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ABSTRACT 

 

Almost one in four bridges in Rhode Island have been rated as structurally 

deficient in 2017 according to the American Society of Civil Engineer‘s (ASCE) most 

recent Report Card. This makes Rhode Island the state with the highest rate of 

structurally deficient bridges in the USA. Since the allocated financial resources from 

federal, state and local level are scarce, effective bridge management is of crucial 

importance to maintain bridges in a sufficient condition and preserve them from decay. 

A major part of Bridge Management Systems (BMS) is prediction models, which have 

become increasingly important in their function to forecast bridge durability and their 

need for repair and maintenance. 

In this study, three deterioration models, one for each major bridge element 

(i.e., deck, superstructure, and substructure) have been developed for the state of 

Rhode Island. The deterioration models were designed as Dynamic Bayesian 

Networks (DBN), which are based on annually recorded inspection data of Rhode 

Island’s bridges provided by the National Bridge Inventory (NBI). Several predictions 

have been made with varying input parameters for the model‘s variables, which 

illustrate the capability of the developed prediction models. Moreover, the DBN's 

updating ability is demonstrated by several sample predictions which incorporate the 

influence of simulated maintenance actions.  

Additionally, the NBI database has been used to investigate the correlation 

between several bridge related parameters and the deterioration of Rhode Island’s 

bridges. 
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1. INTRODUCTION 

 

1.1 Motivation 

 

Infrastructure facilities are an indispensable element for every society. Their 

function in moving people and connecting communities and business is an essential 

cornerstone for economic growth. Within this infrastructure, bridges play a central 

role. The assurance of its functional capability is of crucial importance for a safe 

traffic flow. The American Society of Civil Engineers (ASCE) is providing a way to 

determine what the quality of America‘s infrastructure is, by creating an assessment of 

all essential infrastructure facilities in the USA. This assessment is conducted every 

four years and the results are published in the ASCE's Report Card for America‘s 

Infrastructure. With grades from A to F, a rating shall give a rough estimate of the 

infrastructure's condition. In the most recent Report Card of 2017, America‘s 

infrastructure has been rated with a D+. The rating is put together of 16 different 

categories in total. One of those categories is America‘s bridges, which have been 

graded slightly better with a C+. However, both results are by no means satisfactory. 

Taking a closer look at the report, there are currently 614.387 bridges in the USA, 

9.1% of which have been declared as structurally deficient. Although the condition of 

the nation‘s bridges has improved over the last 10 years, as in 2006 about 12% of all 

bridges were rated structurally deficient, the individual states show widely differing 

values. While Utah has with 1.6% the lowest amount of deficient bridges on average, 

Rhode Island stands out with alarming 24.9%. Moreover, the service life of many 

bridges in the USA is about to come to an end. Almost 40% of all bridges in the USA 
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have already reached their 50th year or even more. Since most bridges have been 

designed for a service life of 50 years, major repair and rebuilding measures or the 

closing of the affected bridges will be an inevitable consequence.  

The maintenance and repair of America's bridges require a lot of investment. For 

instance, in 2012 approximately $17.5 billion dollars were been spent on the repair 

and maintenance of bridges, according to the federal government. However, the 

provided financial resources are nowhere near sufficient. Currently, there is an 

estimated backlog of about $123 billion dollars for bridge rehabilitation [1]. But not 

only are more financial resources necessary from federal, state and the local level, also 

engineers, planners, and transportation agencies have to ask themselves what can be 

done to deal with this problem. An effective tool to manage and optimize the process 

of inspection, maintenance and the repair of bridges, and therefore save immense 

financial resources, are Bridge Management Systems (BMS) [2]. An essential 

component of a BMS is deterioration models, which are able to predict the disrepair of 

bridges, and can further be used to schedule and manage inspections and maintenance 

actions. Furthermore, the deterioration models can be used to examine the impact of 

certain parameters, like material properties, the bridge's environment, and daily traffic 

on the deterioration of bridges. In summary, bridge deterioration models contain great 

potential to improve decision-making processes regarding bridge maintenance. 
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1.2 Objective and Scope 

 

Within this study, one objective was to investigate possible correlations between 

the deterioration of bridges in Rhode Island and several bridge related factors. 

However, the main goal of this study was to develop a deterioration model for bridges 

in Rhode Island. In fact, three deterioration models were developed for the individual 

bridge elements namely deck, superstructure and substructure. The purpose of these 

deterioration models is to predict the future condition of the respective bridge 

elements.  

The proposed deterioration models were designed as Dynamic Bayesian Networks 

(DBN), which describes the relationship between several factors that affect bridge 

deterioration and the individual bridge element conditions. In order to specify the 

DBNs, a comprehensive source of data was required. For this purpose, the National 

Bridge Inventory (NBI) was chosen, as it records detailed bridge information for 

almost every bridge in the USA since 1992. From the NBI several items were selected 

to represent variables in the deterioration models. Before the deterioration models 

could be developed the obtained datasets from the NBI needed to be filtered in order 

to sort out unusable and incorrect data. Furthermore, using sensitivity analysis, the 

impact of the model’s variables and the bridge elements conditions were investigated. 
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1.3 Outline 

 

This thesis will describe in detail how the proposed bridge deterioration models for 

each bridge element (i.e. Deck, superstructure, and substructure) were developed using 

Bayesian theory and the NBI database. Beforehand, the obtained data from the NBI 

was analyzed to examine the relevance of several selected parameters regarding bridge 

deterioration in Rhode Island. 

Chapter 2 two provides a literature review on bridge management, including an 

introduction to Bridge Management Systems (BMS), the NBI and the bridge element 

condition ratings provide by the Federal Highway Administration (FHWA), which are 

the basis of the developed deterioration model. This chapter further gives background 

information on deterioration of reinforced concrete bridges and preventative design 

and maintenance. In Chapter 3, the theory of Bayesian Networks (BN) and Dynamic 

Bayesian Networks (DBN) is described. Furthermore, a description of two methods on 

how to determine BN parameters is given. Chapter 4 includes a parameter analysis 

using the NBI database. In this chapter, the obtained NBI datasets were filtered before 

deterioration rates were computed in order to analyze any correlation between the 

individual bridge elements and several selected NBI items. In Chapter 5 the 

development of the deterioration models is described in detail, using the methods 

explained in Chapter 3. The ability of the developed models is demonstrated by the 

performance of several predictions based on various assumptions. Furthermore, this 

chapter includes the performance of sensitivity analyses to investigate the impact of 

the model’s variables on the bridge elements. Lastly, Chapter 6 provides the 
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conclusion of this study, consisting of a summary of the performed analysis and 

gained findings, a discussion of the results derived from the deterioration models 

output, and finally a recommendation for future work. 
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2. LITERATURE REVIEW 

 

2.1 Bridge Management 

 

The management and maintenance of infrastructure facilities are of major 

importance to ensure a functional infrastructure network to the public. With the ever-

increasing expansion of America‘s roads and bridges, the task of keeping the 

infrastructure in a sufficient condition becomes a challenge which is difficult to 

execute.  

 The expenses of maintaining a bridge in good condition, are increasing as 

bridges become older. Therefore, the controlling of maintenance and repair costs is an 

important element of bridge life-cycle cost analysis. For local and state transportation 

agencies, which have large bridge networks under their jurisdiction, and have to deal 

with limited available funds, bridge management decision making is a complicated 

and difficult process. To facilitate bridge management, the technological progress of 

recent years made it possible to develop analytical tools for decision making. These 

tools, in form of BMS software packages, are increasingly being used by agencies to 

achieve a well-developed bridge network management. 

According to the U.S. Department of Transportation (USDOT), the 

development of bridge management methods is an important factor for several reasons 

[3]. First of all, along with the expansion of infrastructure, bridges also tend to 

deteriorate faster, due to an increase in usage. The ability to perform effective bridge 

management should be given even for bridge agencies who have to deal with 
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personnel constraints. One of the greatest issues and most significant factors regarding 

the goal of keeping bridges in satisfactory condition are limited financial resources [3]. 

Since bridge agencies have to take care of a great number of bridges, it is inevitable to 

apply strategic management practices, in order to maintain the whole bridge network 

in an acceptable condition and keep life cycle costs as low as possible. To effectively 

perform these tasks computerized bridge management tools are used by bridge 

agencies [4].  

 

 

2.1.1 National Bridge Inventory (NBI) 

 

The National Bridge Inventory (NBI) was initiated in 1972 with the purpose of 

providing a database, which stores detailed information for almost every single bridge 

in the United States. It contains over 100 items for each bridge, which constitute 

relevant bridge information such as location, owner, year built, average daily traffic, 

design load, type of service, structure length, inspection date, and many more. These 

items are listed and defined in the Recording and Coding Guide for the Structure 

Inventory and Appraisal of the Nation's Bridges, provided by the Federal Highway 

Administration (FHWA). The main purpose of this guide is to give state, federal and 

other agencies guidance on how to evaluate and code specific bridge data, by 

providing explicit explanations and instructions for coding data that will prepare the 

items in the NBI [5]. 

 The items in the NBI for each bridge, can basically be divided into two groups, 

such as which do not change over time, usually data regarding the construction of the 
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bridge such as year built, location, type of service, and data which needs to be updated 

in certain periods, such as average daily traffic and condition ratings. 

 The appraisal data in the NBI has to meet the requirements of the National 

Bridge Inspection Standards (NBIS). In the NBIS, the federal requirements for 

inspection operations, the demanded number of inspections, necessary qualification of 

the inspectors, as well as the establishment and administration of a state bridge 

inventory are specified. According to the NBIS, each highway state department is 

required to provide the capability to conduct inspections, generate reports, and give 

ratings, pursuant to the American Association of State Highway and Transportation 

Officials (AASHTO) manual. The Transportation agencies and bridge owners have to 

keep a record of bridges which include fracture critical members. In the course of this, 

it is necessary to specify their location, give a description of the respective bridge 

members and keep a record of past inspections along with the applied procedures, 

which were made on the affected members. A fracture critical member, as defined in 

the NBIS, is bridge member under tensile stress, whose malfunction will result in a 

collapse of the entire bridge or certain bridge parts [5]. 

 It is the responsibility of each state to generate and hold a bridge inventory, 

including the collection and storage of the required data. The time limit to register a 

newly completed bridge in the inspection reports and computer inventory files is 90 

days for bridges under the responsibility of the state, and 180 days for all other bridges 

on public roads within the state. The same is applicable in cases of alteration or 

reconstruction of existing bridges, as well as the placement of load restriction signs in 

front of the affected bridges. 
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 The NBIS further requires state and local agencies to conduct bridge 

inspections every 24 months. Exceptions can be made for short-span bridges in good 

condition with low average daily traffic. In this case, an inspection period of 48 

months is sufficient. However, for bridges that show critical damage and deterioration, 

it is recommendable for bridge owners to inspect the affected bridges at intervals of 

less than 24 months [6]. In general, the interval of bridge inspections depends mainly 

on certain bridge characteristics such as age, traffic values, current condition and 

examined defects. The analysis of these characteristics is the task of the person who is 

responsible for the inspection program. For some bridges, though, the inspection 

interval is allowed to extend 48 months. These bridges need to have proved 

satisfactory values for the above-mentioned characteristics in most previous 

inspections [5]. 

 To guide state, federal and other agencies in inspecting bridges and creating 

reports, the AASHTO provides a manual to evaluate the condition of bridges 

(AASHTO Manual for Condition Evaluation of Bridges). Along with the Bridge 

Inspector's Training Manual/90, the inspectors receive explanations of how to create 

detailed reports about the condition of the bridges major components. The values of 

several items in the NBI are based on these reports, especially the condition ratings for 

deck, superstructure, and substructure. According to the Recording and Coding Guide 

for the Structure Inventory and Appraisal of the Nation's Bridges, inspection reports 

should, in general, be composed of three major components [5]. First of all, a 

statement of what measurements had been taken in the course of the inspection. 

Further, the description of discovered damage or deterioration, as well as an evaluation 
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of the affected bridge components. And finally, a definition of all critical members, 

which should be kept under close surveillance in following inspections, along with 

comments on instructions, concerns or recommendations. An inspection report should 

further include drawings, test results or calculations, if applicable [5]. 

 A bridge inspector is required to have a certain minimum qualification. This 

qualification can either be a registered professional engineer, or holding the 

qualification for such registration, or to have at least ten years of experience in 

inspecting bridges, along with the completion of a broad training in accordance with 

the Bridge Inspector's Training Manual. To be in charge of a bridge inspection team, a 

more comprehensive qualification is required, which is stated in the NBIS [5].  

The NBI database can be used to identify which bridges have a strong need in 

maintenance, repair and replacement actions. Because of this, the NBI is the basis for 

several BMS, such as the Indiana Bridge Management Systems and Pontis 

Management System. Several items of the NBI are required for analysis in those BMS. 

In general, the performance and efficiency of a BMS depend mainly on the speed and 

storage capabilities of its database. 

 

 

2.1.2 Bridge Condition Ratings 

 

To determine and evaluate the condition of bridges, periodic inspections are an 

essential instrument [7]. For highway bridges, the whole bridge, as well as major 

elements, should be examined independently every two years. These elements include 

the bridges deck, superstructure, and substructure [8]. 
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 Based on these inspections, condition ratings of the whole bridge and the 

individual elements will be developed subsequently. These condition ratings are 

developed by the FHWA for all bridges in the USA and stored in the NBI. The purpose 

of the condition ratings is to give a rough estimation of the overall structural condition 

of the respective bridge components, by comparing their current condition to the 

condition right after the construction, which normally shouldn’t show any 

considerable deficiencies [5]. In the course of this, the bridge components should 

always be viewed as a whole, hence the description of isolated damage and evidence 

of deterioration should not be considered [5]. The condition ratings are the foundation 

on which future inspections and maintenance measures are planned [7]. In the NBI, all 

possible bridge conditions are divided into ten categories, which are labeled with 

numbers from 0 to 9, where 0 defines the worst condition rating and 9 the best [5]. 

 
CONDITION RATING DENOTATION 

N Not applicable 

9 Excellent condition 

8 Very good condition 

7 Good condition 

6 Satisfactory condition 

5 Fair condition 

4 Poor condition 

3 Serious condition 

2 Critical condition 

1 ‘Imminent’ failure condition 

0 Failed condition 

Table 1: Bridge condition ratings according to the FHWA [5] 
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In Table 1 the condition ratings for bridge elements according to the FHWA are given 

respectively [5]. A rating of N (not applicable) is given for all structures without decks 

such as culverts. 

The ratings are not subject to equations but are incumbent to the assessment of 

the responsible inspector [9]. A decisive factor for the accuracy when classifying 

bridges is, therefore, the professional expertise of the inspector. To remedy this 

uncertainty, an extensive training of the inspectors is of great importance [10]. In 

terms of the disrepair of bridges, a great number of factors are playing a role. The 

primary accountable factors are daily traffic, environmental aspects, and insufficient 

maintenance actions [8].  

By comparing the data from the last years and evaluating their development, 

prediction models can be created, which are capable of forecasting the future 

deterioration of the respective bridge. With the aid of these prediction models, 

prospective inspections and maintenance measures will be planned. As soon as new 

data is present, it can easily be incorporated to update the deterioration model. These 

models can also be used to examine the influence of certain parameters on the level of 

deterioration, like climatic conditions, the age of the bridge or volume of traffic [11]. 

 

 

2.1.3 Bridge Management Systems (BMS) 

 

For the past twenty years, BMS have been the subject of several research 

projects. BMS are in particular used by transportation agencies for planning bridge 
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maintenance activities and estimating life-cycle costs. The ability of BMS to 

statistically calculate future bridge condition ratings, and therefore forecast bridge 

deterioration, paves the way for effective scheduling and budgeting upcoming 

maintenance actions [4]. 

 The need for bridge management was first realized after the collapse of the 

Silver Bridge in 1968, due to the omission of timely and proper maintenance and 

repair measurements. After that, bridge agencies started to approach bridge 

maintenance in a more systematic manner. Correspondingly, the FHWA introduced the 

national inspection program to gather bridge data through inspections to further form 

the NBI, which eventually became the database for most BMS in the USA [4]. 

 The idea of a BMS is to develop an effective strategy to optimize the decision-

making process for maintenance actions, given the available financial resources. The 

goal is to achieve a life-cycle cost as low as possible, while keeping the bridge in a 

satisfactory level of safety, to assure its serviceability for daily traffic and minimize its 

risk of failure throughout its lifetime [12]. To develop an effective strategy to reach 

this goal, all potential risk factors should be taken into account. Bridge management is 

a planning process, which merges procedures from several disciplines such as 

structural engineering, business practices, information technology and economic 

research. BMS come in the form of a computerized tool to help engineers in executing 

their daily bridge management tasks [4]. 

 A disadvantage of BMS, which constitutes a problem for bridge agencies, 

despite many years of research and development, is the great amount of required 

bridge data, which leads to a very time-consuming implementation process [4]. Bridge 
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data usually consists of general bridge information, information regarding designing 

and construction, inspection and maintenance records, financial records and various 

other data [10]. An extensive and consistent bridge database is the key element for an 

efficient and accurate BMS. Therefore, the collection and storage of this information 

in a database should be attached great importance. At present time bridge information 

is hardly be recorded manually, since storing bridge data electronically does bring a lot 

of advantages, as stated by the FHWA in [13]. Electronically stored bridge data can be 

shared much easier among users and can be retrieved and updated much faster. 

 The AASHTO provides guidelines for the establishment and usage of BMS. 

According to these guidelines, a BMS should contain five essential elements: data 

storage, cost models, deterioration models, optimization and analysis models, and 

updating functions [14] [10] [12]. As mentioned above, the most important component 

of a BMS is the database. It contains information that relates to the bridge itself, such 

as structural data, year built, number of lanes, as well as time-dependent data that 

needs to be updated by periodic inspections such as, the condition of major elements, 

traffic volume, and environmental factors. The conditions of the bridges major 

elements are further used in the BMS to calculate the probability of the future 

condition and hence the deterioration of the bridge by applying a stochastic prediction 

model. In most BMS this prediction model is based on the condition ratings in the 

NBI. Most commercial BMS also include a cost module, to calculate the costs to 

satisfy the required maintenance and repair measurements (MR&R) to improve the 

condition rating. In the optimization module, the results of both the cost and the 

deterioration module are applied, to effectively determine the optimal operation for the 
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bridge network. In order to so, there are generally two methods. In the bottom-up 

method, which is used in most BMS software packages, the required maintenance 

activities for every single bridge is determined to eventually improve the whole bridge 

network, whereas in the top-down method the objectives of the bridge network are 

defined and in a second step individual bridges are selected [4]. 

 Godart and Vassie gave a broad overview over a number of BMS features, 

which include the provision of a bridge inventory, prediction of future conditions of 

major bridge components, along with the bridges prospective load-carrying capacity, 

determination of deterioration rates and the selection and evaluation of several 

maintenance and repair options with regard to economic efficiency [15]. It can further 

include the analysis of the effects of insufficient maintenance actions on safety and 

traffic congestion and provide its user with an optimal inspection and rehabilitation 

plan [4]. 

In some cases of BMS, the output of various sections are required as the input 

data for other modules. A sufficient database is therefore inevitable to provide a well 

operating BMS. For instance, the outputs of the condition rating prediction are 

required as inputs to produce an optimal maintenance program and several other BMS 

features. Hence the future condition ratings, are indispensable for all related modules 

to operate properly. 

 Most BMS are based on the inspection of major bridge components to store 

data for bridge condition ratings. According to Das, building upon bridge inspections 

leads to various limitations, since the data obtained through visual inspection is the 

only source for bridge data, hence bridge elements which might not be visible during 
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inspections are not included in the bridge management process. Therefore, the 

accuracy of the predicted needs of bridges might not be reliable enough [16]. 

 In many countries, research on bridge management systems has been 

conducted during the last two decades in order to improve its effectiveness. The most 

commonly implemented BMS software are Pontis and BRIDGIT, both designed by the 

AASHTO. These software packages are not just used in the USA, but by bridge 

agencies all over the world to effectively perform bridge management [4]. 

 Pontis was the first commercial BMS software developed by the FHWA in 

1991 and was licensed in 2008 by the AASHTO to over more than 45 state 

departments of transportations, as well as other organizations in the USA and around 

the globe. With its establishment, bridge management was brought to a new level in 

America and several other countries. Since then, the Pontis software package has been 

continuously updated, introducing new features. It includes all key elements of bridge 

management and uses condition ratings to predict future condition. The deterioration 

model which is implemented in Pontis, is based on Markov processes, to calculate the 

deterioration rates of bridges. As soon as new data becomes available and is updated in 

the Pontis database, the deterioration module automatically calculates a new prediction 

of the bridges future condition, without starting it manually. The Usage of Pontis 

brings various advantages. Pontis compares and balances bridge condition with long-

term maintenance expenses to assess and determine an optimal level of investment. 

Bridge data is effectively stored and organized by applying advanced data 

management functions. Pontis gives bridge agencies the possibility to customize the 

bridge management system to the individual needs and demands. It allows its user to 
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modify internal functions and data, in order to adjust them to any particular 

requirements. In order for Pontis to fully operate, a minimum of input data is required 

by its user, which is a problem that not seldom prevents bridge agencies from being 

able to use Pontis. About half of the data that is provided by agencies using Pontis in 

order to run the system, was gathered through inspections. Periodic inspections are 

therefore the primary and most important resource of bridge agencies in order to 

conduct bridge management [4]. 

 Another common used BMS is BRIDGIT, which like Pontis uses bridge 

condition ratings for health prediction modeling [12]. It was developed by the National 

Cooperative Highway Research Program (NCHRP) and shows common grounds to 

Pontis in most essential aspects [10].  Although Pontis and BRIDGIT are the most 

widely used BMS in the USA, a lot of states have developed their own BMS over the 

years, such as the Alabama DOT or the Indiana DOT [4]. 

Apart from the fact that BMS are an effective method to perform bridge 

management, the user should never carelessly rely on the outcomes of these systems 

itself, but see them solely as a support tool for decision making. 

 

 

2.2 Deterioration of Reinforced Concrete Bridges 

 

In the course of time, bridges have become an increasingly important aspect for 

every society to obtain a well-working infrastructure system and promote 

communication and economic growth. As their primary purpose to provide a crossing 
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for various kinds of obstacles, bridges are built in areas where conventional pathways, 

roads or railway constructions are unsuitable or impossible [17]. Hence, bridges are 

located in the most challenging environments such as canyons, mountains, crossing 

over valleys and rivers, and even spanning seas and connecting countries [17]. The 

environmental conditions of these locations, such as very low temperatures and 

extreme humidity, can constitute a heavy impact on bridges. 

During their lifetime bridges are in general exposed to a variety of aggressive 

influences, such as ”varying loading and vibration, extreme weather conditions, the 

presence of chlorides in de-icing salts and cycles of freeze and thaw, plus chlorides in 

coastal areas” [17]. As bridges are affected by a number of external deterioration 

mechanisms originating from environmental influences, they are in particular exposed 

to heavy traffic loads. Bridge decks become subject to many millions of load cycles 

during their service life. Average daily traffic (ADT) and average daily truck traffic 

(ADTT) can vary a great deal from bridge to bridge, ranging from 200,000 up to two 

million trucks per year [18]. 

Along with the lack of sufficient financial resources, the combat of severe long-

term deterioration is the most serious problem bridge owners have to face [12]. A 

leading factor causing deterioration of concrete bridge decks are cracks in the 

concrete. Due to these cracks, water may penetrate into the inside of the concrete slab, 

resulting in corrosion of the reinforcing steel. An important and enhancing role in the 

corrosion process is the presence of de-icing salts which are put down on bridge 

roadways during the winter season. Spalling and potholes are a common consequence, 

which may result in a reduction of structural integrity [9]. 
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Modern bridges are often designed for a service life of about 120 years. This 

estimation is made under the requirement of permanent corrosion protection [19]. In 

most cases maintenance, repair and replacement of the superstructure are required due 

to gradually developed deterioration of the bridge deck over time. Large-scale 

cracking and wide potholes in the bridge deck are a common result of deterioration, 

that jeopardizes serviceability and safety. It is therefore of great interest to obtain a 

comprehensive understanding of deterioration mechanisms and thus apply efficient 

resistance and treatment methods to improve the durability of bridges [18]. 

 

 

2.2.1 Description of Concrete Bridge Deck Deterioration. 

 

In a research by Li and Zhang in [18], concrete deck deterioration is described 

as a five-step process, ultimately resulting in a strength loss and finally the failure of 

the deck. In the first step, tensile stresses due to shrinkage and changes in temperature, 

cause cracks to arise on the bottom surface of the concrete deck in transverse direction 

to the bridge's lanes [9] [18]. Usually, these cracks develop when the stresses are 

combined with stresses due to traffic loads, but in some cases, the tensile stresses due 

to shrinkage and temperature changes are even high enough to cause cracking in the 

bottom face of the deck [18]. In the second step, transverse cracking occurs on the 

upper surface of the deck, while longitudinal cracks start to form on the bottom side. 

The in the previous stage formed cracks on the bottom side cause the slab to lose load 

transmission in longitudinal direction on the bottom face, resulting in flexural cracks 
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in longitudinal direction. Altogether, these cracks form a network of cracks on the 

bottom side of the deck [18]. The third step is characterized by water penetrating into 

the formed cracks, running down to the steel reinforcement and causing the steel to 

corrode. The formed cracks are progressively enlarged by the long-term traffic loads 

on the bridge deck [9] [18]. A followed loss of interlocking, in the fourth stage results 

in a failure of load transmission in the longitudinal direction, which causes the deck to 

change its load-bearing effect. Originally behaving as a plate, the deck now acts as 

several separated transverse beams [18]. The deterioration process is accelerated, as 

water continues to intrude into the cracks, further corroding the steel rebars [9]. In the 

fifth and final stage, a considerable amount of steel reinforcement has been corroded 

away, which leads to a loss of shear capacity for fatigue strength. The result is spalling 

of concrete and eventually an impairment of the bridges functional capability [18]. 

 

 

2.2.2 Causes and Consequences of Bridge Deterioration 

 

Structures made of reinforced concrete, such as bridge decks, have to suffer 

from the influence of many deterioration mechanisms throughout their lifetime. 

Critical factors that impair their functional capability include the impact of stresses 

due to freeze-thaw cycles, overloading, and fatigue [20]. The major cause for 

deterioration of reinforced concrete structures, however, is corrosion of the 

reinforcement due to chloride attack [12]. 

The spreading of de-icing salts during the winter is the major cause for the 
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corrosion of reinforcement [20]. As cars and trucks drive on the bridge's roadway, 

deicing salt particles are sprayed into the air. How far the formed salt water is sprayed 

within this procedure, depends on the type of vehicle and its speed. Also the wind and 

the density of traffic contribute to the range of the sprayed salt water droplets, which 

can land up to 50 feet away from the roadway. In the area bounded by this distance, 

the concentration of chlorides is usually very high. In cases of high traffic density, 

affected areas from chlorides due to deicing salts, have been found even at a distance 

of more than a mile away from the respective roadway [19]. Critical areas affected by 

corrosion are all surfaces exposed to strong humidity and/or de-icing salts. Especially 

on horizontal surfaces under the edge of bridge decks, de-icing salts commonly 

accumulate. Pitting corrosion of the steel is a frequent consequence of de-icing salts. 

Typical surfaces suffering from severe pitting corrosion are often found under 

expansion joints [19]. 

The corrosion process usually starts to take place with chloride penetrating into 

the concrete. Through the porous concrete, the chloride ions are intruding and 

spreading. Existing cracks on top of the concrete deck accelerate this process. 

Eventually, the chlorides cause the steel reinforcement to corrode [12]. 

The corrosion in reinforced concrete bridge decks occurs mainly as 

carbonation or pitting corrosion. By the color of the resulted rust, bridge engineers can 

distinguish which corrosion process occurred. While carbonation results in rust in a 

color of more brownish tones, chloride-induced corrosion appears to leave behind a 

more blackish rust [20]. Depending on the environment of the respective bridge, the 

rate of corrosion of the reinforced concrete can vary significantly [12]. Factors such as 



22 
 

the temperature, humidity, pH-value of the water, as well as the presence of pollution 

and salt, have an impact on the degree of corrosion. Varying conditions of wetness and 

dryness are also an accelerating factor [20]. 

A long-term corrosion process in reinforced concrete bridges can lead to a 

reduced steel cross-section area, following in a loss of shear and moment capacity 

[12]. In general, the occurrence of corrosion initiates several other deterioration 

processes to take place such as cracking, spalling and scaling [12]. These processes are 

shortly described in the following paragraphs. 

 

 

Cracking 

Cracking appears in every direction of the concrete deck, whether transversely, 

longitudinally or diagonal. Due to increasing stresses on the top reinforcement of the 

concrete deck, transverse cracks are formed on the upper surface of the deck. The rise 

of stresses is caused by shrinkage due to varying degrees of drying throughout the 

slab. Also, in the course of corrosion, the reinforced bars start to expand, leading to an 

increase of internal stresses [20]. The formed crack networks can give information 

about the loading the bridge was being exposed to. According to Steinkamp 

“transverse crack patterns on poured-in place concrete bridges also reflect the live-

load and dead-load stresses that exist in negative or positive moment areas“. 

Bridges made of solid slabs which generally do not consist of beams or girders, 

a more prone to longitudinal cracking. In these cases as well, the main reason is 

shrinkage due to varying degrees of drying throughout the slab, due to inadequate 
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curing procedures [21]. Pattern cracking is more apparent on the surface and is caused 

by fast, drying shrinkage at an early stage, as a result of poor curing methods [21]. 

 

 

Spalling 

Within the process of spalling parts of the concrete on the surface starts to 

decompose and separate, causing a depression. This often leaves part of the underlying 

reinforced bars visible and vulnerable to severe corrosion. Spalling can either be 

initiated in the concrete or the reinforcement and is in general a result of several 

possible chemical reactions, such as the reaction of calcium chloride with concrete, 

sulfate attack on concrete, chloride penetration to steel and carbonation. Depending on 

the environmental conditions, these reactions can be less or more intense and fast [22]. 

 

 

Scaling 

The deterioration of concrete surfaces caused by frequent freezing and thaw 

cycles or the by the effect of salt solution in the concrete is called scaling. During this 

process accumulated water in the concrete pores start to freeze under decreasing 

temperatures. With the resulting expansion of the water by about 9 percent, hydraulic 

pressures cause the concrete surface to scale [21]. The presence of chlorides is highly 

accelerating this process [17]. Also a high water-cement ratio, due to highly wet mixes 

or a sprinkling of water during the curing process, are further causes for scaling [21]. 
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2.3 Preventative Design and Maintenance 

 

Preventive maintenance measurements are recommended to be applied as soon as 

bridges are open to traffic. Their application at an early stage constitute a major 

contribution to achieve a maximum service life and can save a lot of financial 

resources that otherwise would be necessary for repair actions at a later time. Early 

maintenance is therefore not just a way to extend the service life of a bridge, but also 

an effective method to save money. Even simple regularly cleaning work such as the 

removal of dirt, debris and de-icing chemicals from the deck and around the bearings 

can make a big difference [21]. 

The design and construction of bridges underwent many adjustments over the 

years, such as the increasing of the concrete cover to the upper reinforced bars up to 

two inches, in order to reduce cracking near the reinforcement. If cracking appears in 

spite of this, the increased concrete cover does still decrease the probability of the 

cracks to reach the reinforcement. Another change that was made over the years is the 

placement of # 3 bars on top of the upper concrete slab stress steel to further minimize 

cracking [21]. 

Corrosion of steel reinforcement is one of the major factors of concrete deck 

deterioration. The use of various steel coatings such as epoxy, galvanized or metallic 

clad are common methods to slow down the deterioration process of the deck. More 

advanced and innovative ways to effectively combat reinforcement corrosion are for 

example the use of high-grade steel or fiber reinforced polymers (FRP). Another 

operation, that has shown to help to slow down deck deterioration is the installment of 
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deck protection systems [9]. 

A cautionary example for the lack of proper maintenance is the Lake View 

Drive Bridge collapse in Pennsylvania, where severe deterioration of the concrete and 

reinforcement eventually resulted in the collapse of the bridge [22]. 

 

 

2.3.1 Preventative Design 

 

The prevention and limitation of serious deterioration start with the design of a 

bridge. An adjustment in the design of material properties and structural configuration 

are possible steps to limit future deterioration [22]. 

To strengthen the concrete and make it less vulnerable to deterioration, a 

variety of admixtures can be added during the mixing procedure. In the ACI 2138-11, 

it is recommended to use “fly ash, natural pozzolans, silica fume or ground-granulated 

blast-furnace slag“ in order to prepare concrete structures for “moderate or severe 

sulfates exposure“ [22]. The use of fly ash as an admixture, for instance, brings several 

advantages to the concrete, such as an increase in strength and a reduced probability 

for corrosion. Further positive effects can include the protection against sulfate 

reaction and a reduced permeability of the concrete. The best way to protect the 

concrete against deterioration, however, is a high-quality design [22]. 

Another notable aspect in this matter is the installation of an adequate drainage 

for the bridge. This is important in particular in regions where a high rate of deicing 

salts is present [22]. A proper water flow by means of a drainage is an essential factor 

to protect the bridge structure from the attack of deicing salt solutions. Common 
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drainage systems are for example deck drains and gutter systems. The installation of 

an adequate drainage is an aspect that should be taken into account at early stages of 

the design, to prevent any possible future issues regarding this matter. Also the 

location of the drainage is of importance, in order to reduce consequences to a 

minimum in case of a blockage of the drainage. However, connecting elements of the 

superstructure also carry the risk to become clogged with dirt and debris. Therefore, it 

is desirable to minimize the number of expansion joints and design the superstructure 

continuous. Furthermore, the compatibility of the used materials for the joints and the 

bridge elements should be considered in the design process otherwise, the transfer of 

moment and shear can be difficult to accomplish [22]. 

Increasing the concrete cover is one of the main ways to reduce the probability 

of reinforcement corrosion. This is in particular helpful to improve the long-term 

performance of a bridge in regions where the environmental conditions are an 

enhancing factor for steel corrosion. In ACI 318-11, guidelines and recommendations 

are given for an adequate concrete cover for specific types of exposures. The 

minimum thickness that is recommended in general is two inches. In cases of chain 

wear two and a half inches are recommended and in coastal regions, three inches are 

usually the minimum thickness [9]. However, also a detailed design and installation of 

the reinforcement play an important role [22]. 
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2.3.2 Maintenance and Rehabilitation 

 

Additional to preventative considerations in the structural design, proactive 

measures have to be executed regularly in order to limit long-term deterioration. As an 

effective tool to increase the resistance of bridges to corrosive environmental effects, 

epoxy coatings have been applied since the 1970's. Especially for bridges located in 

marine environments or being exposed to a high rate of deicing salts, the use of epoxy 

coated steel is well-suited to combat long-term steel corrosion and severe bridge 

deterioration. In combination with an adequate concrete cover, the use of epoxy coated 

reinforcement significantly reduces the probability of a failure of the concrete bridge 

deck [22]. 

The technological progress of the past years paved the way for the 

development of more advanced coating systems for steel bridges, leading to enhanced 

performances and an increased bridge service life. Various coating systems have been 

designed based on their needs for the use in specific environments, the feasibility of 

maintenance actions and the probable length of time until maintenance of the coating 

is required. 

Which coating system is right for the respective bridges dependents on several 

aspects. These include “the type and expected service life the bridge, local climate and 

other environmental conditions, constraints regarding maintenance, possibilities of 

surface preparation, metal spraying or galvanizing and feasibility of applying the 

coating“ [18]. To initially apply the coating system and further be able to carry out 

maintenance measurements at a later time, accessibility to all respective areas is of 

major importance. Especially problematic are narrow gaps, hidden surfaces, and any 
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corners that are hard to reach [19]. 

The speed and degree of deterioration the coating experiences, decisively 

depends on the coating type, the number of coating layers and the exposure conditions. 

Also the quality of application of the coating as well as the treatment of the respective 

areas before the coating is applied, are contributing factors [19]. 

A number of coating systems applied in practice have proved to effectively 

provide protection against corrosion for a period of  25 to 30 years. Poor coating 

systems often show porous coating layers, which facilitates the intrusion of water, 

oxygen, and salts. Before even signs of deterioration can be seen, the steel underneath 

has already been affected by the intruding substances. If treatment actions are not 

applied early enough and the coating has already reached a certain level of 

deterioration, section loss of the steel will be the consequence. Most coating systems 

require a repaint after about 15 to 20 years, but for areas that are particularly 

vulnerable, repainting should be applied more frequently [19]. 

 A decisive factor regarding maintenance is to create a comprehensive schedule 

for inspections and repair measures. Common tools to reduce deterioration from the 

beginning are for example deck sealants and overlays. If damage or severe 

deterioration has already been found, patching and structural strengthening through 

composites are possible methods to rehabilitate the structure [22]. 

The selection and frequency of individual maintenance measures are generally 

based on the findings of periodic conducted inspections. In practice, non-destructive 

testing (NDT) and electrochemical testing are widely used methods to investigate 

existing deterioration aside from various other testing methods in the lab. Among 
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NDT, ground penetrating radar (GPR) and infrared thermography (IRT) are common 

procedures. Electrochemical testing is a useful way to gain information about the 

present degree of concrete corrosion and provide a prognosis for future disrepair.  

In many cases of severe deterioration, comprehensive rehabilitation measures 

are inevitable to preserve the structural integrity of the bridge. These include for 

instance patching, removal of joints, and strengthening by means of composite 

materials. The most widely used among those methods is patching, which is 

characterized by the removal and replacement of concrete which has been affected by 

deterioration or being at risk to experience severe deterioration. 

The removal of joints is a further form of rehabilitation, which is especially 

advisable near bearings, above abutments and piers. It is useful to minimize the use of 

material prone to corrosion and diminish the need for drainage. However, by removing 

joints, the bridge needs to be modified to a continuous structure, which involves the 

use of additional reinforcement and concrete. Supplementary, joints are often closed 

with epoxy overlays. 

Bridges that have been deteriorated due to increased traffic loads, can be 

strengthened using composite materials, such as fiber reinforced polymers (FRP) and 

carbon fiber reinforced plastics (CFRP). These materials do not just exhibit a solid 

resistance to corrosion but are also much lighter in weight than common concrete [22].  
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3. METHODOLOGY 

 

The biggest constraint in keeping America's bridges in a satisfactory condition 

is the lack of sufficient financial resources. The use of efficient Bridge Management 

Systems (BMS) is one approach to face this problem. BMS are an effective tool to 

improve decision making regarding bridge design, maintenance planning and the 

rehabilitation and replacement (MR&R) of entire bridge networks in economical 

respects. Most BMS are based on condition ratings, which derive from the assessment 

of periodic visual inspections. The condition ratings can be viewed as an indicator, 

which gives an approximate estimate of the degree of bridge deterioration. The 

effectiveness of a BMS significantly depends on the applied deterioration prediction 

model, which hence also greatly affects the quality of the applied maintenance 

management. The prediction of future bridge conditions is a complex and difficult 

process, due to varying traffic loads, environmental influences and bridge aging [23]. 

In general, there are two main approaches to perform bridge performance 

prediction, which are either based on bridge condition ratings or based on structural 

reliability. Models based on bridge condition ratings focus on bridge serviceability and 

rely on the information gained by periodic visual inspections. They can further be 

divided into three categories, namely deterministic models, stochastic models, and 

artificial intelligence models [12]. 

The first applied bridge deterioration models in BMS were deterministic 

models. Deterministic models operate with simple mathematical or statistical 

functions. In terms of bridge deterioration modeling, these functions are used to 
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describe the relationship between bridge element condition ratings and various 

deterioration factors. A commonly used deterministic model for bridge deterioration 

prediction is the regression model, which aims to describe the correlation between 

bridge condition ratings and bridge age. In this approach bridge age is the only factor 

affecting the bridge condition ratings. Due to their quite simple implementation and 

application, deterministic models are a popular approach used by bridge engineers and 

managers. However, a significant weakness of deterministic models is, that they are 

not able to consider the uncertainties which come along with the stochastic nature of 

the deterioration process. This limitation significantly reduces the accuracy of the 

model's outcomes [12]. 

A more advanced approach is Artificial Intelligence models, such as artificial 

neural networks (ANN) and case-based reasoning (CBR). ANN are computational 

models that aim to operate similarly to brains. According to Wang, these networks 

comprise a number of simple units, which operate parallel without a central control 

[12]. Although ANNs have been increasingly used, their application to model bridge 

deterioration is quite recent [24]. 

Far more popular are stochastic models which are characterized by their ability 

to consider time-varying uncertainties. Stochastic process models can be categorized 

into discrete time models or continuous time models. The most widely used 

approaches among discrete-time models for bridge deterioration prediction are 

Markov chain models. A Markov chain is a special type of a Markov process, which is 

characterized by discrete random states. The Markov chain makes several 

assumptions, which include uniform inspections intervals and the Markov property, 
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which states that the future bridge condition is only dependent on the most recent 

condition, while all other previous conditions have no direct impact. The Markov 

chain model is the basis for several bridge deterioration prediction models applied in 

modern BMS such as Pontis and BRIDGIT. Despite the fact that Markov chain models 

cover several disadvantages of deterministic models and are widely used by bridge 

agencies for bridge deterioration prediction, the Markov chain model also has to suffer 

from several limitations, such as the assumption of stationary transition probabilities 

as well as the assumption that the future bridge condition only depends on the most 

previous condition, while the previous bridge condition history is neglected [12]. 

Since the early 1990‘s, Bayesian Networks (BN) have increased in popularity, 

due to their ability to handle limited input data [25]. BNs have several advantages 

compared to Markov models, including the ability to illustrate complex systems with 

many variables through a compact model structure, but most of all, BNs are able to 

take uncertainties into consideration by means of random variables. BNs are further 

characterized by their ability to easily incorporate newly observed data and update the 

whole network. By means of the graphical model structure that illustrates the 

dependencies between various variables, BNs are a useful tool to investigate causal 

relationships [12]. 

BNs that are extended with a time dimension are called Dynamic Bayesian 

Networks (DBN). DBNs are used to describe systems that are characterized by time-

dependent variables. The computational efficiency of DBNs was demonstrated in a 

study by Straub in [26], in which he developed a generic framework for stochastic 

modeling of deterioration processes and applied it to describe the development of 



33 
 

fatigue cracks in steel structures. Further examples include a study by Nielsen and 

Sorenson in [27], who applied this approach in risk-based inspection planning of 

offshore wind turbine foundations [25]. In the following section, a rough introduction 

to Bayesian networks is given.  

 

 

3.1 Bayesian Networks (BN) 

 

During the last two decades, BNs have been successfully adopted in a variety 

of different scientific fields to provide practical solutions for complex tasks. 

According to Bensi et al., a BN can be defined as “a probabilistic graphical model that 

represents a set of random variables and their probabilistic dependencies“ [28]. BNs 

use random variables to represent unknown parameters of real-world systems, and 

express uncertainty as a “probability distribution that reflects the relative likelihood of 

outcomes“ [28]. Specifically, Bayesian statistics focuses on the calculation of the 

conditional probability of an unknown variable given evidence. BNs are often used to 

verify observations and proposed theories made beforehand, based on expert opinion, 

engineering judgment, or physical models [28].  

The foundation stone of BNs is Bayes’ theorem: 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
=

𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (1) 

 
Where 𝑃(𝐴) and 𝑃(𝐵) are the probabilities for the occurrence of event 𝐴 and 𝐵 

respectively, and 𝑃(𝐴|𝐵) is the probability of event 𝐴 on condition of another event 𝐵. 
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Bayes’ theorem allows the conversion of the probability of event 𝐵 given event 𝐴, into 

the probability of event 𝐴 given event 𝐵. This theorem is the basis for Bayesian 

inference, which is used to investigate and determine the impact of newly observed 

information on the conditional probability of an event occurring.  

 

 

3.1.1 Network Structure 

 

A BN consists in general of two main components, a qualitative and a 

quantitative part. The qualitative part of the BN is constituted by a directed acyclic 

graph (DAG), which consists of a number of nodes and directed links. The nodes in 

the DAG represent the random variables of the respective system, while the directed 

links are assigned with conditional probabilities, which describe the relationship of the 

individual variables the links are connecting. The nodes are classified differently, 

depending on the direction of the link that is connecting the two nodes. A node that a 

link is pointing to is called “child node“ or “child variable“, while the node on the 

other end of the link is classified as its “parent node“. A simple example of a BN is 

given in Figure 1. The nodes 𝑋1 and 𝑋3 are child variables, as a directed link is 

pointing to each of them. The node 𝑋1, where the links are originating from, is hence 

their common parent variable. A node that doesn't have any links pointing to it, is 

called a root node, which is applicable for the node 𝑋1 in the example. The probability 

of variable 𝑋2 to be in a specific state is conditional on its parent variable 𝑋1, therefore 

we write 𝑃(𝑋2|𝑋1).  
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Figure 1: Sample BN with three nodes 

 

To form a BN, every node within the DAG have to be assigned with a 

probability distribution. For root nodes, prior probabilities need to be specified, while 

for child nodes conditional probabilities are required, which are the quantitative part of 

a BN. The conditional probabilities describe the relationship between the individual 

variables. The random variables can be defined as continuous or discrete. However, in 

most applications, discrete random variables are used for simplification. In this case, 

the random variables consist of a number of mutually exclusive condition states, each 

assigned with a certain probability of occurrence. The conditional probabilities that 

define the interdependencies between parent and child nodes are stored in conditional 

probability tables (CPT). These CPTs need to be specified for each child node [25]. 

The joint probability for several variables to be in particular states is calculated 

by multiplying the conditional probabilities between each child variables and their 

respective parent variable. This is generally expressed for any given BN in equation 2. 

 

𝑃(𝑥) = 𝑃(𝑋1,… , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖))
𝑛

𝑖=1

 (2) 

 
If we apply this equation to the sample BN above, the joint probability of nodes 
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𝑋1, 𝑋2, and 𝑋3 would be calculated as: 

 
𝑃(𝑋1,  𝑋2,𝑋3) = 𝑃(𝑋1)𝑃(𝑋2|𝑋1)𝑃(𝑋3|𝑋1) (3) 

 

Where 𝑃(𝑋1) is the prior probability of node 𝑋1 to be in a particular state, and 

𝑃(𝑋2|𝑋1), 𝑃(𝑋3|𝑋1) are the conditional probabilities for nodes 𝑋2 and 𝑋3, given the 

state of their parent node 𝑋1. 

 

 

3.1.2 Connection Types and D-Separation 

 

In general, there are three different types of how variables in a BN can be 

connected. These connection types are the serial connection, diverging connection, 

and converging connection. All three types are depicted in Figure 2.  

 

A

B
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Connection

 

Figure 2: Connection types 
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In the serial connection, the variables 𝐴 and 𝐵 are defined as independent if the 

state of variable 𝐶 is observed. Therefore, a change of status of variable 𝐴 does not 

influence the current status of variable 𝐶. In the converging connection, the variables 

𝐴 and 𝐶 are dependent if the status of variable 𝐵 is known, and in the diverging 

connection, variables 𝐴 and 𝐶 are independent if the status of variable 𝐵 is observed.  

By means of the rule of d-separation, it can be determined whether two 

variables in a BN are conditionally independent. In Figure 2, the two variables 𝐴 and 

𝐶 are considered d-separated if they are independent of one another given a third 

variable, 𝐵. This can be expressed as: 

 
𝑃(𝐴, 𝐶|𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐶|𝐵) (4) 

 
The d-separating variable 𝐵 blocks the exchange of information between the variables 

𝐴 and 𝐵 [28]. Depending on the fact if observation for variable 𝐵 is present, the 

variables 𝐴 and 𝐶 are d-separated (blocked) or not. In the serial and diverging 

connection, 𝐴 and 𝐶 are considered to be d-separated if variable 𝐵 was observed. 

Hence, 𝐴 and 𝐶 only influence each other if 𝐵 is unobserved. Reversely, 𝐴 and 𝐶 are 

d-separated in the converging connection if variable 𝐵 was not observed [28]. 
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3.1.3 Bayesian Inference 

 

One of the major characteristics of BNs is the ability to update the entire BN 

with newly observed data, using inference. If we, for instance, assume for the sample 

BN in Figure 1, that evidence for variable 𝑋2 was observed, as illustrated in Figure 3, 

the state of variable 𝑋2 is no longer unknown, which hence affects the probability for 

all other variables in the BN.   

 

e

X1

X3

 

Figure 3: Bayesian inference 

 

The new network probability will be updated as follows: 

 

𝑃(𝑋1, 𝑋3|𝑒) =
𝑃(𝑋1, 𝑒, 𝑋3)

𝑃(𝑒)
=

𝑃(𝑋1)𝑃(𝑒|𝑋1)𝑃(𝑋3|𝑋1)

𝑃(𝑋1)𝑃(𝑒|𝑋1)
 (5) 

 

Where 𝑒 is newly observed evidence. However, it should be noted that is only suitable 

for rather small BNs with only a few states for every variable. In practice, various 

inference algorithms are used to calculate marginal probabilities for each unknown 

variable given a set of new observed evidence. Several exact and approximated 

inference algorithms have been used in the past for this purpose. Among those 
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algorithms junction trees are the most widely applied algorithms for inference [12]. If 

no newly observed data is available, the calculation is done using prior probabilities. If 

however, new data was observed, the inference algorithm will incorporate the new 

data and thus update all probabilities. According to Wang, the observed data is 

categorized into hard and soft evidence. Hard evidence, also termed as direct 

observation directly relates to any specific state of a variable. Soft evidence, or 

indirect observation, only refers to any specific state of a variable with probability 

[12]. 

BNs are able to operate with both discrete and continuous states for the 

variables. The variables of most engineering systems, that aim to describe physical 

processes are of continuous nature. However, in most BN applications the variables 

are considered to be discrete since the most related inference algorithms are developed 

to effectively operate with discrete states only. Having said this, there are approximate 

algorithms, such as Markov Chain Monte Carlo (MCMC), which make it possible for 

the respective BN to work with continuous variables, but can also have a significant 

negative effect on the rate of convergence [12]. In the course of this, the random 

variables which initially were defined as continuous will be discretized and replaced 

by equivalent variables in a finite space. It is recommended to discretize the variables 

in order, starting from parent nodes up to child nodes. The discrete intervals in which 

the continuous variables are discretized should be chosen adequately. One method is to 

define the intervals in a way that they fit the characteristics of the associating variables 

(multivariate discretization). A more approximate way is to choose for all variables the 

same intervals (univariate discretization), which is considered to be more practical 
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[12]. 

The outcomes of a BN can, in general, be evaluated by means of three different 

ways: sensitivity analysis, outcomes comparison, and scenario testing. Sensitivity 

analysis is suitable to investigate which variables have the greatest impact on the 

results [12]. Another way is to compare the results with existing data, for example 

with information in the literature or results gained through experiments. Within 

scenario testing, the respective BN is modeled for different scenarios specified by 

experts. The goal is to determine whether the BN is behaving as expected based on 

previous experience and in compliance with present recognized research. To achieve a 

most effective evaluation of the BN, these three methods should be applied together 

[12]. 

 

 

3.2 Dynamic Bayesian Networks (DBN) 

 

By adding a time dimension a BN can be extended to a DBN, which is a special 

type of a BN. Two common forms of DBNs are Hidden Markov Models (HMMs) and 

Kalman Filter Models (KFMs) [29]. A DBN consists of a sequence of BNs, which are 

defined for different points in time. Therefore a DBN could be said to be a BN that 

evolves over time. The model structure of the individual BNs, however, stays the same 

for every point in time  [25]. The individual BNs are also referred to as time slices 

(𝑡𝑖 , 𝑡𝑖+1 , … , 𝑡𝑖+𝑛). Several nodes of adjacent time slices are connected through 

temporal directed links, which constitute probabilistic dependence similar to the links 
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in a usual BN. If all time slices have the same model structure and identical CPTs, 

except for the initial time slice, the DBN is considered to be homogeneous. An 

example of a DBN consisting of three time slices is illustrated in Figure 4, where the 

red arrows represent temporal links [25]. The depicted DBN consists of three random 

variables 𝐴(𝑡𝑖), 𝐵(𝑡𝑖) and 𝐶(𝑡𝑖) associated with the time dimension 𝑡𝑖, which repeat 

over time. 

 

A(t1)

B(t1)

C(t1)

A(t2)

B(t2)

C(t2)

A(t3)

B(t3)

C(t3)

Time Slice 1 Time Slice 2 Time Slice 3

 

Figure 4: Sample DBN [25] 

 

The probability of 𝑃(𝐴(𝑡𝑖+1)|𝐴(𝑡𝑖)) is equal to 𝑃(𝐴(𝑡𝑖)|𝐴(𝑡𝑖−1 )) since the DBN is 

considered homogeneous. Hence, the BNs at each time step are viewed as separate 

BNs [2]. A detailed description of DBNs, including inference and learning algorithms, 

was given by Murphy in Dynamic Bayesian Networks: Representation, Inference and 

Learning [29]. 
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3.3 Estimation of Conditional Probabilities 

 

A major aspect regarding the effectiveness of a BN is the conditional probability 

tables (CPT). Several kinds of sources can be used as the basis for CPT estimation, 

including statistic databases, expert judgment, and data derived from experiments [12]. 

However, the conducting of experiments might not always be practical and cost-

effective [12]. Another alternative is data that can found in the literature. Although this 

might not be the most satisfactory method either, since it may not sufficiently relate to 

the variables within the constructed BN [12]. In practice, it is most common to derive 

the CPTs form statistical data. Many BMS hold their own database which stores 

various bridge information including inventory data, evaluation data, maintenance 

data, and inspection data [23]. This data can be used to determine the CPTs related to 

bridge elements by applying various learning algorithms, such as search- and scoring-

based algorithms, and “Bayes Net Power Constructor“ (BNPC) [23] [12]. A widely 

used approach is to estimate the CPTs using bridge element condition ratings where at 

least two successive condition ratings without maintenance in between are required. In 

practice, the non-linear least squares optimization method and the maximum 

likelihood estimation (MLE) are often used for this purpose [23]. One more alternative 

is the parameter estimation by means of expert elicitation, which is in general considered 

as the most reliable of all mentioned methods. The MLE and the method of expert 

elicitation are explained in sections 3.3.1 and 3.3.2 respectively. 
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3.3.1 Maximum Likelihood Estimation (MLE) 

 

The Maximum Likelihood Estimation method (MLE) is a commonly applied 

method for estimating one or more unknown parameters from observed data. Because 

of its easy computation, the MLE has earned great popularity and its principle is the 

basis for several other more complex machine learning algorithms. In principle, the 

MLE seeks to find the value for the probability of an unknown parameter that makes 

the observed data most probable. By means of a simple example, the MLE will be 

explained in detail.  

Consider a BN consisting of just one variable 𝑋, which represents the result of 

tossing a coin. The random variable 𝑋 has two possible states: heads, indicated as 

(𝑋 = 1), and tails, indicated as (𝑋 = 0). The expression 𝜃 = 𝑃(𝑋 = 1) represents the 

probability that a coin toss will result in heads. Assume we produced training data 𝐷 

by flipping the coin 𝑚 times and observed 𝑚ℎ heads (𝑋 = 1) and 𝑚𝑡 tails (𝑋 = 0). 

We make another assumption stating that the results of the individual coin flips are 

independent and identically distributed (i.i.d.), meaning one coin toss has no influence 

on another coin toss, and the outcomes of all coin flips are subject to the same 

probability. The principle of the MLE is to find the value of 𝜃 that maximizes 𝑃(𝐷|𝜃), 

which defines the likelihood of the observed data 𝐷 given 𝜃 and is often referred to as 

data likelihood function. If we assume just one coin toss, resulting in 𝑋 = 1, then we 

have 𝑃(𝐷|𝜃) = 𝜃. Correspondingly, if the coin toss results in 𝑋 = 0, then we have 

𝑃(𝐷|𝜃) = (1 − 𝜃). Now if we, however, have a dataset such as 𝐷 = {1,0,1,0,0,1}, the 

probability 𝑃(𝐷|𝜃), or 𝑃(𝑚ℎ, 𝑚𝑡|𝜃), can simply be calculated by multiplying the 
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probabilities of each coin toss of the observed data. 

 

𝑃(𝐷 = {1,0,1,0,0,1}|𝜃) = 𝜃 ∙ (1 − 𝜃) ∙ 𝜃 ∙ (1 − 𝜃) ∙ (1 − 𝜃) ∙ 𝜃 
 

              𝑃(𝐷 = {1,0,1,0,0,1}|𝜃) = 𝜃3 ∙ (1 − 𝜃)3 
(6) 

 
In general, this can be expressed as the following equation: 

 

𝑃(𝐷 = 𝑚ℎ, 𝑚𝑡|𝜃) = 𝜃𝑚ℎ ∙ (1 − 𝜃)𝑚𝑡  (7) 

 

Now having defined a formula for the data likelihood function 𝑃(𝐷|𝜃), we now need 

to determine the derivative of 𝑃(𝐷|𝜃) with respect to 𝜃 and find the value for 𝜃 that 

makes the derivative equal to zero. For this purpose, the logarithm ln 𝑃(𝐷|𝜃) is used 

since it simplifies the derivation and leads to the same result as deriving 𝑃(𝐷|𝜃). The 

derivation process is skipped at this point and instead, it is referred to [30]. However, 

if the derivation is set to zero it leades to the following expressions: 

 

                                                             0 = 𝑚ℎ
1

𝜃
− 𝑚𝑡

1

1 − 𝜃
 

 

                                              𝑚𝑡
1

1 − 𝜃
= 𝑚ℎ

1

𝜃
 

 

                                                       𝑚𝑡𝜃 = 𝑚ℎ(1 − 𝜃)  

                                       (𝑚𝑡 + 𝑚ℎ)𝜃 = 𝑚ℎ  

                                                            𝜃 =
𝑚ℎ

𝑚ℎ + 𝑚𝑡
 (8) 

 

Now we have derived the MLE algorithm for estimating the value 𝜃 that maximizes 

𝑃(𝐷|𝜃). The algorithm seems very intuitive. If we, for example, assume to toss the 
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coin 100 times, and observed 55 heads (𝑚ℎ = 55) and 45 tails (𝑚𝑡 = 45), the 

probability of 𝑃(𝑋 = 1) would be calculated to 𝜃 =
55

55+45
= 0.55. The MLE approach 

is very reasonable when a great number of training data is available.  

 

 

3.3.2 Bridge Expert Elicitation 

 

A way to estimate the CPTs directly is to consult bridge maintenance engineers 

that have long-term working experience and a consequential extensive expertise in 

terms of bridge deterioration. Since these experts have proved their expertise in 

practice, it is reasonable to derive parameters based on their judgment. The elicitation 

process can be defined by five steps, which include “experts selection, expert training, 

question preparation, expert judgment elicitation and results verification“ [31]. In the 

first step, several bridge engineers have to be selected, with regard to sufficient 

working experience and the required technical knowledge. After the engineers have 

been selected, they should be trained in the second step, in order to be able to 

adequately assess the probabilities. The third step consists of the preparation of 

questions for the experts [23]. Great importance should be paid to the design of the 

questions for the elicitation process. The questions should be designed in a way that 

subjectivity in the expert's judgment is minimized. In the next step, the actual expert 

elicitation takes place and is then followed by the fifth and last step, which is the 

verification of the given expert's answers to ensure that any incorrect answers are 

excluded. If the bridge engineers give answers in form of exact numbers, the CPTs can 
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directly be specified based on these numbers. However, bridge maintenance engineers 

are not always able to provide exact numbers, but rather give short answers in textual 

form. Hence, in this case, it is reasonable to ask the engineers for their estimates on a 

scale, which further can be converted into numerical values [23]. Especially for 

complex BNs, the use of expert knowledge facilitates the estimation of CPTs 

significantly [12].  A disadvantage however is, that expert judgment always includes 

the risk of a certain degree of subjectivity [25]. Also, in cases where the BN consists 

of a large number of variables and states, the determining of the CPTs through the use 

of expert knowledge might be very difficult [25].  
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4. NATIONAL BRIDGE INVENTORY DATA ANALYSIS 

 

One aim of this study is to investigate which environmental and design factors 

influence the deterioration of Rhode Islands bridges the most. For this purpose, several 

parameters of the National Bridge Inventory (NBI) were selected to examine whether 

correlations exist between the chosen parameters and the deterioration of the three 

bridge elements, deck, superstructure, and substructure. The implementation of this 

aim was inspired by two similar studys by Frühauf [32] and Cruz [9]. For each bridge 

element deterioration rates were computed using the condition ratings of the 

inspection records in the NBI. The inspection records in the NBI are annually 

provided by the Federal Highway Administration (FHWA) and are freely available on 

the FHWA homepage [33]. They can be downloaded as text files for each state and 

each year. The formatting of the files is defined in the Recording and Coding Guide 

for the Structure Inventory and Appraisal of the Nation's Bridges [5]. 

 Before the data was used for correlation analysis, the data needed to be filtered 

in order to exclude unreliable and incorrect data. The data filtering process along with 

a description of all filters is described in section 4.1. In section 4.2 it is explained how 

the deterioration rates were computed, and in section 4.3 possible correlations between 

the selected parameters and the respective bridge elements are analyzed. 
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4.1 Data Filtering 

 

4.1.1 Filters 

 

The FHWA started recording the results of periodic bridge inspections in 1992, so 

files for 26 years in total (1992 to 2017) could be obtained from the NBI database. In 

order to obtain reliable data for the computation of the deterioration rates and further 

the parameter estimation of the deterioration models, several filters were used to sort 

out incorrect and unusable data. These filters are listed below and are described in 

more detail in the following paragraphs. 

 

 Culverts 

 Insufficient Inspection Records 

 Invalid Inspection Intervals 

 Missing Data 

 Incredible Data 

 

Culverts 

Since culverts are not considered in this study, the data of the respective structure 

IDs had to be removed from the obtained data sets. To identify the culverts, NBI item 

#43B Structure Type was used, which assigns each bridge with one of 23 different 

structure types. 
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Insufficient Inspection Records 

In order to be included, it was decided that bridge IDs had to show at least 4 

consecutive inspection records. Hence, all bridges built after 2013 were removed from 

the datasets. 

 

Invalid Inspection Intervals 

Bridges should usually be inspected at least every two years. To check if this 

directive has been met over the years, NBI item #90 inspection date has been used. In 

this item, the month and year of the most recent conducted inspection are recorded, 

but only the year was considered. To calculate the inspection interval for each year the 

current inspection date was subtracted from the inspection date of the year before. 

After that, the average inspection interval was calculated for each bridge ID. As stated 

above, bridges should be inspected at least every two years, therefore it was origina lly 

planned to remove all bridge IDs which show an average inspection interval greater 

than two years. However, when analyzing the database it has been shown that more 

than 20% of all bridges in Rhode Island had an average inspection interval greater 

than two years. Hence, in order to be able to use a sufficient amount of data, it was 

decided to increase the limit for the inspection interval to 2.5 years, this way the 

number of neglected bridges due to too large inspection intervals decreased to less 

than 1%. 
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Missing Data 

 The datasets for the considered NBI items showed a large number of missing 

values. About 18% of all entries for years 1992 to 2017 were being observed to be 

blank. It should be mentioned that this count also includes bridges that were built after 

1992, and hence could obviously not provide data before their year of construction. 

However, these bridges were observed to constitute just a small number. 

Correspondingly to filter invalid inspection intervals, it was decided that bridge IDs 

had to provide at least 4 consecutive years without missing data to be included. 

 

Incredible Data 

When analyzing the NBI data, small inconsistencies in the datasets could be 

found, which raised concerns about the credibility of the respective data entries. An in-

depth inspection of the NBI data was done in order to search for these inconsistencies 

within the datasets for all considered NBI items. For instance, bridge ID 2430 showed 

constant values of 6 for item lanes on structure #27 between year 1995 and 2013. 

However, from year 1992 to 1994 the bridge showed a very unusual value of 24, 

which was probably an error in the database. Furthermore, for years 2014 to 2017, the 

bridge was assigned with 4 lanes, although no information could be found in other 

NBI items that the bridge was reconstructed or was subject to major maintenance 

measures that increased the number of lanes on structure. Due to these varying values, 

the bridge was removed from the dataset. Particularly affected by such small 

inconsistencies were the condition ratings for the bridge elements. Here, the most 

probable reason for unusual entries is subjectivity from different bridge inspectors. 



51 
 

Consider for example bridge ID 4860, which shows the following superstructure 

ratings for 12 consecutive years: 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 6. The two ratings of 7 

are most likely a result of the subjectivity of the bridge inspectors. As stated earlier 

bridges are most of the times only inspected every two years. Therefore the second 

rating of 7 is probably just adopted form the inspection record of the year before, and 

thus both ratings are the result of just one inspection. To check this statement NBI item 

#90 inspection date was examined for the respective entries of the condition ratings. In 

such cases, the respective incredible data entries were adapted to fit the surrounding 

data. 

 

 

4.1.2 Filtering Process 

 

The filters that are described above, were applied one after the other. The 

filtering process, along with the number of removed bridge IDs and the number of 

remaining bridge IDs after each filtering step, is summarized in Table 2. 

Since bridges have been removed and added in the NBI over the years, the first task 

was to determine how many different bridge IDs have been listed in the NBI until 

2017. A total of 898 different structure IDs could be observed in all combined 

inspection records from year 1992 to 2017. After the application of the first three 

filters, each NBI item that has been selected for the deterioration models was checked 

for missing and incredible data. All filtered birdge IDs are listed in Appendix B – List 

of removed bridge IDs after filtering, while all used bridge IDS can be found in 

Appendix A - List of approved bridge IDs after filtering. 
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Number of available bridge IDs before filtering 898 

Filter 
Number of excluded 

structure IDs 

Number of remaining 

structure IDs 

1. Culverts 49 849 

2. Insufficient Inspection 

Records 
32 839 

3. Invalid Inspection 

Intervals 
18 820 

4. Missing and/or 

Incredible Data 
226 573 

 

Table 2: Filtering process 

 

 

4.2 Calculation of Deterioration Rates 

 

After the obtained data had been filtered, the data was used to calculate 

deterioration rates for each bridge element (deck, superstructure, and substructure) 

using the bridge element condition ratings in the NBI. A deterioration rate as 

calculated in this study indicates the average change of condition rating over the 

period of one year. As an example, a deterioration rate of -0.125 would indicate that a 

bridge would decrease its condition rating, and hence deteriorate, by 12.5% within one 

year. This would mean that for example, a bridge with this deterioration rate and a 
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condition rating of 7 (good condition) would take 8 years to decrease to a condition 

rating of 6 (satisfactory condition). 

 Table 3 shows an extract of the bridge deck condition ratings for several bridge 

IDs. As can been seen, the condition ratings do not always decrease, as initially 

expected, but also increase, which indicates an improvement of the respective bridge’s 

condition. Such improvements are most likely the results of applied maintenance 

actions, but could also be a result of inspector subjectivity, as previously mentioned in 

4.1.1.  

 

Bridge 
ID 

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 

500 7 7 6 6 6 6 6 6 6 6 6 6 6 

540 7 6 6 6 6 6 6 6 6 6 6 6 6 

550 7 7 5 5 5 5 5 5 5 5 7 7 7 

560 7 8 8 8 8 8 8 7 7 7 7 7 7 

580 7 7 7 7 6 7 7 7 7 7 7 7 7 

Table 3: Extract of NBI deck condition ratings 

 

However, since the aim of this study is to investigate natural working bridge 

deterioration, transitions to an increased condition rating were not considered in the 

computation of the deterioration rates. The computation of the deterioration rates is 

further explained by the condition rating history of a sample bridge ID, as depicted in 

Figure 5. As can be seen, the bridge shows overall a decreasing rating behavior, except 

between years 2001 and 2002, where the bridge experienced a maintenance action, 

which leads to an increase in the condition rating. Inbetween years 1992 and 2001 the 

bridge experienced a decrease of 2 ratings, decreasing from a rating of 7 to a rating of 



54 
 

5. In year 2001, the bridge was subject to maintenance actions which improved the 

bridge‘s condition and caused the rating to increase to a rating of 8 in the following 

year. After that, the ratings stayed constant for 5 years, then decreasing again to a 

condition rating of 5 in year 2015.  

 

 

Figure 5: Sample development of bridge condition ratings 

 

Now, to calculate the deterioration rate the condition rating history was divided into 

several time periods, which are characterized by at least one decrease in rating and no 

increase. For each time period, a deterioration rate was calculated, which is the total 

difference in rating divided by the difference in years of that time period. The final 

deterioration rate is computed by calculating the average of all deterioration rates of 

each time period. For instance, applying this approach to the example above, two time 

periods can be used. For the first time period, from 1992 to 2001, the deterioration rate 

would be calculated as  −
7−5

2001−1992
= −0.222, and for the other time period, the 

deterioration rate would be calculated to  −
8−5

2017 −2002
= −0.2. The final deterioration 
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rate would then be calculated to  −
0.222+0.2

2
= −0.211. 

 Special attention was paid to time periods at the beginning and end of the 

available bridge condition rating datasets. Consider for example the following set of 

condition ratings, as shown in Table 4. As can be seen, the bridge starts with a rating 

of 6 in 1992, then instantly decreasing to a rating of 5 in 1993, and decreasing again in 

1999 to a rating of 4. In 2002 the rating went up to 7, where it remained constant for 

five years. After that, the rating decreases two more times, in years 2008 and 2013. 

Following the approach as stated above, two time periods could be used, from 1992 to 

2001 and 2002 to 2017. Now for the first time period, the deterioration rate would be 

calculated to  −
2

9
= −0.222. However, the problem with this period is, that there is 

just one rating of 6 in the initial year of 1992. Intuitively, the bridge was very likely in 

a rating of 6 for several more years before it changed to a rating of 5 in 1993. This 

intuition is also supported when looking at the development of the ratings in the 

second time period, where all ratings stayed constant for at least five years. Therefore, 

since no information is available of how long the bridge was in rating 6 before year 

1992, this respective year was neglected and the deterioration rate for the first time 

period was calculated to  −
1

9
= −0.111. 

 

 

ID 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 

60 6 5 5 5 5 5 5 4 4 4 7 7 7 7 7 7 6 6 6 6 6 5 5 5 5 5 

Table 4: Sample for invalid condition ratings for calculating deterioration rates 
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Also, in cases where a bridge showed inconsistently or contradicting deterioration 

behavior, the respective bridge was neglected from the computation. Consider for 

example the following condition ratings as depicted in Figure 6. All time periods that 

would fulfill the before mentioned requirements are not longer than 4 years. Since 

bridges are most of the time inspected only every two years, most likely just two 

inspections were conducted within those time periods. Further, the bridge shows 

unusual drops in the condition ratings, as for example between years 2005 and 2006, 

where the bridge sharply falls from a rating of 6 to a rating of 3. Due to this incredible 

development in the condition ratings, this bridge would not be taken into 

consideration. 

 

 

Figure 6: Inconsistent deck condition ratings 
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4.3 Correlation Analysis 

 

After having computed the deterioration rates for each bridge ID, the deterioration 

rates were then set into relation with several selected parameters of the NBI to look for 

any possible correlations. As mentioned earlier, deterioration rates were calculated for 

bridge deck, superstructure, and substructure. Therefore, the analyzing process was 

divided into three sections, each for one of the bridge elements. In Table 5 and Table 

6, all selected NBI items are listed, which were divided into time-independent and 

time-dependent parameters. 

 

Time-independent parameters 

#26 Functional Classification of Inventory Route 

#27 Year Built 

#28A Lanes on Structure 

#31 Design Load 

#42A Type of Service on Bridge 

#43A Kind of Material and/or Design 

#43B Type of Design and/or Construction 

#45 Number of Spans 

#48 Length of maximum Span 

#49 Structure Length 

Table 5: Investigated time-independent NBI items 
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Time-dependent parameters 

#29 Average Daily Traffic (ADT) 

#109 Average Daily Truck Traffic (ADTT) 

#58 Deck Condition Rating 

#59 Superstructure Condition Rating 

#60 Substructure Condition Rating 

Table 6: Investigated time-dependent NBI items 

 

For each bridge element, an excel spreadsheet was created which stores the computed 

deterioration rates for all considered bridge IDs along with associating values for the 

time-independent and time-dependent parameters listed in Table 5 and Table 6. The 

excel spreadsheets were then imported into MatLab to create several graphs, which 

help to visualize and analyze any possible correlations between the bridge element 

deterioration rates and each parameter. To effectively illustrate the correlations 

different kinds of graphs were used. For parameters that are characterized by 

categorical data such as functional classification, design load or structure kind, box 

plots were created, while for continuous parameters, such as structure length or ADT 

scatter plots were generated. Furthermore, for categorical parameters, Spearman’s 

rank correlation coefficient was computed, while for continuous parameters Pearson 

correlation coefficient was computed. Both coefficients are a measure for the strength 

of correlation between two variables. 

 

 

 



59 
 

4.3.1 Deck 

 

 Before investigating any correlations between deck deterioration and the 

selected parameters, a histogram was generated which shows the frequency of all 

computed deterioration rates. As can be seen in Figure 7, most bridges showed a 

deterioration rate between -0.02 and -0.04 (152 bridges, 33,85%). The next most 

frequent deterioration rates were settled in between -0.07 and -0.08 (102 bridges, 

22,72%). When looking at the diagram it is noticeable that much fewer bridges had 

deterioration rates in between those two ranges.  

 

Figure 7: Deck deterioration rates frequencies 
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After the peak around -0.07 the frequencies for the deterioration rates are continuously 

decreasing with higher deterioration rates. The greatest computed deterioration rate is 

-0.289, while the average deterioration rate for bridge deck is -0.072. 

 

 

Correlations between deck deterioration and time-independent parameters 

 In this section, the graphs and correlation coefficients that were generated to 

investigate correlations between deck deterioration rates and time-independent 

parameters are presented. The computed correlation coefficients are shown in Table 7 

and Table 8. As can be seen, no significant correlations between the deterioration rates 

of element bridge deck and the selected parameters are indicated. This was also 

supported when analyzing the created graphs. The generated scatter plots and box 

plots can be found in Appendix C – Figures for bridge deck correlation analysis.  

 

Categorical time-independent parameters Spearman correlation coefficient 

Functional Classification -0.0423 

Lanes on Structure 0.0289 

Design Load 0.08047 

Type of Service on Bridge -0.0758 

Kind of Material and/or Design 0.1172 

Type of Design and/or Construction -0.0999 

Number of Spans -0.1559 

Table 7: Spearman correlation coefficient for deck deterioration rates vs categorical 
time-independent parameters 
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Continuous time-independent parameters Pearson correlation coefficient 

Structure Length -0.0306 

Length of maximum Span 0.1149 

Year Built 0.1535 

Table 8: Pearson correlation coefficient for deck deterioration rates vs continuous 
time-independent parameters 

 

However, although no strong correlation could be observed, the created graphs for 

parameters year built, lanes on structure, structure kind, and structure length are shown 

in the following paragraphs to give an insight in the results.  

 

Figure 8: Correlation between deck deterioration rate and year built 

 

Figure 8 shows the scatter plot for the correlation between deck deterioration rates and 

NBI item year built. The graph shows that most bridges were built between 1960 and 

1970, and most have a deterioration rate between -0.03 and -1.2. Although the slope of 
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the plotted regression line is very low, it still indicates that the deterioration rates for 

bridge deck are greater the older the bridge is. However, as can be seen, there are also 

some bridges built around 1880 with deterioration rates of -0.05 or lower, and 

therefore do not fit with this pattern. 

Figure 9 shows the box plot for parameter lanes on structure, in which the blue 

straight line shows the average deck deterioration rate. When looking at the diagram 

no correlation can be observed. One would expect that bridges with a higher number 

of lanes would deteriorate faster, but the created box plot does not support this 

hypothesis. Bridges with 2, 3, 4 and 5 lanes on structure show a very similar median 

deterioration rate, while the median deterioration rate for the rest is much slower. At 

this point it should be noted that there is just a small number of bridges with 1, 6, 7, 8 

and 10 lanes on structure, so the box plot is not very meaningful for those bridges.  

 

Figure 9: Box plot for deck deterioration rate vs. lanes on structure 
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Shown in Figure 10 is the box plot for deck deterioration rate in relation to different 

structure kinds. The median deterioration rate for categories 1 (concrete), 2 (concrete 

continuous), 3 (steel), and 5 (prestressed concrete) are very similar. Category 7 (wood 

or timber) shows by far the greatest median deterioration rate, while category 4 (steel 

continuous) shows the lowest. 

 

Figure 10: Box plot for deck deterioration rate vs. structure kind 

 

In the next box plot in Figure 11, the relation of deck deterioration rate versus 

structure length is depicted. The plotted regression line indicates that the deterioration 

rate goes up with increasing structure length, as one would expect. However, the slope 

of the line is very low and thus not very meaningful. As can be seen, most bridges are 

less than 100 meters long. The deterioration rates for most of these bridges is between 

-0.03 and -1.2, as it was for year built.  
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Figure 11: Correlation between deck deterioration rate and structure length 

 

 

Correlations between deck deterioration and time-dependent parameters 

 In this section correlations between the time-dependent NBI items ADT, ADTT 

and the condition ratings of all three bridge elements were investigated. Instead of 

using the calculated deterioration rates, the condition ratings from the NBI were used 

directly to compute a linear correlation between the deck condition ratings and each 

parameter, since the calculated deterioration rates are constant and therefore less 

suitable as the reference factor in this case. An excel spreadsheet was created for each 

pair of parameters that were investigated, as it was done for the time-independent 

parameters. If in the spreadsheets with ADT and ADTT any cells for a specific bridge 

ID in a specific year was containing a zero, the respective cells were deleted, so that 

these zeros did not distort the correlation calculation. For the analysis scatter plots 

were created to compare the individual parameters with the deck ratings. Table 9 and 
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Table 10 show the correlation coefficient between deck rating and the considered time-

dependent parameters for continuous and categorical parameters respectively. 

As can be seen, the correlation coefficients for ADT and ADTT between deck rating 

are both very low. However, odd is that the correlation for ADTT is much greater than 

the correlation for ADT. The scatter plots for both parameters can be found in 

Appendix C – Figures for bridge deck correlation analysis.  

 

Continuous time-dependent parameters Pearson correlation coefficient 

Average Daily Traffic (ADT) -0.0319 

Average Daily Truck Traffic (ADTT) 0.1149 

Table 9: Pearson correlation coefficient for deck deterioration rates vs continuous 
time-dependent parameters 

 

Categorical time-dependent parameters Spearman correlation coefficient 

Superstructure Condition Rating 0.5105 

Substructure Condition Rating 0.4291 

Table 10: Spearman correlation coefficient for deck deterioration rates vs categorical 
time-dependent parameters 

 

 

The strongest correlation that could be found in this category is between the deck 

condition rating and the superstructure condition rating. The associating scatter plot is 

illustrated in Figure 12. The correlation between deck rating and substructure rating is 

very similar, although a little weaker. The associating scatter plot can be found in 

Appendix C – Figures for bridge deck correlation analysis. 
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Figure 12: Correlation between deck condition rating and superstructure condition 

rating 

 

 

4.3.2 Superstructure 

 

The correlations between superstructure and the selected parameters were analyzed 

the same way as for bridge deck. At first, the frequencies of the deterioration rates for 

superstructure were plotted in a histogram, as shown in Figure 13. Compared to the 

histogram for bridge deck, the deterioration rates for the bridge superstructure are 

overall a little greater. The histogram shows three peaks. Most of the analyzed bridges 

have a superstructure deterioration rate between -0.02 and -0.03 (91 bridges, 18,24 %), 

followed by the range between -0.06 and -0.07 (114 bridges, 22.85 %), and then the 

range between -0.09 and -0.1 (83 bridges, 16.63 %). These bridges constitute 57.72 % 

of all 499 considered bridges. The average deterioration rate is -0.089, which is a little 



67 
 

higher than the one for bridge deck. However, the greatest deterioration is -0.217, 

which is less than the highest for bridge deck. 

 

 

Figure 13: Superstructure deterioration rate frequencies 

 

 

Correlations between superstructure deterioration and time-independent parameters 

When analyzing the time-independent parameters for bridge superstructure, it 

became clear that no strong correlations exist between the calculated superstructure 

deterioration rates and the considered parameters. The computed correlation 

coefficient for each parameter is listed in Table 11 and Table 12. As can be seen, item 

type of design and/or construction shows the highest correlation coefficient of -0.0769, 

which is, however, still very low.  
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Categorical time-independent parameters Spearman correlation coefficient 

Functional Classification -0.0656 

Lanes on Structure -0.0187 

Design Load 0.0220 

Type of Service on Bridge -0.0189 

Kind of Material and/or Design -0.0528 

Type of Design and/or Construction -0.0769 

Number of Spans -0.0434 

Table 11: Spearman correlation coefficient for superstructure deterioration rates vs 

categorical time-independent parameters 

 

 

Continuous time-independent parameters Pearson correlation coefficient 

Structure Length 0.0035 

Length of maximum Span 0.0179 

Year Built 0.0337 

Table 12: Pearson correlation coefficient for superstructure deterioration rates vs 
continuous time-independent parameters 

 

 

The associating graphs for all continuous and categorial time-dependent parameters 

can be found in Appendix D – Figures for superstructure correlation analysis. 

 Although no clear correlation could be observed, box plots for the same 

parameters that were presented for bridge deck in section 4.3.1 are shown for bridge 

superstructure to compare their results. Figure 14 shows the box plot for lanes on 

structure versus superstructure deterioration rate. The graph shows similar features to 

the one for bridge deck. For 1 to 6 lanes on structure, the median deterioration rate is 

almost equal, for the rest of the categories, the values are differing. The greatest 
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deterioration rates could be found for bridges with 1, 2 and 4 lanes on structure. As 

mentioned in the previous section, one possible reason for this is the small number of 

bridges that showed more than 6 lanes on structure, so these bridges are not 

sufficiently well enough represented to allow any clear statements.  

 

Figure 14: Box plot for superstructure deterioration rate vs. lanes on structure 

 

In Figure 15 the superstructure deterioration rate versus structure kind is 

depicted. Compared to bridge deck, categories 3 (steel) and 5 (prestressed concrete) 

show much greater deterioration rates. Bridges of categories 1 (concrete) and 7 (wood 

or timber) however, show similar values. As for bridge deck, the greatest deterioration 

rate can be found for wood or timber bridges. 
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Figure 15: Box plot superstructure deterioration rate vs. structure kind 

 

Correlations between superstructure deterioration and time-dependent parameters 

 To investigate any correlations between superstructure deterioration and the 

time-dependent parameters the condition ratings for superstructure were used, as it 

was done the same way for bridge deck. The computed correlation coefficients are 

summarized in Table 13 and Table 14. The strongest, but still weak correlation could 

be found between superstructure and substructure, which is slightly greater than the 

correlation between superstructure and bridge deck. Notable is that the correlation 

coefficients for ADT and ADTT are more similar to each other than they were for 

bridge deck. However, they are both very low and hence indicate that no strong 

correlation between those parameters and superstructure deterioration exist. Since the 

computed correlations are not strong at all no graphs are shown at this point. Instead, 

the graphs can be viewed in Appendix D – Figures for superstructure correlation 

analysis. 
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Continuous time-dependent parameters Pearson correlation coefficient 

Average Daily Traffic (ADT) -0.0500 

Average Daily Truck Traffic (ADTT) -0.0347 

Table 13: Pearson correlation coefficient for superstructure deterioration rates vs 
continuous time-dependent parameters 

 

Categorical time-dependent parameters Spearman correlation coefficient 

Deck Condition Rating 0.4714 

Substructure Condition Rating 0.4871 

Table 14: Spearman correlation coefficient for superstructure deterioration rates vs 
categorical time-dependent parameters 

 

 

4.3.3 Substructure 

 

The frequencies of the deterioration rates for bridge substructure are shown in 

Figure 16. 128 bridges showed a deterioration between -0.01 and -0.03, which 

constitute 27.35 % of the considered bridges. After this point, the deterioration rates 

experienced a sudden increase, but rise very quickly again.  In between -0.03 and -

0.06 a smaller number of bridges were settled (70 bridges, 14,96 %). After this point, 

the deterioration rates experienced a sudden decrease. Only 58 bridges (12.39%) 

showed deterioration rates between -0.03 and -0.05. However, the frequency rises 

quickly again, with 115 bridges in between deterioration rates of -0.05 and -0.07. 

From this point on, the frequencies are continuously decreasing. The highest 
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calculated substructure deterioration rate is -0.273, while the average deterioration rate 

is -0.078, which are very similar values compared to those for bridge deck. 

 

Figure 16: Substructure deterioration rate frequencies 

 

 

Correlations between substructure deterioration and time-independent parameters 

 The greatest correlation coefficient between bridge element substructure and 

all considered time-independent parameters was calculated for item type of service on 

bridge, which is however not very strong. The results for substructure are not very 

surprising since the analysis for elements deck and superstructure showed no strong 

correlations either. All computed correlation coefficients are listed in Table 15 and 

Table 16. The associating graphs can be found in Appendix E – Figures for 

substructure correlation analysis. 
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Categorial time-independent parameters Spearman correlation coefficient 

Functional Classification 0.0368 

Lanes on Structure -0.0094 

Design Load -0.1019 

Type of Service on Bridge 0.1090 

Kind of Material and/or Design 0.00049 

Type of Design and/or Construction -0.0013 

Number of Spans -0.0827 

Table 15: Spearman correlation coefficient for substructure deterioration rates vs 

categorical time-independent parameters 

 

Continuous time-independent parameters Pearson correlation coefficient 

Structure Length 0.0356 

Length of maximum Span 0.0631 

Year Built -0.0624 

Table 16: Pearson correlation coefficient for substructure deterioration rates vs 
continuous time-independent parameters 

 

As in the previous sections, the box plots for parameters number of lanes on structure 

and structure kind versus substructure deterioration rate are shown to give an insight in 

the results. The horizontal line in the box plots represents the average deterioration 

rate of -0.078 for substructure. 
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Figure 17: Box plot for substructure deterioration rate vs. lanes on structure 

 

Figure 17 shows the box plot for substructure deterioration rate versus lanes on 

structure. As for bridge deck and bridge superstructure, bridges constructed with 2 

lanes on structure show the highest deterioration rate. Notable is that bridges with 5 

lanes on structure show much higher deterioration rates, which is a contrast with the 

results for the other bridge elements. However, it should be noted that just a small 

number of bridges with 9 lanes on structure were present. 

Figure 18 shows the substructure deterioration rate versus structure kind. 

Besides structure kind 8 (masonry), all structure kinds show a similar median 

deterioration rate. The highest deterioration rates could be observed for categories 1 

(concrete) and 3 (steel), which is in accordance with the results for bridge deck and 

superstructure. 
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Figure 18: Box plot for substructure deterioration rate vs. structure kind 

 

 

Correlations between substructure deterioration and time-dependent parameters 

 For investigations between the substructure deterioration and time-dependent 

parameters, the same approach as for bridge deck and bridge superstructure was used. 

Instead of the calculated deterioration rates, the condition ratings were used directly to 

compute correlations. The results are similar to those for the other bridge elements. 

The computed correlation coefficients for ADT and ADTT are similar, however very 

small. The highest correlations could be observed between substructure condition 

ratings and the superstructure condition ratings, which is a little higher than the 

correlation between substructure ratings and the deck ratings. All computed correlation 

coefficients are listed in Table 17 and Table 18. Since no strong correlations could be 

observed, no graphs for those correlations are shown at this place. The respective 

graphs can be found in Appendix E – Figures for substructure correlation analysis 



76 
 

Continuous time-dependent parameters Pearson correlation coefficient 

Average Daily Traffic (ADT) -0.0447 

Average Daily Truck Traffic (ADTT) -0.0339 

Table 17: Pearson correlation coefficient for substructure deterioration rates vs 
continuous time-dependent parameters 

 

Categorical time-dependent parameters Spearman correlation coefficient 

Deck Condition Rating 0.4025 

Superstructure Condition Rating 0.4955 

Table 18: Spearman correlation coefficient for substructure deterioration rates vs 
categorical time-dependent parameters 
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5. BRIDGE DETERIORATION MODEL 

 

According to the American Society of Civil Engineers (ASCE), almost one in four 

bridges in Rhode Island has been rated structurally deficient in 2017, which makes it 

the state with the highest rate of structurally deficient bridges in the USA. The 

problem of deteriorated bridges is therefore nowhere else more critical than in Rhode 

Island. In this chapter three bridge deterioration models based on the National Bridge 

Inventory (NBI) database was developed for the state of Rhode Island, which are able 

to predict the future condition of bridge elements deck, superstructure, and 

substructure respectively. The deterioration models were designed as Dynamic 

Bayesian Networks (DBN) since DBNs are able to effectively incorporate system 

related uncertainties and have proved to be very suitable for modeling deteriorating 

systems [25]. The design process of the DBN structure is described in section 5.1, 

while section 5.2 covers the estimation of the model's parameters. 

 

 

5.1 Model Structure 

 

The subject of this study is the development of three DBNs which describe the 

relationship between the condition of individual bridge elements and several bridge 

related parameters. As described in 3.1.1, a BN and hence also a DBN consists of 

nodes and edges, which represent random variables and conditional dependencies, 

respectively. Within the developed models, the individual bridge elements and bridge 

parameters constitute the random variables of the DBNs, while the directed links 
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describe their dependencies. The bridge parameters were selected from the NBI since 

it provides a useful database containing inventory data, maintenance and inspection 

data for almost every bridge in the USA. A list of all NBI items along with a detailed 

description can be found in the Recording and Coding Guide for the Structure 

Inventory and Appraisal of the Nation’s Bridges [5]. These items are either time-

dependent such as average daily traffic (ADT) and average daily truck traffic (ADTT) 

or time-independent such as structure number, year built and location. The items that 

were considered for this study and modeled as nodes in the DBN are listed below in 

Table 19. 

 NBI item Item Number 

Time-

dependent 

Average Daily Traffic (ADT) #29 

Average Daily Truck Traffic (ADTT) #109 

Deck Rating #58 

Superstructure Rating #59 

Substructure Rating #60 

Time-

independent 

Lanes on Structure #28A 

Number of Spans #45 

Structure Length #49 

Table 19: Considered NBI items for the DBNs 

Bridges are usually divided into smaller components such as deck, 
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superstructure, and substructure. The Federal Highway Administration (FHWA) 

inspects these bridge components individually every year and provides an estimation 

of their respective condition by means of numerical values, termed condition ratings, 

as described in 2.1.2. In the course of this study, three DBNs were developed, one for 

each of the bridge elements in connection with the bridge parameters listed above. 

Additionally, a variable was included which would account for the influence of 

maintenance actions. 

The DBN describing the relationship between bridge deck and the individual 

bridge parameters is illustrated in Figure 19.  

 

Bridge Deck 
Condition

ADT

ADTT

Lanes on 
Structure

Number of 
Spans

Structure 
Length

Maintenance

 

Figure 19: Originally planned DBN 

 

The DBN is decomposed into two hierarchies. In the top hierarchy the 

variables ADT, ADTT, lanes on structure, number of spans and structure length are 

linked as parent nodes to variable bridge deck condition, which is the child node and 

further constitutes the lower hierarchy of the DBN. Originally it was planned to use 
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the NBI items as the model‘s variables that showed the strongest correlation to bridge 

deterioration. However, since no clear correlation at all could be observed during the 

analysis in section 4.3, the selection of the model‘s variables was based on the 

findings of previous research in this field. Therefore, it is reasonable to design ADT 

and ADTT as the parent variable of bridge deck condition since those factors are 

known to have a great impact on bridge deterioration [24]. Further, NBI items lanes on 

structure, number of spans and structure were selected. In previous research, an 

increase in the number of spans in the main unit has been observed to be a 

contributing factor to a higher deterioration rate. The same can be found to be 

applicable for the item of structure length since longer bridges are exposed to higher 

tensile stresses [24]. In an earlier stage of the DBN design, it was originally planned to 

include several other parameters such as year built, material kind, design load, type of 

service and deck width in the model, but due to the fact that the number of required 

conditional probabilities increase exponentially with the number of parent nodes, these 

parameters were neglected. According to Langseth and Portinale, too many parent 

variables significantly reduce the computational efficiency of the network [12].  

Now having defined the directed acyclic graph (DAG) for the DBN, the next 

step was to specify the mutually exclusive states of the individual variables. As stated 

in 2.1.2 the FHWA divides the overall condition of the bridge elements into different 

10 ratings, ranging from 0 to 9, where 9 defines the best and 0 the worst condition. 

Hence it would sound reasonable to define 10 possible states for the bridge element 

variable. Further, as a first approximation, each parent variable was decided to be 

assigned with four different states, except for variable maintenance, which was given 
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two states. Now when looking on the conditional probabilities that need to be 

specified for the bridge element variable, it occurs that in total 10 x 45 x 2 = 20480 

probabilities would be necessary. Not only would this amount of conditional 

probabilities lead to a very time-consuming implementation process, but most of all, 

the available data in the NBI is nowhere near sufficient to provide the estimation of 

reliable and accurate conditional probabilities since just 578 bridges were taken into 

consideration. Therefore, a more rough discretization for the individual variables has 

been chosen by assigning each variable with three possible states, except for variable 

maintenance. The updated amount of required conditional probabilities is now 36 x 2 = 

1458. It occurs that the necessary amount of conditional probabilities is still very high. 

A straightforward and commonly applied technique in BN applications to deal with 

this problem is to introduce auxiliary nodes (intermediate variables).  

 

Bridge Deck 
Condition

ADT
ADTT

Lanes on 
Structure

Number of 
Spans

Structure 
Length

Loading 
Classification

Structural 
Classification

Maintenance

 

Figure 20: Applied DBN 
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By means of auxiliary nodes the number of conditional probabilities that need 

to be specified, can be effectively reduced. By inserting new nodes between the 

respective bridge element node and its parent nodes, their connection is indirectly 

enabled. The new DBN with incorporated auxiliary nodes is depicted in Figure 20.  

According to Wang, “by means of auxiliary nodes, inference efficiency of the 

whole network can be improved dramatically“ [12]. It should be noted that the 

auxiliary nodes do not have to have a practical meaning, but indirectly capture the 

connection between the parent and child variables. In the developed DBN in Figure 

20, the auxiliary node termed as loading classification has been set between the node 

bridge deck condition and the nodes ADT and ADTT, while another auxiliary node 

termed structural classification was set between the node bridge deck condition and 

the nodes structure length, number of spans and number of lanes. Each of those 

auxiliary nodes was defined with 3 different states, which depend on the current state 

of their respective parent variables. Compared to the original model the bridge element 

node now has three instead of six parent nodes. Although now also conditional 

probabilities have to be defined for the auxiliary nodes, the total amount of required 

conditional probabilities has been considerably reduced to 33 + 34 + (33 x 2) = 162.  

It should be noted that at this stage, the developed model is just a BN and not 

yet a DBN. In order to extend the model to a DBN, a time dimension has to be 

introduced, as described in 3.2. The variables that are affected by this extension, are all 

time-dependent variables in the model, which are ADT, ADTT, maintenance and the 

respective bridge element condition variable. These variables can have a different state 

at every time slice (ti). The bridge element condition variable is assigned with 
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temporal links at every time slice, which are directed to the corresponding variable in 

the next consecutive time slice (ti+1). For instance, at time t1 = 0 the variable bridge 

deck is directly linked to the successive bridge deck variable in the next time-slice at 

time t2 = 1.  
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Figure 21: DBN model for bridge deck condition prediction 

 

The operating principle of the completed and later applied DBNs is further  

illustrated in Figure 21. The remaining time-invariant variables namely structure 

length, number of spans and number of lanes are static and are hence only specified 

one-time in the initial time-slice. They are connected to the corresponding variables of 

each time-slice.  

It has to be mentioned that with the extension to a DBN the number of required 
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conditional probabilities increases again since the variable bridge deck condition is 

now also dependent on its state in the preceding time slice. The final number of 

required conditional probabilities for each DBN is hence calculated to  

33 + 34 + (34 x 2) = 270. For the time interval, one year has been chosen since the 

FHWA provides inspection records annually. 

 

 

5.2 Parameter Estimation 

 

In this section, the determining of the DBNs parameters is described in detail. The 

parameters of the DBN are the marginal and conditional probabilities, which are based 

on several items of the NBI database. The computation of these probabilities is made 

using the filtered data sets from section 4.1. In section 5.2.1 and 5.2.2, the calculation 

of the conditional and marginal probabilities using the filtered datasets is described. 

 

 

5.2.1 Calculation of Conditional Probabilities 

 

The conditional probabilities are the quantitative part of a BN and can be 

interpreted as a representation of the dependence relationship between the model‘s 

variables. Conditional probabilities need to be specified for each child variable. 

Hence, for the described DBN in section 5.1, conditional probabilities need to be 

determined for nodes loading classification, structural classification, and the respective 
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bridge element condition node. The conditional probabilities for each child node are 

stored in conditional probability tables (CPT). 

As briefly mentioned in 5.1, each variable of the DBNs except for variable 

maintenance was given three mutually exclusive states. For the variables lanes on 

structure, structure length, ADT, and ADTT the three states were defined as “low“, 

“moderate“ and “high“, as it was for the intermediate nodes structural classification 

and loading classification. For the condition ratings, the three states were defined as 

“poor“, “satisfactory“ and “good“. A state of poor was given to a bridge if the 

condition rating in the corresponding year was between 0 and 4, a state of satisfactory 

was given for ratings of 5 and 6, and a state of good was given for ratings between 7 

and 9. The classification of the states for the bridge element condition variable is 

summarized in Table 20.  

 

Condition Rating 
State of the bridge 

elment variable 

9 

Good 8 

7 

6 
Satisfactory 

5 

4 

Poor 

3 

2 

1 

0 

Table 20: Bridge element variable classification 
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For the variables lanes on structure, number of spans and structure length, the 

classification in which state a variable is, was based on the analysis of the NBI items 

for Rhode Island. The classification was made in such a way that the three different 

states for each variable are more or less equally distributed, if possible. The 

classification for variables lanes on structure, number of spans and structure length is 

given in Table 21. 

 

Variable 
State 

Low Moderate High 

Lanes on Structure 1 2 >2 

Number of Spans 1 2 >2 

Structure Length 0-20 m 20-50 m > 50 m 

Table 21: Time-independent variable classification 

 

When analyzing the filtered NBI datasets, it has been observed that for item lanes on 

structure 9% of all bridges in Rhode Island were built with 1 lane, 64% with 2 lanes 

and 27% with 3 or more lanes. The item number of spans was distributed with 55% for 

1 span, 19% for 2 spans and 26% for 3 or more spans. The same approach was taken 

for variables ADT and ADTT. Based on the distribution of the items in the filtered 

dataset, ADT and ADTT were classified as shown in Table 22, where the number for 

the respective variables represent the annual number of vehicles crossing the bridge. 
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Variable 
State 

Low Moderate High 

ADT ≤ 5000 5000-15000 >15000 

ADTT ≤ 500 500-1500 >1500 

Table 22: Time-dependent variable classification 

 

The intermediate variables structural classification and loading classification 

were added to significantly reduce the required number of conditional probabilities, as 

described in 5.1. These intermediate nodes do not have a practical meaning, but 

indirectly enable the connection between the parent variables and bridge element 

condition variable. As mentioned above, for these variables also the three different 

states low, moderate and high were defined. In which state these variables are, 

depends on the current state of its respective parent variables. For this purpose, the 

three states low, moderate and high of each of the parent variable were assigned with a 

numerical value. A value of 1 was assigned for the state of low, a value of 2 was 

assigned for moderate, and a value of 3 was assigned for state high. These values of all 

parent variables of one common node were then summed, and based on this sum the 

intermediate child node was classified. For variable structural classification, a state of 

low was given if the sum of all values of its parent variables states was smaller than 5. 

For a state of moderate the sum had to be between 5 and 7, and for state high the sum 

had to be greater or equal to 8. For instance, if a bridge was built with 2 spans, 1 lane 

and had a structure length of 52 meters, the sum of values would be 2 + 1 + 2 = 5, 
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which would result in a state of moderate for variable structural classification. The 

classification for the intermediate nodes is summarized in Table 23. 

 

Variable State 
Sum of values given for the 

parent variables 

Structural 

Classification 

Low <5 

Moderate 5-7 

High >7 

Loading 

Classification 

Low <4 

Moderate =4 

High >4 

Table 23: Classification for variables Structural Classification and Loading 
Classification 

 

The same approach was taken for the intermediate variable loading classification, 

which depends on variables ADT and ADTT. In this case, as node loading 

classification has only 2 parent variables, a state of low was given for a sum of values 

smaller than 4, a state of moderate was given for a sum of values was equal to 4, and 

the state of high was given for a sum of values greater than 4. This way of 

classifyingresults in the following CPT for node Loading Classification, as shown in 

Figure 22.  
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Figure 22: CPT - Loading Classification 

 

For each bridge element, two different CPTs need to be specified. One for the initial 

time slice, in which the bridge element condition does not depend on a previous 

element condition since no previous condition is present, and the CPTs for all other 

time slices, where the current bridge element condition depends on the respective 

preceding condition. The conditional probabilities for the bridge element variables 

were computed using the Maximum Likelikhood Estimation (MLE) method as 

described in 3.3.1. Its application on the developed DBNs is further described by 

means of a sample calculation. Consider the following table for six exemplary bridges, 

as shown in Figure 23. 

 

 

Figure 23: Example for computing the CPT for bridge deck 

 

 

Loading Classification

Low Moderate High Low Moderate High Low Moderate High

1 1 1

1 1 1

1 1 1

ADT Low Moderate High

ADTT

Low

Moderate

High

SC = Structrual Classification LC = Loading Classification DC = Deck Condition Rating

LC DC LC DC LC DC LC DC LC DC LC DC LC DC LC DC

60 1 3 7 3 7 3 6 3 6 3 6 3 6 2 6 2 6

110 2 2 7 2 6 2 6 2 6 2 6 2 6 2 6 2 6

150 1 3 7 3 7 3 5 3 5 3 5 3 5 3 5 3 5

170 2 2 8 2 8 2 8 2 8 2 7 2 7 2 7 2 6

200 1 2 7 2 7 2 7 2 7 2 6 2 7 2 7 2 7

220 2 2 7 2 6 2 6 2 6 2 6 2 6 2 6 2 6

Bridge 

ID
SC

1992 1993 1994 1995 1996 1997 1998 1999
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For example, the probability for the bridge deck to be in state satisfactory, given that 

its parent variables structural classification and loading classification are in state 

moderate, and that the deck condition in the year before was in a state of good, would 

be calculated as follows: 

𝑃(𝐷𝐶 = 𝑠|𝑆𝐶 = 𝑚, 𝐿𝐶 = 𝑚, 𝐷𝐶−1 = 𝑔) =
𝑛(𝑠, 𝑚, 𝑚,𝑔)

𝑛(𝑔, 𝑚, 𝑚, 𝑔) + 𝑛(𝑠, 𝑚, 𝑚, 𝑔)
 

 

                                                                   =  
3

6+3
 = 

1

3
 

 

With the following abbreviations: 

 
DC = Deck Condition    s = satisfactory 

SC = Structural Classification   m = moderate 

LC = Loading Classification   g = good 

 

Where 𝑛(𝑠, 𝑚, 𝑚, 𝑔) represents the count of the frequency for the case that variable 

deck condition is in a state of satisfactory, structural classification and loading 

classification are in a state of moderate, and the deck condition of the previous year 

was in a good condition. 

An extract of the CPT for the variable bridge deck is shown in Figure 24. As 

can be seen, the conditional probability of a bridge to be poor given that its condition 

in the previous year was poor, is always 1, or in other words 100%, except when a 

maintenance action was applied, in this case, the bridge element was reset to a state of 

good. Since the aim of this study was to simulate the normal operating deterioration 

process of bridges, a bridge should not be able to improve its condition, without 

maintenance actions. Therefore, when calculating the conditional probabilities, 
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transitions from worse to better conditions were neglected. 

The CPTs for each of the three DBNs can be found in Appendix G – 

Conditional probability tables. 

 

 

Figure 24: Extract of the CPT - Deck Condition 

 

 

5.2.2 Calculation of Marginal Probabilities 

 

For all root nodes of the DBNs, marginal probabilities needed to be 

determined. The marginal probabilities are simply calculated as the frequency of a 

variable to be in a certain state, divided by the sum of the frequencies of every 

possible state of that variable. The marginal probabilities for variables lanes on 

structure, number of spans, structure length, ADT, and ADTT are listed in Appendix F 

– Marginal probabilities. 

 

 

 

 

 

No Yes No Yes No Yes No Yes No Yes No Yes

1 0 0.018215 0 0.001374 0 1 0 0.006263 0 0 0

0 0 0.981785 0 0.048077 0 0 0 0.993737 0 0.035897 0

0 1 0 1 0.950549 1 0 1 0 1 0.964103 1

Poor

Maintenance

Poor Satisfactory Good Poor Satisfactory Good

Poor Satisfactory

Previous Condition

Poor

Satisfactory

Good

Structural 

Loading 
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5.3 Results 

 

5.3.1 Bridge Element Condition Prediction 

 

After defining the structure of the DBNs and the accomplished calculation of the 

CPTs, the developed deterioration models for bridge elements deck, superstructure, 

and substructure were then used to predict the future condition of each individual 

bridge element for different input parameters. The predictions are performed using the 

software GeNIe, which runs the clustering algorithm to perform inference. The GeNIe 

Modeler is available free of charge for academic research and teaching use from 

BayesFusion, LLC, http://www.bayesfusion.com/. The by GeNIe calculated 

probabilities were then imported into Excel and plotted in graphs over time. 

 

 

Deck 

 The deterioration models can be used to calculate the future bridge element 

condition probabilities for different scenarios. These scenarios vary depending on the 

input parameters for the parent variables of the respective bridge element variable. 

However, predictions can also be performed without assigning any variable in a fixed 

state. In this case, the predictions are calculated using the probability distributions of 

the models CPTs and marginal probabilities tables only. For instance, Figure 25 shows 

the prediction for element bridge deck for 50 years, where no parameters have been 

specified.  

 

http://www.bayesfusion.com/
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The statements that can be derived from these predictions are however very general 

and may not be very meaningful and expedient. Usually, predictions based on several 

assumptions for the input variables are of more interest. Figure 26 shows the 

prediction for the next 50 years with the bridge deck assumed to be in an initial state 

of good. Accordingly, as can be seen, the probability for bridge deck to be in a good 

state starts with 100%. From this point on, the curve for the state of good strives to 

zero. The curve for the state of satisfactory reaches its peak at year 21 with 59.19%. 

The curve for the state of poor is almost a straight line going up. At year 50, the bridge 

will most likely be in a state of poor, with a probability of 56.75%, while the chance 

that the bridge will be in a state of good is with a probability of 2.73% very unlikely.  
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Figure 25: Time series for bridge deck over the next 50 years without specified parameters 
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Two further scenarios are conducted, which involve assumptions for the initial 

bridge deck condition and the two intermediate variables loading classification and 

structural classification. In the first scenario, the bridge is assumed to be in a good 

initial state, while variable structural classification and variable loading classification 

are assumed to be in a state of high for all 50 years. Furthermore, a perfect 

maintenance action at year 25 is simulated, which renews the bridge deck and brings it 

back into a state of good. The evolution curve of the bridge deck is illustrated in 

Figure 27. 

In the second scenario, the same assumptions as in the first scenario were 

made, except that variables structural classification and loading classification were 

assumed to be in a state of low during all 50 years. The associated evolution curve is 

shown in Figure 28. 
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Figure 26: Time series for bridge deck over the next 50 years under the assumption of an 

initial state of good 
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Figure 27: Time series for bridge deck over the next 50 years under the assumption of 

an initial state of good, structural classification and loading classification as high, and 
a perfect maintenance action at year 25 

 

 

Figure 28: Time series for bridge deck over the next 50 years under the assumption of 
an initial state of good, structural classification and loading classification as low, and a 

perfect maintenance action at year 25 
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The biggest difference between those two diagrams clearly constitutes the course of 

the curves for the state of satisfactory. In the first scenario, the bridge is much more 

likely to be in a state of satisfactory. At year 19 the curve reaches its maximum with 

67.45%. The curve in Figure 28, in comparison, has its maximum at year 21 with just 

37.99%. It can further be observed that the evolution curve for the state of good 

declines much faster in the first scenario, while the curves for the state of poor show a 

similar course in both scenarios. Further notable is, that in the second scenario the 

probabilities for each state in year 25 and year 50, are almost equally distributed. 

 

 

Superstructure 

For bridge element superstructure the same predictions were made as for 

bridge deck. Figure 29 illustrates the prediction for bridge superstructure over the next 

50 years, under the assumption of an initial state of good. The predictions for 

superstructure showed a similar character than those for bridge deck. However, the 

curve for the state of satisfactory in Figure 29 reaches its maximum earlier and also 

declines much faster than the respective curve in Figure 28. Furthermore, the curve of 

the state of poor for bridge superstructure rises with a greater slope. Overall, it can be 

concluded that bridge element superstructure deteriorates faster than bridge element 

deck. 
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Figure 29: Time series for bridge superstructure over the next 50 years under the 

assumption of an initial state of good 

 

The graphs involving assumptions for variables loading- and structural classification 

for bridge superstructure can be found in Appendix H – Figures for bridge element 

condition prediction. Since they showed a similar character compared to those for 

bridge deck, they are not shown at this place.  

 

 

Substructure 

 Also for bridge element substructure, the same predictions were made as for 

bridge deck. The prediction diagram for the condition of bridge element substructure 

over the next 50 years, under the assumption of an initial state of good, is depicted in 

Figure 30. 
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The diagram for bridge substructures shows similarities to both of the previous 

elements, deck, and superstructure. Until year 20 the curves of all states are very 

similar to those for bridge superstructure. However, from this point on the curves start 

to run more similar to those for bridge deck. At the end of the diagrams in year 50, the 

probabilities of both elements are almost equal.  

Also, in this case, the graphs involving assumptions for variables loading- and 

structural classification for bridge superstructure did not provide any more interesting 

information and are hence only placed in Appendix H – Figures for bridge element 

condition prediction. 
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Figure 30:Time series for bridge substructure over the next 50 years under the 

assumption of an initial state of good 



99 
 

5.3.2 Sensitivity Analysis 

 

By means of a sensitivity analysis, the strength of impact each bridge parameter 

(i.e. lanes on structure, number of spans, structure length, ADT, and ADTT) has on 

each of the three bridge elements was investigated respectively. This was done 

performing „what-if“ scenarios, where the effects of evidence for individual variables 

in the DBN on the respective bridge element condition variable was examined. For all 

three DBN models, each bridge parameter was one by one (in turn) assigned with a 

state of low, while all other remaining parameters kept their original probability 

distributions. The effect of the evidence was then determined by calculating the 

difference between the resulting probability distribution of the bridge element 

condition variable and it's probability distribution where no evidence is present. This 

was done for all three possible states of the bridge parameters: low, moderate and 

high. The effects of evidence from all three states were then summed for each bridge 

parameter. To calculate the impact each bridge parameter has on the bridge element 

condition, the summed effects of each individual bridge parameter were then 

normalized over the total sum (i.e. Sum of all effects in bridge element condition from 

each bridge parameter with evidence for each state). 

 

 

Deck 

From Figure 31 it can be observed that the parameters lanes on structure, number of 

spans and structure length have overall the greatest impact on bridge deck condition, 

while ADT and ADTT show a clearly lower influence.  
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Figure 31: Area chart for the sensitivity of bridge deck for all DBN variables for 50 
years 

 

Also, it can be seen that the impact of each parameter stays more or less the same over 

time and does not significantly change. These results are in a contrast with prior 

expectations since ADT and ADTT are the only external parameters that really contribute 

to the deterioration of bridges, and are also known to have a great impact on bridge 

deterioration [24]. 

 

 

Superstructure 

The sensitivity analysis for bridge element superstructure showed significant 

differences compared to the one for bridge deck. As can be seen in Figure 32 all 

parameters have overall a more or less equally strong influence on the bridge 
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superstructure. However, unlike in the sensitivity analysis for bridge deck, the impact of 

each parameter shows considerable changes over the time period of 50 years.  

 

 

Figure 32: Area chart for the sensitivity of bridge superstructure for all DBN variables 
for 50 years 

While for variables ADT and ADTT the impact clearly increases with time, the impact for 

lanes on structure decreases of about 13%. Furthermore, around the years 5 and 17, the 

impact of each parameter seems to experience a sudden switch in direction. A reason for 

these odd switches could not be found. 

 

 

Substructure 

The results of the sensitivity analysis for bridge substructure are more similar to those 

for bridge deck than those for bridge superstructure. As for bridge deck, the impacts of 

parameters ADT and ADTT are the lowest of all parameters, as can be seen in Figure 33. 

However, the impact of both parameters is much greater compared to those for bridge 

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Im
p

a
ct

 o
f 

ea
ch

 p
a

ra
m

et
er

 i
n

 p
er

ce
n

ta
ge

Time (year)

Sensitivity over time for superstructure

Lanes on Structure Number of Spans Structure Length ADT ADTT



102 
 

deck. Parameter lanes on structure show the greatest impact, which also the case for the 

other bridge elements.  

 

 

Figure 33: Area chart for the sensitivity of bridge substructure for all DBN variables 
for 50 years 

When observing the diagram in Figure 33, it is striking that around year 4 all parameters 

seem to experience a sudden switch in direction, similar to the one for bridge substructure. 

Especially parameters lanes on structure, structure length, and ADT are affected by this. 

After this sudden change, however, the respective curves drift in a quite linear course. 
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6. CONCLUSION 

 

6.1 Summary 

 

 

The objective of this study was to develop three deterioration models, each for one 

of the bridge elements deck, superstructure, and substructure. The aim was to develop 

a prediction model based on Dynamic Bayesian Networks (DBN), that is being able to 

forecast the future condition of major bridge elements. A further aim was to use the 

National Bridge Inventory (NBI) database to investigate the impact of several bridge 

related parameters on bridge deterioration in Rhode Island. 

When studying possible methods for deriving the DBN parameters, it quickly 

became clear that statistical data would constitute the basis of the models, since the 

only other possible option of expert elicitation would exceed the scope of this study. 

As the source for statistical data, the National Bridge Inventory (NBI) was chosen, 

which provides an extensive variety of information for USA's bridges, including 

information regarding design, construction, and maintenance. Chapter 3 of this thesis 

gives an introduction to Bayesian theory and describes methods to estimate the 

conditional probability tables (CPT), which constitute the essence of the DBNs. For 

this purpose, the Maximum Likelihood Estimation (MLE) was chosen, which can be 

easily applied and operates solely with statistical data. Before the deterioration models 

were developed, the NBI datasets were filtered in order to sort out inconsistent and 

unusable data to ultimately achieve reliable results in the later applied deterioration 

models. Furthermore, the condition ratings of the NBI were used to compute 
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deterioration rates for each bridge element and analyze any possible correlations to 

several selected NBI items, which constitute either bridge design parameters or 

loading parameters. In the first part of Chapter 5, the framework of the developed 

DBNs is described in detail, as is the development of the CPTs using the MLE. In the 

second part of Chapter 5, the developed DBNs were used to perform several 

predictions for each bridge element condition for 50 years with varying input 

parameters. In the course of this, the updating ability of the DBNs was demonstrated 

by simulating a perfect maintenance action within the considered time period. Lastly, 

the impact of the model’s variables on the individual bridge elements condition was 

investigated by means of sensitivity analyses.  

 

 

6.2 Results 

 

In the course NBI data analyzing process, the obtained datasets from the NBI had 

to run through several filters. About 30% of the data had to be disregarded because of 

missing and/or incredible data entries. As described in 4.1, for a great number of 

bridges the condition ratings showed an unusual development, such as ratings that 

went up and down by one or two ratings, which does not agree with the normal 

execution of maintenance actions. These slight variations in the condition ratings 

might derive from subjectivity of different inspectors. Also, other parameters such as 

number of spans and lanes on structure showed inconsistencies within the datasets. 

Due to these inconsistencies, the developed deterioration models might be affected in 

their credibility.  
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During the correlation analyses between the computed deterioration rates and the 

considered NBI items, no strong correlations could be observed. This fact further 

raised concerns about the accuracy of the NBI database. 

In the first part of Chapter 5, the developed DBNs were used to predict the future 

condition for each bridge element for 50 years. Within these predictions, several 

different assumptions were made to examine their effects on the predicted bridge 

element conditions. Overall it could be observed that bridge element superstructure 

deteriorates faster than bridge element deck and substructure. For all bridge elements, 

the evolution curves of each state showed strong increases or decrease approximately 

to the first 20 years, after that the curves developed a linear progression. Furthermore, 

several predictions were made that involved assumptions regarding the variables 

structural classification and loading classification, as well as a simulation of a perfect 

maintenance action at year 25. The ability to make assumptions for several bridge 

parameters within the model allows making predictions for specific bridge groups with 

similar characteristics.  

The second part of Chapter 5 comprises a sensitivity analysis of each bridge 

element on several in the DBNs incorporated bridge parameters. When evaluating the 

results of the sensitivity analyses, it became apparent that the diagrams that were 

derived from the analyses produced contradicting results to some extent, since the 

different variables partly showed strongly different impacts on the individual bridge 

elements. A possible reason for this might be the impaired credibility in the used data.  
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6.3 Future Work 

 

The goal of this study was to develop a deterioration model which is representative 

of the state of Rhode Island. The heart of the developed deterioration models is the 

CPTs, which were computed using NBI data of Rhode Islands bridges. At an early 

stage of the DBNs design process, it was originally planned to include several other 

parameters such as design load, kind of material and structure type in the models, but 

due to the limited available data, this first design had to be discarded. A possible way 

to deal with this problem would be to include the bridge data from other states, which 

would raise the number of available bridge data significantly. However, a drawback 

would be that in this case, the deterioration models would not be as representative for 

the state of Rhode Island anymore. 

Another limitation was the presence of errors and inconsistencies in the obtained 

datasets, which ultimately affected the accuracy of the developed deterioration 

models. Instead of obtaining bridge data from the NBI, original inspection records 

could directly be requested from the Rhode Island Department of Transportation 

(RIDOT), which might give access to more detailed bridge data that has not been 

submitted to the Federal Highway Administration (FHWA). 

Alternatively, the CPTs could be directly estimated by means of expert elicitation 

as described in section 3.3.2. This way the credibility and accuracy of the deterioration 

models would be improved since the models would not have to rely on statistical data 

anymore. 

  



107 
 

APPENDICES 

 

Appendix A - List of approved bridge IDs after filtering 

 
60, 110, 150, 170, 200, 220, 230, 250, 260, 270, 280, 300, 320, 350, 370, 410, 450, 460, 490, 

500, 540, 550, 560, 580, 610, 640, 650, 710, 770, 780, 840, 930, 950, 960, 1010, 1070, 1120, 

1170, 1180, 1210, 1260, 1310, 1390, 1400, 1440, 1450, 1490, 1500, 1510, 1550, 1630, 1640, 

1780, 1790, 1810, 1820, 1850, 1930, 1940, 1970, 1990, 2010, 2040, 2130, 2220, 2240, 2430, 

2480, 2490, 2560, 2570, 2600, 2610, 2670, 2700, 2740, 2760, 2762, 2780, 2840, 2860, 2870, 

2920, 2940, 2950, 2960, 2990, 3010, 3020, 3070, 3080, 3100, 3170, 3230, 3260, 3270, 3340, 

3350, 3370, 3400, 3440, 3450, 3470, 3480, 3500, 3502, 3540, 3550, 3560, 3570, 3630, 3650, 

3680, 3690, 3692, 3700, 3710, 3720, 3750, 3760, 3770, 3820, 3830, 3890, 3910, 3950, 3960, 

3970, 4000, 4010, 4020, 4030, 4040, 4050, 4060, 4070, 4080, 4100, 4110, 4120, 4130, 4140, 

4150, 4160, 4170, 4180, 4190, 4210, 4220, 4230, 4250, 4270, 4280, 4290, 4300, 4320, 4330, 

4400, 4420, 4430, 4450, 4460, 4470, 4480, 4490, 4510, 4520, 4540, 4550, 4560, 4570, 4580, 

4590, 4600, 4650, 4660, 4670, 4680, 4690, 4710, 4720, 4770, 4790, 4800, 4810, 4830, 4840, 

4842, 4850, 4852, 4860, 4862, 4870, 4880, 4890, 4900, 4910, 4930, 4940, 4950, 4990, 5000, 

5010, 5030, 5050, 5060, 5110, 5140, 5150, 5170, 5180, 5190, 5200, 5220, 5230, 5240, 5250, 

5260, 5270, 5280, 5290, 5300, 5310, 5320, 5330, 5340, 5350, 5360, 5370, 5390, 5420, 5440, 

5450, 5460, 5470, 5480, 5490, 5510, 5520, 5522, 5530, 5540, 5550, 5560, 5570, 5580, 5590, 

5600, 5610, 5612, 5620, 5622, 5630, 5632, 5650, 5660, 5670, 5680, 5690, 5692, 5700, 5710, 

5720, 5730, 5740, 5750, 5760, 5770, 5780, 5790, 5810, 5820, 5830, 5840, 5850, 5860, 5862, 

5880, 5882, 5890, 5900, 5910, 5912, 5920, 5922, 5930, 5940, 5950, 5960, 5970, 6000, 6020, 

6040, 6050, 6060, 6070, 6090, 6110, 6112, 6160, 6180, 6190, 6200, 6210, 6220, 6230, 6240, 

6250, 6260, 6270, 6280, 6290, 6320, 6330, 6340, 6350, 6360, 6370, 6380, 6390, 6420, 6422, 

6440, 6450, 6452, 6460, 6462, 6470, 6490, 6492, 6500, 6502, 6510, 6520, 6530, 6550, 6560, 

6570, 6580, 6590, 6600, 6610, 6620, 6630, 6640, 6650, 6660, 6670, 6680, 6700, 6720, 6730, 

6740, 6750, 6760, 6770, 6780, 6800, 6810, 6820, 6830, 6840, 6850, 6860, 6880, 6890, 6910, 

6920, 6970, 6990, 7000, 7010, 7020, 7030, 7040, 7050, 7060, 7070, 7080, 7090, 7100, 7120, 

7130, 7140, 7190, 7200, 7210, 7212, 7220, 7222, 7230, 7240, 7260, 7270, 7272, 7280, 7282, 

7290, 7292, 7300, 7302, 7310, 7320, 7340, 7342, 7350, 7352, 7360, 7362, 7370, 7372, 7400, 

7402, 7410, 7420, 7422, 7430, 7432, 7450, 7452, 7460, 7462, 7470, 7480, 7482, 7490, 7500, 

7502, 7510, 7520, 7522, 7530, 7532, 7540, 7550, 7552, 7570, 7572, 7580, 7600, 7610, 7630, 

7650, 7660, 7670, 7680, 7700, 7710, 7720, 7730, 7740, 7750, 7770, 7800, 7810, 7820, 7830, 

7850, 7870, 7880, 7890, 7900, 7920, 7960, 7970, 7980, 8000, 8200, 8210, 8220, 8240, 8270, 

8310, 8340, 8360, 8400, 8410, 8412, 8480, 8490, 8500, 8510, 8530, 8540, 8550, 8560, 8580, 

8590, 8640, 8650, 8660, 8670, 8672, 8680, 8700, 8720, 8740, 8760, 8780, 8790, 8800, 8820, 

8830, 8840, 8870, 8880, 8890, 8900, 8930, 8940, 8950, 8960, 8980, 8990, 9000, 9020, 9022, 

9040, 9050, 9070, 9120, 9140, 9150, 9160, 9170, 9180, 9190, 9200, 9210, 9220, 9240, 9250, 

9280, 9290, 9300, 9310, 9320, 9330, 9350, 9360, 9380, 9400, 9410, 9440, 9460, 9470, 9480, 
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9490, 9500, 9520, 9530, 9550, 9560, 9570, 9630, 9650, 9660, 9670, 9700, 9730, 9740, 9760, 

9770, 9780, 9810, 9812, 9820, 9840, 9842, 9850, 9860, 9870, 9880, 9890, 9920, 9940, 

1RI0668, 1RI1400 

 

 

Appendix B – List of removed bridge IDs after filtering 

 

Removed because of structure is a culvert 

180, 240, 630, 1060, 1290, 1620, 2630, 2930, 4390, 5210, 5430, 6010, 7150, 7160, 7170, 

7180, 7440, 7560, 7640, 8030, 8060, 8070, 8080, 8110, 8140, 8142, 8150, 8160, 8190, 8430, 

9610, 9620, 9980, 10250, 10260, 10920, 10980, 11440, 11660, 11990, 12240, 12360, 12365, 

12370, 12390, 12470, 12480, 1RI1366, 1RIGTE2 

 

Removed because of insufficient inspection records 

1200, 1825,1870, 2002, 2505, 3075, 4440, 4755, 4765, 4995, 5775, 5782, 6430, 6790, 6980, 

7930, 7950, 8300, 8770, 9262, 9380, 9755, 9960, 9970, 10380, 10430, 10450, 10470, 10990, 

11410, 12300, 12440,  

 

Removed because of invalid inspection intervals 

652, 3000, 3060, 4200, 5100, 6030, 6940, 8330, 8370, 8380, 8630, 8710, 8730, 8750, 9750, 

9900, 9910, 9950  

 

Removed because of missing and/or incredible data 

10, 20, 30, 70, 100, 140, 310, 340, 360, 380, 430, 440, 480, 520, 570, 590, 710, 810, 1000, 

1050, 1080, 1083, 1110, 1230, 1240, 1340, 1350, 1420, 1460, 1480, 1580, 1590, 1740, 1780, 

1880, 1900, 1950, 1960, 1980, 2000, 2060, 2080, 2190, 2270, 2420, 2440, 2450, 2460, 2500, 

2640, 2690, 2710, 2730, 2750, 2790, 2880, 2910, 3030, 3040, 3050, 3062, 3150, 3280, 3504, 

3510, 3530, 3590, 3670, 3730, 3780, 3810, 3840, 3880, 3900, 4240, 4310, 4340,4350, 4410, 

4412, 4500, 4530, 4620, 4630, 4640, 4700, 4730, 4732, 4750, 4760, 4780, 47812, 4820, 4970, 

5020, 5040, 5070, 5080, 5090, 5120, 5160, 5380, 5400, 5500, 5640, 5800, 6080, 6300, 6310, 

6480, 6540, 6690, 6710, 6870, 7082, 7250, 7252, 7322, 7690, 7760, 7780, 7790, 7840, 7860, 

7910, 7940, 8230, 8280, 8290, 8320, 8390, 8420, 8440, 8450, 8460, 8470, 8520, 8600, 8610, 

8652, 8690, 8810, 8850, 8860, 8910, 8920, 9030, 9060, 9080, 9090, 9100, 9120, 9230, 9250, 

9260, 9270, 9340, 9370, 9390, 9420, 9430, 9450, 9492, 9510, 9540, 9580, 9582, 9590, 9592, 
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9600, 9640, 9660, 9662, 9680, 9690, 9720, 9790, 9800, 9830, 9930, 10010, 10020, 10030, 

10040, 10050, 10060, 10070, 10080, 10090, 10100, 10110, 10120, 10130, 10140, 10230, 

10240, 10270, 10280, 10310, 10370, 10420, 10440, 10620, 10700, 10710, 10720, 10750, 

10770, 10780, 10790, 10800, 10810, 10820, 10830, 10970, 11780, 11980, 12160, 12290, 

15510, 1RI0669 

 

 

 

 

Appendix C – Figures for bridge deck correlation analysis 
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Appendix D – Figures for superstructure correlation analysis 
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Appendix E – Figures for substructure correlation analysis 

 



124 
 

 

 

 

 



125 
 

 

 

 

 



126 
 

 

 

 

 



127 
 

 

 

 

 

 



128 
 

 

 

 

 

 



129 
 

 

 

 

 

 

 



130 
 

 

 

 

 

 

Appendix F – Marginal probabilities 

 

  
Lanes on 
Structure 

Number 
of Spans 

Structure 
Length 

ADT ADTT 

Low 0.081315 0.520761 0.288927 0.283004 0.320238 

Moderate 0.583045 0.204152 0.430796 0.347236 0.330042 

High 0.33564 0.275087 0.280277 0.36976 0.349721 
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Appendix G – Conditional probability tables 

 

Deck CPT for initial time slice 

Structural 
Classification 

Poor 

Loading Classification Poor Satisfactory Good 

Maintenance No Yes No Yes No Yes 

Poor 0.077832 0 0.093048 0 0.126722 0 

Satisfactory 0.3836 0 0.464171 0 0.415978 0 

Good 0.538568 1 0.442781 1 0.4573 1 

 

Structural 

Classification 
Satisfactory 

Loading Classification Poor Satisfactory Good 

Maintenance No Yes No Yes No Yes 

Poor 0.066363 0 0.052402 0 0.069056 0 

Satisfactory 0.58156 0 0.505359 0 0.525485 0 

Good 0.352077 1 0.442239 1 0.405459 1 

 

Structural 
Classification 

Good 

Loading Classification Poor Satisfactory Good 

Maintenance No Yes No Yes No Yes 

Poor 0.152778 0 0.032864 0 0.076806 0 

Satisfactory 0.706019 0 0.60446 0 0.69532 0 

Good 0.141204 1 0.362676 1 0.227874 1 
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Deck CPT for remaining time slices 
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Superstructure CPT for initial time slice 

Structural 
Classification 

Poor 

Loading Classification Poor Satisfactory Good 

Maintenance No Yes No Yes No Yes 

Poor 0.181877 0 0.165503 0 0.139303 0 

Satisfactory 0.464725 0 0.585244 0 0.587065 0 

Good 0.353398 1 0.249252 1 0.273632 1 

 

Structural 
Classification 

Satisfactory 

Loading Classification Poor Satisfactory Good 

Maintenance No Yes No Yes No Yes 

Poor 0.129435 0 0.108696 0 0.1277 0 

Satisfactory 0.565217 0 0.647127 0 0.631194 0 

Good 0.305347 1 0.244177 1 0.241105 1 

 

Structural 

Classification 
Good 

Loading Classification Poor Satisfactory Good 

Maintenance No Yes No Yes No Yes 

Poor 0.207289 0 0.10702 0 0.151561 0 

Satisfactory 0.653759 0 0.665132 0 0.728097 0 

Good 0.138952 1 0.227848 1 0.120342 1 
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Superstructure CPT for remaining time slices 
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Substructure CPT for initial time slice 

Structural 
Classification 

Poor 

Loading Classification Poor Satisfactory Good 

Maintenance No Yes No Yes No Yes 

Poor 0.10318 0 0.065803 0 0.017413 0 

Satisfactory 0.532771 0 0.658026 0 0.728856 0 

Good 0.364049 1 0.276171 1 0.253731 1 

 

Structural 
Classification 

Satisfactory 

Loading Classification Poor Satisfactory Good 

Maintenance No Yes No Yes No Yes 

Poor 0.123377 0 0.115981 0 0.082645 0 

Satisfactory 0.586913 0 0.681536 0 0.698665 0 

Good 0.28971 1 0.202483 1 0.21869 1 

 

Structural 

Classification 
Good 

Loading Classification Poor Satisfactory Good 

Maintenance No Yes No Yes No Yes 

Poor 0.218679 0 0.097814 0 0.142137 0 

Satisfactory 0.646925 0 0.728423 0 0.749496 0 

Good 0.134396 1 0.173763 1 0.108367 1 
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Substructure CPT for remaining time slices 
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Appendix H – Figures for bridge element condition prediction 

 

 
 

Bridge deck condition prediction – no parameters specified 

 

 

Bridge deck condition prediction – initial condition state of good 

 

 

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

P
ro

b
a

b
il

it
y 

o
f e

a
ch

 c
o

n
d

it
io

n
 s

ta
te

Time (year)

Bridge Deck Condition Prediction

Poor Satisfactory Good

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

P
ro

b
a

b
il

it
y 

o
f e

a
ch

 c
o

n
d

it
io

n
 s

ta
te

Time (year)

Bridge Deck Condition Prediction

Poor Satisfactory Good



138 
 

 

Bridge deck condition prediction – initial condition state of good, structural- and 

loading classification with a state of high, and a perfect maintenance action at year 25 

 

 

 

Bridge deck condition prediction – initial state of good, structural- and loading 

classification with a state of low, and a perfect maintenance action at year 25 

 

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

P
ro

b
a

b
il

it
y 

o
f e

a
ch

 c
o

n
d

it
io

n
 s

ta
te

Time (year)

Bridge Deck Condition Prediction

Poor Satisfactory Good

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

P
ro

b
a

b
il

it
y 

o
f e

a
ch

 c
o

n
d

it
io

n
 s

ta
te

Time (year)

Bridge Deck Condition Prediction

Poor Satisfactory Good



139 
 

 

Bridge superstructure condition prediction – no parameters specified 

 

 

 

Bridge superstructure condition prediction – initial condition state of good 
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Bridge superstructure condition prediction – initial condition state of good, structural- 

and loading classification with a state of high, and a perfect maintenance action at year 

25 

 

 
 

Bridge superstructure condition prediction – initial condition state of good, structural- 

and loading classification with a state of low, and a perfect maintenance action at year 

25 
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Bridge substructure condition prediction – no parameters specified 

 

 

 

Bridge substructure condition prediction – initial condition state of good 
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Bridge substructure condition prediction – initial condition state of good, structural- 

and loading classification with a state of high, and a perfect maintenance action at year 

25 

 

 

Bridge substructure condition prediction – initial condition state of good, structural- 

and loading classification with a state of low, and a perfect maintenance action at year 

25 
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