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ABSTRACT 

The global trend toward a more sustainable future, based on economics and societal 

behavior, have assisted in making electric vehicles (EV) more attractive to consumers. 

New technology implemented in EVs continuously improves their range, charging time, 

and battery capacity. Therefore, the number of EV sales increased significantly within 

the last few years. In order to handle the demand from the growth in EV sales, the 

development of a user-orientated distribution of charging stations is needed which 

requires substantial knowledge about user patterns in charging behavior. Understanding 

real data from existing charging stations that is analyzed with rigorous statistical 

methods gives valuable insight for the development of empirical models of charging 

behavior.  

In order to initiate this work, a case study approach of public Level-2 charging 

stations in Rhode Island (RI) were analyzed. Research questions range from how 

charging stations are being used to which kind of areas influence this behavior and what 

patterns exist toward calendar dependence. After processing the data, single charging 

stations were classified into functional areas followed by statistical analysis performed 

with descriptive statistics, visualizing data, hypothesis testing, clustering, regressive 

models, and forecasting. 

Based on the data, there is a strong connection between the total duration of 

charging events, actual charging time, and the amount of charging events. Not only are 

chargers utilized differently based on frequency and location, many users use charging 

stations as parking spots. This pattern exists regardless of charging fees. The charging 

behavior varies greatly between the different functional areas. Geographical areas seem 



 

 

 

to have less influence on charging behavior, seemingly more like a mixture of functional 

areas. Approximately, only about one third of the RI EV drivers are using RI charging 

stations. There is mainly a decreasing median amount of charges per user, which speaks 

to either more home charging or larger battery capacity. Areas in which people are 

working have less charging events on weekends and have a strong peak of charging 

events in the morning. Areas in which people are spending their free time have the same 

amount or more charges on weekends and do not have peak times. Timeseries 

forecasting models found that, both currently and in the near future, there are enough 

charging stations in RI. However, this does not imply that all the charging stations are 

in the correct locations, just that the volume of plugs available in RI is sufficient for the 

current EV charging population. 

Knowing how people charge their EVs is vital to understanding and implementing 

a new sustainable transportation infrastructure at a critical time when the monumental 

paradigm shift has relatively just begun. 
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CHAPTER 1 – Introduction 

 

1.1 BACKROUND 

The electric vehicle (EV) market is rapidly growing, in the first quarter of 2018, 

312,400 EVs have been sold worldwide reaching 59% more than last year (EV-Volumes, 

n.d.). Around 200,000 battery electric vehicles (BEVs) and plug-in hybrid electric vehicles 

(PHEVs) were sold in the United States (U.S.) in 2017, with over 55,000 in the first quarter 

of 2018 (EVAdoption, 2018; InsideEVs, 2018). EV sales significantly increased in 2016 

to nearly 160,000 vehicles, when EVs already hit the 1% market share in the U.S. (Howell, 

Boyd, Cunningham, Gillard, & Slezak, 2017; Klippenstein, 2017; U.S. Department of 

Energy, 2017).  

In 2016, the number of registered BEVs was 362 (0.04% market share), and PHEVs 

835 (0.09% market share) in Rhode Island (RI) (Auto Alliance, 2016). However, with the 

initiation of the RI DRIVE rebate program (circa 2016) by the RI Office of Energy 

Resources (OER), the sales and leases increased by 32 percent. One RI dealership ranked 

fourth nationally in EV sales behind the first three ranked in California (Faulkner, 2017; 

Office of Energy Resources, 2018a, 2018b).  

New technology implemented in EVs has made transitioning for consumers more 

feasible by increasing driving range and battery capacity while decreasing charging time 

(Howell et al., 2017). A prudently designed infrastructure of charging stations is required 

to effectively serve this growth. EV charging stations are traditionally installed based on 

property owner interest (ChargePoint, 2018) or algorithms (i.e., simulations, optimizations) 

with very little to no on user behavior or user expectations, which can lead to increased 
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infrastructure costs further down the road (Chen, Kockelman, & Kahn, 2013; McKerracher, 

2016; Wang, Xu, Wen, & Wong, 2013; Wood, Rames, & Muratori, 2018; Xi, Sioshansi, 

& Marano, 2013). Requiring charging stations that people can easily access regardless of 

their location, is not the solution, because people are not randomly distributed nor, do they 

move randomly, and most likely they plan to charge based on their daily habits. To 

accurately develop a robust, consumer-centric charging station infrastructure requires: (i) 

knowledge of how users utilize the current public and private EV stations and (ii) how that 

corresponds to their charging expectations and demand. This research explores the 

relationship patterns between how public EV charging stations are being utilized via 

charging demand in Rhode Island.  

This research’s outcomes will provide a better understanding of consumer charging 

behavior based on real data from public stations in Rhode Island. In addition, these 

outcomes will assist the RI Office of Energy Resources (OER), RI Department of 

Transportation (RIDOT), and RI Department of Environmental Management (DEM) to 

understand their customer and to make consumer-centered charging infrastructure 

decisions. Results will establish knowledge for future analysis of the charging 

infrastructure use and demand at various location types. This information can assist in 

determining the need for public charging demand and promote charging infrastructure 

installation at various parking facilities. Overall, conclusions of state trends in charging 

behavior will be established and considered within the context of national trends. 

Additionally, the information would be valuable to improve the sustainable transportation 

infrastructure for all users and the potential to integrate future parties, such as autonomous 

vehicles.  
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1.2 RESEARCH GOALS 

The goal of this research is to develop a set of empirical models describing charging 

behavior by providing a statistical analysis on data collected from existing EV charging 

stations throughout Rhode Island. Charging patterns are examined with a summary 

utilization of the entire RI charging infrastructure and pattern recognition based on the 

different location types of charging stations. The study observes public, Level-2 charging 

station locations throughout RI and analyze them in three ways: (i) how they are 

distributed, (ii) which different kinds of areas they are in and (iii) how they can be divided. 

A consistent method of clustering them is determined, all Rhode Island charging stations 

are divided into certain areas of interest (e.g., institutional, commercial, industrial, 

residential) and analyzed under specific conditions.  

The research objective of this study is to analyze charging station data for the OER 

and RIDOT which allows for better infrastructure forecasting. The 2013-2017 RI Charging 

Station database obtained from OER will be analyzed in order to help future infrastructure 

decision making. Therefore, the following research questions will be explored throughout 

this thesis:   

Research Questions 1: (a) How are charging stations being utilized and (b) 

how frequently? (c) Since parking is a valuable commodity, are EV users using 

charging stations as parking spots? 

Research Question 2: Does the type of areas in which the charging stations are 

located influence the patterns of charging behavior?  
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Research Questions 3: What pattern distributions exist, such as (a) calendar 

dependent (i.e., weekly, daily, or hourly), (b) seasonality, and (c) can they predict 

future usage trends? 

 

The next chapter, Chapter 2, explores knowledge about the topic via a literature review 

on EV-market evolution, EV charging in general and related studies. The data analysis 

methodology is described in Chapter 3 with the necessary tools and software packages (i.e., 

Excel, Minitab and R). Methods like forecasting models, hypothesis testing, comparison 

tests, and mapping are discussed in Chapter 3 then applied in Chapter 4. A R script was 

generated where updated data can be implemented and analyzed the same way as older 

versions of the dataset. Within this R script, descriptive statistics (e.g., mean, standard 

deviation) to understand the data are part of this script. Furthermore, comparisons were 

applied to answer specific research. Finally, seasonal forecasting was applied to explore 

the future evolution of charging events in certain areas. The results and discussion of this 

analysis can be found in Chapter 4. After that, conclusions can be drawn about the overall 

usage of the charging stations in Chapter 5. Since there is high potential for additional 

studies with this data, Chapter 5 also gives a summary about its limitations and future work. 

The outcome of this research will be published in form of a journal paper(s). 
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CHAPTER 2 – Literature Review 

 

The popularity of EV’s continues to grow and is expected to gain a commanding 

market share in the near future (Lienert, 2013), as either a bridge to or in lieu of autonomous 

vehicles (AVs) for private, single users. To make EVs available for the mass market, 

overall costs have to be reduced (e.g., vehicle and insurance costs, financial incentives), 

which can happen by improving the transportation system instead of simply investing in 

larger batteries (Morrow, Karner, & Francfort, 2008). Additionally, lithium-ion battery 

costs are projected to decrease, reducing production costs thus making EVs even more 

attractive (Dinger et al., 2010). This can lead to decreasing insurance costs which are high 

due the possible battery damages. 

The capacity, and location of charging stations must be carefully considered in order 

to effectively support this growth in the EV market, thus the charging station location 

selection problem becomes an important field of interest (Chen et al., 2013).  

 

2.1 EV-MARKET EVOLUTION  

Within the last decade the EV-market has grown a lot, but internal combustion engine 

(ICE) vehicles are still dominating the market with 95% in 2017 (U.S. Department of 

Energy, 2018). However, there is a significant growth expected within the next years. In 

2017 alone, one million EVs were added on the roads globally, making the total global 

market three million. Europe (yellow), China (blue), and the United States (green) are 

leading in EV sales right now and are expected to continue growing within the next 20 
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years, see Figure 1 (Bloomberg New Energy Finance, 2017). Based on projections, this 

implies that in the U.S. alone there will potentially be one million EVs on the road by 2020. 

 

Figure 1: EV sales penetration by geographical area (Bloomberg New Energy 

Finance, 2017) 

 

Additionally, the number of EV models is growing based on manufacturers’ 

sustainability goals. There were over 10 new models available in 2017, 41 in total and the 

number is growing based on support from Volvo, BMW, Volkswagen, Telsa, and 

more(ChargePoint, 2017); within a matter of a few years, there should be model for every 

use and personal preference (ChargePoint, 2017). Unfortunately, some states have special 

restrictions for EVs; Tesla for example is not available in every state, due to dealer 

franchise laws (Gatti, 2017). 

The causes of this fast-paced growth is, but not limited to, the new technology 

implemented in EVs and the fast falling battery costs, which will make EVs become price 

competitive. Trends like car sharing, and vehicle-as-a-service (e.g., leases with a monthly 

mile limit) models will influence the market as well, much earlier in adoption and market 

penetration timing than autonomous vehicles (Bloomberg New Energy Finance, 2017). 
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However, all these trends are influenced by numerous factors that can change quickly by 

introducing new policies or new national climate targets, for example (Bloomberg New 

Energy Finance, 2017).  

A preference for BEVs over PHEVs is expected to strengthen. Drivers in Washington 

state already prefer BEVs, even though the numbers of BEVs and PHEVs are fairly evenly 

split in the U.S. right now (ChargePoint, 2017; Nigro & Frades, 2015). With respect to the 

engineering complexity of the dual powertrains and vehicle platforms, the costs for PHEVs 

are higher over BEVs, making them initially less attractive to customers (Bloomberg New 

Energy Finance, 2017). BEVs, however, are more dependent on a good distribution of 

charging infrastructure and are only cost effective in the U.S. based on current financial 

incentives. Additionally, on a higher systems scale of the intersection between 

transportation and energy sectors, the electricity consumption for EVs will rise due to 

larger batteries, demand for fast charging and higher power draws, with higher numbers of 

EVs on the road. Utilities need to provide and manage (e.g., queuing, off-peak charging) a 

prudent infrastructure of charging stations to help limit the costs and high demand 

variability (Bloomberg New Energy Finance, 2017).  

 

2.2 EV CHARGING 

EV charging is an important aspect to EVs in general as it is the only source for 

‘fueling’. Most vehicles are parked over 90% of the time and a lot of parking spaces could 

become a charging opportunity (ChargePoint, 2017). At the moment there are a lot of 

different provider on the U.S. market, the biggest one is ChargePoint, followed by Tesla 

and later Blink, but there is also a high percentage of unaffiliated providers (21.7%) 
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(EVAdoption, 2017). This can be inconvenient for users because they have to create 

different user accounts for using the different provider. Public charging stations can be 

found easily with mobile apps (e.g., PlugShare, ChargePoint, ChargeHub or GoogleMaps) 

and deliver real-time status if they are occupied or not. Once the driver arrives at the spot, 

the driver must identify by swiping the costumer card or via NFC (Near Field 

Communication), after which that the car just needs to be plugged in. The whole process 

takes about one minute or less, and the user can just let car charge automatically while it is 

parked.  

Another important factor is cost, with an EV the costs per mile driven are significantly 

lower than miles driven with a conventional ICE. EV drivers pay about 60-100% less per 

mile driven, but that depends strongly on the vehicle and the daily oil price(ChargePoint, 

2017). Considering that many charging stations take no free at all. Additionally, the 

maintenance costs for a new EV are approximately 2% of the maintaining costs for a new 

gas vehicle (ChargePoint, 2017).  

Charging opportunities close to work and home are important to most user, but not all 

buildings are EV-ready (ChargePoint, 2017). A lack of home charging can strongly impact 

the adoption of EVs as well, this barrier will restrict EV sales to reach 100% (Bloomberg 

New Energy Finance, 2017). 

Investing in the charging infrastructure also count for investing in the EV market in 

general, see Figure 2. EVs are dependent on charging, and charging stations only justify 

themselves when there are enough EVs. Investments in charging infrastructure must be 

made before they are needed to initiate this loop, what causes a utilization gap at the 

beginning of the implementation, see Figure 3. That implies that there have to be stations, 



 

9 

 

even if they are not used yet; charging infrastructure needs to be available, for people to 

even consider buying an EV. However, there will be a market pull after EVs reach a certain 

percentage of market share, and prior investments will no longer be needed. After enough 

investments in the EV-market has been done it will continue to grow by its own, within a 

reinforcing loop, see Figure 2 (Meadows, 2009; Wood, Rames, & Muratori, 2018). 

 

Figure 3: Correlation of charging infrastructure requirements (Wood et al., 2018) 

Charging stations are currently available at three different types: (1) Level-1 takes up 

to 22 hours charging time and is mostly used residentially (home charging), through a 

convenient household outlet; (2) Level-2, with approximately four to eight hours charging 

time, is used primarily for commercial charging and is the most common in RI, but they 

Figure 2: EV sales penetration by geographical area (ChargePoint, 2017) 
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can also be purchased for residential charging; (3) the DC Fast charger charges 80% in 20-

30 minutes, but not all EVs are equipped with this port and charging fees are higher 

(ChargePoint, 2017; Dong, Liu, & Lin, 2014; McKerracher, 2016; U.S. Department of 

Energy, 2011) In Figure 4, the voltage, amps, charging loads and average charging time 

are summarized for the three type of stations. Most cars use an on-board charger inside the 

car to charge the battery, this technique only works for the Level-1 and the Level-2 charger 

(ChargePoint, 2017). DC Fast charge has a special, additional plug that pairs with the 

traditional charger in order to feed the EV power faster. 

 

 

Figure 4: Three types of EV charging stations (Brodd, 2017) 

Home charging is an important topic. According to recent research from the U.S. 

Department of Energy (DOE) Office of Energy Efficiency & Renewable Energy (EERE) 

the charging load profile from home dominant EVI-Pro simulations show that 88% of 

charges are done at home by a Level-1 or Level-2 chargers, see Figure 5 (Wood et al., 

2017). Home charging directly influences the use of public charging stations, but due to 

limitations of data, the focus of this research is on public Level-2 charging. 
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Figure 5: Nominal charging load profile from EVI-Pro simulations (home dominant 

charging behavior) (Wood et al., 2017) 

2.3 EVS IN RHODE ISLAND 

Rhode Island has visions about the future development and the City of Providence, as 

its capital, has set a statement in writing about self-improvements. There are three attributes 

they want to identify with, mentioned in the Comprehensive Plan of Providence are, they 

want to be more “green”, with a healthy natural environment and a sustainable city design. 

Also, Providence wants to be more “efficient”, a fiscally sound city, providing high-quality 

and cost-effective services. In their guiding principles, the City of Providence also 

mentions “sustainability”, regarding climate change and the uncertainties within the oil 

market. Therefore, Providence wants to promote alternatives to the conventional traveling 

patterns (Taveras, 2014) 

Regarding the chosen attributes, a growing trend in transportation with EVs has to be 

considered. Transportation is the costliest energy sector in Rhode Island (Office of Energy 
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Resources, 2016). Zero Emission Vehicles are one of the most promising technologies to 

reduce greenhouse gas emissions and the effects of global warming within this sector. 

Vehicle electrification, instead of driving conventional vehicles, can save emissions by up 

to 73% and would be the key pathway to clean up the transportation sector (Office of 

Energy Resources, 2016) 

Rhode Island promoted the EV market with the Rhode Island DRIVE program funded 

through 2018 and the RI Zero Emission Vehicles Actions (Faulkner, 2017; Office of 

Energy Resources, 2016). Rhode Island signed the “State Zero-Emission Vehicle 

Programs” Memorandum of Understanding in October 2013, along with California, 

Connecticut, Maryland, Massachusetts, New York, Oregon and Vermont. The ultimate 

goals of the Memorandum of Understanding are to reduce greenhouse gas and smog 

causing emissions by fostering energy independence by transforming the transportation 

sector, with actions and programs to address barriers in Zero Emission Vehicle deployment 

(Office of Energy Resources, 2016). For example, these goals are stated in the RI Zero 

Emission Vehicle Action Plan regarding EV charging (Office of Energy Resources, 2016):  

− Section 5.2: “Promote the installation of charging infrastructure and adoption of 

ZEV's for commuters at public transit hubs” 

− Section 6.1: “Research driver charging behavior to determine the need for non-

residential charging, including the level of charging and importance of location” 

− Section 6.3 “Coordinate with researchers to undertake multi-state mapping and 

modeling analyses to inform the design and implementation of efficient corridor 

charging networks.”  
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In total, there are public 198 charging plugs at 82 charging station locations in RI, 178 

are Level-2 charging ports with in average of 2.4 plugs per station, 20 charging ports are 

DC-Fast charging ports with an average of 2.5 plugs per station (Alternative Fuels Data 

Center, 2018). Most of the public charging stations were installed in 2013. OER worked 

together with ChargePoint and National Grid to install 50 charging stations around the 

state, starting in 2013 (Elsworth, 2016). 

 

2.4 CHARGING STATION LOCATION MODELS 

There are different approaches to examining the problem of charging station location 

selection. Existing studies use mathematical models, studies which use linear 

programming, analyzing driving and charging behavior to work on this problem. Primarily, 

researchers create mathematical models to simulate the problem in order to solve for 

potential solutions. There are multi-objective planning models (e.g., gas-station demands, 

power grid infrastructure) to layout charging station distributions, in some studies they also 

determine scheduling of charge and operation costs (Chen, Kockelman, & Kahn, 2013; 

McKerracher, 2016; G. Wang, Xu, Wen, & Wong, 2013; Wood, Rames, & Muratori, 2018; 

Xi, Sioshansi, & Marano, 2013). Simulation-optimization models determine where to 

locate EV charging stations in order to maximize the use for privately owned EVs (Xi et 

al., 2013). There are also studies which utilize multi-objective planning models to improve 

the transport system efficiency, as well as improve the grid system operations (Luo, Zhu, 

Wan, Zhang, & Li, 2016).  

Other studies use linear programming to include electricity price variation, the 

capability of EVs to charge and discharge when desired, called Vehicle-to-Grid technology 
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(Kristoffersen, Capion, & Meibom, 2011; Srivastava, Annabathina, & Kamalasadan, 

2010). Further research on vehicle-to-grid technology provided evidence that this approach 

was not viable due to high infrastructural costs and significantly shortened lifespan of EV 

batteries by the higher number of charge/discharging cycles (Göthel & Bräul, 2012; 

Mullan, 2012), but there are still stakeholders (ChargePoint, 2017). Certain station location 

selection models are based on existing optimization routines or heuristics that can find 

charging locations based on reducing queuing times via prediction of existing data from 

non-EV vehicles (Chen et al., 2013; De Weerdt, Gerding, Stein, Robu, & Jennings, 2012; 

Worley, Klabjan, & Sweda, 2012). Yet, these algorithms or models still barley consider 

EV users preferences, behavioral patterns, and functional areas analysis. Additionally, EV 

charging is different than refueling an ICE vehicle, therefore studies should focus on EV 

driving patterns. 

Another approach to the problem is by analyzing driving behavior from the EV driver: 

analyzing their driving, parking, and charging patterns. This level of research has been 

attempted by making test drives or tracking fleet vehicles (Smart & Schey, 2012; Speidel 

& Bräunl, 2014). In Australia, they observed EV driving and charging behavior of a fleet 

of eleven EVs at 23 Level-2 Charging stations. They assessed the state of charge (SOC) 

before and after the charging events, charging time, time the vehicles are plugged in at the 

station and energy consumption. No categorizations of public level-2 changing stations 

exist based on location (Speidel & Bräunl, 2014). Additionally, fleet vehicles are operated 

differently than consumer-owned EVs, so their behavior may not transition to predictions 

of charging station locations. Another study, performed in the U.S., with 2903 privately 

owned Nissan LEAFs looked at SOC and the number of charging events; they only differ 
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between home charging and “away-from-home location” (Smart & Schey, 2012). Overall, 

only a few studies insert real charging data beyond commercial, medium duty EVs or fleet 

vehicles (Duran, Ragatz, Prohaska, Kelly, & Walkowicz, 2014; Smart & Schey, 2012; 

Speidel & Bräunl, 2014). However, there are many ways to process driving and charging 

behavior. 

Another way is through the combination of the different approaches is the 2018 

released projection tool from the U.S. DOE EERE. It is based on data of personal vehicle 

travel patterns, EV attributes, and charging station characteristics in bottom-up 

simulations. The used data is out of studies from Columbus, Ohio, Massachusetts, and 

California (Wood, Rames, & Muratori, 2018). EVI-Pro estimates the quantity and type of 

charging infrastructure: Workplace Level-2, Public Level-2, and Public DC Fast Charging 

Plugs. The input variables a user of the projection tool can insert are: “Number of vehicles 

to support”, “Vehicle Mix” (Percentage BEV and PHEV), “Support of PHEVs”, and 

“percentage of driver with access to home charging” (U.S. Department of Energy, 2018). 

The EVI-Pro tool forecasts quantity and type of charging plugs, there are no behavioral 

recommendations and no functional area considerations for charging station locations. 

Therefore, personal use of EVs are considered limited with respect to charging 

behavioral patterns even with current growth, use, and installations throughout the 

literature.
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CHAPTER 3 – Methodology 

 

This chapter describes the methods that have been used to analyze the data and 

discusses the motivating factors for this specific approach. The flow of this chapter starts 

with describing the data and its processing, followed by the classification of functional 

areas, and ended up with the specific methods of statistical analysis which have been 

applied. 

 

3.1 DATA AND DATA PROCESSING 

Data from 50 Level-2 public stations out of 73 Level-2 public stations statewide, 

was available to be analyzed, which can provide a representative overview about the 

charging behavior at Level-2 charging stations in RI. The data utilized for this study 

was provided by the Office of Energy Resources with all locations verified by 

ChargePoint. The data was stripped of user identification information prior to 

dissemination; the only unique identifiers were through an encoded user identification 

number (User-ID) and postal zip code. It is assumed that multiple users do not share 

User-IDs, have only one EV, and are permitted use of all charging stations within the 

dataset. 

A total of 38,685 charging events have been collected at 55 charging stations, they 

provide two 7.2 kW (208/240V at 30A) Level-2 charging ports (ChargePoint, 2018a). 

Forty-five of the charging stations were installed in 2013, one more in 2015, three more 

in 2016 and the remaining six in 2017. Five stations are restricted to state government 

employees; they are newly implemented in 2016 and 2017. The charging stations for 
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governmental use only are excluded in this analysis because they are not public. All the 

fifty other stations are free for public use, the remaining total of charging events is 

37,620. Only three of the observed charging stations charge fees: one station charges 

$0.10/kWh and the other two stations are free the first 4-hours and after that they charge 

$1/hr. Since they are public stations they are included in this analysis, if a different 

behavior is conjecturable in certain cases are analyzed separately. 

At the beginning it appeared that there was data of 57 charging stations but while 

verifying the locations one was identified with only two test charges; this station will 

not be part of the analysis. Another station appeared twice in the data set, because the 

owner and the name changed, the station data was classified as one.  

 

3.2 CLASSIFICATION OF FUNCTIONAL AREAS 

Every city and town in RI classifies their areas into different functional districts by 

their zoning ordinance to control the land use. The following items are covered in a RI 

Zoning Ordinance: site layout requirements, requirements for structure characteristics, 

permitted use, and procedural matters (Atash, 2017). Every RI city and town publishes 

their zoning map and explanations online for anyone to find a location’s zone 

classification and its regulations. The location for every charging station was established 

with respect to their functional zone and added to the dataset. For example, the City of 

Providence has 20 charging stations available, with 40 charging ports in total, located 

and distributed in different functional districts classified by the City of Providence 

Zoning Ordinance committee. This zoning ordinance information will be examined to 

see if charging stations in different functional areas are utilized differently. A detailed 
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analysis of these types of zones/functional areas for charging stations occurred for the 

City of Providence. 

The City of Providence is regulated by their zoning ordinance and represented in 

the zoning maps as eight districts which individually have more subdivisions (City of 

Providence Zoning Ordinance, 2017). There are “Residential Districts” (yellow to 

brown, Figure 6) with different dimensional standards and housing types. “Commercial 

Districts” (pink to red, Figure 6) with medium-scale to intense commercial use and 

design standards. The “Downtown District” (gray, Figure 6) has a special focus in the 

Comprehensive Plan of Providence as it is a mixed-use district with special regulations. 

All new developments in the “Downtown District” have to be compatible with existing 

historic buildings while encouraging day and night time activities, entertainment, and 

housing. Also, greenways and open spaces are incorporated into the “Downtown 

District”. The design of the exterior of all buildings, open spaces and all exterior 

physical improvements has to be regulated and approved through development plan 

review in accordance with the provisions of this area. Furthermore, there are two 

“Institutional Districts” (blue, Figure 6) in Providence: one with a special focus on 

healthcare and one with a special focus on education. The “Industrial Districts” (violet, 

Figure 6) incorporate light to heavy intensity industrial uses, some of which are mixed-

used and includes also residential or commercial use. The “Waterfront District” 

(turquoise blue, Figure 6) incorporates residential, commercial and industrial uses with 

special restrictions regarding the waterfront. “Open Space and Public Space” (green, 

Figure 6) are summarized as one zone. Open spaces include parks, wetlands, 

floodplains, cemeteries, and conservation areas. Public Spaces are areas for public 
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buildings and facilities such as parks and recreation areas or schools. The last zone 

incorporates the “Special Purpose Districts” which have intense focus on certain areas 

of interest to the City of Providence (City of Providence Zoning Ordinance, 2017a). 

 

Figure 6: Zoning Map of Providence with charging station locations (City of 

Providence Zoning Ordinance, 2017c)  
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All of the 20 charging stations are distributed in five out of the eight districts (see 

Figure 6). One charging station is in a Residential District, one are located in 

Commercial Districts, 12 (including the 5 government ones) are located in the 

Downtown District (the four upper locations, in dark blue have two stations per 

location); fife out of 12 are for governmental use only, two are located in Institutional 

Districts and four are located in Industrial Districts (see Figure 6). 

This functional classification has been assessed for every city and town with 

charging stations in the dataset. However, there are slight differences in the 

classification of the districts, because every city and town can name their own districts. 

This required reconciling these differences between word choices and zoning types for 

a more unified approach. Examples of these differences and how they were reconciled 

are articulated as the following: 

(1) Barrington has one charging station in a “Business Districts”, for 

commercial and retail activities (Town of Barrington Zoning Ordinance, 

2003). This is assumed to be an equivalent to a “Commercial District”, since 

Barrington has not classified any “Commercial Districts”; this appears to be 

a different designation for the same kind of district. The same classification 

adjustment was made for Narragansett, Warwick and West Greenwich (City 

of Warwick Zoning Ordinance, 2018; Town of Narragansett, 2012; Town of 

West Greenwich Zoning Ordinance, 2017).  

(2) In Lincoln there is one charging station in a “Manufacturing District”. Since 

there is no district classified as an “Industrial District”, it assumed that 

manufacturing is an industrial use and therefore now classified as an 
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industrial area (Town of Lincoln Zoning Ordinance, 2015).  

(3) In the Town of Smithfield, home to Bryant University with two charging 

stations, the town has not classified any districts as “Institutional Districts”. 

Yet, a University is definitely institutional, that is why the charging stations 

at the Bryant University are clustered as Institutional (Smithfield Zoning 

Ordinance, 2018).  

(4) The T.F. Green Airport in Warwick has two charging stations, it is classified 

as a “Intermodal District”. Since the use of an airport is other to any of the 

other mentioned districts, the T.F. Green Airport has keeps this classification 

(City of Warwick Zoning Ordinance, 2018).  

(5) All “Open Space” and “Public Space” are as in the plan of Providence 

grouped together.  

The locations of the charging stations in all other cities and towns could be 

classified into the previously used areas: “Commercial District”, “Downtown District” 

(only applies to Providence), “Industrial District”, “Institutional District”, “Intermodal 

District” (only applies to Warwick), “Open Space and Public Space”, “Residential 

District” (Bristol Zoning Ordinance, 2018; City of Cranston Zoning Ordinance, 2018; 

City of Newport Zoning Ordinance, 2014; Department of Planning East Providence, 

2003; North Providence Zoning Ordinance, 2014; Portsmouth Zoning Ordinance, 2002; 

Town of Charlestown Zoning Ordinance, 1991; Town of Glocester Zoning Ordinance, 

2015; Town of North Kingstowntown, 2008; Town of South Kingstown Zoning 

Ordinance, 2015; Town of Westerly, 2010; Zoning Ordinance of the Town of 

Burrillville., 2018) 
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3.3 STATISTICAL ANALYSIS 

The statistical analysis of this data is the corner stone of this research. For that 

reason, a goal was it to make the analysis understandable and replicable for other 

researchers and OER. For this reason, most of the research was executed with the 

statistical program R within R-markdown (Appendix 1 the code, Appendix 2 the knitted 

version). R-Markdown has the advantage that this code is clustered in discrete chunks 

that may be ran individually. The user is able to evaluate the output step-by-step to 

ensure proper functionality, then view and safe the results under the code and have 

explanations between the code chunks. The final code can be knitted to a Portable 

Document Format (PDF) or Word to have a presentable version of the code with all 

results and explanations. Future researchers can then load in an updated version of the 

data, follow the instructions, and reconstruct the analysis as needed.  

 

3.3.1 DESCRIPTIVE STATISTICS 

Descriptive statistics are a necessary internal step to understand the data and 

provide an overview about what is included in the dataset. Summary statistics explores 

the factors and measurements within the dataset. This includes simple, although highly 

informative statistics, such as sample size, arithmetic standardized means, standard 

deviation, minimum, and maximum of certain observations. The descriptive statistics in 

this analysis are performed with the statistical program R, version 1.1.447 – © 2009-

2018 RStudio, Inc.. 
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3.3.2 VISUALIZING DATA 

As part of understanding the data plotting and mapping is a helpful tool to visualize 

data. It can present a helpful overview about the collected data, by revealing overarching 

trends and patterns in the data. This contains descriptive charts like bar graphs, line plots 

or pie charts which have been generated with R or Excel. Box-plots have been created 

with R, to compare the median of factors in different areas. To present certain graphs 

they are shown as single graph or as small multiples to compare different conditions. 

Geographical maps have been created with R, there are a few packages (i.e., 

maptools, zipcode, maps, and mapdata) which provide data to generate geographical 

maps. They mark locations with longitude and latitude data either based on that specific 

data or converted zip codes. Locations were marked in different forms and colors. 

 

3.3.3 HYPOTHESIS TESTING & CLUSTERING 

To evaluate results clustering and hypothesis testing can be useful to identify 

patterns.  

Many tests require normal distribution for their test variables; the Anderson-

Darling test was used for larger sample sizes and the Shapiro-Wilk test was used smaller 

sample sizes. If normality was held, hypothesis testing was executed using equal 

variance via a Tukey test for comparison of means. If the variable was not normally 

distributed, a Mann-Whitney Wilcox test for comparison of means was used when its 

assumptions were met: (1) there has to be one dependent variable that is measured at 

the continuous or ordinal level; (2) the data consist of two categorical, independent 

groups; (3) there has to be independence of observation; and (4) it has to be determined 
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if the distribution of score has the same shape or a different shape (Laerd Statistics, 

2018). Spearman’s Correlation, another non-parametric test, was used if its following 

assumptions are met: (1) the variables are measured at a continuous level; and (2) there 

is a monotonic relationship between the two variables (Groß, 2010). Spearman’s 

Correlation was applied in Chapter 4.1 since all three variables meet both assumptions. 

In Figure 7, the monotonic relationships between each of the variables are illustrated. 

For the comparison of proportions, a two-sample proportion test was ran using Minitab. 

 

Figure 7: Relationship between Total Duration (TD), Charging Events (CE) and 

Charging Time (CT)  

With hierarchal clustering, findings can be grouped within a tree-structured cluster 

dendrogram generated with R or Minitab. There are different options that can be chosen: 

complete linkage (i.e., similarity of the furthest pair); single-linkage (i.e., similarity of 

the closest pair); group average (i.e., similarity between groups); centroid similarity 

(i.e., iteration merges the most similar central point). For this thesis complete linkage 

was used, because it voids a drawback of clusters formed via single linkage, which can 

appear when single elements are close to each other. Complete linkage usually finds 

compact clusters of approximately equal diameters (Groß, 2010). 
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3.3.4 TIME SERIES - REGRESSIVE MODELS & FORECASTING 

A time series consists observations of a variable 𝑥1… 𝑥𝑛, which have been 

collected at equidistant and consecutive time points. Usually the observations are not 

independent to each other, which requires special methods that explicitly consider 

stochastic dependence (Groß, 2010). Since, the data was collected at any time a charging 

event happens and summarized into various time groups (e.g., years, month, days…), 

they can be treated via timeseries. 

If the data is summarized in fixed time intervals 𝑘 (in this case years or month) 

there can be a linear dependence, called autocorrelations with lag 𝑘, which can be tested 

with an autocorrelation function. The data summarized as days has significant noise, 

which makes timeseries analysis with this data inaccurate; thus, it will not be assessed 

at the daily level. With the Box-Pierce and Ljung-Box test, based on an autocorrelation 

function (ACF), the data can be tested as to whether the observations can be treated as 

independent variables or not. If they are independent, special time series analysis is not 

necessary. Box-Pierce and Ljung-Box tests were performed with a 95% confidence level 

throughout this thesis (Groß, 2010). 

A regression model investigates the relationship between an independent 

(predictor) and dependent variable (target) and is a predictive modelling technique. It 

can give valuable information about modeling, time series, and forecasting. If the Box-

Pierce and Ljung-Box tests confirms independence of observations, a simple regression 

model could be applied, such as a linear regression model. If this is not the case an 

autoregression (AR) model needs to be applied, it regresses on a linear combination of 

previous values to forecast. AR models can give very good forecasting for shorter terms, 
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for longer term forecasting in can be inaccurate (Groß, 2010; Pennsylvania State 

University, n.d.; Ray, 2015).  

The analyzed data summarized in months is non-stationary because the mean value 

from the given data is changing over time; tested with Augmented Dickey-Fuller test 

“𝑎𝑑𝑓. 𝑡𝑒𝑠𝑡()” in R (p = 0.08977; fail to reject H0; thus, the data is non-stationary). An 

ARIMA (autoregressive integrated moving-average) model can be fitted on non-

stationary data; otherwise an ARMA model works with stationary data. In a ARIMA 

model tree values (𝑝, 𝑑, 𝑞) must be chosen wisely to get the best fit for the model. If 

there is an upwards or downwards trend in the data noticeable, which is given in the 

dataset, an ARIMA (𝑝, 1, 𝑞) model can be used. An alternative would be differencing 

the data first and using an ARMA (𝑝, 𝑞) model or ARIMA (𝑝, 0, 𝑞) model. The AR-

coefficient (𝑝) (order of autoregressive terms) and the MA-coefficient (𝑞) (number of 

lags on the MA component) can be achieved with computing the maximum likelihood 

estimators with the ACF and the PACF (partial autocorrelative-function) (Brockwell & 

Davis, 2002; Groß, 2010).  

To find values (𝑝, 𝑞) which could give a good fit the ACF and PACF of the given 

time series can be plotted; this study performed it in R. The procedure performed for 

ARMA (𝑝, 𝑞) models which is stationary data, with differencing non-stationary data can 

become stationary which is done prior plotting ACF and PACF. An alternative to this 

procedure is the R function “𝑎𝑢𝑡𝑜. 𝑎𝑟𝑖𝑚𝑎()” which shows the probably most suitable 

model (Brockwell & Davis, 2002; Groß, 2010).  

After that the models with good fit can be tested with the R-function “𝐴𝑟𝑖𝑚𝑎()”. 

The model with the smallest AIC (Akaike Information Criterion) is the preferred model, 
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the AIC is a measure of quality for the fit of a model in the maximum likelihood 

principle. An ARIMA (𝑝, 1, 𝑞) model works with differenced data, to reveal the trend 

again, the drift can be included, this can also improve the AIC value. After that the fit 

with the chosen model can be proofed visually with the R function “𝑡𝑠𝑑𝑖𝑎𝑔()”. The 

standardized residuals should look kind of like white noise; in the ACF of residuals 

there should be no value be over the blue dotted line after lag 0; the p-values for Ljung-

Box statistics should be over the blue line. If all these conditions are fulfilled the model 

has a good fit (Brockwell & Davis, 2002; Groß, 2010). 

If a good fitting model is found the values can be predicted with the R function 

“𝑝𝑟𝑒𝑑𝑖𝑐𝑡()”, the periods (in this case number of month) which should be predicted 

ahead can be chosen. Also, the forecasting can be visualized with the function 

“𝑝𝑙𝑜𝑡(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔())", the number of periods ahead can be chosen and if all data 

should be included.  

For seasonal forecasting a SARIMA (seasonal ARIMA) can be applied. A periodic 

seasonal pattern has to be noticeable which is in correlation with a constant time period 

𝑠, this is not the case in the given dataset. Otherwise a SARIMA (𝑝, 𝑑, 𝑞)𝑋 (𝑃, 𝐷, 𝑄)𝑠 

model could have been applied (Groß, 2010). 
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CHAPTER 4 – Results & Discussion 

 

This chapter seeks to answer the research questions from Chapter 1. All the findings 

are out of the provided dataset of 50 public Level-2 stations and analyzed with the 

mentioned tools in Chapter 3. The fee operated charging stations are within the data but 

will be part of some additional analysis. 

 

4.1 GENERAL USAGE OF CHARGING STATIONS 

This section focuses on answering Research Questions 1: (a) How are charging 

stations being utilized and (b) how frequently? (c) Since parking is a valuable 

commodity, are EV users using charging stations as parking spots? 

This section provides an overview about the RI data in general and compares it to 

nationwide trends. Firstly, all the energy savings (i.e., energy used, greenhouse gas 

[GHG] savings, and gasoline savings) and time factors (i.e., duration plugged in, 

charging time, and parked after fully charged) are examined with descriptive statistics 

for all the charging stations. Table 1 shows the mean value, the standard deviation (SD), 

the minimal value (Min), the maximal value (Max) and the total of all charging events. 

The measured factors are the energy consumption of the charging events in kilowatt-

hours (kWh), GHG savings in kilograms (kg) due to the gasoline savings in gallons, and 

the total duration that the vehicles have been plugged in at the station. In addition, the 

actual charging time and the time an EV driver parked at the charging spot after they 

were fully charged is also measured and documented in common time format. The RI 

charging stations total use has saved the emissions from around 64 ICE passenger 
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vehicles driven for 1-year since their installation (US Environmental Protection Agency, 

2017).  

A notable finding is that the mean charging time almost equals the mean parking 

time. In earlier studies on charging behavior, users were spending only about 10% of 

the time for charging out of the total time plugged into a charging station, while in our 

dataset the mean charging time was very similar (1:55:52) (Speidel & Bräunl, 2014). 

This could show a shift of usage trends; this will be explored later. 

 

Table 1: Descriptive statistics about measured charging factors 

Type Units Mean SD Min Max Total 

Energy  

Used 

kWh 7.125 7.380 0 99.843 268,045.200 

GHG  

Savings 

kg 2.993 3.100 0 41.934 112,580.500 

Gasoline 

Savings 

gallons 0.894 0.926 0 12.530 33,639.640 

Total Duration 

Plugged In 

hh:mm:ss 03:41:26 03:38:17 00:00:00 23:58:55 15 years 194 days 

03:24:08 

Charging Time hh:mm:ss 01:54:00 01:29:27 00:00:00 14:51:02 7 years 363 days 

12:19:02 

Parked After 

Fully Charged 

hh:mm:ss 01:47:26 03:00:57 00:00:00 23:11:47 7 years 195 days 

15:05:06 

 

The 50 charging stations observed different frequencies of use. Figure 7 illustrates 

the sum of the charging events (CE), sum of total duration (TD), and sum of charging 

time (CT) as percent of their corresponding totals occurring in 2017. It is notable that 

all three factors appear to behave similarly with minor alterations, supported by the 

Spearman Correlation test (H0: There is no association between the two variables) which 

demonstrates that there is a significant correlation between all three variables (p < 0.001 
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for all 3 comparisons, reject H0, there is a correlation between the variables; TD & CT 

r = 0.883; TD & CE r = 0.695; CT & CE r = 0.893). CT and CE show 96.73% similarity; 

TD shows major distinctions for three stations but still has 76.75% similarity to the other 

two variables, from the complete cluster analysis. To avoid multiple redundant 

iterations, this research will focus on one of these variables (i.e., Charging Events) with 

additional analysis with the other two variables as needed (i.e., Total Duration and 

Charging Time).  

The two overall most used stations are in Providence industrial districts, whereas 

the two least used are in Open Space District in Charlestown and in Commercial District 

in Warwick.  

 

 

 

 

  

  

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

C
o

m
m

er
ci

al
In

d
u

st
ri

al
R

es
id

en
ti

al
In

st
it

u
ti

o
n

al
In

st
it

u
ti

o
n

al
O

p
en

 S
p

ac
e

C
o

m
m

er
ci

al
In

d
u

st
ri

al
C

o
m

m
er

ci
al

R
es

id
en

ti
al

C
o

m
m

er
ci

al
O

p
en

 S
p

ac
e

C
o

m
m

er
ci

al
D

o
w

n
to

w
n

D
o

w
n

to
w

n
O

p
en

 S
p

ac
e

O
p

en
 S

p
ac

e
In

d
u

st
ri

al
C

o
m

m
er

ci
al

C
o

m
m

er
ci

al
C

o
m

m
er

ci
al

C
o

m
m

er
ci

al
C

o
m

m
er

ci
al

O
p

en
 S

p
ac

e
R

es
id

en
ti

al
R

es
id

en
ti

al
C

o
m

m
er

ci
al

D
o

w
n

to
w

n
R

es
id

en
ti

al
In

st
it

u
ti

o
n

al
In

st
it

u
ti

o
n

al
In

d
u

st
ri

al
D

o
w

n
to

w
n

In
st

it
u

ti
o

n
al

R
es

id
en

ti
al

C
o

m
m

er
ci

al
C

o
m

m
er

ci
al

In
te

rm
o

d
al

In
te

rm
o

d
al

C
o

m
m

er
ci

al
In

d
u

st
ri

al
D

o
w

n
to

w
n

In
st

it
u

ti
o

n
al

In
d

u
st

ri
al

C
o

m
m

er
ci

al
C

o
m

m
er

ci
al

In
st

it
u

ti
o

n
al

C
o

m
m

er
ci

al
D

o
w

n
to

w
n

D
o

w
n

to
w

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P
er

ce
n

t 
o

f 
To

ta
l

Charging Station

Figure 8: Percent of total charging per station in 2017 
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The total duration is classified at the time the vehicle is plugged in during a 

charging event. Figure 9 shows the total duration divided by the total time installed the 

year 2017, except for stations 24, 37, 49 and 50 which were newly implemented in 2017. 

A charging station could be occupied 100% of the time but based on the lack of charging 

traditionally from 11pm to 5am a realistic utilization per charging station is 75% (Figure 

9 station 37). Only three stations have a utilization over 50% (Figure 9 gray line)., with 

the maximum being stations 37 at 78.32% of the time. The median utilization is 6.40% 

(Figure 9 light blue line), the mean utilization 15.57% (Figure 9 light green line) 

(Standard Deviation 17.89%); concluding that the majority of RI charging stations are 

not frequently utilized to their potential. 

 

 
Figure 9: Percent of time charging stations are utilized 

The Pareto Principle, also known as the 80-20 Rule, states that 80% of effects come 

from 20% of their causes. Applied to this case it would imply that 80% of the charging 

events are done at the 20% most popular charging stations. This principle is not 

represented in this data set. 20% of the most used stations were responsible for 48% of 

all charging events, 56% of the total plug in time, and 55% of the total charging time. 
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The RI charging stations are distributed across 20 different cities, seven functional 

areas, and five different counties. The map in Figure 10 shows exactly where each 

charging stations is located (dot) with the color representing the count of charging 

events in 2017. There is a noticeable higher density of charging stations around 

Providence (longitude 41.8, latitude 71.42) than the rest of the state; which makes sense 

based on Providence’s status as the state’s capitol and only metropolitan area. 

 

Figure 10: RI map with charging station locations and amount of charges 

EV drivers using RI charging stations come from several different locations around 

the country. Figure 11a shows a U.S. map indicating the area corresponding with the 

zip code of the registered users and the quantity of charging events they did at the 50 RI 

charging stations. Most of the more frequent users are from RI and nearby New England 

states, as visible in the zoomed in map in Figure 11b.  
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Figure 11: (a: top) U.S. map of users of RI charging stations (b: bottom) New 

England and Mid-Atlantic map of users of RI charging stations 
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In 2017, there are 429 users from RI this are 0.0405% of the RI population is 

using RI charging stations. This does not fit together, with the number of registered EVs 

in 2016 where 362 BEV (0.04% market share) and 835 PHEVs (0.09% registered) (Auto 

Alliance, 2016). But in 2016 there were only 295 users from RI charging at RI charging 

stations. That implies that not even a fourth of EVs driver have used RI charging stations 

in 2016. 

In 57% of the charging events, users in RI are leaving the charging station within 

30 minutes after they are fully charged. This is not unusual since ChargePoint, the 

webservice for these chargers, sends users a request to leave within 30-minutes post 

fully charged. However, there are no further consequences of leaving cars at the station 

beyond scheduled, repeated warnings. The other 43% of the charging events pertain to 

users staying more than 30 minutes after their EV is fully charged and using the charging 

spots as traditional parking spots.  

Is the charging behavior the same for stations with fees? Only three of the observed 

charging stations charge fees: one station charges $0.10/kWh (the fifth most frequently 

used station) and the other two stations are free for the first 4-hours with a $1/hr charge 

onwards (third and fourth frequently used charging stations). To answer whether the 

duration of parking time on charging stations vary based on the price of charging, a 

hypothesis was tested using test of two proportions (H0: The variables are not 

significantly different).  

Null hypothesis (H0) is that the station is not significantly different. One station in 

an industrial area charges $0.1/kWh, it is expected the station is not significantly 

different to the others since they do not pay anymore after they are fully charged since 
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58% of the users at this station leave within 30 min and 42% stay longer. This station is 

not significantly different to the general non-fee use; with a p-value of 0.5, it fails to 

reject the H0 hypothesis.  

The other two stations are in a commercial area located next to each other, the first 

4-hours are free and after that the charge is $1/hr. As expected, this cost model appears 

to prevent users from occupying the station for too long. At these stations 70% and 71% 

use the charging stations just to charge and 30% and 29% stay longer than 30-minutes 

after they are fully charged. This is better than the other stations, but it could also be 

due to the area in which the stations are located. With an p-value under 0.001 for both 

tested, this rejects the H0 hypothesis for the stations with a $1/hr fee after the fourth 

hour, they are significantly different from the general use non-fee chargers. These two 

stations are not significantly different to each other (p = 0.55), but the they are 

significantly different to the other payed station with $0.1/kWh ( p < 0.001 for both).  

It was found that one charging station with fee is used like they are generally used 

in RI. The other two charging stations with a different fee model (fee after 4-hours) 

behave differently. But that is not necessarily only due to the fee, it can also be due to 

the functional area in which the charging stations are located. To test if this is the reason 

for the different behavior, further analysis will be made in Chapter 4.2.1. 
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4.2 USAGE WITH LOCATIONS AS A FACTOR 

The location seems to have strong impact on the user behavior at charging stations. 

In this section discusses Research Question 2: Does the type of areas in which the 

charging stations are located influence the patterns of charging behavior?  

 

4.2.1 FUNCTIONAL AREAS 

A map was created to get an idea where the charging stations are located and their 

functional areas. The RI map in Figure 12 shows each of the 50 charging stations as 

dots, colored according to their area type and their size representing how many charging 

events occurred in 2017.  

 

Figure 12: RI map with charging station locations and classified areas 
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Figure 13: (a: top) U.S. map of users of RI charging stations colored in functional 

areas (b: bottom) New England and Mid-Atlantic map of users of RI charging stations 

colored in functional areas  



 

38 

 

Is there a connection between a charging station’s area and geographical origin of 

the user? To investigate this, the U.S. map plotted in Figure 13a with the zip codes of 

the registered users of the charging stations represented by dots colored to indicate the 

functional area in which they have been charging. As noticeable in the Figure 13a&b, 

there is no pattern recognizable, no connection between these two factors can be drawn. 

There are 17 charging stations located in commercial districts, 7 charging stations 

in downtown districts, 6 stations in industrial districts, 7 stations in institutional districts, 

2 charging station in intermodal districts, 5 charging stations in open space districts, and 

6 charging stations in residential districts. Figure 14 compares the amount of charging 

stations in certain areas and charging. The noticeable differences are that industrial areas 

seem to be more popular as there are more charging events (Figure 14b) per station 

(Figure 14a), and open space areas seem to be less popular with less charging events 

(Figure 14b) per station (Figure 14a) as in the other areas; all other areas seemed to be 

relatively balanced. 

 

 

Figure 14: (a: left) Amount of Charging Stations by functional area (b: right) 

Amount of Charging Events by functional area 
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Taking a closer look at the single stations in the certain areas, see Figure 15, one 

can see in which type of area the more popular, and less popular stations are located. 

But each area has more and less used stations; what does this implies for the stations 

over all? 

 

Figure 15: Amount of charges (n) per station colored in area type 
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In the next step the areas are visualized as box-plots (Figure 16). It is noticeable 

that the highest median use of single charging station is at industrial areas, followed by 

downtown areas, institutional areas, commercial areas, residential areas, intermodal 

areas, and finally open and public space areas. In the charging stations located in 

industrial and institutional districts are respectively one charging station that is 

extraordinary heavily used, marked as an outlier. Comparing the functional areas with 

a Kruskal-Wallis Test (H0: The samples [groups] are from identical populations), they 

are not significantly different to each other (p = 0.2204; fail to reject Null hypothesis 

[H0]; they are from identical population). 

 

 

Figure 16: Box-plot about the amount of charges (n) by functional area 
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In Table 2 are descriptive statistics about the total duration of charging events, 

charging times, and amount of charges per station in functional areas. The mean value, 

the standard deviation, and the maximum value are given; no minimum value is shared 

since it is always zero. It is quite notable that these values vary drastically between 

functional areas. 

Table 2: Descriptive statistics of functional areas 

Factor  Area Mean SD Max 

Total 

Duration 

[hh:mm:ss] 

Commercial 02:26:37 02:56:32 23:53:28 

Downtown 06:08:59 04:29:00 23:54:59 

Industrial 03:27:03 03:14:50 23:58:55 

Institutional 04:12:04 03:05:40 20:10:44 

Intermodal 04:26:45 04:31:55 23:03:54 

Open Space 02:05:05 02:52:45 20:03:21 

Residential 04:28:00 03:50:36 23:51:42 

Charging 

time 

[hh:mm:ss] 

Commercial 01:37:55 01:24:43 14:51:02 

Downtown 02:15:30 01:43:37 14:36:27 

Industrial 02:06:07 01:28:31 14:19:15 

Institutional 01:58:12 01:13:42 11:40:10 

Intermodal 01:54:05 01:46:44 13:56:26 

Open Space 01:28:42 01:39:01 13:39:14 

Residential 01:55:21 01:30:59 12:27:25 

Amount of 

charges per 

station 

Commercial 235.8824 197.7704 747 

Downtown 204.0000 142.1795 443 

Industrial 511.6667 420.4567 1135 

Institutional 233.8571 175.7967 595 

Intermodal 202.5000 166.1701 320 

Open Space 82.6000 46.8380 141 

Residential 210.0000 135.9382 387 

 

When comparing those results from Table 3 with the results from Chapter 4.1, it is 

noticeable that the stations which charge a fee, fits into the patterns of the functional 

areas in which they are located in. The hypothesis tested two proportions, H0: The 

variables are not significantly different. At the station with a fee in an industrial area 
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which charges $0.1/kWh, 58% of the users at this station leave within 30-minutes and 

42% stay longer. This is not significantly different (p < 0.001 with test of two 

proportion) to the behavior in industrial areas. At the other two fee conditional stations 

in a commercial area, 70% and 71% use the charging station just to charge and 30% and 

29% stay longer than 30min after they are fully charged. At these stations, users park 

more than usual in commercial areas, but still they are not significantly different (p < 

0.001 for both with test of two proportion) to the behavior in commercial areas. Overall, 

charging fees at EV charging stations seems not to influence the charging behavior when 

considering functional area. 

In the cluster dendrogram in Figure 17 paired with Table 3, it is observed that 

commercial and open space areas are clustered together, hence used similarly. Industrial 

and intermodal areas are clustered together and eventually clustered together with 

institutional and residential areas. Therefore industrial, intermodal, institutional, and 

residential areas are similarly used. The functional area not clustered with less similarity 

toward the others is the downtown area. The downtown area is used extraordinary often 

as a parking spot in over 70% of the cases. 

 

Table 3: Usage as charging and parking by functional area 

Area Charging Parking 

1 Commercial 76.46% 23.54% 

2 Downtown 29.30% 70.70% 

3 Industrial 58.20% 41.80% 

4 Institutional 41.70% 58.30% 

5 Intermodal 54.01% 45.99% 

6 Open Space 81.40% 18.60% 

7 Residential 48.49% 51.51% 
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Figure 17: Complete Cluster dendrogram about usage as charging or parking by 

functional areas 

It has been found that the charging behavior and frequency is different in each 

functional area. However, some of them show similarity to each other. The three stations 

which charge a fee are not significantly different to the general usage in the area in 

which they are located, in case of using the charging stations as parking or charging 

spot. 

  

4.2.2 GEOGRAPHICAL AREAS 

In this chapter the focus is on geographical areas, thus the five counties (i.e., Bristol, 

Kent, Newport, Providence, and Washington) of Rhode Island. Providence County is 

the largest county in RI with around 637,357 people living there in 2017 and home of 

the capital City of Providence, and the only county in which the population is 

continuously growing within the last few years (Cubit Planning, Inc., 2018). Following 

counties are listed in decreasing population size: Washington County (126,150), 
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Newport County (83,460), Kent County (63,760), and Bristol County (48,912) (Cubit 

Planning, Inc., 2018). 

The distribution of the various types of charging stations based on functional areas 

within each county is as follows: Bristol County has three stations: one in open space, 

one in institutional, and one in commercial areas; Kent County has seven stations: five 

in commercial and two in intermodal areas; Newport County has five stations: one open 

space, two in commercial, and two in residential areas; Providence County has 28 

stations: six in commercial areas, seven in downtown areas, six in industrial areas, five 

in institutional areas, and four in residential areas; Washington County has seven 

stations: three in commercial, three in open space, and one in an institutional areas. 

Comparing the amount of charging events by county from Figure 18, Providence has 

the most charging events, percentage wise even more than charging stations. All other 

counties have percentage wise less charging stations as charging events. 

 

  

 

Figure 18: (a: right) Amount of Charging Stations by County (b: left) Amount of 

Charging Events by County 
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Divided in single stations by county, see Figure 19, one can see in which county 

the most frequently used and least frequently used stations are located. Considering each 

county has more and less used stations, what does this imply for the stations over all? 

 

Figure 19: Amount of charges per station colored in different county 

Looking at the single stations as box-plots in Figure 20, the highest median use of 

a single charging station is in Providence County followed by Newport County, Kent 

County, Washington County, and Bristol County. Providence and Washington County 

each have one charging station that is extraordinarily heavily used, shown as the outliers 

in Figure 19. Comparing the geographical areas with a Kruskal-Wallis Test, they are 

not significantly different to each other (p = 0.1546; fail to reject Null hypothesis [H0]; 

they are from identical population). 
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Figure 20: Box-plot about the amount of charges by county 

Further observing about the development of the counties have been made; how 

different is the EV adoption in each county? To analyze that question, small multiples 

of RI with its counties were plotted, in which the color changes depend on the amount 

of charges per year (Figure 21). Of course, Providence County has the most charging 

events, as already previously established in Figure 18. Yet, regardless of county, RI 

shows a continuous growth over the last five years with respect to EV adoption. 

Figure 21: Amount of charging events done in each county over the years 
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But, how much is the number of users from each county changing? To answer this 

question, the number of users from each county is divided by the population and 

visualized in Figure 22. It is noticeable that in all counties, the number of EV users per 

population is growing. The slowest growth is in Providence and Kent Counties, since 

EVs are still more expensive than ICE vehicles, this could be linked to fact that these 

two have the lowest median household income in RI (Providence County $50,637, Kent 

County $65,592). Bristol County shows a really strong growth from 2016 to 2017 

(median household income $73,096); also, a good growth but more continuous shows 

Washington’s count (median household income $74,302). Somewhere in between these 

growth patterns is Newport County with a median household income of $71,347. There 

are a lot of other factors that could potentially influence EV adoption that would require 

additional exploration in future work to understand these particular nuances per county. 

 

 

Figure 22: Number of users by county normalized by population over year 

Figure 21 represents the number of EV charging station users by county 

normalized for the population, but Figure 23 visually represents how the median number 

of charging events per user changes over the years. After 2013 there is a decrease in 

median charging events per user noticeable in all counties except for Kent County, in 
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which the median amount of charging events increased. Two factors in particular could 

have influenced this trend; there could be more home charging, or it could be due to 

better batteries implemented in EVs. (Note: Bristol County is gray in 2013 because there 

was only one user who did 90 charges this year, the scale was chosen regardless of this 

behavior to have a better contrast). 

 

 

Figure 23: Median number of charging events per user by county over year 

 The RI counties are different frequently used; Providence County has the highest 

amount of charges and charging stations, but also the highest population. The amount 

of user per population form each county varies and follows a different trend as the 

amount of charges. Overall the charging events per user decreased over the years in all 

counties except of Kent County.  
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4.3 TIME DEPENDENT TRENDS 

This chapter answers the Research Questions 3: What pattern distributions exist, 

such as (a) calendar dependent (i.e., weekly, daily, or hourly), (b) seasonality, and (c) 

can they predict future usage trends? 

Working with time series requires caution, because they usually are dependent on 

time. Looking at the number of charging events (n) per day (Figure 24) there is already 

a trend noticeable, but for working with time series this form is not ideal because there 

is a lot of noise due to daily variation. Summarizing the data further can be helpful to 

be less affected by outliers. 

 

Figure 24: Charging events per day 
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The RI charging stations get used mostly from Monday to Friday, less charging 

events happen on Saturday and Sunday (Figure 25). This conforms with the U.S. wide 

statistics ChargePoint released 2016 that more charging at public stations occurs during 

the week and less on the weekends. Yet Rhode Island has percentage wise more 

charging events during the weekends than the rest of the U.S. this is shown in the 

ChargePoint statistics (McKerracher, 2016). 

 

 

Figure 25: Amount of charging events by weekday 
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To analyze the similarities and differences in functional areas, they have been 

summarized in weekdays. In Figure 26 you can see how different it looks in the certain 

areas per weekday. It is noticeable that downtown, industrial, and institutional areas 

have more charging events from Monday to Friday and less at the weekends, this could 

be attributed to people working in these districts. Commercial and intermodal areas do 

not show strong differences between weekends and the rest of the week, people go 

shopping every day, and also using the airport at any day. Residential areas are more 

inconsistent, because this is usually the origin of drives. Open space areas show a 

different pattern, there are more charging events during the weekends compared to other 

days, possibly because people visiting these areas more often at weekends. 

 

Figure 26: Amount of charging events (n) per day of the week in functional areas 
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To compare this observation, the correlation of the areas has been verified using 

clustering (Figure 27). The similarity of downtown, industrial, and institutional areas 

has been confirmed as having similar weekly patterns of use. Residential areas are 93% 

similar to these ones as well, intermodal joins this group with a similarity level at 67% 

similarity. Commercial and open space areas are 66% similar. These clustering are 

similar to charging versus parking, except for downtown now relates a group. 

 

 

Figure 27: Cluster diagram of charging behavior at weekdays in functional areas 
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In Figure 28 the amount of charges per weekday is visualized for each county. Kent 

County, for example, has five commercial stations and two intermodal stations which 

do not show strong differences between weekdays. Providence County has 18 stations 

in downtown, industrial or institutional areas, all show less charging events on 

weekends, six stations in commercial districts that stay more or less the same amount 

through the weekends and weekdays, the remaining four are in residential areas. The 

amount of charging events per weekday seems to be strongly dependent on in which 

functional areas the stations are located over their county. 

 

Figure 28: Amount of charging events (n) per day of the week in geographical 

areas 
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Charging station users are primarily using the RI charging stations mostly between 

7am and 7pm with a peak at 8am (Figure 29). In comparison with the nationwide trends, 

published from ChargePoint 2016, the usage in RI shows slight differences. The top 8 

charging times from 7am to 2pm are very similar, however in RI there is another uptick 

peak at 5pm where in the rest of the U.S. the amount of charging events is constantly 

falling from 2pm (McKerracher, 2016). This pattern is similar to that in a study from 

Australia but 1 hour delayed, peak time at 9am comparing to 8am in RI, after 2pm 

constantly falling (Speidel & Bräunl, 2014). 

 

Figure 29: Amount of charging events throughout the day 
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Now the focus is the number of charging events (n) per hours of the day (Figure 

30) for the different functional areas. Downtown areas have their peak time between 

7am and 8am in the morning, with lower peaks after lunch time around 2pm and 3pm. 

Yet industrial and institutional areas follow a similar downtown trend but have another 

uptick in the evening around 5pm. Commercial, intermodal, and open spaces are more 

evenly spread during the day. Residential areas do not appear to follow a district pattern.  

 

 

Figure 30: Number of charges by hours of the day in functional areas 
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The clustering of the functional areas by daytime to validate observations it can be 

seen in Figure 31’s dendrogram. Figure 30 illustrates a strong relationship with 94% 

between commercial and open space areas, which link with the intermodal area at 76% 

similarity. Downtown and institutional areas have 97% similarity, industrial and 

residential areas 94%, this both groups link with 80% similarity. All areas have 61% 

similarity to each other. These groupings are slightly different than previous clustering 

groups with intermodal left the larger group to joining commercial and open spaces. 

 

 

 

Figure 31: Cluster diagram of charging behavior by daytime in functional areas  
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For seasonal forecasting a periodic seasonal pattern has to be noticeable which 

is in correlation with a constant time period (s). Figure 32 shows the charging events 

per month, it is noticeable that there is always a dip in February, but this is not enough 

for seasonal forecasting. When divided in functional areas (Figure 33) there is also in 

no recognizable seasonal trend. Additionally, the RI counties are not showing any 

seasonal trends either as seen in Figure 34.  

 

Figure 32: Number of charging events per month 
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Figure 33: Number of charging events per month by functional areas 

 

Figure 34: Number of charging events per month by county 
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The number of annual charging events for each function area. Now the number of 

charging events in certain areas are plotted in different colors over the years (Figure 35). 

It is notable that all functional areas show a clear upwards trend, especially with 

industrial and intermodal areas which show a strong growth within the last year. In 

industrial areas there are six charging stations, three of which are used below median 

(under 6.4% of the time). The other three used above the average since 2014. Two of 

these stations have strong growth from 2016 to 2017, expanding utilization from 15% 

to 29% and from 10% to 35%. In intermodal areas, the only two charging stations are 

at the T.F. Green Airport. One charging station was always utilized above median (13% 

to 55%), whereas the other one has strong growth from 2016 to 2017 from 4% utilization 

to 24%. These differences can be due to their location in different parking lots with 

different pricing per hour. Commercial and residential areas are contentiously growing, 

whereas downtown, institutional and open space were not growing in the last year.

 

Figure 35: Number of charging events over the years is different areas 
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The complete clustering of these areas confirms the visual observations of the last 

paragraph (Figure 36). Commercial and residential areas are continuously growing, with 

a similarity of 99.18%; the open space area joins this group with a similarity of 97.88%. 

Downtown and institutional areas show a similarity of 97.41% and join the already 

mentioned areas with a similarity of 92.05%. Industrial and intermodal areas show a 

strong growth within the last year, they show a similarity of 98.36%; all areas show a 

similarity of 79.00%. 

 

 

Figure 36: Cluster diagram of yearly trends in functional areas 
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The charging events per year for the different counties can be seen in Figure 37, 

most of them showing an upward trend. However, in Kent County, there are actually 

less charging events in 2017 as of 2016 even though, it has five stations commercial and 

two stations intermodal area. Yet, both functional areas of commercial and intermodal 

areas, display a clear, overall trend. Kent County is also the only county where charges 

per user are increasing, which does not fit together well, be connected with the usage of 

the airport. Newport County also shows a decrease of charging events in 2017. 

 

 

Figure 37: number of charging events over the years in geographical areas 
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The null hypothesis for Box-Pierce and Ljung-Box is that observations can be 

treated as independent. When the amount of charging events is summarized by month, 

the p-values for Box-Pierce and Ljung-Box are both p < 0.001 which rejects the null 

hypothesis; thus, the observations cannot be treated as independent. Therefore, an 

ARIMA model will be fitted, the analyzed data summarized as month is non-stationary, 

the mean value from the given data is changing over time based on the Augmented 

Dickey-Fuller test “𝑎𝑑𝑓. 𝑡𝑒𝑠𝑡()” in R (p = 0.08977; fail to rejectH0; data is non-

stationary). In the data there is a noticeable upwards trend, an ARIMA (𝑝, 1, 𝑞) model 

will be used. The maximum likelihood estimators AR-coefficient (𝑝) (order of 

autoregressive terms) and the MA-coefficient (𝑞) (number of lags on the MA 

component) are found with looking at the ACF and PACF. Therefore, first the data has 

been differenced and tested again with the Augmented Dickey-Fuller test (p = 0.01; 

rejectH0; data is stationary). In Figure 38, it is noticeable that there are no significant 

values after lag 0 in both the ACF and the PACF, which implies that an ARIMA (0,1,0) 

could be a good fit. The same model has been advocated by the R function 

“𝑎𝑢𝑡𝑜. 𝑎𝑟𝑖𝑚𝑎()”. 

 

 

Figure 38: ACF and PACF of differenced timeseries data of charging events per month 
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The “𝑎𝑟𝑖𝑚𝑎()” model with drift gives an AIC of 666.43 with other models having 

tested but resulting in the value being consistently higher. The fit with the chosen model 

is checked visually with the R function “𝑡𝑠𝑑𝑖𝑎𝑔()” in Figure 39. The first plot Figure 

39a, shows standardized residuals, they look like white noise; the ACF of residuals 

(Figure 39b) shows no value over the blue dotted line after lag 0; all the p-values for 

Ljung-Box statistics (Figure 39c) are over the blue line. All these conditions speak for 

a good fit for this model. 

 

 

Figure 39: Test functions to proof a good fit for ARIMA (0,1,0) model (a: top) 

Standardized Residuals (b: middle) ACF of Residuals (c: bottom) p-values for Ljung-

Box statistics 
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Now the ARIMA function can be run on the time series by month. A period of 36 

months has been chosen to predict ahead until 2020. Figure 40 shows the forecasting 

for the next 36 months with upper and lower prediction limits, with a noticeable upwards 

trend. According to this model there could be 1592 charging events in December 2020 

(lower limit: 80%: 726, 95%: 268; upper limit: 80%: 2458, 95%: 2916).  

 

 

Figure 40: 36 months timeseries forecasting for charging events per month 
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Improving the forecasting by putting in more data is tried, there for the charging 

events are now summarized as weeks. The null hypothesis for Box-Pierce and Ljung-

Box is that observations can be treated as independent, both (p < 0.001) rejected the null 

hypothesis, the observations cannot be treated as independent. Therefore, also as sums 

of weeks an ARIMA model can be fitted. The analyzed data seemed to be stationary 

and confirmed via the Augmented Dickey-Fuller test (p = 0.03678; reject 𝐻0, data is 

stationary). The mean value from the given data is changing over time and visually there 

is a perceivable trend. Looking at the ACF in Figure 41, the trend is also noticeable with 

many significant values, the PACF has significant values at lag one and two. The 

ARIMA (1,1,1) model has an AIC value of 2265.56 which was the lowest for this model 

between all the different models tested. 

 

  
Figure 41: ACF and PACF of timeseries data of charging events per week 

The fit with the chosen model with drift is checked visually in Figure 42. The Figure 

42a plot shows standardized residuals, they look like white noise; the ACF of residuals 

(Figure 42b) shows no value over the blue dotted line after lag 0; all the p-values for 

Ljung-Box statistics (Figure 42c) are over the blue line. All these conditions speak for 

a good fit for this model. 
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Figure 42: Test functions to proof a good fit for ARIMA (1,1,1) model (a: top) 

Standardized Residuals (b: middle) ACF of Residuals (c: bottom) p-values for Ljung-

Box statistics 

 

In the next step the ARIMA function is ran with a period of 156 weeks to predict 

ahead until 2020. The forecasted model is plotted in Figure 43. There is a strong 

upwards trend noticeable in the beginning of 2018, followed by a slighter upwards trend, 

visualized with upper and lower prediction limits. The last week of the year 2020 could 

have 462 charging events (lower limit: 80%: 327, 95%: 256; upper limit: 80%: 597, 

95%: 688). The growth is less than in the previous models with 16,823 in 2020 (ARIMA 

with month (Figure 40): 17,956 in 2020). The ARIMA (1,1,1) model with weekly data 

should give the most accurate predictions out of this three, because it has the most data 

points and the lowest prediction limits. 
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Figure 43: 156 weeks timeseries forecasting for charging events per week 

 

The assumption that charging behavior is strongly dependent on the functional area 

has been further affirmed, regarding the timeseries data for charging behavior per 

weekday and daytime. The geographical influence on the charging behavior seems to 

be less, seemingly more like a mixture of functional areas. Predictions and forecasting 

of further demand on charging stations could be made. Still, future trends on charging 

behavior are strongly influenced by several factors. This is the reason why the 

predictions can only be seen as approximate trends.   
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CHAPTER 5 – Conclusion 

 

The purpose of this research was to gain valuable insight into the usage of charging 

stations using Rhode Island as a case study. Each research question was intended to give 

special insight into different aspects of how EV drivers use public charging stations. 

The first research question explored the overall use associated with these RI public 

charging stations. Based on the data, there is a strong connection between the total 

duration of charging events, actual charging time, and the amount of charging events, 

that implies by analyzing one, conclusions about the others can be drawn. As it turns 

out, RI EV charging station users come from many different places around the U.S., but 

most of the frequent users are from RI or within New England. Additionally, single 

charging stations are used very differently in the case of frequency and in charging 

behavior. The median utilization of the investigated stations is 6.4%, the mean 15.57% 

(Standard Deviation 17.89%). Not only are chargers utilized differently based on 

frequency and location, many users using charging stations as parking spots, this pattern 

exists regardless of charging fees. Further examination of fee or free based charging 

should be explored in future work.  

Expansion of how charging stations differ with respect to use based on type of area 

was the purpose of the second research question. What has shown in the investigation 

of RI counties is that the EV adoption from county to county varies and possibly a 

connection to the median household income. The charging behavior varies greatly 

between the different functional areas: industrial areas do have the highest median 

amount of charges, whereas open space areas are the less frequently used charging 
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stations. Also, the habit of using charging stations as parking spots is different between 

functional areas. Geographical areas seem to have less influence on charging behavior, 

they behave more like a mixture of functional areas. There is mainly a decreasing 

median amount of charges per user, which speaks for either more home charging or 

larger battery capacity. 

Lastly, the final research question was with respect to how patterns exist in the data, 

such as seasonality and calendar dependence. The amount of charging events is clearly 

calendar dependent, the usage per day of the week is different between functional areas. 

Areas in which people are working (i.e., industrial, downtown, institutional) have less 

charging events on weekends, commercial and open space areas on the other hand have 

the same amount of charges on weekends or even more. Similar patterns exist during 

the charging behavior at daytime. The areas where people are working (downtown, 

industrial, institutional) have a strong peak in the morning, whereas other functional 

areas are more evenly distributed throughout the day. Yet, a pattern of seasonal changes 

are not recognizable, in none of the functional or geographical areas. Future trends could 

be drawn with linear regression models. It has been found that only about one third of 

the RI EV drivers are using RI charging stations. Additionally, timeseries forecasting 

models were performed with the data and found that currently there are enough charging 

stations in RI. Currently, RI is in the ‘utilization gap’ with respect to number of charging 

stations and usage, however the data was limited in terms of volume. As years pass and 

EVs become more ubiquitous, more data is required for a more accurate prediction.  

This research has given an overview about the charging behavior in Rhode Island. 

The outcomes of this work can help the RI Office of Energy Resources and the RI 
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Department of Transportation to plan further action on EV infrastructure. This research 

could also be the corner stone of many following research projects in this field as it is 

the first of its kind. The research outcome can be compared to other states in the U.S., 

where nationwide trends could be analyzed and maybe even predicted. Knowing how 

people charge their EVs is vital to understanding and implementing a new sustainable 

transportation infrastructure at a critical time when the monumental paradigm shift has 

relatively, just begun. 

 

5.1 LIMITATIONS 

The given data set has a high potential for being utilized in future research. The 

scope of this particular research was to give an overview about the data and initial trends 

found within the dataset.  

The first limitation to this work is that it is highly location based; implying that all 

charging stations are within the state of Rhode Island. It is unclear at this time if how 

people utilized charging stations in Rhode Island is similar or different to Florida, 

Missouri, California, or even Washington. Additional studies should expand the scope 

of this work toward understanding both nationally and internationally the differences in 

charging behavior.  

The second limitation is the dataset itself. The data is public, government sponsored 

charging stations. How this data and conclusions interact with private charging stations 

and residential charging stations is still an area for opportunity in researching for human 

variability in transportation.  
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Another limitation is that this work is single-user based. There were assumptions 

that the person charging at the station was the same person and that the vehicles charged 

at that station were the same throughout time. Further expansions of this research can 

exist where clarifications of this can be used to explore in depth the variability in 

charging behavior based on vehicle type, person driving, and even links to driving 

behavior. Along with being a single-user based focused study, the limitations in this 

area is that it is not a closed-system. The fleet EV research was very specific to medium 

duty vehicles, but the system remained the same with just the drivers being the variable. 

In this study, all these facets in the system were not controlled and explored assuming 

all with equal value and weight. Future work can surely expand upon this work with 

additional data for a more comprehensive understanding at the individual user-level. 

 

5.2 FUTURE WORK 

This analysis is the cornerstone for the following, planned research projects. 

Seasonality could be investigated more in depth. Potential questions are, but not 

limited to: How are charging stations used during the week versus weekend? Are there 

seasonal trends at single stations? The populations in the summer month is different to 

the rest of the year, does this has impact on charging behavior? 

A series of new questions revolve around how to improve the utilization and user 

behavior at specific stations? How could users be motivated to park less at the stations? 

How could RI, specifically, make their charging stations with lower utilization be used 

more? Would guidelines based on location of the charging stations help to improve the 

utilization time on charging stations? 
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Further data collection is being designed that surveys user behavior and 

preferences at kiosks located at various charging stations in different functional and 

geographical areas. An alternative could be a survey in collaboration with the Division 

of Motor Vehicles (DMV). 

Also, there is the possibility to identify which EV the users are actually driving. 

The ChargePoint app reveals the latest vehicles at each charging station with a 

timestamp. If this data could be collected in an automated process or shared directly 

from ChargePoint it could be merged with the current dataset. This new data opens the 

way for a variety of research projects. With the EV information per user a vast amount 

of research could be considered, such as: How much is the charging process different? 

How fast is the charging process per vehicle? On which factor does the charging speed 

depend?  

 The primary expansion of this research currently planned starts in September 

2018. It will investigate if the Deadline Rush Model applies to the charging habits of RI 

users. The hypothesis is, that many RI users wait until a critically low state of charge 

(SOC) before they decide to actually charge their vehicle. If a significant number of 

public users do this, it can cause a different kind of demand and directly influence future 

decision-making criteria in terms of infrastructure planning. 

 Collaborations with other faculty at distributed universities from other states 

could bring the topic to the next level. If there would be the possibility to compare the 

Rhode Island users’ charging behavior to other states, conclusions on nationwide trends 

can be drawn. Deeper knowledge about charging behavior and infrastructure could 

improve the EV transportation system significantly.  
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 Another research project could focus on single users. Do behavioral patterns of 

single users illustrate the Pareto model, meaning 80% of their charges are at their 20% 

favorite charging stations? What distances do user drive from home to the charging 

stations? Do they also commute longer distances? How much variability exists in the 

charging time per day per user? Can there be found certain groups of users which show 

similar behavior? 

To make future predictions for EV charging station needs is difficult, there are 

many potential influencing factors, such as EV charging and its infrastructure. The new 

projection tool EVI-Pro from the U.S. DOE EERE projects how many charging plugs 

of which kind are needed for a specific number of BEVs and PHEVs (U.S. Department 

of Energy, 2018). The proportions of BEVs and PHEVs in RI differ from year to year: 

in 2014, there were 20% BEVs and 80% PHEV; in 2015 and 2016, it was 30% BEV 

and 70% PHEV, and in 2017, 32% BEV and 68% PHEV (Auto Alliance, 2016; 

EVAdoption, 2017; Office of Energy Efficiency & Renewable Energy, 2015; Office of 

Energy Resources, 2016). Regarding the nationwide trend it should already be 50% 

BEV, 50% PHEV, so it is assumed that RI will get to this number by 2020 (ChargePoint, 

2017). Another study says that PHEVs will only play a role in EV adoption until 2025 

and thus, after 2030 they will almost be gone. As the battery capacity grows, so does 

the range, resulting in a higher amount of higher range vehicles estimate over the next 

few years (Howell et al., 2017). With this information the EVI-Pro tool calculates that 

RI provides a lot more charging plugs than needed currently and in the near future as RI 

is still in the utilization gap. Also, the electric driving range influences the results 

significantly; out of the EVI-Pro tool the number of needed charging plugs does not 
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increase a lot despite a growing number of users due to the higher electric drive range 

(U.S. Department of Energy, 2018).   

More research on potential influencing factors needs to be explored (e.g., battery 

evolution and electric driving range, user expectations, linkage between charging time 

and hour of the day, vehicle type). Especially the linkage between home charging and 

battery capacity needs to be invested; a vital question is, “Do EV drivers charge more 

at home if the driving range is larger?”. Typically, Level-1 charging is used at home, do 

people decide to switch to Level-2 charging at home instead if the batteries have more 

capacity and take longer to charge? How do patterns of human behavior change these 

factors? These factors could be further investigated and input into a model in order to 

predict charging behavior. The outcomes of these studies could all be implemented into 

projection tools like EVI-Pro.  

These are just a few ideas of projects that could be done with this data; embrace 

the possibilities.  
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APPENDIX 1: R-Markdown Code 

 
--- 

title: "Data Analysis Master Thesis in R" 

author: "Roxana Voss" 

date: "June 2018" 

output: 

  word_document: default 

  pdf_document: default 

--- 

 

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo = TRUE) 

rm(list = ls()) #the whole environment 

 

#install.packages("plyr") 

#install.packages("maptools") 

#install.packages("ddply") 

#install.packages("tidyverse") 

#install.packages("maps") 

#install.packages("viridis") 

#install.packages("ggplot2") 

#install.packages("ggmap") 

#install.packages("zipcode") 

#install.packages("ddply") 

#install.packages("ggplot2") 

#install.packages("hrbrmstr") 

#install.packages("scales") 

#install.packages("RColorBrewer") 

#install.packages("stats") 

#install.packages("forecast") 

 

library(plyr) 

library(ggplot2) 

library(maptools) 

library(zipcode) 

library(tidyverse) 

library(maps) 

library(viridis) 

library(ggthemes) 

library(readr) 

library(mapdata) 

library(gridExtra) 

library(grid) 

library(cumplyr) 

library(RColorBrewer) 

library(ggpubr) 

library(stats) 

library(forecast) 

library(colorspace)  

library(tseries) 

library(survival) 

library(coin) 
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#my data 

Clean_Data <- read_delim("~/Desktop/Big Data Analysis/R/Final Project/Clean_Data_6.csv",  

                         ";", escape_double = FALSE, col_types = cols(`Charging Time (hh:mm:ss)` = 

col_time(format = "%H:%M:%S"),  

                                                                      Date = col_date(format = "%d.%m.%Y"),  

                                                                      Date_1 = col_date(format = "%d.%m.%Y"),  

                                                                      `End Date` = col_datetime(format = "%d.%m.%Y 

%H:%M:%S"),  

                                                                      `Energy (kWh)` = col_double(), `Start Date` = 

col_datetime(format = "%d.%m.%Y %H:%M:%S"),  

                                                                      Time = col_time(format = "%H:%M:%S"),  

                                                                      `Time no charge` = col_time(format = "%H:%M:%S"),  

                                                                      Time_1 = col_time(format = "%H:%M:%S"),  

                                                                      `Total Duration (hh:mm:ss)` = col_time(format = 

"%H:%M:%S"),  

                                                                      `Transaction Date (Pacific Time)` = col_datetime(format = 

"%d.%m.%Y %H:%M:%S")),  

                         locale = locale(decimal_mark = ","),  

                         trim_ws = TRUE) 

 

Clean_Data <- Clean_Data %>% filter(`Station Name` != "RI OER / FRANCIS ST1") %>% 

filter(`Station Name` != "RI OER / FRANCIS ST2") %>% filter(`Station Name` != "RI OER / 

STATION#1") %>% filter(`Station Name` != "RI OER / STATION#2") %>% filter(`Station Name` != 

"RI OER / STATION#3") 

 

``` 

 

# Electric Vehicle (EV) Charging Behavior in existing Infrastructures 

 

This is an R Markdown document to understand the processed statistics of the data. 

It is a trial version, which keeps record of possibly usable statistics for the research. 

Updated Data can easily be read in and the same analysis can be performed automatically. 

 

## Descriptive Statistics 

 

 

Energy used in kWh: Mean, Standard Deviation, Minimum, Maximum and Sum of all the charging 

events 

 

```{r Energy} 

mean(Clean_Data$`Energy (kWh)`, na.rm=TRUE) 

sd(Clean_Data$`Energy (kWh)`, na.rm=TRUE) 

min(Clean_Data$`Energy (kWh)`, na.rm=TRUE) 

max(Clean_Data$`Energy (kWh)`, na.rm=TRUE) 

sum(Clean_Data$`Energy (kWh)`, na.rm=TRUE) 

``` 

 

\   

 

GHG Savings in kg: Mean, Standard Deviation, Minimum, Maximum and Sum of all the charging 

events 
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```{r GHG} 

mean(Clean_Data$`GHG Savings (kg)`, na.rm=TRUE) 

sd(Clean_Data$`GHG Savings (kg)`, na.rm=TRUE) 

min(Clean_Data$`GHG Savings (kg)`, na.rm=TRUE) 

max(Clean_Data$`GHG Savings (kg)`, na.rm=TRUE) 

sum(Clean_Data$`GHG Savings (kg)`, na.rm=TRUE) 

``` 

 

 \newpage 

 

Gasoline Savings in Gallons: Mean, Standard Deviation, Minimum, Maximum and Sum of all the 

charging events 

 

```{r Gas} 

mean(Clean_Data$`Gasoline Savings (gallons)`, na.rm=TRUE,) 

sd(Clean_Data$`Gasoline Savings (gallons)`, na.rm=TRUE) 

min(Clean_Data$`Gasoline Savings (gallons)`, na.rm=TRUE) 

max(Clean_Data$`Gasoline Savings (gallons)`, na.rm=TRUE) 

sum(Clean_Data$`Gasoline Savings (gallons)`, na.rm=TRUE) 

``` 

\   

 

Total Plugged in Time in sec: Mean, Standard Deviation, Minimum, Maximum and Sum of all the 

charging events 

If further needed, it can be converted in a common time format. 

 

```{r TT, echo=FALSE} 

 ds1 <- Clean_Data %>%   filter(!is.na(`Time no charge`)) %>%   

  filter(!is.na(`Total Duration (hh:mm:ss)`)) %>%  filter(!is.na(`Charging Time (hh:mm:ss)`)) 

 

 

print("Mean total duration pluged in") 

ds1$`Total Duration (hh:mm:ss)` <- difftime(strptime(ds1$`Total Duration 

(hh:mm:ss)`,"%H:%M:%S"), 

                     strptime("00:00:00","%H:%M:%S"), 

                     units="secs") 

ds1.means <- mean(ds1$`Total Duration (hh:mm:ss)`) 

ds1.means$Time <- format(.POSIXct(ds1.means,tz="GMT"), "%H:%M:%S") 

ds1.means 

 

print("SD total duration pluged in") 

ds1.sd <- sd(ds1$`Total Duration (hh:mm:ss)`) 

ds1.sd$Time <- format(.POSIXct(ds1.sd,tz="GMT"), "%H:%M:%S") 

ds1.sd 

 

print("Min total duration pluged in") 

ds1.min <- min(ds1$`Total Duration (hh:mm:ss)`) 

ds1.min$Time <- format(.POSIXct(ds1.min,tz="GMT"), "%H:%M:%S") 

ds1.min 

 

print("Max total duration pluged in") 

ds1.max <- max(ds1$`Total Duration (hh:mm:ss)`) 

ds1.max$Time <- format(.POSIXct(ds1.max,tz="GMT"), "%H:%M:%S") 

ds1.max 
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print("Sum total duration pluged in") 

ds1.sum <- sum(ds1$`Total Duration (hh:mm:ss)`) 

ds1.sum 

 

#print("Sum total duration pluged in") 

#ds1.sum <- sum(ds1$`Total Duration (hh:mm:ss)`) 

#ds1.sum$Time <- format(.POSIXct(ds1.sum,tz="GMT"), "%d 'Days' ,%H:%M:%S") 

#ds1.sum 

 

``` 

 

 \newpage 

 

Total Charging Time in sec: Mean, Standard Deviation, Minimum, Maximum and Sum of all the 

charging events 

If further needed, it can be converted in a common time format. 

 

```{r CT, echo=FALSE} 

print("Mean charging time") 

ds1$`Charging Time (hh:mm:ss)` <- difftime(strptime(ds1$`Charging Time 

(hh:mm:ss)`,"%H:%M:%S"), 

                     strptime("00:00:00","%H:%M:%S"), 

                     units="secs") 

ds1.means <- mean(ds1$`Charging Time (hh:mm:ss)`) 

ds1.means$Time <- format(.POSIXct(ds1.means,tz="GMT"), "%H:%M:%S") 

ds1.means 

 

print("SD charging time") 

ds1.sd <- sd(ds1$`Charging Time (hh:mm:ss)`) 

ds1.sd$Time <- format(.POSIXct(ds1.sd,tz="GMT"), "%H:%M:%S") 

ds1.sd 

 

print("Min charging time") 

ds1.min <- min(ds1$`Charging Time (hh:mm:ss)`) 

ds1.min$Time <- format(.POSIXct(ds1.min,tz="GMT"), "%H:%M:%S") 

ds1.min 

 

print("Max charging time") 

ds1.max <- max(ds1$`Charging Time (hh:mm:ss)`) 

ds1.max$Time <- format(.POSIXct(ds1.max,tz="GMT"), "%H:%M:%S") 

ds1.max 

 

#print("Sum charging time") 

ds1.sum <- sum(ds1$`Charging Time (hh:mm:ss)`) 

#ds1.sum$Time <- format(.POSIXct(ds1.sum,tz="GMT"), "%d 'Days' ,%H:%M:%S") 

ds1.sum 

``` 

\   

 

Time the EV is plugged in after it has been fully charged in sec: Mean, Standard Deviation, Minimum, 

Maximum and Sum of all the charging events 

If further needed, it can be converted in a common time format. 
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```{r NC, echo=FALSE} 

print("Mean time plugged in after being fully charged") 

ds1$`Time no charge` <- difftime(strptime(ds1$`Time no charge`,"%H:%M:%S"), 

                     strptime("00:00:00","%H:%M:%S"), 

                     units="secs") 

ds1.means <- mean(ds1$`Time no charge`) 

ds1.means$Time <- format(.POSIXct(ds1.means,tz="GMT"), "%H:%M:%S") 

ds1.means 

 

print("SD plugged in after being fully charged") 

ds1.sd <- sd(ds1$`Time no charge`) 

ds1.sd$Time <- format(.POSIXct(ds1.sd,tz="GMT"), "%H:%M:%S") 

ds1.sd 

 

print("Min plugged in after being fully charged") 

ds1.min <- min(ds1$`Time no charge`) 

ds1.min$Time <- format(.POSIXct(ds1.min,tz="GMT"), "%H:%M:%S") 

ds1.min 

 

print("Max plugged in after being fully charged") 

ds1.max <- max(ds1$`Time no charge`) 

ds1.max$Time <- format(.POSIXct(ds1.max,tz="GMT"), "%H:%M:%S") 

ds1.max 

 

ds1.sum <- sum(ds1$`Time no charge`) 

#ds1.sum$Time <- format(.POSIXct(ds1.sum,tz="GMT"), "%d 'Days' ,%H:%M:%S") 

ds1.sum 

 

``` 
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## Descriptive Statistics 

  

Two Versions of bar charts about the usage of single Stations. 

In the next step clustered in areas which show the range of the usage of the single stations in this region. 

 

```{r Stationss, echo=FALSE} 

st0 <- Clean_Data  %>% filter(Year == 2017)  

st <- st0 %>% group_by(Area, `Station Name`) %>% tally() %>% filter(!is.na(Area)) 

barplot(st$n, main = "Charging events per station", xlab="Different Stations", ylab= "Amount of 

charging events", col = "royalblue2") 

stcounty <- st0 %>% group_by(County, `Station Name`) %>% tally() %>% filter(!is.na(County)) 

barplot(st$n, main = "Charging events per station", xlab="Different Stations", ylab= "Amount of 

charging events", col = "royalblue2") 

 

st$`Station Name` <- factor(st$`Station Name`, levels = st$`Station Name`[order(-st$n)]) 

ggplot(st, aes(x=`Station Name`, y=n, fill = Area))+ geom_col() 

 

stcounty$`Station Name` <- factor(stcounty$`Station Name`, levels = stcounty$`Station Name`[order(-

stcounty$n)]) 

ggplot(stcounty, aes(x=`Station Name`, y=n, fill = County))+ geom_col() 

 

#barplot(ds822$x, main = "Charging events per station", xlab="Different Stations", ylab= "Amount of 

charging events", col = "royalblue2") 
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#ggplot(ds822, aes((color = count), x=`Station Name`, y=x))+ geom_col() 

``` 

 

\newpage 

## Descriptive Statistics 

  

Are 80 percent of the charges done at 20 percent of the stations? 

No, at the 20% most popular stations are done 47 % of the charges. 

Same with total Ddration: 

No, at the 20% most popular stations are done 54 % of the total duration 

Same with charging time: 

No, at the 20% most popular stations are done 53 % of the chargintime 

 

 

```{r 8020, echo=FALSE} 

st1 <- Clean_Data %>% group_by(Area, `Station Name`) %>% tally() %>% filter(!is.na(Area)) 

 

print("Amount of Charges") 

st8020 <- st1[order(st1$n),] 

st80 <- sum(st8020[1:39,3]) 

st20 <- sum(st8020[40:50,3]) 

stsum <- sum(st8020[,3]) 

 

st80/stsum 

st20/stsum 

 

 

ds1 <- Clean_Data %>%   filter(!is.na(`Time no charge`)) %>%   

  filter(!is.na(`Total Duration (hh:mm:ss)`)) %>%  filter(!is.na(`Charging Time (hh:mm:ss)`)) 

 

 

print("Total Duration") 

ds1$`Total Duration (hh:mm:ss)` <- difftime(strptime(ds1$`Total Duration 

(hh:mm:ss)`,"%H:%M:%S"), 

                     strptime("00:00:00","%H:%M:%S"), 

                     units="secs") 

ds82 <- ds1 %>% group_by(`Station Name`) %>% summarise(x = sum(`Total Duration (hh:mm:ss)`)) 

%>% filter(!is.na(`Station Name`)) 

 

td8020 <- ds82[order(ds82$x),] 

 

td80 <- sum(td8020$x[1:39]) 

td20 <- sum(td8020$x[40:50]) 

tdsum <- sum(td8020$x) 

 

#td80/tdsum 

214146099/489813848 

#td20/tdsum 

275667749/489813848 

 

print("Charge Time") 

ds1$`Charging Time (hh:mm:ss)` <- difftime(strptime(ds1$`Charging Time 

(hh:mm:ss)`,"%H:%M:%S"), 

                     strptime("00:00:00","%H:%M:%S"), 
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                     units="secs") 

ds822 <- ds1 %>% group_by(`Station Name`) %>% summarise(x = sum(`Charging Time (hh:mm:ss)`)) 

%>% filter(!is.na(`Station Name`)) 

 

ct8020 <- ds822[order(ds822$x),] 

 

ct80 <- sum(ct8020$x[1:39]) 

ct20 <- sum(ct8020$x[40:50]) 

ctsum <- sum(ct8020$x) 

 

#ct80/ctsum 

113034756/252159542 

#ct20/ctsum 

139124786/252159542 

``` 
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## Descriptive Charts 

## Map of User Distribution  

 

You can see 3 versions of a map of the United States which show the distribution of charging station 

users using RI charging stations. 

```{r map, echo=FALSE} 

data(zipcode) 

us<-map_data('state') 

usa<-map_data("usa") 

states <- map_data("state") 

 

ri<-states %>% filter(region == "rhode island") 

DZ <- Clean_Data  

DZ.zip <- aggregate(data.frame(count=DZ$`User ID`), list(zip=DZ$`Driver Postal Code`, Area= 

DZ$Area), length) 

DZ2 <- merge(DZ.zip, zipcode, by='zip') 

 

DZRI <- DZ2 %>% filter(state == "RI") 

 

#works better 

ggplot(DZ2, aes(longitude,latitude)) + 

        geom_polygon(data=us,aes(x=long,y=lat,group=group),color='black',fill=NA,alpha=.35)+ 

        geom_point(aes(color = Area), size= 2,alpha=.45) + 

        xlim(-125,-65)+ylim(20,50) + 

        theme(panel.background = element_blank()) 

us_area <- ggplot(DZ2, aes(longitude,latitude)) + 

        geom_polygon(data=us,aes(x=long,y=lat,group=group),color='black',fill=NA,alpha=.35)+ 

        geom_point(aes(color = Area), size= 2,alpha=.45) + 

        xlim(-125,-65)+ylim(20,50) + 

        theme(panel.background = element_blank()) 

 

us_area + coord_quickmap(xlim = c(-75,-68),  ylim = c(40,45)) 

 

#trial 

ggplot(DZ2, aes(longitude,latitude)) + 

  geom_polygon(data=us,aes(x=long,y=lat,group=group),color='black',fill=NA,alpha=.35)+ 

  geom_point(aes(color = count), size = 2, alpha=0.5) +  
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  scale_colour_gradient(low= "blue", high = "red") + xlim(-125,-65)+ylim(20,50) + 

  theme(panel.background = element_blank()) 

 

us_user <- ggplot(DZ2, aes(longitude,latitude)) + 

        geom_polygon(data=us,aes(x=long,y=lat,group=group),color='black',fill=NA,alpha=.35)+ 

        geom_point(aes(color = count), size = 2, alpha=0.5) +  

        scale_colour_gradient(low= "blue", high = "red") + 

        xlim(-125,-65)+ylim(20,50) + 

        theme(panel.background = element_blank()) 

 

us_user + coord_quickmap(xlim = c(-75,-68),  ylim = c(40,45)) 

 

``` 
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## Descriptive Charts 

## Map of User Distribution  

 

Map of RI with User Origin and amounts of charges 

 

```{r map12, echo=FALSE} 

 

#ri map with user zip distribution 

ggplot(DZRI, aes(longitude,latitude)) + 

        geom_polygon(data=ri,aes(x=long,y=lat,group=group),color='black',fill=NA,alpha=.35)+ 

        geom_point(aes(color = count), size = 5, alpha=0.5) +  

        scale_colour_gradient(low= "blue", high = "red") + 

        xlim(-71.9,-71.1)+ylim(41.3,42.1) + 

        theme(panel.background = element_blank()) + coord_quickmap() 

``` 
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## Descriptive Charts 

## Map of User Distribution  

 

Map of RI with Chargig Stations and amounts of charges 

 

```{r map13, echo=FALSE} 

#ri map amount of charging events per zip 

DZ2017 <- Clean_Data %>% filter(Year == 2017) 

DZ.sub <- aggregate(data.frame(count=DZ2017$`Station Name`), list(Station= DZ2017$`Station 

Name`, latitude=DZ2017$Latitude, longitude=DZ2017$Longitude, Area=DZ2017$Area), length) 

 

ggplot(DZ.sub, aes(longitude,latitude)) + 

        geom_polygon(data=ri,aes(x=long,y=lat,group=group),color='black',fill=NA,alpha=.35)+ 

        geom_point(aes(color = count), size = 5, alpha=0.5) +  

        scale_colour_gradient(low= "blue", high = "red", breaks = c(0,200,400,600,800,1000), limits=c(1, 

1000)) + 

        xlim(-71.9,-71.1)+ylim(41.3,42.1) + 

        theme(panel.background = element_blank()) + coord_quickmap() 

 

 

``` 
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## Locations 

Pie Chart about Areas and the Amount of Charging Stations in the zone. 

 

```{r sz, echo=FALSE} 

st1 <- Clean_Data %>% group_by(Area, `Station Name`) %>% tally()  %>%  filter(!is.na(Area)) 

st3 <- st1 %>% select(Area, `Station Name`) %>% group_by(Area) %>% count(Area)  %>%  

filter(!is.na(Area)) 

pie(st3$n, labels = st3$Area, main="Amount of Charging Stations by Area", col=rainbow_hcl(7)) 

``` 

 

Pie Chart about Areas and the Amount of Charging Events. 

 

```{r Area, echo=FALSE} 

ag <- Clean_Data %>% count(Area) %>%  filter(!is.na(Area)) 

pie(ag$n, labels = ag$Area, main="Amount of Charging Events by Area",col=rainbow_hcl(7)) 

``` 
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Pie Chart about Counties and the Amount of Charging Stations in the zone. 

 

```{r sz2, echo=FALSE} 

css1 <- Clean_Data %>% group_by(County, `Station Name`, Area) %>% tally()  %>%  

filter(!is.na(County)) 

st3 <- css1 %>% select(County, `Station Name`) %>% group_by(County) %>% count(County)  %>%  

filter(!is.na(County)) 

pie(st3$n, labels = st3$County, main="Amount of Charging Stations by County", col=rainbow_hcl(5)) 

``` 
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Pie Chart about Areas and the Amount of Charging Events. 

 

```{r Area2, echo=FALSE} 

ag <- Clean_Data %>% count(County) %>%  filter(!is.na(County)) 

pie(ag$n, labels = ag$County, main="Amount of Charging Events by County", col=rainbow_hcl(5)) 

``` 
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## Locations 

  

Boxplots about the Usage in the diffrent Areas and Counties 

 

```{r Stations, echo=FALSE} 

  

st1 <- Clean_Data %>% group_by(Area, `Station Name`) %>% tally()  %>%  filter(!is.na(Area)) 

 

ggplot(data = st1, aes(x = Area, y = n, fill = Area)) + geom_boxplot() + theme(legend.position="none") 

st11 <- Clean_Data %>% group_by(County, `Station Name`) %>% tally()  %>%  filter(!is.na(County))  
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ggplot(data = st11, aes(x = County, y = n, fill= County)) + geom_boxplot() + 

theme(legend.position="none") 

 

``` 
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## Locations 

  

Kruskal-Wallis Test 

 

```{r wallisarea, echo=FALSE} 

 

st1$Area <- as.factor(st1$Area) 

kruskal_test(n~Area, data = st1) 

print("Functional areas are not signifficantly different") 

 

st11$County <- as.factor(st11$County) 

print("Geographical areas are not signifficantly different") 

kruskal_test(n~County, data = st11) 

 

``` 
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## Locations 

  

RI map with the diffrent stations in colors of the Area and size per Amount of usage 

 

```{r newmap, echo=FALSE} 

 

ggplot(DZ.sub, aes(longitude,latitude)) + 

        geom_polygon(data=ri,aes(x=long,y=lat,group=group),color='black',fill=NA,alpha=.5)+ 

        geom_point(aes(color = factor(Area),size = count, alpha=0.1)) + xlim(-71.9,-

71.1)+ylim(41.3,42.1) + 

        theme(panel.background = element_blank()) + coord_quickmap() 

 

``` 
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## Locations 

 

 

Amount of Charging Events in each County 

 

```{r map2, echo=FALSE} 

 

#ri map with counties 

counties <- map_data("county") 

ri<-states %>% filter(region == "rhode island") 

ri_county <- counties %>% filter(region == "rhode island") 

ri_c <- ggplot(data = ri, mapping = aes(x = long, y = lat, group = group)) +  

  coord_quickmap() + geom_polygon(color = "black", fill = "gray") + geom_polygon(data = ri_county, 

fill = NA, color = "white") + geom_polygon(color = "black", fill = NA) + theme_void() 

 



 

85 

 

#ri map amount of charging stations per county 

DZ.sub2 <- aggregate(data.frame(count=DZ$`Station Name`), list(subregion=DZ$`County`), length) 

 

county_data <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), 

count = DZ.sub2$count/5) 

 

ricopa <- left_join(ri_county, county_data, by = "subregion") 

 

c_all <- ri_c + geom_polygon(data = ricopa, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) + scale_fill_viridis( 

                         breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 10000)) 

 

#ri map amount of charging stations per county per year 2013 

DZ13 <- DZ %>% filter(Year == 2013) 

DZ.sub3 <- aggregate(data.frame(count=DZ13$`Station Name`), list(subregion=DZ13$`County`), 

length) 

 

county_data3 <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), 

count = DZ.sub3$count) 

 

ricopa3 <- left_join(ri_county, county_data3, by = "subregion") 

 

c13 <- ri_c + geom_polygon(data = ricopa3, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 10000)) + ggtitle("2013") 

 

#ri map amount of charging stations per county per year 2014 

DZ14 <- DZ %>% filter(Year == 2014) 

DZ.sub4 <- aggregate(data.frame(count=DZ14$`Station Name`), list(subregion=DZ14$`County`), 

length) 

 

county_data4 <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), 

count = DZ.sub4$count) 

 

ricopa4 <- left_join(ri_county, county_data4, by = "subregion") 

 

c14 <- ri_c + geom_polygon(data = ricopa4, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 10000)) + ggtitle("2014") 

 

#ri map amount of charging stations per county per year 2015 

DZ15 <- DZ %>% filter(Year == 2015) 

DZ.sub5 <- aggregate(data.frame(count=DZ15$`Station Name`), list(subregion=DZ15$`County`), 

length) 

 

county_data5 <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), 

count = DZ.sub5$count) 

 

ricopa5 <- left_join(ri_county, county_data5, by = "subregion") 
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c15 <- ri_c + geom_polygon(data = ricopa5, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 10000)) + ggtitle("2015") 

 

#ri map amount of charging stations per county per year 2016 

DZ16 <- DZ %>% filter(Year == 2016) 

DZ.sub6 <- aggregate(data.frame(count=DZ16$`Station Name`), list(subregion=DZ16$`County`), 

length) 

 

county_data6 <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), 

count = DZ.sub6$count) 

 

ricopa6 <- left_join(ri_county, county_data6, by = "subregion") 

 

c16 <- ri_c + geom_polygon(data = ricopa5, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 10000)) + ggtitle("2016") 

 

#ri map amount of charging stations per county per year 2017 

DZ17 <- DZ %>% filter(Year == 2017) 

DZ.sub7 <- aggregate(data.frame(count=DZ17$`Station Name`), list(subregion=DZ17$`County`), 

length) 

 

county_data7 <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), 

count = DZ.sub7$count) 

 

ricopa7 <- left_join(ri_county, county_data7, by = "subregion") 

 

c17 <- ri_c + geom_polygon(data = ricopa7, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(1, 10, 100, 1000, 10000),trans = "log10", 

                        limits=c(1, 10000)) + ggtitle("2017") 

 

ri_c + geom_polygon(data = ricopa7, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(100, 1000, 10000),trans = "log10", 

                        limits=c(100, 10000)) + ggtitle("2017") 

 

#All together 

c_all 

ggarrange(c13, c14, c15,  

             c16, c17, ncol= 5, nrow = 1, common.legend = TRUE, legend="right") 

``` 
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## Locations 

 

 

Amount of Charging Events done by User from each County 

 

```{r map3, echo=FALSE} 
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#ri map amount of by user per county 

 

 

zipcounty <- read_delim("~/Dropbox/Masterthesis/zipcounty.csv",  

                         ";", escape_double = FALSE,locale = locale(decimal_mark = ","), trim_ws = TRUE) 

 

DZs <- Clean_Data[c("Year", "Driver Postal Code")] 

DZs <- DZs %>% filter(!is.na(`Driver Postal Code`)) 

DZURI <- merge(zipcounty, DZs, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subu <- aggregate(data.frame(count=DZURI$`subregion`), list(subregion=DZURI$`subregion`), 

length) 

 

ricopau <- left_join(ri_county, DZ.subu, by = "subregion") 

 

ri_c + geom_polygon(data = ricopau, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) + scale_fill_viridis( 

                         breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 27000)) 

 

#ri map amount of charging stations per county per year 2013 

 

DZs3 <- DZ13[c("Year", "Driver Postal Code")] 

DZURI3 <- merge(zipcounty, DZs3, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subu3 <- aggregate(data.frame(count=DZURI3$`subregion`), 

list(subregion=DZURI3$`subregion`), length) 

 

ricopau3 <- left_join(ri_county, DZ.subu3, by = "subregion") 

 

 

u3 <- ri_c + geom_polygon(data = ricopau3, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 10000)) + ggtitle("2013") 

 

#ri map amount of charging stations per county per year 2014 

DZs4 <- DZ14[c("Year", "Driver Postal Code")] 

DZURI4 <- merge(zipcounty, DZs4, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subu4 <- aggregate(data.frame(count=DZURI4$`subregion`), 

list(subregion=DZURI4$`subregion`), length) 

 

ricopau4 <- left_join(ri_county, DZ.subu4, by = "subregion") 

 

 

u4 <- ri_c + geom_polygon(data = ricopau4, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 10000)) + ggtitle("2014") 
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#ri map amount of charging stations per county per year 2015 

DZs5 <- DZ15[c("Year", "Driver Postal Code")] 

DZURI5 <- merge(zipcounty, DZs5, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subu5 <- aggregate(data.frame(count=DZURI5$`subregion`), 

list(subregion=DZURI5$`subregion`), length) 

 

ricopau5 <- left_join(ri_county, DZ.subu5, by = "subregion") 

 

 

u5 <- ri_c + geom_polygon(data = ricopau5, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 10000)) + ggtitle("2015") 

 

#ri map amount of charging stations per county per year 2016 

DZs6 <- DZ16[c("Year", "Driver Postal Code")] 

DZURI6 <- merge(zipcounty, DZs6, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subu6 <- aggregate(data.frame(count=DZURI6$`subregion`), 

list(subregion=DZURI6$`subregion`), length) 

 

ricopau6 <- left_join(ri_county, DZ.subu6, by = "subregion") 

 

 

u6 <- ri_c + geom_polygon(data = ricopau6, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 10000)) + ggtitle("2016") 

 

#ri map amount of charging stations per county per year 2017 

DZs7 <- DZ17[c("Year", "Driver Postal Code")] 

DZURI7 <- merge(zipcounty, DZs7, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subu7 <- aggregate(data.frame(count=DZURI7$`subregion`), 

list(subregion=DZURI7$`subregion`), length) 

 

ricopau7 <- left_join(ri_county, DZ.subu7, by = "subregion") 

 

 

u7 <- ri_c + geom_polygon(data = ricopau4, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(1, 10, 100, 1000, 10000), 

                         trans = "log10", limits=c(1, 10000)) + ggtitle("2017") 

 

#All together 

 

ggarrange(u3,u4,u5,u6,u7, ncol= 5, nrow = 1, common.legend = TRUE, legend="right") 

                     

``` 
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\newpage 

  

## Locations 

 

 

Amount of User from each County 

 

 

```{r map4, echo=FALSE} 

 

#numer of User from RI 

 

 

#zipcounty <- read_delim("~/Dropbox/Masterthesis/zipcounty.csv", ";", escape_double = FALSE,locale 

= locale(decimal_mark = ","), trim_ws = TRUE) 

 

 

DZsi <- Clean_Data[c("Year", "User ID", "Driver Postal Code")] %>% filter(!is.na('User ID'))  

 

DZii <- DZsi %>% group_by(`User ID`, Year, `Driver Postal Code`) %>% tally() 

 

DZURIi1 <- merge(zipcounty, DZii, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi1 <- aggregate(data.frame(count=DZURIi1$`subregion`), 

list(subregion=DZURIi1$`subregion`), length) 

 

ricopai11 <- left_join(ri_county, DZ.subi1, by = "subregion") 

 

ri_c + geom_polygon(data = ricopai11, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(5, 50, 500), 

                         trans = "log10", limits=c(1, 600)) + ggtitle("All User from each County") 

 

#ri map amount of charging stations per county per year 2013 

 

DZsi3 <- DZii %>% filter(Year == 2013) 

DZURIi3 <- merge(zipcounty, DZsi3, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi3 <- aggregate(data.frame(count=DZURIi3$`subregion`), 

list(subregion=DZURIi3$`subregion`), length) 

 

ricopai3 <- left_join(ri_county, DZ.subi3, by = "subregion") 

 

uc3 <- ri_c + geom_polygon(data = ricopai3, aes(fill = count), color = "white") + geom_polygon(color 

= "black", fill = NA) +  

  scale_fill_viridis(breaks = c(5, 50, 500), 

                         trans = "log10", limits=c(1, 500)) + ggtitle("2013") 

 

#ri map amount of charging stations per county per year 2014 

DZsi4 <- DZii %>% filter(Year == 2014) 

DZURIi4 <- merge(zipcounty, DZsi4, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 
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DZ.subi4 <- aggregate(data.frame(count=DZURIi4$`subregion`), 

list(subregion=DZURIi4$`subregion`), length) 

 

ricopai4 <- left_join(ri_county, DZ.subi4, by = "subregion") 

 

uc4 <- ri_c + geom_polygon(data = ricopai4, aes(fill = count), color = "white") + geom_polygon(color 

= "black", fill = NA) +   

  scale_fill_viridis(breaks = c(5, 50, 500), 

                         trans = "log10", limits=c(1, 500)) + ggtitle("2014") 

 

#ri map amount of charging stations per county per year 2015 

DZsi5 <- DZii %>% filter(Year == 2015) 

DZURIi5 <- merge(zipcounty, DZsi5, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi5 <- aggregate(data.frame(count=DZURIi5$`subregion`), 

list(subregion=DZURIi5$`subregion`), length) 

 

ricopai5 <- left_join(ri_county, DZ.subi5, by = "subregion") 

 

uc5 <- ri_c + geom_polygon(data = ricopai5, aes(fill = count), color = "white") + geom_polygon(color 

= "black", fill = NA) +  

  scale_fill_viridis(breaks = c(5, 50, 500), 

                         trans = "log10", limits=c(1, 500)) + ggtitle("2015") 

 

#ri map amount of charging stations per county per year 2016 

DZsi6 <- DZii %>% filter(Year == 2016) 

DZURIi6 <- merge(zipcounty, DZsi6, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi6 <- aggregate(data.frame(count=DZURIi6$`subregion`), 

list(subregion=DZURIi6$`subregion`), length) 

 

ricopai6 <- left_join(ri_county, DZ.subi6, by = "subregion") 

 

uc6 <- ri_c + geom_polygon(data = ricopai6, aes(fill = count), color = "white") + geom_polygon(color 

= "black", fill = NA) +  

  scale_fill_viridis(breaks = c(5, 50, 500), 

                         trans = "log10", limits=c(1, 500)) + ggtitle("2016") 

 

#ri map amount of charging stations per county per year 2017 

DZsi7 <- DZii %>% filter(Year == 2017) 

DZURIi7 <- merge(zipcounty, DZsi7, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi7 <- aggregate(data.frame(count=DZURIi7$`subregion`), 

list(subregion=DZURIi7$`subregion`), length) 

 

ricopai7 <- left_join(ri_county, DZ.subi7, by = "subregion") 

 

uc7 <- ri_c + geom_polygon(data = ricopai7, aes(fill = count), color = "white") + geom_polygon(color 

= "black", fill = NA) +  

  scale_fill_viridis(breaks = c(5, 50, 500), 
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                         trans = "log10", limits=c(1, 500)) + ggtitle("2017") 

 

#All together 

 

ggarrange(uc3,uc4,uc5,uc6,uc7, ncol= 5, nrow = 1, common.legend = TRUE, legend="right") 

                     

``` 
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## Locations 

 

 

Amount of User from each County devided by population 

 

 

```{r map4new, echo=FALSE} 

 

#numer of User from RI 

 

 

#zipcounty <- read_delim("~/Dropbox/Masterthesis/zipcounty.csv", ";", escape_double = FALSE,locale 

= locale(decimal_mark = ","), trim_ws = TRUE) 

 

 

DZsi <- Clean_Data[c("Year", "User ID", "Driver Postal Code")] %>% filter(!is.na('User ID'))  

 

DZii <- DZsi %>% group_by(`User ID`, Year, `Driver Postal Code`) %>% tally() 

 

DZURIi1 <- merge(zipcounty, DZii, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi1 <- aggregate(data.frame(count=DZURIi1$`subregion`), 

list(subregion=DZURIi1$`subregion`), length) 

 

ricopai11 <- left_join(ri_county, DZ.subi1, by = "subregion") 

 

ri_c + geom_polygon(data = ricopai11, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(5, 50, 500), 

                         trans = "log10", limits=c(1, 600)) + ggtitle("All User from each County") 

 

#ri map amount of charging stations per county per year 2013 

 

DZsi3 <- DZii %>% filter(Year == 2013) 

DZURIi3 <- merge(zipcounty, DZsi3, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi3 <- aggregate(data.frame(count=DZURIi3$`subregion`), 

list(subregion=DZURIi3$`subregion`), length) 

 

pop2013 <- c(49207,164356,82824,630033,126223) 

pop2013 <- as.integer(pop2013)  

pop2014 <- c(49047,164513,82822,632087,126313) 

pop2014 <- as.integer(pop2014)  
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pop2015 <- c(49096,163740,83419,633519,126142) 

pop2015 <- as.integer(pop2015)  

pop2016 <- c(48878,163690,83495,635522,125981) 

pop2016 <- as.integer(pop2016)  

pop2017 <- c(48912,163760,83460,637357,126150) 

pop2017 <- as.integer(pop2017)  

 

DZ.subi3$count = DZ.subi3$count/pop2013 

 

 

ricopai3 <- left_join(ri_county, DZ.subi3, by = "subregion") 

 

uc3 <- ri_c + geom_polygon(data = ricopai3, aes(fill = count), color = "white") + geom_polygon(color 

= "black", fill = NA) +  

  scale_fill_viridis(breaks = c(0,0.0005,0.001), limits=c(0, 0.001)) + ggtitle("2013") 

 

#ri map amount of charging stations per county per year 2014 

DZsi4 <- DZii %>% filter(Year == 2014) 

DZURIi4 <- merge(zipcounty, DZsi4, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi4 <- aggregate(data.frame(count=DZURIi4$`subregion`), 

list(subregion=DZURIi4$`subregion`), length) 

DZ.subi4$count = DZ.subi4$count/pop2014 

ricopai4 <- left_join(ri_county, DZ.subi4, by = "subregion") 

 

uc4 <- ri_c + geom_polygon(data = ricopai4, aes(fill = count), color = "white") + geom_polygon(color 

= "black", fill = NA) +   

  scale_fill_viridis(breaks = c(0,0.0005,0.001), limits=c(0, 0.001)) + ggtitle("2014") 

 

#ri map amount of charging stations per county per year 2015 

DZsi5 <- DZii %>% filter(Year == 2015) 

DZURIi5 <- merge(zipcounty, DZsi5, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi5 <- aggregate(data.frame(count=DZURIi5$`subregion`), 

list(subregion=DZURIi5$`subregion`), length) 

DZ.subi5$count = DZ.subi5$count/pop2015 

ricopai5 <- left_join(ri_county, DZ.subi5, by = "subregion") 

 

uc5 <- ri_c + geom_polygon(data = ricopai5, aes(fill = count), color = "white") + geom_polygon(color 

= "black", fill = NA) +  

  scale_fill_viridis(breaks = c(0,0.0005,0.001), limits=c(0, 0.001)) + ggtitle("2015") 

 

#ri map amount of charging stations per county per year 2016 

DZsi6 <- DZii %>% filter(Year == 2016) 

DZURIi6 <- merge(zipcounty, DZsi6, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi6 <- aggregate(data.frame(count=DZURIi6$`subregion`), 

list(subregion=DZURIi6$`subregion`), length) 

DZ.subi6$count = DZ.subi6$count/pop2016 

ricopai6 <- left_join(ri_county, DZ.subi6, by = "subregion") 
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uc6 <- ri_c + geom_polygon(data = ricopai6, aes(fill = count), color = "white") + geom_polygon(color 

= "black", fill = NA) +  

  scale_fill_viridis(breaks = c(0,0.0005,0.001), limits=c(0, 0.001)) + ggtitle("2016") 

 

#ri map amount of charging stations per county per year 2017 

DZsi7 <- DZii %>% filter(Year == 2017) 

DZURIi7 <- merge(zipcounty, DZsi7, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi7 <- aggregate(data.frame(count=DZURIi7$`subregion`), 

list(subregion=DZURIi7$`subregion`), length) 

DZ.subi7$count = DZ.subi7$count/pop2017 

ricopai7 <- left_join(ri_county, DZ.subi7, by = "subregion") 

 

uc7 <- ri_c + geom_polygon(data = ricopai7, aes(fill = count), color = "white") + geom_polygon(color 

= "black", fill = NA) +  

  scale_fill_viridis(breaks = c(0,0.0005,0.001), limits=c(0, 0.001)) + ggtitle("2017") 

 

#All together 

 

ggarrange(uc3,uc4,uc5,uc6,uc7, ncol= 5, nrow = 1, common.legend = TRUE, legend="right") 

                     

``` 
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## Locations 

 

Median Amount of Charging Events done per User from each County 

Is there more home charging? 

 

 

```{r map5, echo=FALSE} 

DZsi3 <- DZii %>% filter(Year == 2013) 

DZURIi3 <- merge(zipcounty, DZsi3, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi3 <- aggregate(data.frame(count=DZURIi3$`subregion`), 

list(subregion=DZURIi3$`subregion`), length) 

 

ricopai3 <- left_join(ri_county, DZ.subi3, by = "subregion") 

 

#ri map amount of charging stations per county per year 2014 

DZsi4 <- DZii %>% filter(Year == 2014) 

DZURIi4 <- merge(zipcounty, DZsi4, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi4 <- aggregate(data.frame(count=DZURIi4$`subregion`), 

list(subregion=DZURIi4$`subregion`), length) 

 

ricopai4 <- left_join(ri_county, DZ.subi4, by = "subregion") 

 

#ri map amount of charging stations per county per year 2015 

DZsi5 <- DZii %>% filter(Year == 2015) 
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DZURIi5 <- merge(zipcounty, DZsi5, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi5 <- aggregate(data.frame(count=DZURIi5$`subregion`), 

list(subregion=DZURIi5$`subregion`), length) 

 

ricopai5 <- left_join(ri_county, DZ.subi5, by = "subregion") 

 

#ri map amount of charging stations per county per year 2016 

DZsi6 <- DZii %>% filter(Year == 2016) 

DZURIi6 <- merge(zipcounty, DZsi6, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi6 <- aggregate(data.frame(count=DZURIi6$`subregion`), 

list(subregion=DZURIi6$`subregion`), length) 

 

ricopai6 <- left_join(ri_county, DZ.subi6, by = "subregion") 

 

#ri map amount of charging stations per county per year 2017 

DZsi7 <- DZii %>% filter(Year == 2017) 

DZURIi7 <- merge(zipcounty, DZsi7, by.x = "zip", by.y = "Driver Postal Code") %>% 

filter(!is.na(subregion)) 

 

DZ.subi7 <- aggregate(data.frame(count=DZURIi7$`subregion`), 

list(subregion=DZURIi7$`subregion`), length) 

 

ricopai7 <- left_join(ri_county, DZ.subi7, by = "subregion") 

 

##### 

 

#numer of User from RI and their median events per year 

 

DZ.subui <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), count 

= c(DZ.subu[,2]/DZ.subi1[,2])) 

 

ribui <- left_join(ri_county, DZ.subui, by = "subregion") 

 

bui <- ri_c + geom_polygon(data = ribui, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(10,20,30,40,50), limits=c(5, 50)) + ggtitle("Me an Charging Events in RI 

by RI User") 

 

#Mean Charging Events in RI by RI User 2013 

 

DZ.subui3 <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), count 

= c(DZ.subu3[,2]/DZ.subi3[,2])) 

 

ribui3 <- left_join(ri_county, DZ.subui3, by = "subregion") 

 

bui3 <-  ri_c + geom_polygon(data = ribui3, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(10,20,30,40,50), limits=c(5, 50)) + ggtitle("2013") 

 

#Mean Charging Events in RI by RI User 2014 
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DZ.subui4 <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), count 

= c(DZ.subu4[,2]/DZ.subi4[,2])) 

 

ribui4 <- left_join(ri_county, DZ.subui4, by = "subregion") 

 

bui4 <-  ri_c + geom_polygon(data = ribui4, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(10,20,30,40,50), limits=c(5, 50)) + ggtitle("2014") 

 

#Mean Charging Events in RI by RI User 2015 

 

DZ.subui5 <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), count 

= c(DZ.subu5[,2]/DZ.subi5[,2])) 

 

ribui5 <- left_join(ri_county, DZ.subui5, by = "subregion") 

 

bui5 <-  ri_c + geom_polygon(data = ribui5, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(10,20,30,40,50), limits=c(5, 50)) + ggtitle("2015") 

 

#Mean Charging Events in RI by RI User 2016 

 

DZ.subui6 <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), count 

= c(DZ.subu6[,2]/DZ.subi6[,2])) 

 

ribui6 <- left_join(ri_county, DZ.subui6, by = "subregion") 

 

bui6 <-  ri_c + geom_polygon(data = ribui6, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(10,20,30,40,50), limits=c(5, 50)) + ggtitle("2016") 

 

#Mean Charging Events in RI by RI User 2017 

 

DZ.subui7 <- data.frame(subregion = c("bristol", "kent", "newport", "providence","washington"), count 

= c(DZ.subu7[,2]/DZ.subi7[,2])) 

 

ribui7 <- left_join(ri_county, DZ.subui7, by = "subregion") 

 

bui7 <-  ri_c + geom_polygon(data = ribui7, aes(fill = count), color = "white") + geom_polygon(color = 

"black", fill = NA) +  

  scale_fill_viridis(breaks = c(10,20,30,40,50), limits=c(5, 50)) + ggtitle("2017") 

                     

#All together 

bui 

ggarrange(bui3,bui4,bui5,bui6,bui7, ncol= 5, nrow = 1, common.legend = TRUE, legend="right") 

``` 

 

\newpage 

  

## Time Dependence 

 

Barchart about the usage of all stations per year. 
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In the next step clustered in areas/counties which show the growth of charging events over the years in 

certain areas. 

 

```{r Yearly, echo=FALSE} 

 

 

am <- Clean_Data %>% group_by(Date) %>% tally() 

am1 <- am %>% mutate(ym = format(Date, "%Y-%m"))%>%  group_by(ym) %>% filter(!is.na(ym)) 

%>%  tally() 

ay1 <- Clean_Data %>% group_by(Year) %>% tally() %>% filter(!is.na(Year)) 

barplot(ay1$n, main = "Charging events per year", xlab="Years 2013 to 2017") 

ay <- Clean_Data %>% group_by(Year, Area) %>% tally() %>%  filter(!is.na(Area)) 

 

Box.test(ay1[,2], lag=1, type='Ljung-Box') 

Box.test(ay1[,2], lag=1, type='Box-Pierce') 

print("p-values were not significant. independent observations possible") 

 

RIuser <- as.vector(c(59,146,204,295,429)) 

 

Box.test(RIuser, lag=1, type='Ljung-Box') 

Box.test(RIuser, lag=1, type='Box-Pierce') 

print("for User in RI -> independent") 

 

alluser <- as.vector(c(122,317,485,661,974)) 

 

Box.test(alluser, lag=1, type='Ljung-Box') 

Box.test(alluser, lag=1, type='Box-Pierce') 

print("for all User -> independent") 

 

 

ggplot(data = ay, aes(x=Year, y=n))+ geom_col() + facet_wrap(~ Area) + theme_bw() 

ggplot(data = ay, aes(x=Area, y=n))+ geom_col() + facet_wrap(~ Year) + theme_bw() 

 

ay2 <- Clean_Data %>% group_by(Year, County) %>% tally() %>%  filter(!is.na(County)) 

 

ggplot(data = ay2, aes(x=Year, y=n))+ geom_col() + facet_wrap(~ County) + theme_bw() 

ggplot(data = ay2, aes(x=County, y=n))+ geom_col() + facet_wrap(~ Year) + theme_bw() 

 

```  
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## Time Dependence 

 

Barchart about the usage of all stations per weekday. 

In the next step clustered in areas which show the usage of charging stations per weekday in certain 

areas. 

 

```{r wdd2, echo=FALSE} 

ad <- Clean_Data %>% group_by(Day, Area) %>% tally() %>%  filter(!is.na(Area)) 

ad2 <- Clean_Data %>% group_by(Day) %>% tally() %>%  filter(!is.na(Day)) 

ad3 <- Clean_Data %>% group_by(Day, County) %>% tally() %>%  filter(!is.na(County)) 

ad2$Day <- ordered(ad2$Day, levels = c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")) 

ad$Day <- ordered(ad$Day, levels = c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")) 
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ad3$Day <- ordered(ad3$Day, levels = c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")) 

ggplot(data = ad2, aes(x=Day, y=n))+ geom_col() 

ggplot(data = ad, aes(x=Day, y=n))+ geom_col() + facet_wrap(~ Area) + theme_bw() 

ggplot(data = ad3, aes(x=Day, y=n))+ geom_col() + facet_wrap(~ County) + theme_bw() 

 

``` 
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##Time Dependence 

As mentioned before, the charging events over time, are not dependent on time as a sum of years. But 

they are time series as a sum of month or days. 

 

Here are the charging events per month as a line-plot, also divided into Areas and Counties. 

 

```{r am, echo=FALSE} 

am <- Clean_Data %>% group_by(Date) %>% tally() %>% filter(!is.na(Date)) 

am2 <- Clean_Data %>% group_by(Date, Area) %>% tally() %>% filter(!is.na(Area)) 

am3 <- Clean_Data %>% group_by(Date, County) %>% tally() %>% filter(!is.na(County)) 

 

########## for comparison of single stations 

#am17 <- Clean_Data %>% filter(`Station Name`== 'RI OER / STATION#3') %>% filter(Year == 

2017) %>% group_by(Date) %>% tally() %>% filter(!is.na(Date)) 

#stationdata <- am17 %>% mutate(ym = format(Date, "%Y-%m"))%>%  group_by(ym) %>% 

filter(!is.na(ym)) %>%  tally() 

######### 

 

Box.test(am1$nn, lag=12, type='Ljung-Box') 

Box.test(am1$nn, lag=12, type='Box-Pierce') 

print(" -> timeseries") 

 

#same thing monthly 

am1 <- am %>% mutate(ym = format(Date, "%Y-%m"))%>%  group_by(ym) %>% filter(!is.na(ym)) 

%>%  tally() 

                      

am12 <- am2 %>% mutate(ym = format(Date, "%Y-%m")) %>% group_by(ym,Area) %>% tally() 

am13 <- am3 %>% mutate(ym = format(Date, "%Y-%m")) %>% group_by(ym, County) %>% tally() 

 

ggplot(data = am1, aes(x=ym,y= nn, group=1))+ geom_line() + xlab("Month & Year")+ ylab("Number 

of Charging Events") + theme_bw()  + 

  theme(axis.text.x = element_text(angle=90)) 

ggplot(data = am12, aes(x=ym, y=nn, group=1))+ geom_line() + facet_wrap(~ Area) + xlab("Month & 

Year")+ ylab("Number of Charging Events") + theme_bw()+ 

  theme(axis.text.x = element_text(angle=90)) 

ggplot(data = am13, aes(x=ym, y=nn, group=1))+ geom_line() + facet_wrap(~ County) + xlab("Month 

& Year")+ ylab("Number of Charging Events") + theme_bw()+ 

  theme(axis.text.x = element_text(angle=90)) 

``` 
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##Time Dependence 

 

This is now a Forecasting of the charging events per month performed with Arima 
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```{r am12, echo=FALSE} 

 

#forecasting month 

 

am1.v <- as.vector(am1$nn) 

adf.test(am1.v, alternative = "stationary") 

print("fail to reject H0: it is non-stationary") 

am1.d <- diff(am1.v) 

adf.test(am1.d, alternative = "stationary") 

print("reject H0: it is stationary") 

acf(am1.d) 

pacf(am1.d) 

 

auto.arima(am1.v) 

 

acf(am1.v) 

pacf(am1.v) 

fit <- Arima(am1.v, order=c(0,1,0), include.drift = T) 

fit 

tsdiag(fit) 

 

plot(forecast(fit, h=36)) 

 

fcm <- forecast(fit, h = 36) 

fcm2020 <- data.frame(x=fcm$mean) 

tail(fcm$mean) 

tail(fcm$lower) 

tail(fcm$upper) 

#options(od) 

``` 
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##Time Dependence 

 

This is now a Forecasting of the charging events per week performed with Arima 

 

```{r amcw, echo=FALSE} 

 

#forecasting week 

 

cw <- Clean_Data %>% group_by(Year, weeknumber) %>% tally() %>% filter(!is.na(Year)) 

 

Box.test(cw$n, lag=52, type='Ljung-Box') 

Box.test(cw$n, lag=52, type='Box-Pierce') 

print(" -> timeseries") 

 

cw.v <- as.vector(cw$n) 

adf.test(cw.v, alternative = "stationary") 

print("reject H0: it is stationary") 

 

acf(cw.v) 

pacf(cw.v) 
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auto.arima(cw.v) 

 

fit <- Arima(cw.v, order=c(1,1,1), include.drift = T) 

fit 

tsdiag(fit) 

 

plot(forecast(fit, h=156)) 

 

fcw <- forecast(fit, h = 156) 

fcw2020 <- data.frame(x=fcw$mean) 

tail(fcw$mean) 

tail(fcw$lower) 

tail(fcw$upper) 

 

#options(od) 

``` 
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##Time Dependence 

 

Here are the charging events per day as a line-plot, also divided into Areas and Counties. 

 

```{r am13, echo=FALSE} 

 

ggplot(data = am, aes(x=Date, y=n))+ geom_line() + theme_bw() 

qplot(am$Date, am$n, geom='smooth', span =0.5) 

ggplot(data = am2, aes(x=Date, y=n))+ geom_line() + facet_wrap(~ Area) + theme_bw() 

ggplot(data = am3, aes(x=Date, y=n))+ geom_line() + facet_wrap(~ County) + theme_bw() 

 

``` 
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##Time Dependence 

 

This is now a Forecasting of the charging events per day performed with Arima, which is not accurate  

 

```{r am14, echo=FALSE} 

 

auto.arima(am[,2]) 

fit <- arima(am[,2], order=c(3,1,2)) 

 

fit 

tsdiag(fit) 

 

plot(forecast(fit, h=100)) 

 

predict(fit, n.ahead = 6) 

 

print("This model is not accurate") 

 

#predict(fit, n.ahead = 200) 

#options(od) 
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``` 
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##Charging or Parking? 

 

Descriptive Statistics 

 

```{r cop, echo=FALSE} 

cpc <- Clean_Data %>%  filter(!is.na(Area)) %>%  filter(!is.na(`Time no charge`)) %>%   

  filter(!is.na(`Total Duration (hh:mm:ss)`)) %>%  filter(!is.na(`Charging Time (hh:mm:ss)`)) 

 

 

print("Mean total duration pluged in") 

cpc$`Total Duration (hh:mm:ss)` <- difftime(strptime(cpc$`Total Duration 

(hh:mm:ss)`,"%H:%M:%S"), 

                     strptime("00:00:00","%H:%M:%S"), 

                     units="secs") 

cpt.means <- aggregate(cpc$`Total Duration (hh:mm:ss)`,by=list(cpc$Area),mean) 

cpt.means$Time <- format(.POSIXct(cpt.means$x,tz="GMT"), "%H:%M:%S") 

cpt.means 

 

print("SD total duration pluged in") 

cpt.sd <- aggregate(cpc$`Total Duration (hh:mm:ss)`,by=list(cpc$Area),sd) 

cpt.sd$Time <- format(.POSIXct(cpt.sd$x,tz="GMT"), "%H:%M:%S") 

cpt.sd 

 

print("Max total duration pluged in") 

cpt.max <- aggregate(cpc$`Total Duration (hh:mm:ss)`,by=list(cpc$Area),max) 

cpt.max$Time <- format(.POSIXct(cpt.max$x,tz="GMT"), "%H:%M:%S") 

cpt.max 

 

 

print("Mean charge time") 

cpc$`Charging Time (hh:mm:ss)` <- difftime(strptime(cpc$`Charging Time 

(hh:mm:ss)`,"%H:%M:%S"), 

                     strptime("00:00:00","%H:%M:%S"), 

                     units="secs") 

cpct.means <- aggregate(cpc$`Charging Time (hh:mm:ss)`,by=list(cpc$Area),mean) 

cpct.means$Time <- format(.POSIXct(cpct.means$x,tz="GMT"), "%H:%M:%S") 

cpct.means 

 

print("SD charge time") 

cpct.sd <- aggregate(cpc$`Charging Time (hh:mm:ss)`,by=list(cpc$Area),sd) 

cpct.sd$Time <- format(.POSIXct(cpct.sd$x,tz="GMT"), "%H:%M:%S") 

cpct.sd 

 

print("Max charge time") 

cpct.max <- aggregate(cpc$`Charging Time (hh:mm:ss)`,by=list(cpc$Area),max) 

cpct.max$Time <- format(.POSIXct(cpct.max$x,tz="GMT"), "%H:%M:%S") 

cpct.max 

 

print("Mean time parking at the station after being fully charged") 

cpc$`Time no charge` <- difftime(strptime(cpc$`Time no charge`,"%H:%M:%S"), 
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                     strptime("00:00:00","%H:%M:%S"), 

                     units="secs") 

 

 

cpc.means <- aggregate(cpc$`Time no charge`,by=list(cpc$Area),mean) 

cpc.means$Time <- format(.POSIXct(cpc.means$x,tz="GMT"), "%H:%M:%S") 

cpc.means 

 

print("SD time parking at the station after being fully charged") 

cpc.sd <- aggregate(cpc$`Time no charge`,by=list(cpc$Area),sd) 

cpc.sd$Time <- format(.POSIXct(cpc.sd$x,tz="GMT"), "%H:%M:%S") 

cpc.sd 

 

print("Max time parking at the station after being fully charged") 

cpc.max <- aggregate(cpc$`Time no charge`,by=list(cpc$Area),max) 

cpc.max$Time <- format(.POSIXct(cpc.max$x,tz="GMT"), "%H:%M:%S") 

cpc.max 

 

print("Mean amount of charging events") 

aggregate(st$n,by=list(st$Area),mean) 

print("SD amount of charging events") 

aggregate(st$n,by=list(st$Area),sd) 

print("Min amount of charging events") 

aggregate(st$n,by=list(st$Area),min) 

print("Max amount of charging events") 

aggregate(st$n,by=list(st$Area),max) 

 

``` 

 

\newpage 

 

##Charging or Parking? 

 

Percentages of People Charging (gone within 30min after being fully charged) and people how stay 

longer (staying over 30min after being fully charged) 

 

```{r cop2, echo=FALSE} 

 

cop2 <- cpc %>% select(Area,`Time no charge`) 

copc <- cop2 %>% filter(`Time no charge`< 1801) %>% count(Area) 

copp <- cop2 %>% filter(`Time no charge`> 1800) %>% count(Area) 

 

 

copc1 <- data.frame(Area = c(copc[,1]), Charging = c(copc[,2]/(copc[,2]+copp[,2])), Parking = 

c(copp[,2]/(copc[,2]+copp[,2]))) 

print("Percentage Cases Used as a charging spot(n) and parking spot(n.1) in each Area") 

copc1 

 

clustering1_dist <- dist(copc1[,2:3]) 

clustering1 <- hclust(clustering1_dist, method = "complete") 

plot(clustering1) 

 

cpca <- cpc %>% select(`Time no charge`) %>% tally() 

copca <- cpc %>% select(`Time no charge`) %>% filter(`Time no charge`< 1801) %>% tally() 
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coppa <- cpc %>% select(`Time no charge`) %>% filter(`Time no charge`> 1800) %>% tally() 

print("Charging all") 

copca/cpca 

print("Parking all") 

coppa/cpca 

 

cpcap1 <- cpc %>% filter(`Station Name` == 'NATIONAL GRID / TRUTH BOX') %>% select(`Time 

no charge`) %>% tally() 

copcap1 <- cpc %>% filter(`Station Name` == 'NATIONAL GRID / TRUTH BOX') %>% select(`Time 

no charge`) %>% filter(`Time no charge`< 1801) %>% tally() 

coppap1 <- cpc %>% filter(`Station Name` == 'NATIONAL GRID / TRUTH BOX') %>% select(`Time 

no charge`) %>% filter(`Time no charge`> 1800) %>% tally() 

 

print("Charging Truthbox") 

copcap1/cpcap1 

print("Parking Truthbox") 

coppap1/cpcap1 

 

cpcap2 <- cpc %>% filter(`Station Name` == 'NATIONAL GRID / GARDEN CITY#1') %>% 

select(`Time no charge`) %>% tally() 

copcap2 <- cpc %>% filter(`Station Name` == 'NATIONAL GRID / GARDEN CITY#1') %>% 

select(`Time no charge`) %>% filter(`Time no charge`< 1801) %>% tally() 

coppap2 <- cpc %>% filter(`Station Name` == 'NATIONAL GRID / GARDEN CITY#1') %>% 

select(`Time no charge`) %>% filter(`Time no charge`> 1800) %>% tally() 

 

print("Charging Garden City1") 

copcap2/cpcap2 

print("Parking Garden City1") 

coppap2/cpcap2 

 

cpcap3 <- cpc %>% filter(`Station Name` == 'NATIONAL GRID / GARDEN CITY#2') %>% 

select(`Time no charge`) %>% tally() 

copcap3 <- cpc %>% filter(`Station Name` == 'NATIONAL GRID / GARDEN CITY#2') %>% 

select(`Time no charge`) %>% filter(`Time no charge`< 1801) %>% tally() 

coppap3 <- cpc %>% filter(`Station Name` == 'NATIONAL GRID / GARDEN CITY#2') %>% 

select(`Time no charge`) %>% filter(`Time no charge`> 1800) %>% tally() 

 

print("Charging Garden City2") 

copcap3/cpcap3 

print("Parking Garden City2") 

coppap3/cpcap3 

 

```  
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APPENDIX 2: R-Markdown PDF Version 

Data Analysis Master Thesis in R 
Roxana Voss 

June 2018 

Electric Vehicle (EV) Charging Behavior in existing Infrastructures 

This is an R Markdown document to understand the processed statistics of the data. It 

is a trial version, which keeps record of possibly usable statistics for the research. 

Updated Data can easily be read in and the same analysis can be performed 

automatically. 

Descriptive Statistics 
 

Energy used in kWh: Mean, Standard Deviation, Minimum, Maximum and Sum of all 

the charging events 
mean(Clean_Data$`Energy (kWh)`, na.rm=TRUE) 

## [1] 7.125073 

sd(Clean_Data$`Energy (kWh)`, na.rm=TRUE) 

## [1] 7.380458 

min(Clean_Data$`Energy (kWh)`, na.rm=TRUE) 

## [1] -2.022 

max(Clean_Data$`Energy (kWh)`, na.rm=TRUE) 

## [1] 99.843 

sum(Clean_Data$`Energy (kWh)`, na.rm=TRUE) 

## [1] 268045.2 

GHG Savings in kg: Mean, Standard Deviation, Minimum, Maximum and Sum of all 

the charging events 
 
mean(Clean_Data$`GHG Savings (kg)`, na.rm=TRUE) 

## [1] 2.992569 

sd(Clean_Data$`GHG Savings (kg)`, na.rm=TRUE) 

## [1] 3.099754 

min(Clean_Data$`GHG Savings (kg)`, na.rm=TRUE) 

## [1] 0 

max(Clean_Data$`GHG Savings (kg)`, na.rm=TRUE) 

## [1] 41.934 

sum(Clean_Data$`GHG Savings (kg)`, na.rm=TRUE) 
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## [1] 112580.5 

 

Gasoline Savings in Gallons: Mean, Standard Deviation, Minimum, Maximum and 

Sum of all the charging events 

mean(Clean_Data$`Gasoline Savings (gallons)`, na.rm=TRUE,) 

## [1] 0.8941957 

sd(Clean_Data$`Gasoline Savings (gallons)`, na.rm=TRUE) 

## [1] 0.9262491 

min(Clean_Data$`Gasoline Savings (gallons)`, na.rm=TRUE) 

## [1] -0.254 

max(Clean_Data$`Gasoline Savings (gallons)`, na.rm=TRUE) 

## [1] 12.53 

sum(Clean_Data$`Gasoline Savings (gallons)`, na.rm=TRUE) 

## [1] 33639.64 

Total Plugged in Time in sec: Mean, Standard Deviation, Minimum, Maximum and 

Sum of all the charging events If further needed, it can be converted in a common time 

format. 

## [1] "Mean total duration pluged in" 

## Warning in ds1.means$Time <- format(.POSIXct(ds1.means, tz = "GMT"), "%H: 

## %M:%S"): Wandle linke Seite in eine Liste um 

## [[1]] 

## [1] 13286.69 
##  

## $Time 

## [1] "03:41:26" 

## [1] "SD total duration pluged in" 

## Warning in ds1.sd$Time <- format(.POSIXct(ds1.sd, tz = "GMT"), "%H:%M:%S"): 

## Wandle linke Seite in eine Liste um 

## [[1]] 

## [1] 13097.33 

##  
## $Time 

## [1] "03:38:17" 

## [1] "Min total duration pluged in" 

## Warning in ds1.min$Time <- format(.POSIXct(ds1.min, tz = "GMT"), "%H:%M: 

## %S"): Wandle linke Seite in eine Liste um 

## [[1]] 
## [1] 0 

##  

## $Time 

## [1] "00:00:00" 



 

105 

 

## [1] "Max total duration pluged in" 

## Warning in ds1.max$Time <- format(.POSIXct(ds1.max, tz = "GMT"), "%H:%M: 

## %S"): Wandle linke Seite in eine Liste um 

## [[1]] 

## [1] 86335 

##  
## $Time 

## [1] "23:58:55" 

## [1] "Sum total duration pluged in" 

## Time difference of 489813848 secs 

 

Total Charging Time in sec: Mean, Standard Deviation, Minimum, Maximum and 

Sum of all the charging events If further needed, it can be converted in a common time 

format. 

## [1] "Mean charging time" 

## Warning in ds1.means$Time <- format(.POSIXct(ds1.means, tz = "GMT"), "%H: 

## %M:%S"): Wandle linke Seite in eine Liste um 

## [[1]] 
## [1] 6840.08 

##  

## $Time 

## [1] "01:54:00" 

## [1] "SD charging time" 

## Warning in ds1.sd$Time <- format(.POSIXct(ds1.sd, tz = "GMT"), "%H:%M:%S"): 

## Wandle linke Seite in eine Liste um 

## [[1]] 
## [1] 5367.777 

##  

## $Time 

## [1] "01:29:27" 

## [1] "Min charging time" 

## Warning in ds1.min$Time <- format(.POSIXct(ds1.min, tz = "GMT"), "%H:%M: 

## %S"): Wandle linke Seite in eine Liste um 

## [[1]] 

## [1] 0 
##  

## $Time 

## [1] "00:00:00" 

## [1] "Max charging time" 

## Warning in ds1.max$Time <- format(.POSIXct(ds1.max, tz = "GMT"), "%H:%M: 

## %S"): Wandle linke Seite in eine Liste um 

## [[1]] 

## [1] 53462 

##  
## $Time 

## [1] "14:51:02" 
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## Time difference of 252159542 secs 

  

Time the EV is plugged in after it has been fully charged in sec: Mean, Standard 

Deviation, Minimum, Maximum and Sum of all the charging events If further needed, 

it can be converted in a common time format. 

## [1] "Mean time plugged in after being fully charged" 

## Warning in ds1.means$Time <- format(.POSIXct(ds1.means, tz = "GMT"), "%H: 

## %M:%S"): Wandle linke Seite in eine Liste um 

## [[1]] 

## [1] 6446.611 

##  
## $Time 

## [1] "01:47:26" 

## [1] "SD plugged in after being fully charged" 

## Warning in ds1.sd$Time <- format(.POSIXct(ds1.sd, tz = "GMT"), "%H:%M:%S"): 

## Wandle linke Seite in eine Liste um 

## [[1]] 
## [1] 10857.59 

##  

## $Time 

## [1] "03:00:57" 

## [1] "Min plugged in after being fully charged" 

## Warning in ds1.min$Time <- format(.POSIXct(ds1.min, tz = "GMT"), "%H:%M: 

## %S"): Wandle linke Seite in eine Liste um 

## [[1]] 
## [1] 0 

##  

## $Time 

## [1] "00:00:00" 

## [1] "Max plugged in after being fully charged" 

## Warning in ds1.max$Time <- format(.POSIXct(ds1.max, tz = "GMT"), "%H:%M: 

## %S"): Wandle linke Seite in eine Liste um 

## [[1]] 

## [1] 83507 
##  

## $Time 

## [1] "23:11:47" 

## Time difference of 237654306 secs 
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Descriptive Statistics 

Two Versions of bar charts about the usage of single Stations. In the next step 

clustered in areas which show the range of the usage of the single stations in this 

region. 
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Descriptive Statistics 

Are 80 percent of the charges done at 20 percent of the stations? No, at the 20% most 

popular stations are done 47 % of the charges. Same with total Ddration: No, at the 

20% most popular stations are done 54 % of the total duration Same with charging 

time: No, at the 20% most popular stations are done 53 % of the charing time 

 
## [1] "Amount of Charges" 

## [1] 0.5196704 

## [1] 0.4803296 

## [1] "Total Duration" 

## [1] 0.4371989 

## [1] 0.5628011 

## [1] "Charge Time" 

## [1] 0.4482668 

## [1] 0.5517332 
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Descriptive Charts 
Map of User Distribution 

You can see 3 versions of a map of the United States which show the distribution of 

charging station users using RI charging stations. 
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Descriptive Charts 
Map of User Distribution 

Map of RI with User Origin and amounts of charges 

 

Descriptive Charts 

Map of User Distribution 

Map of RI with Chargig Stations and amounts of charges 
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Locations 

Pie Chart about Areas and the Amount of Charging Stations in the zone. 

 

Pie Chart about Areas and the Amount of Charging Events. 
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Pie Chart about Counties and the Amount of Charging Stations in the zone. 

  

Pie Chart about Areas and the Amount of Charging Events. 
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Locations 

Boxplots about the Usage in the different Areas and Counties 
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Locations 

Kruskal-Wallis Test 

##  

##  Asymptotic Kruskal-Wallis Test 

##  
## data:  n by 

##   Area (Commercial, Downtown, Industrial, Institutional, Intermodal, Open Space, Residential) 

## chi-squared = 8.2494, df = 6, p-value = 0.2204 

## [1] "Functional areas are not significantly different" 

##  

##  Asymptotic Kruskal-Wallis Test 

##  
## data:  n by 

##   County (Bristol County, Kent County, Newport County, Providence County, Washington County) 

## chi-squared = 6.6665, df = 4, p-value = 0.1546 

## [1] "Geographical areas are not significantly different" 

 

 

Locations 

RI map with the diffrent stations in colors of the Area and size per Amount of usage 
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Locations 

Amount of Charging Events in each County
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Locations 

Amount of Charging Events done by User from each County 
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Locations 

Amount of User from each County 
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Locations 

Amount of User from each County devided by population
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Locations 

Median Amount of Charging Events done per User from each County Is there more 

home charging? 
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Time Dependence 

Barchart about the usage of all stations per year. In the next step clustered in 

areas/counties which show the growth of charging events over the years in certain 

areas. 

 

##  
##  Box-Ljung test 

##  

## data:  ay1[, 2] 

## X-squared = 0.93609, df = 1, p-value = 0.3333 

##  

##  Box-Pierce test 

##  
## data:  ay1[, 2] 

## X-squared = 0.53491, df = 1, p-value = 0.4646 

## [1] "p-values were not significant. independent observations possible" 

##  

##  Box-Ljung test 
##  

## data:  RIuser 

## X-squared = 1.0245, df = 1, p-value = 0.3114 

##  
##  Box-Pierce test 

##  
## data:  RIuser 

## X-squared = 0.58545, df = 1, p-value = 0.4442 

## [1] "for User in RI -> independent" 

##  

##  Box-Ljung test 
##  

## data:  alluser 

## X-squared = 1.027, df = 1, p-value = 0.3109 

##  
##  Box-Pierce test 

##  

## data:  alluser 

## X-squared = 0.58685, df = 1, p-value = 0.4436 
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## [1] "for all User -> independent" 
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Time Dependence 

Barchart about the usage of all stations per weekday. In the next step clustered in areas 

which show the usage of charging stations per weekday in certain areas.
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Time Dependence 

As mentioned before, the charging events over time, are not dependent on time as a 

sum of years. But they are time series as a sum of month or days. 

Here are the charging events per month as a line-plot, also divided into Areas and 

Counties. 
##  

##  Box-Ljung test 

##  
## data:  am1$nn 

## X-squared = 180.26, df = 12, p-value < 2.2e-16 

##  
##  Box-Pierce test 

##  

## data:  am1$nn 

## X-squared = 160.97, df = 12, p-value < 2.2e-16 

## [1] " -> timeseries"
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Time Dependence 

This is now a Forecasting of the charging events per month performed with Arima 

##  

##  Augmented Dickey-Fuller Test 

##  
## data:  am1.v 

## Dickey-Fuller = -3.2427, Lag order = 3, p-value = 0.08977 

## alternative hypothesis: stationary 

## [1] "fail to reject H0: it is non-stationary" 

## Warning in adf.test(am1.d, alternative = "stationary"): p-value smaller 

## than printed p-value 

##  

##  Augmented Dickey-Fuller Test 
##  

## data:  am1.d 

## Dickey-Fuller = -4.7462, Lag order = 3, p-value = 0.01 

## alternative hypothesis: stationary 

## [1] "reject H0: it is stationary" 
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## Series: am1.v  
## ARIMA(0,1,0)  

##  

## sigma^2 estimated as 12752:  log likelihood=-331.87 

## AIC=665.73   AICc=665.81   BIC=667.72 
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## Series: am1.v  

## ARIMA(0,1,0) with drift  

##  

## Coefficients: 

##         drift 
##       17.3889 

## s.e.  15.1837 

##  
## sigma^2 estimated as 12684:  log likelihood=-331.22 
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## AIC=666.43   AICc=666.67   BIC=670.41

 

 

## Time Series: 
## Start = 86  
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## End = 91  
## Frequency = 1  

## [1] 1505.056 1522.444 1539.833 1557.222 1574.611 1592.000 

## Time Series: 

## Start = 86  
## End = 91  

## Frequency = 1  

##         80%      95% 
## 86 701.4360 276.0255 

## 87 705.9662 273.7487 

## 88 710.6957 271.7768 
## 89 715.6157 270.0961 

## 90 720.7177 268.6938 

## 91 725.9940 267.5581 

## Time Series: 
## Start = 86  

## End = 91  

## Frequency = 1  
##         80%      95% 

## 86 2308.675 2734.086 

## 87 2338.923 2771.140 
## 88 2368.971 2807.890 

## 89 2398.829 2844.348 

## 90 2428.505 2880.528 

## 91 2458.006 2916.442 
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Time Dependence 

This is now a Forecasting of the charging events per week performed with Arima 

##  

##  Box-Ljung test 

##  
## data:  cw$n 

## X-squared = 2945.8, df = 52, p-value < 2.2e-16 

##  

##  Box-Pierce test 
##  

## data:  cw$n 

## X-squared = 2731.3, df = 52, p-value < 2.2e-16 

## [1] " -> timeseries" 

##  

##  Augmented Dickey-Fuller Test 

##  
## data:  cw.v 

## Dickey-Fuller = -3.5698, Lag order = 6, p-value = 0.03678 

## alternative hypothesis: stationary 

## [1] "reject H0: it is stationary" 
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## Series: cw.v  

## ARIMA(1,1,1) with drift  

##  
## Coefficients: 

##          ar1      ma1   drift 

##       0.3615  -0.8119  1.1343 
## s.e.  0.1233   0.0830  0.5269 

##  

## sigma^2 estimated as 748.8:  log likelihood=-1128.78 

## AIC=2265.56   AICc=2265.73   BIC=2279.46 

## Series: cw.v  

## ARIMA(1,1,1) with drift  

##  

## Coefficients: 

##          ar1      ma1   drift 

##       0.3615  -0.8119  1.1343 
## s.e.  0.1233   0.0830  0.5269 

##  

## sigma^2 estimated as 748.8:  log likelihood=-1128.78 

## AIC=2265.56   AICc=2265.73   BIC=2279.46 
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## Time Series: 

## Start = 391  

## End = 396  
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## Frequency = 1  

## [1] 456.2466 457.3810 458.5153 459.6497 460.7840 461.9184 

## Time Series: 

## Start = 391  

## End = 396  
## Frequency = 1  

##          80%      95% 

## 391 323.4858 253.2065 
## 392 324.2187 253.7268 

## 393 324.9528 254.2490 

## 394 325.6880 254.7730 
## 395 326.4245 255.2988 

## 396 327.1621 255.8264 

## Time Series: 

## Start = 391  
## End = 396  

## Frequency = 1  

##          80%      95% 
## 391 589.0075 659.2868 

## 392 590.5433 661.0352 

## 393 592.0779 662.7817 
## 394 593.6113 664.5264 

## 395 595.1436 666.2692 

## 396 596.6746 668.0103 

 

Time Dependence 

Here are the charging events per day as a line-plot, also divided into Areas and 

Counties. 
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Time Dependence 

This is now a Forecasting of the charging events per day performed with Arima, which 

is not accurate 

## Series: am[, 2]  

## ARIMA(3,1,2)  
##  

## Coefficients: 

##          ar1      ar2      ar3      ma1     ma2 
##       0.7265  -0.3059  -0.2133  -1.3695  0.4951 

## s.e.  0.0428   0.0335   0.0299   0.0373  0.0396 

##  

## sigma^2 estimated as 50.73:  log likelihood=-5538.46 

## AIC=11088.91   AICc=11088.96   BIC=11121.32 

##  

## Call: 
## arima(x = am[, 2], order = c(3, 1, 2)) 

##  

## Coefficients: 
##          ar1      ar2      ar3      ma1     ma2 

##       0.7265  -0.3059  -0.2133  -1.3695  0.4951 

## s.e.  0.0428   0.0335   0.0299   0.0373  0.0396 
##  

## sigma^2 estimated as 50.57:  log likelihood = -5538.46,  aic = 11088.91 
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## $pred 

## Time Series: 

## Start = 1640  
## End = 1645  



 

141 

 

## Frequency = 1  
## [1] 45.58813 46.78493 48.50447 48.19590 47.19050 46.18768 

##  

## $se 
## Time Series: 

## Start = 1640  

## End = 1645  
## Frequency = 1  

## [1] 7.111325 7.551076 7.572057 7.636565 7.655625 7.686140 

## [1] "This model is not accurate" 

 

Charging or Parking? 

Descriptive Statistics 

## [1] "Mean total duration pluged in" 

##         Group.1          x     Time 

## 1    Commercial  8797.441  02:26:37 
## 2      Downtown 22139.487  06:08:59 

## 3    Industrial 12423.702  03:27:03 

## 4 Institutional 15124.251  04:12:04 
## 5    Intermodal 16005.934  04:26:45 

## 6    Open Space  7505.444  02:05:05 

## 7   Residential 16080.815  04:28:00 

## [1] "SD total duration pluged in" 

##         Group.1        x     Time 
## 1    Commercial 10592.29 02:56:32 

## 2      Downtown 16140.41 04:29:00 

## 3    Industrial 11690.48 03:14:50 
## 4 Institutional 11140.38 03:05:40 

## 5    Intermodal 16315.36 04:31:55 

## 6    Open Space 10365.91 02:52:45 

## 7   Residential 13836.78 03:50:36 

## [1] "Max total duration pluged in" 

##         Group.1      x     Time 

## 1    Commercial 86008  23:53:28 

## 2      Downtown 86099  23:54:59 

## 3    Industrial 86335  23:58:55 

## 4 Institutional 72644  20:10:44 

## 5    Intermodal 83034  23:03:54 
## 6    Open Space 72201  20:03:21 

## 7   Residential 85902  23:51:42 

## [1] "Mean charge time" 

##         Group.1         x     Time 

## 1    Commercial 5875.599  01:37:55 
## 2      Downtown 8130.098  02:15:30 

## 3    Industrial 7567.202  02:06:07 

## 4 Institutional 7092.694  01:58:12 
## 5    Intermodal 6845.455  01:54:05 

## 6    Open Space 5322.342  01:28:42 

## 7   Residential 6921.705  01:55:21 

## [1] "SD charge time" 

##         Group.1        x     Time 
## 1    Commercial 5083.195 01:24:43 
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## 2      Downtown 6217.221 01:43:37 
## 3    Industrial 5311.221 01:28:31 

## 4 Institutional 4422.938 01:13:42 

## 5    Intermodal 6404.512 01:46:44 
## 6    Open Space 5941.148 01:39:01 

## 7   Residential 5459.783 01:30:59 

## [1] "Max charge time" 

##         Group.1      x     Time 

## 1    Commercial 53462  14:51:02 
## 2      Downtown 52587  14:36:27 

## 3    Industrial 51555  14:19:15 

## 4 Institutional 42010  11:40:10 
## 5    Intermodal 50186  13:56:26 

## 6    Open Space 49154  13:39:14 

## 7   Residential 44845  12:27:25 

## [1] "Mean time parking at the station after being fully charged" 

##         Group.1          x     Time 
## 1    Commercial  2921.842  00:48:41 

## 2      Downtown 14009.389  03:53:29 

## 3    Industrial  4856.500  01:20:56 
## 4 Institutional  8031.558  02:13:51 

## 5    Intermodal  9160.480  02:32:40 

## 6    Open Space  2183.102  00:36:23 

## 7   Residential  9159.110  02:32:39 

## [1] "SD time parking at the station after being fully charged" 

##         Group.1         x     Time 

## 1    Commercial  7925.105 02:12:05 
## 2      Downtown 14939.023 04:08:59 

## 3    Industrial  8888.614 02:28:08 

## 4 Institutional  9779.795 02:42:59 
## 5    Intermodal 12558.373 03:29:18 

## 6    Open Space  6619.294 01:50:19 

## 7   Residential 11742.517 03:15:42 

## [1] "Max time parking at the station after being fully charged" 

##         Group.1      x     Time 
## 1    Commercial 78622  21:50:22 

## 2      Downtown 83507  23:11:47 

## 3    Industrial 69494  19:18:14 

## 4 Institutional 66244  18:24:04 

## 5    Intermodal 72526  20:08:46 

## 6    Open Space 57779  16:02:59 

## 7   Residential 78917  21:55:17 

## [1] "Mean amount of charging events" 

##         Group.1        x 

## 1    Commercial 235.8824 

## 2      Downtown 204.0000 
## 3    Industrial 511.6667 

## 4 Institutional 233.8571 

## 5    Intermodal 202.5000 
## 6    Open Space  82.6000 

## 7   Residential 210.0000 

## [1] "SD amount of charging events" 

##         Group.1         x 

## 1    Commercial 197.77035 
## 2      Downtown 142.17946 
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## 3    Industrial 420.45674 
## 4 Institutional 175.79669 

## 5    Intermodal 166.17009 

## 6    Open Space  46.83802 

## 7   Residential 135.93822 

## [1] "Min amount of charging events" 

##         Group.1  x 

## 1    Commercial 35 

## 2      Downtown 77 
## 3    Industrial 92 

## 4 Institutional 82 

## 5    Intermodal 85 
## 6    Open Space 24 

## 7   Residential 41 

## [1] "Max amount of charging events" 

##         Group.1    x 

## 1    Commercial  747 
## 2      Downtown  443 

## 3    Industrial 1135 

## 4 Institutional  595 
## 5    Intermodal  320 

## 6    Open Space  141 

## 7   Residential  387 

 

Charging or Parking? 

Percentages of People Charging (gone within 30min after being fully charged) and 

people how stay longer (staying over 30min after being fully charged) 

## [1] "Percentage Cases Used as a charging spot(n) and parking spot(n.1) in each Area" 

##            Area         n       n.1 

## 1    Commercial 0.7645576 0.2354424 
## 2      Downtown 0.2930103 0.7069897 

## 3    Industrial 0.5820467 0.4179533 

## 4 Institutional 0.4170074 0.5829926 
## 5    Intermodal 0.5401070 0.4598930 

## 6    Open Space 0.8139918 0.1860082 

## 7   Residential 0.4848569 0.5151431 
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## [1] "Charging all" 

##           n 

## 1 0.5729554 

## [1] "Parking all" 

##           n 

## 1 0.4270446 

## [1] "Charging Truthbox" 

##           n 

## 1 0.5824176 

## [1] "Parking Truthbox" 

##           n 

## 1 0.4175824 

## [1] "Charging Garden City1" 

##           n 

## 1 0.7041199 

## [1] "Parking Garden City1" 

##           n 

## 1 0.2958801 

## [1] "Charging Garden City2" 

##           n 

## 1 0.7133878 

## [1] "Parking Garden City2" 

##           n 

## 1 0.2866122 
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