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ABSTRACT:  

Expansion and enhancement of sustainable shellfish production is necessary to prevent 

overexploitation of wild stock and satisfy international trade, but hatchery rearing poses a 

critical production bottleneck due partially to environmental stressors such as ocean 

acidification. Given that stress conditions exacerbated by anthropogenic activity are 

projected to intensify in the near-future, long-lived molluscs, such as Pacific geoduck 

Panopea generosa (known lifespan up to 168 years), may rely on intragenerational 

acclimation to buffer against rapid environmental change. While acute stressors can be 

detrimental, environmental stress conditioning can improve performance. For example, 

moderate oxidative stress (i.e. temperature, irradiance, and dietary restriction) shows 

evidence of dose-dependent benefits for many taxa, however stress acclimation remains 

understudied in marine invertebrates, despite being threatened by climate change stressors. 

To test the hypothesis that physiological status is altered by stress conditioning, we first 

subjected juvenile geoduck clams to repeated exposures of elevated pCO2 in a commercial 

hatchery setting followed by a period in ambient common garden. Our initial experiment 

found early exposure to low pH elicits compensatory carryover effects suggesting 

bioenergetic re-allocation facilitates growth compensation and metabolic recovery. 

Further, to test for life-stage and stress-intensity dependence in eliciting enhanced tolerance 

under subsequent stress encounters, we acclimatized post-larval geoduck for >100 days 

before re-exposure under two reciprocal periods of moderate and severe elevated pCO2. 

Stress acclimation followed by secondary and tertiary exposure to severe and moderate 

elevated pCO2 increased respiration rate, organic biomass, and shell size suggesting a 

stress-intensity-dependent effect on energetics. Moreover, stress-acclimated clams had 



 
 

lower antioxidant capacity compared to clams under initial ambient conditions, supporting 

the hypothesis that stress over postlarval-to-juvenile development affects oxidative status 

later in life. Transcriptomics was completed to better understand molecular underpinnings 

of emergent physiological phenotypes from this repeated reciprocal stress challenge. The 

naïve phenotype showed a high transcriptional demand involving fatty-acid degradation 

and glutathione components, highlighting mobilization of endogenous lipids, primarily for 

β-oxidation, as a favored energy source affecting somatic growth. In contrast, the 

transcriptome profile was more diverse and responsive to environmental changes (e.g. low 

pH: cellular quality control and immune defense; ambient recovery: energy metabolism 

and biosynthesis) and under putative control of transcriptional modifiers (e.g. histone 

methyltransferases and transcription factors) in the stress-acclimated phenotype, 

corroborating physiological traits of emergent phenotypes to propose molecular 

mechanisms underpinning beneficial developmental acclimation and stress resilience. 

Altogether, the summation of dissertation findings suggests early-life stress can trigger 

beneficial phenotypic variation. Thus, investigations of marine species responses to climate 

change should consider adaptive dose-dependent regulation and effects post-acclimation.
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PREFACE  

            The most intrinsically motivating topics in my life are those that lie in plain sight 

but remain largely unseen. New Haven Harbor’s invasive species and depleting marshes 

sparked this interest from a young age. Estuaries are the ideal laboratory; their essential 

value for society yet susceptibility to teeming human populations writes the perfectly ironic 

recipe. On the global scale, our current Anthropocene is often portrayed with pessimism 

and acceptance of an inevitability. I acknowledge our unprecedented effects on the 

environment, while I am captured by the ways life strives to persist. “What does not kill 

you makes you stronger”, is an anthropomorphic trope that charismatically describes the 

hypothesis and findings of my research and the inspiration behind this dissertation.  

This dissertation was written in ‘Manuscript format’, as each chapter is published 

or in preparation for submission. 
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ABSTRACT 

While acute stressors can be detrimental, environmental stress conditioning can improve 

performance. To test the hypothesis that physiological status is altered by stress 

conditioning, we subjected juvenile Pacific geoduck, Panopea generosa, to repeated 

exposures of elevated pCO2 in a commercial hatchery setting followed by a period in 

ambient common garden. Respiration rate and shell length were measured for juvenile 

geoduck periodically throughout short-term repeated reciprocal exposure periods in 

ambient (∼550 μatm) or elevated (∼2400 μatm) pCO2 treatments and in common, 

ambient conditions, 5 months after exposure. Short-term exposure periods comprised an 

initial 10-day exposure followed by 14 days in ambient before a secondary 6-day 

reciprocal exposure. The initial exposure to elevated pCO2 significantly reduced 

respiration rate by 25% relative to ambient conditions, but no effect on shell growth was 

detected. Following 14 days in common garden, ambient conditions, reciprocal exposure 

to elevated or ambient pCO2 did not alter juvenile respiration rates, indicating ability for 

metabolic recovery under subsequent conditions. Shell growth was negatively affected 

during the reciprocal treatment in both exposure histories; however, clams exposed to 

the initial elevated pCO2 showed compensatory growth with 5.8% greater shell length 

(on average between the two secondary exposures) after 5 months in ambient conditions. 

Additionally, clams exposed to the secondary elevated pCO2 showed 52.4% increase in 

respiration rate after 5 months in ambient conditions. Early exposure to low pH appears 

to trigger carryover effects suggesting bioenergetic re-allocation facilitates growth 

compensation. Life stage-specific exposures to stress can determine when it may be 
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especially detrimental, or advantageous, to apply stress conditioning for commercial 

production of this long-lived burrowing clam. 
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INTRODUCTION 

Sustainable food production minimizes overexploitation of wild populations and 

degradation of ecological health (Campbell et al., 1998; Shumway et al., 2003; Orensanz 

et al., 2004; Zhang and Hand, 2006). Shellfish aquaculture has expanded worldwide in 

recent decades to satisfy international trade (FAO 2018). However, early larval and 

juvenile rearing poses a production bottleneck. For example, early life histories are highly 

sensitive to biotic (e.g. harmful algae, pathogens; Prado et al., 2005; Rojas et al., 2015) 

and abiotic stressors (e.g. pH, salinity, thermal and hypoxic stress; Baker and Mann 1992; 

Przeslawski et al. 2015; Kroeker et al., 2010; Gimenez et al., 2018). These stressors are 

known to intensify in coastal marine systems (Cloern, 2001; Diaz and Rosenberg, 2001; 

Cai et al., 2011; Wallace et al., 2014) causing mass mortality for early-stage bivalves in 

wild or hatchery settings (Elston et al., 2008; Barton et al., 2015). Local and global 

anthropogenic stressors such as CO2-induced changes in pH and carbonate mineral 

saturation states can reduce performance and normal shell development (White et al., 

2013; Waldbusser et al., 2015; Kapsenberg et al., 2018). 

Ocean acidification, or the decrease of oceanic pH due to elevated atmospheric 

partial pressures (μatm pCO2), poses a threat to aquaculture (Barton et al., 2012; 

Froehlich et al., 2018; Mangi et al., 2018). Elevated pCO2 and aragonite undersaturation 

(Ωaragonite < 1) generally have detrimental consequences for aerobic performance (Pörtner 

et al., 2004; Portner and Farrell, 2008) and shell biomineralization in marine calcifiers 

(Shirayama, 2005; Talmage and Gobler, 2010; Waldbusser et al., 2010, 2015; Gazeau et 

al., 2013). Responses to acidification can be species- (Ries et al., 2009) and population-

specific (Lemasson et al., 2018), but it is widely established to be impactful during early 
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life stages for bivalves (Dupont and Thorndyke, 2009; Gazeau et al., 2010; Kroeker et 

al., 2010; Gimenez et al., 2018). Experimental research is commonly focused on species 

with short generational times, (Parker et al., 2011, 2015; Lohbeck et al., 2012) limiting 

evidence for effects of acidification on long-lived mollusks important for food and 

economic security (Melzner et al., 2009). 

The Pacific geoduck Panopea generosa is a large and long-lived infaunal clam of 

cultural and ecological importance (Dethier, 2006) with an increasing presence in 

sustainable shellfish industry (Cubillo et al., 2018). Geoduck production in Washington 

(USA) provides 90% of global supply (Shamshak and King, 2015) and alone constitutes 

27% of the overall shellfish revenue in the state valued at >$24 million year−1 and >$14 

pound−1 as of 2015 (Washington Sea Grant, 2015). Geoduck are known to live in dynamic 

CO2-enriched low pH waters such as Hood Canal in Puget Sound, WA, where conditions 

in summer can reach Ωaragonite 0.4 and pH 7.4 (Feely et al., 2010). Although P. generosa 

may be adapted and able to acclimatize to local stressors (Putnam et al., 2017; Spencer 

et al., 2018), acidification has caused massive losses of larval bivalves in hatcheries 

(Barton et al., 2015), identifying a critical need for assessment of physiological stress 

tolerance during early life stages. 

Evidence of acclimatory mechanisms in response to acidification (Goncalves et al., 

2018) and enhanced performance within and across generations (Parker et al., 2011, 

2015; Putnam and Gates, 2015; Ross et al., 2016; Thomsen et al., 2017; Zhao et al., 2017) 

support conditioning as a viable strategy to mitigate the negative effects of stress 

exposure and enhance organismal performance under high pCO2 (Parker et al., 2011; 

Dupont et al., 2012; Suckling et al., 2015; Foo and Byrne, 2016). Hormesis is a biphasic 
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low-dose-stimulatory response, as identified in toxicological studies (Calabrese, 2008) 

and suggests beneficial carryover effects of moderate stress exposure (Calabrese et al., 

2007; Costantini et al., 2010; Costantini, 2014; Putnam et al., 2018). Conditioning 

hormesis can explain patterns of intra- and transgenerational plasticity for organisms 

under environmental change (Calabrese and Mattson, 2011; Costantini et al., 2012; 

López-Martínez and Hahn, 2012; Putnam et al., 2018; Visser et al., 2018), but is 

understudied for stress resilience in bivalves likely due to generally negative 

physiological implications of acidification (Gazeau et al., 2013). In one example of early-

life stage conditioning in bivalves, Putnam et al. (2017) found P. generosa exhibit 

compensatory shell growth after an acute exposure under elevated pCO2. This finding 

suggests acute exposures may present a strategy for stress-hardening and enhancement 

of sustainable geoduck production. We therefore tested the hypothesis that repeated stress 

exposure under elevated pCO2 can enhance intragenerational performance for Pacific 

geoduck. To this end, we measured the respiration rate and shell growth of juvenile 

geoduck in a commercial hatchery under repeated acute periods (6–10 days) of elevated 

pCO2 and aragonite undersaturation, and the longer term (5 months) carryover effects. 

METHODS 

Exposure of juveniles 

Juvenile geoduck (n = 640; mean SEM initial size, 5.08 ± 0.66 mm shell length [measured 

parallel to hinge]) were reared in trays (Heath/Tecna water tray) with rinsed sediment for 

16 weeks (pediveliger to juvenile stage) by Jamestown Point Whitney Shellfish Hatchery 

before allocated into eight trays for the experiment (Fig. 1; n = 80 clams per tray). During 
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typical hatchery practice, geoduck are reared from ‘setters’ (pediveliger stage; 30 days old) 

to ‘seed’ (juvenile stage; 4–6 months old) in either downwellers or stacked trays; juveniles 

are then planted in situ to grow for several years until market size. Following aquaculture 

practice, trays were filled with a 5-mm depth of rinsed sand (35–45 μm grain size) that 

allowed juvenile geoduck to burrow and siphons could clearly be seen extended above the 

sediment throughout the experiments. To enable measurements of metabolic activity and 

shell growth, 30 geoduck were placed in an open circular dish (6.5 cm diameter and 3 cm 

height) with equal mesh size and sand depth submerged in each tray, the remaining 50 

geoduck in each tray burrowed in the surrounding sediment. Seawater at the Jamestown 

Point Whitney Shellfish Hatchery (Brinnon, WA, USA) was pumped from offshore (100 

m) in Quilcene Bay (WA, USA), bag- filtered (5 μm) and UV sterilized before fed to 250-

L conical tanks at rate of 1 L min−1. Four conical tanks were used as replicates for two 

treatments: elevated pCO2 level of ~2300–2500 μatm and 7.3 pH (total scale) and ambient 

hatchery conditions of 500–600 μatm and 7.8–7.9 pH (total scale). The elevated pCO2 level 

was set with a pH- stat system (Neptune Apex Controller System; Putnam et al., 2016) and 

gas solenoid valves for a target pH of 7.2 (NBS scale) and pH and temperature (◦C) were 

measured every 10 s in conicals (Neptune Systems; accuracy: ± 0.01 pH units and ± 0.1◦C, 

resolution: ± 0.1 pH units and ± 0.1◦C). These treatments were delivered to replicate 

exposure trays, which were gravity fed seawater from conicals (Fig. 1; n = 4 per treatment). 

The experiment began with an initial exposure period of 10 days under elevated pCO2 

(2345 μatm) and ambient treatments (608 μatm; Table 1). Preliminary exposure was 

followed by 14 days in ambient common garden (557 ± 17 μatm; pHt.s. 7.9 ± 0.01; Ωaragonite 

1.46 ± 0.04, mean SEM) before secondary exposure for 6 days to reciprocal treatments of 
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elevated pCO2 (2552 μatm) and ambient treatments (506 μatm; Table 2). For the secondary 

exposure period, one tray was crossed to the opposite treatment to address both repeated 

and reciprocal exposure (n = 2 trays per initial secondary pCO2 treatment; Fig. 1). 

Following this, the juveniles were exposed to ambient conditions for 157 days within the 

replicate trays. Juvenile geoduck were fed semi-continuously with a mixed algae diet (30% 

Isochrysis galbana, 30% Pavlova lutheri and 40% Tetraselmis suecica) throughout the 30-

day experiment with a programmable dosing pump (Jebao DP-4 auto dosing pump). Large 

algae batch cultures were counted daily via bright-field image-based analysis (Nexcelom 

T4 Cellometer;Gurr et al., 2018) to calculate a daily ration of 5 × 107 live algae cells day−1 

individual−1. Diet was calculated with an equation in Utting & Spencer (1991) catered for 

5-mm clams: V = (S × 0.4) ÷ (7×W×C); this equation accounts for a feed ration of 0.4 mg 

dried algae mg live animal weight−1 week−1, the live animal weight (mg) of spat (S; 

estimated from regression of shell length and weight of Manilla clams in Utting & Spencer 

1991), weight (mg) of one million algal cells (W) and cell concentration of the culture (cells 

μl−1) to calculate the total volume (V) of each species in a mixed-algae diet. Tray flow rates 

(mean flow rate, ∼480 ± 9 ml−1 min−1) and food delivery were measured and adjusted daily. 

All geoduck survived the exposure periods. Half of the remaining juveniles 

burrowed in each tray were maintained at the hatchery, positioned in the same replicate 

trays and stacked for continuous and high flow of ambient seawater (∼8–10 L minute−1). 

Stacked trays, commonly used for incubation of finfish, present a promising innovation for 

geoduck aquaculture; the experiment stack occurred alongside prototype stacked growing 

trays stocked by Jamestown Point Whitney Shellfish. The juveniles were fed cultured algae 

ad libitum daily for 157 days before shell length and respiration rates were measured. 
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Respirometry and shell length measurements 

Juvenile geoduck were measured on days 2, 5, 8, and 10 of initial exposure, days 

0, 2, 4, and 6 (cumulatively as day 24, 26, 28, and 30, respectively) of secondary exposure, 

and 157 days after the exposure period (cumulatively as day 187) to assess rates of oxygen 

consumption normalized to shell length. Calibrated optical sensor vials (PreSens, 

SensorVial SV-PSt5-4ml) were used to measure oxygen consumption in 4 ml vials on a 

24-well plate sensor system (Presens SDR SensorDish). Juveniles in each treatment dish 

were divided into three sensor vials (10 individuals vial-1 for exposure periods; 1 individual 

vial-1 at 157-d post-exposure), each filled with 0.2 µm-filtered seawater from 

corresponding trays. Three blank vials per tray, filled only with 0.2 µm-filtered seawater, 

were used to account for potential microbial oxygen consumption. Respiratory runs 

occurred within an incubator at 15°C, with the vials and sensor placed on a rotator for 

mixing. Each set of measurements lasted ~30 minutes and trials ceased when oxygen 

concentration declined ~70-80% saturation to avoid hypoxic stress and isolate the effect of 

pCO2 treatment on respiration rate. Siphons were observed pre and post-respirometry and 

were fully extended (~1-2 times shell length). Geoduck were subsequently photographed 

and shell length (parallel to hinge) was measured using Image J with a size standard (1 mm 

stage micrometer).  

Rates of respiration (oxygen consumption) were calculated from repeated local 

linear regressions using the R package LoLinR (Olito et al., 2017). An initial criterion of 

fixed constants (from the LoLin R package) for weighting method (L%) and observations 

(alpha = 0.2) was run individually for each respirometry measurement over the full 30-

https://paperpile.com/c/1A5HMC/6obR
https://paperpile.com/c/1A5HMC/6obR
https://paperpile.com/c/1A5HMC/6obR
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minute record as a “reference” dataset. These are considered to be the most robust 

parameters as suggested by the R package authors (Olito et al., 2017). Diagnostic plots 

(from the LoLin R package) were individually observed and L% and alpha were altered as 

necessary to best approximate the peak empirical distribution of local linear regressions 

(see https://github.com/SamGurr/Juvenile_geoduck_OA/releases/tag/version_20191210 

for full details). To determine the optimal set of parameters, respiration data was calculated 

using three alpha values and data truncations (alpha = 0.2, 0.4, and 0.6; truncation = 10-20 

minutes, 10-25 minutes, and no truncation; weighting method = L%) and each was 

compared to the initial reference dataset with two curve fitting steps (local polynomial 

regressions) to calculate unbiased and reproducible rates of oxygen consumption similar to 

the reference (10-day exposure, r2=0.88; 6-day exposure, r2=0.95). Final metabolic rates of 

juvenile geoduck were corrected for vial volume, rates of oxygen change in the blank vials, 

and standardized by mean shell length (µg O2 hr-1 mm-1). 

 

Seawater carbonate chemistry 

Total alkalinity (TA; µmol kg -1 seawater) water samples were collected from trays 

once daily during treatment periods, in combination with measurements of pH by handheld 

probe (Mettler Toledo pH probe; resolution: 1 mV, 0.01 pH ; accuracy: ± 1 mV, ± 0.01 

pH; Thermo Scientific Orion Star A series A325), salinity (Orion 013010MD Conductivity 

Cell; range 1 µS/cm - 200 mS/cm; accuracy: ± 0.01 psu), and temperature (Fisherbrand 

Traceable Platinum Ultra-Accurate Digital Thermometer; resolution; 0.001°C; accuracy: 

± 0.05 °C). Seawater chemistry was measured for three consecutive days during the 14 

days of ambient common garden between initial and secondary treatment periods. Quality 

https://paperpile.com/c/1A5HMC/6obR
https://paperpile.com/c/1A5HMC/6obR
https://paperpile.com/c/1A5HMC/6obR
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control for pH data was assessed daily with Tris standard (Dickson Lab Tris Standard Batch 

T27) and handheld conductivity probes used for discrete measurements were calibrated 

every three days. TA was measured using an open cell titration (SOP 3b; Dickson et al., 

2007) with certified HCl titrant (∼0.1 mol kg−1, ∼0.6 mol kg−1 NaCl; Dickson Lab) and 

TA measurements identified <1% error when compared against certified reference 

materials (Dickson Lab CO2 CRM Batches 137 and 168). Seawater chemistry was 

completed following Guide to Best Practices (Dickson et al., 2007); daily measurements 

were used to calculate carbonate chemistry, CO2, pCO2, HCO3-, CO3, and Ωaragonite, using 

the SEACARB package (Gattuso et al., 2018) in R v3.5.1 (R Core Team, 2018). 

 

Data Analysis 

A two-way Analysis of Variance (ANOVA) was used to analyze the effect of time 

(fixed), pCO2 treatment (fixed), and time×pCO2 interaction for respiration and shell length 

during initial exposure. A t-test was used to test the effect of initial pCO2 treatment on 

respiration rate and shell length prior to the secondary exposure (last day of ambient 

common garden, cumulatively day 24, day 0). For the secondary exposure period, a three-

way ANOVA was used to test the effects of time (fixed), initial pCO2 treatment (fixed), 

secondary pCO2 treatment (fixed), and their interactions on respiration rate and shell 

length. No significant differences in seawater chemistry were detected between trays of the 

same treatment (pH, pCO2, TA, salinity, and temperature; doi: 10.5281/zenodo.3588326), 

thus tray effects were assumed negligible. Significant model effects were followed with 

pairwise comparisons with a Tukey’s a posteriori HSD. We used a two-way ANOVA to 

analyze the effects of initial (fixed) and secondary (fixed) pCO2 treatments on respiration 

https://paperpile.com/c/1A5HMC/8Frw
https://paperpile.com/c/1A5HMC/8Frw
https://paperpile.com/c/1A5HMC/8Frw
https://paperpile.com/c/1A5HMC/8Frw
https://paperpile.com/c/1A5HMC/8Frw
https://paperpile.com/c/1A5HMC/8Frw
https://paperpile.com/c/1A5HMC/8Frw
https://paperpile.com/c/1A5HMC/30fj
https://paperpile.com/c/1A5HMC/30fj
https://paperpile.com/c/1A5HMC/30fj
https://paperpile.com/c/1A5HMC/D852
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and shell length after 157 days in ambient conditions. In all cases, model residuals were 

tested for normality assumptions with visual inspection of diagnostic plots (residual vs. 

fitted and normal Q-Q; Kozak and Piepho, 2018) and homogeneity of variance was tested 

with Levene's test. Model effects using raw data were robust to transformation(s) that 

resolved normality assumptions via Shapiro-Wilk test. Statistical tests were completed 

using R (v3.5.1; R Core Team, 2018). All data and code are available (doi: 10.5281/ 

zenodo.3588326). 

 

RESULTS 

Exposure 1 

The respiration rate of juvenile clams (4.26 ± 0.85 mm shell length; mean ± SD) 

prior to exposure was 0.29 ± 0.16 µg O2 hr-1 mm-1 (mean ± SD). Elevated pCO2 had a 

significant effect on respiration rate over the initial 10-day exposure (pCO2 treatment, F1,88 

= 7.512; P < 0.01) with a 25% reduction (averaged across all days) in respiration rate in 

elevated pCO2 treatment relative to ambient (Fig. 2A). Juvenile geoduck grew significantly 

with time under the initial 10-d exposure (time, F3,949 = 3.392; P = 0.018) with a 3.6% 

increase in shell length between days 2 and 10 (Fig. 2B), but there was no effect of pCO2 

treatment on shell length (Table 2). Significant differences in respiration rate from the 

initial pCO2 treatment were still apparent after 14 days in ambient common garden and 

before the onset of the secondary exposure (Table 2 and Fig. 3A). In contrast, there was no 

significant change in shell length due to initial pCO2 treatment after 14 days in ambient 

common garden (Table 2). 

 

https://paperpile.com/c/1A5HMC/j1Vk
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Exposure 2 

There was no interaction between initial and secondary pCO2 treatments nor 

between treatments and time on respiration rate or shell length (Table 2). There was a 

marginal effect of time on respiration rate (Table 2; time, F2,60 = 3.137; P = 0.0506) with a 

31% increase in average respiration rate between days 2 and 6. Initial pCO2 treatment had 

a significant effect on shell length, with on average a ~4% reduction in shell size under 

high pCO2 relative to ambient initial exposure (Fig. 3B; pCO2_initial, F1,709 = 15.821; P < 

0.001). This same trend was present under the secondary high pCO2 exposure, (Fig. 3B; 

pCO2_secondary, F1,709 = 9.917; P = 0.002) with 3.20% smaller shells for individuals exposed 

to elevated pCO2 treatments. There were pairwise differences in shell size between animals 

only exposed to ambient and animals repeatedly exposed to elevated pCO2 (Fig. 3B; day 

6, P = 0.0415; day 6 ambient - day 4 elevated, P = 0.0406). 

 

 

Common garden after exposure periods 

There was no interaction between initial and secondary pCO2 treatments on 

respiration rate or shell length (Table 2). The initial exposure period had a significant effect 

on shell length of juveniles previously exposed to high pCO2, after 157 days in ambient 

common garden (Fig. 4A; pCO2_initial, F1,170 = 5.228; P = 0.023), where average shell 

lengths were 5.8% larger in juveniles exposed to initial elevated pCO2. Secondary 6-day 

exposure had a significant effect on respiration rates after 157 days in ambient common 

garden (Fig. 4B; pCO2_seccondary, F1,31 =13.008; P = 0.001) with an average of 52.4% greater 

respiration rates in juveniles secondarily exposed to elevated pCO2. Visual examination 
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during screening indicated low mortality (1-4 tray-1) over the ~5-month grow-out period. 

Shell lengths of dead animals (as empty shells) were similar to the size of juvenile geoduck 

during the 30-d exposure period suggesting low mortality occurred at the start of the grow-

out period possibly due to handling stress. 

 

DISCUSSION 

Metabolic recovery and compensatory shell growth by juvenile P. generosa present 

a novel application of hormetic framework for resilience of a mollusc to acidification. To 

date, within-generation carry-over effects remain poorly understood for marine molluscs 

(Ross et al., 2016) with few examples of either positive and negative responses after stress 

challenges (Hettinger et al., 2012; Gobler and Talmage, 2013; Putnam et al., 2017). Further 

study on conditioning-hormesis in response to pCO2 stress must address cellular-level 

energy allocation, in addition to whole organism physiology, to account for essential 

functions with more holistic implications for stress resilience (Pan et al. 2015). 

 

Metabolic depression and compensatory response  

  Metabolic depression, such that was found under initial exposure of geoduck to 

elevated pCO2, has been suggested as an adaptive mechanism to extend survival (Guppy 

and Withers, 1999). Stress-induced metabolic depression has been documented for a 

variety of marine invertebrates in response to environmental stress. For example, in the 

New Zealand geoduck, Panopea zelandica, there was a 2-fold reduction in respiration rate 

under hypoxia (Le et al., 2016). Prior work has shown metabolic reductions up to 60-95% 

of basal performance at rest for marine molluscs (Guppy and Withers, 1999). Here, 

https://paperpile.com/c/1A5HMC/bLeG
https://paperpile.com/c/1A5HMC/bLeG
https://paperpile.com/c/1A5HMC/bLeG
https://paperpile.com/c/1A5HMC/bLeG
https://paperpile.com/c/1A5HMC/bLeG
https://paperpile.com/c/1A5HMC/nxvKp+l6DoD+QWMz
https://paperpile.com/c/1A5HMC/nxvKp+l6DoD+QWMz
https://paperpile.com/c/1A5HMC/nxvKp+l6DoD+QWMz
https://paperpile.com/c/1A5HMC/nxvKp+l6DoD+QWMz
https://paperpile.com/c/1A5HMC/nxvKp+l6DoD+QWMz
https://paperpile.com/c/1A5HMC/nxvKp+l6DoD+QWMz
https://paperpile.com/c/1A5HMC/JwGc
https://paperpile.com/c/1A5HMC/JwGc
https://paperpile.com/c/1A5HMC/JwGc
https://paperpile.com/c/1A5HMC/JwGc
https://paperpile.com/c/1A5HMC/mSnT
https://paperpile.com/c/1A5HMC/mSnT
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depression of oxygen consumption rate by juvenile geoduck to ~25% in comparison with 

rates under ambient conditions suggests P. generosa are relatively tolerant to short-term 

acidification and may have adaptive physiology to cope with environmental acidification 

and high pCO2. Responsiveness to acidification is critical for pH-tolerant taxa to maintain 

buffering capacity and cope with acidosis (high intracellular pCO2; (Melzner et al., 2009). 

However, pH-induced metabolic depression to a similar degree found in this study has 

caused a permanent decrease in extracellular pH and increase in protein degradation and 

ammonia excretion in the Mediterranean mussel (Mytilus galloprovincialis) (Michaelidis 

et al., 2005). Conversely, metabolic elevation is relatively common for early-life stage 

bivalves exposed to low pH and Ωaragonite undersaturation and typically coincides with 

consequences for performance and survival (Michaelidis et al., 2005; Beniash et al., 2010; 

Thomsen and Melzner, 2010; Fernández-Reiriz et al., 2011; Waldbusser et al., 2015; 

Lemasson et al., 2018). Whether depressed or elevated, stress-induced metabolic 

alterations are known to contribute to biochemical outcomes such as intracellular 

hypercapnia and hemolymph acidosis (Pörtner et al., 2004; Spicer et al., 2011) and 

increased ammonia excretion and reduced growth for invertebrate fauna (Michaelidis et 

al., 2005; Beniash et al., 2010; Lannig et al., 2010; Thomsen and Melzner, 2010; Gazeau 

et al., 2013). However, pCO2 did not impair shell growth during the initial period further 

demonstrative of the pH/hypercapnia-tolerance of P. generosa. 

Juvenile geoduck repeatedly exposed to elevated pCO2 showed possible stress 

“memory” with rebound from metabolic depression under subsequent stress and higher 

respiration rate and compensatory shell growth after long-term recovery. Metabolic 

rebound supports a hormetic-like response by P. generosa (Calabrese et al., 2007; 

https://paperpile.com/c/1A5HMC/YPLc
https://paperpile.com/c/1A5HMC/YPLc
https://paperpile.com/c/1A5HMC/YPLc
https://paperpile.com/c/1A5HMC/YPLc
https://paperpile.com/c/1A5HMC/aJzR
https://paperpile.com/c/1A5HMC/aJzR
https://paperpile.com/c/1A5HMC/aJzR
https://paperpile.com/c/1A5HMC/aJzR
https://paperpile.com/c/1A5HMC/aJzR
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/OPi1+aJzR+rh3k+dX3x+n7vB+QkSY
https://paperpile.com/c/1A5HMC/nNhX+x462
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Costantini, 2014) and prompts further investigation of energy budget, cellular, and -omic 

measures under repeated reciprocal stress encounters to improve our understanding of the 

mechanism underpinning hormesis. Use of hormesis to conceptualize carry-over effects of 

mild stress exposure is largely confined to model insects, plants, and microorganisms (Lee 

et al., 1987; Calabrese and Blain, 2009; López-Martínez and Hahn, 2012; Visser et al., 

2018). For example, Visser et al. (2018) found the Caribbean fruit fly, Anastrepha 

suspensa, exposed to oxidative stress early in life enhanced survivorship and investment in 

fertility and lipid synthesis under subsequent stress during adulthood. Mechanistic 

molecular and biochemical assessments under different and repeated stress intensities (i.e. 

magnitude, duration, and frequency) are planned to determine the threshold between low-

dose stimulation and high-dose inhibition from stress-conditioning. 

 

Age and intensity dependence of shell growth 

Metabolic recovery was coupled with reduced shell growth under a repeated stress 

encounter (Fig. 3) and compensatory shell growth after approximately five months in 

ambient conditions (Fig. 4). This could be explained by several hypotheses such as: carry-

over effect from metabolic depression under initial exposure to elevated pCO2 (Fig. 2A), 

differing sensitivity to stress intensity (Table 1), and/or age dependence for environmental 

hardening, or the interaction with increasing temperature through the season (see 

Supplementary Figure 1.). Bivalves known to exhibit metabolic suppression under acute 

and long-term acidification are often attributed with increased ammonia excretion rates and 

decreased ingestion and clearance rates as possible contributors to protein degradation and 

reduced growth (Michaelidis et al., 2005; Thomsen and Melzner, 2010; Fernández-Reiriz 
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et al., 2011; Navarro et al., 2013). Therefore, decreased shell length under secondary 

exposure may be a latent effect of metabolic depression during initial exposure. However, 

shell length was also reduced for clams initially exposed to the elevated treatment in the 

second exposure period (Table 2, Fig. 3B), indicating potential age-dependence of 

calcification and bioenergetic effects for juvenile P. generosa. This reduction however, 

could also be explained by the fact the secondary elevated pCO2 treatment was on average 

~0.04 pH units lower than the initial exposure (Table 1), suggesting possible sensitivity to 

increased stress intensity. It is likely that both temporal dynamics and stress thresholds 

influence intragenerational carry-over effects and further experimental efforts with 

repeated reciprocal design are needed. 

Respiration rates and shell growth five months post-exposure show a latent 

enhancement for animals repeatedly stressed or exposed to a stress event earlier in life, 

emphasizing the importance of the severity, duration, and timing of intragenerational 

stress-conditioning. These specific findings present a window in their life history where it 

may be advantageous to condition Pacific geoduck for enhancement of sustainable 

aquaculture.  

 

Commercial and environmental applications of experimental findings  

  Our findings infer both positive and negative implications for aquaculture. 

Although advantageous to elicit carry-over effects exhibited by stress-conditioned animals, 

results imply greater feed (ingestion rate) to sustain enhanced aerobic metabolism and 

compensatory shell growth; this can heighten labor and financial costs for industry, likely 

not incentivized by a marginal 5.8% increase in shell size. However, typical protocols for 
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geoduck aquaculture yield 5-month-old juvenile clams in the hatchery before grown in-situ 

for 5-7 years. Consequently, latency of enhanced performance in this study (~9-month-old 

juveniles), overlaid with the standard timeline for geoduck industry, does not present 

additional expenses. Further related tests on stress conditioning and production of resilient 

strains (i.e. phenotypes and/or epigenotypes) must account for distinct life-stages and 

species-specific attributes in aquaculture practice. 

Shellfish farming has adapted in recent years to implement “climate-proofing” 

technology to maintain production and combat both coastal and climate-related stressors 

(e.g. ocean acidification, sea-level rise, coastal development; Allison et al. 2011). For 

example, chemical buffering systems (e.g. mixing sodium bicarbonate) are increasingly 

common in shellfish industry to elevate aragonite saturation levels and reduce deleterious 

effects of ocean acidification; hatcheries report increases in productivity by 30-50%, 

offsetting the cost to maintain optimal carbonate chemistry year-round (Barton et al. 2015). 

Although buffering systems are advantageous to yield juvenile ‘seed’, alleviation of 

aragonite undersaturation in the short-term may leave juveniles and adults unprepared to 

cope with the heterogeneity of environmental chemistry during long growing periods in-

situ. As conditions in coastal bays report deteriorating water quality (Feely et al. 2008; 

Wallace et al. 2014; Cloern 2001; Melzner et al. 2013), acclimatization and selective 

breeding posit alternate and more robust solutions to generate stress-resilience (Barton et 

al. 2015). Implementation and tests of effectiveness of stress conditioning remain 

uncommon for scientists and aquaculture; our novel findings collected in a hatchery setting 

provide incentive to fine-tune stress exposures and build a mechanistic understanding of 

physiological, cellular, and molecular responses. Critical questions to test the practical 
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application of stress conditioning are: (1) what are the effects of repeated stress exposures 

on energy budget? (2) what life-stages and/or pCO2 stress intensity (i.e. magnitude and 

duration) optimizes establishment of resilient phenotypes and genotypes during hatchery-

rearing? (3) does stress history under elevated pCO2 affect the stability and longevity of 

carry-over effects later in life? Answers to these challenges will result in effective 

implementation of conditioning to both reduce pressure on wild stocks and sustain food 

security under environmental change. 

Although this study was primarily focused on production enhancement in a 

hatchery setting, effects on shell growth and metabolism have important applications to 

natural systems. Seawater carbonate chemistry targeted for stress treatments was more 

severe than levels commonly used in experimental research (Gazeau et al., 2010; Navarro 

et al., 2013; Diaz et al., 2018), but relevant to summer subsurface conditions within the 

natural range of P. generosa (pH 7.4 and Ωaragonite 0.4 in Hood Canal, WA; Feely et al., 

2010). Thus, survival, metabolic recovery, and compensatory growth in P. generosa in this 

study demonstrates a resilience to short-term acidification in the water column. Enhanced 

growth rates during juvenile development can present benefits for burrowing behavior 

(Green et al., 2009; Clements et al., 2016; Meseck et al., 2018) and survival due to 

decreased risk of predation and susceptibility to environmental stress (Przeslawski and 

Webb, 2009; Johnson and Smee, 2012). Specific to juvenile P. generosa, time to 

metamorphosis (to dissoconch), pre-burrowing time (time elapsed to anchor into substrate 

and obtain upright position), and burrowing depth are directly related to growth and 

survival (Goodwin and Pease, 1989; Tapia-Morales et al., 2015). Thus, stress conditioning 

under CO2-enrichment and low pH may enhance survivorship of juvenile geoduck in 
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natural systems. Water column carbonate chemistry may be critical for sustainable 

production of infaunal clams, such as P. generosa, that are out-planted for several years in-

situ on mudflats known to exhibit dynamic abiotic gradients (Green et al., 1993; Burdige 

et al., 2008) adjacent to seasonally acidified and undersaturated water bodies (Feely et al., 

2010; Reum et al., 2014). 

 

CONCLUSION  

Data in this present study provides evidence of capacity to cope with short-term 

acidification for an understudied infaunal clam of high economic importance. Survival of 

all individuals over the 30-d experiment demonstrates the resilience of this species to low 

pH and reduced carbonate saturation. Juvenile geoduck exposed to low pH for 10 days 

recovered from metabolic depression under subsequent stress exposure and conditioned 

animals showed a significant increase in both shell length and metabolic rate compared to 

controls after five months under ambient conditions, suggesting stress “memory” and 

compensatory growth as possible indicators of enhanced performance from 

intragenerational stress-conditioning. Our focus on industry enhancement must expand to 

test developmental morphology, physiology, and genetic and non-genetic markers over 

larval and juvenile stages in a multi-generational experiment to generate a more holistic 

assessment of stress hardening and the effects of exposure on cellular stress response 

(Costantini et al., 2010; Foo and Byrne, 2016; Eirin-Lopez and Putnam, 2018) for 

advancement of sustainable aquaculture (Branch et al., 2013). Advancements in genome 

sequencing will facilitate further research to synthesize -omic profiling (i.e global DNA 

methylation and differential expression) with physiological responses throughout 
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reproductive and offspring development under environmental stress (Gavery and Roberts, 

2014; Li et al., 2019) to determine if these mechanisms are transferable among species. 

Stress conditioning within a generation at critical life stages may yield beneficial responses 

for food production and provide a baseline for other long-lived burrowing bivalves of 

ecological and economic importance. 
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Table 1. pH, salinity and temperature measured with handheld probes and total alkalinity 

measured daily 
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Table 2. Two-way and three-way ANOVA tests for metabolic rate and shell length during 

initial and secondary exposures, respectively. 
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Figure 1. Schematic of the repeated exposure experimental design for two exposure trials. 
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Figure 2. Respiration rates (A) and shell length (B) of juvenile geoduck under the initial 

10-day exposure. 
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Figure 3. Respiration rates (A) and shell length (B) of juvenile geoduck under the 

secondary 6-day exposure. 
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Figure 4. Shell length (A) and metabolic rates (B) of juvenile geoduck after 157 days in 

ambient common garden conditions post-exposure.  
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ABSTRACT 

Although low levels of thermal stress, irradiance and dietary restriction can have beneficial 

effects for many taxa, stress acclimation remains little studied in marine invertebrates, even 

though they are threatened by climate change stressors such as ocean acidification. To test 

the role of life-stage and stress-intensity dependence in eliciting enhanced tolerance under 

subsequent stress encounters, we initially conditioned pediveliger Pacific geoduck 

(Panopea generosa) larvae to ambient and moderately elevated PCO2 (920 µatm and 2800 

µatm, respectively) for 110 days. Then, clams were exposed to ambient, moderate or 

severely elevated PCO2 (750, 2800 or 4900 µatm, respectively) for 7 days and, following 7 

days in ambient conditions, a 7-day third exposure to ambient (970 µatm) or moderate PCO2 

(3000 µatm). Initial conditioning to moderate PCO2 stress followed by second and third 

exposure to severe and moderate PCO2 stress increased respiration rate, organic biomass 

and shell size, suggesting a stress-intensity-dependent effect on energetics. Additionally, 

stress-acclimated clams had lower antioxidant capacity compared with clams under 

ambient conditions, supporting the hypothesis that stress over postlarval-to-juvenile 

development affects oxidative status later in life. Time series and stress intensity- specific 

approaches can reveal life-stages and magnitudes of exposure, respectively, that may elicit 

beneficial phenotypic variation 
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INTRODUCTION 

Ocean acidification (OA), including the decrease of oceanic pH, carbonate ion 

concentration and aragonite saturation state (Ωarg) due to elevated atmospheric partial 

pressures (PCO2), poses a global threat with magnified intensity in coastal marine systems 

(Cai et al., 2011). Marine molluscs are particularly susceptible to OA, with negative 

physiological impacts in aerobic performance (Navarro et al., 2013), calcification, growth 

and development (Waldbusser et al., 2015), acid/base regulation (Michaelidis et al., 2005) 

and energy-consuming processes (i.e. protein synthesis; Pan et al., 2015). 

It is posited for ectotherm physiology (i.e. oxygen capacity- limited thermal 

tolerance: Pörtner, 2012; energy-limited tolerance to stress: Sokolova, 2013) that cellular 

and physiological modifications affecting energy homeostasis describe aerobic 

performance ‘windows’ under ‘optimum’ (ambient), ‘pejus’ (moderate) and ‘pessimum’ 

(severe) environmental ranges (Sokolova et al., 2012; Sokolova, 2021). The conserved 

defense proteome, or cellular stress response (CSR), is the hallmark of cellular protection 

but comes at an energetic cost (Kültz, 2005). Whereas the CSR is unsustainable if harmful 

conditions exacerbate or persist (Sokolova et al., 2012), episodic or sublethal stress 

encounters can induce adaptive phenotypic variation (Tanner and Dowd, 2019). A growing 

body of research suggests that moderate or intermittent stress (e.g. caloric restriction, 

irradiance, thermal stress, oxygen deprivation, etc.) can elicit experience-mediated 

resilience for a variety of taxa (i.e. fruit fly, coral, fish, zebra finch, mice) increasing CSR, 

fitness and compensatory/anticipatory responses under subsequent stress exposures 

(Brown et al., 2002; Costantini et al., 2012; Jonsson and Jonsson, 2014; Visser et al., 2018; 

Zhang et al., 2018). Further, early-life development presents a sensitive stage to elicit 
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adaptive phenotypic adjustments (Fawcett and Frankenhuis, 2015), prompting 

investigation of environmental stress acclimation under a rapidly changing environment. 

Hormetic priming describes the beneficial effects of pre-exposure enhancing the 

ability to cope with subsequent encounters of similar or higher levels of stress later in life, 

as opposed to individuals without previous experience or primed under severe stress 

(Costantini, 2014). Mild oxidative stress presents a common source of hormetic priming 

(Costantini, 2014) and is a hypothesized driver of longevity (Ristow and Schmeisser, 2014; 

Wojtczyk-Miaskowska and Schlichtholz, 2018). For example, early-life exposure to 

moderate oxidative stress in the Caribbean fruit fly Anastrepha suspensa and zebra finch 

Taeniopygia guttata decreases cellular damage and increases proteomic defense, energy 

assimilation and survival under a subsequent stress encounter during adulthood (Costantini 

et al., 2012; Visser et al., 2018). Oxidative stress causes macromolecular damage and can 

occur from an over-production of reactive oxygen species (ROS such as superoxide, 

hydrogen peroxide or hydroxyl radical) primarily from mitochondrial oxidative 

phosphorylation, or changes to antioxidant systems that disrupt ROS scavenging. In marine 

invertebrates, oxidative stress can intensify under environmental stressors such as hypoxia 

and emersion (Abele et al., 2008), hyposalinity (Tomanek et al., 2012), thermal stress (An 

and Choi, 2010), pollutants and contaminants (Livingstone, 2001), and OA (Tomanek et 

al., 2011; Matoo et al., 2013). Protein families that are involved in the CSR function in 

signaling, avoidance and mediation of oxidative damage. Specifically, antioxidant proteins 

(i.e. superoxide dismutase, catalase, glutathione peroxidase, etc.) are widely conserved 

across phyla to scavenge ROS and regulate redox status at the expense of energy 

homeostasis (Kültz, 2005). Adaptive cellular defense against oxidative damage is thought 
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to have an important evolutionary role in the longevity of the ocean quahog Arctica 

islandica (lifespan >400 years) as a result of a lifestyle of metabolic dormancy (when 

burrowed) and aerobic recovery (Abele et al., 2008). Further, hypoxia-tolerant marine 

bivalves show anticipatory and compensatory upregulation of antioxidant proteins to 

mitigate oxidative bursts under hypoxia– reoxygenation (Ivanina and Sokolova, 2016). 

Such adaptive responses have yet to be explored under hypercapnic conditions to identify 

species tolerant to OA stress. Although bivalves are known to exhibit PCO2-induced 

oxidative damage and upregulated CSR (Tomanek et al., 2011; Matoo et al., 2013), studies 

have yet to investigate oxidative stress response (i.e. antioxidant capacity) in a hormetic 

framework (repeated exposures). 

Pacific geoduck (Panopea generosa Gould 1850) is a burrowing clam of ecological 

(Goodwin and Pease, 1987) and economic importance (Shamshak and King, 2015) and is 

a great candidate for investigating hormetic priming for generation of stress-acclimated 

phenotypes. Juvenile geoduck have shown positive carryover effects after exposure to high 

PCO2/low Ωarg conditions, including compensatory respiration rates and shell growth 

(Gurr et al., 2020a). In contrast, larval performance is negatively impacted under OA 

exposure (Timmins-Schiffman et al., 2019). The postlarval life stage presents an 

ecologically relevant and less susceptible window to investigate effects of PCO2 stress 

acclimation. ‘Settlement’ in bivalves is a developmental transition from free-swimming 

larvae in an oxygen-saturated water column to an increasingly sedentary or burrowed life 

in the benthos (Goodwin and Pease, 1989) where stratification, bacterial carbon 

mineralization and reduced buffering capacity drives down calcium carbonate saturation 

and oxygen levels (Cai et al., 2011). To investigate the potential for early stress to elicit 
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beneficial responses under subsequent encounters, we investigated the effects of PCO2 

exposures of different intensity and at different time points in a repeated reciprocal 

approach (multiple and crossed treatment periods), on the physiological and subcellular 

phenotypes of juvenile Pacific geoduck. 

 

MATERIALS AND METHODS 

Environmental context for chosen PCO2 treatments 

Ambient hatchery conditions and local buoy data contextualize the choices of PCO2 to test 

responses under ‘pejus’ and ‘pessimum’ range (Sokolova et al., 2012; Sokolova, 2021). 

First, as control PCO2 conditions, incoming hatchery ambient seawater temperature, 

salinity, pH, and PCO2 was 16–18°C, 29 ppt, 7.7–7.8 pH, and ∼800–950 µatm, 

respectively. These data correspond with local conditions obtained from data buoys (i.e. 

Dabob Bay in Hood Canal, WA; Fassbender et al., 2018). As the ‘pejus’ range, a pH 7.2 

and Ωarg 0.4 or ‘moderate’ PCO2 (2800–3000 µatm) was used in this study. Hood Canal 

is a known habitat for P. generosa (Mcdonald et al., 2015) and demonstrates seasonal 

patterns of low pH and undersaturated conditions with respect to aragonite (Fassbender et 

al., 2018) especially at depth (i.e. 50 m, pH 7.4 and Ωarg 0.4; Feely et al., 2010). Moreover, 

the deep benthic range (i.e. 110 m; Goodwin and Pease, 1991) and infaunal lifestyle of P. 

generosa further suggests that exposure to severe low pH and aragonite undersaturated 

conditions may be common for geoduck. Thus, as a ‘pessimum’ range, a pH 7.0 and Ωarg 

0.2 and ‘severe’ PCO2 (4940 µatm) was chosen. 
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Experimental setup 

Larval Pacific geoduck were reared from gametes at the Jamestown Point Whitney 

Shellfish Hatchery (Brinnon, WA) following standard shellfish aquaculture industry 

practices, using bag- filtered (5 µm) and UV-sterilized seawater pumped from offshore 

(27.5 m depth) in Dabob Bay (WA, USA). Larvae reached settlement competency, 

characterized by a protruding foot and larval shell length >300 µm, at 30 days post-

fertilization. Approximately 15,000 larvae were randomly placed into each of eight 10-liter 

trays (Heath/Tecna) containing a thin layer of sand to simulate the natural environment and 

enable metamorphosis from veliger larvae to pediveliger larvae, and subsequently to the 

burrowing and sessile juvenile stage. 

 

Acclimation from pediveligers to juveniles (primary exposure) 

Pediveligers were placed into ambient or moderate PCO2 conditions (921±41 or 2870±65 

µatm; Table 1; Fig. 1) for an initial exposure during the transition from pediveliger to the 

burrowing juvenile stage (N=4 trays per treatment; N=1.5×104 pediveligers per tray). 

Seawater flowed into 250-liter head tanks at a rate of 0.1 liters min−1 and replicate trays 

were gravity-fed from the head tanks. At the end of the primary exposure after 110 days, 

respiration rate and shell growth were measured for 20 randomly selected juveniles from 

each of the 8 trays as described below. Additionally, 6 animals from each tray were frozen 

in liquid nitrogen and stored at −80°C for biochemical analysis. Observations at the end of 

the acclimation period estimated ∼30% survival (4000–5000 juveniles per tray) regardless 

of PCO2 condition. 
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Modified reciprocal exposure 

Second exposure 

To begin the second exposure, juvenile geoducks (∼2200 geoducks per initial PCO2 

treatment) were rinsed on a 3×105 µm screen to isolate individuals and were divided 

equally in 36 plastic cups (175 ml) (N=120 animals per cup, N=6 cups per treatment) each 

with 50 ml rinsed sand (450–550 µm grain size). Seawater flowed into 250-liter head tanks 

at a rate of 0.6 liters min−1 and was pumped using submersible pumps to randomly 

interspersed cups each with a ∼0.06 1iters min−1 (1 gallon h−1) pressure compensating 

dripper (Raindrip). Flow rates from dripper manifolds to replicate cups averaged 0.012 

liters min−1 (∼8 cycles h−1 for 175 ml). Juveniles acclimated under ambient and moderate 

PCO2 conditions were subjected to a second exposure period (7 days; Fig. 1) in three PCO2 

conditions: ambient (754±15 µatm), moderate (2750 ±31 µatm) or severe (4940±45 µatm; 

Table 1). 

 

Ambient recovery 

After the second exposure, PCO2 addition to head tank seawater ceased and all cups returned 

to ambient conditions (896±11 µatm, Table 1) for 7 days (Fig. 1). 

 

Third exposure 

Replicate cups from the second exposure were split (N=72 cups) for subsequent third 

exposure (7 days; Fig. 1) in two conditions: ambient (967±9 µatm) or moderate PCO2 

(3030±23 µatm; Table 1). Animals were randomly chosen for respiration and growth 

measurements as described below (N=3 geoducks per cup) and fixed in liquid nitrogen 
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(N=6 geoducks per cup) every 3 days and at the start of every treatment transition, 

cumulatively as days 1, 4, 7 (second PCO2 exposure), 8, 11, 14 (ambient recovery), 15, 18 

and 21 (third PCO2 exposure; Fig. 1). Geoducks were fed ad libitum a live mixed-algae diet 

of Isocrysis, Tetraselmis, Chaetoceros and Nannochloropsis throughout the experiment (4–

5×104 cells ml−1). Live algae cells were flowed into head tanks during the 21-day modified 

reciprocal exposure at a semi-continuous rate (2.0×103 ml h−1 per tank) with a 

programmable dosing pump (Jebao DP-4) to target 5×104 live algae cells ml−1 in the 175 

ml cups. Large algae batch cultures were counted daily via bright-field image-based 

analysis (Nexcelom T4 Cellometer; Gurr et al., 2018) to calculate cell density of 2.5×104 

live algae cells ml−1 in the 250 liter head tanks; the closed-bottom cups retained algae to 

roughly twice the head tank density and algal density was analyzed in three cups via bright 

field image-based analysis every 4 days. 

 

Seawater chemistry  

Elevated PCO2 levels in head tanks were controlled with a pH-stat system (Neptune Apex 

Controller System; Putnam et al., 2016) and gas solenoid valves for a target pH of 7.2 for 

the moderate PCO2 condition and pH of 6.8 for the severe PCO2 condition (pH in NBS scale). 

pH and temperature (°C) were measured every 10 s by logger probes (Neptune Systems; 

accuracy: ±0.01 pH units and ±0.1°C; resolution: ±0.1 pH units and ±0.1°C) positioned in 

header tanks and trays. Total alkalinity (TA; µmol kg−1 seawater) of head tank, tray and 

cup seawater was sampled in combination with pH (mV) by handheld probe (Mettler 

Toledo pH probe; resolution: 1 mV, 0.01 pH; accuracy: ±1 mV, ±0.01 pH; Thermo 

Scientific Orion Star A series A325), salinity (Orion 013010MD Conductivity Cell; range: 
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1 µS cm−1 to 200 mS cm−1; accuracy: ±0.01 psu) and temperature (Fisherbrand Traceable 

Platinum Ultra-Accurate Digital Thermometer; resolution; 0.001°C; accuracy: ±0.05°C). 

pH data was assessed on each day with Tris standard (Dickson Lab Tris Standard Batch 

T27) for quality control and calculation of pH in total scale (Dickson et al., 2007). 

Carbonate chemistry was recorded weekly for each replicate tray during the 110-day 

acclimation period and daily during the 21-day experiment for three randomized cups 

representative of each PCO2 treatment (days 1–7 and 8–15, N=9 cups; days 15–21, N=6 

cups). Additionally, carbonate chemistry of all cups was measured once weekly during 

each 7 day period (days 1–7 and 8–15, N=32 cups; days 15–21, N=72 cups). TA was 

measured using an open-cell titration (SOP 3b; Dickson et al., 2007) with certified HCl 

titrant (∼0.1 mol kg−1, ∼0.6 mol kg−1 NaCl; Dickson Lab, Batches A15 and A16) and TA 

measurements identified <1% error when compared against certified reference materials 

(Dickson Lab CO2 CRM Batch 180). Seawater chemistry was completed following guide 

to best practices (Dickson et al., 2007); TA and pH measurements were used to calculate 

carbonate chemistry, CO2, PCO2, HCO3−, CO3, Ωarag and Ωcalcite using the SEACARB 

package (http://CRAN.R-project.org/package=seacarb) in R v3.5.1 (https://www.r-

project.org/). 

  

Respiration rate and shell growth 

Respiration rates (oxygen consumption per unit time) were estimated by monitoring 

oxygen concentration using calibrated optical sensor vials (PreSens, SensorVial SV-PSt5-

4ml) on a 24- well plate sensor system (Presens SDR SensorDish). Vials contained three 

individuals per cup filled with 0.2 µm-filtered seawater from the corresponding treatment 

http://cran.r-project.org/package%3Dseacarb
https://www.r-project.org/
https://www.r-project.org/
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head tank. Oxygen consumption from microbial activity was accounted for by including 5-

6 vials filled only with 0.2 µm-filtered treatment seawater. Respiration rates were measured 

in an incubator set at 17°C, with the vials and plate sensor system fixed on a rotator for 

mixing. Oxygen concentration (µg O2 l
−1) was recorded every 15 s until concentrations 

declined to ∼50-70% saturation (∼20 min). Vial seawater volume was measured and clams 

from each vial were photographed with a size standard (1 mm stage micrometer) to measure 

shell length ( parallel to hinge; mm) using Image J. Respiration rates were calculated using 

the R package LoLinR (https://github.com/colin-olito/LoLinR) with suggested parameters 

by the package authors (Olito et al., 2017) and following Gurr et al. (2020a) with minor 

adjustments: fixed constants for weighting method (L%) and observations (alpha=0.4) over 

the full 20 min record. Final respiration rates of juvenile geoduck were corrected for blank 

vial rates and vial seawater volume (µg O2 h
−1 individual−1). 

 

Physiological assays 

Total antioxidant capacity (TAOC), total protein and ash free dry weight (AFDW; organic 

biomass) was measured for one animal from each biological tank replicate (N=6 animals 

per treatment) at the end of the second exposure (total of 36 animals) and at the end of the 

third exposure (total of 72 animals). Whole animals were homogenized (Pro Scientific) 

with 300–500 µl cold 1×PBS and total homogenized volume (µl) was recorded. 

Homogenates were aliquoted for TAOC and total protein assays and the remaining 

homogenate was used to measure organic biomass. TAOC was measured in duplicate as 

the reduction capacity of copper reducing equivalents (CRE) following the Oxiselect™ 

microplate protocol (STA-360) and standardized for volume and to the total protein content 

https://github.com/colin-olito/LoLinR
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of the tissue lysate samples of the same individual (µmoles CRE mg protein−1). Sample 

aliquots for total protein were solubilized by adding 10 µl 1 mol l−1 NaOH preceding 

incubation at 50°C and 800 RPM for 4 h and neutralized with 0.1 mol l−1 HCl ( pH 7). 

Total protein of tissue lysate samples was measured using the Pierce Rapid Gold assay 

with bovine serum albumin following the Pierce™ microplate protocol (A53225). Total 

protein (mg) was standardized to organic biomass (mg protein mg AFDW) following 

ignition (4.5 h at 450°C) subtracted by the dry weight (24 h at 75°C) and corrected for total 

homogenate volume. 

 

Statistical analysis 

Welch’s t-tests for unequal variances were used to analyze the effect of the primary 

exposure, or initial 110-day PCO2 acclimation period (fixed), on respiration rate and shell 

length prior to the 21-day exposure period. Over the 21-day exposure, respiration rate and 

shell size were assessed with ANOVA based on linear mixed effects (LMEs) to analyze 

the fixed effects of PCO2 treatments and random effect of time during the second PCO2 

exposure, ambient recovery, and third PCO2 exposure periods (days 1–7, 8–14 and 14–21, 

respectively). Total antioxidant capacity, total protein, and organic biomass from samples 

on day 7 and day 21 were analyzed for effects of PCO2 treatments (fixed) with two-way and 

three-way ANOVAs, respectively. In all cases, normality assumptions were tested with 

visual inspection of diagnostic plots (residual vs. fitted and normal Q–Q; Kozak and 

Piepho, 2018) and homogeneity of variance was tested with Levene’s test (Brown and 

Forsythe, 1974). Results of three-way ANOVAs on day 21 total protein and day 21 organic 

biomass were robust to outlier removal and transformation(s) that resolved normality via 
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Shapiro-Wilk test. A pairwise Tukey’s a posteriori Honestly Significant Difference test 

was applied to significant model effects. All data analysis was completed using R (v3.5.1; 

https://www.r-project.org/). 

 

RESULTS 

Stress acclimation, second exposure to hypercapnic seawater and ambient recovery 

There was no difference in respiration rate after 110 days of PCO2 acclimation (Table S1; 

Welch’s t-test; primary, t=−0.602, df.=31.725, P=0.5516); however, the shell length of 

geoducks under moderate PCO2 was significantly larger, by 2.6%, compared with those 

under ambient treatment (Table S1; Welch’s t-test; primary, t=−4.297, df.=2884, 

P<0.0001). Under the second exposure, there was no significant effect of PCO2 treatments 

on respiration rate and shell length. Juvenile clams acclimated under moderate PCO2 on 

average had significantly greater organic biomass (two-way ANOVA; primary, 

F1,30=9.313, P=0.0047) at the end of the second exposure period (day 7) with 39% greater 

individual mg tissue AFDW compared with animals reared under ambient conditions 

(Table S2 and Fig. 2). There was no significant effect from the primary or second PCO2 

treatments on total protein or TAOC (Table S2 and Fig. 2). During ambient recovery, 

respiration rate and shell length were not significantly affected by the primary or second 

PCO2 treatments (Table S1). 

  

Third exposure to hypercapnic seawater 

The interaction of primary and second PCO2 treatments had a significant effect on 

respiration rate under the third exposure period (Table S1; LME; primary×second, 

https://www.r-project.org/
https://www.r-project.org/
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
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F2,198=3.810, P=0.024), with this interaction primarily driven by a 20.4% greater respiration 

rate in PCO2 stress-acclimated animals exposed to severe PCO2 than ambient PCO2 during the 

second period (Fig. 3), although the post hoc test was only marginally significant (Tukey 

HSD; moderate×severe> moderate×ambient, P=0.0992). Shell growth was affected by an 

interaction between primary, second and third PCO2 treatments (Table S1 and Fig. 3; four-

way ANOVA; primary×second×third, F2,628=6.360, P=0.002). Pairwise differences of the 

three-way treatment interaction showed 9.3% greater mean shell size by acclimated 

animals with a second and third exposure to severe and moderate PCO2, respectively (Fig. 

3). At the end of the third exposure period (day 21), primary exposure under moderate PCO2 

increased organic biomass (Table S2; three-way ANOVA; primary, F1,56=12.899, P<0.001) 

with 51% greater AFDW under stress treatment relative to ambient controls (Fig. 2). There 

was a significant effect of primary exposure on antioxidant activity (Table S2; three- way 

ANOVA; primary, F1,56=8.069, P=0.0063) with 22% greater µmol CREred g
−1 protein by 

clams reared under ambient PCO2 (Fig. 2); there was no effect of PCO2 treatment or two-way 

and three-way interactions of PCO2 treatments on total protein (Table S2 and Fig. 2). The 

effects of PCO2 on survival over the 21-day exposure period was negligible as there were 

no observed cases of mortality. 

 

DISCUSSION 

In the present study we evaluated the effects of post-larval stress acclimation and 

subsequent exposures to elevated PCO2 on the physiological and biochemical stress 

response in juvenile geoduck. Our findings suggest moderate hypercapnic conditions 

during post- larval development improve metrics of physiological performance and CSR. 

https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
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This novel investigation of beneficial effects of early-life stress demonstrates a high 

tolerance to PCO2 regimes (∼2500– 5000 µatm) and plasticity of bioenergetic and 

subcellular responses in P. generosa. 

  

Stress-intensity- and life-stage-dependent effects 

Survival under long-term stress exposure and positive physiological responses of 

acclimated animals under ‘moderate’ (∼2900 µatm PCO2 0.4 Ωarg) and ‘severe’ (∼4800 

µatm PCO2 0.2 Ωarg) reciprocal exposures highlight the resilience of P. generosa to OA and 

suggests that stress acclimation can induce beneficial effects during post-larval to juvenile 

development. Specifically, clams repeatedly exposed to the greatest intensity of stress 

(moderate×severe×moderate) had both greater respiration rates and shell size (Table S1; 

Fig. 2). Furthermore, stress-acclimated individuals had greater organic biomass and lower 

amounts of antioxidant proteins relative to ambient controls (Fig. 3), suggesting optimized 

tissue accretion and energy partitioning, coupled with decreased costs for cytoprotection. 

Previous studies describe metabolic compensation and regulation of CSR during 

hypercapnia as attributes of a well-adapted stress response to control acid–base status and 

normal development/metamorphosis (Walsh and Milligan, 1989; Dineshram et al., 2015). 

Indeed, prior work on juvenile P. generosa also demonstrates positive acclimatory 

carryover effects, with increased shell length and metabolic rate after repeat exposures to 

hypercapnic and undersaturated conditions with respect to aragonite (Gurr et al., 2020a). 

Contrary to our findings, similar PCO2 and Ωarg levels decrease metabolic rate and scope for 

growth in the mussel Mytilus chilensis (Navarro et al., 2013), cause a three-fold increase 

in mortality rate in juvenile hard clam Mercenaria mercenaria (Green et al., 2009), and alter 

https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.233932
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metamorphosis and juvenile burrowing behavior in Panopea japonica (Huo et al., 2019). 

Thus, PCO2 tolerance limitations are likely species specific, as well as life stage, duration 

and stress-intensity specific. 

PCO2-induced phenotypic variation over post-larval to juvenile development 

observed in this study suggests postlarval stages may be optimal for stress acclimation. A 

growing body of research posits an adaptive role of early life as a ‘programming window’ 

owing to the importance of environmental information in setting the stage for subsequent 

phenotypic outcomes (Fawcett and Frankenhuis, 2015). Beneficial carryover effects in the 

present study are also corroborated by compensatory physiology and differential DNA 

methylation of juvenile P. generosa in other studies (Putnam et al., 2017; Gurr et al., 

2020a). In contrast, OA can have deleterious effects on growth/development, settlement 

and proteomic composition of larval P. generosa (Timmins-Schiffman et al., 2019), further 

emphasizing the life-stage dependence of PCO2 stress exposure. Mollusc larvae are widely 

established to have enhanced susceptibility to OA with impacts on shell growth and 

developmental transition (Kurihara et al., 2007; Kapsenberg et al., 2018). For example, 

larval exposure to elevated PCO2 leads to persistent negative effects (i.e. reduced shell 

growth and development) in Pacific oyster Crassostreas gigas, Olympia oyster Ostrea 

lurida and bay scallop Argopecten irradians (Barton et al., 2012; Hettinger et al., 2012; 

White et al., 2013). Beneficial responses to OA are also possible, especially in longer term 

and carryover-effect studies (Parker et al., 2015). For example, elevated PCO2 during 

gametogenesis in the Chilean mussel Mytilus chilensis (Diaz et al., 2018) and Sydney rock 

oyster Saccostrea glomerata (Parker et al., 2012) increases the size of larval stages in 

progeny. Future comparative studies should test molluscs resilient and susceptible to 
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environmental stressors to determine if these associations are impacted by early-life stress 

acclimation and subsequent stress encounters post-settlement. Further, the adaptive or 

maladaptive implications of early-life hormetic priming likely depend on the stress type 

and intensity experienced later in life, demanding long-term investigations under 

matched/mismatched environments (Costantini et al., 2014). 

Our observation of beneficial effects in stress-acclimated clams suggests an 

adaptive resilience of P. generosa to hypercapnic conditions relevant to post-larval to 

juvenile development in both natural and aquaculture systems. PCO2 and Ωarg gradients 

naturally occur alongside the developmental transition from free-swimming larvae to 

sessile benthic juveniles suggesting P. generosa may be capable of adaptive resilience 

particularly during this life stage. Furthermore, habitat within the native range of P. 

generosa exhibits elevated PCO2 and aragonite undersaturation with episodic/seasonal 

variation (surface water Ωarg<1 in winter months, Dabob Bay in Hood Canal, WA; 

Fassbender et al., 2018) and geographical (>2400 µatm and Ωarg<0.4 in Hood Canal, WA; 

Feely et al., 2010) and vertical heterogeneity (Reum et al., 2014) comparable to gradients 

within sub-surface sediments (Ωarg 0.4–0.6; Green et al., 2009). Therefore, the population 

of adult broodstock spawned in this experiment may be better suited for a low-pH 

environment. Relevant to aquaculture, the findings and experimental timing of this study 

suggest that postlarval ‘settlement’ is an ecologically relevant life stage to investigate stress 

conditioning. 
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Oxidative status and repeated stress encounters 

Our results herein demonstrate activation of phenotypic variation after repeated stress 

encounters suggesting post-larval acclimation may have a critical role in subsequent stress 

response. A low-dose stimulatory effect of oxidative stress is well characterized (i.e. under 

calorie restriction, hypoxia and exercise; Ristow and Schmeisser, 2014) for a wide range 

of taxa (Costantini et al., 2012; Visser et al., 2018; Zhang et al., 2018), but remains poorly 

understood in response to OA conditions. Here, we posit that hormetic priming can be both 

stress-intensity and life-stage dependent affecting physiology and total antioxidant 

capacity over subsequent stress encounters; however, further research is required to 

determine the role of oxidative stress in this process (i.e. oxidative damage, ROS signaling 

pathways, etc.). 

Intermittent oxidative stress may have evolutionary importance in stress resilience 

of long-lived marine bivalves. The ocean quahog Arctica islandica is the oldest known 

non-colonial animal; their substantial longevity is hypothesized to be driven by intermittent 

metabolic-quiescence (dormancy when burrowed) demanding resilience to ROS 

overproduction (oxidative bursts) and resistance to cell death upon subsequent aerobic 

recovery (Abele et al., 2008). Interestingly, A. islandica have lipids with low sensitivity to 

peroxidation (Munro and Blier, 2012) and high baseline antioxidant capacity throughout 

their lifespan suggesting an adaptive resilience to oxidative damage (Abele et al., 2008). 

The lower antioxidant production by stress-conditioned P. generosa in the present study 

could suggest adaptive subcellular mechanism(s) that differ from other long-lived bivalves 

but may similarly function in maintaining homeostasis under frequent or intermittent stress 

exposures. 
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Effects of stress acclimation on antioxidant capacity and performance of P. 

generosa infers potential subcellular and mitochondrial pathways and the need for a 

mechanistic understanding of the role of oxidative stress. Furthermore, pre-emptive 

frontloading of stress-related transcripts can promote stress resilience (Barshis et al., 2013), 

but remains poorly understood in response to hormetic priming. Alternative oxidase is a 

regulatory mitochondrial pathway in bivalves that permits ATP synthesis and reduces ROS 

production during stress (Tschischka et al., 2000; Sussarellu et al., 2013; Yusseppone et 

al., 2018) and frontloading of genes in this pathway could enhance tolerance. Further 

experiments are needed to elucidate molecular mechanisms of adaptive phenotype 

variation in response to hormetic priming. 

  

CONCLUSION 

Post-larval acclimation under moderate hypercapnia can elicit beneficial phenotypes under 

subsequent stress encounters. This acclimatory capacity is likely contingent on stress 

intensity (i.e. magnitude, duration, frequency of stress periods) and timing during post-

larval settlement and juvenile development. Thus, investigations of marine species 

responses to climate change should consider adaptive dose-dependent regulation and 

effects post-acclimation (i.e. carryover). A holistic understanding of cellular and molecular 

mechanisms can advance understanding of hormetic priming and provide additional 

‘climate-proofing’ strategies in aquaculture and conservation of goods and services in the 

Anthropocene. 
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Table 1. Seawater carbonate chemistry. 
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Figure 1. Schematic of the experimental design. 



49 
 

 

 

Figure 2. Antioxidant response and physiology of fixed Pacific geoduck (Panopea 

generosa) at the end of second and third exposure periods.  
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Figure 3. Respiration rate and shell length of geoducks under second and third exposure 

periods.  
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Supplementary Table S1. Effects of pCO2 stress exposures on mean respiration rate and 

shell growth of P. generosa. 
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Supplementary Table S2. Effects of pCO2 stress exposures on antioxidant capacity, total 

protein, and organic biomass (AFDW) of P. generosa.  
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ABSTRACT 

Post-larval acclimation to hypercapnic seawater improves performance in terms of growth 

and oxidative status of juvenile Pacific geoduck Panopea generosa, indicating the potential 

for transcriptional shifts to drive modified organismal and cellular phenotypes. Following 

three-months of conditioning immediately post-settlement under ambient and moderately-

elevated pCO2, repeated hypercapnia and an ambient depuration period elicited variation 

of transcriptome profiles between stress-acclimated and naïve juvenile geoducks. Stress-

acclimated geoducks were rapidly responsive to change, showing fine-tuned gene 

expression for quality control of mitochondria and immune defense during hypercapnia, 

and increased gene expression involved in energy metabolism and biosynthesis during 

ambient recovery. Furthermore, continuous gene ontology enrichment included histone 

methyltransferases and transcription factors, illustrating that moderate-stress history may 

frontload transcriptional modifiers. In contrast, the naïve animals showed greater 

transcriptional demand and continuous enrichment for fatty-acid degradation and 

glutathione components suggesting unsustainable energetic requirements if changes in 

carbonate chemistry exacerbated or persisted. Altogether, transcriptomic findings 

complement physiological phenotypes, supporting beneficial gene-expression regulation 

and cellular maintenance by the acclimatized phenotype as opposed to putative depletion 

of endogenous fuels to supply broad transcription in absence of prior stress experience. 

Post-larval acclimatory periods, predecessor to episodic changes, can enhance robustness 

to environmental stress in juvenile P. generosa. 
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INTRODUCTION 

Climate change exerts growing pressures to marine life and is projected to intensify 

in the near-future. In particular, global environmental phenomena such as ocean 

acidification, or the reduction of ocean pH due to absorption of atmospheric CO2, and 

increasing marine heat waves are devastating marine life and thus ocean ecosystems (Lotze 

et al., 2006). Moreover, low pH conditions are magnified in coastal systems and co-occur 

with multiple stressors (Cai et al., 2011; Melzner et al., 2013) presenting a growing concern 

for aquaculture (Barton et al., 2012, 2015). In isolation, OA affects essential cellular 

processes (e.g. acid-base homeostasis and energy metabolism; (Michaelidis et al., 2005; 

Dineshram et al., 2013) and shell formation and survival for calcifying organisms, 

especially during early development and metamorphosis (Kurihara et al., 2007; 

Waldbusser et al., 2015; Kapsenberg et al., 2018). Thus, understanding species’ capacity 

for acclimation is important, but remains understudied. 

Species success and environmental resilience depends on integration of predictable 

environmental cues by developmentally modulated phenotypes. Environmental variation 

(spatial and temporal) shapes phenotypes (Dowd et al., 2015) and numerous studies 

support an acclimatory capacity for marine invertebrates to cope with episodic (Suckling 

et al., 2015; Détrée and Gallardo-Escárate, 2018; Gurr et al., 2020; Li et al., 2020) and 

cross-generational periods of elevated pCO2 (Parker et al., 2015; Goncalves et al., 2016). 

Furthermore, although larvae are highly susceptible to changes in the surrounding 

environment, early life presents an ideal “window” for developmental acclimation due to 

the importance of environmental information in setting the stage for subsequent phenotypic 

outcomes (Burton and Metcalfe, 2014; Fawcett and Frankenhuis, 2015). Thus, the timing 
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and stress magnitude of environmental change likely have a joint effect on plasticity 

(Donelson et al., 2018). Beneficial or maladaptive carryover of stress history (Parker et al., 

2012; Hettinger et al., 2013) will have ecological and evolutionary implications, so it is 

essential to understand how external signals, such as those from climate change stressors, 

are transduced to elicit acclimatory patterns under repeated stress.  

Gene expression regulation is key to homeostasis, thus has important consequences. 

In molluscs, gene-expression regulation during early development contributes to emergent 

phenotypes (Riviere et al., 2017; Fellous et al., 2019). Thus, transcriptomics is a broad and 

sensitive approach to assess global gene expression and expand upon genomic markers and 

economic traits in aquaculture (Chandhini and Kumar, 2019). Transcriptome profiling of 

clams and oysters found differential regulation of mitochondrial complexes, antioxidants, 

and lipid degradation in response to environmental change (Chapman et al., 2011; 

Goncalves et al., 2017; López-Landavery et al., 2021; Teng et al., 2021), suggesting that 

external abiotic conditions can affect metabolism and shift substrates for bioenergetics. 

Furthermore, pre-preparatory transcript accumulation, or gene frontloading, is a proposed 

mechanism to cope with unpredictable or novel changes in the environment (Barshis et al., 

2013). For instance, limpets (Lottia sp.) occupying the high intertidal upregulate heat-

shock proteins relative to low-intertidal individuals suggesting a preemptive gene-level 

response (Dong et al., 2008). Acclimatory patterns are commonly used to infer divergent 

evolutionary adaptations among populations, whereas rapidly-induced variation of 

transcriptome profiles remains understudied.  

Geoduck clams (Panopea sp.) are long-lived molluscs of high economic value and 

recent studies corroborate their particular resilience to low pH (Spencer et al., 2019; Gurr 
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et al., 2020, 2021). Transcriptome profiles of larval geoduck (Panopea globosa) and 

Pacific geoduck (Panopea generosa) reared under hypercapnic seawater (elevated pCO2) 

found umbonate-stage larvae regulate energy production and acid/base homeostasis 

(López-Landavery et al., 2021), as opposed to delayed metamorphosis and molecular 

metabolic shifts during early stages post-fertilization (Huo et al., 2019; Timmins‐

Schiffman et al., 2020). Post-settlement, juvenile P. globosa upregulate genes for DNA 

repair and transcriptional regulation during chronic thermal stress (Juárez et al., 2018) and 

intermittent exposures of juvenile P. generosa under OA conditions elicits compensatory 

growth and metabolism (Gurr et al., 2020) and differential DNA methylation (Putnam et 

al. 2017). In a previous study by Gurr et al. (Gurr et al., 2021), P. generosa at settlement-

competency (pediveliger stage) were acclimated under hypercapnic and ambient seawater 

before juveniles were exposed under repeated hypercapnia; the stress-acclimated 

phenotype was larger (tissue biomass and shell length) and decreased total antioxidant 

capacity supporting a physiological benefit of stress history. Transcriptome profiling of P. 

generosa has provided critical molecular insight on negative effects of low-pH exposure 

(Timmins‐Schiffman et al., 2020), opening interest in transcriptomics to expand upon 

findings in Gurr et al. (2021) and determine mechanisms underpinning developmental 

acclimatization in the following questions: Does stress acclimation affect transcriptome 

profiles under repeated exposure(s)? Are there distinct gene functions and pathways 

underpinning phenotypic benefits of early-life stress? 
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METHODS 

pCO2 exposure experiment and tissue sampling 

Larval Pacific geoduck were reared from gametes at the Jamestown Point Whitney 

Shellfish Hatchery (Brinnon, WA) following standard industry practice before a 110-day 

stress-acclimation period followed by a 21-day full-factorial repeat exposure to 

hypercapnic (high pCO2) conditions (detailed in Gurr et al. 2021). In brief, once animals 

reached settlement competency (~30 days post-fertilization), pediveliger larvae were 

exposed to ambient and elevated pCO2 conditions (921 ± 41 µatm and 2870 ± 65 µatm) for 

an initial 110-day acclimatory period targeting the metamorphic transition from pediveliger 

to the burrowing juvenile stage (Table S1; N=4 trays treatment-1 and N=1.5×104 

pediveligers tray-1). Juveniles acclimated under ambient and elevated pCO2 were divided 

at equal density into 36 replicate cups (N=6 cups treatment-1), and subjected to a secondary 

7-day period under three pCO2 conditions (ambient pCO2=754 ± 15 µatm, moderate 

pCO2=2750 ± 31 µatm, and severe pCO2=4940 ± 45 µatm) followed by 7 days of ambient 

recovery (896 ± 11 µatm) before replicates were split into 72 cups (N=6 cups treatment-1) 

for a 7-day third exposure in two conditions (ambient pCO2=967 ± 9 µatm and moderate 

pCO2=3030 ± 23 µatm; Table S1). Note these are all elevated pCO2 relevant to the native 

range of P. generosa as they correspond to values at local sites and sediment conditions 

where the clams live (e.g. Hood Canal in Puget Sound, WA; (Feely et al., 2010; Reum et 

al., 2014). As previously described in Gurr et al. (2021), the stress-acclimated phenotype 

reduced total antioxidant capacity and increased shell growth and tissue biomass under 

subsequent stress encounters as evidence supporting the pediveliger-to-juvenile ‘window’ 

for adaptive developmental plasticity. In this study, samples were sequenced at the same 

https://paperpile.com/c/6tK7sr/PGcl+zP7t
https://paperpile.com/c/6tK7sr/PGcl+zP7t
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timepoints in Gurr et al (2021) to investigate transcriptome profiles attributed with 

phenotypic outcomes. Whole juveniles from each replicate tray and cup were snap frozen 

in liquid nitrogen between 9:00-11:00 on the final day of the initial stress-acclimation 

period (N = 8; Fig. 1 day 0; after 110-day acclimation period) and secondary exposure (N 

= 36; Fig. 1 day 7), ambient recovery (N = 35; Fig. 1 day 14), and third exposure (N = 62; 

Fig. 1 day 21); note that days 14 and 21 do not contain the maximum replication (6 

sampling treatment-1) due to lost or unavailable samples for extractions. 

 

TagSeq data 

Whole juvenile geoduck samples (N = 141) were thawed individually in 1 ml 

DNA/RNA shield and homogenized with 0.25 ml 0.5 mm glass beads (vortexed for ~1 

minute). Total RNA was extracted from whole tissue homogenate using the Quick-

DNA/RNA Kit (Zymo) according to manufacturer’s instructions. RNA quantity was 

determined using RNA Broad Range Assay Kit with Qubit fluorometer (ThermoFisher) 

and quality was ascertained using 4200 TapeStation System for ribosomal bands (Agilent 

Technologies). RNA samples (10 ng µl-1) were used for TagSeq, a 3’ short transcript 

method that allows cost-effective and accurate estimation of transcript abundances relative 

to traditional RNAseq (Lohman et al. 2016). Library preparation was adapted for 

sequencing on two lanes of Illumina NovaSeq 6000 SR100 targeting standard coverage of 

3-5 million 100 bp single-end reads (University of Texas Austin, Genomic Sequencing and 

Analysis Facility). Raw reads were trimmed of Illumina adapters, poly-A, and quality 

filtered with fastp; quality control for filter optimization was completed using MultiQC.  
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The P. generosa reference genome contains 34,947 putative coding sequences, 

42% (14,671) with gene name and gene ontology (GO) annotation 

(doi:10.17605/OSF.IO/YEM8N; Roberts et al. 2020). Reads were mapped to the P. 

generosa reference transcriptome using HISAT2 with a mapping efficiency of ~30%. 

Unique counts averaged 810,290 ± 165,381 reads sample-1 (mean ± SD; N = 114,250,931 

total reads) representing a total of 29,335 unigenes with at least a single read, or 83.94% 

of the reference. Stringtie2 was used to quantify reads and assemble a count matrix (using 

prepDE.py) for analysis in R v3.5.1 (https://www.r-project.org). 

 

Gene expression analysis  

 Four raw read matrices for each sampling period (days 0, 7, 14, 21; Fig. 1) were 

filtered of genes with <10 counts per million (‘edgeR’ in R) in 50% of samples; these 

parameters account for the variability in reads sample-1 and assume genes unexpressed due 

to the binary initial acclimation period (ambient and moderate pCO2) remain for 

transcriptomic analysis. Pre-filtering resulted in 7.5-8.5×105 reads sample-1 and 8,700 ± 

348 unigenes matrix-1, 72.12 ± 0.004% contained gene name and GO annotation.  

Gene expression in response to stress acclimation and repeated stress encounters 

was analyzed with Weighted Gene Co-expression Network Analysis (WGCNA; ‘WGCNA’ 

in R) to assess expression patterns (Zhang and Horvath, 2005). Considering the full-

factorial experimental design, co-expression network allows an assessment of broad 

expression-level directionality and the influence of compounding treatment history as 

opposed to pairwise differential expression analysis. Each matrix applied a soft threshold 

(scale-free topology r2>0.9), minimum module size of 100, and a ‘signed’ adjacency 

https://paperpile.com/c/6tK7sr/rRrC
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matrix. pCO2 treatments were applied as categorical variables to compute eigenegenes and 

gene ‘modules’, or genes with common expression patterns. Modules were merged based 

on observed similarities within cluster dendrograms and eigengene trees. Significant 

correlations with the treatment variables, or co-expression modules, contained a p-value 

<0.05. Variance-stabilizing transformation (‘varianceStabilizingTransformation’ in R) 

was applied to expression data to visualize gene expression patterns of co-expression 

modules. Enriched 'molecular function’ and ‘biological process’ terms were computed with 

GOseq using Wallenius approximation preceding goSlim to condense significant GO terms 

(p<0.05) into hierarchical GO bins. goSlim applied a filtering criteria of >10 genes for each 

significant ‘biological process’ GO term and >=2 genes for each significant ‘molecular 

function’ GO term. To understand higher-level functional processes of co-expression 

modules, blastx (diamond v.2.0.0) with a P. generosa genome query against a Pacific 

oyster Crassostrea gigas protein database (Zhang et al., 2012) to acquire KEGG Orthology 

(KO) annotation based on sequence relatedness. C.gigas proteins annotated as 

‘uncharacterized protein/family’ were omitted and KOs with the highest bit score (lowest 

e-value) were chosen for each P. generosa gene. The best hits contained 55±18 percent 

identity and 129±111 bitscore and accounted for 87.3% of the P. generosa genes. Enriched 

pathways (adjusted p-value<0.05) were computed using KEGG for C.gigas KOs (‘crg’; 

‘KEGGprofiler’ in R) and online ‘KEGG Mapper’ was used to investigate gene functions 

in enriched pathways. Following analysis using all individuals, a parallel analysis was 

completed for animals under subsequent exposure to elevated pCO2 (ambient pCO2 

omitted) to compare gene-expression patterns affected by subsequent pCO2 stress. 

https://paperpile.com/c/6tK7sr/Cng3
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To complement co-expression analysis and investigate pairwise pCO2 effects, a 

second approach employed differential gene expression (DGE; using Bioconductor 

‘DESeq2’ in R). Each pairwise DGE model applied a false discovery rate threshold of 5% 

(alpha=0.05); in all cases, histograms were observed for the distribution of p-values. 

Differentially expressed genes (DEGs) contained an adjusted p-value <0.05 and log-fold 

change |x| > 0. Pairwise models investigated the effects of acclimation (ambient v. 

moderate), second exposure (ambient v. moderate, ambient v. severe, and moderate v. 

severe) and third exposure (ambient v. moderate) and grouped contrasts to determine 

changes in gene expression due to cumulative treatment history (day 7 and 14: 

primary×second; day 21: primary×second×third). Functional enrichment of DEGs was 

computed with GOseq (p<0.05) preceding goSlim of terms into hierarchical GO bins; a 

less conservative criteria than WGCNA (>= 2 for genes per bin) was applied for function 

functional interpretation of DEGs.  

Raw sequence data is available on NCBI (BioProject: PRJNA740307, Title: 

‘Transcriptome profiles of Panopea generosa under hypercapnic seawater’, Accessions: 

SAMN19838979-SAMN19839120) and analysis is publicly available in an open 

repository (osf: https://osf.io/ydmt5/; github: 

https://github.com/SamGurr/Pgenerosa_TagSeq_Metabolomics). 

  

RESULTS  

Co-expression network analysis overview 

Network analysis resulted in three significant co-expression modules on day 7 

(‘brown’, ‘yellow’, and ‘green’; Fig. 2), four on day 14 (‘brown’, ‘black’, ‘pink’, and 

https://osf.io/ydmt5/
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‘magenta’; Fig. 3), and seven on day 21 (‘blue’, ‘magenta’, ‘yellow’, ‘red’, ‘black’, ‘pink’, 

and ‘turquoise’; Fig. 4); 72 ± 6% of module-associated genes contained gene name and GO 

annotation. Modules on each sampling day were correlated with primary pCO2 treatment 

and represented (1) ambient-effect modules or modules showing higher mean ± SE gene 

expression due to ambient acclimation (day 7 ‘brown’, day 14 ‘brown’ and day 21 ‘blue’ 

and ‘magenta’) and (2) moderate-effect modules or modules showing higher mean ± SE 

gene expression due to moderate pCO2 acclimation (day 7 ‘yellow’, day 14 ‘black’ and day 

21 ‘yellow’; Figs. 2-4). All ambient and moderate-effect modules, except day 21 ‘yellow’, 

were additionally correlated with cumulative pCO2 history (Figs. 2-4). For example, genes 

within day 7 ‘brown’ were abundantly expressed by ambient-acclimated animals 

subsequently exposed to moderate pCO2 exposure (‘AM’, Fig. 2). In contrast, genes within 

day 7 ‘yellow’ were more abundantly expressed by moderate pCO2-acclimated animals 

subsequently exposed to severe pCO2 (‘MS’, Fig. 2). All other significant modules were 

not correlated with primary exposure, but with cumulative treatment interactions (day 7 

and 14: primary×second; day 21: primary×second×third). For example, genes within day 

7 ‘green’ demonstrate a primary×second pCO2 treatment interaction with higher expression 

by naïve clams subsequently exposed to severe pCO2, relative to stress-acclimated clams 

subsequently exposed to moderate pCO2 (AS > MM, Fig. 2). All follow-up analysis 

(functional and pathway enrichment) and data interpretation focused on ambient-effect and 

moderate-effect modules to determine transcriptome profiles underpinning pCO2 

acclimation and divergent phenotypes in Gurr et al. (2021). Network analysis using only 

subsequently exposed animals (ambient treatment omitted) found significant co-expression 

in four modules on day 7, two modules on day 14, and four modules on day 21 (Figs. S1-
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S3). Several of these modules showed similar expression patterns to modules applying all 

samples (e.g. Fig. S1: day 7 ‘turquoise’, ‘blue’, ‘brown’, and ‘greenyellow’; Fig. S2: day 

14 ‘blue’; day 21: ‘blue’) for meaningful expansion of the transcriptome profiles post-

acclimation.  

 

GO analysis of primary-effect modules: persistent functions 

Continuously regulated functions were determined as persistent GO terms and/or 

bins significantly enriched on all sampling days. Ambient-effect modules were 

continuously enriched for the following hierarchical GO bins and associated terms: 

‘transport’ (i.e. intracellular protein transport), ‘lipid binding’ and ‘ion binding’ (i.e. sterol, 

fatty acid, cholesterol, and phosphatidylinositol binding), ‘peptidase activity’ (cysteine and 

serine-type endopeptidase activity), and ‘oxidoreductase activity’ (i.e. glutathione 

peroxidase activity, acyl-CoA oxidase, alcohol dehydrogenase, and carbonyl reductase 

activity; Fig. 5, S4A, and S5). The following genes were largely attributed with ambient-

effect modules: ‘transport’: WASH complex subunits, AP-2 complex subunits, ras-related 

proteins, and sorting nexins; ‘ion binding’: components of fatty-acid metabolism (acyl-

CoA dehydrogenases, peroxisomal acyl-coenzyme A, and fatty-acid binding proteins) and 

sorting nexins; ‘lipid binding’: apolipoprotein D; ‘oxidoreductase activity’: components of 

β-oxidation and fatty acid degradation pathways (e.g. alcohol dehydrogenase, peroxisomal 

acyl-coenzyme A, peroxisomal bifunctional enzyme), glutathione components (e.g. 

glutaredoxin-1, glutathione S-transferase omega-1 and glutathione peroxidases), and 

cytochrome P450; ‘peptidase activity’: cathepsins.  
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Moderate effect modules lacked persistent GO term-level enrichment, but 

hierarchical GO bins were continuously enriched throughout the experiment for ‘ion 

binding’ (e.g. copper and metal ion binding), ‘cellular nitrogen compound metabolic 

process’ (e.g. positive and negative regulation of transcription), ‘methyltransferase 

activity’ (e.g. histone methyltransferase activity), ‘transcription factor binding’ (e.g. 

myogenic regulatory factors and NF-kappa β binding), and ‘RNA binding’ (Fig. 5, S4B 

and S6). The following genes or gene families were largely attributed with moderate-effect 

modules; ‘ion binding’: chromatin modifiers (histone methyltransferases and chromatin-

remodeling ATPase), E3 ubiquitin-protein ligases, ion exchange (e.g. sodium/calcium 

exchanger 3 and sodium/potassium-transporting ATPase), kinases (mitogen-activated 

protein kinases and serine/threonine-protein kinases), and zinc finger proteins; ‘cellular 

nitrogen compound metabolic processes’: transcriptional regulators (e.g. post-translational 

modifications [histone methyltransferases, histone acetyltransferases, chromatin-

remodeling ATPase, and sirtuin 1], transcription factors [e.g. protein max, forkhead box 

protein O, hypoxia-inducible factor 1-alpha, homeobox protein SIX4, AT-rich interactive 

domain-containing protein 4B], zinc finger proteins, and proteasome activity [e.g. 26S and 

E3 ubiquitin-protein ligases]), mRNA export (e.g. nuclear pore complex protein Nup85 

and transcription and mRNA export factor ENY2), and signaling (e.g. NF-kappa β 

activation and innate immune response genes); ‘methyltransferase activity’: histone-lysine-

N-methyltransferases (e.g. EHMT1, NSD2, SETD5, and ASH1L). ‘transcription factor 

binding’: general regulation of transcription (e.g. transcription initiation factor IIA subunit 

1, Krueppel-like factor 5, CCR4-NOT transcription complex subunit 1), alternative 
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splicing (SNW domain-containing protein 1), and histone acetylation (e.g. CREB-binding 

protein and breast carcinoma-amplified sequence 3).  

 

GO analysis of primary-effect modules: transient functions 

 Remaining results of GO analysis demonstrated transient patterns in three 

categorical groups: (1) ‘Stress-induced and recovery’ represents enriched functions on days 

7 or shared between day 7 and 14, (2) ‘recovery and preparatory regulation’ represents 

enriched functions on day 14 or shared between days 14 and 21, and (3) ‘rapidly induced 

under stress exposures’ represents enriched functions on days 7 and 21 (Fig. 5).  

‘Stress-induced and recovery’ represents a response to hypercapnic/low-pH 

seawater and subsequent carry-over during ambient conditions. In this category, ambient-

effect modules were enriched for ‘immune system response’ (neutrophil degranulation) 

and ‘enzyme binding’ (mitogen-activated protein kinase, Rab GTPase, protein kinase, 

RNA polymerase, and ubiquitin-specific protease binding) and moderate-effect modules 

were enriched for ‘signal transduction’ (serine/threonine-protein kinases, mitogen kinase 

signaling, and Wnt signaling), ‘cellular protein modification’ (E3 ubiquitin-protein ligases, 

serine/threonine-protein, mitogen-activated kinases, and kelch-like proteins), and ‘enzyme 

binding’ (Fig. 5, and S4-S6).  

Second, ‘recovery and preparatory regulation’ represents both a depuration of 

hypercapnia/acidosis and putative indication of prepreperatory gene frontloading. 

Ambient-effect modules were enriched for ‘response to stress’ (e.g. blood coagulation) on 

day 14 and ‘lipid metabolic process’ (fatty acid and cholesterol metabolic processes), 

‘catabolic process’ (autophagy and proteolysis), ‘enzyme regulatory activity’ (ATPase and 
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endopeptidase inhibitors and GTPase activator activity) and ‘transmembrane activity’ (i.e. 

proton exporting/transporting ATPase activity) on days 14 and 21 (Fig. 5 and Figs S4A 

and S5). Moderate-effect modules were enriched on day 14 for ‘oxidoreductase activity’ 

(e.g. laccase 1 and 10, putative tyrosinase-like protein tyr-3, ferric-chelate reductase, and 

NADH dehydrogenase activity) and ‘transmembrane transporter activity’ (e.g. 

sodium:bicarbonate symporter and ATP synthase activity) and lacked GO bins unique to 

days 14 and 21 (Figs. S4B and S6). 

Lastly, ‘rapidly induced under stress exposures’ confers a repeated response to 

hypercapnia. Ambient-effect modules lacked representation of this category (Figs. 5, S4A, 

and S5). In contrast, moderate-effect modules involved ‘response to stress’ and ‘immune 

system response’ (e.g. NF-kappa β activation [toll-like receptors 2, 3 and 4, TNF receptor-

associated factor 6, MyD88, B-cell lymphoma 3 protein, and death-associated inhibitor of 

apoptosis 2], E3 ubiquitin ligases [HERC2, rnf168, TRIP12, and XIAP], and antiviral and 

antibacterial activity), ‘cell death’ (e.g. apoptotic and negative regulation of apoptotic 

processes), ‘cell motility’ (e.g. cell migration), ‘cytoskeletal protein binding’ (e.g. actin 

and beta-tubulin binding), ‘enzyme binding/regulatory activity’ (e.g. ubiquitin protein 

ligase, Rab GTPase, and small GTPase binding), and ‘kinase activity’ (e.g. tyrosine-, 

serine/threonine-, and mitogen-activated protein kinases) (Figs. 5, S4B, and S6).  

 

KEGG pathway enrichment of primary-effect modules 

Pathways analysis of ambient-effect modules found persistent enrichment on days 

7, 14, and 21 for fatty-acid degradation (N=11±1) and fatty acid metabolism (N=12±2), 

peroxisome (N=15±3), lysosome (N=23±4), and endocytosis (N=24±8) (Table S2 and Fig. 
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5). The following genes or gene families were continuously attributed with these pathways: 

‘fatty-acid degradation’ and ‘fatty-acid metabolism’: acyl-CoA synthetase, 

dehydrogenases (alcohol, estradiol 17-beta, hydroxyacyl-CoA, medium-/long-chain 

specific acyl-CoA) very-long-chain 3-oxoacyl-CoA reductase, peroxisomal acyl-CoA 

oxidases 1 and 3, and carnitines (e.g. carnitine O-palmitoyltransferase 1 and 2 and carnitine 

O-acetyltransferase); ‘peroxisome’: 2-hydroxyacyl-CoA lyase 1, catalase, D-aspartate 

oxidase, peroxisomal membrane proteins, peroxisomal and acyl-CoA oxidases; 

‘lysosome’: alpha-galactosidase A, AP-1 complex subunit beta 1, cation-independent 

mannose-6-phosphate receptor, clathrin light chain A, cathepsins (B and L1), epididymal 

secretory protein E1, galactocerebrosidase, ganglioside GM2 activator, sialin, and V-type 

proton ATPases’; ‘endocytosis’: actin-related proteins, ras-related proteins (i.e. Rab 8A), 

charged multivesicular body proteins, RUN and FYVE domain-containing protein 2, 

sorting nexins 2, 3 and 6, and vacuolar protein sorting-associated protein 29. Lastly, non-

continuous pathways were significantly enriched for retinol metabolism on day 7 (N=5) 

and carbon metabolism on day 14 (N=17). Furthermore, co-expression modules without 

ambient exposures, day 7 ‘turquoise’ and day 21 ‘blue’, were also enriched for fatty-acid 

degradation (N=7 and 8) and peroxisome (N=12 and 13) (Table S3 and Figs. S1. and S3) 

with few genes expanding those enriched in ambient-effect modules (i.e. peroxisomal 2,4-

dienoyl-CoA reductase and enoyl-CoA hydratase).  

In contrast, moderate-effect modules were transiently enriched for endocytosis 

(N=14) on days 7, several pathways during ambient recovery on day 14 [pentose phosphate 

pathway (N=5) , glycolysis / gluconeogenesis (N=7), carbon metabolism (N=12), 

proteasome (N=6), and biosynthesis of amino acids (N=9)], and mitophagy (N=7) on day 
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21 (Table S2 and Fig. 5). The following examples of genes or gene families were associated 

with enriched pathways: ‘endocytosis’: E3 ubiquitin-protein ligases (CBL-B and WWP1), 

receptor proteins (e.g. TNF, mannose-6-phosphate, G protein) and protein trafficking and 

transport (e.g. ADP-ribosylation factor 4, AP-2 complex subunit, charged multivesicular 

body proteins 2b and 5); ‘pentose phosphate pathway’ and ‘glycolysis / gluconeogenesis’: 

glycolytic enzymes (ATP-dependent 6-phosphofructokinase, glucose-6-phosphate 

isomerase, fructose-bisphosphate aldolase, phosphoglucomutase-1); ‘carbon metabolism’: 

glycolytic enzymes, citrate cycle (malate and isocitrate dehydrogenase), and non-oxidative 

phase of pentose phosphate cycle (transketolase-like protein 2); ‘proteasome’: ATP-

dependent degradation of ubiquitinated proteins (26S proteasome non-ATPase regulatory 

subunits 1, 4, 13, and 14) and proteasome subunit beta type-5; ‘biosynthesis of amino 

acids’: glycolytic enzymes, non-oxidative pentose phosphate cycle, aminotransferases 

(aspartate and alanine, and methionine synthase; ‘mitophagy’: PINK1-Parkin components 

(serine/threonine-protein kinases TBK1 and PINK1), autophagy receptors (optineurin, 

sequestosome-1, tax-1 binding protein 1 homolog B), activation of ras-related rab-7a for 

lysosomal degradation (TBC1 domain family member 15), and forkhead box protein o 

transcription factor. Furthermore, co-expression modules computed without ambient 

exposures resemble expression patterns of moderate-effect modules and were enriched for 

additional functions (Table S3 and Figs. S1-S3). For instance, module day 7 ‘brown’ (Fig. 

S1) shows the same expression pattern to the full moderate-effect module day 7 ‘yellow’ 

(Fig. 2B) with additional pathways enriched for autophagy (N=20), mitophagy (N=9), and 

FoxO signaling (N=11) (Table S3 and Fig. S1C). Enrichment for FoxO pathway included 

mitogen-activated protein kinase signaling (e.g. mitogen-activated protein kinase 1, 
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GTPase HRas,growth factor receptor-bound protein, epidermal growth factor receptor), 

insulin signaling pathway (insulin receptor substrate 1, PTEN, and 3-phosphoinositide-

dependent protein kinase), and cell apoptosis (tumor necrosis factor sf10). Furthermore, 

module ‘pink’ on day 7 (Fig. S1) reflects the gene expression pattern in moderate-effect 

module day 7 ‘black’ (Fig. 2B) and was additionally enriched for ‘oxidative 

phosphorylation’ (N=12; Table S3), involving NADH dehydrogenases, ATPases, and 

cytochrome c oxidase (Table S3).  

 

Differential gene expression  

 DGE on Day 0 totaled 14 DEGs with fewer expressed by stress-acclimated 

individuals (A × M, 3 down regulated genes) relative to naive, ambient exposed, 

individuals (A × M, 11 upregulated genes; Table S4 and Fig. S7). Only four DEGs 

contained gene name and GO annotation and were upregulated for E3 ubiquitin-protein 

ligase rnf213-alpha and helicase with zinc finger domain and downregulated for putative 

isoforms for von Willebrand factor D protein. 

 Subsequent exposures on days 7, 14, and 21 showed greater transcriptional 

variation due to pCO2 acclimation (primary treatment) than second or third pCO2 

treatments (Tables S4 and Fig. S7). Pairwise DE of primary ambient versus moderate pCO2 

acclimation yielded 108 DEGs on day 7 (62 upregulated and 49 downregulated), 429 DEGs 

on day 14 (317 upregulated and 112 downregulated), and 155 DEGs on day 21 (101 

upregulated and 52 downregulated; Table S4). In summary, the majority of main-effect 

DEGs (primary exposure) in this study were upregulated by the naïve phenotype (70%), 

especially in response to ambient recovery (85% of upregulated DEGs; Fig. S7). 
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Upregulated genes were enriched for glutathione components (dehydrogenase, peroxidase, 

and transferase), endopeptidases, lipid metabolism, and transmembrane regulatory activity. 

Functional enrichment of downregulated genes showed common functions for signaling, 

oxidoreductase activity, stress response (transforming growth factor beta binding), and 

metal ion binding (Fig. S7). There were 22 (14 upregulated and 8 downregulated) DEGs 

that occurred on all sampling days with the same directionality, deemed as ‘persistent 

DEGs’ (Fig. S7). Thirteen of the 22 persistent DEGs had putative gene annotation; immune 

system response to bacteria was a common function among persistent DEGs (e.g. mucin-

1, chitotriosidase-1, and defensin; Table S5). Upregulated genes notably differed in their 

functional annotation for lipid and calcium binding, signal transduction, and catabolic 

processes (e.g. apolipoprotein D, regucalcin, neuroendocrine convertase 1). Persistent 

downregulated genes, although fewer, were additionally associated with cobalt transport 

(cobalamin) and protease inhibition (CD109 antigen and BPTI/Kunitz domain-containing 

protein 4-like; Table S5). 

Pairwise DGE models addressing second and third pCO2 yielded minimal 

expression-level differences (0-13 total DEGs), with the exception of the second pCO2 

treatment on day 7 (106 total DEGs: 14 upregulated and 92 downregulated; Table S4). GO 

analysis of downregulated genes found enrichment of cell adhesion, plasminogen 

activation, and endopeptidase activity. Results of cumulative treatment histories on day 7 

(primary×second), found MA v. AM outweighed DE relative to other pairwise models 

(N=16) with 168 total DEGs (31 upregulated and 137 downregulated; Table S6); 

upregulated genes were enriched for actin filament polymerization, cell migration, and 
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cilium assembly and downregulated DEGs were primarily associated with plasminogen 

activation, cell adhesion, and proteolysis. 

 

DISCUSSION 

Postlarval acclimation to hypercapnic seawater affected transcriptome profiles. In 

Gurr et al. (2021), stress-acclimated clams increased somatic growth (tissue biomass and 

shell length) and decreased total antioxidant capacity relative to clams without previous 

exposure to elevated pCO2. In this study, the naïve phenotype showed greater overall gene 

expression (65% of genes in primary-effect modules; >70% DEGs upregulated) suggesting 

that changes in carbonate chemistry increased transcriptional demand. Moreover, abundant 

transcripts in the naïve phenotype involved fatty-acid metabolism and glutathione 

components, highlighting degradation of endogenous fuels, primarily by peroxisome β-

oxidation, as a favored energy source affecting somatic growth. In contrast, the 

transcriptome profile was fine-tuned for cellular homeostasis (e.g. cellular quality control, 

immune defense, and energy metabolism) and under putative control of transcriptional 

modifiers (e.g. histone methyltransferases and transcription factors) in the stress-

acclimated phenotype. Altogether, this study corroborates physiological traits of emergent 

phenotypes (Gurr et al. 2021), to propose molecular mechanisms underpinning beneficial 

developmental acclimation and stress resilience. 

 

Naïve profile: Endogenous lipids supply high transcriptional demand 

A growing body of research suggests that environmental stress, such as low pH, 

increases energy partitioning toward protein biosynthesis (Langenbuch and Pörtner, 2002; 

https://paperpile.com/c/6tK7sr/ZGkc+mThK
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Pan et al., 2015), conferring costs for somatic growth and storage retention (Stumpp et al., 

2011; Sokolova, 2013). In agreement, the main difference between transcriptome profiles 

was a higher transcriptional load by the naïve phenotype attributed with fatty-acid 

degradation and glutathione components (Figs. 5-6 and S7). Persistent gene enrichment for 

peroxisome activity (β-oxidation), acetyltransferase to mitochondria, and bioremediation 

of free radicals illustrates elevated use of endogenous metabolic fuel to satisfy broad 

transcriptional demand. Mobilization of endogenous reserves, primarily lipids, is essential 

to meet energetic requirements of early development (Waldbusser et al. 2003; Liu et al. 

2020), but also plays a vital role in rapid provisions during stress exposure (Sokolova et 

al., 2012; Teng et al. 2015; Ivanina et al. 2013). In marine calcifiers, exposure to elevated 

pCO2 causes shell malformations and delayed settlement competency coupled with lipid 

loss and altered fatty-acid metabolism (Timmins-Schiffman et al., 2014; Talmage and 

Gobler, 2010; Dickinson et al., 2012; Liu et al., 2020). For instance, elevated pCO2 affects 

shell biomineralization and fatty-acid metabolism in the pearl oyster Pinctada fucata (Li 

et al., 2016a, 2016b) and reorganizes the lipid profile in purple-hinge rock scallop 

Crassadoma gigantea (Alma et al., 2020). Furthermore, upregulation of long-chain 

specific acyl-CoA dehydrogenase in the coral Acropora millepora and barnacle Balanus 

amphitrite (Wong et al., 2011; Kaniewska et al., 2012) and peroxiredoxins and carnitine 

O-acetyltransferase in larval oysters Crassostrea virginica and Crassostrea hongkongensis 

(Tomanek et al., 2011; Dineshram et al., 2015), highlights the importance of lipid 

degradation and peroxisome activity under elevated pCO2. Pediveliger oysters Crassostrea 

hongkongensis demonstrate differential methylation of genes (exon regions) associated 

with fatty-acid metabolism (hypomethylated) and carbohydrate metabolism 
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(hypermethylated) under OA stress, suggesting that methylation patterns may drive this 

shift for lipid oxidation. In contrast, elevated pCO2 may not affect fatty-acid metabolism 

(Matson et al., 2012; Timmins-Schiffman et al., 2014) or may interact with multiple 

stressors on lipid use (e.g. dietary restriction; (Gibbs et al., 2021), testament to an array of 

contingencies affecting metabolic shifts (e.g. species, timing, stress type(s) and intensity). 

Analysis of the lipidome (totality of lipids in an organism) can expand upon the importance 

of lipid metabolism on physiological success (Laudicella et al., 2020) and expanded efforts 

should consider the tissue-specificity of proteomic and gene expression patterns (Elowitz, 

2002; Wei et al., 2015), requiring fine-scale sampling in contrast to whole-tissue 

homogenates sequenced herein. Altogether, the transcriptome profile of naïve P. generosa 

suggests that fatty-acid degradation may ensure short-term survival and satisfy 

compensatory transcriptional requirements during hypercapnia; however depletion of 

endogenous storages confers an unsustainable mismatch between energy demand and 

supply if hypercapnic conditions exacerbated or persisted (i.e. ‘pessimum’ range; Sokolova 

et al., 2012; Sokolova, 2021), suggesting that the adaptive environmental range of P. 

generosa is conditional upon early-life experience. Beyond the scope of this study, 

standing and cryptic genetic variation may underlie heritable plasticity to environmental 

change (Paaby and Rockman, 2014). For example, normal development of the purple sea 

urchin Strongylocentrotus purpuratus under elevated pCO2 may be attributed to allele 

variation in genes for lipid metabolism (Pespeni et al., 2013). Future studies should further 

examine transcriptome profiles and genome markers affecting selection. 

Pre-preparatory upregulation, or gene frontloading, is an adaptive mechanism to 

cope with unpredictable and dynamic environments, however this response typically 
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concerns divergent populations (Dong et al., 2008; Barshis et al., 2013; Shiel et al., 2017). 

This study highlighted a ‘cryptic release’ of expression-level variation upon environmental 

change, suggesting that transcriptional plasticity can be rapidly induced during early 

development. In particular, a greater magnitude of gene expression and variation between 

stress histories occurred during ambient recovery (Fig. S4 and Table S4). Similarly, 

mussels Mytilus galloprovincialis submitted to episodic stress increase transcription during 

stress depuration (Détrée and Gallardo-Escárate, 2018). Considering that deployed pCO2 

levels mimicked the natural habitat of P. generosa (Feely et al., 2010; Reum et al., 2014), 

expanded research should investigate adaptive responses during intermittent encounters. 

Moreover, the short timescale of this experiment relative to the lifespan of P. generosa (up 

to 168 years; Dominique Bureau et al., 2002) constrains adaptive or maladaptive 

implications of increased transcriptional demand, as slower growers may supersede 

compensatory responses (Gurr et al. 2020).  

 

Stress-acclimated profile: Fine-tuned and responsive to episodic hypercapnia 

Stress-acclimated P. generosa expressed a muted transcriptome profile relative to 

naïve geoducks, albeit fine-tuned to regulate cellular quality control and homeostasis (Figs. 

5-6 and S7). A general decrease in transcription may be attributed with adaptive benefits 

under environmental stress (Bultelle et al., 2021). For instance, mussels Mytilus 

californianus decrease gene expression when acclimated to dynamic thermal stress as 

opposed to acute isothermal conditions, highlighting a lower transcriptional demand during 

episodic exposures (Connor and Gracey, 2020). Environmental history can have positive 

carryover effects (Ross et al., 2016), especially when the current condition matches the 
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perceived cue (Burggren, 2015; Zhao et al., 2018). Stress-acclimated P. generosa showed 

distinct pH-responsive signatures when faced with subsequent matches stress, heightening 

expression in cellular quality control, signaling, protein modifications, and stress and 

immune system responses (Figs. 5, S4B, and S6). Hypercapnia/acidosis affects 

mitochondrial integrity and can enhance free radical production (Miwa and Brand, 2003; 

Lambert and Brand, 2004; Tomanek et al., 2011), therefore removal of damaged 

mitochondria, or mitophagy, may regulate cellular homeostasis during repeated stress. For 

example, offspring Sydney rock oysters Saccostrea glomerata of pCO2-conditioned 

broodstock upregulate PINK1 during hypercapnia (Goncalves et al., 2017), an essential 

kinase of the PINK1-Parkin pathway for efficient clearance of mitochondria (Wu et al., 

2015). In this study, stress-acclimated P. generosa exhibited mitophagy during second and 

third exposures to elevated pCO2 (Figs. 5 and S3 and Tables S2-S3), involving PINK1 

protein kinase (Vives-Bauza et al., 2010; Wu et al., 2015), autophagy receptors (optineurin, 

sequestosome 1, tax1-binding protein 1; Moore and Holzbaur, 2016), amplification of 

autophagy signaling (TBK1; Manford and Rape, 2015), and regulation of autophagosomes 

(TBC1D15; Yamano et al., 2014). Stress-acclimated P. generosa also expressed genes 

essential for protein turnover, 26S proteasome, E3 ubiquitinases, and caspase; (Voges et 

al., 1999; Goldberg, 2003), that are otherwise unaffected by low pH in other bivalve 

species (Crassostrea virginica and Mercenaria mercenaria; Götze et al., 2014) likely due 

to energy-limitations of environmental stress (Ivanina et al., 2016). Since stress-acclimated 

P. generosa grew larger than naïve clams (Gurr et al., 2021), early-life priming may render 

hypercapnic seawater less energetically-limiting to express these transcriptome signatures.  
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Signaling was also a core component of pH-responsive patterns, as stress-

acclimated P. generosa expressed genes that activate NF-kappa β (Fig. 5 and S6; e.g. 

mitogen-activated protein kinase, toll-like receptors 2, 3 and 4, TNF receptor-associated 

factor 6, MyD88, B-cell lymphoma 3 protein, and death-associated inhibitor of apoptosis 

2), a transcription factor involved in immune deficiency signaling cascade in defense of 

pathogens (Leulier et al., 2006), and the FoxO signaling pathway (Fig. S1C). A growing 

body of research highlights the general importance of NF-kappa β in the innate immune 

response in bivalves (Li et al., 2015; Huang et al., 2021) and elevated pCO2 can have 

synergistic and antagonistic effects on immunomodulation (Castillo et al., 2017; Cao et al., 

2018). For example, upregulated expression of NF-kappa β in the mussel Mytilus coruscus 

may improve immune defenses compensatory for weakened shell strength under low pH 

(Zhao et al., 2020). Moreover, the blood clam Tegillarca granosa downregulates NF-kappa 

β activity during hypercapnia, rendering greater susceptibility to disease (Liu et al., 2016). 

After an initial stress encounter, Mytilus galloprovincialis reduces transcription of 

immune-related proteins, however insufficient to counteract decreased growth (Détrée and 

Gallardo-Escárate, 2018). Altogether, early-life experience heightened critical signaling 

and immune-related proteins potentially enhancing resilience to subsequent hypercapnia in 

the acclimated phenotype.  

Stress-acclimated P. generosa showed pre-emptive signatures during stress 

depuration for enhanced energy metabolism (glycolysis and oxidative phosphorylation) 

and biosynthesis (pentose phosphate pathway) (Figs. 5, S2C, and S5). Stimulation of the 

electron transport chain increases energy production under low-pH conditions (Evans et 

al., 2017), however altered expression of mitochondrial complexes may also confer 
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metabolic suppression (Murphy, 2009). For example, geoduck P. globosa, Pacific oyster 

C. gigas, and eastern oyster C. virginica upregulate NADH dehydrogenase suggesting an 

increase ATP production (Chapman et al., 2011; Wei et al., 2015; López-Landavery et al., 

2021), whereas oysters C. gigas and C. hongkongensis downregulate cytochrome c oxidase 

and ATP synthase suggesting metabolic suppression (Dineshram et al., 2012, 2013). 

Increased expression of complexes 1, IV, and V (NADH dehydrogenase, cytochrome c 

oxidase, and ATPase) suggests an opportunistic increase in energy production by stress-

acclimated P. generosa under optimal conditions. Moreover, enrichment for glycolysis and 

the non-oxidative pentose phosphate pathway suggests the stress-acclimated geoducks also 

favored carbohydrate metabolism and nucleotide biosynthesis during stress depuration. GO 

term enrichment during ambient recovery also included iron binding proteins and 

phenoloxidases (‘oxidoreductase activity’ in Fig S6). Expression of ferric-chelate 

reductase may improve iron homeostasis and prevent excess iron-induced toxicity (Li et 

al., 2019), converting ferric iron to an ‘active’ electron-donor state (ferrous iron) required 

for biological processes (Connolly et al., 2003). Since antioxidants were not abundant, 

excess iron-induced toxicity (Fenton reaction enhancing free radicals) was likely negligible 

for stress-acclimated geoducks. In contrast, stressed mud snails Littorea littoriea 

upregulate antioxidants and ferritin (English and Storey 2003), a ferroxidase essential for 

storing iron, suggesting taxa-specific flux of iron constituents during stress. Lastly, laccase 

and tyrosinase are phenoloxidases of growing interest as biomarkers of immune response 

and detoxification (Luna-Acosta et al., 2017) and were expressed during the ambient 

recovery period by stress-acclimated geoducks. Future study is needed to determine the 
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role of divergent transcriptome profiles during episodic acidosis and stress depuration in 

marine invertebrates. 

 

Transcriptional control suggests ‘memory’ post-acclimation 

Understanding how the environment triggers biological responses that lead to gene 

expression regulation and thus environmental ‘memory’ is key, however potentially 

transient and interdependent molecular mechanisms affecting phenotype remain poorly 

understood (Adrian-Kalchhauser et al. 2020). Growing evidence suggests that modulation 

of post-translational and non-genetic markers may affect gene expression in marine taxa 

(e.g. oysters, coral, and fish; Gavery and Roberts, 2013; Putnam et al., 2016; Ryu et al., 

2018) and participate in phenotypic acclimatization to novel changes (Liew et al., 2018; 

Eirin-Lopez and Putnam, 2019). Stress ‘memory’, or stored information from initial stress 

enhancing robustness to future encounters, is a largely plant-based phenomenon (Bruce et 

al., 2007) with growing support in invertebrate models. Molecular mechanisms 

underpinning memory may manifest as modulated non-genetic markers, transcription 

factors, and key signaling metabolites with cascading implications for performance. For 

example, sustained expression of the transcription factor Nrf2 co-occurs with improved 

antioxidant defense systems in cold-primed tunicates Ciona robusta (Li et al., 2020). In 

this study, hypercapnia-primed P. generosa expressed histone methyltransferases (HMTs) 

at a higher abundance than animals without priming (Fig. 5 and S6). Each abundant HMT 

(SETD5, ASH1L, and NSD2) affected histone H3 tri/dimethylateion of lysine residue 36 

(H3K36me3 and H3K36me2; An et al., 2011; Greer and Shi, 2012), a chromatin-carrying 

marker affecting recruitment of gene-body DNA methylation (Dhayalan et al., 2010; Nanty 
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et al., 2011), alternative splicing (de Almeida et al., 2011), and co-participating in histone 

acetylation (Osipovich et al., 2016). Akin to larval oysters Crassostrea honkongensis, 

upregulated HMTs may fine-tuned transcription, controlling normal development under 

low pH (Dineshram et al., 2015). Thus, sustained/accumulated HMTs may regulate DNA 

accessibility for transcription and contribute to the emergent phenotype in stress-

acclimated geoducks (Fig. 6), consistent with the well-established role of histone 

modifications in stress ‘memory’ and improved performance (Mozgova et al., 2019).  

Genome-wide epigenetic and post-translational modifications can mediate 

phenotypic variation (Liew et al., 2020; Putnam et al., 2016; Anastasiadi et al., 2017) and 

fine-tune transcription (Liew et al., 2018), although in some cases this mechanism can be 

subtle (Downey-Wall et al., 2021). P. generosa with a history of low pH exposure have 

demonstrated epigenetic signatures of differentially methylated genes linked to a beneficial 

phenotype of compensatory growth and resilience when challenged with low pH again, in 

comparison to more sensitive clams exposed to low pH for the first time (Putnam et al. 

2017). As an expansion of this finding, expression of HMTs may control accessibility of 

DNA with cascading effects on essential biological processes (e.g. signal transduction, cell 

proliferation, growth, and cell death; Greer and Shi, 2012). Moreover, pediveliger larvae 

Crassostrea hongkongensis exposed to OA stress increase hypomethylation of genes 

related to lipid metabolism in contrast to hypermethylated of NADH dehydrogenase and 

ATP synthases, suggesting that lipids oxidation is an alternative or compensatory energy 

source to cope with hypercapnia (Lim et al. 2021). Further research is needed to elucidate 

molecular mechanisms underpinning rapid gene-expression regulation under OA stress. 

Moreover, standing genetic variation, such as cryptic genetic variation, may be contingent 
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on environmental change (i.e. environment-to-genotype; Paaby and Rockman, 2014), as 

evidenced from sufficient genetic variation in the Mediterranean mussel Mytilus 

galloprovincialis for adaptive directional selection under low pH (Bitter et al., 2019). 

Expanded efforts require long-term tracking and interdisciplinary approaches (multi -

omics) to understand how plasticity affects species and populations with different 

susceptibilities (Fox et al., 2019).  

 

‘Anticipatory training’ to improve hatchery-propagated seed 

Transcriptome-to-phenome results in this study highlighted a fine-tuned response 

to low pH encounters post-acclimation (Fig. 6). We propose ‘anticipatory training’ as an 

approach for aquaculture enhancement, applying core concepts of developmental 

acclimatization (e.g. early-life programming ‘windows’; Fawcett and Frankenhuis, 2015) 

and mild stress-priming (i.e. conditioning hormesis and oxidative-stress hypothesis; 

Calabrese et al., 2007; Costantini, 2014) to minimize the negative effects of domestication 

selection and increase resilience in hatchery-propagated seed. Aquaculture is projected to 

surpass wild capture to satisfy global seafood demand (FAO 2020); therefore the 

irreversible nature of global acidification and rapid changes in coastal and benthic zones 

(Gruber et al., 2012) require societal actions (e.g. policies and public awareness; Kelly et 

al., 2011) and novel strategies for improvement of food security (Nascimento‐Schulze et 

al., 2021). Domestication selection is an issue for hatcheries, in which standardized 

conditions ensure survival (e.g. abiotic variables, ration, stock density; Marshall et al., 

2014), but artificially propagate seedstocks unprepared for dynamic environments over 

long in-situ growth periods (Nascimento‐Schulze et al., 2021). Alternatively, moderate 
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stress challenges may elicit molecular foresight to cope with environmental change. Marine 

invertebrates present a rapid buffering capacity in response to the external environment, 

evidenced by improved performance due to multi-generational (Parker et al., 2012; 

Suckling et al., 2014; Goncalves et al., 2016; Thomsen et al., 2017; Kong et al., 2019) and 

intragenerational carryover effects (Parker et al., 2015; Gurr et al., 2020), potentially 

driven by adaptive genetic and non-genetic markers (e.g. differential methylation, 

chromatin state, and standing genetic variation; Bitter et al., 2019; Eirin-Lopez and 

Putnam, 2019). Transcriptome profiling, as showcased in this study (Fig 6), can expand 

genomic resources in aquaculture by identifying genes or gene-expression patterns 

associated with stress-resilient or fast-growing economic traits (Chandhini and Kumar, 

2019). 

 

CONCLUSION 

In this study, we investigated the transcriptome profiles of juvenile geoduck post-

acclimation and under episodic stress to understand molecular underpinnings of emergent 

physiological benefits in Gurr et al. (2021). In absence of moderate pCO2 priming, 

transcriptome profiles showed an enhanced energetic requirement for transcriptional 

loading, fueled by persistent fatty-acid metabolism. In contrast, moderate stress history 

conferred gene-expression control, such that stress-acclimated P. generosa fine-tuned 

transcription during subsequent pH changes. Altogether, this study demonstrates the 

importance of gene-expression regulation on positive developmental acclimatization, and 

further study is required to disentangle the roles of genetic and non-genetic drivers across 

long-term and multi-generational timescales. 
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Figure 1. Experimental design for whole tissue sampling. 

 

 

 

 



84 
 

 
 

Figure 2. WGCNA results for samples on day 7 of the experiment. 
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Figure 3. WGCNA results for samples on day 14 of the experiment. 
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Figure 4. WGCNA results for samples on day 21 of the experiment.  
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Figure 5. GO and pathway enrichment analysis of ambient-effect modules (naive) and 

moderate-effect modules (acclimated). 
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Figure 6. Summary of transcriptome profiles of stress-acclimated and naïve juvenile geoducks 

under episodic hypercapnia. Transcriptome-to-phenome mechanisms are proposed, synthesizing 

gene function and pathway enrichment patterns and the emergent physiological phenotype from 

Gurr et al. (2021) (asterisks, total antioxidant capacity ‘TAOC’; Gurr et al. 2021).  
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Supplementary Table. S1. Seawater carbonate chemistry. 

Review Table 1 in Chapter 2 - sample table applied here 
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Supplementary Table. S2. Results of KEGG pathway enrichment analysis (using 

‘KEGGprofile’ in R) of full-treatment WGCNA modules. 
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Supplementary Table. S3. Results of KEGG pathway enrichment analysis (using 

‘KEGGprofile’ in R) of significant WGCNA modules computed for only samples 

subsequently exposed under elevated pCO2 treatments.  
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Supplementary Table. S4. Count and directionality of differentially expressed genes 

from each main pairwise treatment model.  
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Supplementary Table. S5. Persistent DEGs 
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Supplementary Table. S6. Count and directionality of differentially expressed genes for 

all pairwise interactions on day 7. 
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Supplementary Table. S7. Count and directionality of differentially expressed genes for 

all pairwise interactions on day 14. 
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Supplementary Table. S8. Count and directionality of differentially expressed genes for 

all pairwise interactions on day 21. 
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Supplementary Fig. S1. Day 7 WGCNA analysis for samples exposed to elevated pCO2 

during subsequent challenges (without ambient treatment). 
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Supplementary Fig. S2. Day 14 WGCNA analysis for samples exposed to elevated 

pCO2 during subsequent challenges (without ambient treatment). 
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Supplementary Fig. S3. Day 21 WGCNA analysis for samples exposed to elevated 

pCO2 during subsequent challenges (without ambient treatment). 
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Supplementary Fig. S4. Enriched ‘biological process’ GO terms and corresponding 

hierarchical GO bins (from ;GOslim’) of significant co-expression modules 
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Supplementary Fig. S5. Enriched ‘molecular function’ GO terms and corresponding 

hierarchical GO bins (‘GOslim’) of significant ambient-effect modules. 
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Supplementary Fig. S6. Enriched ‘molecular function’ GO terms and corresponding 

hierarchical GO bins (‘GOslim’) of significant moderate-effect modules. 
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Supplementary Fig. S7. Effect of primary ambient versus moderate pCO2 acclimation 

on DGE.  
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Supplementary Fig. S8. GO enrichment analysis of day 7 (A) and day 14 (B) WGCNA 

data showing gene counts for each significant co-expression module. 
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Supplementary Fig. S9. GO enrichment analysis of day 21 WGCNA data showing gene 

counts for each significant co-expression module. 
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Appendices  

A. Introduction and review of the problem  

Expansion and enhancement of sustainable shellfish production is necessary to prevent 

overexploitation of wild stock (Campbell et al. 1998; Shumway et al. 2003; Orensanz et al. 

2004; Zhang and Hand 2006) and satisfy international trade (FAO, 2018), but hatchery 

rearing poses a critical production bottleneck due partially to environmental stressors such 

as OA (Barton et al. 2015). OA, or the decrease of ocean pH and aragonite saturation state 

(Ωaragonite) due to elevated atmospheric partial pressures (pCO2), poses a global threat with 

magnified intensity in productive coastal marine systems (Cai et al., 2011). OA is known 

to cause acidosis, extra- and intracellular hypercapnia, and oxidative stress particularly for 

marine calcifiers (Burnett, 1997; Tomanek et al., 2011; Tomanek, 2014). These challenges 

elicit broad downstream consequences for assimilation (i.e. aerobic metabolism, 

calcification, somatic growth, and storage retention; Pörtner et al., 2004; Michaelidis et al., 

2005; Shirayama, 2005; Talmage and Gobler, 2010; Waldbusser et al., 2010, 2015; Gazeau 

et al., 2013), acid/base regulation (Portner and Farrell 2008), and energy-consuming 

processes (i.e. protein synthesis; Lannig et al., 2010; Dickinson et al., 2012; Mukherjee et 

al., 2013; Wei et al., 2015; Goncalves et al., 2016).  Thus, OA is a major concern for 

bivalve aquaculture (Waldbusser et al. 2015; Barton et al. 2015), demanding effective 

strategies to elicit adaptive resistance or resilience (Adelsman and Binder 2012; Barton et 

al. 2015).  

Known as the “Pacific Northwest Seedstock Crisis” aragonite undersaturation 

and/or elevated pCO2 can impair early stages of fertilization, larval development, and 

metamorphosis of bivalves (Kurihara, 2008; Kroeker et al., 2013) and is responsible for 
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production declines and documented mass-mortalities within hatcheries in the Pacific coast 

of North America (Barton et al., 2012, 2015). Pacific geoduck (Panopea generosa) are 

long-lived hiatellid clams of ecological importance (Dethier 2006) and a major contributor 

to both the total infaunal biomass of Puget Sound (Goodwin and Pease 1989) and annual 

shellfish revenue of Washington state (Shamshak and King, 2015). Geoduck production in 

Washington provides ~90% of global supply (Shamshak and King, 2015) and alone 

constitutes 27% of the overall shellfish revenue in the state valued at >$24 million yr-1 and 

>$14 pound-1 as of 2015 (Grant, 2015). Current knowledge of P. generosa is largely 

foundational (e.g. life history, distribution, wild/farm aquaculture requirements, 

growth/aging; Goodwin and Pease 1989; Bureau et al. 2012; Calderon-Aguilera et al., 

2010; Vadopalas et al., 2010; Marshall et al., 2012, 2014; Mcdonald et al., 2015) with 

sparse laboratory experimentation (Tapia-Morales et al., 2015; Nava-Gómez et al., 2018) 

and only recent inquiries on stress response (Putnam et al., 2017; Juárez et al., 2018; Huo 

et al., 2019; Spencer et al., 2019; Timmins-Schiffman et al., 2019), relative to other 

bivalves prominent in commercial industry (reviewed in Gazeau et al., 2013; e.g. oysters, 

scallops, hard-shell clams, and mussels). Given that stress conditions exacerbated by 

anthropogenic activity are projected to intensify in the near-future (Feely et al., 2009), 

long-lived molluscs, such as P. generosa (known lifespan up to 168 years; Bureau et al., 

2002), may rely on intragenerational acclimation under rapid environmental change. 

Recent findings describe the potential for acute pCO2 to elicit compensatory growth and 

establishment of epigenetic markers in P. generosa (Putnam et al., 2017). However, 

evidence of a negative effect during larval development suggests OA responses are 
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contingent on life-stage and stress intensity (Huo et al., 2019; Timmins-Schiffman et al., 

2019). 

B. Limitations, speculative discussion, and theoretical implications 

It is essential to admit the limitations that exist in this dissertation to sustain scientific 

transparency and rigor and guide expanded efforts. First, the timing and duration of 

hypercapnia exposures and ambient recovery periods was based on limited evidence, 

commonly estimated from ionregulatory activity (e.g. bicarbonate levels; Pörtner 2004). 

Whereas marine animals (invertebrates and fish) can reestablish acid-base homeostasis and 

foraging behavior 24-48h after exposure to acidified seawater (Holeton et al. 1983; Spicer 

et al. 2007; Leung et al. 2015), compromised acid-base status can persist >8 days after 

exposure in aquatic molluscs (Pynnönen 1994). Thus, we considered stress periods in the 

span of days (e.g. 6-14 days) as sufficient to modify subcellular status and infer a stressed 

and basal state during exposure to elevated pCO2 and ambient seawater, respectively. 

Respiration rates of juvenile P. generosa in Chapter 1 showed metabolic suppression 

continued after the 14-day recovery period (day 0 of second exposure), suggesting this 

duration was insufficient to amend aerobic metabolism to rates prior to exposure. In 

contrast, gene expression from Chapter 3 found a putative increase in energy metabolism 

(expression of mitochondrial complexes) by low-pH acclimated clams during 7-days of 

ambient recovery, as opposed to continued expression for fatty-acid degradation by clams 

naive to low pH. Altogether, future research is needed to disentangle the effects of episodic 

stress, as evidence from this dissertation suggests acclimation preceding episodic 

exposures can improve responsiveness and may decrease the time required to recover from 

stress. Second, physiological measurements in Chapter 1 were pseudo-replicated. 
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Sacrificial pseudoreplication occurs when the same individuals within each experimental 

unit are measured repeatedly through time and are addressed statistically as independent 

units (Hurlbert 1984). An additional caveat to this experiment was the random interspersion 

of experimental units (trays) constrained by gravity-fed seawater perpendicular to mixing 

tanks. An alternative to this design in Chapters 2 and 3 employed random interspersion, 

destructive sampling (data collection preceded removal of those animals from the 

experiment), and true biological replication (N=6).  

Our production-oriented message and methodologies provide a foundation for 

future tests on the industry scale. Aquaculture facilities run autonomous flow-through 

systems with high larval densities and avoid semi-continuous and non-autonomous systems 

subject to human error and profit loss. Cornwall and Hurd (2016) propose five approaches 

to avoid pseudoreplication in OA research, but only one design uses semi-autonomous and 

flow-through seawater. This method uses a three-step system: (1) one seawater storage tank 

(2) one CO2 mixing tank (3) and header tanks for each culture tank (Fig 3b in Cornwall 

and Hurd 2016). I propose the following method to attempt stress-conditioning using 

raceway tanks (long and shallow tanks with sediment) and repurposed larval-rearing 

conicals. Raceways are growing in popularity to rear geoducks post-settlement (pediveliger 

larvae to juvenile seed) and are indicative of the seasonal transition when larvae reared 

over winter months have reached settlement competency, leaving larval-rearing conicals 

unused. Repurposing these conicals as pCO2 mixing tanks can condition seawater at no 

additional spatial or material cost for the hatchery. pCO2-conditioned seawater can be fed 

to header tanks positioned above raceways where algae feed is mixed before gravity-fed. 



110 
 

Similar to experiments in this dissertation, this approach strives for autonomous control 

and feasibility under the constraints of a small-business hatchery. 

Common improvement methods in bivalve aquaculture include seawater and ration 

control, culling, and selective breeding. Domestication selection is an understudied 

problem in which environmental control ensures larval survival, but artificially propagates 

animals with high sensitivity to in-situ conditions. Long-term out growth from seed to 

harvest (5-7 years) presents a high likelihood for domestication selection to affect geoduck 

aquaculture. ‘Anticipatory training’ (as discussed in Chapter 3) proposes an alternative and 

more naturalistic perspective, applying stress exposures that reflect species’ natural habitat 

and developmental timing. In synthesis of chapters 2 and 3, geoducks acclimated under 

hypercapnic seawater increased tissue biomass and shell size and fine-tuned gene 

expression during subsequent stress exposures suggesting a moderate dose of stress can 

trigger robust phenotypes. In contrast, naive animals under OA grew slower and gene 

expression patterns indicated catabolism of endogenous storages (fatty-acid degradation) 

and high transcriptional demand. Distinct divergences between the naive and acclimated 

phenotypes highlight putative benefits of early-life stress, but the long-term implications 

of ‘anticipatory training’ remain speculative. Carryover effects beyond the hatchery period 

are only represented in chapter 1; despite the caveats of this chapter (described above), we 

found negative effects of pCO2 stress preceded compensatory shell growth and metabolism 

in ~10-month geoducks. Future research is needed to test the long-term effects of stress 

conditioning and determine whether beneficial outcomes of ‘anticipatory training’ can 

offset the costs to integrate CO2-control systems in hatchery rearing. 
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