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ABSTRACT

Parkinson’s disease (PD) is a neurodegenerative disorder. Researchers are in-

vestigating ways to identify neural and behavioral markers for PD that can lead

to earlier diagnosis and more effective treatments. The goal of this research is to

quantify the effects of motor tasks on corticokinematic coherence(CKC) in PD. We

can consider this research as a proof of concept study. This research can eventu-

ally help us quantify the motor symptoms related to PD using the measurement

process called CKC. Brain muscle synchrony can be quantified as corticomuscular

coherence (CMC) and corticokinematic coherence (CKC). Surgical and Pharmaco-

logical treatments have not been shown to have consistent, positive effects on PD,

although improvements in limb function have been reported. In this research, we

studied neural responses during motor tasks using electroencephalography (EEG).

Specifically, a finger tapping test which is widely used in motor screening exam such

as Unified Parkinson’s Disease Rating Scale - UPDRS was used at two different fre-

quencies, with and without metronome support in maintaining the correct pacing

frequency which has been found to influence perceptual processing by entraining

endogenous neural oscillations. This allows for investigation of CKC variation

between movement frequencies of 1 Hz and 2 Hz in participants. We had 10 neu-

rotypical individuals and 4 People with PD (PwPD), of which we analyzed results

from 8 neurotypical individuals and 3 PwPD. Both groups showed prominent CKC

at the frequency of finger tapping in the contralateral sensorimotor cortex. We also

explored mu rhythm suppression as a result of finger tapping using wavelet-based

time-frequency analysis. The use of a Smart Glove with Flex sensors which is

explicitly designed to measure subtle irregularities in finger kinematics was an ad-

ditional novel approach towards measuring CKC in people with Parkinson’s which

allows comparisons of neural activity at the finger tapping frequencies and thereby



can be helpful in quantifying the motor-related symptoms associated with Parkin-

son. This is a first of its kind of study that investigates synchrony between neural

oscillations and finger kinematics recorded by Smart Glove Flex sensors paced by

auditory cue.
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CHAPTER 1

Introduction

More than 10 million people worldwide are living with PD [1]. To date, there

is no cure for Parkinson’s. PD is characterized by slowness of movement, increased

tone/stiffness (rigidity), tremor, and the loss of postural reflexes. The sequence of

beta desynchronization and resynchronization is impaired in PwPD. In addition,

cortical oscillations are coherent with muscle contraction and muscle movement [2].

This coupling between brain activity and limb kinematics is called Corticokine-

matic coherence (CKC). CKC in involuntary limb movement originates mainly

from the primary sensorimotor (SM1) cortex. That is, hand velocity and accelera-

tion are coupled with Magnetoencephalographic/Electroencephalographic signals

recorded from the contralateral primary sensorimotor (SM1) cortex. Changes in

corticomuscular coherence have been documented for people with Parkinsons. This

thesis, therefore, aims to explore the use of cortickokinematic coherence in motor

exercises for PwPD. The aims of this research is to investigate the Corticokine-

matic coherence between hand kinematics and EEG for People with Parkinsons

with the Smart Glove [3] designed explicitly for Parkinson disease. The glove can

quantify movements of the fingers by recording the activities of the finger using

the flex sensors attached to the glove. The questions examined in this research are

:

• Is there any clinically significant difference in brain activity during motor

tasks like finger flexion and extension in healthy controls, or in people with

PD?

• Is the combination of the Smart Glove with flex sensors and neuroimaging,
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such as the EEG, effective in measuring motor activity during finger tapping

in PwPD and healthy controls?

• Can the combination of EEG and Smart Glove data analysis serve as a useful

quantification method for motor tasks in PwPD and healthy controls?

We used finger tapping tasks [4], [5] which is one of the widely used motor screening

exams. The discipline of neurology has standardized finger tapping test in the

clinical practice to make decisions for diagnosis and treatments. Moreover visible

changes in performance on this task in people with Parkinson’s are comparatively

well understood. Bradykinesia, or slowness of movement, is an important symptom

of PD which causes reduced speed, reduced amplitude, and the presence of pauses

in the finger tapping task. People with Parkinsons have slower and less rhythmic

finger tapping movements than healthy people [6]. This is the motivation behind

CKC studies with finger tapping, which might help us discover new behavioral

and neural markers for Parkinson’s disease. The Smart Glove played an important

role in this research work. In Abtahi et al. [7] researchers designed a MagicSox

to quantify the gait abnormalities in remote settings. We tried to leverage the

Smart-Glove and EEG to quantify finger tapping motor tasks which is widely used

in motor screening exams for Parkinson disease. The contribution of this thesis

mainly focuses on the simultaneous use of neuro-imaging and Smart Glove [8]

sensors. For neuroimaging technique we have used EEG. The ultimate goal is to

design a unified metric for quantification of motor related symptoms in Parkinson

disease. Based on the previous research, we have focused on Corticokinematic

coherence (CKC) as a measurement of synchrony and results that we have found

makes it a useful proof of concept study.

This thesis is divided into six sections. After the introduction 1, section 2

discusses Parkinson disease, EEG, the Smart Glove, Corticomuscular coherence,
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and Sensorimotor synchronization. The methodology section 3 discusses the par-

ticipants, tasks, and stimuli used. Section 4 discusses the findings. Section 5 is

the conclusion, and it provides insights into future work. We have also included

an appendix section in this thesis at the end.

List of References

[1] “Parkinson.org,” http://parkinson.org/.

[2] B. Conway, D. Halliday, S. Farmer, U. Shahani, P. Maas, A. Weir, and J. Rosen-
berg, “Synchronization between motor cortex and spinal motoneuronal pool
during the performance of a maintained motor task in man.” The Journal of
physiology, vol. 489, no. 3, pp. 917–924, 1995.

[3] M. Abtahi, N. P. Constant, J. V. Gyllinsky, B. Paesang, S. E.
D’Andrea, U. Akbar, and K. Mankodiya, “Wearup: Wearable e-textiles for
telemedicine intervention of movement disorders,” in Wearable Technology
in Medicine and Health Care. Elsevier, 2018, [Expected publish date:
Aug. 10, 2018]. [Online]. Available: https://www.elsevier.com/books/
wearable-technology-in-medicine-and-health-care/tong/978-0-12-811810-8

[4] I. Shimoyama, T. Ninchoji, and K. Uemura, “The finger-tapping test: a quan-
titative analysis,” Archives of neurology, vol. 47, no. 6, pp. 681–684, 1990.

[5] A. L. Taylor Tavares, G. S. Jefferis, M. Koop, B. C. Hill, T. Hastie, G. Heit,
and H. M. Bronte-Stewart, “Quantitative measurements of alternating finger
tapping in parkinson’s disease correlate with updrs motor disability and re-
veal the improvement in fine motor control from medication and deep brain
stimulation,” Movement disorders: official journal of the Movement Disorder
Society, vol. 20, no. 10, pp. 1286–1298, 2005.

[6] J. Cosgrove, S. Lacy, S. Jamieson, S. Smith, and J. Alty, “Finger
tapping and cognition in parkinson’s,” Journal of Neurology, Neurosurgery
& Psychiatry, vol. 86, no. 11, pp. e4–e4, 2015. [Online]. Available:
https://jnnp.bmj.com/content/86/11/e4.83

[7] M. Abtahi, J. V. Gyllinsky, B. Paesang, S. Barlow, M. Constant, N. Gomes,
O. Tully, S. E. D’Andrea, and K. Mankodiya, “Magicsox: An e-textile iot
system to quantify gait abnormalities,” Smart Health, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352648317300296

[8] N. Constant, D. Borthakur, M. Abtahi, H. Dubey, and K. Mankodiya, “Fog-
assisted wiot: A smart fog gateway for end-to-end analytics in wearable internet
of things,” arXiv preprint arXiv:1701.08680, 2017.

https://www.elsevier.com/books/wearable-technology-in-medicine-and-health-care/tong/978-0-12-811810-8
https://www.elsevier.com/books/wearable-technology-in-medicine-and-health-care/tong/978-0-12-811810-8
https://jnnp.bmj.com/content/86/11/e4.83
http://www.sciencedirect.com/science/article/pii/S2352648317300296


4

CHAPTER 2

Background

2.1 Parkinson’s disease

Parkinson’s disease (PD) is a progressive neurodegenerative disorder and sec-

ond most common neurodegenerative disease in western populations. Shaking,

rigidity, slowness of movement, and difficulty walking are some early symptoms

of PD. Sometimes behavioral problems may also occur. Depression, anxiety, and

dementia are also common as the disease progresses [1]. Other possible symptoms

include sensory, sleep, and emotional problems. The main motor symptoms are col-

lectively called ’parkinsonism’, or a ’parkinsonian syndrome’ although one-quarter

of subjects treated for Parkinson’s disease did not show any clinical evidence of

parkinsonism according to Meara et al. [2]. The cause of Parkinson’s disease is

still unknown, but both genetic and environmental factors play a role [3]. The

death of dopaminergic neurons in the substantia nigra, a region in the midbrain,

limits the dopamine available in the area, leading to motor symptoms.While this

cell death, however, is not well understood, lewy bodies [4] can be found in the

neurons. Neuroimaging is broadly used in PD diagnosis, like CT, PET scans etc

[5]. The clinical features include tremor, bradykinesia, and rigidity. Patients with

more advanced PD exhibit a characteristic gait with stooped posture and small

shuffling steps. Several types of tremors are associated with PD.

• Resting tremors occur when muscles are relaxed.

• Action tremors occur with voluntary muscle movement which might overlap

with kinetic tremors that occur with voluntary movement, such as finger

tapping.

• Postural tremors occur when a person maintains a position against gravity.
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Figure 1. People with Parkinson disease with different symptoms.The image is
adapted from http://www.tpgonlinedaily.com/.

People with Parkinson also exhibit reduced facial expressions [6]. Figure 2

portrays a simplified model of basal ganglia. In PD, the firing of neurons in the

basal ganglia, with changes in firing rates, abnormal burst patterns are seen. These

abnormalities usually take place together, as mentioned in [7].

Studies investigating changes in firing rates in the basal ganglia of monkeys

in response to 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment

showed increased activity in the subthalamic nucleus (STN) and Internal globus

pallidus (GPi), as well as reduced activity in External globus pallidus (GPe) [8].
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Figure 2. The basal ganglia-thalamocortical motor circuit: black arrows indicate
inhibitory connections; gray arrows indicate excitatory connections. The thickness
of the arrows corresponds to their presumed activity. Note Parkinsonism-related
changes in overall activity (rate model) in the circuit. Adapted from [7]
.

Exaggerated oscillatory synchronization in the β frequency band has been asso-

ciated with bradykinesia in patients with PD. High-frequency stimulation (HFS)

of the STN has been shown to suppress local β activity. β power is diminished

during STN High frequency stimulation (HFS) and recurs shortly after the end

of High frequency stimulation [9]. Brown et al.[10] showed power spectra of local

field activity recorded from the contacts of a DBS electrode in the subthalamic-

nucleus of a patient with PD on and off their anti- parkinsonian medication. They

observed that during the off medication period, the Local field potentials (LFP)

is dominated by β band oscillations with a frequency around 20 Hz. Post treat-

ment with levodopa, the β band suppression and a new oscillation peaking at 75

Hz has been seen in the gamma-band. There are some studies on corticomuscular

coherence and Parkinson Disease. Caviness et al. [11] measured Corticomus-
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cular electroencephalographic-electromyographic (EEG-EMG) coherence elicited

by speech and non-speech oromotor tasks in healthy participants and those with

Parkinson’s Disease (PD). They found that corticomuscular coherence existed for

both groups and for all tasks, but to varying degrees in primary sensorimotor cor-

tex and SMA. In [12] authors asserted that Parkinsonian and essential tremors

and also Parkinsonian tremor imitated by healthy subjects induce CMC at the

tremor frequency and its first harmonic and similar phenomenon is observed in

CKC induced by voluntary movements [13].

2.2 EEG

Electroencephalography (EEG) is an electrophysiological monitoring method

that records the electrical activity of the brain. It is noninvasive, with the elec-

trodes placed over the scalp. EEG measures voltage fluctuations resulting from

ionic current within neurons. Neural oscillations or Brainwaves and stimulus-driven

time-locked activity both are studied in EEG. It is recorded from multiple scalp

electrodes. Event-related potentials and the spectral content of EEG are mostly

used for diagnostic purposes. One application of EEG is in epilepsy. It is also used

to diagnose sleep disorders, depth of anesthesia, comas, encephalopathies, brain

death, tumors, stroke, and other focal brain disorders [14]. EEG has lower spatial

resolution than CT, PET, or MRI but provides a millisecond-range temporal reso-

lution which is not possible in other technologies. In Fig 3 120 Hz EEG waveforms

are subdivided into bandwidths known as alpha, beta, theta, and delta to signify

the majority of the EEG used in clinical practice.

• Delta: Delta waves have frequency 3 Hz and below. They are both the

slowest and highest amplitude brain waves. These are typically the dominant

frequency in infants up to one year of age, and for people in sleep stages 3

and 4. Subcortical lesions may also cause focal delta waves.
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Figure 3. EEG frequency band plot adapted from [15]
.

• Theta: Theta waves of 4-7Hz are considered “slow” waves. They normally

appear in sleep, or in waking children up to 13 years of age, but are considered

abnormal in waking adults. Subcortical lesions can cause focal theta waves,

while diffuse disorders such as metabolic encephalopathy or some instances

of hydrocephalus. can cause more widespread theta in waking adults [16].

• Alpha: Alpha waves have frequencies between 8 and 13 Hz. They are usually

best seen in both posterior regions. It is the major rhythm seen in normal

relaxed adults. It is present during most of life, especially after the thirteenth

year [16].

• Beta: Beta activity is a ”fast” activity. 14 Hz and faster waves are considered

Beta waves. It is accentuated by sedative-hypnotic drugs. Generally regarded

as a normal rhythm, it is dominant in people who are alert, have open eyes,

or are anxious. [16].
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• Gamma: Gamma oscillations are 25 to 100 Hz and are associated with subjec-

tive awareness. Human gamma oscillations were maximally coherent during

slow-wave sleep.

EEG is best suited for analysis that demands temporal precision. This re-

search work uses EEG signals to investigate the synchrony between the Brain

Oscillations arising from the firing of neurons and finger kinematics.

2.3 Smart Glove

The Smart Glove was designed in the Wearable Biosensing Lab at URI. The

Smart Glove we are using is similar to the one shown in the picture adapted

from [17]. It is a wearable wireless device transmitting the data recorded by the

micro-controller Arduino 101 to a smartphone or computer via Bluetooth. Spectra

Symbol flex sensors are integrated into the Smart Glove. Flex sensors are analog

resistors which act as variable analog voltage dividers. The voltage across the

flex sensors changes when they are bent, and thus angular displacement can be

measured. The experiment of finger tapping is a common practice in the diagnostic

treatment procedures for Parkinsons disease. Smart Glove data can reveal how

much and how quickly participants bend their fingers to do the finger tapping task

in [17] , [18]. The Smart Glove is shown in Figure 4. Flex or bend sensors measure

deflection or bending as the sensor element’s resistance is directly proportionate to

the amount of bending. It can also be called a goniometer or flexible potentiometer.

Two flex sensors are embedded in the Smart Glove, as shown in figure 4. The index

finger flexion and extension at the metacarpophalangeal joints produces a voltage

that is then recorded. The Smart Glove plays a major role in this research. The

Smart Glove is also synchronized with the BCI2000 software used for EEG signal

acquisition so there is no time delay between the Smart Glove and EEG signal

data.
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Figure 4. The Smart Glove designed to measure subtle irregularities in finger
tapping in people with PD, adapted from [17].

2.4 Coherence

The spectral coherence is used to examine the relationship between two signals.

It can also be used to estimate the causality between the input and output. It’s

a practical way to study motor functions by correlating cortical signaling with

peripheral signals such as EMG [19]. Coherence is sometimes called magnitude

squared coherence, which is a measure of frequency domain correlation of two

signals. The magnitude-squared coherence is a function of the power spectral

densities, Pxx(f) and Pyy(f), and the cross power spectral density, Pxy(f), of x

and y:

Cxy(f) =
|Pxy(f)|2

Pyy(f) ∗ Pxx(f)
(1)

In our study, we used EEG as the cortical signal and flexion as the peripheral sig-

nal. Coherence measures can provide linear correlations between signals of interest.

This thesis focuses on cortikokinematic coherence, but we will discuss both cor-

ticokinematic and corticomuscular coherence. Similar algorithms have been used

previously [19], but we have the Smart Glove with flex sensors for the peripheral



11

signal and EEG as the cortical signal in our analysis of corticokinematic coherence.

Here Pxy(f) is the cross-spectral density between x and y, Pxx(f) and Pyy(f)

are the auto-spectral densities of x and y respectively. Coherence functions esti-

mate the extent to which y(t) may be predicted from x(t) by an optimum linear

least squares function, and always range from zero to one. If the value of relative

phase difference remains constant then they will have a higher coherence, while

signals with opposite coherence will produce zero coherence score. Spectral coher-

ence is scaled by the amplitudes of the individual spectra so the difference in units

of amplitude will not affect the coherence analysis between two signals.

2.4.1 Corticomuscular coherence

Communication through corticospinal pathways between the primary motor

cortex and muscles underpins the idea of corticomuscular coherence. Corticospinal

pathways are associated with conscious motor control of skeletal muscles. When

coherence is calculated between MEG and EMG, it is called MEG-EMG coherence

or corticomuscular coherence. EEG can be used in place of MEG. Gwin and col-

leagues computed coherence between electrocortical source signals and EMG [20].

They found significant coherence between contralateral motor cortex electrocor-

tical signals and lower limb EMG in the beta- and gamma-range for all exercise

types. They documented that gamma-range coherence was significantly greater

for isotonic exercises than for isometric exercises. They concluded active muscle

movement modulates the speed of corticospinal oscillations. Specifically, isotonic

contractions shift corticospinal oscillations toward the gamma-range while isomet-

ric contractions favor beta-range oscillations. The Figure 5 shows coherence plots

from their study [20].

They found beta- and gamma-range coherence between contralateral motor

cortex electrocortical source signals and lower-limb EMG was significant for all
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Figure 5. (Left) EMG power, (middle) EEG power, and (right) coherence for a
representative subject performing an isometric exercise, adapted from [20]
.

exercises. In Conway et al. [21] authors observed that coherence was prominent

outside the beta band. In the figure above coherence peaks at 20 Hz is clearly

visible. Corticomuscular coherence is also documented in PD studies. Defective

MEG-EMG coherence at the beta band is seen in PD [19]. Significant coherence is

not observed in PD, although treatment with levodopa helped restore the peaks.

CMC increased when Deep Brain Stimulation is applied during moderate strength

isometric contraction [22]. In Kristeva et al. [23] researchers investigated whether

beta-band CMC on C3 electrode varies with attention resources. Safri et al. [24]

investigated beta-band CMC on c3 electrode variation with visual stimuli. Safri

et al. [25] investigates brain’s division in attention during a motor task using

beta-band CMC on electrode C3. In Witt et al. [26] subjects had to periodically

modulate dynamic isometric force output. They found an increase in the magni-

tude of static force output associated with enhanced beta-CMC on C3 electrode.

However, our focus was oriented towards delta band activities associated with the

finger movement frequency, rather than the beta band.

2.4.2 Corticokinematic Coherence

CKC or Corticokinematic Coherence is usually calculated between a Cortical

signal (MEG or EEG) and an accelerometer signal recording the kinematics of
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movement. In our research, we instead used flex sensors. Coherence peaks are seen

at the movement frequency and its harmonics. Postural tremors are a hallmark

of Parkinson disease which can be detected using sensitive accelerometers or Flex

sensors. As mentioned in Lehti et al. [19] CKC can be an ideal tool for studying the

differences in motor function between patients and healthy controls. Authors also

calculated CMC along with CKC in their work whereas we have kept us restrained

to the use of CKC in our analysis. In [27] researchers studied the possibility of

eliciting cortical responses in newborns with simple passive hand movements said

to be associated with proprioception. Authors observed statistically significant

CKC along with activities over the brain in all infants at twice the movement

frequency. Authors also have seen contralateral dominance on the central scalp.

This work shows passive movements elicit cortical responses.

Figure 6. CKC and Acceleration spectra. A) CKC spectra of one infant from all
EEG channels during right-hand movement at 1Hz. The most prominent peak is
shown T F1 that is the first harmonic of movement frequency. B) CKC spectra
from all infants and all stimulation run in the EEG channel with the highest CKC
peak. C) Power spectra of the acceleration signals. Adapted from [27].
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Researchers in [27] computed the phase-locking value (PLV) between the eu-

clidean norm of the acceleration signals and the band-pass-filtered EEG signals.

PLV and CKC both represent the consistency of the phase difference between two

signals, and they showed similar results. Piitulainen et el. [13] perform CKC with

MEG and 3 -axis accelerometer. Authors recorded CKC during active and passive

right index-finger movements. There were active-touch, active-no-touch, passive-

touch, and passive-no-touch conditions based on whether the fingertips touched

in the movement. Authors used the accelerometer to study the kinematics of the

index finger. Authors used Beamformer analysis to locate brain activations for the

movements. All active and passive movements resulted in statistically significant

CKC at the movement frequency (F0) and its first harmonic (F1). Authors, also

observed hemispheric lateralization. It was mentioned that at the first harmonic

the coherence was two thirds stronger for passive than active movements, with no

difference between touch vs. no-touch conditions. They showed the acceleration of

index finger is coherent with the contralateral SM1 cortex during both active and

passive index-finger movements. It is also asserted that CKC seems to be mainly

driven by proprioceptive feedback, with no major indication of the effect of cuta-

neous input in their data. The study, [28] investigates the effect of movement rate

on the coupling between cortical magnetoencephalographic (MEG) signals and the

kinematics of repetitive active finger movements, or the corticokinematic coherence

(CKC). They calculated CKC in subjects performing repetitive flexion-extension

of the right-hand fingers in three different movement rate conditions: slow (1Hz,

duration: 11min), medium (2Hz, duration: 5min) and fast (3Hz, duration: 3min).

Authors found significant coherence at the movement frequency or its first har-

monics in all subjects and movement conditions. They noted that movement rate

had no effect on coherence levels or the location of coherent sources. Thus they
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Figure 7. Linear spectral densities of hand acceleration as a function of frequency
normalized according to individual movement frequency (F0); superimposed traces
are from different subjects (N = 15) and data are given for all conditions. Inserts
depict 2-s epochs of the Euclidian norm (Acc) of hand acceleration for each con-
dition. Adapted from [13].

affirm that movement rates do not affect coherence levels or CKC source location

during active finger movements. These findings have direct implications for CKC

functional mapping applications and studies investigating the pathophysiology of

central nervous disorders affecting proprioceptive pathways.
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2.5 Sensorimotor Synchronisation

Sensorimotor synchronization (SMS) is defined as the rhythmic coordination

of perception and action [29]. It occurs in many contexts, particularly in music

performance and dance. It is studied with finger tapping to a sequence of auditory

stimuli. We used a metronome, a device that produces an audible click a regular

interval set by the user, usually in beats per minute. Sensorimotor synchroniza-

tion has been studied in PD research, as dopamine plays an important role in

temporal processing and prediction. Rat studies demonstrated that lesions of the

hippocampus result in increased dopamine release to the striatum which disrupts

the timing of temporal events [30]. Motor synchronization to external stimuli in

PD is therefore of interest.

Training based on rhythmic auditory stimulation (RAS) can improve gait in

people with Idiopathic Parkinsons disease (IPD) [31]. They observed increased

gait speed and stride length in non-cued gait after training with patients, though

there were individual differences in these results. They concluded that sensori-

motor timing skills underpinning the synchronization of steps to an auditory cue

may predict the success of RAS in idiopathic Parkinsons disease [31]. People with

PD demonstrate specific difficulties when trying to accurately synchronize their

movements to a beat [32]. People with Parkinson’s disease show an inability to

reproduce isochronous (occur at the same time) intervals. Relevant tasks include

finger tapping and circle drawing. In one study, participants moved their index

finger back and forth between two targets displayed in front of them in such a way

that the arrival of the finger matches with the sounding of the beat [32]. This

allowed investigation of the synchrony of finger movement with the auditory cue.

They concluded degeneration of basal ganglia circuitry might undermine the tem-

poral prediction ability, or the ability to anticipate when something is going to
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happen [32]. Patients suffer from event-based timing or synchronization with an

external acoustic beat. They also concluded that decreases in temporal movement

control seem to be linked to impaired ability to predict when something will hap-

pen [32]. A frequency tagging approach has been used to test rhythm processing in

infants with EEG, measuring neural entrainment to rhythmic patterns [33]. They

also showed that music training can effect this entrainment. Sensorimotor syn-

chronization studies can be done using a frequency-tagging approach where EEG

is recorded while participants listen to an auditory beat and tap their hand syn-

chronously with the beat. SS-EP based frequency domain analysis can be used to

study neural entrainment underlying sensorimotor synchronization to beats [34].

They showed clear SS-EP’s associated with the auditory beat with binary and

ternary meter imagination. The goal was to understand the functional and neural

mechanisms of neural entrainment to music. The frequency tagging approach is

useful because when a stimulus is repeated at a fixed rate, it generates periodic

change in voltage amplitude in EEG. As EEG is stable in phase and amplitude

over time, SS-EP based methods are used for this analysis.

In our study the metronome was used as a cue with tapping happening either

at 1 Hz or 2 Hz frequency. The subjects tapped their index finger while listening

to the auditory stimulus beeping at the same rate. Studying sensorimotor synchro-

nization entirely is beyond the scope of this master’s research, but we sought to

introduce it into our research in order to pave the way for future exploration. This

research might in future help find neural and behavioral signatures of Parkinson

or symptoms related to parkinson. We can see a future prospect with this kind of

study that takes into account the sensorimotor synchronization with cortikokine-

matic coherence.
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2.6 Time Frequency Analysis

Time-frequency analysis was performed for repetitive finger tapping. Along

with coherence analysis, we have included Time-Frequency analysis in this research

to explore the modulation of synchronized neuronal activity with dynamic volun-

tary movements. Stavrinou et al. investigated cortical activation and connectivity

relating to real and imaginary rhythmic finger tapping using EEG signal processing

[35]. The most reactive frequencies were 18 to 20 Hz. The ipsilateral hemisphere

showed constant ERS and the contralateral electrodes showed ERD. Mu-rhythms

were found to be detectable in a conventional finger-tapping task, and vocalization

[36]. They also observed ERD/ERS patterns with right index finger tapping. [37]

Smit et al. mentioned that beta oscillations showed a clear modulation at around

the tapping rate, whereas alpha/mu showed a sustained depression in power com-

pared with eyes-open rest in their paradigm. In both right and left finger tapping

tasks, a grand average spectrogram ERD peak ERD is seen around in 10Hz six

bipolar channels [38].

In our study we used wavelet based Time Frequency analysis to investigate

the activity at different frequencies over time. Our region of interest was the

mu band where reduction in power is documented in literature related to motor

tasks, or motor imagination. The activity related to the finger movement is also

investigated at their specific frequency of 1 Hz and 2 Hz. The reduction in power at

the range of 8 to 13 Hz was seen in our analysis along with the activity associated

with the 1 Hz or 2 Hz finger tapping for both people with PD and with control

subjects. kiymik et al. [39] compared Short term Fourier transform (STFT) and

Continuous wavelet transform. They found that the STFT was more applicable

for real-time processing of EEG signals, due to its short process time, they also

mentioned that the CWT had good resolution and performance high enough. We
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have not explored STFT in our analysis.

 Figure 8. The plot shows the peak and average frequency analysis during right
finger-tapping. (A)Shows the normalized power spectrum obtained by a fast
Fourier transform (FFT) at channel C3,(B) Shows an example of the averaged
power of the EEG oscillation at C3, Adapted from [36].

List of References

[1] A. Lieberman, “Depression in parkinson’s disease–a review,” Acta Neurologica
Scandinavica, vol. 113, no. 1, pp. 1–8, 2006.

[2] J. Meara, B. K. Bhowmick, and P. Hobson, “Accuracy of diagnosis in patients
with presumed parkinson’s disease.” Age and ageing, vol. 28, no. 2, pp. 99–102,
1999.

[3] “Parkinson.org,” http://parkinson.org/.

[4] M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes,
and M. Goedert, “α-synuclein in lewy bodies,” Nature, vol. 388, no. 6645, p.
839, 1997.

[5] M. Politis, “Neuroimaging in parkinson disease: from research setting to clin-
ical practice,” Nature Reviews Neurology, vol. 10, no. 12, p. 708, 2014.



20

[6] L. Ricciardi, F. Visco-Comandini, R. Erro, F. Morgante, M. Bologna,
A. Fasano, D. Ricciardi, M. J. Edwards, and J. Kilner, “Facial emotion recog-
nition and expression in parkinsons disease: an emotional mirror mechanism?”
PloS one, vol. 12, no. 1, p. e0169110, 2017.

[7] A. Galvan and T. Wichmann, “Pathophysiology of parkinsonism,” Clinical
Neurophysiology, vol. 119, no. 7, pp. 1459–1474, 2008.

[8] H. Bergman, T. Wichmann, B. Karmon, and M. DeLong, “The primate sub-
thalamic nucleus. ii. neuronal activity in the mptp model of parkinsonism,”
Journal of neurophysiology, vol. 72, no. 2, pp. 507–520, 1994.
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“Corticokinematic coherence during active and passive finger movements,”
Neuroscience, vol. 238, pp. 361–370, 2013.

[14] C. C. Chernecky and B. J. Berger, Laboratory tests and diagnostic procedures.
Elsevier Health Sciences, 2007.

[15] C. Tye, G. McLoughlin, J. Kuntsi, and P. Asherson, “Electrophysiological
markers of genetic risk for attention deficit hyperactivity disorder,” Expert
Reviews in Molecular Medicine, vol. 13, 2011.

[16] “The McGill Physiology Virtual Laboratory,” https://www.medicine.mcgill.
ca/physio/vlab/biomed signals/eeg n.htm, accessed: 2018-05-21.

https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm
https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm


21

[17] N. Constant, D. Borthakur, M. Abtahi, H. Dubey, and K. Mankodiya, “Fog-
assisted wiot: A smart fog gateway for end-to-end analytics in wearable in-
ternet of things,” arXiv preprint arXiv:1701.08680, 2017.

[18] M. Abtahi, N. P. Constant, J. V. Gyllinsky, B. Paesang, S. E.
D’Andrea, U. Akbar, and K. Mankodiya, “Wearup: Wearable e-textiles for
telemedicine intervention of movement disorders,” in Wearable Technology
in Medicine and Health Care. Elsevier, 2018, [Expected publish date:
Aug. 10, 2018]. [Online]. Available: https://www.elsevier.com/books/
wearable-technology-in-medicine-and-health-care/tong/978-0-12-811810-8

[19] T. Lehti, “Effects of deep brain stimulation on corticomuscular and corti-
cokinematic coherence in advanced parkinson’s disease,” 2014.

[20] J. T. Gwin and D. P. Ferris, “Beta-and gamma-range human lower limb corti-
comuscular coherence,” Frontiers in human neuroscience, vol. 6, p. 258, 2012.

[21] B. Conway, D. Halliday, S. Farmer, U. Shahani, P. Maas, A. Weir, and
J. Rosenberg, “Synchronization between motor cortex and spinal motoneu-
ronal pool during the performance of a maintained motor task in man.” The
Journal of physiology, vol. 489, no. 3, pp. 917–924, 1995.

[22] H. Park, J. S. Kim, S. H. Paek, B. S. Jeon, J. Y. Lee, and C. K. Chung,
“Cortico-muscular coherence increases with tremor improvement after deep
brain stimulation in parkinson’s disease,” Neuroreport, vol. 20, no. 16, pp.
1444–1449, 2009.

[23] R. Kristeva-Feige, C. Fritsch, J. Timmer, and C.-H. Lücking, “Effects of at-
tention and precision of exerted force on beta range eeg-emg synchronization
during a maintained motor contraction task,” Clinical Neurophysiology, vol.
113, no. 1, pp. 124–131, 2002.

[24] N. M. Safri, N. Murayama, T. Igasaki, and Y. Hayashida, “Effects of visual
stimulation on cortico-spinal coherence during isometric hand contraction in
humans,” International journal of psychophysiology, vol. 61, no. 2, pp. 288–
293, 2006.

[25] N. M. Safri, N. Murayama, Y. Hayashida, and T. Igasaki, “Effects of con-
current visual tasks on cortico-muscular synchronization in humans,” Brain
research, vol. 1155, pp. 81–92, 2007.

[26] S. T. Witt, A. R. Laird, and M. E. Meyerand, “Functional neuroimaging cor-
relates of finger-tapping task variations: an ale meta-analysis,” Neuroimage,
vol. 42, no. 1, pp. 343–356, 2008.

[27] E. Smeds, S. Vanhatalo, H. Piitulainen, M. Bourguignon, V. Jousmäki, and
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CHAPTER 3

Methodology

3.1 Participants

This study had 10 neurotypical controls, 2 women and 8 men between the

ages of 18-33. Four Participants with Parkinson disease participated in our study.

Three of them were on medication and one is not taking any medication, the fourth

subject was having tremors that made the data unreliable for analysis for some

runs. All participants, signed an informed consent form before participating. The

study was approved by University of Rhode Island IRB, IRB reference : 1239763-4,

Local reference : HU1718-185. Ages were confirmed with valid ID. No monetary

compensation was given to the participants. Participants with Parkinson’s are

screened using the Montreal Cognitive Assessment (MoCA) test. People with PD

must score 23 or greater to sign the consent form and participate. All participants

with PD have scored above the required score in MoCA.

Table 1 shows the information collected from the consent forms and HIPAA

(The Health Insurance Portability and Accountability Act). None of the subjects

were on Deep Brain Stimulation (DBS). Age ranges between 69 to 76. Some of

the symptoms reported by the people with PD were tremor, slow walking, uneven

gait issues, micro writing and dystonia etc.

Participants Sex MoCA Age Medication DBS Symptoms

PD1 F 30 69 Yes No Slowness, Dystonia, Tremor
PD2 F 29 72 Yes No Tremor, Slow walking
PD3 F 25 71 No No Uneven gait, Micro writing
PD4 M 24 76 Yes No Gait problem, Tremor

Table 1. The table provides the information for all the subjects with Parkinson’s
disease
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3.2 Task and Stimuli

The participants sit in a comfortable chair and a cap with EEG electrode is

placed on their head. The cap follows the standard 10-20 pattern of electrode

placements. Participants are instructed to tap their finger when a green ball ap-

pears on the screen in front of them on a computer screen. An additional auditory

cue (metronome) is also introduced in some of the runs of the experiment. The

following section describes the experiments and associated systems.

Initial	Rest Tapping Rest

Ready
Timeout

0	sec 10	sec 20	sec 25 sec

Figure 9. Finger Tapping with 1 or 2 Hz pacing is shown. The Tapping starts
after 10 sec of initial rest followed by 5 sec of rest
.

3.2.1 MoCA

We have performed the Montreal Cognitive Assessment (MoCA) test on four

PD subjects. MoCA is designed as a rapid screening instrument for mild cogni-

tive dysfunction [1]. The assessment is done on different cognitive domains such as

attention and concentration, executive function, memory, language, visuoconstruc-

tional skills, conceptual thinking, calculations and orientation. The total possible

score is 30, we have set the cut off at 23. The specific tasks we have used were :
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• Alternating Trail Making : The subject needs to draw a line going from a

number to a letter in ascending order.

• Visuoconstructional Skills (Cube): The subject has to draw a cube as in-

structed.

• Visuoconstructional Skills (Clock): The subject has to draw a clock and set

the time to 10 after 11.

• Naming : The subject has to tell the name of an animal, as instructed.

• Memory : The subject has to remember the words uttered by the instructor.

• Attention : It consist of forward digit span, backward digit span, scor-

ing,vigilance.

• Sentence repetition : The subject has to repeat a sentence.

• Verbal fluency : The subject has to tell the names of objects starting with a

specific letter.

• Abstraction : The subject has to explain how two objects are similar or

different, such as how an orange and banana are alike.

• Delayed Recall : The subject is asked to recall previously read words.

• Orientation : The subject is asked to tell today’s date.

All the subjects have scored more than 23 out of total 30 marks.

3.2.2 Finger Tapping

Finger tapping is commonly used in the study of the human motor system

using functional neuroimaging [2]. It can be used in normal control subjects as

well as those with neuropathologies affecting the motor system. The task is flexible
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with numerous modifications possible. Use of a pacing stimulus is common and

comparisons with self-paced and cue-based pacing can provide interesting results.

Pacing stimuli helps participants perform a finger tapping task at a predetermined

rate. The results from studies investigating the effects of auditory stimuli show

different networks of active brain regions, but these results are not consistent across

different studies [2]. We have used a metronome as auditory cue to externally

pace the finger tapping. Participants were asked to tap their finger wearing the

Smart Glove designed for this specific task. In our first paradigm, we asked the

participants to tap their finger at a fixed pacing rate of 1 Hz for a period of 10

sec followed by a 5 sec rest period. This process continues for 10 trials. Similarly,

in the next run, we asked the participants to tap their finger at a self-pacing rate

of 2 Hz.The second paradigm introduced a metronome as a pacing stimulus. The

metronome was fixed at 1 Hz and 2 Hz respectively. Participants completed runs

of both paradigms, at both tapping rates, with both their dominant and non-

dominant hands, for a total of 8 runs.

 
1

Flexion ExtensionExtension

Figure 10. The picture shows finger Tapping with 1 or 2 Hz pacing. The first
image shows the finger extension and the next image shows the flexion at the
metacarpophalangeal joint of the index finger.
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Figure 10 shows a hand with the index finger tapping at the specified frequency

of 1 Hz or 2 Hz. The subject both PD and control follows the same protocol. A

green ball appears in the screen in front of the subject. When the ball appears the

subject starts tapping using the right or left index finger.

3.2.3 Metronome

A metronome is a device that produces an audible click at a regular interval.

Musicians use the device to practice rhythm and improve their timing. Metronomes

can also include synchronized visual motion such as a blinking light or swinging

pendulum. We used an online metronome which produces clicks at the user-

specified frequency. In Nozaradan et al. [3] researchers used auditory stimulus

with finger tapping imagery. They have investigated and found beat- and meter-

related SS-EPs were elicited by the 2.4 Hz auditory beat in the control condition,

in the binary meter imagery condition, and the ternary meter imagery condition.

In our research, we set the metronome click at 1 Hz and 2 Hz respectively. The

following conditions were used in the experiment :

• 1 Hz tapping with metronome

• 2 Hz tapping with metronome

• 1 Hz tapping without metronome

• 2 Hz tapping without metronome.

3.3 Measurement

We collected electroencephalographic (EEG) signals and Flex signals from the

Smart Glove throughout our experiments.
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3.3.1 EEG

EEG signals were collected using gUSBamp (g.tec, Austria), this device is

for brain signal acquisition. We used this device to record and amplify the brain

signals from the surface of the scalp and is being considered as a non-invasive

recording measure. We used the software BCI2000 for recording the data. The

amplifier is compatible with BCI2000 software. The electrode positions are shown

in figure 11. The electrodes cover the somatosensory and motor areas of the brain.

The electrode positions respectively are : FC3, FC4, C1, CZ, C2, C3, C4, CP1,

CP2, CP3, CP4, P3, PZ and P4. The colored electrodes in Figure 11 show the

positions of the placed electrodes. The EEG data collection took place in Neural

PC lab at the University of Rhode Island. 14 active electrodes were used for signal

acquisition. The impedances of the electrodes were kept below 5KΩ. FCZ was

considered as the ground and earlobe as the reference. The sampling rate was

considered as 256Hz for the signal acquisition. The online filter uses a notch filter

for power line interference suppression and we have used a cut off frequency of 0.5

Hz. The offline analysis will be explained in the later sections.

In Figure 12 one of the control is performing the finger tapping task. The

EEG cap is placed on his head. The subject is wearing the glove in his right hand

and performing the finger tapping task as instructed. The screen in-front of the

subject provides the instruction of Tapping and Rest conditions. Consent has been

achieved from the subject to use his picture in this thesis. Fourteen electrodes as

shown in the Figure 11 montage are placed accordingly in the cap. The EEG

signals are collected using the software BCI2000 and similarly from the Smart

Glove the Flex data has also been collected from the Smart Glove as explained in

the next section.
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Figure 11. The EEG electrode positions are shown in the figure.
.

3.3.2 Smart Glove Flex

The Flex glove data collection system consists of the glove, Arduino process-

ing unit, and the laptop for receiving data over serial communication. Using a

prototype Smart Glove from Wearable Biosensing Lab, URI, the subject inserts

their hand into the glove properly positioning the Flex sensors of the index finger

metacarphophalengial joint. As the subject taps their index finger, the flexion

causes a change in resistance values, thus altering the electrical potential values

being collected. These changes in potential indicate the motor movement activity

levels occurring during the test procedure. This data was collected by the Ar-

duino Uno processing unit, sampling at approximately 250 Hz or 250 entries over

the span of one second. When electrical potential is collected in the analog pins,
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EEG	Setup

Smart	Glove

Figure 12. The Subject with EEG electrodes placed in his head is shown in the
figure. The subject is also wearing the Smart Glove in his right hand. The Smart
Glove is also shown in the figure .

that voltage is also altered by an op-amp and voltage divider before the initial

five-volt output is returned. This safety precaution serves to protect not only the

processing unit but the laptop that is also connected to the serial connector. This

wiring setup on the printed circuit board also allows for easy additions of more

sensors including additional Flex sensors for the other four digits, as well as ac-

celeration and gyroscopic sensors, which were considered during development. As

the test procedure is conducted and flexion patterns are collected, the values are

then transmitted via serial cable to the recording laptop. For real-time data col-

lection, the PLX-DAQ freeware extension package of Microsoft Excel is used. This

freeware allows excel to continuously stream the serial data as it is being collected

into columns at the same frequency of approximately 250 samples a second. Then,

at the end of each trial, the thousands of columns of voltage and time stamp data

are saved as .csv files for further analysis in MATLAB. We used the Flex data for

coherence analysis with the brain data collected from the BCI2000 software. The
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Smart Glove used is shown in Figure 12. The subject has to flex and extend the

index finger with the pace assigned. This task is performed with or without the

auditory cue of metronome clicks at 1 Hz or 2 Hz.

3.4 Analysis

We developed MATLAB scripts for the analysis. For the coherence analysis,

we have used an ’mscohere’ function that finds the magnitude-squared coherence

estimate of the input signals. We will discuss the analysis associated with the

EEG, the Smart Glove flex sensors, time-frequency analysis using wavelet trans-

form, spectral analysis using fast Fourier transform and coherence analysis using

magnitude squared analysis.

3.4.1 EEG

The EEG signals were collected using the software BCI2000 [4]. The signals

were band passed to .5 and 200 Hz online. And again filtering is applied offline and

band passed to .5 and 100 Hz. We used z-score to normalize the signal. z-score

can be calculated using z = (X -μ )/σ , where z is the z-score, X is the value of

the element, μ is the population mean, and σ is the standard deviation Epochs

of the desired length are taken that was giving proper peaks. Then averaging is

done to get the power spectrum of the signals and also for the coherence analysis

etc. We used EEGlab [5] to visually inspect the artifacts related to motion. Those

artifacts, if any, were removed after inspecting them visually. The same portion of

data is removed from Flex sensor data.

3.4.2 Smart Glove Flex

Flex data was collected from the Smart Glove had a sampling rate of approx-

imately 250 Hz. We used resampling method to make the sampling frequency of

Flex equal to EEG, that is 256 Hz. Standard preprocessing steps associated with
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EMG, Accelerometer data was applied to the Flex data. We used detrend on the

Flex data Detrend removes the mean value or linear trend from a vector or ma-

trix. Standard MATLAB function detrend is used for this purpose. Similar z score

normalization and epoching have been done on the Flex data.

3.4.3 Power Spectral Analysis

Power Spectral Density estimation was performed on both EEG and Flex data

for all the subjects. Fast Fourier transform determined the frequency components

in the signal. We used MATLAB, Y = fft(X,n) function which returns the n-point

DFT. We not specified the value of n so the length of Y is same as that of X. We

calculated FFT over the epochs and averaged the results. The same procedure is

applied to the Flex data also. The power spectral density provided the spectral

energy distribution for the data.

3.4.4 Corticokinematic Coherence Analysis

For studying the coupling between finger movement and neural oscillations the

metric we used was CKC or corticokinematic coherence. The MATLAB function

mscohere was used to find the magnitude-squared coherence estimate between the

EEG and Flex data. The function is applied to the resampled, epoched data to

visualize the significant frequency-domain correlation at the specific frequencies.

We also used topographic plots of the scalp data field in a 2-D circular view for

investigating the hemispheric lateralization associated with the finger tapping.

3.4.5 Time Frequency Analysis

Time-Frequency analysis is generalization and refinement of Fourier analysis.

We use Time-Frequency analysis when the signal frequency characteristics are

varying with time. Time-Frequency analysis has a wide scope of applications. We

used wavelet transform based Time-Frequency analysis for this research. Baseline
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correction is often needed as power decreases as frequency increases which follows

the 1/f power law scaling. We used decibel conversion based baseline correction

for this purpose. which is defined as :

dBconversion = 10log10(
activity

baseline
)

The selection of baseline was an issue as different subjects showed different

responses to the choice of baseline. This was mainly due to the recording conditions

of the data, while the subjects might have induced some artifacts like an eye blink,

motion etc. The width of the Gaussian was taken as the variable of 3-10 cycles

for the wavelet convolution to deal with the trade off of frequency and temporal

precisions for the signal which was bandpass filtered at 5-40 Hz.
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CHAPTER 4

Results and Discussions

4.1 Time Series Analysis

For time series analysis in Figure 13, we have visualized the raw EEG signals

and Flex signals collected from the Smart Glove. The signals are plotted for both

resting and tapping duration. The resting duration was 10 sec initial rest and then

followed by 10 sec tapping and 5 sec rest. We have shown in the plot, the rest

and rapping period. Finger tapping starts at the end of 10 sec. Clear activity is

 

Figure 13. The plot shows the time series for EEG for one channel for one subject,
and Flex sensor data for same subject for both Resting and Tapping condition
.

seen in the Flex sensor data as shown the the figure 13. The EEG signal is shown
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for the channel C2 for one subject data for one particular condition. Although

no clear signatures are visible for rest vs tapping condition in the time domain

signal. Which demands the frequency domain analysis to investigate the signatures

associated with the finger tapping in EEG data, which we have investigated using

power spectrum, Time-Frequency and Coherence analysis.

4.2 Time Frequency Analysis

Event-related resynchronization and desynchronization is often seen with fin-

ger movement tasks. Tamura et al. [1] has shown a reduction in power at μ band.

μ band is is a range of electroencephalography oscillations from 8 to 13 Hz. Finger

tapping tasks were performed at 1 Hz and 2 Hz pacing rates. Figures 14, 15, 16

shows the Time-Frequency plots for the 2 Hz left-hand finger tapping condition.

Results for 1 Hz and/or right-hand tapping were similar. For the sake of simplic-

ity, we have not presented all the results. Usually, the frequency spectrum of data

tends to show decreasing power at increasing frequencies, which is also termed as

the 1/f power law. To avoid this, we performed one type of baseline normalization

called decibel conversion. It is defined as,

dBconversion = 10log10(
activity

baseline
)

The mid of the rest period was chosen as the baseline. In the Figure 14, Figure 15,

Figure 17 reduction in power at the μ band is seen in both people with Parkinson’s

disease (PwPD) and controls. We have shown three PD subjects and three healthy

controls. The finger tapping starts at 5000 ms and ends at 150000 ms. A clear

reduction in power was seen in 8-15 Hz range after the finger tapping starts. Beta

oscillations are associated with Parkinson Disease, we have seen such oscillations in

the Time-Frequency plots although no further investigations were done on this. For

creating the Time-Frequency plots we used wavelet transform method using Morlet

wavelets with a variable width of the Gaussian ranging from 3-10 cycles to adjust
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PD 1, 2Hz Left Tapping  
Control 1, 2Hz Left Tapping  

Tapping Tapping Rest Rest 

Figure 14. The figure shows the Time-Frequency plots for the finger tapping for
PD 1 and control 1. Reduction in mu rhythm is visible. Both the subjects were
doing 2 Hz left hand finger tapping
.

 

PD 2, 2Hz Left Tapping  
Control 2, 2Hz Left Tapping  

Rest  Rest  Tapping Tapping 

Figure 15. The figure shows the Time-Frequency plots for the finger tapping for
PD 2 and control 2. Reduction in mu rhythm is seen. Both the subjects were
doing 2 Hz left hand finger tapping
.

the trade-off between temporal and frequency precision. We used frequencies from

1 Hz to 40 Hz and dB change from -3 to +3. The 2 Hz tapping activity is also seen
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as a red color region. Control 3 does not show clear activity pattern around 2 Hz

although a clear reduction in activity is seen in the μ region. Control 3 has shown

more reduction beyond mu band as shown in Figure 16. Very clear reduction in

mu power is seen in PD 1 in Figure 14, although the Control subject did not show

such clear activity. The 2 Hz activity is also visible from the plots.
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PD 3, 2Hz Left Tapping  Control 3, 2Hz Left Tapping  

Rest  Rest  Tapping Tapping 

Figure 16. The Figure shows the Time-Frequency plots for the finger tapping for
PD 3 and control 3. Reduction in mu rhythm is seen. Both the subjects were
doing 2 Hz left hand finger tapping
.

The Figure 17 shows how the power in the μ band is reduced when the subject

starts tapping his finger. The results from Wilcoxon signed rank test indicate that

the test rejects the null hypothesis of zero medians in the difference at the default

5% the significance level for control rest vs tapping condition. We have seen with

Wilcoxon rank sum test that P value of 0.024 from the results indicates that rank

sum rejects the null hypothesis of equal medians at the default 5% the significance

level for PD vs Control rest and tapping conditions in mu power.
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Figure 17. The Figure shows the average RMS bar plots for the finger tapping of
people with PD and control for 2 Hz finger tapping with the left hand. Reduction in
mu rhythm power is quantified using RMS values of the voltage. Asterisk indicate
statistical significance at P <0.05 level.

4.3 Corticokinematic Coherence

MATLAB based mscohere function was used to calculate magnitude squared

coherence between Flex data collected from Smart Glove and EEG data. CKC

peaks were observed for two different movement frequencies, they were at 1 Hz

and 2 Hz. This result replicates the findings in [2]. They have found CKC peaks

at the movement frequency. We have also observed prominent peaks at the move-

ment frequency and at their harmonics. In Figure 18 three PD subjects and three

control subjects were shown. They were doing 1 Hz finger tapping with the right

hand with metronome. ’No metronome’ conditions were not compared. Similar

responses can be seen with right-hand finger tapping. The cortikokinematic co-

herence peaks were seen at the movement frequency of 1 Hz and it’s harmonics.

Activity is more dominant in the right hemisphere as can be seen from the topo-

graphic distribution of the coherence magnitude. Control 2, did not show clear
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hemispheric dominance in activity. It might be because of noisy trials and should

not be related to endogenous neural activity associated with the finger tapping. In

PD	1

PD	2

PD	3 CONTROL	3

CONTROL	2

CONTROL	1

1	Hz	Finger	Tapping	Right	Hand	with	Metronome

Figure 18. The figure shows the corticokinematic coherence for both Parkinson
and control groups while they were doing 1 Hz tapping with the right hand.

Figure 19 three PD subjects and three control subjects were shown. Subjects were

doing 2 Hz finger tapping with the left hand. Results from different hands were

shown in order to investigate the activity of each hemisphere. The cortikokinematic

coherence peaks were seen at the movement frequency of 2 Hz and it’s harmonics.
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Activity is more dominant in the contralateral hemisphere as can be seen from

the topographic distribution of the coherence magnitude. All the controls have

shown higher activity in the left hemisphere. Different channels with different

PD	1

PD	2

PD	3 CONTROL	3

CONTROL	2

CONTROL	1

2	Hz	Finger	Tapping	Left	Hand	with	Metronome

Figure 19. The figure shows the corticokinematic coherence for both Parkinson
and control group while they were performing 2 Hz tapping with the left hand.

colors were shown in the coherence plot along with the topographic distribution

of the coherence magnitude that ranges between 0 and 1. The values of coher-

ence were averaged over all the trials for each subject. The channels shown are

FC3,C1,FC4,C4,CP3 and PZ. [3] used wavelet coherence to investigate the neu-
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rovascular coupling between NIRS and aEEG. We skipped the wavelet coherence

analysis, although magnitude squared coherence and topographic plots are provid-

ing insights into the coupling between EEG and Flex sensor outcomes. We have

shown results with metronome only, that was used as an auditory cue for exter-

nally pacing the finger movements. The contralateral hemispheric activity is not

prominent in all the subjects but can be seen in the topographic plots. Statistical

significance could not be achieved with wilcoxon rank sum test which is a non-

parametric version of the two-sample t-test. The possible reason for not achieving

significance can be the small number of sample size for Parkinson’s subjects.

Figure 20, Figure 21 displays the comparative bar plots for 1 Hz right-hand

tapping and 2 Hz left-hand tapping respectively. In the 1 Hz right hand tapping

PD subject, subject 1 has a relatively higher peak that can account for the higher

average peak value in PD group as compared to the control group. In the 2 Hz

tapping of the left-hand plot, the mean coherence is found to be more in control

group as compared to PD group.

The results from Wilcoxon rank sum test gives the P value greater than .05 for

2 Hz PD vs control coherence. Results indicate that there is not enough evidence

to rejects the null hypothesis of equal medians at the default 5% the significance

level for PD vs Control, 1 Hz tapping conditions. Similarly, the P value of greater

than .05 for 1 Hz PD vs control coherence was found with Wilcoxon rank sum test.

Results indicate that there is not enough evidence to rejects the null hypothesis

of equal medians at the default 5% the significance level for PD vs Control 1 Hz

Tapping conditions. The reason for not achieving statistically significant difference

might be the low number of sample size for PD group. We had 3 people with

PD and 8 control subjects chosen from initial 10 neurotypical subjects and 4 PD

subjects. The last PD subject’s results are shown in the appendix.
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Figure 20. The figure displays the bar plots for 2 Hz left-hand tapping for PD and
control groups.
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Figure 21. The figure displays the bar plots for 1 Hz right-hand tapping for PD
and control groups.

A higher number of PD subjects might provide better results with statistical

testing which we could not see in this analysis probably due to low sample size. the

error bars in Figure 20 and Figure 21 shows overlapping between the two groups.
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The mean coherence of .3067 for PD 1 Hz and .2700 for control 1 Hz tapping

condition is seen. Similarly mean coherence of .22 and .25 is seen in 2 Hz tapping

condition for PD and control groups respectively. The standard error was .0536

for PD 1 Hz and .0175 for control 1 Hz condition. Similarly, the standard error

was .043 for PD 2 Hz tapping condition and 0.017 for the control group for 2 Hz

tapping condition.

4.4 Power Spectrum Analysis

The power spectrum of the EEG signals and Flex signals are shown in Figure

22, Figure 23, Figure 26 and Figure 27. Motor related steady-state evoked poten-

tials (SSEP) is seen at the movement frequency in both PD and control groups

with both metronome and without metronome conditions. The results presented

in this thesis includes only the metronome conditions which act as a pacing signal

for endogenous neural oscillations [4]. Past researchers have seen the activity of

accelerometer and EEG in the alpha and beta bands.

Our analysis focused on delta band activity mainly from .5 to 4 Hz. The

subject performed index finger tapping with a 1 Hz and 2 Hz metronome as an

auditory cue. FFT power spectral density for the 1 Hz finger tapping condition is

shown for both PD and control groups in the plots. Clear peaks at 1 Hz have been

shown by all three people with PD and eight out of ten control subjects. Power

spectral density is estimated using the MATLAB ’fft’ function that computes the

discrete Fourier transform (DFT) of the signal using a fast Fourier transform (FFT)

algorithm. For the n-point DFT, the value of n is chosen same as the length of the

signal. The sampling frequency was 256 for all the conditions. Flex signals had a

sampling frequency of 258Hz. So the Flex signals are down-sampled to match with

the sampling rate of EEG signals. Individual variability in the peak amplitude

is observed in all the cases and groups. No statistically significant difference has
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been seen with EEG spectral peaks between PD and control groups. Small sample

size might be the reason. Figure 24, Figure 25 shows the bar diagram with the

error bars comparing peaks in the power spectrum averaged over all the subjects

in both the groups. Similarly, with 2 Hz finger tapping condition, EEG signals

power spectrum did not show any statistically significant difference between the

groups in the 5% significance level. Figure 22 and 23 shows the power spectrum

PD	1

PD	2

PD	3 CONTROL	3

CONTROL	2

CONTROL	1

1 Hz	Finger	Tapping	Left	Hand	with	Metronome

Figure 22. The figure shows the spectrogram of EEG for subjects performing 1 Hz
left hand finger tapping.

for the 1 Hz, 2 Hz tapping condition for both the PD and control groups. The
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peaks are seen clearly at the 1 Hz and 2 Hz in 22 and at 2 Hz and 4 Hz in 23 , that

is the movement frequency and harmonics of the movement frequency. The plot

displays the power spectrum density for channel C2 only. Although clear peaks

were seen in other channels covering somatosensory and motor area. The Figure

24, 25 bar plots were generated with C2 peaks for left hand tapping. The power

PD	1

PD	2

PD	3 CONTROL	3

CONTROL	2

CONTROL	1
2	Hz	Finger	Tapping	Left	Hand	with	Metronome

PD	1

Figure 23. The figure shows the power spectrum with 2 Hz finger tapping left hand
of PD and control groups for EEG.

spectrum for Flex 1 Hz and 2 Hz signals are shown in Figure 26 and in Figure

27. Clear peaks are seen at the movement frequency of 1 Hz and 2 Hz and with
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Figure 24. The figure shows the bar plots for the finger tapping left hand of PD
and control groups with 1 Hz for EEG.
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Figure 25. The figure shows the bar plots for the finger tapping left hand of PD
and control with 2 Hz groups for EEG.

their harmonics respectively for 26 and 27 for both the PD and control groups.

Flex signals were bandpass filtered at .5 to 100 Hz frequency band similar to EEG

signals.
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PD	1

PD	2

PD	3 CONTROL	3

CONTROL	2

CONTROL	1

2 Hz	Finger	Tapping	Left	Hand	with	Metronome

Figure 26. The figure shows the power spectrum with 2 Hz finger tapping left hand
of PD and control groups for Flex signal.

The peaks for Flex were more clear and prominent as compared to the EEG

spectrum. Mainly due to noise associated with EEG signals, which is absent with

the Flex signal. Flex signals were detrended to remove any linear trend before

processing. It removes the long-term trends in order to emphasize short-term

changes in the signal. The sampling frequency was made equal to EEG sampling

rate of 256 Hz. Epoch length of 8 sec was chosen for trial averaging of the signals.

Fourier transform of the trials were averaged to get the spectrum. The plots show
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results for single trials.

The results from Wilcoxon rank sum test gives the P value of .3758 for 2 Hz PD

vs control FFT power spectral density amplitudes for Flex signals. Results indicate

that there is not enough evidence to rejects the null hypothesis of equal medians

at the default 5% significance level for PD vs Control, 2 Hz tapping conditions.

Similarly, a P value of 0.1818 for FFT power spectral density amplitudes for Flex

signals were found with Wilcoxon rank sum test. Results indicate that there is

not enough evidence to rejects the null hypothesis of equal medians at the default

5% significance level for PD vs Control 1 Hz tapping conditions. The reason for

not achieving statistically significant difference might be the low number of sample

size for PD group as seen with EEG spectrum and Coherence spectrum. We had

three people with PD and eight control subjects. A higher number of PD subjects

might provide better results with statistical testing which we could not see in this

analysis of spectral amplitudes.

One interesting observation from the power spectrum plots that can be seen

is that the spectral peaks are localized almost exactly at the movement frequency,

that is either 1 Hz or 2 Hz and at its harmonics. We also investigated power

spectrum of EEG signal when the only metronome as an auditory cue was used

and no finger tapping was there. We could see peaks at the tapping frequency but

the amplitudes were much weaker. For PD subject 4, the power spectrum did not

show prominent peaks, as shown in the appendix. This is due to the tremor the

subject was experiencing while doing the finger tapping. Although for 1 Hz right

hand condition, the subject has shown peaks at the movement frequency.

Statistical significance is not achieved but amplitudes for control subjects

were seen larger than PwPD as shown in the bar graphs in Figure 28 and 29. This

is also seen in Figure 25 and Figure 24. NS in the plots signify, not significant



50

difference between the groups. A larger sample size along with similar age

group neurotypical study can yield better significant results. This is one of the

limitations of this study. There was a significant gap between the age of healthy

vs PwPD subjects. Despite this limitation, we could see nice and prominent peaks

in the power spectrum of the EEG and Flex for both the groups.

PD	1

PD	2

PD	3 CONTROL	3

CONTROL	2

CONTROL	1

1 Hz	Finger	Tapping	Left	Hand	with	Metronome

Figure 27. The figure shows the power spectral density for Flex signal for 1 Hz
finger tapping with metronome as auditory pacing cue for both PD and control
groups.
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Figure 28. The figure shows the bar plots with error bars for the finger tapping of
PD and control groups for Flex signals at 1 Hz tapping.
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Figure 29. The figure shows the bar plots with error bars for the finger tapping of
PD and control groups for Flex signals at 2 Hz tapping.
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4.5 Discussion

We examined the coupling between finger kinematics and cortical signals for

a finger tapping task in people with PD(PwPD) and healthy controls. Three

out of the four PwPD were on medication. None of the participants had DBS

surgery. All the participants from the PD group have scored more than 23 in

the Montreal Cognitive Assessment Test (MoCA). Authors in [5] reported in their

research about EMG power spectra peaks between 5-12 Hz for postural tremor peak

in Parkinson disease. Our experimental paradigm does not investigate the small

amplitude tremor associated with Parkinson disease, rather we have investigated

corticokinematic coherence(CKC) between Smart Glove Flex signals and EEG at

the movement frequency of simple finger flexion and extension task. As reported by

Piitulainen et al. [2] in their research, they investigated CKC for active and passive

index finger kinematics. They have seen CKC peaks at the movement frequency.

In our analysis, Figure 18 and Figure 19 shows the CKC peaks at the movement

frequency for both PD and control groups. But we could not see the statistically

significant difference between the groups due to a smaller sample size of PD group

as shown in Figure 20 and 21. We have also investigated time-frequency analysis on

the EEG data. A clear reduction in power is seen at the mu band when the subject

starts finger tapping. The extent of reduction was varied from subject to subject.

Figure 14, Figure 15, Figure 16 shows the time-frequency plots generated using

wavelet transform. The reduction at the frequency range of 8-15 Hz is apparent.

In Figure 17 the RMS power plots were shown for PD and control group, Rest vs

Tapping conditions. Individual variation is often reported in studies associated to

EEG. While investigating the CKC and power spectrum, we have observed this

variability. Different subjects showed different peak amplitude at the movement

frequencies. The peaks at the movement frequency might provide insights into
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the neural oscillations phase locked to movement frequency. Jerebi et al. [6]

observed that 2 to 5 Hz cortical oscillations in human M1 neurons is increased in

amplitude and became phase locked with hand speed during motor control. Such

similar phenomenon must be happening with the extension and flexion task at the

metacarpophalangeal joint of the index finger paced by metronome as an auditory

cue. Further exploration of the neuro-scientific origin of such motor and cortical

coupling is required.

This research can be considered as a proof of concept study. For significance in

the comparison between PwPD and neurotypical, a larger sample size was needed.

We have included the analysis of the fourth PwPD subject in the appendix. The

fourth subject was seen to exhibit excessive tremor so EEG signals were contami-

nated with motion artifacts.

We have also investigated if there was any effect of the metronome as a cue.

The figure A.16 in the appendix shows the comparison between finger tapping and

only metronome and no tapping conditions. The peak for tapping was larger, and

no prominent peak was seen with no tapping and only metronome condition.

As a future outlook, novel approaches using Machine learning and Deep learn-

ing might be useful in identifying the tremors in Parkinson, differentiate between

Parkinson and Parkinsonism, stages of Parkinson disease etc from the features ex-

tracted using signal processing techniques such as the CKC and power spectrum

explored in this research. This research introduces the use of Flex sensor based

Smart Glove. This combination of neuro-imaging and Smart Glove can be helpful

in finding quantifiable measurements like CKC to quantify motor-related symp-

toms in Parkinson disease, as we have shown with the finger tapping task. Thus

we can say that this research validates the use of CKC as a metric for quantification

of motor tasks in Parkinson disease.
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CHAPTER 5

Conclusion

Parkinson Disease is affecting millions of people throughout the globe. The

objective of our research is to quantify the effects of motor tasks for finger tapping

in Parkinson disease using a specially designed Smart Glove. We have investigated

the coupling between neural oscillations and finger kinematics using cortikokine-

matic coherence (CKC) as a measurement. We have also investigated the suppres-

sion of power in mu band associated with the performance of a motor action that is

finger tapping in our case. A clear reduction of power at the mu band frequencies

was observed when the subjects started tapping the finger. CKC and power spec-

trum showed prominent peaks at the movement frequency of finger tapping with a

metronome as pacing cue. We could not see any statistically significant difference

in PD vs control groups neither in CKC nor in power spectrum. We assume that

this is mainly due to the small sample size of PD participants and the difference

in the age between the two groups can also be a factor.

This research will help the clinicians and researchers to investigate further.

For example, quantification of motor-related symptoms can be extremely helpful

for the people living with Parkinson. This research can be considered as a proof of

concept study, which successfully demonstrated the use of CKC as a quantification

measure with the help of specially designed Smart Glove. In the long run, this

research work will certainly open up new scientific questions and will contribute

to the Parkinson research community in developing new methods to quantify the

symptoms associated with Parkinson and thereby might help in better diagnosis

and treatment of Parkinson disease.
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APPENDIX

A.0.1 Power Spectrum of EEG and Flex

The power spectrum of the EEG signals and Flex signals are shown in the

plots. Figure A.1 shows the EEG and Flex signals for Left hand 1 Hz finger tapping

condition. Figure A.2 displays the same for subject 7 and subject 8. Figure A.3

shows the EEG and Flex power spectrum for 2 Hz left hand tapping condition. All

the conditions were with metronome. Figure A.4 displays the activity of subject 7

and subject 8 for EEG and Flex. Figure A.5 shows the power spectrum for right

hand finger tapping. The channel chosen was C1 for right hand and C2 for left

hand. Figure A.6 shows the finger tapping for right hand 1Hz. Figure A.7 displays

the power spectrum for the subjects 4, subject 5, subject 6, while they were doing

2 Hz right hand finger tapping. Figure A.8 shows the same activity for control

subject 7 and subject 8. Figure A.13 and A.14 displays the EEG and Flex power

spectra for the 4 th PD subject.

A.0.2 Time Frequency Plots

Figure A.15 shows the time frequency plots for the PD subject 4, for left and

right hand finger tapping at 1 Hz and 2 Hz respectively. Figure A.9 displays the

Time Frequency plots of the EEG of the control subjects. The reduction in mu

band is not prominent in all the subjects but can be seen clearly in a varying

degree. Figure A.10 shows The Time Frequency plots for control subjects 7 and

8. Figure A.11 shows the similar time frequency plots for left and right hand 2 Hz

activity. Figure A.12 shows the time frequency activity for control subjects 7 and

8 while they were tapping at 2 Hz.
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Flex

EEG
CONTROL	4 CONTROL	5 CONTROL	6

CONTROL	4 CONTROL	5 CONTROL	6

Figure A.1. Power spectrum EEG and Flex signals for left hand 1Hz finger tapping
with metronome for control subjects 4 to 6.

CONTROL	7 CONTROL	8

CONTROL	7 CONTROL	8

EEG

Flex

Figure A.2. Power spectrum EEG and Flex signals for left hand 1Hz finger tapping
with metronome for control subjects 7 and 8.

A.0.3 Comparison between only metronome vs finger tapping

Figure A.16 shows the comparison of power spectrum for Tapping condition

and only metronome and no tapping condition. The First plot displays the power
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EEG

Flex

CONTROL	4 CONTROL		5 CONTROL	6

CONTROL	4 CONTROL	5 CONTROL	6

Figure A.3. Power spectrum EEG and Flex signals for left hand 2Hz finger tapping
with metronome for control subjects 4 to 6.

EEG

Flex

Figure A.4. Power spectrum EEG and Flex signals for left hand 2Hz finger tapping
with metronome for control subject 7 and 8.

spectrum of EEG and second spectrum displays the power spectrum of flex.
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EEG
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CONTROL	4 CONTROL	5 CONTROL	6

Figure A.5. Power spectrum EEG and Flex signals for right hand 1Hz finger
tapping with metronome for control subject 4 to 6.

CONTROL	7 CONTROL	8

CONTROL	7 CONTROL	8

EEG

Flex

Figure A.6. Power spectrum EEG and Flex signals for right hand 1Hz finger
tapping with metronome for control subject 7 and 8.
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EEG
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CONTROL	4 CONTROL	5 CONTROL	6

Figure A.7. Power spectrum EEG and Flex signals for right hand 2Hz finger
tapping with metronome for control subjects 4 to 6.

EEG

Flex

CONTROL	7 CONTROL	8

CONTROL	8CONTROL	7

Figure A.8. Power spectrum EEG and Flex signals for right hand 2Hz finger
tapping with metronome for control subjects 7 and 8.
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Left	Hand	1Hz
CONTROL	4 CONTROL		5 CONTROL	6

CONTROL	4 CONTROL	5 CONTROL	6Right	Hand	1	Hz

Figure A.9. The time frequency plots for EEG for control subjects 4 to 6, for
both left and right hand 1 Hz tapping condition.

Left	Hand	1Hz
CONTROL	7 CONTROL	8

CONTROL	7 CONTROL	8Right	Hand	1	Hz

Figure A.10. The time frequency plots for EEG for control subjects 7 and 8, for
both left and right hand 1 Hz tapping condition.
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Left	Hand	2	Hz
CONTROL	4 CONTROL		5 CONTROL	6

CONTROL	4 CONTROL	5 CONTROL	6Right	Hand	2	Hz

Figure A.11. The time frequency plots for EEG for control subjects 4 to 6, for
both left and right hand 2 Hz tapping condition.

Left	Hand	2Hz
CONTROL	7 CONTROL	8

CONTROL	7 CONTROL	8Right	Hand	2	Hz

Figure A.12. The time frequency plots for EEG for control subjects 7 and 8, for
both left and right hand 2 Hz tapping condition.
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Finger	Tapping	with	Metronome	PD	4	EEG	signal
Left	Finger	1	Hz Right	Finger	1	Hz

Right	Finger	1	Hz Right	Finger	1	Hz

Figure A.13. Power spectrum of EEG signal for right hand and left hand 1Hz
finger tapping with metronome for PD subject 4.

Finger	Tapping	with	Metronome	PD	4	EEG	signal
Left	Finger	1	Hz Right	Finger	1	Hz

Right	Finger	1	Hz Right	Finger	1	Hz

Figure A.14. Power spectrum of Flex signal for right hand and left hand 1Hz finger
tapping with metronome for PD subject 4.
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Finger	Tapping	with	Metronome	PD	4	EEG	signals
Left	Finger	1	Hz	

Left	Finger	2	Hz	

Right	Finger	1	Hz	

Right	Finger	2	Hz	
Rest Rest

Rest Rest

Tapping Tapping

Tapping Tapping

Figure A.15. Time frequency plots for PD subject 4 for both right and left 1 Hz
and 2 Hz finger tapping with metronome

Flex

2	Hz	Tapping	right	hand	vs	only	metronome

CONTROL	8CONTROL	7

CONTROL	2

Figure A.16. Power spectrum EEG and Flex signals for right hand 2Hz finger
tapping with metronome vs only metronome and no tapping condition.
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Bieńkiewicz, M. and Craig, C. M., “Parkinsons is time on your side? evidence for
difficulties with sensorimotor synchronization,” Frontiers in neurology, vol. 6,
p. 249, 2015.

Brown, P., “Bad oscillations in parkinsons disease,” in Parkinsons Disease and
Related Disorders. Springer, 2006, pp. 27–30.

Caviness, J. N., Liss, J. M., Adler, C., and Evidente, V., “Analysis of high-
frequency electroencephalographic-electromyographic coherence elicited by
speech and oral nonspeech tasks in parkinsons disease,” Journal of Speech,
Language, and Hearing Research, vol. 49, no. 2, pp. 424–438, 2006.

Caviness, J. N., Shill, H. A., Sabbagh, M. N., Evidente, V. G., Hernandez, J. L.,
and Adler, C. H., “Corticomuscular coherence is increased in the small pos-
tural tremor of parkinson’s disease,” Movement disorders: official journal of
the Movement Disorder Society, vol. 21, no. 4, pp. 492–499, 2006.

https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm
https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm
https://www.elsevier.com/books/wearable-technology-in-medicine-and-health-care/tong/978-0-12-811810-8
https://www.elsevier.com/books/wearable-technology-in-medicine-and-health-care/tong/978-0-12-811810-8
http://www.sciencedirect.com/science/article/pii/S2352648317300296
http://www.sciencedirect.com/science/article/pii/S2352648317300296


66

Chalak, L. F., Tian, F., Adams-Huet, B., Vasil, D., Laptook, A., Tarumi, T.,
and Zhang, R., “Novel wavelet real time analysis of neurovascular coupling in
neonatal encephalopathy,” Scientific reports, vol. 7, p. 45958, 2017.

Chernecky, C. C. and Berger, B. J., Laboratory tests and diagnostic procedures.
Elsevier Health Sciences, 2007.

Cirelli, L. K., Spinelli, C., Nozaradan, S., and Trainor, L. J., “Measuring neu-
ral entrainment to beat and meter in infants: effects of music background,”
Frontiers in neuroscience, vol. 10, p. 229, 2016.

Constant, N., Borthakur, D., Abtahi, M., Dubey, H., and Mankodiya, K., “Fog-
assisted wiot: A smart fog gateway for end-to-end analytics in wearable inter-
net of things,” arXiv preprint arXiv:1701.08680, 2017.

Conway, B., Halliday, D., Farmer, S., Shahani, U., Maas, P., Weir, A., and Rosen-
berg, J., “Synchronization between motor cortex and spinal motoneuronal
pool during the performance of a maintained motor task in man.” The Jour-
nal of physiology, vol. 489, no. 3, pp. 917–924, 1995.

Cosgrove, J., Lacy, S., Jamieson, S., Smith, S., and Alty, J., “Finger
tapping and cognition in parkinson’s,” Journal of Neurology, Neurosurgery
& Psychiatry, vol. 86, no. 11, pp. e4–e4, 2015. [Online]. Available:
https://jnnp.bmj.com/content/86/11/e4.83

Dalla Bella, S., Benoit, C.-E., Farrugia, N., Keller, P. E., Obrig, H., Mainka, S.,
and Kotz, S. A., “Gait improvement via rhythmic stimulation in parkinsons
disease is linked to rhythmic skills,” Scientific Reports, vol. 7, p. 42005, 2017.

Dalrymple-Alford, J., MacAskill, M., Nakas, C., Livingston, L., Graham, C., Cru-
cian, G., Melzer, T., Kirwan, J., Keenan, R., Wells, S., et al., “The moca:
well-suited screen for cognitive impairment in parkinson disease,” Neurology,
vol. 75, no. 19, pp. 1717–1725, 2010.

Delorme, A. and Makeig, S., “Eeglab: an open source toolbox for analysis of
single-trial eeg dynamics including independent component analysis,” Journal
of neuroscience methods, vol. 134, no. 1, pp. 9–21, 2004.

Galvan, A. and Wichmann, T., “Pathophysiology of parkinsonism,” Clinical Neu-
rophysiology, vol. 119, no. 7, pp. 1459–1474, 2008.

Gwin, J. T. and Ferris, D. P., “Beta-and gamma-range human lower limb cortico-
muscular coherence,” Frontiers in human neuroscience, vol. 6, p. 258, 2012.

Henry, M. J. and Obleser, J., “Frequency modulation entrains slow neural oscil-
lations and optimizes human listening behavior,” Proceedings of the National
Academy of Sciences, vol. 109, no. 49, pp. 20 095–20 100, 2012.

https://jnnp.bmj.com/content/86/11/e4.83


67

Jerbi, K., Lachaux, J.-P., Karim, N., Pantazis, D., Leahy, R. M., Garnero, L.,
Baillet, S., et al., “Coherent neural representation of hand speed in humans
revealed by meg imaging,” Proceedings of the National Academy of Sciences,
vol. 104, no. 18, pp. 7676–7681, 2007.
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