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ABSTRACT 

 To reconstruct the paleoseismic history of Old Harbor on Kodiak Island, Alaska, 

we undertook exploratory coring at two coastal sites, Big Creek and Bear Terrace, 4 km 

and 2 km northeast of Old Harbor, respectively. We chose the longest core from Big 

Creek for analysis (90 cm, BC.15.02). Six sand to sandy-silt layers deposited within 

organic silts and peats occur in this core. Radiocarbon dating, a tephra deposit, and 

radiometric marker (137Cs) analyses were used to estimate ages of sand and silt 

deposition. 137Cs results confirmed that the uppermost clastic deposit records the AD 1964 

Great Alaskan earthquake and tsunami, the most recent large tsunami to inundate Old 

Harbor. This clastic layer lies 3 cm above a layer of pumice from the AD 1912 eruption 

of Mount Katmai, which is located ~150 km northwest of Old Harbor. We were able to 

use the characteristics of the AD 1964 tsunami deposit (thick, coarse-grained, normally 

graded sequences, increase in marine and epipsammic diatoms) as a guide for identifying 

tsunami deposits in the rest of the core. Lithologic, diatom, grain-size, and statistical 

analyses pointed out characteristics specific to tsunami deposits, helping us to 

differentiate between the five deeper clastic deposits in the core. We identified the 

bottommost clastic deposit as a tsunami deposit from the AD 1788 earthquake. Both the 

AD 1964 and AD 1788 deposits in our core contained the characteristic features of 

tsunami deposits, but there was little indication of land level change associated with 

either deposit, which contrasts with observations and previous studies. Detrended 

correspondence analysis (DCA) on our diatom assemblages identified the difference 

between the local tsunami deposits and clastic deposits from other depositional 



mechanisms. Therefore, we inferred that the other four clastic deposits were most likely 

deposited by floods, storms, or tele-seismic tsunamis.  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PREFACE 

  

 This thesis is written in manuscript format in accordance with the requirements of 

the Graduate School of the University of Rhode Island. This thesis contains one 

manuscript and one appendix. The thesis, entitled A stratigraphic and microfossil record 

of coseismic land-level changes and tsunami deposits from Old Harbor, Central Kodiak 

Island, Alaska, is prepared for submission to the journal OpenQuaternary. 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1. Introduction 

 The Alaska-Aleutian subduction zone is one of the most seismically active 

subduction zones in the world (United States Geological Survey, 2014). Almost the entire 

subduction zone interface ruptured in the 20th century with seven earthquakes greater 

than M8.0 in 1987, 1965, 1964, 1957, 1946, 1938, and 1906. The largest of these was the 

M9.2 1964 earthquake, rupturing the eastern segments of the subduction zone (Carver 

and Plafker, 2008; Plafker 1969). The subsequent tsunami caused severe damage to many 

coastal towns in Alaska. Various tsunami modeling scenarios have predicted that large 

earthquakes along the subduction zone have the potential to create tsunamis strong 

enough to impact coastal California and Hawaii (Butler, 2012; Butler et al., 2017; Ryan et 

al., 2011; Kirby et al., 2012). However, the instrumental record of earthquakes along the 

Alaska-Aleutian subduction zone only dates back to the early 1900s. Therefore, in order 

to learn more about historic and prehistoric earthquakes before the installation of 

seismometers along the Alaska-Aleutian megathrust, we employ paleoseismology 

methods to investigate the record of earthquakes and tsunamis recorded in the sediments 

along the subduction zone. Our results will help better assess seismic hazards in the 

region and inform future scientific investigations in the area. 

 Subduction zone paleoseismology employs coastal stratigraphy and 

micropaleontology to document signs of past earthquakes and tsunamis, allowing us to 

extend the seismic record beyond the historical and instrumental period. Coseismic land-

level change and tsunami inundation leave distinct signatures in the lithology and grain 

size of coastal sediments (e.g., sudden switches in sediment type, sand/silt deposits) that 
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differ from sediments from the interseismic period (Nelson et al., 1996; Dura et al., 

2016). Microfossils such as diatoms can provide an independent test of coseismic land-

level change and tsunami inundation inferred from coastal sediments because of their 

sensitivity to environmental factors including salinity, tidal exposure, and substrate 

(Hemphill-Haley, 1995a; Shennan et al., 1999; Sawai, 2001; Shennan and Hamilton, 

2006). The utility of diatoms as indicators of coastal environmental change also stems 

from the high preservation potential of their siliceous valves in coastal sedimentary 

archives (Hamilton et al., 2005; Sawai et al., 2008). However, one complication of 

paleoseismology is differentiating between tsunami deposits and clastic sediments 

deposited by other mechanisms, since their characteristics can be similar (Switzer and 

Jones, 2008; Morton et al., 2007; Kortekaas and Dawson, 2007). 

 Paleosesimology studies have been conducted along subduction zones all over the 

world in Chile (Dura et al., 2015b; Hong et al., 2016), U.S. Pacific Northwest (Hemphill-

Haley, 1995; Witter et al., 2003), and Japan (Sawai et al. 2008; Nanayama et al., 2007). 

Previous paleoseismic studies in Alaska have looked at sediments in the general region of 

the AD 1964 rupture zone to infer rupture and tsunami inundation extent, and to look for 

evidence of historic and prehistoric earthquakes and tsunamis (Figure 1; Shennan et al., 

2014; Briggs et al., 2014; Nelson et al., 2015; Shennan et al., 2013; Shennan et al., 2005; 

Shennan et al., 1999; Shennan et al., 2009; Shennan et al., 2014b; Hamilton et al. 2004a; 

Hamilton et al., 2004b; Combellick, 1994). The AD 1964 rupture boundary is fairly well 

constrained, but questions still remain about the rupture patterns and tsunami extents of 

past great earthquakes in the Kodiak Island region. 
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 We investigated marsh deposits from central Kodiak Island (Figure 2) for 

stratigraphic and microfossil evidence of historic and prehistoric earthquakes and 

tsunamis. We aimed to answer three main research questions: 1) Is the lithological 

evidence of paleoearthquakes (land-level changes and/or tsunami deposits) at Old Harbor 

comparable with other records from nearby sites to the north and south? 2) Is there 

evidence for the AD 1788 earthquake at Old Harbor? 3) Can diatoms and/or grain-size 

data aid in identifying whether or not clastic layers are deposited by tsunami? To address 

these questions, we performed a complete lithologic, grain-size, and diatom analysis on a 

sediment core collected from Big Creek marsh in Old Harbor on Kodiak Island (Figure 

2). We developed a composite chronology for the core so we could constrain the timing 

of the events and compare them to the existing paleoseismic records from nearby sites. 

We found a total of six clastic deposits in the stratigraphic record from Central Kodiak 

Island dating back to the mid 1700s. Using the stratigraphic, diatom, sedimentological, 

dating, and statistical analyses, we identified two of these clastic deposits as tsunami 

sands from past megathrust earthquakes along the Alaska-Aleutian subduction zone (AD 

1964 and AD 1788), which matched findings from previous studies. However, we did not 

see signs of significant land-level changes associated with the events, disagreeing with 

some studies from nearby sites. We concluded that the other four clastic deposits were 

most likely deposited by floods, storms, or tele-seismic earthquakes. 
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2. Study Area 

 The Alaska-Aleutian subduction zone is a ~3000 km long megathrust boundary, 

where the Pacific plate is subducting beneath the North American plate at ~54-78 mm/yr 

(~60 mm/yr near Central Kodiak Island; Figure 1; Carver and Plafker, 2008). The 

subduction zone has been divided into 17 segments, based on the rupture extents of past 

earthquakes (Nishenko and Jacob, 1990). Four successive segments of the subduction 

zone (Kodiak Island, Prince William Sound, Alaska Peninsula, and Yakataga-Yakutat) 

ruptured during the AD 1964 earthquake (Carver and Plafker, 2008; Plafker, 1969). Our 

study site, Old Harbor on Kodiak Island (Figure 2a&b), is at the western end of the AD 

1964 rupture zone and lies near the border of subsidence and uplift caused by the AD 

1964 rupture (Figure 1). Old Harbor was severely damaged both by subsidence and a 

tsunami with a run-up of 7.3 m above Mean Sea Level (Kachadoorian and Plafker, 1967). 

Thirty-four of 35 residences were destroyed (Khachadoorian and Plafker, 1967). Plafker 

and Kachadoorian (1966) estimated coastal subsidence at 0.6-0.9 m, which may include a 

component of compaction of the coastal sediments. Old Harbor likely lies within the 

rupture area of an earthquake in AD 1788 that was reported 15 km to the southwest at 

Three Saints Bay (Figure 1 & 2a; Soloviev, 1990) and found in the sediment record at a 

site in northern Kodiak (Shennan, 2014). Old Harbor is also within the proposed rupture 

area of a prehistoric earthquake that previous paleoseismic studies date to approximately 

500 yBP (Figure 1; Gilpin, 1995; Briggs et al., 2014; Shennan et al., 2014). 

 Kodiak Island, Alaska (Figure 2a) is an island ~40 km southeast of the mainland 

of Alaska separated by the Shelikof Strait. Kodiak Island is made up of Mezozoic and 
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Tertiary marine sedimentary rocks and some volcanic rocks in the Old Harbor region 

(Plafker and Kachadoorian, 1966). The central region of Kodiak Island, where Old 

Harbor (Figure 2b) is located, is mountainous and the coastline is rocky and steep, with 

many narrow inlets and islets (Plafker and Kachadoorian, 1966; Capps, 1934). Some 

areas of Kodiak are also covered in a thin layer of unconsolidated sediments from glacial, 

alluvial, delta, and beach deposits, this includes part of Old Harbor (Plafker and 

Kachadoorian, 1966; Capps, 1934). The primary salt marsh plants on Kodiak Island are 

Carex, Puccinella phryganodes, Triglochin maritima, Triglochin palustris, Puccinella 

triflora, and Potentilla egedii (Gilpin, 1995). 

 The southern Alaska shelf, including Kodiak Island, is affected by glacio-isostatic 

adjustment from the removal of the Cordilleran ice sheet at the end of the last glacial 

period. Kodiak is in the region that has been reported to be subsiding around 0.5 mm/yr 

(Gilpin, 1995). The tide gauge that has been in place on Kodiak since AD 1950 recorded 

~1 mm/yr of relative sea-level rise (RSL) prior to AD 1964 (NOAA). The tide gauge was 

reinstalled in AD 1975 after being destroyed by the AD 1964 earthquake, and since then 

RSL has been falling ~9.99 mm/yr (NOAA), due to postseismic land uplift after the 

sudden coseismic subsidence.  

 The two specific sites from which sediment samples for this study were collected, 

Big Creek (Figure 2c) and Bear Terrace (Figure 2d), are salt marshes in Old Harbor, both 

near river mouths in tidally influenced inlets. The diurnal tidal range in the area of Old 

Harbor is 2.68 m (NOAA). The Big Creek marsh lies along many winding stream 

channels, which are prone to flooding. At Bear Terrace tidal inundation is limited by flow 
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through a culvert because of the emplacement of a road nearby. Big Creek had the 

deepest sediment record with the most sand and silt deposits present within its 

stratigraphy.  

�7



3. Methods 

3.1 Sediment coring 

 We described eleven sediment cores at Big Creek and seven at Bear Terrace to 

determine the extent of sand and silt deposits within the peat (Figure 2c&d). We 

described the stratigraphy of the cores using the Troels-Smith classification system 

(1955; Nelson et al., 1996) to distinguish between sand, silt, and peat deposits. We also 

analyzed the sharpness of the contacts between the different layers and looked for other 

features typical of tsunami deposits (Nelson et al., 1996). We collected cores at various 

points along the littoral zones that contained the deepest records of clastic deposits and 

we chose the longest core, BC.15.02, for primary analyses. We collected the cores in 

overlapping 50 cm segments using a Russian corer to ensure proper core recovery and to 

prevent compaction during the coring process and sample contamination. To preserve the 

cores, we transferred them to PVC tubes, wrapped them in plastic, and stored them at 

4°C. 

3.2 Field surveying 

 We surveyed salt marshes at both Bear Terrace and Big Creek. Our field goal was 

to find suitable coring locations with long sediment records holding archives of past 

earthquake events. We used a real-time kinematic (RTK) GPS using a base and rover to 

determine the precise locations (precision of <0.01 m) and elevations (precision of <0.04 

m) of each sample location and tied them to local tidal datums by surveying to the tide 
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gauge at Old Harbor (NOAA ID: 9457527), ~2 km from Bear Terrace and ~4 km from 

Big Creek. 

3.3 Computerized tomography and X-ray images 

 Computerized tomography (CT) scans were taken of all the cores at South County 

Hospital in Rhode Island. The CT machines take cross sectional images of the core and 

measure the radiodensity of the material in Houndsfield units. The CT images were 

analyzed using Horos computer software; denser areas are signified by warmer colors. X-

ray images were also taken of all cores at University of Rhode Island Health Services to 

view density differences within the cores. In the X-ray images, denser areas are signified 

by lighter colors. The CT and X-ray images helped to identify density changes and 

sharpness between units that are not obvious from optical inspection (Briggs et al., 2014; 

Nelson et al., 2015). 

3.4 Chronology 

 We developed a chronology for our cores by using radiocarbon (14C), radiometric 

(137Cs), and tephra methods. 137Cs was particularly important for our cores since the peak 

of cesium in the atmosphere occurred in AD 1963 after the Limited Test Ban Treaty, just 

before the AD 1964 earthquake. Our cores also have a layer of pumice from the AD 1912 

eruption of the Katmai volcano, just northwest of Kodiak Island. This pumice layer acts 

as a relative age marker in this section of our core. 
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 When using radiocarbon dating, material younger than ~1600 CE yields multiple 

calibrated age ranges because of a plateau in the calibration curve (Stuiver and Pearson, 

1993). Thus, we sampled the upper 40 cm of core BC.15.02 in one-cm increments for 

137Cs activity analysis. The samples were dried at ~40°C, ground to a powder with a 

mortar and pestle, placed in plastic vials, and shipped to Dr. Reide Corbett at UNC 

Coastal Studies Institute to measure 137Cs activity by direct gamma counting (Corbett et 

al., 2009). We extracted in-situ plant macrofossils (rhizomes) from the core from directly 

above and below lithologic contacts for radiocarbon dating beginning at 42 cm. The 

material was cleaned, dried at ~40°C, weighed, and sent to National Ocean Sciences 

Accelerator Mass Spectrometry (NOSAMS) facility at Woods Hole Oceanographic 

Institution (WHOI) for acid-base-acid pretreatment and accelerator mass spectrometry 

(AMS) radiocarbon dating.  

 We produced a Bayesian age-depth model using Bchron (Haslett and Parnell, 

2008; Parnell et al., 2011) to produce a composite chronology for core BC.15.02. We 

assigned normal probability distributions to the 137Cs and tephra age markers. We 

calibrated the radiocarbon dates using the IntCal13 dates (Reimer et al., 2013) to obtain 

2σ (95%) probability age ranges. In our model, we removed the clastic deposits and 

adjusted the inputted depths since we know these units were deposited instantaneously 

and may distort the model (Parnell and Gehrels, 2015). Bchron created a chronology for 

the entire core and we used this age model to estimate the timing of sand and silt 

deposition. With our completed chronology, we were able to compare ours to nearby 

chronologies and try to associate clastic layers with known earthquake and tsunami 
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events. We also looked at the maximum calibrated radiocarbon ages to assess the 

reliability of the age model.  

3.5 Grain Size 

 We measured the grain size of sediment samples from core BC.15.02 using a 

Malvern Mastersizer 3000 laser particle size analyzer. The cores were sampled every cm 

through each clastic bed, as well as 3 cm above and below each clastic unit. The samples 

were treated with 30% hydrogen peroxide to dissolve any organic material and the 

remaining inorganic material was analyzed on the Mastersizer (Switzer and Pile, 2015). 

The d10 (the diameter of which 10% of the grains are smaller) and d50 (50% of grains 

are smaller) particle size class was mainly used to distinguish grain size between the 

samples and help distinguish tsunami deposits from other clastic deposits, either from 

storm, or flood events (Dura et al., 2015; Kortekaas and Dawson, 2007; Morton et al., 

2007; Folk, 1966). 

3.6 Diatom Analysis 

  Diatoms work particularly well in our area to test for paleoenvironmental 

changes because their fossils are typically well preserved in salt marsh sediments and 

they are quite sensitive to different environmental conditions (Dura et al., 2015; Dawson 

et al., 1996; Hemphill-Haley, 1996; Zong et al., 2002; Barlow et al., 2012). We use 

diatoms, instead of foraminifera, for our study in Alaska because salt marsh foraminifera 

have particularly low species diversity at high latitudes. We completed a diatom analysis 
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throughout core BC.15.02, which helped in determining sediment provenance (Dawson 

and Stewart, 2007; Hemphill-Haley, 1995). 

 We sampled core BC.15.02 in one cm increments for diatom analysis beginning 3 

cm above each clastic bed and down to 3 cm below each clastic bed, as well as every 2-3 

cm through thick peat sequences. Within the largest clastic layer, samples were taken 

every 3 cm. The sediment samples were treated with 30% hydrogen peroxide to dissolve 

any organic material in the sample and then centrifuged and decanted. After the hydrogen 

peroxide treatment, approximately 25 ml per sample was dripped with a pipette and 

spread evenly onto a cover slip and left to dry. The dried cover slips were then mounted 

onto labeled microscope slides using Naphrax and viewed on a Leica microscope under 

oil immersion and 1000x magnification. At least 300 diatom individuals were counted 

and identified per sample to species level using reference materials (Diatoms of the 

United States, 2017). The diatoms were used to infer sediment provenance based on their 

salinity preferences and life-form using sources including Hemphill-Haley (1993), 

Krammer and Lange-Bertalot (1986, 1988, 1991a, 1991b), Vos and de Wolf (1988, 1993), 

and Denys (1991). Salinity preferences were defined as either freshwater, brackish, or 

marine and life-form was distinguished by either epyphytic (attach to plant/algae), 

epipelic (attach to clay or silt grains), or epipsammic (attach to sand grains). 

 Deposits from turbulent, high energy flows, such as tsunamis, sometimes contain 

a higher percentage of fractured diatom valves than diatoms in other deposits (Dawson et 

al., 1996; Dawson, 2007; Witter et al., 2009; Nelson et al., 2015). We scanned the diatom 
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slides at low magnification (400x) to determine the percentage of fractured diatoms. We 

counted all diatoms larger than 40 µm, counting at least 100 valves per sample. 

 To further evaluate patterns within the diatom assemblages from our samples, we 

performed a detrended correspondence analysis (DCA) using the MVSP computer 

software program (Horton and Edwards, 2006; Dura et al., 2015). We included all diatom 

species with >2.5% abundance when inputting the data for analysis. Samples made up of 

similar assemblages are grouped together on the DCA plot and samples that differ are 

grouped apart.  
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4. Results 

4.1 Stratigraphy 

 We described the stratigraphy at Big Creek and Bear Terrace using 11 cores and 7 

cores, respectively (23-100 cm long). The stratigraphy at both Bear Terrace and Big 

Creek consists of peat and silty peat with multiple sand and silt beds throughout the peats. 

All of the cores had an uppermost sand/silt unit (clastic deposit 1) that was most likely 

deposited by the AD 1964 tsunami (Figure 3). The cores from Big Creek and Bear 

Terrace both include a tephra layer from the AD 1912 Katmai eruption and multiple sand 

and silt beds below the first clastic deposit (Figure 3). Our longest core from Big Creek 

(BC.15.02) had both the greatest number and best representation of clastic units in the top 

90 cm. We chose core BC.15.02 for stratigraphic, diatom, grain-size, and chronological 

analyses (Figure 4). 

 In core, BC.15.02, organic modern peat is present from the surface down to 14 

cm. Directly below the modern peat is a 17 cm thick sand unit that extends from 14-31 

cm (clastic deposit 1). The contact between this sand unit and the overlying peat is 

diffuse (~10 mm), but the contact between this sand and the underlying silty peat unit is 

sharp and abrupt (~2 mm). The silty peat layer extends from 31 to 36 cm. A thin layer of 

white pumice from the AD 1912 eruption of Mount Katmai is present within this unit at 

34 cm. There is a 2 cm thick sandy silt unit from 36 to 38 cm (clastic deposit 2), which 

includes some peat within it and has a diffuse upper contact similar to the clastic deposit 

1. The contact between this unit and underlying silty peat is fairly sharp (~4 mm) but not 
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as sharp as the lower boundary of clastic deposit 1. Five cm of silty peat separates this 

unit from another 2.5 cm sandy silt unit (clastic deposit 3), which extends down to 46.5 

cm depth and includes some organic material within it. This unit has a fairly sharp (4 

mm) boundary with the overlying peat but a slightly more gradual (~6 mm) lower 

boundary. Seven cm of silty peat separates clastic deposit 3 and a 3 cm sandy silt deposit 

(clastic deposit 4). This unit has an abrupt contact (2 mm) with the underlying silty peat 

but a diffuse boundary (10 mm) with the peat above. A thick sequence of primarily silty 

peat (~15 cm) lies below clastic deposit 4. There is a sudden switch to a thin sandy silty 

unit at 69 cm which is only 1.5 cm thick (clastic deposit 5). It has distinct boundaries 

with the peat above and the thin layer of underlying peat (both contacts ~3 mm). 

Extending from 71-82 cm is a sand deposit with a straight (clastic deposit 6), very sharp 

contact with the peat above it (~1 mm). The boundary between this sand and the silty peat 

below is at an angle but still abrupt (~3 mm). Silty peat continues down to 90 cm until 

core refusal. 

4.2 Grain-size 

 Clastic deposit 1 is a medium to coarse grained sand with an average d10 grain-

size of 32.4 µm and average d50 of 134.6 µm. Grain-size analysis through this sand 

shows three separate upward fining sequences; one from 30-27 cm, one from 25-18 cm, 

and one from 16-13 cm at the very top of the clastic unit. The coarsest material is in the 

middle of clastic deposit 1. The grain-size drops through the peat below clastic deposit 1 

and then slightly increases through clastic deposit 2 (average d10: 12.9 µm average d50: 
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71.9 µm) but remains relatively fine. Clastic deposit 3 (average d10: 9.5 µm; average 

d50: 43.8 µm) also has a similar grain-size to the peat above and below it, mostly made 

up of silt grains with a few larger sand grains. The grain-size increases through clastic 

deposit 4 (average d10: 15.1 µm; average d50: 78.5 µm). There is one particularly coarse 

layer made up of sand grains with a d10 value 24.2 µm but we could not identify any 

grading. The grain-size becomes very fine through the peat and then increases to an 

average d10 of 17.4 µm (average d50: 73.9 µm) through clastic deposit 5. There is a large 

jump in the grain-size through clastic deposit 6. Similar to clastic deposit 1, clastic 

deposit 6 contains multiple upward fining sequences, one in the bottom-middle section of 

the unit (77-75 cm) and one at the top (75-71 cm). The average d10 value through the 

entire unit is 33.3 µm and d50 is 142.5 µm, but the upper half of the sand (71-75 cm) is 

much coarser with an average d10 of 51.0 µm and average d50 of 169.8 µm. 

4.3 Diatom assemblages 

 The diatom assemblage in the peat directly above clastic deposit 1 is made up of 

primarily freshwater diatoms (e.g., Pinnularia borealis) and epiphytic and epipelic 

diatoms (e.g., Navicula pusilla and Navicula capitata). There is an increase in marine 

diatoms in the peat between 7 and 9 cm depth (e.g., Cocconeis scutellum and Cocconeis 

costata). The diatom assemblage within clastic deposit 1 is a mixed assemblage of 

freshwater, brackish, and marine species, but shows a significant increase in marine and 

brackish diatoms (e.g., Cocconeis costata, Cocconeis scutellum, Navicula phyllepta, 

Planothidium lanceolatum) and an even bigger increase in epipsammic diatoms (e.g., 
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Planothidium delicatulum), particularly through the coarsest section of the sand (~30% 

increase). At 32 cm, the diatom assemblage switches back to primarily freshwater 

species, similar to just above clastic deposit 1.  

 Clastic deposit 2 also contains a mixed assemblage of freshwater, marine, and 

brackish diatoms, but the percentage of both marine and brackish diatom species 

increases by 10-15% from the peat above it. The overall percentage of marine diatoms is 

not as high as in clastic deposit 1 (average 45% for deposit 1 compared to average 35% 

for deposit 2). The silty peat below clastic deposit 2 has a high percentage of epipelic 

(~60%) and freshwater diatoms. (~80%). Around 44 cm, we see a significant increase in 

epiphytic diatoms (e.g., Navicula capitata), from ~35% to 65%). The epiphytic increase 

continues through clastic deposit 3. The rest of the diatom assemblage of clastic deposit 3 

is mixed but increases in marine and brackish, and epipsammic diatoms, compared to the 

peat above and below it. Instead of the typical freshwater diatom assemblage, the peat 

above clastic deposit 4 contains a more brackish diatom assemblage (e.g., Navicula 

cincta and Navicula phyllepta). This increase begins around 51 cm. Similar to clastic 

deposits 2 and 3, clastic deposit 4 has a mixed assemblage but increases in marine 

diatoms by ~15%. It has a slightly more brackish assemblage than the other clastic 

deposits. The peat in between clastic deposits 4 and 5 contain mainly freshwater, 

epiphytic, and epipelic diatoms, and some marine diatoms as well.  

 Clastic deposit 5 contains fewer marine and epipsammic diatoms than the other 

clastic deposits and has a similar assemblage to the peat surrounding it. Additionally, the 

dominant brackish and marine diatom species vary from the other clastic deposits. This 
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deposit contains more of the brackish species Nitzchia commutata and fewer 

Planothdium lanceolatum. Clastic deposit 6 contains a similar diatom assemblage to 

clastic deposit 1, with a significant increase in marine and brackish diatoms, as well as an 

even more significant increase in epipsammic diatoms particularly through the coarsest 

sections of the sand. In the peat directly above and below this deposit, the diatom 

assemblage switches to primarily freshwater (~75%) and epipelic (~60%) diatoms. 

 The percentage of fractured diatom valves in clastic deposits 1, 2, 3, and 6 all had 

fracture percentages between 63-65%. The peats above and below these clastic deposits 

contained an average of 58% fractured valves. Clastic deposits 4 and 5 had slightly lower 

fracture percentage: 50% and 49%, respectively. The peats above and below these clastic 

deposits contained ~43% fractured diatom valves. 

 The DCA statistical analysis of the diatom samples presented three distinct 

clusters of samples (Figure 5). Samples from clastic deposits 1 and 6 were grouped 

together with low axis 1 values (0.0-0.5), samples from clastic deposits 2, 3, 4, and 5 had 

mid-range axis 1 values (0.5-1.5), and samples from peat deposits had the highest axis 1 

values (1.5-2.25). Samples from along the lithologic contacts of clastic deposit deposits 1 

and 6 had higher axis 1 values (1.25-2.0) and grouped with the peat samples. One outlier 

sample from clastic deposit 6 plots with the samples from clastic deposits 2, 3, 4, and 5.  

4.4 Chronology 

 Radiocarbon dating of core BC.15.02 reveals that the sediments at the base of 

core dates back to ~AD 1650. The peak in 137Cs activity in our core falls at 32 cm, just 
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below clastic deposit 1 (Table 2). The peak is a result of the maximum 137Cs atmospheric 

fallout in AD 1963 after the Limited Test Ban Treaty (Carter and Moghissi, 1977) and 

therefore we assigned 32 cm depth an age of AD 1963. At 34 cm, there is a layer of 

tephra deposited by the AD 1912 eruption of Mount Katmai, which acts as an age marker 

in our core (Fierstein and Hildreth, 1992). Thus, 34 cm depth was assigned an age of AD 

1912. Seven radiocarbon dates from 43 cm down to 87 cm helped to constrain the ages of 

the lower clastic units. All of our radiocarbon dates produced multiple 95% calibrated age 

ranges (Table 1; Figure 6)) because their ages fall within the radiocarbon modern plateau 

(AD 1600-1950; Stuiver and Pearson, 1993). 

 Our age-depth model for core BC.15.02 estimates times of deposition for each of 

the clastic deposits below clastic deposit 1, AD 1964 (Figure 7). The modeled 

depositional ages are: 43-78 yBP (clastic deposit 2), 87-124 yBP (clastic deposit 3), 

155-183 yBP (clastic deposit 4), 204-242 yBP (clastic deposit 5), and 239-278 yBP 

(clastic deposit 6).  
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5. Discussion 

5.1 Identifying tsunami deposits in core BC.15.02 

 The stratigraphy at Old Harbor indicates that continuous peat deposition has been 

interrupted six times by clastic deposits over the last ~400 years. These deposits are most 

likely the result of either local Alaska-Aleutian megathrust tsunamis, storms, floods, or 

tele-seismic tsunamis. 

 We have ample evidence that the AD 1964 tsunami completely inundated Old 

Harbor with tsunami run-up heights of several meters from various eyewitnesses (Plafker, 

1969; Plafker and Khachadoorian, 1966). We interpret clastic deposit 1 to be a tsunami 

sand deposited by the AD 1964 earthquake and tsunami. The 137Cs activity peak, which 

marks the year AD 1963, immediately below clastic deposit 1 strongly supports this 

interpretation. The unit is thick and contains a fairly wide range of grain sizes (silt to 

coarse sand), which are both typical traits of tsunami deposits (Switzer and Jones, 2007; 

Dawson and Stewart, 2007; Peters et al., 2001). The fining upward sequences we see 

within clastic deposit 1 are also typical of tsunami deposits; coarser material is deposited 

as the tsunami initially brings in the large magnitude of water and then finer material is 

deposited during the “standing” period as wave energy rapidly decreases (Dawson and 

Stewart, 2007; Kortekaas and Dawson, 2007). Storms tend to bring in smaller amounts of 

water and deposit sediments more quickly than tsunamis, making it less likely to see 

grading patterns in the deposits (Switzer and Jones, 2008). The successive normally 

graded sequences most likely reflect multiple pulses from the tsunami wave (Dawson et 

al., 1991; Dawson and Stewart, 2007; Fujino et al., 2006). The abrupt contact at the base 
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of this sand between the peat and sand deposit is also common of extremely high energy 

waves like a tsunami wave (Bourgeois, 2009; Witter et al., 2003). We also see evidence in 

our diatom results that validate our interpretation of clastic deposit 1 as the AD 1964 

tsunami deposit. Mixed diatom assemblages with an increase in marine and brackish 

diatoms are typical for tsunami deposits because tsunamis transport and deposit far field 

sediments but still erode and deposit nearshore sediments as they inundate (Dawson et 

al., 1996; Dura et al., 2015). The significant increase in marine diatoms (~30%) and 

relatively large increase in brackish diatoms (15%) is also typical of a tsunami deposit 

(Hemphill-Haley, 1995; Dawson et al., 1996; Dura et al., 2015). The large increase in 

epipsammic diatoms, like Planothidium delicatulum, also strongly indicates a marine 

source for the sands, as we see very few (~10%) epipsammics in the peat. 

 We used the lithologic and microfossil characteristics of clastic deposit 1 as a 

guide for the other sand/silt deposits in the core (Table 3). Using those lines of evidence, 

we interpret clastic deposit 6 to be a tsunami deposit; most likely from the AD 1788 

earthquake and tsunami, as the core is too young to record the 500 yBP earthquake (e.g., 

Gilpin, 1995; Briggs et al., 2014; Shennan et al., 2014). Reports from Russian settlers 

state that Three Saints Bay, 15 km west of Old Harbor, was hit by a large earthquake 

(estimated M8) in the summer of AD 1788 (Soloviev, 1990). The grain-size of clastic 

deposit 6 (average d50: 134.6 µm) follows similar patterns to those of clastic deposit 1 

(average d50: 142.5 µm). Like deposit 1, deposit 6 is thick (11 cm) and predominantly 

composed of fine sand but includes a range of grain-sizes (silt to medium sand). It 

contains multiple fining upwards sequences, again suggesting successive tsunami waves 
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with multiple periods of standing water (Dawson et al., 1991; Dawson and Stewart, 2007; 

Fujino et al., 2006). The irregular, angled contact between the underlying peat and 

deposit 6 suggest erosion took place during the time of deposition. Erosional contacts are 

a common feature of tsunami deposits because of their sudden, strong impact energy 

(Dawson and Stewart, 2007; Fujino et al., 2006; Nelson et al., 2015). In addition, the 

duplicate core from this location includes a rip-up clast in the top of the sand unit, a 

feature common to tsunami deposits (Dawson et al., 1991; Kortekaas and Dawson, 2007; 

Morton et al., 2007). The diatom assemblage of clastic deposit 6 is similar to deposit 1, 

dominated by the same epipsammic diatom species and increasing by ~25% in marine 

diatoms from the peat above and below. Additionally, the samples from clastic deposits 1 

and 6 cluster together and apart from the rest of the clastic deposits on the DCA plot, 

indicating that these two deposits contain distinct diatom species, different from the other 

clastic deposits (Figure 5).  

 Conversely, clastic deposits 2, 3, 4, and 5 do not match the characteristics 

discussed above to be classified as tsunami deposits (Table 3). These deposits are all far 

thinner than deposits 1 and 6 and lack the abrupt, erosional bases that are typical of 

tsunami deposits (Morton et al., 2007; Switzer and Jones, 2007). They are composed of 

silt or very fine sand (average d50 between 44 and 78 µm). The lack of any coarse grains 

is indicative of a lower energy event. We would expect to see larger grain sizes if these 

units were deposited by a local Alaska-Aleutian subduction zone tsunami, especially 

since we know larger material is available and was picked up by clastic deposits 1 and 6. 

We could not identify any grading patterns within these units. The diatom assemblages of 
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deposits 2, 3 and 4 are mixed and increase in brackish and marine species compared to 

surrounding peat, but the increases in epipsammic and marine are not as drastic as in 

deposits 1 and 6 (10-15%). The diatom assemblage of clastic deposit 5 remains mostly 

freshwater dominated. We do not expect to see drastically different diatom assemblages 

than the tsunami deposits because the grains are primarily coming from the same source. 

However, these four deposits all cluster together in the DCA plot, indicating similar 

species composition, and plot away from clastic deposits 1 and 6. Moreover, there is no 

paleoseismic record of any other megathrust earthquakes that ruptured this section of the 

Alaska-Aleutian subduction zone in the time period (Shennan et al., 2014; Gilpin, 1995; 

Briggs et al., 2014). Based on their lithology and diatom assemblages, we interpret clastic 

deposits 2, 3, 4, 5 deposits to be either storm deposits, flood deposits, or far field tsunami 

deposits. 

 Diatom fracture counts from throughout the core showed only slight variances in 

percentage of fractured diatom valves between the peat units and the clastic units 

(differences of <10%). This result is likely because our clastic units contain primarily 

Cocconeis and Planothidium diatom species which do not fracture as easily as other 

species (Witter et al., 2009). The higher percentage of fractured diatoms in classic 

deposits 1, 2, 3, and 6 may indicate that these deposits were results of higher energy 

depositional mechanisms (tsunami or storm versus floods) than clastic deposits 4 and 5 

(Witter et al., 2009; Nelson et al., 2015; Cooper et al., 2010). Furthermore, we were 

unable to use the fracture counts as distinctive tsunami deposit indicators. 
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 Using all of our lines evidence, we tried to deduce which type of non-Alaska- 

Aleutian megathrust earthquake event deposited clastic deposits 2, 3, 4, and 5. Clastic 

deposit 5 is thin (1.5 cm), fairly fine grained, remains dominated by freshwater, epipelic, 

and epiphytic diatoms, and contains a slightly lower percentage of fractured valves. 

Therefore, we expect that this deposit was the result of a small flooding event in the river 

channel. Clastic deposits 2, 3, and 4 are all similar in thickness (2-3 cm), made up of 

primarily silt, and contain a higher percentage of marine diatoms than deposit 5 but a 

lower percentage than deposits 1 and 6. We expect that they were deposited by either 

storms or tele-seismic tsunamis, which are both lower energy than megathrust tsunamis 

but still have the ability to bring in marine diatoms (Switzer and Jones, 2008; Kortekaas 

and Dawson, 2007). Past megathrust earthquakes originating in Japan, including the 2011 

Tohuku Earthquake, have sent tele-seismic tsunamis to the coast of Alaska (Heidarzadeh 

and Satake, 2013). However, it is difficult to match our results with specific historical 

events. 

  

5.2 Comparison to earthquake records at nearby sites 

 Previous paleoseismic studies in the Kodiak Island region found evidence of up to 

six tsunami deposits in marsh stratigraphy dating back to 2200 y BP (Briggs et al., 2014; 

Shennan et al., 2014; Gilpin, 1995), including the AD 1964 and AD 1788 events. A 

comprehensive study that covered all of Kodiak Island by Gilpin (1995) found 

stratigraphic evidence of three paleo earthquakes (either individual events, or clusters) 

from ~500 yBP, ~800 yBP, and ~1300 yBP, but could not determine whether or not land-
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level changes were associated with these events. Gilpin identified one younger tsunami 

deposit but was unable to determine if it was deposited by the AD 1964 tsunami or the 

AD 1788 tsunami. Shennan et al. (2014) found a clastic deposit on southeast Kodiak 

Island of the ~500 yBP event reported by Gilpin, which they dated at AD 1440-1620. 

Briggs et al. (2014) found a thin tsunami deposit and evidence of land-level change on 

Sitkinak (15 km southwest of Kodiak Island), which they dated at AD 1430-1650. Both 

studies found evidence of events from AD 1964 and AD 1788; Briggs et al. (2014) 

reported uplift associated with the AD 1788 event on Sitkinak and Shennan et al. (2014) 

reported subsidence on Kodiak. 

 Based on these previous studies, written records, and eyewitness accounts, we 

expected to see evidence of two earthquakes and/or tsunamis from AD 1964 and AD 

1788 at our site in south central Kodiak Island. Radiocarbon dating indicated that our 

record at Old Harbor did not extend long enough to record the ~500 yBP event. We know 

that the AD 1964 tsunami completely inundated Old Harbor with tsunami run-up heights 

of several meters from various eyewitnesses (Plafker, 1969; Plafker and Khachadoorian, 

1966) and thus expected the AD 1964 deposit to be large. We also anticipated the AD 

1788 deposit to be a sizable deposit given Old Harbor’s proximity to Three Saints Bay 

(15 km southeast), where at least one large earthquake (with reported subsidence) and a 

tsunami in the summer of AD 1788 were documented (Soloviev, 1990). The two deposits 

we identified at our site for these events are both greater than 10 cm thick. 

 Developing a chronology and a reliable age-depth model for core BC.15.02 was 

challenging because we were limited by a lack of precise age markers extending beyond 
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AD 1912. We have only two precise ages in core BC.15.02, the 137Cs peak and the 

Katmai tephra deposit. Due to the lack of other commonly used chronologic markers such 

as pollution history (e.g., Kemp et al., 2017; Gerlach et al., 2017), we relied on 

radiocarbon dating of identifiable plant macrofossils to date the sediments below the 

tephra deposit. However, because our stratigraphic record at Big Creek is relatively 

young, the radiocarbon dates are difficult to decipher (Figure 6). Samples from AD 

1650-1950 fall within the radiocarbon “modern plateau,” which produces multiple 

calibrated age ranges for each sample, making it nearly impossible to distinguish dates 

that fall in that time period (Stuiver and Pearson, 1993). Because of these constraints, the 

Bchron age-depth model had difficulty constraining ages in the deeper section of the core 

because of the multiple calibrated age ranges for our radiocarbon dates. We were also 

limited by only having one date from below clastic deposit 6. Therefore, our age model 

may not predict accurate ages of deposition for each of the clastic deposits. The age 

model predicts deposition of clastic deposit 6 to be 239-278 yBP, too old to be the AD 

1788 event (Figure 7). However, if we look solely at the calibrated age ranges for the 

sample below clastic deposit 6, one of the age ranges is AD 1780-1800 (Table 1). Such a 

maximum range would be compatible with this being a tsunami deposit from AD 1788. 

This evidence, coupled to the strong evidence from the diatoms and the grain-size data, 

support our interpretation that this is the tsunami from the AD 1788 earthquake. 
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5.3 Land-level change 

 Old Harbor lies in the region that subsided during the AD 1964 earthquake. 

Plafker and Khachadoorian (1966) reported 0.6-0.9 m of subsidence at Old Harbor, which 

includes sediment compaction. However, we do not see a significant land level change 

signature in our AD 1964 deposit based on our diatom results. The switch from a 

freshwater diatom assemblage to a marine assemblage at the base of the AD 1964 deposit 

to the peat above the sand is not abrupt enough (increase in marine diatoms by 3%, 

decrease in brackish diatoms by 13%, and percentage of freshwater diatoms remains the 

same) to indicate a significant positive relative sea-level tendency associated with 

coseismic subsidence (Figure 4; Nelson et al., 1996; Shennan et al., 2007). Old Harbor 

lies near the inflection point for coseismic subsidence and uplift for the AD 1964 event, 

which could be why our results do not indicate any drastic land-level change. 

Additionally, geodetic surveying data from Ichnose et al. (2007) reports that their nearest 

site to Old Harbor, on Sitkalidak Island, experienced ~21 cm of subsidence, and 

subsidence at Old Harbor was most likely just slightly higher. Shennan et al. (2014) 

reported net subsidence, ~0.35 m, from the AD 1788 earthquake, which is significantly 

less than what was reported on northern Kodiak Island from the AD 1964 event (1.2-1.5 

m). This location may explain why we also did not see a strong subsidence signal 

associated with our AD 1788 deposit. Comparing the peat above and below the AD 1788 

deposit, the diatom assemblages increase in marine by ~8%, increase in brackish by ~6%, 

and decrease in freshwater species by ~14%, which suggests little to no subsidence 

(Figure 4). Our site is just north of Sitkinak, which lies over the trench and is where 
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Briggs et al. (2014) reported coseismic uplift, indicating that Old Harbor lies just away 

from the trench might explain why we do not see evidence of significant land-level 

change. However, in order to confirm whether or not our site recorded land-level change 

and to quantify any possible changes, we would need to apply either a transfer function or 

another statistical method (Dura et al., 2015; Shennan and Hamilton, 2006; Hemphill-

Haley, 1995).  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6. Conclusions 

 We investigated the seismic history (last ~300 years) of south-central Kodiak 

Island, Alaska by examining salt marsh sediments from Big Creek in Old Harbor. We 

performed stratigraphic, grain-size, and diatom analyses on a 90 cm core and used our 

results from these analyses to help us determine whether or not the six clastic layers in 

our core were deposited by Alaska-Aleutian megathrust earthquakes. Radiocarbon, 

radiometric, and tephra dating techniques allowed us to associate the deposits in our core 

with known events from eyewitness accounts, historical reports, and paleoseismic studies 

from nearby sites.  

 We identified evidence of two earthquake and associated tsunami events in Old 

Harbor on Kodiak Island, AK, one from AD 1964 and one that is most likely from AD 

1788. Deposits from both of these events were found at nearby sites on Kodiak Island and 

Sitkinak Island. Grain-size and diatom assemblage results were particularly helpful in 

helping us distinguish the two tsunami deposits from the other four clastic deposits, 

which we concluded were deposited by either storms, floods, or tele-seismic tsunamis. 

The tsunami deposits were thick (>10 cm), contained a wider range of grain sizes 

(coarser material) with normally graded sequences, and contained a higher percentage of 

marine and epipsammic diatoms. Results from detrended correspondence analysis on our 

diatom assemblages showed a clear separation between the local tsunami deposits and the 

clastic layers from other depositional mechanisms, indicating that DCA is a valuable tool 

in distinguishing sources of clastic deposits. Our diatom results suggest that little to no 

land-level change occurred in association with either the AD 1964 or AD 1788 deposits, 
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which previous studies and eyewitnesses reported. However, to verify whether or not we 

see a land-level change at Old Harbor, we must apply either a transfer function or another 

statistical method to our diatom results.  

�30



APPENDIX 
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Figure 1. Map of the Alaska-Aleutian subduction zone with the estimated rupture 
patches of the AD 1964 earthquake (yellow), the AD 1788 earthquake (red), and the 
~500 yr BP earthquake (blue) from Shennan et al. (2014) and Briggs et al. (2014) and 
Plafker (1969). Star indicates our study site, Old Harbor.

~60 mm/yr
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Figure 2. (a) Location map of Kodiak 
Island (red box on inset map), which is at 
the eastern end of the Alaska-Aleutian 
subduction zone. Our study site, Old 
Harbor (red box on Kodiak Island map) is 
in south-central Kodiak Island. Tephra from 
Mt. Katmai (northwest of Kodiak Island) 
was used in the study as an age marker. 
Reports of the AD 1788 earthquake came 
from Three Saints Bay, just west of Old 
Harbor. (b) Map of Old Harbor on Kodiak 
Island with the two sampling locations, 
Bear Terrace and Big Creek (red boxes) (c) 
Map of Big Creek marsh with core 
locations shown (yellow circles). Core BC.
15.02 was used for primary analyses (d) 
Map of Bear Terrace marsh with core 
locations shown (yellow circles).
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Figure 3. Simplified stratigraphy of selected cores from Big Creek and Bear Terrace. 
Blue dashed lines correlate the base of the uppermost clastic deposit in each sediment 
core, red dashed lines correlate tephra deposits from the AD 1912 eruption of Mount 
Katmai, and green dashed lines correlate the base of the bottommost clastic deposit in 
the cores.

0

10

20

30

40

50

60

70

80

90

BC.15.03BC.15.02 BC.15.11BC.15.08 BT.15.04 BT.15.03

Peat

Silty peat

Sandy silt

Sand

Tephra



 

�34

Fi
gu

re
 4

. C
or

e 
B

C
.1

5.
02

 sh
ow

in
g 

(f
ro

m
 le

ft 
to

 ri
gh

t) 
13

7 C
s  

ac
tiv

ity
 d

ep
th

 p
ro

fil
e 

w
ith

 c
al

ib
ra

te
d 

ra
di

oc
ar

bo
n 

ag
e 

in
te

rv
al

s, 
si

m
pl

ifi
ed

 li
th

ol
og

y,
 p

ho
to

gr
ap

h,
 X

-r
ay

 im
ag

e 
(li

gh
t g

ra
y/

w
hi

te
 =

 d
en

se
r m

at
er

ia
l; 

da
rk

 g
ra

y 
= 

le
ss

 d
en

se
), 

C
T 

im
ag

e 
(r

ed
 a

nd
 o

ra
ng

e 
= 

de
ns

er
; b

lu
e 

an
d 

gr
ee

n 
= 

le
ss

 d
en

se
), 

gr
ai

n-
si

ze
 (d

10
), 

di
at

om
 a

ss
em

bl
ag

es
 a

s 
pe

rc
en

ta
ge

s o
f t

ot
al

 v
al

ve
s c

ou
nt

ed
 p

er
 sa

m
pl

e 
(c

la
ss

ifi
ed

 b
y 

sa
lin

ity
 p

re
fe

re
nc

e 
an

d 
lif

e-
fo

rm
), 

an
d 

pe
rc

en
ta

ge
 o

f 
fr

ac
tu

re
d 

di
at

om
 v

al
ve

s o
ve

r 4
0 

µm
 p

er
 sa

m
pl

e.

0
20

40
60

80
10

0
0

20
40

60
80

10
0

0
20

40
60

80
10

0
0

20
40

60
80

10
0

0
20

40
60

80
10

0
0

20
40

60
80

10
0

0
20

40
60

80
10

0

d1
0 

(µ
m

)
0

20
40

60
80

Fr
es

hw
at

er
 (%

)
Br

ac
ki

sh
 (%

)
M

ar
in

e 
(%

)
Ep

ip
hy

tic
 (%

)
Ep

ip
el

ic
 (%

)
Ep

ip
sa

m
m

ic
 (%

)
Fr

ac
tu

re
d 

va
lv

es
 (%

)

G
ra

in
 si

ze
D

ia
to

m
s

0

1
0

2
0 3
0

4
0

5
0

6
0

7
0

8
0 9
0

0
1

2
3

4
5

6
Ac

tiv
ity

 (d
pm

/g
)

13
7 Cs (A

D
 1

96
3)

(A
D

 1
91

2)

CT
X-

ra
y

Li
th

ol
og

y

Pe
at

Si
lty

 p
ea

t

Sa
nd

y 
sil

t

Sa
nd

Te
ph

ra

Si
m

pl
ifi

ed
 L

ith
ol

og
y

Ca
lib

ra
te

d 
ag

e
in

te
rv

al
 (2

σ)

Ph
ot

og
ra

ph

(1
91

9-
19

50
)

(1
72

7-
18

13
)

(1
66

5-
16

93
)

(1
81

2-
19

19
)

(1
69

5-
17

28
)

(1
93

9-
19

50
)

(1
76

4-
18

00
)

(1
64

6-
16

79
)

(1
93

6-
19

50
)

(1
73

7-
18

04
)

(1
65

1-
16

83
)

(1
92

7-
19

50
)

(1
73

1-
18

09
)

(1
42

8-
16

86
)

(1
81

2-
19

19
)

(1
67

0-
16

95
)

(1
94

4-
19

50
)

(1
78

0-
18

00
)

(1
64

2-
16

70
)



 

�35

Figure 5. Detrended Correspondence Analysis (DCA) plot of diatom assemblages from 
samples throughout core BC.15.02. Results show three distinct clusters of samples: 
tsunami deposit samples (blue circle), clastic deposit samples from other depositional 
mechanisms (red square), and peat samples (green triangle). Samples from the contacts 
of the tsunami deposits plotted closer to the peat cluster.
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Figure 6. Bchron age-depth model developed for core BC.15.02 with instantaneous 
clastic deposits removed, showing the 95% probability curve.
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Figure 7. Estimated ages of each of the clastic deposits in core BC.15.02 using our 
Bchron age-depth model.
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Depth  
(cm) Sample ID

14C Age 
(yr BP)

Calibrated age interval 
(2σ) (yr CE)

43.0 OS-134253  170 ± 20

1919–1950 
1727-1813 
1665-1693

50.0 OS-134112  75 ± 20
1812–1919 
1695-1728

54.5 OS-134182  220 ± 20

1939–1950 
1764-1800 
1646-1679

62.0 OS-134326  205 ± 20

1936-1950 
1737–1804 
1651-1683

64.5 OS-134237  315 ± 85

1927-1950 
1731-1809 
1428-1686

69.5 OS-134113  90 ± 15
1812–1919 
1695-1728

87.0 OS-134114  235 ± 20

1944-1950 
1780-1800 
1642-1670

Table 1. Radiocarbon ages reported by the National Ocean Sciences 
Accelerator Mass Spectrometry facility and calibrated age intervals 
from core BC.15.02. Age distributions in gray have been ruled out 
because of tephra and 137Cs age markers.
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Depth (cm)
137Cs activity 

(dpm/g) Error
2.50 0.31 0.15
4.50 0.24 0.15
6.50 0.29 0.15
8.50 0.65 0.15
9.50 0.69 0.24
10.50 0.81 0.15
12.50 0.62 0.15
14.50 0.68 0.15
16.50 0.28 0.15
18.50 0.23 0.15
20.50 0.11 0.15
22.50 0.23 0.15
24.50 0.14 0.15
26.50 0.18 0.15
28.50 0.10 0.15
30.50 0.39 0.15
32.50 1.56 0.29
33.50 4.94 0.89
35.50 1.67 0.33
37.50 0.23 0.19

Table 2. Downcore concentrations of 137Cs 
activity in core BC.15.02 used to determine age 
markers during the last ~60 years.
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Table 3. Tsunami deposit characteristic checklist. Black check marks indicate that the 
deposit met that criteria, gray check marks indicate that the deposit only partially met 
criteria.
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