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ABSTRACT 

 

Electric Vehicles (EV) sales are experiencing an increasing trend in many 

industrialized countries [1, 2]. Globally, at the end of 2017, there was an annual increase 

of one million EVs on the road, totaling to three million EVs on the road [3]. However, 

despite recent developments and the high potential of Battery Electric Vehicles (BEVs), 

the market penetration rate of EVs is still very low due to discrepancies between 

consumer expectations and knowledge, the limited range and long charging times [4, 

5]. Recent research demonstrated that there is a significant difference in energy 

consumption of BEVs between aggressive and non-aggressive driving. This research 

additionally, provide evidence that the concept of eco-driving for Internal Combustion 

Engines (ICE) vehicles works well for describing energy efficient Driving Behavior 

(DB) for BEVs [6].  

The goal of this research was to confirm the energy consumption clusters found in 

the literature, as well as to confirm and expand the clustering methodology executed 

for determining these clusters. The original literature executed a hierarchical clustering 

technique utilizing Ward’s algorithm. In addition to verifying the hierarchical clusters, 

Latent Profile Analysis (LPA), a form of model-based clustering, is then introduced as 

the new clustering approach to explore alternative clusters through a more diverse 

clustering approach.  

Based on the fact that Dataset 1 (from previous research) and Dataset 2 (from this 

body of work) were found to be statistically similar, they get merged into a more 

comprehensive dataset. This research confirmed the two energy consumption clusters 



 

 

(i.e., efficient and inefficient drivers) found in previous research with Dataset 1 using 

Ward’s method. Given the fact that the clusters were very similar for both Ward’s 

method and LPA for Dataset 1, these results strongly affirm these previous results 

regardless of the methodological clustering approach. Clustering Dataset 2 with 

Ward’s method resulted in three energy consumption clusters as well, providing proof 

that at least three clusters are significant. LPA for Dataset 2 revealed similar clusters 

providing evidence that Ward’s method and LPA find similar cluster when the sample 

size within the clusters is sufficient large.  

For the Combined Dataset, excluding the outlier driver 34.1, with a sample size 

exceeding 50 participants, Ward’s method results in three significant clusters. This 

strengthens the argument that DB with respect to energy consumption can be clustered 

into at least three clusters. Expanding the cluster analysis by LPA provides a four and 

five component model with each equally shaped clusters, grouping drivers in 

accordance to what is known in the literature about the influence of DB on energy 

consumption.  

This research provides a better understanding of how BEV drivers need to be 

clustered based on their mean energy consumption per mile and standard deviation. It 

provides strong evidence that the assumption from previous research, that at least 3 

clusters are relevant when analyzing driving behavior with respect to energy 

consumption, is true. Additionally, further clusters are found on a more 

comprehensive dataset which go along with the perception of literature that 

acceleration and speed are main factors for explaining energy consumption of BEV 

driving behavior.  
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CHAPTER 1 - INTRODUCTION 

 

1.1 Background 

 

Electric Vehicles (EV) sales show an increasing trend in many industrialized 

countries [1, 2]. China had a tremendous increase in EV sales and their annual sales 

volume increased by almost 7 times from 2014 to 2016 [7]. European countries show a 

similar trend in the number of EV sales which have increased by almost 200 percent 

form around 50,000 EVs in 2013 to around 150,000 EVs in 2015 [8]. Belgium alone 

has almost increased their EV sales 7-fold from 919 in 2013 to 6552 in 2017 and 

Sweden doubled their EV sales from 2014 to 2017 to almost 70,000 [9, 10]. The 

United States (US), have significantly increased their EV sales per year from around 

50,000 in 2012 by 200 percent to 150,000 in 2016 and by more than 30 percent up to 

200,000 in 2017 [11, 12]. For the US in 2018, this trend is predicted to be continued 

with an even stronger increase up to around 400,000 EV sales by the end of the year 

[11]. Overall, at the end of 2017, there was an annual increase of one million EVs on 

the road, totally to three million EVs on the road globally [3]. 

These rapid development in EV demand is provoked by socio-economic changes 

of increased urbanization, financial incentives, and political engagement for stricter 

environmental regulations [13], which spurred a redesign of transportation systems 

towards high-quality services for the customer with an minimal environmental 

footprint [14]. In that context electrification and on-demand services are two main 

driving forces within the current global automotive sector to meet this challenges [15]. 

Plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) can 
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contribute to significantly decreasing road traffic emissions and BEVs specifically can 

help to maintain zero local emissions [14, 16]. However, despite recent developments 

and the high potential of BEVs, the market penetration rate of EVs is still very low 

which is due to the discrepancies between consumer expectations and the limited 

range and long charging times [4, 5]. 

To address those issues EV manufacturers and service providers are working on 

increasing range limits and decreasing charging times. There is continuous research 

that focuses on improving the battery capacity [17], designing gearing configurations 

for better efficiency [18], or applying regenerative braking systems (RBS) [19]. Apart 

from these technical improvements on the EV itself, a lot of effort is put into 

optimization of charging infrastructure [20] and in energy efficient route planning 

[21]. Optimizing these factors and extending the overall range of EVs makes an 

analysis of the energy consumption of EVs essential [5]. In this context, recent 

development in information and communication technologies provide a basis for 

collecting data driving data in real-time from multiple vehicles at relatively low cost. 

This creates the potential for accurate energy prediction on-demand and thus decreases 

miles travel, energy consumed and the environmental impact. [22].  

Understanding a users’ future energy demand in combination with the energy left 

in the battery allows an estimation of the remaining vehicle’s range, referred to as 

residual range [23]. There are various energy prediction models for internal 

combustion engine (ICE) vehicles and hybrids [21, 23, 24]. For ICE energy estimation 

models eco-routing has become a popular navigation method to determine the route 

between the start and a destination that consumes the least fuel and produces the least 
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emissions [4]. Some of these approaches, however, could also be used for BEVs 

energy estimation since they are regardless of engine type but consider resistances of 

various types on vehicle which are omnipresent [4, 24]. A significant difference is that 

commercial EVs are generally equipped with RBS, which allows them to recuperate 

some of the kinetic energy when braking. A prediction model for EV energy 

consumption would need to take this into account since energy recuperation influences 

the residual range significantly.  

Recent literature on energy estimation models for EVs is divided into detailed 

scientific approaches focusing on transparency and accuracy in the energy estimation 

models [4, 25] and in less complex approaches focusing on applications for route 

optimization based on energy consumption [26]. Other literature focuses on specific 

aspects of on energy consumption, like relation between speed and energy 

consumption, [27] or the sensitivity of a physics-based energy estimation model [28]. 

 

1.2 Research Goals 

 

Besides the external factors that influence drivability, which are determined by 

the system that surrounds the EV (e.g., road type, street signs, traffic lights), DB as an 

internal factor has a significant impact on the overall energy consumption of BEVs 

[29]. Understanding the influence of DB on energy consumption of ICE vehicles eco-

driving is a well-defined method to describe energy efficient driving. Eco-driving 

improves ICE vehicle efficiency through controlled rates of speed and acceleration 

which involves such things: (a) as moderately acceleration, (b) anticipating traffic 

flow and signals to avoid sudden starts and stops, (c) maintaining even driven pace, 

(d) driving at the speed limit, (e) and avoiding unnecessary idling. [30] Recent 
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research demonstrated that there is a significant difference in energy consumption of 

BEVs between aggressive and non-aggressive driving; providing evidence that the 

concept of eco-driving works well for describing energy efficient DB for BEVs [6].  

Previous literature [6] found, collecting real driving data from 30 participants 

driving an BEV, two clusters of drivers with respect to their energy consumption: 

energy efficient drivers and energy inefficient drivers. A third cluster was initially 

found for intermediate energy consuming drivers, however, this cluster was found to 

be not significantly different from the inefficient driver cluster. This conclusion was 

unclear as to whether this was due to the fact that the sample size of the dataset used 

was small or whether there are only two clusters for energy efficiency of BEVs. Thus, 

previous research recommends to expand the number of individual driving samples to 

investigate whether a third intermediate energy consumption cluster would be 

statistically significant at a larger sample size [6].  

This research conducts more test drives under these same previous, rigorous 

conditions. This allows for the energy consumption for the new, Combined Dataset to 

be analyzed using the same methodology for clustering drivers based on their energy 

consumption as the previous research in order to confirmed or augment these various 

driving clustering types [6].  

Furthermore, this research assumes that both datasets, with exception of the 

instructor, are conducted under the same conditions. Additionally, tests will verify the 

consistency between these two data sets; if found statistically similar, the comparison 

and combination of these datasets will occur for stronger results. Should this test 

confirm the assumption that, both datasets could be merged to one dataset, it would 
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increase the samples size by almost 80%. Conducting a hierarchical clustering 

analysis, along with a detailed perspective of a LPA, will be able to provide further 

insights on driving profiles with respect to energy consumption.  

This research tries to give a more detailed picture on the following: (1) clustering 

of drivers based on their energy consumption for a new dataset, (2) verification that 

both datasets are indeed similar, and (3) if proven to be similar conduct a hierarchical 

clustering and a LPA based on the Combined Dataset to increase the understanding of 

previous results.  

To investigate energy consumption of a BEV with respect to DB, the following 

research questions being addressed in this thesis are: 

1. Does the Combined Dataset show two significant groups of energy 

consumptive behavior? 

2. Does the Combined Dataset support the claim that more profiles of energy 

consumptive behavior exist?  

In order to answer these questions, this thesis is broken down into the following 

chapters.  

Chapter 2 analyses the literature encompassing the technical background on EVs, 

energy consumption models for EVs, and suitable ICE energy consumption models 

that are used as a reference in this research.  

Chapter 3 presents the methodological approach and the statistical structure used 

to explore the answers to the research questions. The chosen test route is presented as 

well as the technical setup for the data collection. Furthermore, ANOVA is presented 
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as a tool to compare Dataset 1 and Dataset 2 and Ward’s method as well as LPA is 

introduced for finding energy efficient driver clusters.  

Chapter 4 discusses and presents the results found in this research with respect to 

the analysis tools presented in the previous chapter. The comparison of Dataset 1 and 

Dataset 2 reveals that both datasets are statistically similar, and Ward’s method finds 

three statistically significant energy consumption clusters for both datasets. LPA 

demonstrates a different perspective than Ward’s clustering indicating different 

profiles of energy consumptive behavior.  

Finally, Chapter 5 summarizes the results in this research drawing conclusions, 

presenting the work’s limitation and gives an outlook on further research. 
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CHAPTER 2 - REVIEW OF LITERATURE 

As mentioned in the previous chapter the main barriers for mainstream 

acceptance of EVs are the long charging times and the limited range. Fast-DC charger 

have the ability to reduce the charging time significantly so EVs can be quickly 

recharged which make them also usable for longer trips e.g. on highways between 

cities [31]. Even though the number of fast chargers in the US is growing rapidly, the 

number of publicly available fast EV chargers almost tripled from 2,518 in 2014 to 

6,267 in 2017, the density of DC fast charger is still low and beside of Tesla’s fast 

charging system mainly limited to urban areas [32, 33].  In addition to the limited fast 

charging capacity, driving under highway conditions reduces the range of EVs 

significantly. [31, 34] Aerodynamic resistance might be one the major factors for high 

energy consumption under highway conditions [24]. While at speeds less than 50mph 

the engine power is mainly needed to accelerate the vehicle at speeds higher than 

50mph the engine power is primarily used to overcome aerodynamic resistance [24]. 

This draws the assumption that driving on road types with a higher speed limit will 

result in higher energy consumption for EVs [24, 34]. 

Understanding energy consumption for EVs is a complex problem with various 

influencing factors that miscellaneously correlated and vary over time. [4] EV range 

can be increased in various ways, most of which focus on improvement of battery 

capacity [17], the design of gearing configurations [18], or the application of vehicle 

RBS [19]. In addition to optimizing the EV itself, efforts can be put into 

optimization of charging infrastructure [20] and energy efficient route planning [21]. 

Zhang and Yao [5] assert that energy consumption analysis is the basis for studying 
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location of charging infrastructures, ICE vehicle eco-driving behavior, and energy-

saving route planning, which all contribute to extend EV range. ICE vehicle eco-

driving behavior forms the foundation of this research to understand the influence of 

DB on energy consumption. 

For ICE vehicles changing DB has been discussed as a possible approach to 

reduce fuel consumption and thus the environmental impact [30]. The advantages of 

this is that these action could be applied by a great number of people and having an 

immediate effect without additional costs [30]. The goal is to change driving behavior 

in a way that eco-driving becomes the norm rather than the exception. It is estimated 

that eco-driving can reduce the fuel consumption by 10% up to even 20% [30, 35]. To 

reach that number a sophisticated, multidimensional approach would be required 

involving education regulation, fiscal incentives, and social norm enforcement. 

Especially, the use of feedback devices on DB is emphasized. Currently, actions in 

educating DB are not implemented in this scope in the United States [30]. 

Even though educating drivers in eco-driving is discussed in recent literature 

less is known about the effects of different learning methods [35]. Experiments with 

drivers giving them eco-driving advices on the one hand and providing them with 

comprehensive eco-driving training on the other hand are compared for their 

efficiency [35]. Both education types influenced fuel consumption, average speed, and 

average acceleration positively [35]. 

Speed and acceleration are fundamental parameters for describing the motion 

of a vehicles, therefore, there parameters are also crucial for describing DB [36]. To 

understand DB dynamic data of the vehicles motion in the scope of a real-road test is 
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useful [36]. Smartphones equipped with a suitable application have proven to be a 

recording device for driving data but are also investigated as a possible feedback 

device for drivers [36]. 

Literature agrees that driving behavior has a great influence on energy efficiency. 

For ICE the difference in energy efficiency for aggressive drivers is estimated to be 

40% higher than for non-aggressive drivers [37]. To reduce the environmental impact 

the idea arose to educate drivers to adopt an eco-friendly driving style [38]. Eco-

friendly driving behavior could be achieved by avoiding strong acceleration or braking 

in longitudinal and lateral direction [39]. The evaluation of real road driving scenarios 

is a complex problem since there are various interconnected variables like road type 

but also road environments, road infrastructure, and traffic conditions. However, two 

main parameters have shown to be most significant for quantitative evaluation of 

aggressive driving behavior these are longitudinal and lateral acceleration and 

deceleration [40]. 

Furthermore, aggressive driving is considered to be related to two driving 

patterns, a) strong acceleration or braking and b) driving at high speed. To determine 

aggressive acceleration, previous research used a Safe Driving Region (SDR) within a 

friction circle [38]. The friction cycle represents an area of possible acceleration 

depending on road conditions (e.g. dry, wet, icy) and tire grip. The SDR is defined as 

an area within the friction cycle of wet roads that applies an amount of mental 

workload on drivers, which is mainly determined by acceleration and speed, that 

ensures safe driving [38].  
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In literature in which acceleration data was collected using a smartphone, 

aggressive participants had more than 10% of their acceleration measurement points 

outside the SDR. For the safe drivers it was less than 8% [38]. Thus, a threshold for a 

share of acceleration measurement points inside and outside of SDR, based on the 

boundaries given in literature, is set up to distinguish aggressive from non-aggressive 

acceleration [38].  

Eco-driving behavior is considered to be a key issue in research for reducing fuel 

consumption in ICE vehicles [35–37]. Few efforts have been made in the field of EVs 

so far [41]. These behavior analyses should be conducted using real DB that need 

instrumentations on vehicles for data collection which is limited [41]. Also, for EVs 

smartphones are used to provide the sufficient data [41]. Comparison of smartphone 

data and onboard instrumentation confirm that both sources are equivalent and that 

former is sufficiently accurate [41]. 

Factors for energy consumption in EVs can be classified into three major 

categories: internal vehicle-specific elements, external environmental elements, and 

individual driver-specific elements. The internal vehicle-specific parameters include 

mass, rolling resistance, aerodynamics, powertrain efficiency, the operational strategy 

(e.g., degree of RBS), and auxiliary energy (e.g., heating or air-conditioning). External 

parameters are inherent attributes of a chosen route, such as road type, topography, 

and traffic conditions. Individual driver-specific elements include a driver’s individual 

style of driving based on their skills and attitude, all of which can strongly affect the 

energy consumption. To determine the effects of these parameters on the estimate of 

SOC empirical data is needed. 
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CHAPTER 3 - METHODOLOGY 

 

Previous research was limited by the fact that the energy consumption derived 

from the SOC was a stepwise scale due to the BEVs setup. In the Volkswagen (VW) 

e-GolfTM, SOC is calculated responding in 0.5% steps of total SOC which occurred 

approximately every half mile. This configuration would only detect drops of energy 

over relatively large distances and without determining phases of energy recuperation 

due to braking. The first step, thus, was to improve data collection for this research by 

finding a methodology that determines energy consumption more accurately in order 

to gain a better understanding of how energy is consumed by individual drivers along 

the test route.  

 

3.1 Experiment layout 

 

Even with the current graphical user interfaces and electronic data on various 

devices, it was not possible to obtain information on energy consumption from the 

vehicle directly, thus a suitable proxy was required. The on-board computer does 

report the battery’s current (measured in Amperage [A]) and voltage (measured in 

Volt [V]) at a high resolution which results in electrical power (measured in Watts 

[W]) when multiplied with each other, according to Ohm’s Law [42]. A similar 

approach was used by Wu [34] to determine the energy consumption of an BEV which 

provides a simple, while still accurate, result. The relationship was used to calculate 

the energy consumption at a continuous level for this research.  Even though energy 
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consumption was calculated this way, the approach used in previous research was used 

for the analysis in this research to make results comparable. 

A vehicles’ computer is referred to as the On-Board Diagnostic system (OBD) 

which was used for the data collection. The OBD communicates over the Controller 

Area Network (CAN) bus which is the standard solution to realize fast and robust 

communication of microcontrollers in vehicles [43]. The 2015 VW e-GolfTM uses an 

OBDII port which is an improved version of the originally OBD in terms of an 

enhanced communication protocol and standardization. The CAN bus system can be 

accessed through the OBDII port, located inside of vehicles, where the information is 

optimized for machine reading (i.e., the data is encoded and not available in a readable 

alphabetical text). For older vehicles most of the codes are available online. For newer 

vehicles, and especially for the VW e-GolfTM, the codes are strictly protected, likely to 

prevent reengineering on the car through competitors or potential hackers. In previous 

research, great lengths went into decoding this information and finding the values that 

represented these desirable parameters. Additionally, previous research data was 

collected from three different sources (the CAN bus system, a GPS responder, and a 

cellphone) and merged in order to prepare it for data analysis which required an effort. 

After investigating several options, a new company was utilized to facilitate these 

issues and to obtain this data, FleetCarma, a company based in Waterloo, Canada, 

specializes in extracting real-time driving data from all types of vehicles, including 

EVs and BEVs. Choosing their solution provided one device responsible for the GPS 

data and CAN bus data, thus requiring no additional processing. Also, the collected 

data is available in real-time on an online portal which decreases the feedback time 
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and any additional process time. Problems in the data collection process would be, 

therefore, discovered faster and could be solved sooner without having a significant 

loss of data.  

A suitable test route needs to be representative of Rhode Island in terms of road 

type variation and landscape. In order to establish an adequate test route, several 

options were evaluated based on the opportunity to drive on different road types with 

varying levels of elevation while considering traffic volume. The route required 

consistent traffic density considering it was not controlled for traffic concentration in 

the experiment due to its significantly complexity. Finding a route that is located in a 

low traffic density area would ensure that the variations in traffic concentration would 

range from low to medium which should minimally affect the traffic flow for the street 

network in the test area. Figure 2 illustrates the traffic generation in Washington 

County in the South Kingstown area using various color dots, representing low traffic 

generation (light green), medium traffic generation (green), high traffic generation 

(dark green). Traffic concentration is strongly determined by the time of the day with 

peaks generally in the morning and in the early evening due to work commutes [44]. 

Figure 2: Traffic Generation [45] Figure 2: Urban and Rural Boundaries [45] 
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To avoid these peaks and to ensure similar traffic conditions, test drives where 

conducted between 10am and 5pm. The test route progressed through urban and rural 

areas representing different road networks and development of infrastructure. Figure 2 

illustrates rural boundaries (light brown) and urban boundaries, such as Providence’s 

metropolitan area (dark brown) in the test area of South Kingstown. 

Generally, roads are classified according to their function of either providing 

direct access to property or providing travel mobility. With respect to these two 

opposing functions the U.S Department of Transportation (DOT) distinguishes roads 

by six major classifications in descending order with respect to mobility:  

Freeway/Expressway, Principal Arterial, Minor Arterial, Major Collector, Minor 

Collector, and Local roads. Expressways, for example, exhibit high mobility with 

limited access with exit lanes, while local roads provide a high degree of land access 

[45]. 

The test route chosen selected was the same route used in a previous experiment 

[6] since all these factors were already considered. The past route covers a great range 

of road types (i.e., five out of six road types) while, progressing through an area of 

small to medium traffic generation that includes rural and urban areas. Conducting test 

drives along the same route also opens the potential towards combining Dataset 1 

(from previous research [6]) and Dataset 2 (generated in this research) comparable if 

they are found to not be statistically different. Figure 3 depicts the test route starting 

and ending close to the University of Rhode Island (URI) including the different road 

types displayed in different colors, minor collectors (green), major collectors (blue), 
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minor arterials (yellow), principal arterials (purple), and Expressways (black). The 

total mileage of the test route was 26.4 miles (42.5 km) from the start to end.  

Regarding the design of the experiment, drivers were recruited from the public. 

Primarily students and employees of URI participated. Participation in the experiment 

was voluntarily without financial compensations. Based on the self-selection of the 

participants, potential bias could exist based on their interest in electric vehicles or 

other sustainability related topics. Participants were encouraged to drive as they 

normally would in order to avoid purposeful driving issues due to being in an 

experiment. For example, more cautious driving in terms of energy efficiency due to 

driving another vehicle that is not their own. This process occurred the same for both 

datasets, Dataset 1 and Dataset 2, since participants were recruited the same way. 

The conditions for the participants during the test drives were kept the same for 

both experiments. Additionally, the individual who executed Dataset 1 trained and 

advised the experimenter in Dataset 2. The data collected for both experiments 

Figure 3: Test route [6] 
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included a timestamp, longitude and latitude, speed, altitude, acceleration, and SOC 

from the vehicle during the test drive. Battery current and battery voltage were 

obtained from the OBDII for a more accurate view of the actual energy consumption 

in Dataset 2. The experimental design was approved by the University of Rhode 

Island’s Institutional Review Board (IRB). The documentation for the experiment can 

be found using the IRB reference number HU1617-055. 

The exact same parameters for Dataset 2 were collected in previous research 

investigating the energy consumption on different routes for BEVs, indicating that 

these parameters are significant for understanding energy consumption [34].  

 

3.2 Comparison of Dataset 1 and Dataset 2 

 

To determine whether Datasets 1 and 2 are statistically similar, SOC is used as a 

proxy for total energy consumption over the entire test route during the separate 

drives. Table 1 gives an overview of the test drives conducted for both datasets 

including the number of male and female participants and the sample size that was 

used for data analysis after excluding poor data and outliers. However, Dataset 1 was 

analyzed for both scenarios, including the outlier and excluding the outlier.  

Table 1: Break down of Dataset 1 and Dataset 2 

Dataset Collected Poor data Outlier Male Female Sample data 

1 38 11 1 

 

21 13       29(30) 

2 34 8 0 

 

24 10 23 

 

The fully charged battery contains 24.2 kWh which represents a 100% SOC. The 

consumed SOC for one test drive is related to this value, which results in the total 

energy consumption over the trip. Based on the reduction of SOC, both datasets are 
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analyzed using an ANOVA to determine whether the two samples have a significantly 

different means. Both datasets are tested for normality and equal variance prior to the 

ANOVA. If, both datasets proved to be statistically similar for total energy 

consumption, then they could be combined to one larger dataset. This would increase 

the sample size in Dataset 1 (n=29, n=30) with those occurred in Dataset 2 to allow 

further investigation of statistically significant classes of drivers with respect to their 

energy consumption [6]. The combined dataset is analyzed regarding the variance of 

SOC classed by instructor (i.e. Dataset 1 and Dataset 2). The null hypothesis (H0) is 

that the two datasets are statistically similar. Table 2 illustrates the SOC at the 

beginning of the test drives for both datasets. For Dataset 1 as well as for Dataset 2 

approximately 2/3 of the test drives had a starting SOC higher than 70%. Since the 

discharging curve for lithium ionic batteries is fairly stable until 50% this ensures that 

the amount of energy drawn from the battery for different starting SOCs is similar. 

Table 2: Stating SOC for Dataset 1 and Dataset 2 

Dataset 

100 - 

90% 

90 - 

80% 

80 – 

70% 

70 – 

60% 

60 – 

50% 

50 – 

40% 

Less than 

40% 

Sample 

data 

1 9 7 

 

4 4 2 4 0 29(30) 

2 7 5 

 

3 3 5 0 0 23 

 

 

3.3 Dataset 2 Data Cleaning 

 

Originally, for Dataset 2, there were 36 test drives performed. Significant thought 

was put into designing a data collection method that would be robust against errors by 

streamlining the process. Even with a specialized commercial device for capturing 

participants driving behavior along the route, only 16 test drives had all parameters 

collected without any issue. A total of 20 test drives had minor or major data 
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collection problems, which limited their usage in this research. However, since in this 

context the aggregated data is analyzed over the entire test route, the GPS signal 

needed to be accurate only at the beginning and the end of the test route to determine 

start and end points of the test route.  

There were several samples in Dataset 2 that matched these reduced 

requirements. Thus, seven more drives had an intermediate effort in post processing 

necessary due to either loss of GPS signal during the test drive or due to minor 

changes in the test route caused by construction going on at the on-ramp to Interstate 

1. The GPS signal was still accurate enough to determine the coordinates where the 

vehicle was for the original test route and for an unexpected detour, which was 

consequently stripped from the dataset. This led to a loss of data (test drive 16 and 17) 

for a road segment of approximately 0.4 miles (650m), which, when compared to the 

entire test route did not have a significant effect on energy consumption. For 5 five 

other test drives, the test route was altered due to construction as well, but the GPS 

measurements where inaccurately recorded that the former method of removing the 

detour data was not applicable. Therefore, using these two different methods for 

determining the distance might have caused issues in further analysis.  

Furthermore, seven test drives, in addition to the above-mentioned issues, resulted 

in data collection stopping at around 1/2 to 2/3 of the 26.4 miles (42.5 km) long test 

route so this data would have been available only for a part of the test route. For two 

samples, the data collection process stopped directly after the start or did not start at 

all so that there was no possibility to use this data.  
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The final result was 23 samples available in Dataset 2 of which 5 were tailored 

based on extraneous circumstances and 16 collected without issues. Each test drive 

contained approximately 5000 measuring points. As mentioned above energy 

consumption was determined based on SOC consumption, which could be recorded 

only in 0.5% intervals. SOC dropped by this value approximately every half mile, so, 

the exact energy consumption was known only at this point. To estimate the energy 

consumption for measuring point in between these drops of SOC, the theoretical 

difference in SOC between two values was calculated based on the distance traveled. 

This resulted in incremental SOC values (WeightSOC) for every measuring point. 

Since the fully charged battery contained 24.2kWh, the WeightSOC was used to 

calculate incremental energy consumption values (WeightkWh) for every measuring 

point using Equation 1. 

Equation 1: Calculation for incremental energy consumption values ����ℎ݇ݐ�ℎ = ݕ�ݎ�݊�݈�ݐݐ ∗ ����ℎܥ�݈ܵ�ݐݐܥ�ܵݐ  

 

The distance between each measuring point was calculated using the Haversine 

formula (Equation 2) which determines the distance between two coordinates, latitude 

and longitude values of GPS, on a sphere. The formula for calculating the distance is 

shown in Equation 3. 

Equation 2: Haversine formula ℎ��ሺ�ሻ = ଶ݊�ݏ (�ʹ) = ͳ − cosሺ�ሻʹ  

Equation 3: Distance calculation based on haversine formula ݐݏ�ܦ�݊�� = ሺ√ℎ��ሺ�ଶ݊�ݏ�ݎ�ܴʹ − �ଵሻ + cosሺ�ଵሻ cosሺ�ଶሻ ℎ��ሺ�ଶ − �ଵሻሻ 
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Due to the fact that GPS was recorded at a lower resolution (every 10 seconds) 

than the other parameters of Dataset 2, the dataset got condensed so that for every 

measuring point there would be an individual GPS value available. This reduced the 

number of measuring points per individual per test drive from approximately 5000 to 

153-305. Table 4 gives an overview of the number of measuring point for each test 

drive of Dataset 2. The reason for the few number of measuring points, especially for 

Driver 24, is that for some test drive GPS data got collected on an even lower 

resolution than motioned before. Table 3 shows the traveling time for each test drive 

of Dataset 2. 

 
Table 3: Statistics for amount of time per individuum for finishing the test drive 

Variable Total Mean SE Mean StDev Minimum Maximum 

Time 23 51.670 0.966 4.632 44.270 63.040 

 
Table 4: Statistics for number of measuring points of collapsed Dataset 2 

Variable Total Mean SE Mean StDev Minimum Maximum 

N 23 256.00 6.60 31.64 153.00 305.00 

 

3.4 Determination of Energy Consumption Clusters 

 

Two different types of clustering occurred in this research in order to identify the 

appropriate clusters of driving behavior based on energy consumption (difference in 

SOC in kWs) per mile of the experimental test route. These two methods are: (1) 

hierarchical clustering using Ward’s method and (2) model-based clustering using 

Latent Profile Analysis (LPA). In previous research, hierarchical clustering using 

Ward’s method was used to cluster drivers with respect to their energy consumption 

[6]. This method, also known as Ward’s Minimum Variance Method, begins with n 
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clusters where each sample is in one group and then it merges two groups at each step 

and repeats until all samples are in a single group after n-1 steps. The criterion for 

choosing a pair of groups, from all grouping possibilities, is to merge these pair whose 

potential pairing minimizes the sum of squared distances between those two individual 

groups and the centroids of their respective group, summed over the resulting groups 

[46].  

Equation 4: Ward’s Minimum Variance Method [46] 

� = ∑ ∑ �ݔ|| − ��ଶ||�ݔ̅
�=ଵ

�
�=ଵ = ∑ ∑ ∑ሺݔ�,� − �ሻଶ�,�ݔ

�=ଵ
��

�=ଵ
�

�=ଵ  

Equation 4 is calculated for all possible pairs of groups and is exhaustive 

throughout evaluating a dataset. For each pair, the centroid (clustered or group mean) 

and the squared distances are calculated based on their new values. Ward’s method 

minimizes the variance of within-groups variances, over the possible combinations 

(K), while maximizing the distances between groups [46]. 

Clustering drivers’ behavior was based on their mean and standard deviation of 

their energy consumption per mile. In previous research, Ward’s method revealed two 

significantly different clusters representing efficient and inefficient drivers [6]. Even 

though two clusters were found that were significant, there was strong evidence that 

there might be a third cluster of moderately efficient driving. However, this one was 

found to be not significantly different from the inefficient cluster after a rigorous 

validation process. The possible explanation provided for this in the literature is the 

limited sample size of Dataset 1 [6], hence the rationale for the expansion of Dataset 1 

by executing Dataset 2.  
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The data from Dataset 1 is clustered again with Ward’s method to validate these 

initial findings. In congruence with this process, the drivers from Dataset 2 are 

clustered according to their energy consumption using Ward’s method (Ward.D2 in 

the hclust package in R) to make the groups of drivers comparable for both datasets. 

A disadvantage of hierarchical clustering algorithms, like Ward’s method, is that 

they are largely heuristic and not based on formal models per se but Euclidean 

distance. Model-based clustering is proposed as an alternative [47]. The basic idea 

behind model-based clustering is that observations from the sample population arise 

from a distribution that is a combination of two or more components. Each component 

is described by a density function and is associated to a probability within the 

combination of components often a combination of multivariant normal distributions. 

These components represent the clusters and have a shape with the mean respective of 

the cluster [48, 49].  

For implementing a model-based clustering algorithm in R the package mclust 

was used, which allows for a total combination of 10 different volumes, shapes, and 

orientations of the ellipsoidal shapes based on various Gaussian distributions. Mclust 

uses three different letters to describe the characteristics of the shapes E for equal, V 

for variable, and I for coordinate axes and reports the model in terms of volume, 

shape, and orientation. For example, an EEI model represents the resulting clustering 

groups have equal volume, equal shape, and their orientation is equal to the coordinate 

axes [50, 51]. This method of execution is sometime called LPA, which is ran in R 

using mclust, to determine parameter estimates and grouping according to these 

Gaussian distributions and shapes. The selection criterion of the Bayesian Information 
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Criterion (BIC) was used thus a model with a lower BIC fits the data better than one 

with higher BIC, also BIC penalizes large models [50].  

 



 

24 

 

CHAPTER 4 - RESULTS AND DISCUSSION 

4.1 Determination of Energy Consumption Clusters for Dataset 1 

 

In previous research two significant clusters for energy consumption were found, 

an energy efficient driver cluster and an energy inefficient driver cluster [6]. Figure 4 a 

shows the dendrogram generated by Ward’s method for pairs of mean energy 

consumption per mile and the respective standard deviation. The green branch in the 

dendrogram represents the energy efficient cluster with low mean and low standard 

deviation. The blue and the red branch in the dendrogram represent the energy 

inefficient cluster, whereas the blue branch represents the medium energy efficient 

cluster which was not found to be significant in previous research. In the scatter of 

Figure 4 b plot green triangles represent the points of the energy efficient cluster and 

red triangles represent points of the energy inefficient cluster whereas red triangles 

incorporated by the blue dashed line are part or the assumed but not significant 

medium energy consuming cluster. The black point represents the inefficient control 

the purple diamond represents the efficient control. 

Figure 4: Dendrogram and Scatterplot of Dataset 1 for mean energy consumption per mile and standard deviation 

[6] 
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For this research the analysis on the data from Dataset 1 is repeated to confirm the 

results. Individuals are clustered the same way as in [6], by the distance of each point 

to the others based on mean energy consumption per mile and standard deviation using 

Ward’s method. Figure 5 shows the resulting dendrogram. Individuals are clustered in 

the same groups as in previous research with one exception. Individual 34.1 is 

clustered one group higher than in previous research, which is surprising since the 

same dataset and the clustering algorithm was used. As in previous research the 

clusters were found to be not uniformly normal distributed, therefore a non-parametric 

test, a Wilcox test, was used for validation of the clusters. For the Wilcox test only the 

two main clusters, cluster 1 and cluster 2, which divide the dataset into high energy 

consuming and low energy consuming drivers, were found to be significant. This is in 

accordance with previous research and confirms the results [6]  

Ward’s method, however, is sensitive to outliners. When analyzing the scatter 

plot in Figure 5, the point with the highest standard deviation, individuum 34.1, seems 

to be very far off. In order to obtain further insights on the whether a medium energy 

efficient cluster exist or not, this research conducts a LPA on Dataset 1. Analyzing 

Figure 5: Dendrogram of Dataset 1 including individual 34.1 
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Dataset 1 with LPA creates a 2-component EVE (ellipsoidal, equal volume and 

orientation) model with a Bayesian Information Criterion (BIC) of 286.7642 and a log. 

likelihood of 158.6875, which results in two clusters of drivers. Looking at the scatter 

plot of this clusters in Figure 6, the shape of the clusters is very different. However, 

except for individual 20.1 the blue cluster incorporates the individuals of the most 

energy inefficient group and in contrast to the hierarchical clustering, LPA 

distinguishes this group from the rest of the drivers. This provides evidence that there 

is a difference between the inefficient drivers and the rest of the drivers. Noticeable is 

that individuum 34.1 has a significant higher standard deviation that the other drivers 

and is far off from the other points. Thus, the question remains whether this point is an 

outlier or whether it represents a group of highly inefficient drivers. In further analysis 

Dataset will be clustered without 34.1 and Dataset 1 will be merged with Dataset 2 

and in these contexts the position of point 34.1 will be discussed again.  

Figure 6: Latent Profile analysis of Dataset 1 including 34.1 for 2 clusters 
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In order to see whether different clusters are found in Dataset 1 using Ward’s 

method when individuum 34.1 is removed from the dataset, 34.1 is removed from 

Dataset 1. Figure 8 shows the dendrogram for the hierarchical clustering of Dataset 1 

excluding individual 34.1, using Ward’s method, revealing that the clusters look 

exactly the same as before but without individuum 34.1 being a group on its own. The 

Wilcox test reveals that the clusters are significantly different for two clusters but also 

for three clusters (cluster 1.1, 1.2, and 2). 

Figure 8: Dendrogram of Dataset 1 excluding individual 34.1 

Figure 7: Scatter plot of hierarchical clustering for 2 clusters (left) and 3 cluster (right) 
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Figure 7 shows the scatter plots for two clusters on the left side and for three 

clusters on the right side, while individuals belonging to one group are colored in the 

same color. Finding three significantly different clusters for energy consumption of 

drivers using Ward’s method, confirms the assumption from previous research that 

drivers can be divided into energy efficient drivers, medium energy efficient drivers, 

and energy inefficient drivers. These results drive the assumption that there are 

probably multiple driver clusters based on energy consumption. It might be possible 

that Ward’s method is not an appropriate method to detected different groups of 

drivers, especially when clusters contain a small number of samples. LPA is used to 

get further insights on a possible cluster distribution within the dataset.  

Performing the LPA on Dataset 1 with reduced sample size of 29, excluding 34.1, 

two options are found to be convincing based on distribution of clusters, based on BIC 

and log. likelihood. The first one is a 2-component EEI (spherical, equal volume) 

model with a BIC of 289.2305 and a log. likelihood of 154.7171. Beside of 

individuum 16.1, which is clustered to the energy inefficient group by LPA than to the 

energy efficient group according to the dendrogram, the clusters for Ward’s method 

and the 2-component model LPA are the same.  

Figure 9: Latent Profile analysis of Dataset 1 excluding 34.1 for 2 clusters (left) and 3 clusters (right) 
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The second one is 3-component EEE (ellipsoidal, equal volume, shape and 

orientation) model with a BIC of 287.3235 and a log. likelihood of 162.1819, which 

should be preferred over the first model, based on the BIC. However, the clusters for 

the 3-component model do not look very convincing based on what is known about 

the influence of driving behavior on energy consumption of BEVs. 

 

4.2 Determination of Energy Consumption Clusters for Dataset 2 

 

For the dataset generated in the scope of this research, Dataset 2, the drivers are 

clustered based on their energy consumption using Ward’s method. Applying the 

hierarchical clustering algorithm to Dataset 2 results in the dendrogram seen in Figure 

10.  

Drivers are label based on their Driver ID, the decimal indicates that these samples are 

the drivers of Dataset 2. Clusters that were tested for significance are labeled on top of 

Figure 10: Cluster Dendrogram for Dataset 2 for overall SOC consumption 
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their branches. The clusters were found to be not uniformly normal distributed why a 

non-parametric test, a Wilcox test, was used to determine significantly different 

clusters. The Wilcox test found two clusters as well as three clusters (cluster 1, 2.1, 

and 2.2) to be significantly different with respect to mean energy consumption per 

mile and standard deviation.  

For the three clusters of Dataset 2, drivers are more equally distributed than for 

Dataset 1 which results in three clusters of energy consumption with a representative 

number of drivers for each cluster. With Dataset 2 having three significantly different 

clusters, this supports the assumption from previous research that there are three 

significant groups for clustering drivers, high energy consuming drivers, medium 

energy consuming drivers, and low energy consuming drivers.  

Figure 11: Scatter plot of HC for 2 clusters (left) and 3 cluster (right) 
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To prove the two clusters found by Ward’s method, LPA is applied to Dataset 2. 

Comparing the LPA 2-component VII (spherical, varying volume) with the two 

clusters from the dendrogram reveals that both algorithms cluster the same drivers into 

the two clusters. This provides evidence that the two clusters found by Ward’s method 

are correct based on a two-cluster monitoring. 

Comparing the three clusters from the dendrogram with the 3-component EVV 

(ellipsoidal, equal volume) model from LPA, it shows the same clusters, except for 

individuals 31.2 and 1.2, which are part of the lower left cluster in the LPA. Figure 12 

shows the 2-component LPA clustering on the left and the 3-component LPA 

clustering on the right side. 

The comparison of the hierarchical clustering by Ward’s method with LPA shows 

that beside of little differences Ward’s method and LPA find the same or similar 

clusters which is a lead that Ward’s method is an appropriate approach for clustering 

drivers based on their energy efficiency. For the clusters of Dataset 2, the clusters of 

Ward’s method are more similar to the ones of LPA. One of the reasons could be that 

for Dataset 2 the population for three hierarchical clusters is more equally distributed 

Figure 12: LPA for Dataset 2 2 component model (right) and 3 component model (left) 
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between the three clusters than for Dataset 1. For two clusters the populations for 

Dataset 1 and Dataset 2 are similar distributed which also results in similar clusters for 

Ward’s method and LPA in both cases. Merely individuum 16.1 is clustered 

differently in Dataset 1 when divided into two clusters and using Ward’s method and 

LPA respectively. For Dataset 2 the two clusters from Ward’s method and LPA are 

identical.  

For both datasets there are two and three significantly different clusters found 

based on Ward’s method. However, the two datasets, Dataset 1 and Dataset 2, have 

data in different areas. Dataset 1 provides measurements in the upper right quadrant 

where Dataset 2 lacks measurements. Dataset 2, on the other hand, provides 

measurements exclusively in the lower right quadrant. To obtain a more holistic 

understanding of how BEV drivers can be categorized based on their energy 

consumption, both datasets are test whether they are statistically similar and merge 

them into one Combined Dataset, if they should be found similar. 

 

4.3 Comparison of Dataset 1 and Dataset 2 

 

Since the experiment layouts for Dataset 1 and 2 were almost the same, beside the 

instructors and the two parameters Amperage and Voltage that got collected 

additionally, it was expected that both datasets are statistically similar. First both 

datasets were compared based on their mean SOC consumption over the entire test 

route. 
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Table 5: Descriptive Statistics for Dataset 1 and Dataset 2 

Variable INSTR Mean SE Mean StDev Variance 

SOC 1 26.483 0.387 2.119 4.491 

   2 27.826 0.329 1.578 2.491 

  

Variable INSTR Minimum Q1 Median Q3 Maximum 

SOC 1 21.500 24.875 27.000 27.500 31.500 

   2 24.500 27.000 28.000 28.500 31.500 

 

Comparing the means of SOC consumption of both datasets they are found to be 

close together. Dataset 2 has a slightly higher mean by almost 1.5% than Dataset 1 

which is not a lot when considering that this is within one standard deviation of 

Dataset 2. For Dataset 1 the standard deviation is with 2.119 slightly higher than 1.578 

from Dataset 2. The difference for the median is with exactly 1% even smaller than 

the mean. Table 5 illustrates the results of the descriptive analysis. 

Analyzing the distribution of SOC consumption of both datasets for normality 

reveals that for both datasets SOC consumption is normal distributed. Furthermore, 

both datasets have equal variances based on SOC consumption. Conducting the 

ANOVA testing for Dataset 1, including 30 samples, and Dataset 2, including 23 

samples, revealed that the two datasets were not statistically similar for SOC. Table 6 

shows the ANOVA resulting in a p-value of 0.014 and Table 7 shows the results from 

Tukey test, indicating that both Datasets are significantly different. The reason that 

both datasets are different even though their means are close together is that Dataset 1 

has a greater spread in SOC consumption than Dataset 2.  
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Table 6: Analysis of Variance of SOC for combined Dataset with 30 samples for Dataset 1 and 23 samples for 

Dataset 2 

Source DF Adj SS Adj MS F-Value P-Value 

INSTR 1 23.47 23.473 6.47 0.014 

Error 51 185.05 3.628       

Total 52 208.52          

 
Table 7: Comparison of SOC for combined Dataset with 30 samples for Dataset 1 and 23 samples for Dataset 

using Tukey test 

INSTR N Mean Grouping 

1 23 27.826 A    

2 30 26.483    B 

Means that do not share a letter are significantly different. 

 

This analysis was performed on overall SOC consumption showing that the 

aggregated energy consumption of individuals driving on the test route does not vary 

as much as assumed based on literature. 

However, to understand how driving behavior influences energy consumption, 

energy consumption must be analyzed not as an aggregated value but trough out the 

test route. For this reason, incremental energy consumption was calculated for every 

measuring point of the test drive and the means as well as standard deviation was 

calculated for each measuring point for each driver. Performing the ANOVA for mean 

energy consumption per mile for both datasets results in a p-value of 0.118 revealing 

that both datasets, based on their mean energy consumption per incremental distance, 

are statistically similar. This result is confirmed by a Tukey test. Table 8 shows the 

results from ANOVA for mean energy consumption per mile and Table 9 show the 

result from Tukey test. These results show that for mean energy consumption per mile, 
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which represents driving behavior at a more granular level, the two datasets are 

statistically similar meaning that they can be treated as one dataset. 

Table 8: Analysis of Variance of mean energy consumption per mile for combined Dataset with 30 samples for 

Dataset 1 and 23 samples for Dataset 2 

Source DF Adj SS Adj MS F-Value P-Value 

INSTR 1 0.000668 0.000668 2.53 0.118 

Error 51 0.013439 0.000264       

Total 52 0.014107          

 

Table 9: Comparison of mean energy consumption per mile for combined Dataset with 30 samples for Dataset 1 

and 23 samples for Dataset 2 using Tukey test 

INSTR N Mean Grouping 

2 23 0.24672 A 

1 30 0.23956 A 

Means that do not share a letter are significantly different. 

 

For Dataset 1 it was not clear whether there was an intermediate energy efficient 

driver cluster since it was found to be not significantly different from two inefficient 

and efficient groups. It was assumed to be a result of insufficient sample size [6]. This 

research proved that there are three clusters for Dataset 1, when individuum 34.1 is 

excluded, and for Dataset 2. However, since both datasets provide data in 

complimentary areas the question remains whether the found clusters are consistent 

when merging both datasets. Therefore Dataset 1 and Dataset 2 are tested from 

similarity based on their mean energy consumption per mile and are found to be 

statistical similar which allows to merge both datasets into one Combined Dataset to 

increase the sample size of test drives to draw a clearer picture of how to cluster BEV 

drivers based on their energy consumption.  
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4.4 Determination of Energy Consumption Clusters for Combined Datasets 

 

To see whether a larger sample size would confirm or reject multiple clusters for 

energy consumption both datasets get, based on the fact that they are statistically 

similar, merged into one large Combined Dataset with a total sample size of 53.  

The Combined Dataset was first clustered using Ward’s method. Figure 13 shows 

the resulting dendrogram. Drivers are labeled based on their Driver ID, the decimal 

indicating origin from either Dataset 1 or Dataset 2. Clusters that were tested for 

significance, using a Wilcox test, are labeled on top of their branches. This test also 

found cluster 1 and cluster 2 to be significant, as well as clusters 1, 2.1, and 2.2 which 

confirms the assumption from previous research that there are three clusters, a high 

energy consuming, medium energy consuming, and a low energy consuming driver 

cluster. Figure 14 shows the scatter plot for the two hierarchical clusters on the left 

side and for three hierarchical clusters on the right side. 

Figure 13: Dendrogram for Combined Dataset with 53 samples using Ward’s method 
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LPA is used to test whether based on cluster number found by Ward’s method the 

clusters will look the same which is an indication that those are the actual clusters.  

The 2-component EII (spherical, equal volume) model for LPA clusters the 

drivers into almost the same clusters as Ward’s method., except for individuum 31.1.  

The 3-component EEV (ellipsoidal, equal volume and shape) model, however, 

clusters a main part of the population in two clusters divided by standard deviation 

over a wide range of means and individuum 34.1 in a cluster of its own. Even though 

the populations are equally distributed between the clusters in the dendrogram, LPA 

considers individuum 34.1 to be a cluster on its own, which contradicts earlier 

assumptions that Ward’s clustering and LPA would produce similar clusters as long as 

there are sufficient samples in a cluster for Ward’s method.  

However, the reason LPA clusters the population for the 3-component model 

differently could be that 34.1 is an outlier to which Ward’s method is sensitive and 

should not be respected in the clustering process. 

Figure 14: Scatter plot of hierarchical clustering using Ward’s method for 2 clusters (left) and 3 cluster (right) 
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To understand whether more than three clusters might be possible LPA is 

extended to multiple clusters. Computing the LPA for a 4-component EVE 

(ellipsoidal, equal volume and orientation) model with a BIC of 520.486 and a log. 

likelihood of 293.9905 and a 5-component EEE (ellipsoidal, equal volume, shape and 

orientation) model with a BIC of 524.017 and a log. likelihood of 295.756 reveals 

additional possible clusters. The 4-component model clusters the population in three 

equal shape clusters for high mean and high standard deviation in the left scatter plot 

in Figure 15: LPA of Combined Dataset for 4-component model (left) and 5-

component model (right) and one long elliptical shaped cluster for low mean and 

various standard deviation including 34.1. The long elliptical shaped cluster could be 

Figure 16: LPA analysis of Combined Dataset for 2 component model (left) and 3 component model (right) 

Figure 15: LPA of Combined Dataset for 4-component model (left) and 5-component model (right)  
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attenuated to the shape of the other clusters by excluding 34. The 5-component model 

clusters the population in four equal shaped clusters for the main part of the population 

and 34.1 in a cluster of its own. Both clustering models give evidence that 34.1 is an 

outlier and should be excluded from the population. 

Based on the findings, that the Combined Dataset is clustered again with Ward’s 

method and LPA, excluding 34.1, in order so see whether the earlier assumptions are 

confirmed or rejected. 

 

Figure 17: Dendrogram for Combined Dataset using Ward’s method 
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Clustering the Combined Dataset with reduced sample size (n=52) with Ward’s 

method results in the dendrogram shown in Figure 17: Dendrogram for Combined 

Dataset using Ward’s method. Validating possible cluster with Wilcox test reveals two 

significant different clusters, cluster 1 and cluster 2, as well as three significant 

clusters (1.1, 1.2, and 2), resulting in the same clusters that were confirmed for the 

bigger population of n=53. Figure 18: Scatter plot of hierarchical clustering using 

Ward’s method for 2 clusters (left) and 3 cluster (right) shows the scatter plots for two 

clusters on the left side and for three clusters on the right side. 

Figure 18: Scatter plot of hierarchical clustering using Ward’s method for 2 clusters (left) and 3 cluster (right) 
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LPA is used to confirm the clusters found by using Ward’s method. While 

Ward’s method divides the dataset for two clusters between high and low mean, LPA 

divides it by high and low standard deviation. Both groups of clusters do not explain 

driving behavior very well based on what is known about energy consumption for 

BEVs in literature.  

Performing the LPA for 4 clusters results in a 4-component EII (spherical, equal 

volume) model that separates the population into 4 equally shaped clusters resulting in 

the four equally shape clusters that were assumed for the 4-component model of the 

non-reduced Combined Dataset when individuum 34.1 is excluded. A 5-component 

Figure 19: LPA of reduced Combined Dataset for 2-component model (left) and 3-component model (right) 

Figure 20: LPA of reduced Combined Dataset for 4-component model (left) and 5-component model (right) 
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EEE (ellipsoidal, equal volume, shape and orientation) model, in addition to the 

clusters found by the 4-component model, puts the individuals in the upper left corner 

in a group of its own. 

Both models seem to provide a suitable clustering from BEV drivers based on 

their energy consumption based on the agreement in literature about the influence of 

driving behavior on energy consumption for BEVs. Hence, that energy consumption 

increases with mean energy consumption per mile but also with a high degree of 

variation in the mean energy consumption per mile indicating an agitated driving style. 

 

Table 10: Energy consumption per cluster of LPA 4-component model for Combined Dataset (n=52) over entire 

route 

Variable LPA 4 clusters Total Mean StDev Min Max Mix. Prob. 

Energy cons.  1 2 5.384 0.257 5.203 5.566 0.2897 

   2 23 6.2973 0.3451 5.6870 7.0180 0.2086 

   3 10 6.873 0.351 6.413 7.623 0.4645 

   4 17 6.8401 0.3317 6.2920 7.6230 0.0373 

 

Table 11: Energy consumption per cluster of LPA 4-component model for Combined Dataset (n=52) centroids 

Variable LPA 4 clusters Total Mean SE Mean 

Energy cons.  1 2 5.384 0.181 

   2 23 6.2973 0.0720 

   3 10 6.873 0.111 

   4 17 6.8401 0.0804 

 

Table 10 shows the average energy consumption per cluster of the LPA 4-

component model. (1 - purple cluster, 2 - green cluster, 3 - red cluster, 4 - blue 

cluster). The energy consumption increases from cluster 1 to cluster 4, while cluster 3 

and 4 have almost the same mean energy consumption. The individuals in cluster 1 
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consumed considerably less energy than the rest of the drivers. Table 11 displays 

mean energy consumption per mile and standard deviation for the LPA 4-component 

model’s centroids. 

To give an overview about the effect of driving behavior on the annual energy 

consumption of BEVs, calculating the kWh per year, the yearly fueling bill, and the 

yearly number of charging events occurred a posteriori. Based on the national average 

of 13,475 miles traveled per year and the mean energy consumption per mile as a 

function of the cluster results in the total annual energy consumption [52]. This total 

annual energy consumption multiplied by the rate of 13.1¢/kWh results in the total 

amount of money spent on recharging the BEV [53]. Lastly, the mean energy 

consumption per mile is divided by the total BEV battery capacity of 24.2kWh in 

order to understand the potential number of charges per cluster, assuming charging at 

a full charge each time.  

There is a significant difference in the number of charges between the four 

clusters. Also, the amount spent for charging differs significantly, especially when 

considering mean and standard deviation. 

 

 

 

Mean StDev Mean StDev Mean StDev Mean StDev

kWh/mile 0.204741 0.110993 0.233174 0.1331 0.255296 0.136004 0.253612 0.164074

kWh per Year 2759 1496 3142 1793 3440 1833 3417 2211

Yearly Fuel Bill 361.39$   195.91$   411.57$   234.93$   450.62$   240.06$   447.65$   289.61$   

Yearly charging Event 114 62 130 74 142 76 141 91

Event

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Table 12: Driving Estimation for BEV Driving Behavior 
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CHAPTER 5 - CONCLUSION 

 

The goal of this research was initially to understand the driver profiles for battery 

electric vehicles based on empirical driving behavior. This was executed in a four-

pronged approach: (1) confirm previous literature driver profiles of energy 

consumption, (2) validate profiles by applying an additional clustering method, (3) 

expanding the original dataset, and (4) re-assess those energy consumptive behavior 

profiles. 

(1) This research confirmed the two energy consumption clusters found in 

previous research for Dataset 1 using Ward’s method, a cluster of energy efficient 

drivers and a cluster of energy inefficient drivers. Furthermore, a potential third cluster 

that was discussed in previous research was also found to be not statistically different 

when clustering the entire Dataset 1 with Ward’s method. Since Ward’s method is 

sensitive to outliers, potential outliers are discussed. This research finds driver 34.1 to 

be an outlier which is removed from Dataset 1 and Dataset 1 is clustered again. For 

this reduced Dataset 1 (n=29) two significant and three significantly different groups 

of drivers for energy consumption were found using Ward’s method, an energy 

efficient, an energy inefficient, and an intermediate energy efficient group. Therefore, 

this research shows that even for Dataset 1 using Ward’s method an intermediate 

energy efficient cluster exists when driver 34.1 is excluded from the dataset and thus, 

confirms the assumption of previous research. 
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Two and three statistically different clusters, which are similar to the clustering of 

the reduced Dataset 1, were found when hierarchical clustering was applied to Dataset 

2. The reproducing of the results of Dataset 1 using a different dataset (Dataset 2) 

strengthens the argument that three clusters are significant. 

(2) Furthermore, LPA is introduced as a new clustering approach to check the 

clusters found using hierarchical clustering. The introduction of LPA to the analysis 

methods augments the clustering procedure through a more advanced approach to find 

alternative clusters to the ones found in previous research [47]. Clustering Dataset 1 

with LPA revealed a different picture of the clusters, the energy inefficient cluster was 

different from the rest of the driver population. This supports the assumption of 

previous research that the individuals of most energy inefficiency should be treated as 

a group of its own. The 2-component model from LPA performed on the reduced 

Dataset 1 confirms the two clusters found through hierarchical clustering by creating 

similar. Merely driver 16.1 is assigned to a different cluster than previously. For a 3-

component model LPA finds different clusters. However, the clusters found in the 3-

component LPA model are not convincing with respect to the literature available on 

the influence of driving behavior on energy consumption of BEVs. 

Clustering Dataset 2 with an LPA 2-component model produces the exact same 

two clusters found by hierarchical clustering which provides evidence that the drivers 

are clustered correctly based on a hierarchical 2 cluster model. A 3-component model 

finds groups similar to the hierarchical clustering with the mere exception of drivers 

31.2 and 1.2. These two drivers were assigned to the energy efficient group rather than 

the intermediate energy efficient group. Given the fact that the clusters are very 
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similar for both clustering methods in Dataset 2, this research draws the assumption 

that Ward’s method and LPA produce similar clusters under the condition that there 

are sufficient samples in each Ward’s cluster.  

(3) In addition, since the vehicle, the test route, and the instructions for the drives 

were in the experiment held constant when comparing to previous research, it was 

assumed that both datasets are similar. This research provides evidence that both 

datasets, Dataset 1 (generated in previous research [6]) and Dataset 2 (generated in the 

scope of this research), are statistically similar based on their mean energy 

consumption per mile. Based on this fact Dataset 1(including 30 samples) and Dataset 

2 (including 23 samples) are merged into one Combined Dataset with a total sample 

size of 53 to have a comprehensive dataset.  

(4) The Combined Dataset is clustered based on their mean energy consumption 

per mile and standard deviation, using Ward’s method (used in previous research), as 

well as introducing LPA as a new clustering approach in this research. Clustering the 

Combined Dataset with both clustering methods revealed two insights: (1) The cases 

when Ward’s method and LPA produce similar clusters, and (2) groups of BEV 

drivers, generated using LPA, based on their energy consumption are easily relatable 

to the literature. 

Clustering the Combined Dataset with Ward’s method confirms two and three 

significant different clusters for the Combined Dataset. For a 2-component model, 

LPA finds similar clusters to the hierarchical clustering except from driver 31.1 

(which is assigned to the energy inefficient cluster in LPA). The 3-component model 

for LPA, however, finds two clusters for the main part of the population and one 
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cluster of its own for driver 34.1. This provides evidence that driver 34.1 is an outlier. 

In addition, a 4-component LPA model resulted in three equally shaped clusters and a 

long elliptical shaped cluster for low mean energy consumption (including driver 

34.1). For a 5-component LPA model the main part of the population is clustered in 

equally shaped clusters except for driver 34.1 who is assigned a group on its own. 

Both models suggest that 34.1 should be excluded.  

Given the previous results, driver 34.1 is excluded from the Combined Dataset. 

Clustering the reduced Combined Dataset (n=52) with Ward’s method results in the 

same three clusters as for the non-reduced Combined Dataset just without driver 34.1. 

Applying a 2-component LPA and 3-component LPA model reveals significantly 

different clusters. This might be due to the fact that additional parameters apart from 

mean energy consumption per mile and standard deviation are relevant for 

understanding energy consumption based on driving behavior that are not respected 

here. Interesting is that the clustering pattern seen for the 3-component model is 

similar to the one for Dataset 1, which provides evidence that these clusters are 

relevant. It might be possible that the reasons for this pattern become clearer by 

including additional information into the clustering (e.g., adding a z-axis to the graph 

with acceleration or speed). A 4-component LPA model and 5-component LPA model 

find clusters resulting in equally shaped clusters. Drivers are grouped in accordance to 

what is known in literature and provide evidence that speed and acceleration are main 

factor for describing driving behavior and energy consumption of BEVs. 

In the scope of this research the 4-component LPA model is promoted as the most 

suitable one for clustering the comprehensive dataset. There is a cluster of high mean 
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and high standard deviation which represents the group of high energy consumption. 

There are two clusters of high and low mean at medium standard deviation which 

represent the intermediate energy consuming group. Then there is a group of two 

individuals with low mean and low standard deviation representing the energy 

efficient group. There is a significant difference in energy consumption between 

drivers based on their driving style. In the context of eco-driving, for ICE vehicles, 

education methods have been discussed to increase eco-driving behavior throughout 

ICE vehicle drivers. Based on this research also for BEV drivers educating energy 

efficient driving seems to have considerable benefits. In terms of understanding how 

BEV drivers would need to drive in order to be the most energy efficient, the 

individuals in the energy efficient cluster can be used as a reference since they 

consumed considerable less energy than the rest of the test drivers.  

In summary, this research provides a better understanding of how BEV drivers 

need to be clustered based on their mean energy consumption per mile and standard 

deviation. However, even though acceleration and speed data (key indicators for 

describing the vehicle motion and thus driving behavior) are collected in the scope of 

this research they are not included in the clustering analysis. Including these 

parameters into the analysis would allow a clearer understanding of the characteristics 

of driver groups and based on these driving characteristics derive recommendations 

for educating BEV drivers for energy efficient driving.  

 



 

49 

 

5.1 Limitations and Further Research 

 

This research intended to provide a more detailed analysis of energy consumption 

based on the concept of eco-driving, commonly used for ICE vehicles. This is realized 

by collecting energy consumption data at a resolution of one second. However, due to 

the complications in the data collection process for Dataset 2, only approximately 2/3 

of the collected data was usable. In addition, even though the data from Dataset 1 was 

already pre-prepared, some important information was missing that needed to be 

added in post-processing and the data needed to be aggregated for further analysis in 

this research. This is why this research focused on an advanced clustering of drivers 

based on mean energy consumption per mile and standard deviation rather than an 

analysis of the parameters speed and acceleration on energy consumption.  

With respect to the energy consumption clusters found in this research, it is 

assumed that speed and acceleration are main factors for describing driving behavior. 

However, to explain which driving parameters are responsible for the energy 

consumption pattern seen in this research, acceleration and speed data would need to 

be connected to this analysis.  

Previous research has used the concept of an SDR within a friction circle to 

determine aggressive driving, which is considered to be a main factor for high energy 

consumption for ICE vehicles and EVs alike. The same concept could be used for 

further in-depth analysis of speed which is the other important parameter for 

determining aggressive driving as defined for eco-driving. In this context, a speed 

analysis could be implemented by determining a threshold for every speed limit along 

a road segment. For these road segments the speed measuring point inside the 



 

50 

 

threshold and outside the threshold could be compared and would give a result for 

speed similar to the approach presented in previous research for acceleration. The 

advantage of this approach, in comparing mean speeds, is that only aggressive 

speeding above the threshold would contribute to the aggressive driving analysis, 

leaving out varying speeds within a boundary of safe driving caused by traffic 

concentration or road conditions.  

Relating these two measures to the energy consumption clusters would deliver a 

clearer understanding of which driving behavior would provoke what kind of energy 

consumption pattern for driving BEVs. 

This research focused on clustering drivers based on their energy consumption 

over the entire test route. To reduce variability and generate more robust results 

braking down the test route into segments for each road type would be beneficial. This 

would reveal for which road type there might be the largest difference in energy 

consumption and where adjusting the driving style would generate the most impact in 

terms of energy savings.  

Furthermore, in the scope of this research the traffic concentration was controlled 

indirectly by making sure the test route progressed through an area of low to medium 

traffic generation and by conducting test drives between 10am and 5pm to avoid 

commute rush hours. This experiment setup resulted in minor stops due to high traffic 

concentration during the test drives. For the Combined Dataset, there was no data 

available in the upper left corner of low mean energy consumption and high standard 

deviation, which might have been due to the experimental design. To test whether this 

area might be theoretically feasible, future research is needed to conduct test drives in 
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a high traffic density area outside the time interval of low traffic concentration 

between 10am and 5pm. Due to low speeds with abrupt start and stop movements 

(e.g., in traffic jams), low means with high standard deviations could be possible. This 

approach would generate data in an area where there is no data available yet and 

would give further insights on driving behavior influences energy consumption in high 

traffic concentration conditions. 

 



 

52 

 

APPENDICES 

Latent Profile Analysis for Combined Dataset 

 

 

 

Based on the Dendrogram a reasonable number of cluster seems to be either:  

• 2 cluster, -> 1/2 different 

• 3 clusters, -> 1/2.1 different, 1/2.2 different, 2.1/2.2 different 

•  4 clusters, -> 1.1/1.2 same, 1.1/2.1 same, 1.1/2.2 same, 1.2/2.1 different, 1.2/2.2 different, 2.1/

2.2 different 

 

Different is defined as clusters being statistically different based on Wilcox test 

Same is defined as clusters being statistically different based on Wilcox test 

Appendix 1: Dendrogram Combined Dataset 
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Appendix 2: Scatter plot Combined Dataset 
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Appendix 3: BIC plot Combined Dataset 

 

 

Based on the Latend Profile output: 

• 2 clusters looks good 

• 4 clusters weirdly shaped 

 

> LP_2 <- Mclust(macht3, 2) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_2, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust EII (spherical, equal volume) model with 2 components:  

 

 log.likelihood  n df      BIC      ICL 

       279.0472 53  6 534.2727 523.2111 

 

Clustering table: 

 1  2  

38 15  
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Mixing probabilities: 

        1         2  

0.7104175 0.2895825  

 

Means: 

               [,1]      [,2] 

mean_kWh  0.2378054 0.2545888 

StDev_kWh 0.1340071 0.1662910 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002062574 0.0000000000 

StDev_kWh 0.0000000000 0.0002062574 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002062574 0.0000000000 

StDev_kWh 0.0000000000 0.0002062574 

 
Appendix 4: LPA 2-component model Combined Dataset 

> LP_4 <- Mclust(macht3, 4) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_4, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  
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Mclust EVE (ellipsoidal, equal volume and orientation) model with 4 components:  

 

 log.likelihood  n df     BIC      ICL 

       293.9905 53 17 520.486 510.9118 

 

Clustering table: 

 1  2  3  4  

24  5  8 16  

 

Mixing probabilities: 

        1         2         3         4  

0.4494706 0.1075613 0.1441479 0.2988202  

 

Means: 

               [,1]      [,2]      [,3]      [,4] 

mean_kWh  0.2378713 0.2654454 0.2190753 0.2530571 

StDev_kWh 0.1311981 0.1371618 0.1476446 0.1618040 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  7.757598e-05 2.900464e-06 

StDev_kWh 2.900464e-06 8.419488e-05 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  5.771901e-05 3.201044e-05 

StDev_kWh 3.201044e-05 1.307673e-04 

[,,3] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0001236294 0.0003103536 

StDev_kWh 0.0003103536 0.0008318604 

[,,4] 

              mean_kWh    StDev_kWh 

mean_kWh  5.760717e-05 3.232429e-05 

StDev_kWh 3.232429e-05 1.313716e-04 
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Appendix 5: LPA 4-component model Combined Dataset 

 
> LP_5 <- Mclust(macht3, 5) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_5, parameters=TRUE) # 34.1 a group on its own 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 5 components:  

 

 log.likelihood  n df     BIC      ICL 

        295.756 53 17 524.017 515.7674 

 

Clustering table: 

 1  2  3  4  5  

 1 12 11 23  6  

 

Mixing probabilities: 

         1          2          3          4          5  

0.01886792 0.23027724 0.19809647 0.44624895 0.10650942  

 

Means: 

               [,1]      [,2]      [,3]      [,4]      [,5] 
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mean_kWh  0.2435669 0.2537720 0.2569445 0.2347485 0.2251071 

StDev_kWh 0.2214319 0.1647889 0.1309563 0.1323313 0.1524388 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  1.365545e-04 9.661497e-05 

StDev_kWh 9.661497e-05 1.044259e-04 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  1.365545e-04 9.661497e-05 

StDev_kWh 9.661497e-05 1.044259e-04 

[,,3] 

              mean_kWh    StDev_kWh 

mean_kWh  1.365545e-04 9.661497e-05 

StDev_kWh 9.661497e-05 1.044259e-04 

[,,4] 

              mean_kWh    StDev_kWh 

mean_kWh  1.365545e-04 9.661497e-05 

StDev_kWh 9.661497e-05 1.044259e-04 

[,,5] 

              mean_kWh    StDev_kWh 

mean_kWh  1.365545e-04 9.661497e-05 

StDev_kWh 9.661497e-05 1.044259e-04 

 

 
Appendix 6: LPA 5-component model Combined Dataset 
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Latent Profile Analysis without 34.1 for Combined Dataset 

 

 
Appendix 7: Dendrogram Combined Dataset without 34.1 

Based on Dendrogram 

• 2 cluster -> 1/2 different 

• 3 clusters, -> 1.1/1.2 different, 1.1/2 different, 1.2/2 different 

• 4 clusters, -> 1.1/1.2 different, 1.1/2.1 different, 1.1/2.2 same, 1.1/2.2 different, 

1.2/2.1 different, 1.2/2.2 different, 2.1/2.2 different 
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Appendix 8: Scatter plot Combined Dataset without 34.1 

 
Appendix 9: BIC plot Combined Dataset without 34.1 

Based on Latent Profile Analysis 
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• 2 cluster, possible  

• 3 clusters, look good, although highes cluster convers almost entire range of means 

• 4 clusters, looks good 

> LP_2_o <- Mclust(d3_o, 2) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_2_o, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 2 components:  

 

 log.likelihood  n df     BIC      ICL 

        288.557 52  8 545.504 542.0696 

 

Clustering table: 

 1  2  

34 18  

 

Mixing probabilities: 

        1         2  

0.6593286 0.3406714  

 

Means: 

               [,1]      [,2] 

mean_kWh  0.2407567 0.2463093 

StDev_kWh 0.1316544 0.1615956 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002643498 0.0001036132 

StDev_kWh 0.0001036132 0.0001059172 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002643498 0.0001036132 

StDev_kWh 0.0001036132 0.0001059172 
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Appendix 10: LPA 2-component model Combined Dataset without 34.1 

 

 

> LP_3_o <- Mclust(d3_o, 3) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_3_o, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3 components:  

 

 log.likelihood  n df      BIC      ICL 

       291.0495 52 11 538.6352 530.7024 

 

Clustering table: 

 1  2  3  

24 11 17  

 

Mixing probabilities: 

        1         2         3  

0.4584138 0.2109577 0.3306285  

 

Means: 

               [,1]      [,2]      [,3] 

mean_kWh  0.2346870 0.2547832 0.2459438 
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StDev_kWh 0.1327247 0.1300744 0.1620292 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002075641 0.0001158101 

StDev_kWh 0.0001158101 0.0001052216 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002075641 0.0001158101 

StDev_kWh 0.0001158101 0.0001052216 

[,,3] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002075641 0.0001158101 

StDev_kWh 0.0001158101 0.0001052216 

 
Appendix 11: LPA 3-component model Combined Dataset without 34.1 

> LP_4_o <- Mclust(d3_o, 4) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_4_o, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust EII (spherical, equal volume) model with 4 components:  

 

 log.likelihood  n df      BIC      ICL 
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       289.2242 52 12 531.0335 514.3711 

 

Clustering table: 

 1  2  3  4  

24 10  2 16  

 

Mixing probabilities: 

         1          2          3          4  

0.46446940 0.20855692 0.03728042 0.28969326  

 

Means: 

               [,1]      [,2]      [,3]      [,4] 

mean_kWh  0.2331737 0.2552956 0.2047409 0.2536122 

StDev_kWh 0.1330998 0.1360042 0.1109926 0.1640743 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  9.691648e-05 0.000000e+00 

StDev_kWh 0.000000e+00 9.691648e-05 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  9.691648e-05 0.000000e+00 

StDev_kWh 0.000000e+00 9.691648e-05 

[,,3] 

              mean_kWh    StDev_kWh 

mean_kWh  9.691648e-05 0.000000e+00 

StDev_kWh 0.000000e+00 9.691648e-05 

[,,4] 

              mean_kWh    StDev_kWh 

mean_kWh  9.691648e-05 0.000000e+00 

StDev_kWh 0.000000e+00 9.691648e-05 
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Appendix 12: LPA 4-component model Combined Dataset without 34.1 
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Latent Profile Analysis for Dataset 2 

 

  

Appendix 13: Dendrogram Dataset 2 

Based on Dendrogramm 

• 2 cluster -> 1/2 different 

• 3 clusters -> 1/2.1 different, 1/2.2 different, 2.1/2.2 different 

• 4 clusters -> 1/2.1 different, 1/2.2.1 same, 1/2.2.2 different, 2.1/2.2.1 same, 2.1/2.2.2 different, 

2.2.1/2.2.2 same 
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Appendix 14: Scatter plot Dataset 2 
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Appendix 15: BIC plot Dataset 2 

Latent Profile Analysis 

• 2 clusters, looks good 

• 3 clusters, looks good, 1 low mean low StDev cluster, and 2 high and low mean and high and l

ow StDev clusters, evenly low/low cluster around double the size of the other clusters 

• 4 clusters, doesn´t look very convincing 

 

 

> LP_2.2 <- Mclust(macht3.2, 2) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_2.2, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust VII (spherical, varying volume) model with 2 components:  

 

 log.likelihood  n df      BIC      ICL 

       137.8516 23  7 253.7548 253.5422 

 

Clustering table: 

 1  2  

17  6  

 

Mixing probabilities: 

        1         2  
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0.7424812 0.2575188  

 

Means: 

               [,1]      [,2] 

mean_kWh  0.2446488 0.2526898 

StDev_kWh 0.1327696 0.1678454 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0001125321 0.0000000000 

StDev_kWh 0.0000000000 0.0001125321 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  3.666054e-05 0.000000e+00 

StDev_kWh 0.000000e+00 3.666054e-05 

 

Appendix 16: LPA 2-component model Dataset 2 

> LP_3.2 <- Mclust(macht3.2, 3) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_3.2, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust EII (spherical, equal volume) model with 3 components:  
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 log.likelihood  n df     BIC      ICL 

       140.5317 23  9 252.844 248.6559 

 

Clustering table: 

 1  2  3  

 5 12  6  

 

Mixing probabilities: 

        1         2         3  

0.2407532 0.4959752 0.2632716  

 

Means: 

               [,1]      [,2]      [,3] 

mean_kWh  0.2591571 0.2374764 0.2527587 

StDev_kWh 0.1348584 0.1314781 0.1676018 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  5.232965e-05 0.000000e+00 

StDev_kWh 0.000000e+00 5.232965e-05 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  5.232965e-05 0.000000e+00 

StDev_kWh 0.000000e+00 5.232965e-05 

[,,3] 

              mean_kWh    StDev_kWh 

mean_kWh  5.232965e-05 0.000000e+00 

StDev_kWh 0.000000e+00 5.232965e-05 
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Appendix 17: LPA 3-component model Dataset 2 

> LP_4.2 <- Mclust(macht3.2, 4) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_4.2, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust EVV (ellipsoidal, equal volume) model with 4 components:  

 

 log.likelihood  n df      BIC      ICL 

       161.8902 23 20 261.0704 260.1904 

 

Clustering table: 

1 2 3 4  

8 6 2 7  

 

Mixing probabilities: 

        1         2         3         4  

0.3473287 0.2613694 0.1018124 0.2894895  

 

Means: 

               [,1]      [,2]      [,3]      [,4] 

mean_kWh  0.2469795 0.2388604 0.2437652 0.2545422 

StDev_kWh 0.1260571 0.1347978 0.1638560 0.1592611 
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Variances: 

[,,1] 

             [,1]         [,2] 

[1,] 8.886808e-05 2.470083e-05 

[2,] 2.470083e-05 9.177887e-06 

[,,2] 

             [,1]         [,2] 

[1,] 4.030396e-05 3.144028e-06 

[2,] 3.144028e-06 5.343776e-06 

[,,3] 

            [,1]        [,2] 

[1,] 0.003010840 0.002059617 

[2,] 0.002059617 0.001408985 

[,,4] 

              [,1]          [,2] 

[1,]  6.272763e-05 -9.920041e-05 

[2,] -9.920041e-05  1.601561e-04 

 
Appendix 18: LPA 4-component model Dataset 2 
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Latent Profile Analysis for Dataset 1 (Dans Dataset) 

 
Appendix 19: Dendrogram Dataset 1 

 

Based on Dendrogramm: 

• 2 clusters -> 1/2 different 

• 3 clusters -> 1/2.1 same, 1/2.2 different, 2.1/2.2 same 

 

Dans and my Dendrogram are the same with distinction of the 34 being one branch 

higher in my Dendrogram 

Also heights are different I guess 
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Appendix 20: Scatter plot Dataset 1 
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Appendix 21: BIC plot Dataset 1 

Based on Latent Profile Analysis 

• 2 clusters do not look convincing, very few values in the second cluster (high mean, 

high StDev) 

> LP_2.1 <- Mclust(macht3.1, 2) 

fitting ...  

  |========================================================================

========================================| 100% 

> summary(LP_2.1, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust EVE (ellipsoidal, equal volume and orientation) model with 2 components:  

 

 log.likelihood  n df      BIC      ICL 

       158.6875 30  9 286.7642 284.2076 

 

Clustering table: 

 1  2  

26  4  

 

Mixing probabilities: 

        1         2  

0.8727979 0.1272021  

 



 

76 

 

Means: 

               [,1]      [,2] 

mean_kWh  0.2362131 0.2625063 

StDev_kWh 0.1391670 0.1814629 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0003060054 0.0001049814 

StDev_kWh 0.0001049814 0.0001896629 

[,,2] 

               mean_kWh     StDev_kWh 

mean_kWh   0.0005627130 -0.0009174876 

StDev_kWh -0.0009174876  0.0015794913 

 
Appendix 22: LPA 2-component model Dataset 1 
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Latent Profile Analysis without 34.1 for Dataset 1 (Dans Data) 

 
Appendix 23: Dendrogram Dataset 1 without 34.1 

Based on Dendrogram: 

• 2 clusters -> 1/2 different 

• 3 clusters -> 1.1/1.2 different, 1.1/2 different, 1.2/2 different 

• 4 clusters -> 1.1/1.2 different, 1.1/2.1 same, 1.1/2.2 different, 1.2/2.1 different, 1.2/2.2 

different, 2.1/2.2 different 
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Appendix 24: Scatter plot Dataset 1 without 34.1 
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Appendix 25: BIC plot Dataset 1 without 34.1 

Based on Latent Profile Analysis 

• 2 clusters, looks most convincing 

• 3 clusters, medium group covers entire scope of energy consumption 

• 5 clusters, does not look convincing  

 
> LP_2.1_o <- Mclust(d3.1_o, 2) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_2.1_o, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust EII (spherical, equal volume) model with 2 components:  

 

 log.likelihood  n df      BIC      ICL 

       154.7171 29  6 289.2305 282.5396 

 

Clustering table: 

 1  2  

15 14  

 

Mixing probabilities: 
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        1         2  

0.4938913 0.5061087  

 

Means: 

               [,1]      [,2] 

mean_kWh  0.2264037 0.2521208 

StDev_kWh 0.1298654 0.1536360 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0001816956 0.0000000000 

StDev_kWh 0.0000000000 0.0001816956 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0001816956 0.0000000000 

StDev_kWh 0.0000000000 0.0001816956 

 

Appendix 26: LPA 2-component model Dataset 1 without 34.1 

> LP_3.1_o <- Mclust(d3.1_o, 3) 

fitting ... 

  |========================================================================

========================================| 100% 

> summary(LP_3.1_o, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3 components:  
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 log.likelihood  n df      BIC      ICL 

       162.1819 29 11 287.3235 286.0456 

 

Clustering table: 

 1  2  3  

20  3  6  

 

Mixing probabilities: 

        1         2         3  

0.6974969 0.1036055 0.1988976  

 

Means: 

               [,1]      [,2]      [,3] 

mean_kWh  0.2384349 0.2641326 0.2299986 

StDev_kWh 0.1397074 0.1322704 0.1545844 

 

Variances: 

[,,1] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002712690 0.0002510216 

StDev_kWh 0.0002510216 0.0002721135 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002712690 0.0002510216 

StDev_kWh 0.0002510216 0.0002721135 

[,,3] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002712690 0.0002510216 

StDev_kWh 0.0002510216 0.0002721135 

 

Appendix 27: LPA 3-component model Dataset 1 without 34.1 
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> summary(LP_5.1_o, parameters=TRUE) 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

 

Mclust VEV (ellipsoidal, equal shape) model with 5 components:  

 

 log.likelihood  n df      BIC      ICL 

       181.7273 29 25 279.2722 275.3919 

 

Clustering table: 

 1  2  3  4  5  

 3  3  4 12  7  

 

Mixing probabilities: 

        1         2         3         4         5  

0.1025729 0.1034480 0.1369193 0.4467520 0.2103078  

 

Means: 

               [,1]      [,2]      [,3]      [,4]      [,5] 

mean_kWh  0.2271877 0.2641559 0.2193313 0.2420601 0.2406859 

StDev_kWh 0.1212504 0.1322585 0.1471300 0.1489012 0.1384169 

 

Variances: 

[,,1] 

               mean_kWh     StDev_kWh 

mean_kWh   5.173992e-07 -1.182688e-06 

StDev_kWh -1.182688e-06  3.025530e-06 

[,,2] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0002148284 0.0002045509 

StDev_kWh 0.0002045509 0.0002056943 

[,,3] 

              mean_kWh    StDev_kWh 

mean_kWh  3.374377e-05 5.934865e-05 

StDev_kWh 5.934865e-05 1.128365e-04 

[,,4] 

              mean_kWh    StDev_kWh 

mean_kWh  0.0005113596 0.0005264828 

StDev_kWh 0.0005264828 0.0005725577 

[,,5] 

              mean_kWh    StDev_kWh 

mean_kWh  1.026879e-04 4.429563e-05 

StDev_kWh 4.429563e-05 2.108830e-05 
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Appendix 28: LPA 4-component model Dataset 1 without 34.1  
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Influence of acceleration on driving behavior 

 

Apart for the energy consumption clustering, at an earlier state this research tried 

to understand the influence of acceleration and speed on the energy consumption of 

electric vehicles based on the eco-driving concept. Therefore, two datasets are compared 

which collected data on acceleration, speed, and energy consumption of an electric 

vehicle, for their statistical similarity concerning state of charge consumption. This 

analysis reveals that both datasets are statistically similar. 

In addition, it is proven that the two acceleration measurement methods used for 

Dataset 1 and Dataset 2 respectively do generate different results. These clusters of 

drivers are compared according to aggressive and non-aggressive driving behavior as 

defined in the eco-driving concept 

As mentioned the SDR is an area within the friction cycle of wet roads that 

applies an amount of mental workload on drivers, which is mainly determined by 

acceleration and speed, that ensures safe driving [38].This area is limited by 2.5m/s2 

for lateral acceleration and positive longitudinal acceleration, and by 3.0m/s2 in 

negative longitudinal direction [38]. The upper left and right edges between these 

straight lines, spanning the boundaries in longitudinal and lateral direction, are 

described by Equation 5 and Equation 6. The lower left and right edges between the 

straight lines, spanning the negative acceleration boundaries in longitudinal and lateral 

direction, are described by Equation 7 and Equation 8. Appendix 29 a shows the SDR 

as described by these functions. 

Equation 5: Equation describing the upper right edge of the Safe Driving Region [38] �ሺݔሻ = Ͳ.ͷͲͻ ∗ ଶݔ − ʹ.͵ͷͳ ∗ ݔ + ʹ.ͺͶͳ 
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Equation 6: Equation describing the upper left edge of the Safe Driving Region [38] �ሺݔሻ = Ͳ.ͷͲͻ ∗ ଶݔ + ʹ.͵ͷͳ ∗ ݔ + ʹ.ͺͶͳ 

Equation 7: Equation describing the lower right edge of the Safe Driving Region [38] �ሺݔሻ = −Ͳ.ͶͶ ∗ ଶݔ + ʹ.͵ͻͷ ∗ ݔ − ͵.͵Ͷͻ 

Equation 8: Equation describing the lower left edge of the Safe Driving Region [38] �ሺݔሻ = −Ͳ.ͶͶ ∗ ଶݔ − ʹ.͵ͻͷ ∗ ݔ − ͵.͵Ͷͻ 

Appendix 29 b displays the friction circles, while the biggest one represents the 

friction circle for dry surfaces, followed by the next smaller one for wet surfaces, and 

the smallest one for icy surfaces. The SDR described above is mainly inside the wet 

surface friction cycle with a little extension in negative longitudinal acceleration.  

As mentioned aggressive participants had more than 10% of their acceleration 

measurement points outside the SDR. For the safe drivers it was less than 8% [38]. To 

compare the results for Dataset 1 and Dataset 2, this research is following the same 

approach by evaluating what percentage of acceleration measurement points per driver 

are outside of SDR. Thus, a threshold for a share of acceleration measurement points 

inside and outside of SDR, based on the boundaries given in literature, is set up to 

     a)      b) 

Appendix 29: Area of acceleration defining the Safe Driving Region [38] 
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distinguish aggressive from non-aggressive acceleration. Even though the same 

method, is applied to analyze the acceleration in Dataset 1, a different algorithm is 

implemented for Dataset 2 since the one previously stated is not comparable with the 

data layout from Dataset 2. The algorithm developed for this research was tested on 

the data from Dataset 1 and could reproduce the results indicating that it worked 

properly.  

 

A posteriori change of methodology 

 

Originally this research was conducted as an extension to increase the sample size 

for Dataset 1. The goal was to validate the clusters of energy consumption for drivers, 

recorded at a higher resolution, as well as the influence of acceleration and speed on 

energy consumption. For this research it was possible to collect energy consumption at 

a higher resolution than 0.5% for SOC which drop down around every 800m (0.5 

miles) like in [6]. This was done by collecting Amperage and Voltage which was 

reported and collected at a sampling rate of 1 second by the EV’s OBDII. Based on the 

relationship between electrical power and Amperage and Voltage, electrical power for 

each recorded operation state was calculated. From looking at the positive or negative 

algebraic sign of energy consumption it was possible to determine overall energy 

consumption or recuperation of the EV for each recorded sample.  

However, there were problems during the data collection which reduced the 

sample size that could be used for analysis by almost half. Even though the experiment 

for Dataset 2 was intended to be as similar as possible to the experiment for Dataset 1, 

a closer analysis of Dataset 1, in the scope of this research, indicated that differences 
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of the data layout made the two datasets difficult to compare. Some of the minor 

challenges were the different units for Dataset 1 in mph and Dataset 2 in km/h which 

could be solved by converting mph to km/h (by applying a factor of 1.61 to km/h). 

One of the greater challenges was the different measurement methods for collecting 

acceleration data. For Dataset 1, acceleration was measured with a g-force meter and 

for Dataset 2 with a linear accelerometer. For the conversion for both measures a 

procedure is proposed in the section Future Research in this research since the 

implementation would have exceeded the scope of this research.  

As mentioned previously, even though a professional solution was used for data 

collection there were still some issues with the collection process, meaning that not all 

data was collected correctly. The collecting device lost GPS signal during some test 

drives for shorter or longer periods of time, which resulted in a virtual jump of the 

vehicle along the road. This was a problem since the GPS signal was intended to 

match the vehicle’s position along the route with its operation state parameters. This 

problem could not be completely solved even after applying an extension cord to place 

the device closer to the wind shield for a better GPS connection. Another problem that 

seemed to be related to the malfunction of the GPS was that, for some test drives, the 

recording of all CAN bus data stopped in the middle of the drive. Even intense search 

for possible reasons could not detect the problem. However, it must be mentioned that 

the researcher’s ability for defect analysis was limited to an analysis of the experiment 

process. This revealed the downside of using a holistic solution provided by an 

external company for data collection, that it was not possible to access the device or 

the software. Thus, the problem could not be identified which could have provided 
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knowledge to give recommendations for improvement for future research using a 

similar experimentation layout.  

Acceleration is one of the parameters used to describe energy consumption in eco-

driving which is used as a reference for this research. Concerning Dataset 1, drives 37 

and 38 which were not included in the energy consumption analysis, were control 

drives for inefficient and efficient drivers respectively. The efficient control drive had 

4.08% of their acceleration measurement points outside SDR and the inefficient 

control drive had 9.53% acceleration measurement points outside of SDR. The 30 

samples for Dataset 1 plotted in a boxplot diagram, showed that for efficient drivers 

the mean percentage of points outside SDR was at around 5% and around 6% for the 

inefficient group. Both groups were statistically different for percentage of 

acceleration measurement points outside SDR [6]. Important to note is that this 

analysis was conducted only for the two groups of energy efficient and energy 

inefficient drivers but not for the medium energy consuming group, which was found 

in this research, since this previous research only found two clusters to be significantly 

different based on the clustering method. 

 

Difference in acceleration measuring 

 

For Dataset 2, regardless of the classification of energy consumption, all test 

drives, except for one, had zero percent of measuring points outside SDR. Only test 

drive 12 had around 1% of acceleration measurement points outside of the SDR and 

belonged to the medium energy consuming group. This is surprising since aggressive 

acceleration, in accordance to eco-driving, is considered to have a negative effect on 

energy consumption (i.e. more energy should be consumed). This might be either a 
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lead that aggressive acceleration might not be an important factor for driving BEVs 

when energy efficient driving is pursued or that the acceleration data has to be 

analyzed at a more detailed level. 

The discrepancy of acceleration measurement points within SDR between Dataset 

1 and Dataset 2 could have been due to the fact that different measuring devices and 

software was used to collect acceleration data in each experiment. As mentioned the 

acceleration data for Dataset 1 and Dataset 2 differed strongly from each other. Beside 

the different means in acceleration measurement points outside SDR, which was 

around 5.7% for Dataset 1 and around 0% for Dataset 2, the values of Dataset 1 were 

multiplied by a factor of around when compared to the values from Dataset 2. This is 

potentially due to the different setups for the acceleration data. The first dataset used 

an iPhone 6 with the application SensorPlay to collect data while Dataset 2 used a 

Samsung Galaxy S7 Edge with the application Physics Toolbox Suite. Both phones 

are recent models and their acceleration sensors should be sufficiently accurate. 

Beside the differences in hardware and software, which should not have a huge effect 

on the acceleration measurements since both phones and software are considered to be 

accurate, the main difference between the two setups was the measuring method.  

Appendix 30 shows the orientation of both cellphones in the car, with the blue 

arrows representing the x-axis recording lateral acceleration, the red arrows 

representing the y-axis recording longitudinal acceleration, and the green arrows 

representing the z-axis recording translational acceleration. 
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For Dataset 1, the acceleration was measured with a g-force meter which reads 

direct values from the cellphone accelerometer. Besides the different scale in g (9.81 

m/s2), it would record a constant value of 1g in the z-direction since this is the constant 

acceleration of earth’s gravity. This would not affect the x- and y-direction 

measurements, which were of interest in previous research and this research if the 

cellphone’s orientation is constantly perpendicular to the earth’s center of gravitation, 

so that the z-axis would be directly through the center of earth’s gravitation. However, 

since the test route includes different elevations, the g-force gets distributed between 

the z-axis and the other axes which results in changes of acceleration values for both 

the x- and y-axis without the vehicle being accelerating. This gives a possible 

explanation for why the acceleration values of Dataset 1 are generally larger in the x- 

and y-directions than the ones from Dataset 2.  

For Dataset 2, a linear accelerometer is used that derives linear acceleration from 

the internal cellphone accelerometer, only considering changes in acceleration for all 

axes and eliminating the constant earth acceleration on the z-axis of 1*g using further 

Appendix 30: Cellphone orientation showing z-axis (green), x-axis (blue) and y-axis(red) [6] 
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cellphone sensor like a gyroscope. The values are recorded in the physical unit for 

acceleration (m/s2). So, these values represent the relative change in acceleration of 

the vehicle without being influenced by the earth’s gravitation during changing 

elevations along the test route.  

To understand the differences between these two measurement methods, g-force 

meter and linear accelerometer, further test drives were performed with both devices 

recording acceleration data. First, to test the difference in sensors for each cellphone 

and the difference in recording software for each app, 2 test drives were conducted 

over a distance of less than 1 mile with both cellphones recording acceleration with a 

g-force meter. Plotting and comparing the results from both recordings, visually they 

Appendix 32: Data for test drives 1.2 for Calibration test for iPhone S6 and Android Samsung Galaxy S7 
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Appendix 31: Cross-correlation test for test drives 1.1 and 1.2 in x-direction 
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look very similar. A cross correlation test revealed a mean correlation value of around 

0.85 in x direction and around 0.95 in y direction, indicating that they are highly 

correlated for the respected directions. 

Appendix 32 exemplary shows the recordings in the x-direction for the first test 

drive using a g-force meter on both devices, with the blue line representing the values 

measured by the iPhone and the orange line representing the values measured by the 

Android Phone. Appendix 31 show the cross-correlation between both signals. 

In a second test, 2 further test drives were conducted using their cellphones’ 

original measurement methods i.e. g-force meter for the iPhone S6 using SensorPlay 

and linear accelerometer for the Android Samsung Galaxy S7 Edge using Physics 

Toolbox Suite. From a qualitative, visual analysis of both datasets, even though the 

two signals show a similar pattern they look different. The cross-correlation reveals a 

correlation value of around 0.58 for signals in the x-direction and a value of 0.5 for 

signals in the y-direction, indicating that they are not highly correlated.  

A visual analysis, especially in the y-direction, shows that there are negative 

acceleration peaks with a plateau at the peak point for the iPhone data. This could be a 

result of the g-force getting distributed to the y-axis due to inclination of the car when 

applying the brakes.  

Appendix 34 exemplary shows the acceleration measurements for the iPhone 

using a g-force meter and the Android Phone using a linear accelerometer in the y-

direction, with the blue line representing the iPhone measurements and the orange line 
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representing the Android Phone measurements. Appendix 33 shows the cross-

correlation values for both test drives conducted for this analysis. 

 

Results from acceleration measurement comparison 

 

The results from these test drives show that both setups collect similar 

acceleration data when using different phones and different applications as long as the 

measurement method is the same, here g-force meter. Furthermore, it gives a possible 

explanation as to why the values for the acceleration measurements with the g-force 

meter are significantly higher than the ones from the linear accelerometer. Since these 

plateaus of negative acceleration for the g-force meter from the iPhone are clearly 

outside the SDR of 2.5 m/s2 and aggressive driving is determined by acceleration 
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Appendix 34: Test drive 2.1 for using g-force meter using at iPhone and linear accelerometer at Android Phone in y-

direction 

Appendix 33: Cross-correlation for test drives 2.1 and 2.2 in y direction 
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measurement points outside SDR, the plateaus increase this number considerably 

compared to a single peak which is mostly seen when using the linear accelerometer 

measurements form the Android Phone. 

Conducting the SDR analysis for these two test drives reveals a percentage of 0 

acceleration measurement points outside of the SDR for both test drives concerning 

the Android Phone data. For the iPhone data a percentage of 25.5 for test drive one 

and a percentage of 26.7 for test drive two is obtained. For the data collected with the 

iPhone, the values are considerably higher than the ones from Dataset 1. This is due 

the fact that it was deliberately driven very aggressively to generate a high amplitude 

for the measuring devices. The results show that the measurement method is relevant 

for the SDR analysis. G-force meter generates considerably more acceleration 

measurement points outside SDR than the linear accelerometer and supports the claim 

that the plateaus of measuring point around the peaks have a strong influence on the 

results of the SDR analysis. 

A comparison of acceleration and speed data would have given insights about the 

driving behavior in both datasets. However, since the acceleration data of the first 

dataset was collected with a different method than the data for the second dataset, this 

biased the results for the SDR analysis so that they could not be used for comparison. 

Even though it was not possible to make both datasets comparable, this research can 

prove that the influence of the different data collection methods is not negligible. In 

addition, it showed that the g-force meter used for the first dataset generated 

considerably higher values in SDR analysis in test drives than the linear accelerometer 

used for Dataset 2. This is a valuable contribution for any future research that intends 
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to collect acceleration data, especially in the context of understanding driving 

behavior. 

 

Conclusion and future research 

 

During the investigations of this research, major differences between the 

acceleration data from Dataset 1 and Dataset 2 was revealed. This was due to the fact 

that the acceleration data for both datasets was measured with different methods (a g-

force meter for Dataset 1 and a linear accelerometer for Dataset 2). This research 

showed that there are considerable differences in the results for these measuring 

methods on the same test drive. Also, it shows that the values from the SDR analysis 

of Dataset 1 are by a factor of 10 larger than the ones from Dataset 2. An assumption 

is that this is due to the contribution of earth’s gravity to acceleration in the x- and y-

direction through inclination of the vehicle while either accelerating or braking or 

going uphill or downhill along the test route.  

However, Dataset 1 consists of a large number of test drives which, apart from 

the acceleration measurement, are accurate. To make Dataset 1 comparable for future 

evaluation the biasing effect of earth’s gravitation would need to be stripped from the 

dataset. Earth’s gravitation has a strong effect on the acceleration in the y-direction 

when the EV goes uphill or downhill so, to erase the acceleration of gravity in the y-

direction, degrees of elevation could be derived from the altitude data from Dataset 1 

and, based on this, the contribution of gravity in the y-direction could be determined. 

This might give more accurate results for the acceleration values in the y-direction. 

The limits of this approach, however, is that inclination of the vehicle, which seemed 
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to have a great impact on the results conducted in this research for comparing the 

measurement methods, is not recorded and hence cannot be excluded from the 

measurements. This problem also arises in the y-direction when braking or 

accelerating as well as in the x-direction when going around a corner at sufficiently 

high speed. 
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