., Danescu-Niculescu-Mizil, C., & Jurafsky, D. (2013). Linguistic Models for Analyzing and Detecting Biased Language. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (pp. 1650-1659).

Figure 9. Examples of the different types of bias included in the instructions given
to the AMT workers.

tence (see section 3.1.3). Batches were submitted one at a time and a new batch
was not started until the previous batch was approved. Batch approval was eval-
uated after all annotations were complete. The results were downloaded and each
worker was evaluated on their annotations to the gold standard sentences. In total,
282 unique workers contributed to this project. Out of those 282 workers, work was
rejected for 6 of them because of the poor performance compared to gold standard.
As recommended by researchers, if rejecting workers based on performance, it is
important to outline the reasons for rejection in the instructions as can be seen in

Figure 8. Here are the reasons for rejecting work:

1. On Batch One for April, 9, 2013, worker was rejected for having an accuracy
of 16.67% on gold sentences. The worker annotated 26 sentence, 6 of which
were part of the gold standard. Five of the gold sentences were incorrect.
Additionally, the worker only used the “Unbiased” label for all 26 sentences

which was a suspicious result.

2. On Batch One for December 4, 2014, worker had an accuracy of 36.11%
against the gold standard. They annotated 410 sentence, 72 of which were

gold. A suspicious aspect about their annotations was about 90% of their
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annotations were done in 5 seconds or less compared to 16 seconds which

was the average time per annotation across the whole batch.

3. On Batch One for June 27, 2016, three workers were rejected after annotated
396, 197, and 317 sentences. All three workers scored below 45% against gold
standard. Also, all three of them only ever selected “Biased” for the sentence

label which is what flagged their work for further inspection.

4. One Batch Two for June 27, 2016, one worker was rejected for having an
accuracy of 34.65%. Similar to the first worker, the majority of the sentences
were annotated in 4 seconds or less (about 95%) making it clear that there

was no way they could have read the full sentence.

Overall, 4,754 sentences were annotated with a total of 13,140 annotations
were made on the regular batches and 1870 annotations on the gold sentences for
a total of 15,010 annotations. The cost of annotating the regular batches was
$314.40 or $31.40 per batch. The total cost of all annotations (regular batches and

gold standard) was $351.80 (includes MT fees).

3.1.5 Post-Processing

After going through the process of submitting, evaluating, and reject-
ing/approving, more sentences were removed from the final data set based on
a stricter gold standard cutoff than was used during the AMT batch approval. A
cutoff of 80% accuracy against the gold standard was used based on one previous
researcher [10] using 90% accuracy on qualification test and another [11] mention-
ing the use of 70%. Figure 10 shows the number of workers that were discarded
during this process. 577 sentences were removed from this process. On the re-
maining sentences, majority voting was used to obtain a final set of sentences used

in the machine learning evaluation. Majority voting cut out almost half of the
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Figure 10. The distribution of workers against the percent of gold standard sen-
tences correct. The red line indicates the threshold used for subsetting to a final
batch of sentences.

remaining sentences for a final sentence count of 2143.

Figure 11 shows the distribution of labels on the final sentences.

3.2 Document Embedding

The sentences were embedded using several techniques: Google’s pre-trained
word2vec [12] [13], Stanford’s pre-trained GloVe [14], and Facebook’s pre-trained
fastText [15]. Before converting the sentences into vectors, the sentences were
preprocessed by lowercasing, removing non-alphanumeric characters, and removing
stopwords. The sentences were then split into train/test data using a 30% split.
In order to use word2vec, GloVe, and fastText, the sentences were also tokenized
by word.

For all embedding techniques, the words were embedded using pre-trained
word embeddings. Google’s word2vec model used word vectors for a vocabulary
of 3 million words and phrases that were trained on about 100 billion words from
a Google News dataset. The vector length is 300 features. Stanford’s GloVe

model was trained on Wikipedia 2014 dump and Gigaword 5 resulting in 6 billion
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Figure 11. The counts of “Biased” and “Unbiased” labels for the final set of
sentences.

tokens, 400K vocabulary words, and a vector length of 300. Finally, Facebook’s
fastText has 300-dimensional vectors which were obtained using the skip-gram
model described in Bojanowski et al. [15] with default parameters.

Each word in the sentences was substituted with the corresponding pre-trained
embedding. This resulted in sentences of dimension Sentence Length X 300. In
order to reduce the size and ensure all sentences were of equal length, the mean

was taken for each sentence to reduce the vector to 1 X 300.

3.3 Machine Learning Models

Four different machine learning models were used: Support Vector Machine
(SVM), Neural Network (NN), Convolutional Neural Network (CNN), and Recur-
rent Neural Network (RNN). For each model, the three different types of embed-
dings described in the previous section were used. Each model was tuned using
each embedding type’s training data and the final evaluation was obtained using

the held out test data.
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Embedding Type | Kernel | C | Gamma
word2vec Radial |1 |1

GloVe Radial |1 | 0.1
fastText Radial |1 | 0.1

Table 3. Best hyperparameters for the SVM model per embedding type.

3.3.1 Support Vector Machine
The sklearn implementation was used with a grid search with 5-fold cross-
validation to find the best hyperparameters. The following combination of hy-
perparameters were tested. Table 3 shows the best parameters for each type of
embedding.
e Linear Kernel
— Penalty Parameter C: 0.01, 0.1, 1, 10, 100, 1000
e Radial Kernel
— Penalty Parameter C: 0.01, 0.1, 1, 10, 100, 1000

— Gamma Parameter: 0.0001, 0.001, 0.01, 0.1, 1

3.3.2 Neural Network
The sklearn implementation was used with a grid search with 5-fold cross-
validation to find the best hyperparameters. The following combination of hy-
perparameters were tested. The default defined by sklearn was used for any hy-
perparameter not specified. Table 4 shows the best parameters for each type of
embedding.
e Stochastic Gradient Descent
— Learning Rate: ‘constant’, ‘invscaling’
— Momentum: 0, 0.5, 0.75, 0.9

— Initial Learning Rate: 0.001, 0.01, 0.05, 0.1
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Embedding Type | Learning Rate | Momentum | Initial Learning Rate
word2vec constant 0.75 0.01

GloVe constant 0 0.01

fastText constant 0.9 0.001

Table 4. Best hyperparameters for the Neural Network model per embedding type.

3.3.3 Convolutional Neural Network

The keras library with tensorflow backend was used to train a Convolutional
Neural Network (CNN). The CNN was constructed with a convolutional layer,
RELU layer, pooling layer, fully connected layer, RELU layer, and finally a fully
connected layer with sigmoid as the activation function. The convolutional layer
consisted of 32 filters with a size of 3 and the pooling layer has a size of 2. Figure 12
shows the full architecture. The batch size, epochs, and learning rate were tuned
in 5-fold cross-validation using the Adam optimizer. The following combination
of hyperparameters were tested. The default defined by keras was used for any
hyperparameter not specified. Table 5 shows the best parameters for each type of

embedding.

e Batch Size: 32, 64, 128
e Epoch: 2, 5, 10, 25
e Learning Rate: 0.001, 0.01, 0.1, 0.2, 0.3
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Figure 12. The architecture used for the Convolutional Neural Network.
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Embedding Type | Batch Size | # Epochs | Learning Rate
word2vec 128 D 0.001
GloVe 128 2 0.001
fastText 32 5 0.001

Table 5. Best hyperparameters for the Convolutional Neural Network model per

embedding type.
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Figure 13. The architecture used for the Recurrent Neural Network.

3.3.4 Recurrent Neural Network

The keras library with tensorflow backend was used to train a Long Short-

Term Memory (LSTM) model which is a type of Recurrent Neural Network (RNN).

The RNN was constructed with two LSTM layers, a dropout layer set to 0.8, and

a fully connected layer with the sigmoid activation function as shown in Figure

13. The batch size, epochs, and learning rate were tuned in 5-fold cross-validation

using the Adam optimizer. The following combination of hyperparameters were

tested. The default defined by keras was used for any hyperparameter not specified.

Table 6 shows the best parameters for each type of embedding.

e Batch Size: 32, 64, 128

e Epoch: 2, 5, 10, 25

e Learning Rate: 0.001, 0.01, 0.1, 0.2, 0.3
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Embedding Type | Batch Size | # Epochs | Learning Rate
word2vec 128 10 0.001
GloVe 32 5 0.001
fast Text 128 10 0.001

Table 6. Best hyperparameters for the Recurrent Neural Network model per em-
bedding type.
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CHAPTER 4

Results

To visualize the sentences and their labels, t-SNE was used for dimensionality
reduction on each of the word embeddings. The Tensorflow Projector web appli-
cation was used to construct the visualizations in three dimensions. As shown in
Figure 14, there is slight separation between the Biased and Unbiased sentences.
Additionally, all embeddings techniques look similar which shows up in the ma-
chine learning model results.

All four machine learning models were trained as described in 3.3 in addition
to a TF-IDF embedding run through a Mutlinomial Naive Bayes model as a base-
line. The accuracy was recorded on a held out test set for each embedding and
model combination and shown in Table 7. The results show there is no embed-
ding and model combination that stands out although they all outperformed the
TF-IDF with a Mutlinomial Naive Bayes model baseline. As a simple tweak in
the embedding process, the median instead of the mean was tried using Google’s
word2vec vectors. A comparison between mean and median on the word2vec em-

beddings are in Table 8. Similar to the previous results, no model performance is

word2vec GloVe fastText

Figure 14. t-SNE representation of the all three embeddings: Google’s word2vec,
Stanford’s GloVe, and Facebook’s fastText. Blue represents Unbiased sen-
tences and Orange represents Biased sentences. Visualizations created with
hitps://projector.tensorflow.org.
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Embedding Type | SVM | Neural Network | CNN | RNN | Mutlinomial NB
TF-IDF — — — — 0.68118

word2vec 0.76635 | 0.77725 0.77570 | 0.76635 | —

GloVe 0.76947 | 0.77258 0.75545 | 0.77414 | —

fastText 0.77725 | 0.76635 0.74143 | 0.78348 | —

Table 7. Accuracy for each of the embedding types for each model.

word2vec | SVM Neural Network | CNN RNN
mean 0.76635 | 0.77725 0.77570 | 0.76635
median 0.77760 | 0.76982 0.72006 | 0.75582

Table 8. Accuracy for each model using either the mean or median of word2vec.

significantly higher than the others although there is a slight drop in performance
with the CNN model when the median is used. Full grid search results for all
embeddings and all models can be found in Appendix B.

Section 4.1 outlines some aspects of the process that can be improved upon
in order to get better separation between the labels and potentially better results

with the models.

4.1 Future Research

There are several improvements that can be made to this project. Starting
with labeling sentences, the recommendation by researchers described in Section
2.2.1 was to have concise instructions. Due to the fact that there are many types
of bias (factive verbs, entailments, assertive verbs, hedges, subjective intensifiers,
and one-sided terms [1]), the instructions became too long. Since an example was
given for each type and the main instructions included many “Rules & Tips,” the
instructions were probably too unwieldy for many AMT workers. In the future,
it might be beneficial to break out this task into the different bias types in order
to make the instructions more concise. Another component of the AMT task
is that the gold standard sentences were created using only AMT workers with

a unanimous agreement. While Mellebeek et. al. [2] reports that multiple non-
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expert annotations are competitive when compared to expert annotations, it would
be beneficial to see if that is an accurate statement when doing bias detection.
Finally in regards to AMT, it would be beneficial to have more sentences. After
post-processing, there were are total of 2143 annotated sentences used for the
different embeddings and models. Usually with tasks like this, it is beneficial to
have more data points.

Another area for future research is to try different word embedding techniques.
Each sentence was reduced to a 1 X 300 vector by taking the mean over all the
word vectors and this has been shown to be an ineffective method for sentence
embeddings. Taking the median instead of the mean was an alternative approach
tested and it produced similar results. The reason for both of these methods’ inef-
fectiveness is that syntax is completely disregarded and therefore, a lot of pertinent
information is lost. Sentence embedding is currently an active area of research so
this project might benefit from word2vec’s extension, the doc2vec model [3], a
weighted word vector technique [4], or skip-thought vectors [5]. Once a better
embedding technique is used, it would be useful to reevaluate the four machine
learning models used in this paper to determine the optimal embedding approach.
Once a better embedding method is in place, it could be useful to compare the
four models in this paper to other models. It could also be helpful to tune the

models on a wider range of hyperparameters than what was used for this project.
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CHAPTER 5

Conclusion

Sentiment analysis and, in particular, bias detection are active areas of re-
search with new techniques frequently emerging. This study was limited to three
different predictive word embedding techniques and four machine learning mod-
els to evaluate whether is is possible to achieve an accuracy higher than random
guessing on determining if a sentence is biased. While the results of this study
do not demonstrate any advantage for the embedding techniques or the machine

learning models used, it provides a jumping off point for future research.
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APPENDIX A

News Source Statistics

Date # Articles | # Sentences
April 9, 2013 134 5105
May 27, 2014 150 5688
December 4, 2014 | 176 6292
June 27, 2016 308 8921
October 10, 2017 | 352 9412
| TOTAL | 1120 | 35418 |

Table A.1. Totals information for articles gathered.

News Source Date # Articles | # Sentences
Bloomberg April 9, 2013 | 12 387

Breitbart April 9, 2013 | 1 8

Huffington Post April 9, 2013 | 65 2040

NPR April 9, 2013 | 25 1449

NY Post April 9, 2013 | 1 25

The Atlantic April 9, 2013 | 20 898
Washington Times | April 9, 2013 | 10 298

Table A.2. April 9, 2013 summary information for each news source.

News Source Date # Articles | # Sentences
Bloomberg May 27, 2014 | 8 249

Breitbart May 27, 2014 | 10 306
Huffington Post May 27, 2014 | 58 2543

NPR May 27, 2014 | 32 1421

NY Post May 27, 2014 | 20 366

The Atlantic May 27, 2014 | 11 614
Washington Times | May 27, 2014 | 11 189

Table A.3. May 27, 2014 summary information for each news source.
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News Source Date # Articles | # Sentences
Bloomberg December 4, 2014 | 14 369

Breitbart December 4, 2014 | 13 382
Huffington Post December 4, 2014 | 63 2298

NPR December 4, 2014 | 24 1101

NY Post December 4, 2014 | 25 503

The Atlantic December 4, 2014 | 20 1250
Washington Times | December 4, 2014 | 17 389

Table A.4. December 4, 2014 summary information for each news source.

News Source Date # Articles | # Sentences
Bloomberg June 27, 2016 | 65 1760
Breitbart June 27, 2016 | 54 1196
Huffington Post June 27, 2016 | 54 1720

NPR June 27, 2016 | 30 1066

NY Post June 27, 2016 | 48 1141

The Atlantic June 27, 2016 | 29 1245
Washington Times | June 27, 2016 | 28 793

Table A.5. June 27, 2016 summary information for each news source.

News Source Date # Articles | # Sentences
Bloomberg October 10, 2017 | 89 2028
Breitbart October 10, 2017 | 54 929
Huffington Post October 10, 2017 | 48 1512

NPR October 10, 2017 | 41 1698

NY Post October 10, 2017 | 52 958

The Atlantic October 10, 2017 | 17 797
Washington Times | October 10, 2017 | 51 1490

Table A.6. October 10, 2017 summary information for each news source.
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APPENDIX B

Machine Learning Results

The following tables show the grid search results using 5-fold cross validation
for all machine learning models (Support Vector Machine, Neural Network, Convo-
lutional Neural Network, Recurrent Neural Network) on all embeddings (word2vec,
GloVe, fastText). The mean test score, standard deviation of test score, rank of
test score, mean train score, and standard deviation of train score are reported for
each embedding/model combination. Additionally, the hyperparameters for each

model are stated.

e SVM: C, gamma, kernel

NN: learning rate, initial learning rate, momentum, solver

CNN: batch size, epochs, learning rate

RNN: batch size, epochs, learning rate

e Multinomial NB: alpha
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