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ABSTRACT 

P300-based brain–computer interface (BCI) systems enable people with 

neuromuscular disabilities, including amyotrophic lateral sclerosis (ALS), to 

communicate and to control their environments using brain activity. However, BCI 

systems have not yet fulfilled their promise as reliable communication systems for all 

who need them. Despite continued work on improving BCIs for end users, people with 

ALS can experience both reduced performance overall compared to neurotypical users 

and significant day to day variations in BCI performance and event-related potential 

(ERP) characteristics. 

The P300 response, which the P300 speller is based on, is also known to exhibit 

trial-to-trial latency variability. The importance of latency jitter is established in 

cognitive studies, and its relevance to BCIs is of growing interest. Increased latency 

jitter is associated with decreased BCI performance, and preliminary comparisons 

indicated that jitter may be increased in ALS, similar to increased jitter found in a variety 

of neurological conditions.  

Therefore, we quantify latency jitter and its correlates in people with ALS, 

longitudinally investigate within-session variability in event-related potentials (ERPs), 

session-average ERPs, and their relationships, and develop and evaluate a correction 

method to compensate for latency jitter in BCI use. To this end, we use longitudinal 

EEG data collected from 6 participants with ALS, and, when applicable, from 

neurotypical control participants, using a P300 BCI. Data recorded in each session had 

session-average ERP amplitudes and latencies extracted. Stepwise linear discriminant 

analysis was used both to evaluate BCI performance and to support the use of classifier-



 

 
 

based latency estimation (CBLE) to estimate whole-epoch latency shifts for single trials 

in all aims.  

To quantify latency jitter and its correlates in people with ALS, latency jitter was 

calculated with CBLE. Then, ERP components and latency jitter were compared 

between participants with ALS and neurotypical control participants using Wilcoxon 

rank-sum tests. Correlations between latency jitter and each of the clinical measures, 

ERP features, and performance measures were investigated using Spearman and 

repeated measures correlations. We found that latency jitter was significantly increased 

in participants with ALS and significantly negatively correlated with BCI performance 

in both ALS and control participants. We also found significant correlations between 

ERP amplitudes and latency jitter in neurotypical participants and reduced ERP 

amplitudes in participants with ALS. However, there was no significant correlation 

between latency jitter and clinical measures. 

Based on these results, we proposed a data augmentation and jitter correction (A/C) 

scheme with parameters determined individually using latency shifts calculated with 

CBLE. Performance metrics including character selection accuracy and binary accuracy, 

precision, recall, and F-score were calculated using both the proposed classification 

scheme and a reference classifier that did not implement data augmentation or correction. 

Performance was compared between the two classification methods using paired t-tests 

and investigated longitudinally using correlation analyses. Correlations between 

performance improvements and clinical measures were also investigated. The proposed 

classification scheme significantly improved character selection accuracy, required for 

usability, as well as recall and F-scores. However, precision was reduced, and binary 



 

 
 

accuracy was not significantly affected. Overall, BCI performance deteriorated over 

time with both classification methods, and latency jitter calculated with CBLE increased 

over time. Improvements in selection accuracies using the proposed A/C approach were 

greater for participants with more significant physical impairments. 

Also following the results from the first aim, we extracted single-trial N100, P200, 

N200, and P300 amplitudes and latencies in each session using Woody-type filters on 

spatially filtered data. That is, spatial principal component analysis was conducted on 

the responses to stimuli containing the intended characters in each session, and 

appropriate spatial factors were selected from the results of this analysis. Then, session-

average time series for these spatial factors were used as templates. The cross-

covariance of the templates with the single-trial time series were calculated. The 

maximum value of these cross-covariances and the latency shifts to achieve this 

maximum were then used as single-trial amplitudes and latencies. Within-session 

variability in N100, P200, N200, and P300 latencies were compared between 

participants with ALS and neurotypical participants using Wilcoxon rank-sum tests, and 

P200, N200, and P300 jitter were all found to be increased in ALS. In addition, linear 

models were used to investigate which ERP feature latencies contributed to the shifts 

detected with CBLE, determining that single-trial N100, P200, N200, and P300 

latencies were all significant contributors in data recorded from neurotypical 

participants. However, the relationships between ERP feature latencies and CBLE were 

disrupted in ALS, with single-trial N100 latencies no longer a significant contributor to 

latency shifts calculated with CBLE and reduced but still significant contributions from 

single-trial P200, N200, and P300 latencies. There were, however, some contributions 



 

 
 

to jitter from single-trial ERP amplitudes, with increased latency shifts detected with 

both CBLE and Woody filters on trials with reduced ERP amplitudes. Considering these 

results, we conclude that CBLE reflects both latency jitter and other factors which affect 

BCI performance. Despite the increase in latency jitter calculated with CBLE over time 

in participants with ALS, there was not a significant increase in N100, P200, N200, or 

P300 jitter calculated with Woody filters over time.  

Overall, the research presented in this dissertation advances knowledge on latency 

variability in the use of P300 BCIs, both for neurotypical participants and for people 

with ALS. The importance of latency jitter in P300 BCIs is elucidated, both whole-

epoch jitter calculated with CBLE and latency variation in specific ERP features are 

shown to be increased in people with ALS, a theoretical limitation of CBLE is 

investigated, and a compensation strategy is proposed to address increased latency jitter 

in people with ALS using P300 BCIs.
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PREFACE 

This dissertation is written in manuscript format. The first chapter serves as an 

introduction to the dissertation as a whole, providing an overview of the main topics 

and a justification for the research. The first chapter additionally notes the three primary 

aims for the research described in the dissertation. The second through fourth chapters 

are the manuscripts. The first manuscript, P300 latency jitter and its correlates in people 

with amyotrophic lateral sclerosis, was published in the February 2021 issue of Clinical 

Neurophysiology: volume 132, issue 2, pages 632-642. This manuscript primarily 

addresses the first research aim. The second manuscript, Improving Longitudinal P300-

BCI Performance for People with ALS Using a Data Augmentation and Jitter Correction 

Approach, was submitted to the Journal of Neural Engineering on March 4, 2021 and 

primarily addresses the third research aim. The third manuscript, A Longitudinal Study 

Latency Jitter and Disrupted Interrelationships in ALS Using a Woody Filter Approach, 

is in preparation for submission to Clinical Neurophysiology. This manuscript primarily 

addresses the second research aim.  
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CHAPTER 1: INTRODUCTION AND OVERVIEW 

 

1.1 MOTIVATION 

 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition which can 

affect both the upper and lower motor neurons, along with their frontotemporal 

connections, leading to the loss of voluntary motor control (Turner & Swash, 2015). 

Rates of progression and survival times vary based on a variety of factors including age 

at diagnosis and site of onset (Pupillo, Messina, Logroscino, Beghi, & SLALOM Group, 

2014), but ALS is eventually fatal. Assistive technologies are a frequent part of care to 

improve quality of life, including mobility supports such as wheelchairs, life supports 

such as ventilators, and tools for communication and environmental control including 

high-tech augmentative and alternative communication (AAC) devices (Eicher et al., 

2019). For people with ALS, AAC access can maintain social participation, improve 

self-determination, and increase quality of life (Eicher et al., 2019), and so most people 

with ALS accept AAC options when offered and continue to use them for as long as 

they are able to (Ball, Beukelman, & Pattee, 2004).   

However, as ALS continues to progress, conventional assistive technologies 

become harder, and then impossible, to use effectively. Brain-computer interfaces 

(BCIs), devices which rely on a computer interpreting neural signals rather than 

intentional movements by the user, are a potential option for communication and control 

at this stage (Liberati et al., 2015). While there is a record of successful home use of 

BCIs (Hill, Kovacs, & Shin, 2014; Holz, Botrel, Kaufmann, & Kübler, 2015; Sellers, 

Vaughan, & Wolpaw, 2010; Shahriari, Yalda et al., 2019; Speier, Chandravadia, 
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Roberts, Pendekanti, & Pouratian, 2017; Wolpaw et al., 2018), there are also barriers to 

use, such as a lack of information about BCIs and their everyday applications (Linse, 

Aust, Joos, & Hermann, 2018) and day-to-day variations in BCI performance (Shahriari 

et al., 2019). 

 

1.2 AUGMENTATIVE AND ALTERNATIVE COMMUNICATION 

 

Augmentative and alternative communication (AAC) addresses the needs of people 

with speech and communication disabilities using a variety of techniques and tools. 

These tools include communication boards, speech generating devices, manual signs, 

and other electronic and nonelectronic supports. AAC can both support existing speech 

and serve as an alternative to speech (American Speech-Language-Hearing Association 

[ASHA] n.d.a).  At its most inclusive, AAC covers all the ways people communicate 

without, or in addition to, verbal speech, including methods used by people with typical 

speech (ASHA n.d.b). However, AAC research is typically focused on people with 

disabilities affecting speech, and it may be suggested for people with ALS after they 

score a 90% or lower intelligibility of speech or a 100 words-per-minute or lower 

speaking rate on the Sentence Intelligibility Test (Ball et al., 2004; Yorkston & 

Beukelman, 1996). AAC systems can be based on text or symbols, and their 

technological requirements can be zero (e.g., gesture) or vary from low (e.g., symbol 

cards, or pen and paper) to high (e.g., mobile applications and dedicated AAC devices).  

High-tech AAC options utilizing adapted keyboards or boards, specialized touch 

screens, single- or multiple-switch scanning, head tracking, and BCIs can improve 

communication and quality of life for people with ALS (Cipresso et al., 2012; Linse et 
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al., 2018), and people with ALS who are offered AAC options typically both initiate 

and continue use of them to the extent that they can (Ball et al., 2004).  However, there 

are significant barriers to use (Cipresso et al., 2012) including limited information about 

AAC (Liberati et al., 2015), limited availability of devices (Linse et al., 2018), and 

issues with the technology itself (da Silva-Sauer, Valero-Aguayo, de la Torre-Luque, 

Ron-Angevin, & Varona-Moya, 2016; Shahriari et al., 2019) – the same barriers that 

are common for AAC use in general (Lund & Light, 2007).   

 

1.3 ELECTROENCEPHALOGRAPHY (EEG) 

 

Electroencephalography, one of the most common non-invasive methods of neural 

recording, involves measuring electrical potentials from electrodes on the scalp. Each 

electrode detects electrical potentials from thousands to millions of neurons through 

volume conduction, recording synchronized neural activities from a scalp area on the 

order of 10cm2 (Shahriari et al., 2020). Despite the fact that EEG recordings are affected 

by noise from both physiological and environmental sources, including muscular 

activity and other electrical equipment in the area, it can be used for a variety of 

applications, including diagnostics, neuroimaging, uncovering neural correlates of 

psychological constructs, and controlling BCIs (Biasiucci, Franceschiello, & Murray, 

2019).  

In an EEG recording, the electrodes can be attached to the head using spiky contacts 

in the case of dry electrodes, with conductive paste or gel for some medical recordings, 

or with a cap holding electrodes that may have gel added after donning the cap. The 

arrangement of electrodes in a montage can be described using the 10-20, 10-10, or 10-
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5 international systems, with these numbers referring to inter-electrode intervals of 5%, 

10%, or 20% of the span covered by electrodes. Letters denote placement along the 

anterior-posterior axis, and numbers denote placement along the left-right axis, with 

zero (z) representing the midline, positive even numbers representing the right side of 

the head, and positive odd numbers representing the left side of the head. Larger 

numbers mean that electrodes are further to the left or the right. (Shahriari et al., 2020). 

Figure 1.1 shows the montage used throughout this dissertation, with frontal channel 

Fz*, central channel Cz, parietal channels Pz, P3, and P4, parietal-occipital channels 

PO7 and PO8, and occipital channel Oz. Fz* is noted with a star as Fz itself was 

occupied by another sensor and the nearest available location, FAF2, was used instead.  

 

Figure 1.1. The electrode montage used in EEG recordings for the current studies. 

 

The signals recorded from EEG can then be described in terms of oscillatory waves, 

which are considered in terms of frequency bands, or in terms of transient responses, 

such as event-related potentials (ERPs), which appear in response to certain events or 
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stimuli (Shahriari et al., 2020). Transitory responses, such as ERPs, are typically studied 

by averaging signals over several trials to increase the signal-to-noise ratio, but the 

responses can be detected in single trials (Biasiucci et al., 2019). However single-trial 

responses and their variations have been studied in cognitive contexts for some time 

(e.g., Kutas, McCarthy, & Donchin, 1977). Sample EEG data recorded over 20 seconds 

from the 8 channels used in this dissertation and bandpass filtered to allow frequencies 

between 0.5 and 30 Hz are shown in Figure 1.2.  

 
Figure 1.2. Sample EEG traces from each of the 8 channels used in the current studies, 

over 20 seconds. 
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1.4 P300-BASED BCIS 

 

In 1988, Farwell and Donchin proposed a BCI in which the P300, an evoked 

electrical response to an unusual and attended event, was used to select characters, 

allowing users to spell words (Farwell & Donchin, 1988). In the original P300 speller, 

characters were arranged in a 6x6 matrix, with rows and columns intensified by 

randomly flashing them, while participants counted intensifications of their intended 

character and the computer detected the P300 response, named for the fact that it 

typically appears about 300 ms after the stimulus that evoked it. Like most ERP-based 

BCIs, P300 systems are relatively quick to learn to use (Lazarou, Nikolopoulos, 

Petrantonakis, Kompatsiaris, & Tsolaki, 2018), but they function as switch systems, 

which are generally slower than direct selection methods in daily use.  The original 6x6 

P300 speller matrix is shown in Figure 1.3, and an example of the target and non-target 

ERPs elicited by the P300 speller is shown in Figure 1.4 

\ 

Figure 1.3. The original P300 speller matrix (Farwell & Donchin, 1988)  
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Figure 1.4. Target (P300) and non-target (no P300) ERPs.  

 

The majority of BCI studies do not include participants with neuromuscular 

disabilities such as ALS, as indicated by the fewer than 10% of BCI publications that 

mention the term “patients”. (Allison, Kübler, & Jin, 2020). Nevertheless, the P300 BCI 

is one of the most studied BCI paradigms, both generally (Allison et al., 2020), and for 

people with ALS (Kellmeyer, Grosse-Wentrup, Schulze-Bonhage, Ziemann, & Ball, 

2018). As such, there are still many studies of P300 BCIs which use data collected from 

participants with ALS (Borgheai et al., 2020; Carabalona et al., 2012; Clements et al., 

2016; Halder, S., Käthner, & Kübler, 2016; Halder, Sebastian et al., 2016; Holz et al., 

2015; Hou, Li, Liu, & Wang, 2017; Kübler & Birbaumer, 2008; Kübler et al., 2009; 

Kübler et al., 2014; Mainsah et al., 2015; Mak et al., 2012; McCane et al., 2014; McCane 

et al., 2015; Mowla, Huggins, & Thompson, 2017; Pasqualotto et al., 2015; Piccione et 
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al., 2006; Riccio et al., 2018; Ryan, David B. et al., 2018; Schettini, Riccio et al., 2015; 

Sellers & Donchin, 2006; Sellers et al., 2010;  Speier et al., 2017; Spüler et al., 2012; 

Spüler, Walter, Rosenstiel, & Bogdan, 2013; Thompson, Warschausky, & Huggins, 

2012; Townsend et al., 2010). 

These studies have investigated a variety of research questions relevant to the use 

of P300-based BCIs for people with ALS, including factors associated with BCI 

performance such as trial-to-trial latency variability, or latency jitter (Thompson et al., 

2012; Zisk et al., 2020), the expansion of C9ORF72, a gene associated with hereditary 

ALS (Geronimo et al., 2017), cognitive factors (Geronimo et al., 2016; Geronimo & 

Simmons, 2017; Riccio et al., 2013; Riccio et al., 2018), and EEG features (Mak et al., 

2012; Shahriari, Y. et al., 2013; Shahriari et al., 2019). They have also aimed to improve 

BCI performance and user experience. The inclusion of word prediction (Ron-Angevin 

et al., 2015) and language models (Speier et al., 2017) can speed up communication and 

make typing more convenient. Other arrangements of characters or intensification 

patterns have also been studied to improve BCI performance, such as region-based 

spellers (Ikegami et al., 2014; Severens et al., 2014), a lateral single-character speller 

(Pires et al., 2012), a checkerboard paradigm in which no two adjacent items are 

intensified at the same time (Townsend et al., 2010), flashes with colors other than black, 

grey, and white (Ikegami et al., 2014; Ryan, D. B., Townsend, Gates, Colwell, & Sellers, 

2017; Ryan et al., 2018), or the use of face images to cover characters rather than 

changing the color of the characters (Fernández-Rodríguez, Velasco-Álvarez, Medina-

Juliá, & Ron-Angevin, 2019; Kaufmann, Schulz, Grünzinger, & Kübler, 2011; 

Kaufmann et al., 2013). When comparisons are made, participants typically prefer the 
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checkerboard or region-based arrangements to the row-column arrangements, as well as 

preferring face or colored stimuli for intensification (Ikegami et al., 2014; Ryan et al., 

2018; Townsend et al., 2010). Recently, alternatives to the typical task of counting 

intensifications of the intended character, such as mental arithmetic, and the inclusion 

of other recording modalities such as fNIRS, have also been proposed with promising 

results (Borgheai, S. B., Abtahi, Mankodiya, McLinden, & Shahriari, 2019; Borgheai et 

al., 2020). 

Evidence suggests that P300 BCI performance is fairly stable over time (Holz et 

al., 2015; Sellers et al., 2010; Shahriari et al., 2019; Silvoni et al., 2009; Silvoni et al., 

2013; Wolpaw et al., 2018).  However, as people with ALS can develop ocular issues 

as their disease progresses, other stimulus modalities such as auditory (Halder et al., 

2016; Kleih et al., 2015; Kübler et al., 2009; Onishi et al., 2017; Simon et al., 2015) and 

tactile (Guger et al., 2017; Severens et al., 2014) P300 BCIs have been considered. 

Despite some success with non-visual P300 BCIs for people with ALS in a completely 

locked-in state (Guger et al., 2017), visual EEG-based P300 BCIs such as the BCI 

studied in this dissertation are generally not effective at that point (Kübler & Birbaumer, 

2008; Murguialday et al., 2011).  Given the importance of effectiveness, reliability, and 

speed for people with ALS considering BCI use (Zickler et al., 2011), work to improve 

the technical aspects of P300 BCIs continues. 

 

1.5 LATENCY JITTER 

 

While the P300 occurs approximately 300 ms after an attended, unusual stimulus, 

it can have significant trial-to-trial latency variability, or jitter (Aricò et al., 2014; Fjell, 
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Rosquist, & Walhovd, 2009; Jaśkowski & Verleger, 2000; Yu, 2016). A variety of 

methods have been proposed to extract these single trial latencies, whether to measure 

jitter, correct for it, or do both. Single-trial latencies and their associated latency 

variations have been studied in cognitive contexts for some time, where single-trial 

P300 latencies are associated with stimulus evaluation times (Kelly & O'Connell, 2013; 

Verleger, 1997) and single-trial reaction times (Saville et al., 2011), particularly when 

the focus is on accuracy rather than speed (Kutas et al., 1977). However, this 

relationship is disrupted in neurotypical participants with comparatively higher P300 

latency jitter (Saville et al., 2011) and when the task prioritizes speed (Kutas et al., 1977; 

Verleger, 1997). Latency variability can be studied as one form of neural variability 

(Magnuson, Iarocci, Doesburg, & Moreno, 2020), which is required for learning but 

increased in a variety of neurological conditions (Dinstein, Heeger, & Behrmann, 2015). 

For example, latency jitter is increased in people with ALS (Zisk et al., 2020), attention 

deficit hyperactivity disorder (Saville et al., 2015), schizophrenia (Ford, White, Lim, & 

Pfefferbaum, 1994), depression, (Patterson, Michalewski, & Starr, 1988), traumatic 

brain injuries (Unsal & Segalowitz, 1995), disorders of consciousness (Schettini, Risetti 

et al., 2015), and dementia (Patterson et al., 1988). 

In the context of brain computer interfaces, latency jitter is important to consider 

both because increased latency jitter is associated with decreased performance (Aricò et 

al., 2014; Huggins, Alcaide-Aguirre, & Hill, 2016; Mowla, Gonzalez-Morales, Rico-

Martinez, Ulichnie, & Thompson, 2020; Schettini et al., 2015; Thompson et al., 2012; 

Zisk et al., 2020; Zisk et al., 2021) and because methods which aim to compensate for 
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latency jitter have provided some improvements in BCI performance (Mowla et al., 

2017; Togashi & Washizawa, 2013; Zisk et al., 2021).  

Given the importance of latency jitter in cognitive studies and its growing 

recognition in the context of BCIs, a variety of methods exist to quantify this 

phenomenon (Fabiani, Gratton, Karis, & Donchin, 1987; Jaśkowski & Verleger, 2000; 

Ouyang, Hildebrandt, Sommer, & Zhou, 2017; Smulders, Kenemans, & Kok, 1994). In 

general, latency jitter is calculated by extracting single-trial latencies or latency shifts 

for responses of interest for each trial in a data set, and then using a measure of 

variability on the calculated latencies or latency shifts. To calculate these single-trial 

latencies, Woody proposed an adaptive filter using iterative cross-correlations of time-

shifted single-trial responses with the averaged response (Woody, 1967). Kutas and 

colleagues applied this Woody filter to the P300 response to provide evidence that P300 

latencies are correlated with stimulus evaluation time (Kutas et al., 1977). While a study 

by Verleger and colleagues found that increased decision complexity led to reduced 

P300 amplitudes (Verleger, Baur, Metzner, & Śmigasiewicz, 2014), Yu used principal 

component analysis (PCA) to extract spatial patterns for use with the Woody filter and 

reported that this apparent reduction in amplitude is instead due to an increase in jitter 

(Yu, 2016). Other groups utilized filtering and peak-picking methods (Ouyang et al., 

2017), ranging from simple but harsh lowpass filters (Smulders et al., 1994, Jaśkowski 

and Verleger, 2000) to more complex methods including wavelet-based filtering (Aricò 

et al., 2014; Chennu, Craston, Wyble, & Bowman, 2009).  Both peak-picking and cross-

correlational approaches can be applied to spatially filtered data (Coles, Gratton, 

Kramer, & Miller, 1986; Fabiani, Karis, & Donchin, 1986; Fabiani et al., 1987; Saville 
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et al., 2011; Saville et al., 2015; Yu, 2016), and cross-correlational approaches similar 

to the Woody filter applied to time series combining data from multiple channels are a 

comparatively reliable way to assess both single-trial amplitudes and latencies (Fabiani 

et al., 1987). Woody filtering approaches have also been used to extract single-trial 

latency information for several ERP features simultaneously, using appropriate 

segmentation of time series (Michalewski, Prasher, & Starr, 1986; Patterson et al., 1988). 

As another method of quantifying single-trial latency shifts and latency jitter, 

Thompson and colleagues introduced classifier-based latency estimation (CBLE) as an 

additional way to quantify P300 jitter and thereby predict BCI performance (Thompson 

et al., 2012). In their proposed classifier-based latency estimation method, a classifier is 

applied to epochs starting at multiple time points surrounding target stimulus 

presentation, and the time shift corresponding to the highest classifier score is selected 

as the latency shift for the corresponding epoch. The authors suggested their proposed 

method can be utilized with any linear classification algorithm and effectively predicts 

BCI performance (Thompson et al., 2012). They additionally used their classifier-based 

latency estimation method on simulated data to evaluate the accuracy of their proposed 

technique on data with known jitter and further confirmed the presence of P300 jitter in 

data from people with ALS (Thompson et al., 2019). 

 

1.6 THIS DISSERTATION 

 

This dissertation is focused on latency jitter, with three primary research aims:  

Research Aim 1: Quantify latency jitter and its correlates in people with ALS. 

Using classifier-based latency estimation, this aim will compare latency variability, or 
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jitter between people with ALS and neurotypical controls and examine within-group 

correlations of latency jitter with session average ERP features in both groups and 

clinical features in people with ALS. 

Research Aim 2: Longitudinally investigate single-trial ERP feature variations, 

session-average ERP feature variations, latency jitter, and their relationships. This aim 

will extract single-trial ERP features from longitudinal BCI recordings. This aim will 

then investigate these features longitudinally and examine relationships between 

variabilities in single-trial features, session-average features, and latency jitter.  

Research Aim 3: Develop and evaluate a correction method to compensate for 

latency jitter. As BCI performance does not seem to show negative trends over time, but 

does show day-to-day variations and correlation with jitter, I hypothesize that correcting 

for jitter will improve performance and reduce day-to-day performance variability for 

some BCI users with ALS. 

Aims 2 and 3 build on aim 1, but in different directions: aim 2 is primarily 

exploratory, while aim 3 is primarily about improving BCI performance.  

Throughout this dissertation, latency shifts and jitter are quantified using CBLE, 

and Woody filters are additionally used to extract single-trial features in the third 

manuscript (Aim 2). Data was collected longitudinally from six participants with ALS, 

and in 2-3 sessions each from neurotypical participants, while participants used a P300 

speller. All participants have at least some post-secondary education. All neurotypical 

control participants have normal or corrected to normal vision, as do participants with 

ALS other than ALS-1, who is in the late stages of locked-in syndrome with significant 
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ocular impairments. Additional details about participants with ALS are provided in each 

manuscript as applicable. 

 

1.6.1 Manuscript 1 

 

In the first manuscript, three sessions from each participant with ALS were used, 

and nine neurotypical control participants also participated in data recordings. The aim 

was to quantify latency jitter and its correlates in people with ALS, as well as to 

determine whether jitter was increased in ALS. ERP amplitudes and latencies were 

extracted. Classifier-based latency estimation (CBLE) was used to calculate latency 

jitter. ERP components and latency jitter were compared between groups using 

Wilcoxon rank-sum tests. Correlations between latency jitter and each of the clinical 

measures, ERP features, and performance measures were investigated using Spearman 

and repeated measures correlations. We found that latency jitter, calculated with CBLE, 

was significantly increased in participants with ALS compared to neurotypical control 

participants. Latency jitter correlated with BCI performance in both groups, but not with 

clinical measures for participants with ALS. 

 

1.6.2 Manuscript 2 

 

In the second manuscript, longitudinal recordings were used from participants with 

ALS, and there were no neurotypical control participants. The aim was to improve BCI 

performance for people with ALS. We proposed an augmentation and correction (A/C) 

classification scheme including data augmentation and correction for jitter, both relying 

on time-shifted responses with individualized parameters determined based on latency 



 

15 
 

jitter. The proposed A/C classification scheme significantly improved character 

selection accuracy, required for usability, as well as recall and F-scores. However, 

precision was reduced, and binary accuracy was not significantly affected. Overall, BCI 

performance deteriorated over time with both classification methods. Selection 

accuracies were more improved by the proposed A/C approach for participants with 

more significant physical impairments. Both data augmentation and latency jitter 

compensation can potentially improve BCI performance for people with ALS. 

 

1.6.3 Manuscript 3 

 

For the third manuscript, longitudinal recordings were used from participants with 

ALS, and sixteen neurotypical participants each underwent 2-3 data recording sessions. 

This study investigated latency jitter calculated using two different methods to 

understand which single-trial features are represented in classifier-based latency 

estimation (CBLE), compare latency jitter for specific ERP features between people 

with ALS and neurotypical controls, and longitudinally investigate latency. Both single-

trial and session-average ERP amplitudes and latencies were extracted. Both a Woody 

filtering approach and CBLE were used to calculate latency jitter. ERP components and 

latency jitter were compared between groups using Wilcoxon rank-sum tests. 

Relationships between measures were investigated within and between sessions using 

linear regression models, Spearman correlations, and repeated measures correlations. 

Latency variations in the four ERP features considered, the N100, P200, N200, and 

P300, all contributed to whole-epoch latency variations calculated with CBLE in 

neurotypical participants. However, these contributions were disrupted in participants 
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with ALS, who also had increased P200, N200, P300, and whole-epoch latency jitter. 

Whole-epoch latency jitter increased over time in people with ALS, but N100, P200, 

N200, and P300 jitter did not. Neither whole epoch nor ERP feature latency jitter 

correlated with clinical scores in participants with ALS. 

1.6.4 General Conclusions 

 

Combined, the three manuscripts show that latency jitter is increased in people with 

ALS for multiple ERP features including the P300, though jitter is not correlated with 

clinical scores. Correction for latency jitter relying on whole-epoch shifts calculated 

with CBLE can effectively improve BCI performance for people with ALS. The 

manuscripts additionally show that CBLE effectively reflects latency variations in the 

N100, P200, N200, and P300, though this is disrupted somewhat in people with ALS. 
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ABSTRACT 

 

Objective: People with amyotrophic lateral sclerosis (ALS) can benefit from brain-

computer interfaces (BCIs). However, users with ALS may experience significant 

variations in BCI performance and event-related potential (ERP) characteristics. This 

study investigated latency jitter and its correlates in ALS. 

Methods: Electroencephalographic (EEG) responses were recorded from six people 

with ALS and nine neurotypical controls. ERP amplitudes and latencies were extracted. 

Classifier-based latency estimation was used to calculate latency jitter. ERP components 

and latency jitter were compared between groups using Wilcoxon rank-sum tests. 

Correlations between latency jitter and each of the clinical measures, ERP features, and 

performance measures were investigated using Spearman and repeated measures 

correlations. 

Results: Latency jitter was significantly increased in participants with ALS and 

significantly negatively correlated with BCI performance in both ALS and control 

participants. ERP amplitudes were significantly attenuated in ALS, and significant 

correlations between ERP features and latency jitter were observed. There was no 

significant correlation between latency jitter and clinical measures. 

Conclusions: Latency jitter is increased in ALS and correlates with both BCI 

performance and ERP features. 

Significance: These results highlight the associations of latency jitter with BCI 

performance and ERP characteristics and could inform future BCI designs for people 

with ALS. 
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Highlights: 

• People with Amyotrophic Lateral Sclerosis (ALS) have increased P300 

latency jitter. 

• Latency jitter correlates with BCI performance in both people with ALS 

and controls. 

• Latency jitter does not correlate with measures of disability in ALS. 

Keywords: Brain-computer interface (BCI), Event-related potentials (ERP), 

Amyotrophic lateral sclerosis (ALS), P300 Latency Jitter, Electroencephalography 

(EEG) 

 

2.1. INTRODUCTION 

 

The P300 response, a positive deflection which occurs approximately 300 ms after 

an unusual but attended event, has been widely used to control brain-computer interface 

(BCI) systems since its introduction several decades ago (Farwell and Donchin, 1988). 

However, the timing of this response is affected by a variety of factors, including age 

(Polich and Kok, 1995), task specifications (e.g., timing and difficulty) (McFarland et 

al., 2011, Verleger et al., 2014), and neurological conditions (Raggi et al., 2010, 

McCane et al., 2015, Kellmeyer et al., 2018). The factors that affect latency can also 

degrade BCI performance, and thus make these systems inefficient or impractical, 

particularly for end-users (Birbaumer and Cohen, 2007, Kübler and Birbaumer, 2008, 

Murguialday et al., 2011, Kellmeyer et al., 2018). 

Among BCI users, those with severe motor impairments including amyotrophic 

lateral sclerosis (ALS) most require these systems due to their loss of muscle control 
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affecting their communication and environmental control abilities. However, people 

with ALS are known to exhibit trial-by-trial latency variability in their P300 responses, 

or latency jitter (Thompson et al., 2019). Preliminary comparisons between single 

participants suggest jitter may be increased in ALS compared to neurotypical users 

(Mowla et al., 2017). Growing research also shows that other neurological conditions 

including attention deficit hyperactivity disorder (Saville et al., 2015), schizophrenia 

(Ford et al., 1994), traumatic brain injuries (Unsal and Segalowitz, 1995), and disorders 

of consciousness (Schettini et al., 2015) affect P300 latencies and cause jitter, as does 

normal aging (Fjell et al., 2009). 

The importance of latency jitter in cognitive studies has been well established, and 

its relevance to BCIs is of growing interest. Latency jitter is significantly correlated with 

classification accuracy in neurotypical participants for simple visual oddball tasks, 

typical row-column P300 BCIs, and an alternative P300 speller designed for more 

effective use without eye movements (Aricò et al., 2014). This correlation also holds in 

a mixed group of neurotypical participants, participants with ALS, and one participant 

with muscular dystrophy using a typical P300 speller (Thompson et al., 2012). Jitter has 

also been reported to increase overall when relying on covert attention in P300 speller 

use, without eye movement, as compared to overt attention, with this increased jitter 

contributing to reduced BCI accuracy when relying on covert attention (Aricò et al., 

2014). 

Given the importance of latency jitter in cognitive studies and its growing 

recognition in the context of BCIs, a variety of methods exist to quantify this 

phenomenon (Smulders et al., 1994, Ouyang et al., 2017). For example, Woody 
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proposed an adaptive filter for estimating latencies and realigning peaks through 

iterative correlations of time-shifted single-trial responses with the averaged response 

(Woody, 1967). Kutas and colleagues applied this Woody filter to the P300 response to 

provide evidence that P300 latencies are correlated with stimulus evaluation time (Kutas 

et al., 1977). While a study by Verleger and colleagues (Verleger et al., 2014) found 

that increased decision complexity led to reduced P300 amplitudes, Yu used principal 

component analysis (PCA) to extract spatial patterns for use with the Woody filter and 

reported that this apparent reduction in amplitude is instead due to an increase in jitter 

(Yu, 2016). Other groups utilized filtering and peak-picking methods (Ouyang et al., 

2017), ranging from simple but harsh lowpass filters (Smulders et al., 1994, Jaśkowski 

and Verleger, 2000) to more complex methods including wavelet-based filtering (Aricò 

et al., 2014, Chennu et al., 2009). Aricò and colleagues used wavelet analysis and found 

that P300 jitter is inversely correlated with BCI accuracy (Aricò et al., 2014). Their 

further work suggested P300 jitter is increased in people with disorders of consciousness, 

is negatively correlated with signs of consciousness, and may impede effective BCI use 

in this population (Schettini et al., 2015). 

Thompson and colleagues introduced classifier-based latency estimation as an 

additional way to quantify P300 jitter and thereby predict BCI performance (Thompson 

et al., 2012). In their proposed classifier-based latency estimation method, a classifier is 

applied to epochs starting at multiple time points surrounding target stimulus 

presentation, and the time shift corresponding to the highest classifier score is selected 

as the latency shift for the corresponding epoch. The authors suggested their proposed 

method can be utilized with any linear classification algorithm and effectively predicts 
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BCI performance (Thompson et al., 2012). They additionally used their classifier-based 

latency estimation method on simulated data to evaluate the accuracy of their proposed 

technique on data with known jitter and further confirmed the presence of P300 jitter in 

data from people with ALS (Thompson et al., 2019). 

While people with ALS are a representative target population for BCI use, they 

have often been reported to show reduced BCI performance in comparison to 

neurotypical users (Birbaumer et al., 2012, Kübler and Birbaumer, 2008, Kim et al., 

2017, McCane et al., 2014, Mugler et al., 2010, Townsend et al., 2010) This reduced 

performance and the correlation between BCI performance and latency jitter (Aricò et 

al., 2014, Thompson et al., 2012) together suggest that increased jitter in ALS may be a 

primary concern in BCI use, and thus, further investigation is warranted. 

Given this concern that P300 jitter may be increased in ALS and consequently 

negatively affect their BCI performance, this study investigated P300 latency jitter in 

participants with ALS and neurotypical controls in the use of a P300-based BCI. As a 

continuation of our prior investigations of event-related potential (ERP) correlates of 

BCI performance in ALS (Shahriari et al., 2019), and to support the detection of 

correlations which may be population-specific and ensure correspondences are relevant 

to end-users, we compared P300 jitter between groups and examined relationships 

between jitter and both BCI performance and ERP features in each group. We 

additionally investigated potential correlations between latency jitter and clinical 

measures in participants with ALS. 
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2.2 METHODS 

 

2.2.1 Participants and Experimental Protocol 

 

A total of fifteen participants were recruited for this study, six with ALS (age 57 ± 

15.7 years,1 female) (See table 1), and nine (age 62.7 ± 4.8 years, 5 female) neurotypical 

control (NTC) participants age-matched to our elderly participants with ALS with no 

neurological conditions for comparison. All participants had at least some post-

secondary education. All neurotypical control participants had normal or corrected to 

normal vision, as did participants with ALS other than ALS-1, who was in the late stages 

of locked-in syndrome with significant ocular impairments. Participants with ALS had 

an average functional rating scale-revised (ALSFRS-R) score of 11.6 ± 9.5, with a 

minimum score of 0 indicating no voluntary motor functions and complete dependence 

on life-sustaining technologies including mechanical ventilation and a maximum score 

of 48 indicating normal functioning (Cedarbaum et al., 1999). Participants with ALS 

were diagnosed 6.5 ± 4.0 years prior to the study. Three participants had gastrostomies 

as well as tracheostomies. ALS-1′s sole form of communication was an idiosyncratic 

and error-prone yes/no pupil dilation his caregiver read subjectively, which deteriorated 

over the course of the recordings, losing reliability as a means of communication. Two 

other participants with artificial ventilation (ALS-2 and 4) used eye-tracking devices to 

communicate. ALS-3 could still move his index finger and make non-verbal sounds to 

sustain minimal communication. ALS-5 and 6 retained the ability to speak, though ALS-

5 had lost non-facial movement, and ALS-6 could barely move a joystick with one hand. 

Participants with ALS were tested in their homes or care centers, whereas neurotypical 
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controls participated at the NeuralPC Lab. The study protocol was approved by the 

Institutional Review Board (IRB) of the University of Rhode Island (URI), and all 

participants provided informed consent or assent for the study and received financial 

compensation. 

Each participant took part in three sessions of recording on three different days, 

except for NTC-5, who only took part in two sessions. Sessions for participants with 

ALS took place at least two weeks apart. Including preparation such as the application 

of gel electrodes and tasks, each session typically lasted 2–2.5 hours. As in the 

conventional P300 speller, a 6x6 matrix of characters containing letters and numbers 

was displayed to participants, with rows and columns intensified randomly (Farwell and 

Donchin, 1988). Participants were instructed to attend to the intensification of their 

target character, with row and column intensified 10 times for each of the 14 target 

characters in each session. Intensifications consisted of color images of the same face 

replacing the characters in a row or column (Kaufmann et al., 2011, Kaufmann et al., 

2013). Intensifications lasted 93.75 ms, followed by a 62.5 ms inter-stimulus-interval 

(ISI). Each participant was instructed to mentally count target characters while ignoring 

non-target ones in the offline (copy-spelling) mode. To familiarize participants with the 

BCI setup, including the recording protocol and the task, each participant had a 

familiarization session before the main experimental recordings, in which they 

completed the same tasks without recording the data and were given the opportunity to 

get clarification about the tasks. 

Participants with ALS additionally took the ALS-Cognitive Behavioral Screen 

(ALS-CBS), a brief cognitive screen sensitive to frontal dysfunctions for people with 
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ALS (Woolley et al., 2010). This cognitive testing was completed each session if 

possible, and average scores were reported as percentages to compensate for the fact 

that not all items could always be used. Because several participants with ALS had 

difficulty speaking or writing, the information and retrieval (fluency) section of the 

ALS-CBS test could not be used effectively. Consequently, only the attention, 

concentration, and tracking portions of the ALS-CBS test were performed. Due to their 

disabilities, four participants with ALS required accommodation to complete these 

portions of the assessment. ALS-1 completed the test once, using a P300 speller. ALS-

2 used his typical eye-tracking system. ALS-3 used a printed letter board, pointing with 

a finger. ALS-4 initially used a letter board, but later used a Tobii eye-tracking system. 

ALS-5 and ALS-6 did not require accommodations to complete the ALS-CBS. 

Participants with ALS scored 92.1 ± 6.8% on this test, with attention subscores of 82.8 

± 18.7%. 

 

2.2.2 Data Acquisition 

 

Electroencephalography (EEG) data were recorded using a g.USBamp amplifier 

(g.tec Medical Technologies) with a 256 Hz sampling rate. Data was recorded from 

eight channels commonly used in P300 protocols, Fz*, Cz, P3, Pz, P4, PO7, PO8, and 

Oz (Krusienski et al., 2008). However, as Fz was occupied by sensors for other studies 

recorded in the same session as the current experiment, it was replaced by the nearest 

available channel, FAF2, denoted as Fz*. All experimental protocols, data acquisition, 

and stimulus presentation were controlled using BCI2000 software (Schalk and 

Mellinger, 2010). 
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Table 2.1. Demographic information for participants with amyotrophic lateral sclerosis 

(ALS). 

Subject 

Num-

ber 

Age Sex Time 

since  

diagnosis 

(years) 

Revised 

ALS  

Functional 

Rating 

Scale  

ALSFRS-R 

(out of 48) 

ALSFRS-

R Bulbar 

Subscore 

Average ALS 

Cognitive 

Behavioral 

Screen 

(ALS-CBS) 

Score (%) 

Average 

Attention 

Subscore 

(%) 

Artificial 

Ventilation 

Means of 

Commu-

nication 

ALS-01 29 M 4 0 0 100.0 100.0 Yes 

No  

reliable 

means 

ALS-02 55 M 11 4 0 93.3 93.3 Yes 

Eye- 

tracking 

ALS-03 70 M 8 14 5 95.2 83.3 No 

Non- 

verbal 

sound 

ALS-04 67 M 2 7 5 94.4 100.0 Yes 

Eye- 

tracking 

ALS-05 69 F 11 23 11 80.0 56.7 No Verbal 

ALS-06 52 M 3 22 12 89.6 63.3 No Verbal 

Mean±

SD 57.0±15.7 - 6.5±4.0 11.6±9.5 5.5±5.2 92.1±6.8 82.8±18.7 - - 

 

2.2.3 Data Processing 

 

All data processing was conducted in MATLAB, 2019a. EEG data were detrended 

and bandpass filtered at 0.5–30 Hz with a Hamming window-based zero-phase filter 

using the MATLAB functions fir1 and filtfilt. For feature extraction and classifier 

training, the data were segmented into epochs of 0 to 800 milliseconds post-stimulus. 

These epochs were averaged over all target segments within each session. For further 

statistical and correlation analyses, the amplitudes and latencies corresponding to four 

primary ERP components (N100, P200, N200, and P300) were extracted for each 

channel and participant. The N100 and N200 components were respectively defined as 
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the minimum peaks occurring in the 80–170 ms and 220–350 ms periods, and the P200 

and P300 components were respectively defined as the maximum peaks in the 190–300 

ms and 300–500 ms periods. 

Stepwise linear discriminant analysis (SWLDA) classifiers were used to evaluate 

BCI performance (Krusienski et al., 2008). All epochs (0–800 ms) were downsampled 

by a factor of 13 through a moving average procedure, and the downsampled data from 

all channels combined were treated as potential predictors of whether an epoch was a 

target or non-target epoch. Through forward and backward stepwise regression using 

the fitdiscr and stepwisefit functions in MATLAB, the best predictors (p < 0.1) were 

selected and the least significant variables (p > 0.15) were removed. This procedure was 

repeated for up to 60 steps, or until no additional terms satisfied the entry/removal 

criteria (Krusienski et al., 2008). Data from each session were divided into five segments 

of approximately equal length. Four segments were used for training, and the remaining 

segment was used for testing. This procedure was repeated five times to test all the data. 

Flash-by-flash binary classification performance metrics were calculated on each test 

set, with average performances extracted from each session for use in correlation 

analysis and from each participant for between-group comparisons. In particular, binary 

flash accuracy, precision, recall, F-score, and character selection accuracy were 

calculated as measures of performance (Pal and Bandyopadhyay, 2016, Tang et al., 

2017). With TP, TN, FP, and FN respectively representing the number of epochs that 

were classified as true positives (correct targets), true negatives (correct non-targets), 

false positives, and false negatives, we computed accuracy, precision, recall, and F-

score as below: 
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Flash Accuracy =  
TP + TN

TP + TN + FP + FN
 

Precision =  
TP

TP + FP
 

Recall =
TP

TP + FN
 

F − score =  
2 × Precision × Recall

Precision + Recall
. 

Character selection accuracies were also calculated in which in each of the five data 

segments per session, the number of correct characters was determined, and the session 

accuracy was the average character selection accuracy over all five segments. 

Following Thompson and colleagues’ (Thompson et al., 2012) work, classifier-

based latency estimation (CBLE) was used to measure latency jitter. To do so, the 

classifier was applied to shifted epochs extracted as follows: for each stimulus, 800 ms 

epochs (both target and non-target) beginning at each available time point from 100 ms 

before the stimulus to 100 ms after the stimulus were extracted as shifted responses in 

steps of one sample (~4 ms), creating a total of 53 shifted epochs. Each shifted epoch 

was then downsampled by a factor of 13 using a moving average procedure and fed to 

a classifier, providing a series of 53 shifted classifier scores across each epoch, one for 

each time shift used. These series were extracted for all epochs. For each target flash, 

the time shift corresponding to the highest classifier score (the probability that the flash 

was a target flash) was extracted as the latency shift for the flash. The variance of these 

latency shifts within a session denoted as vCBLE, reliably measures latency jitter 

(Thompson et al., 2019). This jitter was extracted for each session and averaged over 

participants for both the ALS and neurotypical control groups. We additionally 
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averaged these classifier score series over the target and non-target epochs per 

participant (Mowla et al., 2017). We calculated the maximum value and kurtosis of the 

participant average classifier score series for target epochs, as well as the unshifted, 

averaged score for non-target epochs. 

 

2.2.4 Correlation and Statistical Analysis 

 

All statistical analyses were conducted in R version 3.6.1 (R Core Team, 2019). 

Within-group correlations for both participants with ALS and controls between latency 

jitter and performance measures (character accuracy, flash accuracy, precision, recall, 

and F-score) were investigated using repeated measures correlations, an analysis of 

covariance-based regression appropriate for measuring common (overall) intra-

individual associations among measures when multiple non-independent observations 

are available for each participant (Bakdash and Marusich, 2017). Within-group 

correlations between latency jitter and ERP features (N100, P200, N200, and P300 

amplitudes and latencies) were similarly investigated using repeated measures 

correlations. Both latency jitter (vCBLE) versus performance and latency jitter versus 

ERP feature correlations were performed within both the ALS and control groups. 

Correlations between the average latency jitter for each participant with ALS and 

their clinical features, specifically time since diagnosis, ALSFRS-R scores (Cedarbaum 

et al., 1999), bulbar subscores of the ALSFRS-R, ALS-CBS scores (Woolley et al., 

2010), and attention subscores of the ALS-CBS (Geronimo et al., 2016) were 

investigated using Spearman correlation. For comparisons between groups, session 

measures (ERP amplitudes and latencies, performance measures, and latency jitter) 
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were averaged within participants. These participant average measures were then 

compared between participants with ALS and controls using non-parametric Mann-

Whitney U tests (Mann and Whitney, 1947), appropriate for non-normal distributions 

and small, potentially uneven samples (Siegel and Tukey, 1960). The statistics related 

to participant average classifier score series, specifically the maximum value and 

kurtosis of the average series for target epochs and the unshifted averaged score for non-

target epochs, were also compared using non-parametric Mann-Whitney U tests. In 

order to account for multiple comparison corrections, the false discovery rate adjusted 

p-values (p < 0.05) were computed and reported (Hochberg and Benjamini, 1990) for 

both between-group comparisons and within-group correlations. 

 

2.3 RESULTS 

 

Averaged target ERPs for each of the participants with ALS (top) and neurotypical 

controls (bottom) at channel Cz are illustrated in Figure 2.1 (left). This figure also shows 

the average shifted classifier scores for each participant over both target (middle) and 

non-target (left) epochs, with the ALS group plots shown above and the control group’s 

plots below. In both groups, the average classifier scores for target characters had central 

peaks corresponding to the unshifted epochs (0 ms shift), which decrease at increased 

time shifts. However, the peaks in the classifier score series were significantly (p = 0.01) 

higher in neurotypical controls (0.78 ± 0.10) than in participants with ALS (0.55 ± 0.18). 

The kurtosis (peakedness/sharpness) of these classifier score series trended higher in 

neurotypical controls (1.84 ± 0.15) than in participants with ALS (1.72 ± 0.17), 

supporting the sharper appearance of these peaks, although the differences were not 
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significant (p = 0.18). For non-target segments, participants with ALS showed 

significantly (p = 0.005) increased classifier scores (0.10 ± 0.04) in comparison to 

neurotypical controls (0.04 ± 0.03), indicating less confident classification of target and 

non-target segments. Within-group variation was also slightly higher in the ALS group 

than in neurotypical controls. 

 

Figure 2.1. Comparison between participants with amyotrophic lateral sclerosis (ALS, 

top row) and neurotypical controls (NTC, bottom row) of participant averages (colors) 

and group averages (thick black) for grand average event-related potentials in the 

800 ms following stimulus onset (left). Between-group comparisons of classifier scores 

as a function of time shift for target (middle) and non-target (right) epochs. Each color 

indicates one participant across all panels of a row. 
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Figure 2.2 illustrates the differences between the ALS and neurotypical control 

groups in ERP latencies and amplitudes. While neither N100 amplitude nor latency 

differed significantly between groups, significant (p < 0.05) attenuation was present for 

other ERP features as follows:  

P200 amplitudes were significantly reduced in participants with ALS in the frontal 

(Fz), central (Cz), parietal (P3, Pz, P4), parieto-occipital (PO8), and occipital (Oz) 

channels (p ≤ 0.041), with a maximum average amplitude difference of 0.30 at channel 

Cz and average amplitudes of 0.20 ± 0.09 and 0.50 ± 0.20 in the ALS and control groups 

respectively. 

N200 amplitudes were significantly (p < 0.05) attenuated at channels P4, PO8, and 

Oz, with a maximum average amplitude difference of 0.42 at channel PO8 and average 

amplitudes of 0.22 ± 0.12 and −0.64 ± 0.28 in the ALS and control groups respectively. 

P300 amplitudes were also reduced in participants with ALS at channel PO8 

(p = 0.038), with an average amplitude difference of 0.38 and average amplitudes of 

0.22 ± 0.12 and 0.50 ± 0.19 in the ALS and control groups respectively. 

However, average latencies did not differ significantly between the ALS and 

control groups for any ERP at any channel. 

Figure 2.3 compares participant average latency jitter (vCBLE) and classification 

performance metrics, specifically character selection accuracy, binary flash 

classification accuracy, precision, recall, and F-score between groups. All performance 

measures were significantly decreased in participants with ALS as compared to 

neurotypical controls (p < 0.05). Participants with ALS had a reduced average character 

selection accuracy of 82.54 ± 30.18%, compared to 99.47 ± 1.59% for neurotypical 
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controls. Participants with ALS similarly had 88.91 ± 3.76% of flashes accurately 

classified as target or non-target, less than the 94.97 ± 2.23% flash accuracy for 

neurotypical controls. ALS participants also had a precision of 67.95 ± 16.16%, lower 

than neurotypical controls’ precision of 88.31 ± 6.11%. Recall was again lower in the 

ALS group, at 51.31 ± 25.87%, compared to 80.16 ± 8.64% in neurotypical controls. 

Given the reductions in precision and recall, participants with ALS had lower F-scores 

of 0.56 ± 0.26 than neurotypical controls with F-scores of 0.84 ± 0.08. Latency jitter 

was significantly (p = 0.01) increased in participants with ALS, averaging 

1350 ± 1073 ms2 in comparison to 553 ± 224 ms2 in neurotypical controls. Table 2.2 

tabulates the individual results on these measures for each group. 

 

 

Figure 2.2 The differences in the normalized amplitude (top) and latency (bottom) 

between participants with amyotrophic lateral sclerosis (ALS) and controls for the N100, 

P200, N200, and P300 components. Shades of red and orange colors indicate more 

positive normalized voltages and earlier latencies in controls than in participants with 

ALS, whereas shades of blue indicate more negative normalized voltages and later 

latencies. Channels with significant differences between groups after correction for 

multiple comparisons (p < 0.05) are marked with a white asterisk. 
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Figure 2.3. Box plots showing latency jitter (top left), character selection accuracy (top 

center), binary flash classification accuracy (top right), precision (bottom left), recall 

(bottom center), and F-score (bottom right) for all participants in both the amyotrophic 

lateral sclerosis (ALS) and neurotypical control (NTC) groups. The boxes show the 

quartiles with the median represented by a bold line through the box. Each dot shows 

the corresponding value for one participant (* significant at p < 0.05, ** significant 

at p < 0.01, Wilcoxon rank-sum test). 

 

Figure 2.4 shows single-session single-trial classifier score series for both target 

and non-target segments, along with histograms of the classifier-based latency estimates 

from a representative participant with ALS and a representative control participant. The 

participant with ALS had a generally wider, lower peak in their average classifier score 

series for targets than the control participant, with greater variation in their individual 

score series apparent in the figure and greater variation in the timing of their maximum 

classifier score reflected in the histogram. The participant with ALS also had more 
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ALS 

NTC 

apparent peaks in their classifier scores series for non-target epochs than the control 

participant, leading to more misclassifications of non-target segments. 

Table 2.2. Jitter, measured by the variance of classifier-based latency estimates 

(vCBLE), and performance metrics for all participants in both the amyotrophic lateral 

sclerosis (ALS) and neurotypical control (NTC) groups. Means and standard deviations 

(STD) are provided for each group. 

  
 

vCBLE 

(ms2) 

Performance Metrics 

  
 

Character 

Accuracy (%) 

Flash 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F-score 

  ALS-1 3397 23.81 82.96 38.36 4.88 0.08 

  ALS-2 553 97.62 92.20 79.45 71.31 0.75 

  ALS-3 892 100.00 92.04 80.13 69.52 0.74 

  ALS-4 1663 76.19 85.99 61.15 38.21 0.46 

  ALS-5 714 97.62 91.39 77.67 67.50 0.72 

  ALS-6 880 100.00 88.87 70.90 56.43 0.63 

  ALS 

Mean±STD 

1350± 

1073 

82.54± 

30.18 

88.91± 

3.76 

67.95± 

16.16 

51.31± 

25.87 
0.56± 0.26 

  NTC-1 759 100.00 90.40 75.32 62.98 0.69 

  NTC-2 419 100.00 95.34 88.44 82.86 0.86 

  NTC-3 807 100.00 92.66 82.64 70.60 0.76 

  NTC-4 858 95.24 94.09 86.42 76.19 0.81 

  NTC-5 449 100.00 95.74 91.11 82.50 0.87 

  NTC-6 340 100.00 96.07 90.43 85.48 0.88 

  NTC-7 316 100.00 96.51 93.97 84.40 0.89 

  NTC-8 280 100.00 97.36 93.90 90.00 0.92 

  NTC-9 478 100.00 96.59 92.61 86.43 0.89 

  NTC 

Mean±STD 

553± 

224 

99.47± 

1.59 

94.97± 

2.23 

88.31± 

6.11 

80.16± 

8.64 
0.84± 0.08 
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Figure 2.4 Comparison between a representative session from a representative 

participant with amyotrophic lateral sclerosis (ALS, top row) and a neurotypical 

control participant (NTC, bottom row). In each row, the classifier scores are shown as 

a function of time shifts for target epochs (left) and non-target epochs (middle). A 

histogram of classifier-based latency estimates for target epochs are shown on the 

right. In the left and middle panels, colored lines represent single epochs, and the bold 

black line represents the average classifier score series for the session. 

 

 

Figure 2.5 shows the repeated measures correlations and p-values between latency 

jitter (vCBLE) and performance metrics, specifically character accuracy, flash accuracy, 

precision, recall, and F-score, in both the ALS and control groups. As shown, there was 

a significant correlation between latency jitter and four performance metrics, 

specifically character accuracy (rrm = -0.94, p < 0.00001), precision (rrm = -0.78, 



 

47 
 

p = 0.002), recall (rrm = -0.77, p = 0.002), and F-score (rrm = -0.83, p < 0.001), in 

participants with ALS. However, no significant correlation was observed between 

latency jitter and flash classification accuracy in this cohort. In contrast, the control 

group demonstrated a significant negative (rrm < -0.85, p < 0.00001) correlation 

between latency jitter and all four per-flash performance metrics (binary flash 

classification accuracy, precision, recall, and F-score), as well as character accuracy 

(rrm = -0.82, p < 0.0001). 

 

Figure 2.5 Repeated measures correlations between latency jitter (vCBLE, ms2) and 

character accuracy (first column), flash accuracy (second column), precision (third 

column), recall (fourth column), and F-score (fifth column) in participants with 

amyotrophic lateral sclerosis (ALS, top row) and controls (NTC, bottom row). Each 

color indicates one participant, and black dashed lines show the overall trends. 

 

Repeated measures correlations between session average ERP features and latency 

jitter, as measured by vCBLE, are shown in Figure 2.6. Correlations between session 

average N100 latencies and vCBLE were significant at parieto-occipital channels 

including P3 (rrm = 0.69, p = 0.03), PO7 (rrm = 0.68, p = 0.03), and Oz 

(rrm = 0.80, p = 0.009) in participants with ALS. However, there was no significant 

correlation between N100 amplitudes and latency jitter in participants with ALS. In 
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contrast, neurotypical controls had significant repeated measures correlations between 

N100 amplitude and vCBLE at Pz (rrm = 0.63, p = 0.04), P4 (rrm = 0.59, p = 0.04), and 

PO7 (rrm = 0.56, p = 0.04), but there were no significant correlations between N100 

latencies and latency jitter in neurotypical control participants. 

Neither P200 latencies nor amplitudes significantly correlated with latency jitter in 

participants with ALS. However, while P200 latencies also did not correlate with 

latency jitter in controls, P200 amplitudes correlated with latency jitter in controls at 

channels Fz (rrm = -0.70, p = 0.005), Cz (rrm = -0.77, p = 0.002), P3 (rrm = -

0.63, p = 0.02), Pz (rrm = -0.60, p = 0.02), and Oz (rrm = -0.55, p = 0.03). Similarly, 

neither N200 latencies nor amplitudes significantly correlated with latency jitter in 

participants with ALS. However, while N200 latencies also did not correlate with 

latency jitter in controls, N200 amplitudes correlated with latency jitter in controls at 

channels Cz (rrm = 0.57, p = 0.04), PO7 (rrm = 0.61, p = 0.03), and PO8 

(rrm = 0.76, p = 0.002). 

Neither P300 latencies nor amplitudes significantly correlated with latency jitter 

in participants with ALS or in neurotypical controls. Spearman correlations between 

latency jitter, measured by vCBLE, and clinical measures, specifically ALSFRS-R 

scores, ALS-CBS scores, and attention subscores of the ALS-CBS in participants with 

ALS were not significant (p > 0.05).  
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Figure 2.6. Repeated measures correlations between N100, P200, N200, and P300 (A) 

amplitudes and (B) latencies and latency jitter (vCBLE) in participants with 

amyotrophic lateral sclerosis (ALS, above) and controls (NTC, below). Shades of red 

and orange indicate positive correlations between ERP amplitudes or latencies and 

latency jitter, whereas shades of blue indicate negative correlations. White asterisks 

indicate channels where this correlation is significant. 

 

2.4 DISCUSSION 

 

This study investigated the correlates of P300 latency jitter in people with ALS and 

controls. Our study found that latency jitter was increased in participants with ALS, and 

increased jitter correlated with reduced BCI performance in both the ALS and control 

groups. Furthermore, we observed that latency jitter correlates significantly with N100, 

P200, and N200 features in both groups as well. Specifically, increased N100 latencies 
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were associated with increased latency jitter in ALS, and decreased N100, P200, and 

N200 amplitudes correlated with increased latency jitter in controls. However, no 

association was observed between clinical measures of ALS disease and latency jitter. 

This observation aligns with the findings in a study conducted by McCane and 

colleagues (McCane et al., 2015), which reported no significant correlations between 

clinical features and ERP components or BCI performance. 

Our study’s finding that latency jitter negatively correlates with performance 

measures in both participants with ALS and controls supports the findings of 

correlations in neurotypical participants (Aricò et al., 2014) and in mixed groups of 

potential end-users and controls (Thompson et al., 2012). Our study additionally found 

that participants with ALS had both significantly reduced BCI performance and 

increased latency jitter compared to controls. Given the connection between latency 

jitter and BCI performance and the increase in jitter in people with ALS, potential brain-

computer interface users, our study suggests the importance of latency jitter in BCI 

design. 

Generally, visual-based BCIs are not practical for people with visual impairments, 

as can occur in the later stages of ALS. In our study, the participant in the late locked-

in state (ALS-1), who had lost eye-gaze control, had the highest latency jitter and the 

lowest BCI performance. In combination with increases in latency jitter in paradigms 

where participants are not permitted to utilize eye-gaze control (Aricò et al., 2014), this 

suggests latency jitter may be a contributing factor in reduced BCI performance in the 

absence of fine gaze-control. 
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To compensate for the negative effect of jitter in BCI performance in ALS, further 

work could investigate additional strategies to reduce BCI susceptibility to jitter. For 

example, paradigms that eliminate dependence on visual aspects, including those 

relying on auditory stimuli (Schettini et al., 2015) and the visuomental paradigm 

(Borgheai et al., 2019) can be further explored. Current attempts to compensate for 

latency jitter include the use of classifier score series (depicted in Fig. 4) as features in 

a secondary classifier (Mowla et al., 2017). However, no real-time implementations of 

this method have been reported (Mowla et al., 2017). 

This study additionally revealed associations between ERP features, including 

attention-related features such as the N100, P200, and N200, and latency jitter in both 

the ALS and neurotypical control groups. Participants with ALS showed attenuated 

P200 and N200 amplitudes at several channels as well as increased jitter overall but did 

not show significant correlations between ERP amplitudes and latency jitter for any 

component or channel. Neurotypical participants, however, showed significant 

correlations between N100, P200, and N200 amplitudes and latency jitter. Previous 

results support associations between increased latency jitter and reduced average ERP 

amplitudes. Both increased jitter and attenuated ERPs are present in various conditions 

including schizophrenia (Ford et al., 1994), traumatic brain injuries (Unsal and 

Segalowitz, 1995), and normal aging (Fjell et al., 2009). 

The associations between ERP amplitudes and latency jitter we found in 

neurotypical controls align with established results. Specifically, the amplitude of the 

attention-related N200 component (Balconi and Canavesio, 2016, O’Brien et al., 2013), 

which is implicated in P300-based BCI performance (Halder et al., 2013, Mak et al., 
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2012, Riccio et al., 2018), was significantly correlated with jitter in neurotypical control 

participants and attenuated in participants with ALS in our current study. Increased 

P200 amplitude is similarly associated with successful BCI sessions during longitudinal 

use (Shahriari et al., 2019) and with decreased latency jitter in the current study, 

supporting the importance of this component along with the P300. The P200, which 

relates to higher-order perceptual processing modulated by attention (Lijffijt et al., 

2009), was also decreased overall in participants with ALS in the current study, aligning 

with the relevance of the P200 to BCI performance in our prior work (Shahriari et al., 

2019) and other studies (Halder et al., 2013). Like the P200, the N100 has been reported 

to be associated with attention-modulated perceptual processing (Lijffijt et al., 2009). 

In our study, N100 latency correlated with latency jitter in participants with ALS, 

whereas its amplitude was correlated with jitter in neurotypical controls. 

The P300 mediates BCI performance (Halder et al., 2013, Mak et al., 2012, Riccio 

et al., 2018) and can itself be mediated by attention. For example, P300 jitter is increased 

in neurotypical participants in BCI tasks that rely on covert attention rather than overt 

attention (Aricò et al., 2014). Several studies have reported attentional dysfunctions in 

participants with ALS (Volpato et al., 2016, Riccio et al., 2013), and other groups 

reported deflections in attention-related ERP components in these cohorts (Raggi et al., 

2010, Vieregge et al., 1999). Thus, given the correlations between attention-related ERP 

features and latency jitter observed in our study, we speculate that latency jitter may 

also relate to attentional dysfunctions in ALS. 

Overall, this study explored latency variability in the use of a typical P300-based 

BCI, finding that jitter is increased in participants with ALS and correlates with 
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performance variations within this population. These results could lead to improved BCI 

performance by suggesting latency jitter as a critical factor in the development of BCIs, 

which predict and adapt to performance variations. Furthermore, our findings enhance 

our understanding of the mechanisms underlying ALS which can enrich future 

diagnostic and prognostic techniques. Further methods to compensate for excessive 

jitter, possibly involving classifier score series (Mowla et al., 2017) or adaptive filters 

to better detect single-trial responses and correct for latency jitter (Woody, 1967), and 

thereby address jitter related reductions in BCI performance are worth investigating to 

improve BCI performance in real-time. 

One limitation of the study is that vCBLE, the measure of jitter used in our study, 

has the theoretical limitation that it covers shifts of the entire 800 ms window and not 

just the P300 component (Thompson et al., 2012). However, tests with simulated data 

show its efficacy in reflecting P300 latency jitter (Thompson et al., 2019). Another 

limitation of the current study is the relatively small sample size. The use of repeated 

measures correlations, rather than correlations on participant averages, increases power 

while maintaining statistical rigor (Bakdash and Marusich, 2017). While the consistency 

of significant findings across all the subjects within each group supports more 

deterministic results, further studies with additional participants would be of value in 

determining if these findings can be generalized and strengthen the power of our 

analysis. This limitation leads to a remaining question that is whether the lack of a 

significant correlation between ERP amplitudes and latency jitter in participants with 

ALS is due to our small sample size or due to certain pathophysiological aspects of ALS. 

However, as latency jitter does not fully explain reductions in grand average ERP 
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amplitudes in other populations which experience both effects (Ford et al., 1994, Saville 

et al., 2015, Unsal and Segalowitz, 1995, Walhovd et al., 2008), increased jitter similarly 

may not fully explain grand average amplitude reductions in ALS. A final limitation of 

this study was our limited number of sessions resulting in a lack of longitudinal 

explorations of latency jitter and BCI performance variability in these cohorts. Intra-

individual BCI performance variations in ALS have been previously reported by our 

group and others (Nijboer et al., 2010, Shahriari et al., 2019), and thus, exploring the 

longitudinal associations of latency jitter with BCI performance variations can support 

a better understanding of their respective mechanisms over time and suggest adaptive 

strategies to overcome this issue. 
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ABSTRACT 

 

Objective. P300-based brain–computer interface (BCI) systems enable people with 

neuromuscular disabilities, including amyotrophic lateral sclerosis (ALS), to 

communicate and control using brain activity. However, variation in the P300 latency, 

also called latency jitter, is both increased in people with ALS and negatively associated 

with their performance. In this study, we proposed a classification scheme utilizing data 

augmentation and jitter correction to improve BCI performance for people with ALS.  

Approach. Longitudinal recordings were taken while six people with ALS used a 

P300-based BCI. Our proposed augmentation and correction (A/C) classification 

scheme included data augmentation and correction for jitter, both relying on time-

shifted responses with individualized parameters determined based on latency jitter. 

Performance metrics including character selection accuracy and binary accuracy, 

precision, recall, and F-score were calculated using both the proposed classification 

scheme and a reference classifier that did not implement data augmentation or correction. 

Performance was compared between the two classification methods using paired t-tests 

and investigated longitudinally using correlation analyses. Correlations between 

performance improvements and clinical measures were also investigated. 

Main results. The proposed A/C classification scheme significantly improved 

character selection accuracy, required for usability, as well as recall and F-scores. 

However, precision was reduced, and binary accuracy was not significantly affected. 

Overall, BCI performance deteriorated over time with both classification methods. 
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Selection accuracies were more improved by the proposed A/C approach for 

participants with more significant physical impairments. 

Significance. The proposed classification scheme improved P300 BCI performance 

for our participants with ALS, showing the effectiveness of both data augmentation and 

of taking latency jitter into consideration. While our longitudinal analysis showed 

decreased BCI performance and increased latency jitter over time, our proposed scheme 

partially mitigated deterioration in some performance metrics. These results should 

inform further work on improving longitudinal BCI performance and reliability for 

people with ALS.  

 

Keywords: brain-computer interfaces, amyotrophic lateral sclerosis, data 

augmentation, latency jitter, jitter correction 

 

3.1 INTRODUCTION 

 

As people with amyotrophic lateral sclerosis (ALS) develop significant motor 

disability and lose voluntary motor control, they frequently require tools for 

augmentative and alternative communication. Currently available tools, including 

brain-computer interfaces (BCIs) support communication for people with ALS, but 

people with ALS have been reported to show reduced BCI performance in comparison 

to neurotypical users [1-5]. In addition, BCI users can experience substantial variations 

in BCI performance within and across days [6-8].  

Given these concerns, significant attention has been paid to both understanding the 

correlates of BCI performance and improving classification accuracy. Much of this 
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research is dedicated to understanding and improving BCIs based on the visual P300 

response, a positive electrical deflection occurring 250-500ms after an attended rare 

event [9]. In a longitudinal study of P300-based BCI home users, Shahriari and 

colleagues found that BCI performance was positively associated with P200 amplitude, 

parietal alpha-band spectral power, and occipital beta-band spectral power, but 

negatively correlated with occipital delta-band power [8]. Mak and colleagues found 

that among participants with ALS, increased event-related potential (ERP) amplitudes 

and theta-band spectral power were associated with increased P300 BCI performance 

[10]. Geronimo and colleagues found that higher cognitive scores, including scores 

measuring attention, were associated with both increased P300 quality and BCI 

performance [5, 11].  

Trial to trial variation in P300 latency, known as latency jitter, has been found to 

be negatively associated with BCI performance in a mixed group of neurotypical 

participants and potential end-users [12], in neurotypical participants [13, 14], and in 

people with ALS [3]. For example, Zisk and colleagues recently determined that this 

latency jitter is elevated in people with ALS as compared to neurotypical controls [3], 

and latency jitter is a factor affecting  BCI performance for people with ALS [3, 12, 15]. 

As studies have shown latency jitter can predict BCI performance [12, 14], Mowla 

and colleagues used latency estimation and a secondary classifier to improve BCI 

performance, though they did not report an online implementation of this method [16]. 

Togashi and Washizawa similarly utilized Bayesian latency estimation to improve P300 

BCI performance [17]. Considering differences in latencies between experimental 

paradigms which elicited P300 responses rather than variability within participants 
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using a single paradigm, Iturrate and colleagues calculated the latency shift between 

paradigms and then trained a classifier for one paradigm using data from another, time-

shifted to compensate for the latency differences between the experimental conditions 

[18]. They found that in cases of insufficient training data from any given paradigm, 

including latency-corrected training data from other paradigms improved performance. 

In recent years, data augmentation for BCIs has gained attention as a strategy for 

improving performance [19-23]. The purpose of data augmentation is to increase the 

size of the training data, and thereby improve the reliability and generalizability of the 

classification algorithms. As electroencephalography (EEG) data varies significantly 

between different participants, many EEG classifiers are single-subject, though pooling 

data from multiple participants has also been the focus of some research [24] with a 

similar goal of improving generalizability and reliability. Iturrate and colleague’s 

collected data from multiple experimental paradigms that produced P300 responses, but 

with different latencies. Their transfer of data between different experiments that evoke 

P300 responses similarly works towards the goal of improving generalizability and 

stability with limited training data [18]. In other studies, the use of time shifted epochs 

has supported the extraction of multiple segments per stimulus, providing a larger 

training data set [23, 25, 26]. For example, Kim and colleagues used a -100 ms shift, 

doubling the size of their data set in a reinforcement learning method and requiring both 

the shifted and unshifted epoch to be classified correctly for the classification to be 

considered correct [26]. In their study, they noted an improvement with this data 

augmentation scheme as compared to using a single time window without augmentation. 

Sakai and colleagues compared several data augmentation methods, including set time 
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shifts of ±10 ms for all participants, tripling their training data sets [25]. Their data 

augmentation protocol improved classification performance, with greater improvements 

found when the training set was smaller. Krell and colleagues similarly considered 

several data augmentation methods, including time-shifted data, for augmenting P300 

training data [23]. In their study, single time-shifts were tested and provided 

improvements for some participants, but no single time-shift was reported to be 

consistently helpful. They then tested symmetrical time-shifts and reported that ±40 ms 

shifts increased the data set but did not significantly affect performance. In all three 

studies, unshifted epochs, beginning at the time of the stimulus, were used alongside 

overlapping time-shifted epochs extracted from the recorded EEG data. These three 

studies sought to classify responses which can vary in latency, and their use of time-

shifted data both increased the number of epochs available for training and provided 

epochs with earlier and/or later responses of interest [23, 25, 26]. As data augmentation 

with time-shifted data provides time-shifted responses in the training data, this 

augmentation approach provides additional latency variability that may improve 

robustness to this same form of variability [19]. 

In this study we therefore proposed a correction strategy that relied on latency jitter 

at multiple levels. In particular, we propose to improve classification performance for 

P300 data longitudinally recorded from people with ALS using both data augmentation 

and jitter correction. The data augmentation utilizes time-shifted responses to both 

target and non-target trials, with individualized time shifts based on latency variations 

present in the training set. The jitter correction procedure was also implemented through 

allowing limited time-shifts of the epochs to be classified. We quantify our performance 
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improvements through the use of a reference classifier using neither data augmentation 

nor jitter correction. We then investigated longitudinal relationships between clinical 

measures, latency jitter, and BCI performance in our participants with ALS. 

3.2 METHODS 

 

3.2.1 Participants 

 

Six participants with ALS (age 57±15.7 years,1 female) were recruited for this 

study (see Table 3.1). All participants had at least some post-secondary education. 

Participants other than ALS-01 had normal or corrected to normal vision, while ALS-

01 was in the late stages of locked-in syndrome with significant ocular impairments. 

Participants were diagnosed with ALS 6.5 ± 4.0 years prior to the start of the study and 

had an average functional rating scale-revised (ALSFRS-R) score of 11.6 ± 9.5, with a 

minimum score of 0 indicating no voluntary motor functions and complete dependence 

on life-sustaining technologies including mechanical ventilation and a maximum score 

of 48 indicating normal functioning [27]. Three participants had gastrostomies as well 

as tracheostomies. ALS-01′s sole form of communication was an idiosyncratic and 

error-prone yes/no pupil dilation his caregiver read subjectively, which deteriorated 

over the course of the recordings, losing reliability as a means of communication. Two 

other participants with artificial ventilation (ALS-02 and 04) used eye-tracking devices 

to communicate. ALS-03 could still move his index finger and make non-verbal sounds 

to sustain minimal communication. ALS-05 and 06 retained the ability to speak, though 

ALS-05 had lost non-facial movement, and ALS-06 could barely move a joystick with 

one hand. Participants were tested in their homes or care centers. The study protocol 



 

68 
 

was approved by the Institutional Review Board (IRB) of the University of Rhode Island 

(URI), and all participants provided informed consent or assent for the study and 

received financial compensation. 

 

Table 3.1. Demographic Information for Participants with amyotrophic lateral sclerosis 

(ALS) 

Subject 

Number 

Age Sex Time since 

diagnosis 

(years) 

Revised ALS  

Functional Rating 

Scale (ALSFRS-R) 

(out of 48) 

ALSFRS-R 

Bulbar 

Subscore 

Artificial 

Ventila-

tion 

Means of 

 Communication 

ALS-01 29 M 4 0 0 Yes No reliable means 

ALS-02 55 M 11 4 0 Yes Eye-tracking 

ALS-03 70 M 8 14 5 No Non-verbal sound 

ALS-04 67 M 2 7 5 Yes Eye-tracking 

ALS-05 69 F 11 23 11 No Verbal 

ALS-06 52 M 3 22 12 No Verbal 

Mean±SD 57.0±15.7 - 6.5±4.0 11.6±9.5 5.5±5.2 - - 

 

3.2.2 Experimental Protocol 

 

Each participant took part in 5-12 (9.5 ± 2.6) sessions of recording over 2.5-13.7 

(10.9 ± 4.3) months. These sessions took place at least two weeks apart. Including 

preparation such as the application of gel to electrodes and impedance calibration, each 

session typically lasted 2-2.5 hours. To familiarize participants with the BCI setup, 

including the recording protocol and the task, each participant took part in a single 

familiarization session before the main experimental recordings, in which they 
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completed the same tasks without recording the data and were given the opportunity to 

get clarification about the experimental tasks. Each session contained one run of a 

standard P300 spelling protocol, in which a 6x6 matrix of characters containing letters 

and numbers was displayed to participants, with each row and column intensified 10 

times (i.e., 10 trials) per character selection [28].  

 

3.2.3 Data Acquisition 

 

EEG data were recorded using a g.USBamp amplifier (g.tec Medical Technologies) 

with a 256 Hz sampling rate. Data were recorded from eight channels commonly used 

in P300 protocols, Fz*, Cz, P3, Pz, P4, PO7, PO8, and Oz [29]. However, as Fz was 

occupied by sensors for other studies recorded in the same session as the current 

experiment, it was replaced by the nearest available channel, FAF2, denoted as Fz*. All 

experimental protocols, data acquisition, and stimulus presentation were controlled 

using BCI2000 software [30].  

 

3.2.4 Data Analysis 

 

EEG data were detrended and bandpass filtered at 0.5-30 Hz offline. Then, the data 

were segmented into 100 ms pre-stimulus to 900 ms post-stimulus epochs. From these 

1 s epochs, 800 ms sub-epochs were extracted using a moving window to produce 

epochs beginning at each available time point from approximately 100 ms pre-stimulus 

to 100 ms post-stimulus, producing 53 time-shifted 800 ms epochs per stimulus. These 

800 ms epochs were subject to a moving average procedure, where each value was 
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replaced by the local mean calculated over a moving window, and then downsampled 

by a factor of 13, following the feature reduction procedure used in previous studies 

[12]. The downsampled epochs from all channels were concatenated and then treated as 

potential features for classification. All data processing was conducted in MATLAB 

R2019a.  

As shown in Figure 3.1, two stepwise linear discriminant analysis (SWLDA) based 

classification methods with typical parameters for P300 speller applications were used 

to characterize performance [29, 31]. In our proposed method, a classification scheme 

with data augmentation and jitter correction, hereafter referred to as 

augmentation/correction (A/C) classification, was implemented with data augmentation 

on the training set and correction for latency jitter applied to the test set, which will be 

explained in sections 2.4.2 and 2.4.3 respectively. For comparison, reference SWLDA 

classifiers were trained on the same data with no data augmentation or correction for 

latency jitter.  

To ensure that the approach could be implemented in practical environments, data 

from prior sessions were used to predict performance and determine correction 

parameters for future sessions. Beginning with each participant’s third session, session 

performances were evaluated by taking that participant’s two prior sessions as the 

training set. That is, classifiers were trained on data from each participant’s first two 

sessions and then evaluated the data of their third session as its test set; then classifiers 

were trained on the second and third sessions to evaluate their fourth session, and so 

forth. 
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Performance metrics, including the metrics for binary classification as well as the 

character selection accuracy, and latency variability (i.e. latency jitter), were calculated 

for both the reference and A/C classification procedures. Longitudinal analysis was then 

performed using the outputs from both classifiers as explained in detail in section 2.5.  

 

Figure 3.1. The schematic illustrates the basic steps involved in both the reference 

classification, and the augmented/corrected (A/C) classification method with data 

augmentation and jitter correction. 

 

3.2.4.1 Latency Jitter 

 

All calculations of latency shifts, latency jitter, and classifier score series relied on 

classifier-based latency estimation (CBLE), as proposed by Thompson and colleagues 

[12] and used in our prior investigation of latency jitter [3]. As a first step for CBLE, an 

SWLDA classifier was trained on either four fifths or all of the training set, depending 

on whether latency shifts were being calculated on the remaining portion of the training 

set or on the test set. Then, for each stimulus requiring a latency estimate or classifier 

score series, whether target or non-target, the downsampled 800 ms epochs, including 

all 53 time-shifted epochs starting at each available time point from approximately 100 

ms pre-stimulus to 100 ms post-stimulus, were extracted and fed to the classifier. This 

resulted in 53 shifted classifier scores, one for each time shift used. These 53 shifted 

classifier scores formed the classifier score series for each stimulus. The time shift 

corresponding to the highest classifier score in the series, representing the highest post-
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probability that the stimulus was a target stimulus, was extracted as the latency shift for 

that specific stimulus. Then latency jitter was defined as the variance of the latency 

shifts for all target stimuli and denoted as vCBLE for variance of the classifier-based 

latency estimates.  

 

3.2.4.2 Data Augmentation 

 

For each subject, the training data were augmented using symmetrically time-

shifted data similar to the protocol in [25], but with an adaptive time shift based on 

latency variations in the data. To do so, the median of the absolute latency shifts among 

target stimuli in each training set for each subject were used as the constant time shift 

for data augmentation. In this study, individualized parameters were used as participants 

with ALS generally experience more latency jitter than neurotypical controls (i.e. 

increased within-subject variability in ALS), and as latency jitter can significantly vary 

between participants with ALS (i.e. between-subject variability in ALS) [3].  

As data augmentation calculation was done within the training set, the training data 

was first divided into 5 folds of approximately equal length. Then, an SWLDA classifier 

was trained on data from 4 folds of the original training data using the same procedure 

as the reference classifier, with no time shifts and was used to calculate the latency shifts 

for all stimuli in the fifth fold. This procedure was repeated four more times to cover all 

the stimuli over all folds, providing a classifier score series and an estimated latency 

shift for every stimulus in the training set, both target and non-target. 

To determine the ultimate individualized time-shift, the median of the absolute 

values of the latency shifts associated with target stimuli was calculated. This median 
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absolute shift, M ms, was then used as both a positive and negative constant latency 

shift with which to augment the data. That is, for each stimulus, epochs shifted by -M 

ms and M ms were added to the training set with the original class label for its respective 

stimulus. An -M to -M+800 ms epoch, a 0 to 800 ms epoch, and an M to M+800 ms 

epoch were thus constructed for each stimulus in the training set, tripling (3x) the 

original training data. However, when the latency jitter was above a threshold of 1000 

ms2, a further per-stimulus augmentation was used to correct for the excessive jitter. In 

this case, for each original epoch, the shifted epoch which maximized the classifier score, 

corresponding to the latency shift for the stimulus, was added to correct for this 

increased jitter on the training set. That is, for a stimulus with a latency shift of S ms 

based on its classifier score series that reached its maximum for the S to S+800 ms 

epoch, this S to S+800 ms epoch was then added. In this case, the number of epochs 

extracted from the training set was quadrupled (4x), with each stimulus providing an 

original 0-800 ms epoch, two symmetrically time shifted epochs, and a jitter corrected 

epoch. 

 

3.2.4.3 A/C Classification Procedure 

 

After data augmentation was performed on the training set, the parameters were 

determined for a jitter correction procedure. To do so, for each stimulus (in the training 

set), classifier score series were calculated using classifiers trained on the augmented 

data. Then, the maximum classifier score corresponding to an epoch within a limited 

range of time shifts was retained as the final classifier score. This range was limited 

because using a narrower range of allowable time shifts reduces the extent to which 
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using this maximum score increases classifier scores for non-target stimuli and 

characters, which is a concern when taking the maximum score over an extended range 

of overlapping windows [12]. The optimal maximum allowable time shift was 

determined using 5-fold cross-validation over the corresponding training set. The 

optimal range was selected out of a total of 27 possible window sizes corresponding to 

the central  1,3,5, …, 53 classifier scores distributed around the score for the 0-800 ms 

epoch, ranging from no correction to the use of the entire classifier score series. These 

windows provided maximum allowable time shifts of 0 ms, ±3.91 ms, ± 7.81ms, … 

±101.56 ms, corresponding to intervals between data points recorded at 256 Hz.  

To determine the optimal range, for each of the possible window sizes, classifier 

scores and class labels were assigned to each stimulus in the training set using the 

classifier score series calculated for that stimulus. The score for the stimulus and 

window of allowable time shifts was the maximum score for the stimulus within that 

window, and the label was assigned according to this score. In effect, if any epoch within 

the allowable window of time shifts would have been labeled as a target, then the 

stimulus was also labeled as a target. If not, then the stimulus was labeled as a non-

target. This was repeated for all possible choices of windows, and the window which 

maximized the average F-score over the five folds was selected as the optimal range for 

implementation on the test set. 

Finally, an SWLDA classifier was trained on the complete augmented training set 

and then applied to the test session. The classifier score series were calculated for each 

stimulus in the test session, and the estimated latencies were calculated using CBLE as 

before. Labels were then also applied to each flash based on the A/C classifier scores. 
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For comparison, the reference classifier was trained on data from the same original 

training sets, but without either data augmentation or jitter correction. Estimated 

latencies were again calculated using CBLE, but latency shifts were not used in 

determining reference classifier scores, class labels, or character selections. 

 

3.2.4.4 Performance Evaluation 

 

For both types of classifier, binary classification accuracy, precision, recall, F-

score, and character selection accuracy were calculated as measures of performance 

[32, 33]. With TP, TN, FP, and FN respectively representing the number of epochs 

that were classified as true positives (correct targets), true negatives (correct non-

targets), false positives, and false negatives, we computed accuracy, precision, recall, 

and F-score as below: 

Classification Accuracy =  
TP + TN

TP + TN + FP + FN
 

Precision =  
TP

TP + FP
 

Recall =
TP

TP + FN
 

F − score =  
2 × Precision × Recall

Precision + Recall
. 

Character selection accuracies were calculated as the number of characters 

correctly selected from a test session divided by the 14 characters in each session. To 

do so, the character with the highest summed classification score (either A/C or 

reference) over all stimuli was selected as the target character. The selection 

accuracies were calculated using each possible number of trials, from 1 (only the first 
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intensification of each row and column per character) through 10 (all 10 

intensifications of each row and column per character). 

 

3.2.5 Statistical Analysis 

 

All statistical analyses were conducted in R version 3.6.1 [34]. Differences between 

the proposed A/C classification method and the reference classifier were investigated 

using paired t-tests. Both per-stimulus performance metrics, specifically classification 

accuracy, precision, recall, and F-score, and character selection accuracy using each 

possible number of trials, from 1-10, per character were averaged within participants. 

Participant average jitter, per-stimulus performance metrics, and character selection 

accuracy for all 10 trials were compared between the proposed A/C classification 

method and the reference classifier using paired t-tests. 

We then tested for correlations between performance metrics and latency jitter for 

both classification methods using repeated measures correlations, (rrm), an analysis of 

covariance-based regression appropriate for measuring common (overall) intra-

individual associations between measures with multiple non-independent observations 

per participant [35].   

We further investigated associations between clinical measures and performance 

improvements from our proposed method. To do so, we tested for spearman correlations 

between participant-averages in selection accuracy improvements from our proposed 

A/C classification procedure relative to the reference classification approach, and time 

since diagnosis, ALSFRS-R scores, and ALSFRS-R bulbar subscores. We also tested 

for correlations between selection accuracies using each method and clinical scores.  
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Finally, latency jitter and performance metrics were investigated longitudinally. 

We utilized repeated measures correlations to investigate common trends across 

participants. To understand possible changes in performance over time, repeated 

measures correlations were investigated between the number of days since the first 

session and latency jitter, as well as the number of days since the first session and all 

performance metrics. We then tested for spearman correlations between character 

selection accuracies and days since their first session within each participant to consider 

inter-individual differences in trends. 

 

3.3 RESULTS 

 

The symmetric shifts used for data augmentation varied between ±11.72 ms and 

±54.69 ms, though shifts greater than ±30 ms were only selected for ALS-01, the 

participant in the locked-in state. The selected correction windows ranged from 0 (no 

allowable time shift) to ±101.56 ms, though windows greater than ±40 ms were also 

only selected for the participant in the locked-in state. The selected parameters for each 

combination of training and testing session numbers, specifically the symmetric shifts 

used in data augmentation, the relative size of the augmented training set compared to 

the original training data, and the jitter correction window, are available in the Appendix 

table A.1 for each participant and session. 

Character accuracy when using all 10 trials was significantly (p=0.019) higher with 

the A/C classifier at 73.92±31.03% than with the reference classifier at 70.50±31.77%. 

In particular, these improvements were about 5.0%, 7.1%, 2.4%, 4.1%, 0.9%, and 1.0% 

for participants ALS-01 through ALS-06, respectively. Binary classification accuracy, 
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however, was not significantly different between the classification procedures. 

Precision was significantly (p=0.025) lower with the A/C classifier at 51.14±15.61% 

compared to the reference classifier with 54.21 ± 15.96% precision. The A/C classifier 

had a significantly (p=0.002) higher recall of 53.21±21.41% than the reference classifier 

at 43.46±21.13%. The A/C classifier also provided a significantly (p=0.005) higher F-

score of 0.50±0.18 than the reference classifier, at 0.45±0.20. Table 3.2 tabulates the 

individual results on these measures, averaged over all sessions.  

Improvement in character selection accuracy was also observed when fewer trials 

were used, as shown in Figure 3.2. Character selection accuracy was improved by an 

average of 5.32% using the proposed A/C classifier as compared to the reference 

classifier over all numbers of trials and participants. Both initial selection accuracy and 

the extent of the improvement varied between participants. In particular, for ALS-01, 

character selection accuracy was improved by 3.6% on average over all possible 

numbers of trials, though this improvement did not allow for successful BCI control due 

to poor initial performance. For ALS-02, character selection accuracy was improved by 

an average of 8.1% over all possible numbers of trials. Character selection accuracy first 

reached an acceptable level (≥70% [36]), for ALS-02 using at least four trials using the 

reference classifier at 70.7%, as compared to three trials using the proposed A/C 

classifier, at 72.1%. For ALS-03, character selection accuracy was improved by an 

average of 3.3% over all numbers of trials, requiring at least three trials to reach 

acceptable accuracy with both the reference classifier (71.4%) and the proposed A/C 

classifier (78.6%). ALS-04 never reached acceptable character selection accuracy, but 

the proposed classifier improved selection accuracy by an average of 10.3% over all 
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possible numbers of trials. For ALS-05, this improvement was 3.6%, first achieving an 

acceptable accuracy using 3 trials at 78.6% with the proposed A/C classification scheme 

as opposed to 4 trials at 75.9% character selection accuracy with the reference classifier. 

Over all possible numbers of trials used, character selection accuracy was improved for 

ALS-06 by 3.1% using the A/C classification scheme as compared to the reference 

classifier, first achieving an acceptable accuracy using 3 trials at 71.4% with the 

proposed A/C classification scheme as opposed to 4 trials at 74.5% character selection 

accuracy with the reference classifier. 

Figure 3.3 shows the correlations between performance metrics and latency jitter. 

Using the proposed A/C classification method, there were significant correlations 

between latency jitter and four performance metrics, specifically character accuracy 

(rrm=-0.87, p<0.001), binary classification accuracy (rrm=-0.73, p<0.001), precision 

(rrm=-0.86, p<0.001), and F-score (rrm=-0.80, p<0.001) indicating that as the latency 

jitter increased, that the proposed A/C method improved performance overall but did 

not mitigate the negative relationship between jitter and performance. However, the 

correlation between latency jitter and recall using the proposed A/C classification 

method did not reach significance (p > 0.05). Using the reference classifier, latency jitter 

correlated significantly with character selection accuracy (rrm=-0.85, p<0.001), binary 

classification accuracy (rrm=-0.74, p<0.001), precision (rrm=-0.82, p<0.001), recall 

(rrm=-0.31, p=0.049), and F-score (rrm=-0.67, p<0.001), for significant correlations with 

all five performance metrics. 

Spearman correlations between participant average character selection accuracies 

and clinical features, specifically age, time since diagnosis, ALSFRS-R scores, and 
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ALSFRS-R bulbar subscores, were not significant for either classification method 

(p>0.05).  
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Figure 3.2. Average character selection accuracies at each number of trials used, over 

all participants (a) and for each participant (b-g) using both the reference and 

augmentation and correction (A/C) classification schemes. 

 

However, the correlations between clinical scores and participant average 

improvements in character selection accuracy, as shown in Figure 3.4, were significant 

for ALSFRS-R scores (ρ=-0.94, p=0.017) and the bulbar subscore of the ALSFRS-R 

(ρ=-0.91, p=0.011). Spearman correlations between performance improvements and age 

(ρ=-0.43, p=0.419) or time since diagnosis (ρ=0, p=1) were not significant.  



 

82 
 

Repeated measures correlation plots for the longitudinal analysis of character 

selection accuracy, binary accuracy, and latency jitter over time are shown in Figure 3.5. 

Character accuracy decreased significantly over time with both the proposed A/C 

classification scheme (rrm=-0.44, p=0.005) and the reference classifier (rrm=-0.43, 

p=0.006). However, the negative trend in binary classification accuracy as sessions 

progressed was not significant for the A/C classification method (rrm=-0.27, p =0.083) 

but it was significant for the reference classifier (rrm=-0.38, p=0.015), suggesting that 

the longitudinal decrease in performance may be mitigated by our proposed 

classification scheme. Latency jitter increased over time with both the A/C classification 

scheme (rrm=0.42, p=0.006) and the reference classifier (rrm=0.50, p<0.001).  

 

 

Figure 3.3 Repeated measures correlations between latency jitter (vCBLE, ms2) and 

character accuracy (first column, a&d), binary classification accuracy (second column, 

b&g), precision (third column, c&h), recall (fourth column, d&i), and F-score (fifth 

column, e&j) in using the proposed A/C classification scheme (top row, a-e) and the 

reference classifier (bottom row, f-j). Each color indicates one participant. 



 

83 
 

 

Figure 3.4 Spearman correlation plots of selection accuracy improvements from the 

proposed augmentation and correction (A/C) scheme with amyotrophic lateral sclerosis 

functional rating scale-revised (ALSFRS-S) scores (a), ALSFRS-R bulbar subscores (b), 

participant ages (c), and time since diagnosis (d).  

 

 

Figure 3.5. Longitudinal repeated measures correlation plots for character accuracy (left, 

a&d), binary classification accuracy (middle, b&e), latency jitter (vCBLE, right, c&f). 

Note: each color indicates one participant. 

 

Single-participant longitudinal trends in character selection accuracy are shown in 

Figure 3.6. Spearman correlations between selection accuracy and the numbers of days 

since the first session were significant and negative in ALS-01 for both the proposed 

A/C classification scheme (ρ=-0.75, p=0.013) and the reference classifier (ρ=-0.65, 
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p=0.041). There was no significant trend in performance over time with either the A/C 

scheme (ρ=0.09, p =0.805) or the reference classifier (ρ=-0.09, p=0.808) for ALS-02. 

There was similarly no significant trend with the proposed (ρ and p both undefined) or 

reference (ρ=0.87, p=0.333) classification schemes for ALS-03, for whom performance 

metrics were only extracted from three sessions. For ALS-04, neither the correlation 

between accuracy with the A/C scheme (ρ=0.02, p=0.969) nor with the reference 

classifier (ρ=-0.28, p=0.542) and time since the first session was significant. The 

spearman correlations between accuracy and time were the same for both classifiers for 

both ALS-05 (ρ=-0.64, p=0.088) and ALS-06 (ρ=-0.47, p=0.284), not reaching 

significance for either participant. 

 

Figure 3.6. Longitudinal plots of single-session character selection accuracies over time 

for ALS-01 (a) through ALS-06 (f) using both the proposed augmentation and 

correction (A/C) classification and the reference classification schemes. Each dot 

represents the result from a single session. For dates where only one dot is visible, the 

character selection accuracies were the same with both methods. 
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3.4 DISCUSSION 

 

In this study, we proposed an augmented/corrected (A/C) classification scheme that 

relies on latency variations at two levels, using both data augmentation and jitter 

correction procedures to improve P300-based BCI classification performance in people 

with ALS. Our proposed approach demonstrated significantly improved character 

selection accuracy and detection of target stimuli relative to classical reference SWLDA 

classifiers, with greater improvements in selection accuracy in participants with more 

significant motor impairments. Classification performance improvements with EEG 

data augmentation were reported to vary based on both tasks and augmentation methods 

in a recent review paper, though none of the papers covered by that review specifically 

addressed P300 tasks [19]. However, prior P300 studies have found some success with 

data augmentation. For example, Krell and colleagues considered multiple 

augmentation methods found improvements similar to ours using a rotational data 

augmentation scheme with P300 data. However, their use of one consistent symmetric 

time-shift to augment P300 data across all neurotypical participants, did not find 

significant improvement, whereas we showed performance improvements with the 

individualized time-shifts used in our study [23]. Synthetic oversampling of target 

samples near the border of target versus non-target has also been reported to improve 

P300 BCI performance for neurotypical participants with initially poor performance 

[37]. While we tested our method with an ALS cohort, Bittencourt-Villalpando and 

Maurits applied a variety of methods to a P300 dataset recorded from autistic adults and 

found the best performance with a method involving data augmentation for 

approximately one third of the sessions they considered [38]. Our proposed method, 
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comparatively, found larger and more consistent improvements in selection accuracy 

than some prior augmentation approaches with P300 data, and similar improvements to 

one. Augmentation procedures similar to ours have been implemented in prior studies 

with neurotypical participants, increasing the amount of training data [23, 25, 26] and 

thereby improving performance in the two non-P300 studies [25, 26]. These prior 

studies examined augmentation using constant time-shifts across participants, while the 

current study determined individual time shifts for each subject separately. 

Augmentation with symmetric time-shifts has also reported to improve performance in 

Sakai and colleagues’ study using data recorded during an intrinsic motivation task with 

neurotypical participants [25]. A constant but non-symmetric shift was also used to 

improve feedback in the detection of error-related potentials, again with neurotypical 

participants [26]. However, Krell and colleagues found no significant effect on 

performance after augmenting P300 data with symmetric time-shifts similar in size to 

the larger selected shifts from the current study [23]. By individualizing the time-shifts 

used based on latency variations in the data, we were able to both increase the amount 

of training data and improve performance. We also investigated changes in performance 

over time to evaluate how our proposed method can facilitate robust long-term use of 

the P300-based BCI system. While our proposed classification procedure improved 

performance overall, it could not completely eliminate the decline in performance over 

time, likely due to the inherent disease progression. 

Our jitter correction procedure relying on the maximum classifier score within a 

given allowable window of time shifts to correct for latency variations similarly 

improved selection accuracy. Considering this latency variation has also shown 
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improvement in P300 classification metrics in some prior studies [16, 17]. Prior 

investigations involving classifier-based latency estimation noted qualitatively that 

taking the maximum classifier score within a given range of time-shifts as our study did, 

increased the risk of false-positives, or detecting a P300 response for non-target stimuli, 

but did not quantitatively specify the size of this increase [12, 16]. Rather than using 

this maximum score, Mowla and colleagues used a secondary classifier relying on a 

wavelet transform of the classifier score series to improve performance [16]. Here, by 

utilizing individualized parameters in the current study, we successfully improved 

character selection accuracy utilizing these classifier score series without a secondary 

classifier despite some decrease in precision.  

Our longitudinal analyses found that latency jitter increased over time, and 

performance accordingly decreased over time, using both the reference and proposed 

A/C classification methods, though deterioration in some metrics was partially 

mitigated by the proposed scheme. While participants with ALS in the completely 

locked in state have not often been shown to successfully use visual BCIs [1, 39], prior 

longitudinal studies which did not involve the completely locked-in state have not 

typically found BCI performance to decrease over time [6, 8, 40-42]. Several studies 

have, however, shown significant day-to-day variation in performance [8, 40, 42], 

which could affect investigations of long-term performance changes depending on the 

analysis methods used. One prior study found no change over time when comparing 

copy-spelling accuracies between the first and last several sessions [41]. Sellers 2010 

BCI for home use study and Holz’s 2015 brain painting study both used single-

participant designs [6, 40], while another found long-term trends to vary between 
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participants [8]. Of our six participants, only one had a significant decline in 

performance over the course of the study when considered individually, two participants 

had consistently high performance throughout the study, and three participants appeared 

to have some decline in performance which did not reach significance when considered 

individually. It is only by considering common trends across participants with repeated 

measures correlations that the significant negative trend was uncovered despite both 

day-to-day and between-participant performance variabilities. BCIs can successfully be 

used for a significant period of time [6, 8], but the consistent failure of current visual 

P300 BCIs in the completely locked-in state [1, 39] indicates that performance must 

eventually decline, as we found to occur in our present study. Given the overall 

deterioration in performance over time detected in our current study, it is important to 

note that despite a continued lack of correlation between disability and BCI performance, 

performance improvements from our proposed A/C scheme were greater in participants 

with more advanced ALS, demonstrating that our proposed scheme provided greater 

benefits to more severely disabled participants. 

Finally, while our tests of correlations between latency jitter and performance 

metrics were not a key feature of the study, they confirmed prior results both in our lab 

[3] and in others work [12-14], namely that increased latency jitter is associated with 

decreased BCI performance. A classification method that can reduce or eliminate this 

association, if possible, would likely make BCI performance more robust. However, our 

proposed method retained this association while improving performance overall. 
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3.4.1 Limitations and Future Work 

 

One limitation of this study, common to many BCI studies of people with ALS, is 

the relatively low number of participants, due in part both to the rareness of the disease 

and the difficulties of recording from this population. We therefore did not analyze 

differences due to gender, though we did consider clinical features in some analyses. 

The longitudinal recordings we obtained from each participant, however, provides 

additional data points, mitigating some limitations related to small sample sizes. The 

proposed A/C classification method was tested on longitudinal recordings from each 

participant, and we reported the average results for each participant. For the longitudinal 

investigation, our use of repeated measures correlations, rather than separately 

investigating long-term trends for each participant, increased power while maintaining 

statistical rigor [35]. Future work could also include additional participants and 

recording sessions.  

Another limitation to the current study is inherent to CBLE, which defines a single 

latency shift for the entire spatiotemporal ERP complex for each stimulus [12, 14]. 

While Thompson’s tests with simulated data show the efficacy of CBLE in reflecting 

P300 latency jitter [43], future work could investigate latency variations between 

different ERP components.  

Our analyses, while conducted offline, were designed to be appropriate for real-life 

settings, with all training and parameter selection procedures relying only on data from 

prior sessions. This would be especially important as practical environments would 

likely utilize information from prior sessions and/or a short amount of data from the 
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same session to successfully implement in any upcoming BCI experiment. The current 

study considers jitter in a simple way relying on individualized parameters to ensure 

efficacy, and so future work could include the real-time implementation of our proposed 

A/C method. 

 

3.5 CONCLUSION 

 

In this work, we proposed an augmented/corrected (A/C) classification procedure 

using both data augmentation and jitter correction schemes to improve P300-based BCI 

classification performance in people with ALS. The proposed method demonstrated an 

improvement in selection accuracy which was greater for participants with more 

significant motor impairments, but which did not show any relationship with age or time 

since diagnosis. Considering common trends across participants, the current work 

showed decreased BCI performance over time, which was suggested by BCI 

inefficiency in the completely locked-in state but not consistently demonstrated in the 

past. When participants were considered individually, however, longitudinal 

performance trends varied and did not consistently show decreases, which fits with prior 

studies. Despite improving selection accuracy and reducing the negative trend in binary 

classification accuracy over time, our proposed method did not fully eliminate the 

common downward trend in performance over time.  
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ABSTRACT 

 

Objective: Latency jitter is an important consideration in brain-computer interface 

(BCI) performance. People with ALS, who may benefit from BCIs, have increased 

latency jitter. This study investigated latency jitter calculated using two different 

methods to understand which single-trial features are represented in classifier-based 

latency estimation (CBLE), compare latency jitter for specific ERP features between 

people with ALS and neurotypical controls, and longitudinally investigate latency jitter 

in people with ALS.  

Methods: Electroencephalographic (EEG) responses were recorded from six 

people with ALS and fifteen neurotypical controls. Both single-trial and session-average 

ERP amplitudes and latencies were extracted. Both a Woody filtering approach and 

CBLE were used to calculate latency jitter. ERP components and latency jitter were 

compared between groups using Wilcoxon rank-sum tests. Relationships between 

measures were investigated within and between sessions using linear regression models, 

Spearman correlations, and repeated measures correlations. 

Results: Latency variations in the four ERP features considered, the N100, P200, 

N200, and P300, all contributed to whole-epoch latency variations calculated with 

CBLE in neurotypical participants. However, these contributions were disrupted in 

participants with ALS, who had increased P200, N200, P300, and whole-epoch latency 

jitter. Whole-epoch latency jitter increased over time in people with ALS, but N100, 

P200, N200, and P300 jitter did not. Neither whole-epoch nor ERP feature latency jitter 

correlated with clinical scores in participants with ALS.  
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Conclusions: CBLE not only reflects P300 latency variations, as expected, but it 

also reflects single-trial latency variations in other ERP features. Latency jitter is 

increased in ALS for several ERP features, including but not limited to the P300. 

Correlations between single-trial latencies for ERP features and whole-epoch latency 

shifts are disrupted in ALS.  

Significance: The presence of latency jitter in several ERP features can inform 

future BCI designs meant to compensate for latency jitter in people with ALS. CBLE 

has now been tested against another, established method of calculating single-trial 

latency shifts and found to reflect latency jitter.  

  

4.1 INTRODUCTION 

 

P300-based brain computer interfaces can support communication for people with 

neuromuscular disabilities, including amyotrophic lateral sclerosis (ALS) (Allison, 

Kübler, & Jin, 2020; Geronimo, Andrew M. & Simmons, 2017; McCane et al., 2014; 

McCane et al., 2015; Wolpaw et al., 2018). However, the P300, a positive deflection 

that occurs approximately 300 ms after an attended, unusual stimulus, can have 

significant trial-to-trial latency variability, or jitter (Aricò et al., 2014; Fjell, Rosquist, 

& Walhovd, 2009; Yu, 2016). This variability has been studied in cognitive contexts for 

some time, where single-trial P300 latencies are associated with stimulus evaluation 

times (Kelly & O'Connell, 2013; Verleger, 1997) and single-trial reaction times (Saville 

et al., 2011), particularly when the focus is on accuracy rather than speed (Kutas, 

McCarthy, & Donchin, 1977). However, this relationship is disrupted in neurotypical 

participants with comparatively higher P300 latency jitter (Saville et al., 2011) and when 
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the task prioritizes speed (Kutas et al., 1977; Verleger, 1997). Latency variability can 

be studied as one form of neural variability (Magnuson, Iarocci, Doesburg, & Moreno, 

2020), of which some is required for learning but excess is found in a variety of 

neurological conditions (Dinstein, Heeger, & Behrmann, 2015). Increased P300 jitter is 

found in people with ALS (Zisk et al., 2020), attention deficit hyperactivity disorder 

(Saville et al., 2015), schizophrenia (Ford, White, Lim, & Pfefferbaum, 1994), 

depression (Patterson, Michalewski, & Starr, 1988), traumatic brain injuries (Unsal & 

Segalowitz, 1995), disorders of consciousness (Schettini et al., 2015), and dementia 

(Patterson et al., 1988).  

In the context of brain computer interfaces, latency jitter is important to consider 

because increased latency jitter is associated with decreased performance (Aricò et al., 

2014; Huggins, Alcaide-Aguirre, & Hill, 2016; Mowla, Gonzalez-Morales, Rico-

Martinez, Ulichnie, & Thompson, 2020; Thompson, Warschausky, & Huggins, 2012; 

Zisk et al., 2020; Zisk, Borgheai, McLinden, & Shahriari, 2021). Thompson and 

colleagues proposed classifier-based latency estimation (CBLE) as one way to estimate 

single-trial latency shifts, and thus latency jitter, during brain computer interface use 

(Thompson et al., 2012). Latency jitter calculated as the variance in the shifts calculated 

with CBLE is even able to predict BCI performance (Thompson et al., 2012). However, 

as studies using CBLE note, there are some theoretical weaknesses to CBLE in 

measuring single-trial latencies and latency jitter. In particular, CBLE assumes the 

entire event-related potential (ERP) shifts together, providing a single latency shift for 

all ERP features, across all channels (Mowla et al., 2020; Thompson et al., 2012; Zisk 

et al., 2020). While artificially added P300 jitter is reflected in CBLE estimates of jitter 
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(Thompson, Mowla, & Huggins, October 23, 2019), this theoretical limitation of CBLE 

means we do not know if latency variation in other ERP features may also be reflected 

in CBLE, which is possible as other ERP features including the N100, P200, and N200 

are affected by “P300” speller paradigms (Allison et al., 2020). It also means that CBLE 

cannot be used to study latency variations between different ERP components 

(Thompson et al., 2012), which can vary separately in oddball paradigms (Michalewski, 

Prasher, & Starr, 1986) and could therefore reasonably be expected to vary separately 

in the use of P300-based BCIs, which rely on a version of the oddball paradigm (Farwell 

& Donchin, 1988). CBLE also has not yet been validated directly against other ways of 

measuring single-trial latencies (Thompson et al., 2012). 

Other methods of measuring single-trial latencies include filtering and peak-

picking methods (Ouyang, Hildebrandt, Sommer, & Zhou, 2017), ranging from low 

pass filters with low cut-off frequencies (Jaśkowski & Verleger, 2000; Magnuson et al., 

2020; Smulders, Kenemans, & Kok, 1994) to more complex methods including 

wavelet-based filtering (Aricò et al., 2014; Chennu, Craston, Wyble, & Bowman, 2009) 

or cross-correlational filters such as Woody’s adaptive filter realigning peaks through 

iterative correlations of time-shifted single-trial responses with the averaged responses 

(Woody, 1967). Both peak-picking and cross-correlational approaches can be applied 

to spatially filtered data (Coles, Gratton, Kramer, & Miller, 1986; Fabiani, Karis, & 

Donchin, 1986; Saville et al., 2011; Saville et al., 2015; Yu, 2016), and cross-

correlational approaches similar to the Woody filter applied to time series spatially 

combining data from multiple channels are a comparatively reliable way to assess both 

single-trial amplitudes and latencies (Fabiani, Gratton, Karis, & Donchin, 1987). In 
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addition, Woody filtering approaches have successfully been used to extract single-trial 

latency information for several ERP features simultaneously, using appropriate 

segmentation of time series (Michalewski et al., 1986; Patterson et al., 1988). Both the 

reliability of Woody filtering methods and their successful use in extracting separate 

single-trial latencies for multiple ERP features make them ideal for use alongside CBLE. 

In the current study, we examine which ERP features are reflected by CBLE in both 

a neurotypical population and participants with ALS, considering the N100, P200, N200, 

and P300. We also determine which component jitters are relevant to BCI performance 

in both populations, with a longitudinal investigation of N100, P200, N200, and P300 

jitter in ALS for a more specific understanding of this neurological feature.  

 

4.2 METHODS 

 

4.2.1 Participants 

 

16 neurotypical participants (62.5±4.5 years; 10 female) were recruited for this 

study. Neurotypical participants had normal or corrected to normal vision.  

In addition, six participants with ALS (age 57±15.7 years,1 female) were recruited for 

this study (see Table 1). Participants with ALS other than ALS-01 had normal or 

corrected to normal vision, while ALS-01 was in the late stages of locked-in syndrome 

with significant ocular impairments. Participants were diagnosed with ALS 6.5 ± 4.0 

years prior to the start of the study and had an average functional rating scale-revised 

(ALSFRS-R) score of 11.6 ± 9.5, with a minimum score of 0 indicating no voluntary 

motor functions and complete dependence on life-sustaining technologies including 
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mechanical ventilation and a maximum score of 48 indicating normal functioning 

(Cedarbaum et al., 1999). Three participants had gastrostomies as well as 

tracheostomies. ALS-01′s sole form of communication was an idiosyncratic and error-

prone yes/no pupil dilation his caregiver read subjectively, which deteriorated over the 

course of the recordings, losing reliability as a means of communication. Two other 

participants with artificial ventilation (ALS-02 and ALS-04) used eye-tracking devices 

to communicate. ALS-03 could still move his index finger and make non-verbal sounds 

to sustain minimal communication. ALS-05 and 06 retained the ability to speak, though 

ALS-05 had lost non-facial movement, and ALS-06 could barely move a joystick with 

one hand. Participants with ALS were tested in their homes or care centers.  

Table 4.1. Demographic information for participants with ALS. 

Subject 

Number 

Age Sex Time 

since  

diagno-

sis 

(years) 

ALSFRS-

R (out of 

48) 

ALSFRS-

R Bulbar 

Subscore 

Average 

ALS-CBS 

Score (%) 

Average 

Attention 

Subscore 

(%) 

Artificial 

Ventilation 

Means of 

Communi-

cation 

ALS-01 29 M 4 0 0 100.0 100.0 Yes 

No reliable 

means 

ALS-02 55 M 11 4 0 93.4 90.0 Yes 

Eye- 

tracking 

ALS-03 70 M 8 14 5 94.9 80.0 No 

Non-verbal 

sound 

ALS-04 67 M 2 7 5 88.9 90.0 Yes 

Eye- 

tracking 

ALS-05 69 F 11 23 11 81.3 58.6 No Verbal 

ALS-06 52 M 3 22 12 91.9 67.5 No Verbal 

Mean±SD 57.0±15.7 - 6.5±4.0 11.6±9.5 5.5±5.2 92.1±6.8 82.8±18.7 - - 
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Both neurotypical participants and participants with ALS had at least some 

postsecondary education. The study protocol was approved by the Institutional Review 

Board (IRB) of the University of Rhode Island (URI), and all participants provided 

informed consent or assent for the study and received financial compensation. 

 

4.2.2 Experimental Protocol 

 

Neurotypical participants took part in 2-3 sessions of recordings. Participants with 

ALS took part in 5-12 (9.5 ± 2.6) sessions of recording over 2.5-13.7 (10.9 ± 4.3) months. 

Sessions took place at least two weeks apart. Including preparation such as the 

application of gel to electrodes and impedance calibration, each session typically lasted 

2-2.5 hours. To familiarize participants with the BCI setup, including the recording 

protocol and the task, participants with ALS took part in a single familiarization session 

before the main experimental recordings, in which they completed the same tasks 

without recording the data and were given the opportunity to get clarification about the 

experimental tasks. Each session contained one run of the standard P300 spelling 

protocol, in which a 6x6 matrix of characters containing letters and numbers was 

displayed to participants, with each row and column intensified 10 times (i.e. 10 trials) 

per character selection (Farwell & Donchin, 1988). 

Participants with ALS additionally took the ALS-Cognitive Behavioral Screen 

(ALS-CBS), a brief cognitive screen sensitive to frontal dysfunctions for people with 

ALS, when possible (Woolley et al., 2010). Both single-session and participant average 

scores were reported as percentages to compensate for the fact that not all items could 

always be used, and cognitive testing could not be completed for all sessions. Because 
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several participants with ALS had difficulty speaking or writing, the information and 

retrieval (fluency) section of the ALS-CBS test could not be used effectively. 

Consequently, only the attention, concentration, and tracking portions of the ALS-CBS 

test were performed. Due to their disabilities, four participants with ALS required 

accommodation to complete these portions of the assessment. ALS-01 completed the 

test once, using a P300 speller. ALS-02 used his typical eye-tracking system. ALS-03 

used a printed letter board, pointing with a finger. ALS-04 initially used a letter board, 

but later used a Tobii eye-tracking system. ALS-05 and ALS-06 did not require 

accommodations to complete the ALS-CBS.  

Data from 9 of the neurotypical participants in this study, as well as three sessions 

from each participant with ALS, were previously reported in Clinical Neurophysiology 

(Zisk et al., 2020). Longitudinal investigations of performance using the data from 

participants with ALS are under review at the Journal of Neural Engineering (Zisk et 

al., 2021). 

 

4.2.3 Data Acquisition 

 

Electroencephalography (EEG) data were recorded using a g.USBamp amplifier 

(g.tec Medical Technologies) with a 256 Hz sampling rate. Data were recorded from 

eight channels commonly used in P300 protocols, Fz*, Cz, P3, Pz, P4, PO7, PO8, and 

Oz (Krusienski, D. J., Sellers, McFarland, Vaughan, & Wolpaw, 2008). However, as Fz 

was occupied by sensors for other studies recorded in the same session as the current 

experiment, it was replaced by the nearest available channel, FAF2, denoted as Fz*. All 
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experimental protocols, data acquisition, and stimulus presentation were controlled 

using BCI2000 software (Schalk & Mellinger, 2010). 

 

4.2.4 Data Pre-processing 

 

Data processing was conducted in MATLAB R2019a. EEG data from each session 

were detrended and bandpass filtered at 0.5-30 Hz. The data were segmented into 100 

ms pre-stimulus to 900 ms post-stimulus epochs. The average amplitudes and latencies 

corresponding to four primary ERP components (N100, P200, N200, P300) were 

extracted for each channel and session. The N100 and N200 components were 

respectively defined as the minimum peaks occurring in the 80–170 ms and 220–350 

ms periods. The P200 and P300 components were respectively defined as the maximum 

peaks in the 190–300 ms and 300–500 ms periods. 

 

4.2.5 Data Processing 

 

Single-trial features were extracted in two main ways, first using classifier-based 

latency estimation, and then using a Woody filtering procedure applied to spatially 

filtered data, which provides single-trial amplitude and latency information separately 

for each of the N100, P200, N200, and P300 features. Figure 4.1 shows a schematic 

illustrating the two parallel extraction procedures. BCI performance was evaluated 

using the same classifiers used in classifier-based latency estimation. 
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Figure 4.1. Schematic representation of the two methods of single-trial feature 

extraction – Classifier based latency estimation (CBLE; Thompson et al., 2012), and 

spatial Woody filtering. 

 

4.2.5.1 Single-Trial Feature Extraction 

 

CBLE was used to extract whole-epoch latency shifts and latency jitter were 

extracted using classifier-based latency estimation (CBLE), as proposed by Thompson 

and colleagues (Thompson et al., 2012) and used in our prior investigation of latency 

jitter (Zisk et al., 2020). As a first step for CBLE, the session data were divided into five 

segments of approximately equal length, and an SWLDA classifier was trained on data 

from four of the five segments using typical parameters for P300 speller applications 

(Krusienski et al., 2008; Krusienski, Dean J. et al., 2006). In particular, 0-800 ms post-

stimulus sub-epochs were extracted from each of the 100 ms pre-stimulus to 900 ms 

post-stimulus epochs. These 800 ms epochs were subject to a moving average procedure, 

where each value was replaced by the local mean calculated over a moving window and 

then downsampled by a factor of 13, following the feature reduction procedure from 

(Thompson et al., 2012). The downsampled epochs from all channels were concatenated 
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and then treated as potential features for classification. Then, through forward and 

backward stepwise regression using the fitdiscr and stepwisefit functions in MATLAB, 

the best predictors (p < 0.1) were selected, and the least significant variables (p > 0.15) 

were removed. This procedure was repeated for up to 60 steps, or until no additional 

terms satisfied the entry/removal criteria (Krusienski et al., 2008).  

Then, returning to the original 100 ms pre-stimulus to 900 ms post-stimulus epochs, 

800 ms sub-epochs were extracted using a moving window to produce epochs beginning 

at each available time point, for a total of 53 time-shifted 800 ms epochs per stimulus. 

Similar to the 0-800 ms epochs, these time-shifted 800 ms epochs were subject to the 

feature reduction procedure from (Thompson et al., 2012). These time-shifted epochs 

were then fed to the appropriate classifier for their corresponding stimulus, which 

resulted in 53 shifted classifier scores per stimulus, one for each time shift used. The 

time shift corresponding to the highest classifier score, representing the highest post-

probability that the stimulus was a target stimulus, was extracted as the latency shift for 

that specific stimulus. Whole epoch-latency jitter was then defined as the variance of 

the whole-epoch latency shifts for all target stimuli and denoted as vCBLE for variance 

of the classifier-based latency estimates.  

Because CBLE, despite its success in predicting BCI performance and reflection 

of P300 latency jitter, has the theoretical weakness of considering latency shifts of the 

entire epoch, we additionally extracted single-trial amplitudes and latencies for specific 

ERP features using another method. This second method, extracting single-trial features 

using a Woody (Woody, 1967) filter on the single-trial time series for selected spatial 

factors, supports investigation of which single-trial features are reflected in CBLE, as 
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well as potential relationships between single-trial latencies of the ERP features 

themselves. Woody filtering was selected because cross-correlational measures applied 

to spatially filtered EEG provide comparatively reliable estimates of single-trial 

amplitudes and latencies (Fabiani et al., 1987). Spatial factors were extracted using 

principal component analysis (PCA) using the covariance matrices calculated from the 

0-800 ms post-stimulus epochs for each target stimulus and then averaged over all such 

stimuli in a session. The eigenvectors and eigenvalues of the average covariance 

matrices then constituted the channel weights for the spatial factors and the proportion 

of variance accounted for, respectively (Cohen, 2014). The spatial factors accounting 

for at least 95% of the variance in the data were retained for possible selection.  

Then, appropriate spatial factors were selected for each ERP feature of interest 

based on correlation with templates for the respective feature over the corresponding 

time segment of interest (Wu et al., 2014). These templates were based on session-

average ERP segments around the ERP peaks on relevant channels (Wu et al., 2014). In 

particular, the templates for the N100 were the session-average target responses at 

channels PO7 and PO8 (Espeseth, Endestad, Rootwelt, & Reinvang, 2007; Kimura, 

Katayama, Ohira, & Schröger, 2009) in the 90 ms surrounding the session average peak. 

These segments matched the 80-170 ms segment in length, but they were centered 

around the channel peaks. The templates for the P200 were the session-average target 

responses at Fz* and Cz (Shahriari et al., 2019), similarly using 110 ms segments 

surrounding the P200 peaks to match the 190-300 ms segment in length. The templates 

for the N200 were the 130 ms long session-average target responses at P3 and P4 

surrounding the N200 latency (Hoffmann, Vesin, Ebrahimi, & Diserens, 2008; Kimura 
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et al., 2009; Shahriari et al., 2019). The templates for the P300 were the 200 ms long 

session-average target responses at Cz and Pz, centered at the P300 peaks for those 

channels (Espeseth et al., 2007; McCane et al., 2015). Each response used templates 

from two channels to allow for potential differences in localization between participants. 

This could include differences in lateralization related to handedness and/or differences 

in localization due to ALS (McCane et al., 2015). Channel templates for two sample 

sessions, one recorded from a neurotypical participant and one from a participant with 

ALS, are shown in Figure 4.2. 

 

Figure 4.2. Channel templates used in the selection of spatial factors for the N100, P200, 

N200, and P300 responses for one session recorded from a participant with ALS (top) 

and one session recorded from a neurotypical participant (bottom). 

 

Pearson correlation coefficients were calculated between each template time 

segment and time-shifted corresponding session-average target time segments on each 

spatial factor. For example, Pearson correlation coefficients were calculated between 
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the P300 template from channel Cz, and segments extracted from the time series of the 

first spatial factor, starting from 270-470 ms post stimulus through 330-530 ms post-

stimulus. These shifted segments allowed time-shifts of 30 ms in either direction in the 

selection of the spatial factor, as used by Wu and colleagues (Wu et al., 2014). The 

segment with the largest absolute value of the correlation was retained. This was 

repeated for each spatial factor, and with the P300 template from channel Pz, the other 

channel of interest for the P300. The spatial factor with the greatest maximum absolute 

correlations was retained as the spatial factor for that ERP, in this example the P300. In 

the event that the two templates for any given ERP feature had their strongest time-

shifted correlations with two different spatial factors, the absolute value of the sum of 

the correlation coefficients was taken over each of the two spatial factors, and the spatial 

factor with the larger of the two absolute sums was retained. Figure 4.3 shows the spatial 

factors and associated time series for the same sessions shown in Figure 4.2. 

After spatial factors were selected for each ERP feature (N100, P200, N200, and 

P300), the templates for single-trial matching were extracted from the time series of 

their respective spatial factors. The starting and ending latencies for the segments that 

maximized correlation between the selected spatial factor and the channel templates 

were averaged over the two channels of interest, and these average values were used for 

the segment of the spatial factor time series. Considering the P300 as an example, if the 

absolute correlation between the Cz template and the time series for the selected spatial 

factor was maximized 300-500 ms segment, and the absolute correlation between the 

Pz template and the time series for the selected spatial factor was maximized for 308-

508 ms segment, then the spatial factor template would use the 304-504 ms segment of 
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its session-average time series. Figure 4.4 shows the spatial template time series for the 

same sessions used in Figures 4.2 and 4.3. As sign becomes arbitrary after spatial PCA, 

if a selected spatial factor was inverted (indicated by a negative correlation between the 

time series and the channel templates), then its corresponding time segments were also 

inverted, such that nominally positive responses would have positive deflections and 

nominally negative responses would have negative deflections. After this possible 

transformation, average ERP amplitudes and latencies were extracted as the extreme 

peaks or troughs within the session-average segments. 

Finally, single-trial amplitudes and latencies were extracted from the single-trial 

spatial factor segments using a Woody filtering procedure (Woody, 1967). For this 

purpose, post-stimulus single-trial segments were extracted for each ERP feature using 

their respective spatial factors: 80-170 ms for the N100, 190-300 ms for the P200, 220-

350 ms for the N200, and 300-500 ms for the P300. For each ERP feature and trial, the 

cross-covariance was calculated between the appropriate spatial factor template and the 

single-trial segments. The latency that maximized the cross-covariance was used as the 

single-trial latency, and the value of the cross-covariance was used as a measure of 

single-trial amplitude (Fabiani et al., 1986; Fabiani et al., 1987). 
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Figure 4.3. Spatial factors and associated time series for one session recorded from a 

participant with ALS (top) and one session recorded from a neurotypical participant 

(bottom). For the session recorded from a participant with ALS, factor 1 was selected 

for the N100, factor 3 for the P200 and P300, and factor 4 for the N200. For the session 

recorded from a neurotypical participant, factor 2 was selected for the N100 and N200, 

and factor 4 was selected with inverted sign for the P200 and P300.  
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Figure 4.4. Spatial factor templates used in the Woody filtering procedure for the N100, 

P200, N200, and P300 responses for one session recorded from a participant with ALS 

(top) and one session recorded from a neurotypical participant (bottom). 

 

4.2.5.2 BCI Performance 

 

The same SWLDA classifiers used for CBLE were again used to investigate BCI 

performance. Flash-by-flash binary classification performance metrics were calculated 

on each test set, with average performances extracted from each session for use in 

correlation analysis and from each participant for between-group comparisons. In 

particular, binary flash accuracy, precision, recall, F-score, and character selection 

accuracy were calculated as measures of performance (Pal & Bandyopadhyay, 2016; 

Tang, Li, & Sun, 2017). We computed classification accuracy, precision, recall, and F-

score below, using the numbers of true positives (TP; correct targets), true negatives 
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(TN; correct non-targets), false positives (FP; non-targets incorrectly classified as 

targets), and false negatives (FN; targets incorrectly classified as non-targets) as below:  

Classification Accuracy =  
TP + TN

TP + TN + FP + FN
 

Precision =  
TP

TP + FP
 

Recall =
TP

TP + FN
 

F − score =  
2 × Precision × Recall

Precision + Recall
. 

The number of correctly selected characters was determined in each of the five data 

segments, and the session accuracy was calculated as the average character selection 

accuracy over all five segments. 

 

4.2.6 Statistical Analysis 

 

Relationships between single-trial measures were investigated within sessions in 

MATLAB R2019a. Within each session, we investigated relationships between single-

trial N100, P200, N200, and P300 latencies and whole-epoch CBLE shifts using linear 

regression models to understand how latency shifts for individual ERP features affect 

the calculated latency shifts for the whole epoch across all channels. We additionally 

investigated relationships between N100, P200, N200, and P300 amplitudes and 

absolute CBLE shifts to test the hypothesis that CBLE shifts may be increased when 

single-trial amplitudes are decreased, leading to reduced signal strength for 

classification. Absolute CBLE shifts were used because decreased amplitudes could 

lead to responses being detected either earlier or later than average due to a reduced 
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signal to noise ratio, rather than causing an increased latency shift in a specific 

direction.  

In addition, linear models were constructed to investigate how the latencies of later 

ERP features depend on the latencies of earlier features. Specifically, we investigated 

how N100 latencies contribute to P200 latencies, how N100 and P200 latencies 

contribute to N200 latencies, and how N100, P200, and N200 latencies contribute to 

P300 latencies within each session, using linear regression models.  

Finally, we investigated relationships between single-trial latency shifts and 

amplitudes using spearman correlations, again testing if smaller responses tended to be 

detected as also having latencies further from the center (session average) latency. 

Specifically, we calculated spearman correlations between the amplitudes and absolute 

latency shifts within each ERP feature.  

As the channel weights, selected spatial factors, and magnitudes of the Woody 

templates varied between sessions, single-trial measures of amplitude were only used 

for within-session analyses. However, the variances of all single-trial latency measures 

were extracted from each session for use in statistical analyses combining information 

from multiple sessions. These analyses were then conducted in R version 3.6.1 (Team, 

2019).  When applicable, p-values were adjusted for multiple comparisons using the 

false discovery rate (Hochberg & Benjamini, 1990). 

 

4.2.6.1 Understanding P300 BCI Latency Variations in a Neurotypical Population 

 

Because it is not yet known if or how single-trial amplitudes and/or latencies in 

features other than the P300 contribute to CBLE, we first sought to understand these 
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relationships in a neurotypical population. The results of the within-session regressions 

were therefore combined to provide estimates of partial correlation coefficients (Aloe 

& Thompson, 2013; Aloe, 2014) for the predictors using the metafor package in R 

(Viechtbauer, 2010). This meta-analysis of regressions from all sessions used a mixed-

effects model using a maximum likelihood estimate of heterogeneity (Viechtbauer, 

2005). This meta-analysis was completed for all of the within-session linear regression 

models, i.e., for the model of CBLE shifts on all single-trial ERP latencies, for absolute 

CBLE shifts on all single-trial ERP amplitudes, for P300 latencies on N100, P200, and 

N200 latencies, for N200 latencies on N100 and P200 latencies, and on P200 latencies 

on N100 latencies. 

We additionally quantified the portion of sessions in which the linear regressions 

models of CBLE shifts on the single-trial latencies and/or amplitudes showed significant 

effects. We also quantified the portion of sessions in which each individual ERP features 

(amplitudes and latencies for each of the N100, P200, N200, and P300) were significant 

to understand which ERP features contribute to classifier-based latency estimates.  

We similarly quantified the portion of sessions in which linear regressions of the 

latencies of later responses modeled on the latencies of earlier responses were 

significant, and we identified which earlier response latencies were significant 

contributors to which later response latencies.  

The spearman correlations between absolute single-trial shifts and amplitudes for 

each ERP feature (N100, P200, N200, and P300) were meta-analytically combined with 

the R package metafor (Viechtbauer, 2010). We used a mixed-effects model with a 

restricted maximum likelihood estimate of heterogeneity (Viechtbauer, 2005) and the 
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estimate of variance for spearman coefficients (Bonett & Wright, 2000). We 

additionally quantified the portion of correlations that were significant within each ERP 

feature.  

Then, as whole-epoch latency jitter measured by the variance of CBLE estimates 

(vCBLE) is of interest largely because of its effectiveness as a predictor of BCI 

performance, we additionally constructed linear regression models of both vCBLE and 

BCI performance on session variance measures to determine which ERP variations are 

most relevant to BCI performance.  

 

4.2.6.2 A Longitudinal Analysis of BCI Performance and Intra-Session 

Variability in People with ALS 

 

All the analyses conducted in section 4.2.5.1 were completed over the longitudinal 

sessions recorded from participants with ALS as well. As participants with ALS 

completed several recording sessions over the course of months, we additionally 

investigated how certain measures change over time. Longitudinal changes in vCBLE 

and in BCI performance were investigated in (Zisk et al., 2021) using data from these 

same recording sessions. Longitudinal trends in BCI performance are therefore not 

repeated here. However, single-trial latencies for specific ERP features were not 

extracted in our prior work, and changes in these measures over time were investigated 

using repeated measures correlations (rrm), and the longitudinal trend in vCBLE is 

shown for comparison. Repeated measures correlations are analysis of covariance-based 

regressions appropriate for measuring common (overall) intra-individual associations 

between measures when multiple non-independent observations are available for each 
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participant (Bakdash & Marusich, 2017). These repeated measures correlations were 

investigated between the variances of these single-trial latencies for the N100, P200, 

N200, and P300 and the number of days since a participant’s first recording session.  

As participants with ALS also participated in cognitive testing when practical, we 

also investigated the relationships between cognitive scores and our extracted measures. 

Over the sessions in which cognitive testing was completed, repeated measures 

correlations were therefore investigated between the variances of single-trial latencies 

and cognitive scores, specifically the ALS-CBS scores and attention subscores. As 

cognitive scores were not investigated in (Zisk et al., 2021), repeated measures 

correlations between cognitive scores and vCBLE, as well as between cognitive scores 

and BCI performance measures, were also tested.  

Finally, as previous correlations between session-average amplitudes and vCBLE 

were significant for neurotypical participants, but the correlations were not significant 

in participants with ALS, for whom these amplitudes were reduced (Zisk et al., 2020), 

we tested for correlations between session-average amplitudes and vCBLE in this 

population. This was done to investigate whether the prior lack of significant correlation 

was due to having fewer participants with ALS than neurotypical controls in the prior 

study, or if the relationship between session-average amplitudes and latency jitter may 

truly be disrupted in people with ALS.  

 

4.2.6.3 Comparisons Between Participants with ALS and Neurotypical Controls 

 

To quantitatively assess the apparent disruptions in ALS, we compared measures 

of within-session variability, specifically variances of the single-trial latency measures, 
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between groups. To do so, we calculated the participant mean values of the session 

variances in single-trial latencies for the N100, P200, N200, P300, and classifier-based 

latency estimates. Participant mean values were then compared between groups using 

Mann-Whitney U tests (Mann & Whitney, 1947), appropriate for non-normal 

distributions and for small and potentially uneven samples (Siegel & Tukey, 1960).  

Linear regression results were assessed for differences between groups using the 

meta-analytic models from before, but combining the sessions recorded from both the 

group of neurotypical participants and the group of participants with ALS, then testing 

whether group was a significant (p<0.05) moderator using the Knapp and Hartung 

method (Knapp & Hartung, 2003; Viechtbauer, López-López, Sánchez-Meca, & Marín-

Martínez, 2015). The spearman correlations between absolute single-trial shifts and 

amplitudes for each ERP feature (N100, P200, N200, and P300) were similarly 

compared between groups using a mixed-effects model testing the significance of the 

group as a moderator.  

For binary session measures, specifically the significance or non-significance of 

linear regressions, variables in the linear regressions, and spearman correlations within 

sessions, groups were compared using Fisher’s exact test (Fisher, 1922). 

 

4.3 RESULTS 

 

4.3.1 Understanding P300 BCI Latency Variations in a Neurotypical Population 

 

The linear models of single-trial whole-epoch (CBLE) latency shifts on ERP 

feature latency shifts (N100, P200, N200, and P300 features extracted with the Woody 

filtering procedure) were significant for 37 of the 41 sessions recorded from 
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neurotypical participants. The results for the random effects models of the influence of 

single-trial N100, P200, N200, and P300 latencies on the whole epoch classifier-based 

latency estimates, as well as the number of sessions for which the within-session models 

were significant for each variable, are shown in Table 4.2. On average, single-trial 

latencies for the N100, P200, N200, and P300 were all significant (p<0.05) contributors 

to whole-epoch latency shifts calculated with CBLE in neurotypical participants.  

The linear models of absolute single-trial whole epoch latency shifts on single-trial 

amplitudes were significant for 23 of the 41 sessions recorded from neurotypical 

participants. The results for the random effects models of the influence of single-trial 

N100, P200, N200, and P300 amplitudes on absolute whole-epoch latency shifts, as well 

as the number of sessions for which the within-session models were significant for each 

variable, are shown in Table 4.3. On average, trials with larger N100 and/or smaller 

P300 amplitudes had larger whole epoch shifts as calculated with CBLE (p<0.05), while 

the association between smaller N200 amplitudes and larger latency shifts did not reach 

significance (p=0.064) and there was no effect of P200 amplitude in neurotypical 

participants.  

 

Table 4.2. Random effects models evaluating the effects of single-trial ERP latencies 

on classifier-based latency estimates in neurotypical participants 
 Test for heterogeneity Model statistics Frequency of 

significance in 

single sessions 
 I2 

(%) 
Q p Partial correlation, rp 95% confidence interval p 

N100 0.00 34.13 0.731 0.02 (0.01, 0.04) 0.010 0/41 

P200 82.85 275.24 <0.001 0.14 (0.10, 0.19) <0.001 19/41 

N200 86.33 332.24 <0.001 0.20 (0.15, 0.24) <0.001 29/41 

P300 82.26 272.98 <0.001 0.15 (0.11, 0.19) <0.001 25/41 

      Model 37/41 

 

  



 

120 
 

 

Table 4.3. Random effects models evaluating the effects of single-trial ERP 

amplitudes on classifier-based latency estimates in neurotypical participants 
 Test for heterogeneity Model statistics Frequency of 

significance in 

single sessions 
 I2 

(%) 
Q p Partial correlation, rp 95% confidence interval p 

N100 62.79 108.35 <0.001 0.04 (0.01, 0.07) 0.014 13/41 

P200 81.26 220.84 <0.001 -0.01 (-0.05, 0.03) 0.544 18/41 

N200 76.97 179.39 <0.001 -0.04 (-0.07, 0.00) 0.064 14/41 

P300 65.21 116.15 <0.001 -0.04 (-0.07, -0.01) 0.015 12/41 

      Model 23/41 

 

The linear models of single-trial P300 latencies on N100, P200, and N200 latencies 

were significant for 17 of the 41 sessions recorded from neurotypical participants. The 

results for the random effects models of the associations between single-trial N100, 

P200, and N200 latencies and single trial P300 latencies, as well as the number of 

sessions for which the within-session models were significant for each variable, are 

shown in Table 4.4. On average, single-trial latencies for the P200 and N200 were 

significantly (p<0.05) associated with single-trial P300 latencies, but single-trial N100 

latencies were not. The linear models of single-trial N200 latencies on N100 and P200 

latencies were significant for 13 of the 41 sessions recorded from neurotypical 

participants. The results for the random effects models of the influence of single-trial 

N100 and P200 latencies on N200 latencies are also shown in Table 4.4, indicating that 

single-trial P200 latencies (p<0.001), but not N100 latencies (p>0.05), are significantly 

associated with single-trial N200 latencies. Also shown in Table 4.4, single-trial N100 

latencies also were not, on average, significantly associated with single-trial P200 

latencies (p>0.05). 
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Table 4.4. Random effects models evaluating the associations between earlier and later 

single-trial ERP latencies in neurotypical participants 
 Test for heterogeneity Model statistics Frequency of 

significance in 

single sessions 
 I2 

(%) 
Q p Partial correlation, rp 95% confidence interval p 

Associations between single-trial P300 latencies and earlier single-trial ERP latencies 

N100 26.17 53.72 0.072 -0.01 (-0.03, 0.02) 0.644 2/41 

P200 56.71 93.06 <0.001 0.03 (0.00, 0.06) 0.034 8/41 

N200 81.74 246.40 <0.001 0.08 (0.04, 0.12) <0.001 15/41 

      Model 17/41 

Associations between single-trial N200 latencies and earlier single-trial ERP latencies 

N100 9.52 43.79 0.314 0.01 (-0.01, 0.03) 0.376 3/41 

P200 90.33 517.01 <0.001 0.12 (0.07, 0.18) <0.001 14/41 

      Model 13/41 

Associations between single-trial P200 latencies and earlier single-trial ERP latencies 

N100 38.10 64.36 0.009 0.01 (-0.01, 0.03) 0.412 6/41 

 

On average, within-session spearman correlations between single-trial N100 

latencies and amplitudes, between single-trial P200 latencies and amplitudes, between 

N200 single-trial latencies and amplitudes, and between P300 single-trial latencies and 

amplitudes were all significant (p<0.05), with smaller responses associated with 

increased latency shifts. Results from the random-effects models combining these 

results across sessions are in Table 4.5, while the correlation plots between single-trial 

amplitudes and absolute latency shifts for a single session recorded from a neurotypical 

participant are shown in Figure 4.5. 

Table 4.5. Random effects models evaluating spearman correlations between single-

trial amplitudes and latencies within ERP features over sessions recorded from 

neurotypical participants. 
 Test for heterogeneity Model statistics Frequency of 

significance in 

single sessions 
 I2 

(%) 
Q p Correlation, r 95% confidence interval p 

N100 70.61 135.82 <0.001 -0.24 (-0.28, -0.21) <0.001 36/41 

P200 64.09 110.99 <0.001 -0.25 (-0.28, -0.22) <0.001 38/41 

N200 65.91 117.13 <0.001 -0.30 (-0.34, -0.27) <0.001 39/41 

P300 74.92 159.80 <0.001 -0.30 (-0.33, -0.26) <0.001 39/41 
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Figure 4.5. Single-trial absolute latency shifts versus single-trial amplitudes for the 

N100 (left), P200 (center left), N200 (center right), and P300 (right) from a single 

session recorded from a neurotypical participant. 

 

Whole-epoch latency jitter, or the variance in the single-trial shifts calculated with 

CBLE (vCBLE), was significantly dependent on P200 jitter (p=0.038) but not on jitter 

in any of the other ERP components, for neurotypical participants, with results shown 

in Table 4.6. However, a stepwise regression using the Akaike Information Criterion 

(Venables & Ripley, 2002) included both P200 jitter (β=0.39, p=0.012) and P300 jitter 

(β=0.21, p=0.156) as predictors of vCBLE.  

The model of BCI performance on individual component jitters in neurotypical 

participants was significant (p=0.028). However, possibly due to consistently high 

character selection accuracies in neurotypical participants, no single component jitter 

was a significant contributor to performance (p>0.05), as shown in Table 4.7. A 

stepwise regression using the Akaike Information Criterion retained N200 jitter (β=-

0.32, p=0.0407) as a predictor of BCI performance.  
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Table 4.6. Linear Regression of whole-epoch jitter (vCBLE) on component jitter over 

sessions recorded from neurotypical participants. 
 

Unstandardized coefficients Standardized coefficients t p 
 

B Standard Error β 
  

(Constant) 87.74 245.28 
 

0.36 0.723 

N100 Latency Jitter -0.04 0.31 -0.02 -0.14 0.890 

P200 Latency Jitter 0.36 0.17 0.34 2.16 0.038 

N200 Latency Jitter 0.19 0.15 0.19 1.22 0.230 

P300 Latency Jitter 0.08 0.06 0.18 1.22 0.230 

Multiple R2 Adjusted R2 Residual Standard Error F df p 

0.26 0.18 260 3.14 (4,36) 0.026 

 

Table 4.7. Linear Regression of performance (character selection accuracy) on 

component jitter over sessions recorded from neurotypical participants 
 

Unstandardized coefficients Standardized coefficients t p 
 

B Standard Error β 
  

(Constant) 1.04 0.03 
 

34.03 <0.001 

N100 Latency Jitter -2.81∙10-5 3.85∙10-5 -0.12 -0.73 0.471 

P200 Latency Jitter 1.50∙10-5 2.07∙10-5 0.12 0.72 0.475 

N200 Latency Jitter -3.53∙10-5 1.89∙10-5 -0.31 -1.87 0.070 

P300 Latency Jitter -3.88∙10-6 7.91∙10-6 -0.08 -0.49 0.627 

Multiple R2 Adjusted R2 Residual Standard Error F df p 

0.13 0.03 0.03 1.29 (4,36) 0.028 

 

4.3.2 A Longitudinal Analysis of BCI Performance and Intra-Session Variability 

in People with ALS 

 

The linear models of single-trial whole-epoch (CBLE) latency shifts on single-trial 

ERP feature latency shifts (N100, P200, N200, and P300 features extracted with the 

Woody filtering procedure) were significant for 29 of the 57 sessions recorded from 

participants with ALS. The results for the random effects models of the influence of 

single-trial N100, P200, N200, and P300 latencies on the whole epoch classifier-based 

latency estimates, as well as the number of sessions for which the within-session models 

were significant for each variable, are shown in Table 4.8. On average, single-trial P200, 
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N200, and P300 latencies contributed significantly (p<0.05) to the single-trial whole-

epoch latency shifts calculated with CBLE for participants with ALS, but single-trial 

N100 latencies did not. 

Table 4.8. Random effects models evaluating the effects of single-trial ERP latencies 

on classifier-based latency estimates in participants with ALS. 
 Test for heterogeneity Model statistics Frequency of 

significance in 

single sessions 
 I2 

(%) 
Q p Partial correlation, rp 95% confidence interval p 

N100 0.00 45.59 0.838 0.01 (-0.01, 0.02) 0.376 3/57 

P200 62.71 152.68 <0.001 0.06 (0.04, 0.09) <0.001 14/57 

N200 61.70 148.61 <0.001 0.09 (0.06, 0.11) <0.001 21/57 

P300 70.85 198.40 <0.001 0.08 (0.05, 0.11) <0.001 19/57 

      Model 29/57 

 

In addition, the linear models of absolute single-trial whole epoch latency shifts on 

single-trial amplitudes were significant for 20 of the 57 sessions recorded from 

participants with ALS. The results for the random effects models of the influence of 

single-trial N100, P200, N200, and P300 amplitudes on absolute whole-epoch latency 

shifts, as well as the number of sessions for which the within-session models were 

significant for each variable, are shown in Table 4.9. On average, single-trial amplitudes 

for the N200 and P300 were significantly (p<0.05) negatively associated with the single-

trial whole-epoch latency shifts calculated with CBLE for participants with ALS, 

indicating that trials with smaller N200 and/or P300 amplitudes tended to show 

increased whole-epoch latency shifts. However, N100 and P200 amplitudes did not 

significantly correlate with the whole-epoch shifts in people with ALS. 

The linear models of single-trial P300 latencies on N100, P200, and N200 latencies 

were significant for 14 of the 57 sessions recorded from participants with ALS. The 

results for the random effects models of associations between single-trial N100, P200, 
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and N200 latencies and single trial P300 latencies, as well as the number of sessions for 

which the within-session models were significant for each variable, are shown in Table 

4.10. On average, single-trial latencies for the N200 were significantly (p<0.05) 

associated with single-trial P300 latencies, but single-trial N100 and P200 latencies 

were not. 

Table 4.9. Random effects models evaluating the effects of single-trial ERP 

amplitudes on classifier-based latency estimates in participants with ALS. 
 Test for heterogeneity Model statistics Frequency of 

significance in 

single sessions 
 I2 

(%) 
Q p Partial correlation, rp 95% confidence interval p 

N100 15.98 66.09 0.168 0.01 (0.00, 0.03) 0.179 4/57 

P200 28.06 77.16 0.032 -0.01 (-0.03, 0.00) 0.208 4/57 

N200 59.51 138.93 <0.001 -0.03 (-0.06, 0.01) 0.009 14/57 

P300 57.73 133.00 <0.001 -0.05 (-0.08, -0.03) <0.001 18/57 

      Model 20/57 

 

The linear models of single-trial N200 latencies on N100 and P200 latencies were 

significant for 8 of the 57 sessions recorded from participants with ALS. The results for 

the random effects models of associations between single-trial N100 and P200 latencies 

on N200 latencies are shown in Table 4.10, indicating that single-trial P200 latencies 

(p=0.003), but not N100 latencies (p>0.05), are significantly associated with single-trial 

N200 latencies. As shown in Table 4.10, single-trial N100 latencies also were not, on 

average, significantly associated with single-trial P200 latencies (p>0.05). 

On average, within-session spearman correlations between single-trial N100 

latencies and amplitudes, between single-trial P200 latencies and amplitudes, between 

N200 single-trial latencies and amplitudes, and between P300 single-trial latencies and 

amplitudes were all significant (p<0.05), with smaller responses associated with 

increased latency shifts. Results from the random-effects models combining these 
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results across sessions are in Table 4.11, while the correlation plots between single-trial 

amplitudes and absolute latency shifts for a single session recorded from a participant 

with ALS are shown in Figure 4.6. 

Table 4.10. Random effects models associations between earlier and later single-trial 

ERP latencies in participants with ALS. 
 Test for heterogeneity Model statistics Frequency of 

significance in 

single sessions 
 I2 

(%) 
Q p Partial correlation, rp 95% confidence interval p 

Associations between single-trial P300 latencies and earlier single-trial ERP latencies 

N100 8.31 60.42 0.319 0.00 (-0.02, 0.01) 0.774 3/57 

P200 5.50 58.04 0.400 0.00 (-0.02, 0.01) 0.886 2/57 

N200 72.55 208.43 <0.001 0.04 (0.01, 0.07) 0.006 18/57 

      Model 14/57 

Associations between single-trial N200 latencies and earlier single-trial ERP latencies 

N100 0.00 52.11 0.623 0.00 (-0.02, 0.01) 0.666 1/57 

P200 70.45 204.86 <0.001 0.04 (0.01, 0.07) 0.003 10/57 

      Model 8/57 

Associations between single-trial P200 latencies and earlier single-trial ERP latencies 

N100 23.25 72.14 0.072 0.01 (-0.01, 0.03) 0.353 6/57 

 

Table 4.11. Random effects models evaluating spearman correlations between single-

trial amplitudes and latencies within ERP features over sessions recorded from 

participants with ALS. 
 Test for heterogeneity Model statistics Frequency of 

significance in 

single sessions 
 I2 

(%) 
Q p Correlation, r 95% confidence interval p 

N100 80.44 284.20 <0.001 -0.23 (-0.27, -0.19) <0.001 43/57 

P200 75.79 228.67 <0.001 -0.26 (-0.29, -0.23) <0.001 48/57 

N200 70.14 186.23 <0.001 -0.29 (-0.32, -0.27) <0.001 54/57 

P300 72.22 200.67 <0.001 -0.27 (-0.30, -0.24) <0.001 52/57 

 

Figure 4.6. Single-trial absolute latency shifts versus single-trial amplitudes for the 

N100 (left), P200 (center left), N200 (center right), and P300 (right) from a single 

session recorded from a participant with ALS. 
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Whole-epoch latency jitter, or the variance in the single-trial shifts calculated with 

CBLE (vCBLE), was significantly dependent on P200 jitter (p=0.027) but not on jitter 

in any of the other ERP components, for participants with ALS, with results shown in 

Table 4.12. However, a stepwise regression using the Akaike Information Criterion 

retains P200 jitter (β=0.26, p=0.038), N200 jitter, (β=0.25, p=0.059), and P300 jitter 

(β=0.25, p=0.050) as predictors of whole epoch jitter (vCBLE). 

The model of BCI performance on individual component jitters in participants 

with ALS was significant (p<0.001). P200 and N200 jitter were significantly 

associated with performance (p<0.05), but not N100 or P300 jitter, as shown in Table 

4.13. However, a stepwise regression using the Akaike Information Criterion retained 

all four component jitters in its model of BCI performance. 

Variance in the whole-epoch latency shifts, or vCBLE, increased significantly 

over time in participants with ALS (rrm=0.49, p<0.001). However, the variances of 

N100, P200, N200, and P300 latencies did not significantly increase over time in 

participants with ALS (p>0.05). The longitudinal trends in whole-epoch and ERP 

feature latency jitters are shown in Figure 4.7. 

Table 4.12. Linear Regression of whole-epoch jitter (vCBLE) on component jitter over 

sessions recorded from participants with ALS. 
 

Unstandardized coefficients Standardized coefficients t p 
 

B Standard Error β 
  

(Constant) -1337.12 1294.86 
 

-1.033 0.307 

N100 Latency Jitter -1.41 1.37 -0.02 -1.03 0.309 

P200 Latency Jitter 1.76 0.77 0.34 2.28 0.027 

N200 Latency Jitter 0.95 0.51 0.19 1.85 0.070 

P300 Latency Jitter 0.58 0.30 0.18 1.96 0.055 

Multiple R2 Adjusted R2 Residual Standard Error F df p 

0.28 0.22 1024 5.06 (4,52) 0.002 
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Table 4.13. Linear Regression of performance (character selection accuracy) on com-

ponent jitter over sessions recorded participants with ALS. 
 

Unstandardized coefficients Standardized coefficients t p 
 

B Standard Error β 
  

(Constant) 1.50 0.35 
 

4.33 <0.001 

N100 Latency Jitter 5.23∙10-4 3.67∙10-4 0.17 1.43 0.160 

P200 Latency Jitter -5.07∙10-4 2.07∙10-4 -0.30 -2.45 0.018 

N200 Latency Jitter -2.90∙10-4 1.37∙10-4 -0.36 -2.11 0.039 

P300 Latency Jitter -1.57∙10-4 7.90∙10-5 -0.24 -1.98 0.053 

Multiple R2 Adjusted R2 Residual Standard Error F df p 

0.32 0.27 0.27 6.09 (4,52) <0.001 

 

 

Figure 4.7. Longitudinal trends in latency jitter over time, from left to right for whole-

epoch jitter (vCBLE), N100 jitter, P200 jitter, N200 jitter, and P300 jitter. 

 

Neither overall cognitive scores nor attention subscores significantly correlated 

with latency jitter, whether for the whole epoch (vCBLE) or for specific ERP features 

(p>0.05). Repeated measures correlations between BCI performance and cognitive 

scores were also not significant (p>0.05). 

Repeated measures correlations between session average ERP features and whole-

epoch latency jitter, as measured by vCBLE, are shown in Figure 4.8. After corrections 

for multiple comparisons, only the correlations between N200 amplitude and vCBLE 

were significant, at channels Cz (rrm=0.40, p=0.023), PO8 (rrm=0.34, p=0.038), and Oz 

(rrm=0.37, p=0.026). Correlations between session-average amplitudes or latencies and 

vCBLE were not significant for any other features or channels.  
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Figure 4.8. Repeated measures correlations between whole epoch latency jitter (vCBLE) 

and N100, P200, N200, and P300 amplitudes (top row) or latencies (bottom row) in 

participants with amyotrophic lateral sclerosis.  Shades of red and orange indicate 

positive correlations between ERP amplitudes or latencies and latency jitter, whereas 

shades of blue indicate negative correlations. Asterisks indicate channels where this 

correlation is significant. 

 

4.3.3 Comparisons Between Participants with ALS and Neurotypical Controls 

 

Figure 4.9 compares participant average ERP feature and whole-epoch latency 

jitters between groups. Whole-epoch jitter (vCBLE) was significantly increased in 

people with ALS as compared to neurotypical controls, as were P200, N200, and P300 

jitter (p<0.05). However, N100 jitter did not differ significantly between groups 

(p>0.05). Whole-epoch jitter was 1362 ± 993 ms2 in participants with ALS, as compared 

to 521 ± 206 ms2 in neurotypical participants (p=0.004). N100 jitter was 708 ± 12 ms2 

in participants with ALS, which did not differ significantly from the 714 ± 124 ms2 in 

neurotypical participants (p=0.693). P200 jitter was 804 ± 95 ms2 in participants with 

ALS, significantly (p=0.027) greater than the 563 ± 222 ms2 in neurotypical controls. 
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N200 jitter was 1094 ± 192 ms2 in participants with ALS, as compared to 747 ± 164 

ms2 in neurotypical controls (p=0.004). Finally, P300 jitter was 2197 ± 284 ms2 in 

participants with ALS, significantly (p=0.010) greater than the 1595 ± 477 ms2 in 

neurotypical controls. Table 4.14 tabulates the individual jitter measures for each 

group.  

 

Figure 4.9. Box plots showing, from left to right, whole-epoch latency jitter (vCBLE), 

N100 jitter, P200 jitter, N200 jitter, and P300 jitter for all participants in both the 

amyotrophic lateral sclerosis (ALS) and neurotypical control (NTC) groups. The boxes 

show the quartiles with the median represented by a bold line through the box. Each dot 

shows the corresponding value for one participant (* significant at p < 0.05, ** 

significant at p < 0.01, Wilcoxon rank-sum test). 

 

Individual performance measures are tabulated for each group in Table 4.15. As in 

our prior work using 9 of these 16 neurotypical participants and three sessions from 

each participant with ALS, all performance measures were significantly reduced in 

participants with ALS as compared to neurotypical controls (p<0.05). 
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ALS 

NTC 

Table 4.14. Jitter measures for participants with amyotrophic lateral sclerosis (ALS) 

and neurotypical controls (NTC), with group means and standard deviations (ms2). 

   vCBLE N100 Jitter P200 Jitter N200 Jitter P300 Jitter 

  ALS-1 3294 692 934 1335 2409 

  ALS-2 610 716 829 1051 2130 

  ALS-3 872 700 839 791 1761 

  ALS-4 1525 706 840 1246 2465 

  ALS-5 906 727 695 1135 1993 

  ALS-6 965 709 689 1007 2422 

  ALS Mean±STD 1362±993 708±12 804±95 1094±192 2197±284 

  NTC-1 759 626 538 839 2372 

  NTC-2 419 791 330 576 1228 

  NTC-3 807 680 699 659 1369 

  NTC-4 858 748 698 958 1635 

  NTC-5 449 840 672 490 1794 

  NTC-6 340 729 555 547 504 

  NTC-7 316 731 417 995 1412 

  NTC-8 280 682 480 880 1047 

  NTC-9 478 743 809 654 1932 

  NTC-10 527 819 703 827 2014 

  NTC-11 662 899 993 886 1971 

  NTC-12 259 480 181 525 1811 

  NTC-13 234 906 318 650 1189 

  NTC-14 718 569 365 726 1340 

  NTC-15 681 640 414 819 2171 

  NTC-16 551 535 831 918 1733 

  NTC Mean±STD 521±206 714±124 563±222 747±164 1595±477 
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NTC 

ALS 

Table 4.15. Performance measures for participants with amyotrophic lateral sclerosis 

(ALS) and neurotypical controls (NTC), with group means and standard deviations. 
 

Character  

Accuracy (%) 

Classification  

Accuracy (%) 

Precision (%) Recall  

(%) 

F-score 

ALS-1 24.40 83.19 36.88 7.56 0.14 

ALS-2 98.81 92.36 80.03 71.49 0.75 

ALS-3 100.00 91.80 79.70 68.14 0.73 

ALS-4 73.02 85.72 60.51 36.35 0.45 

ALS-5 94.29 90.64 74.70 64.29 0.69 

ALS-6 98.41 88.97 71.26 56.27 0.63 

ALS Mean±STD 81.49±29.74 88.78±3.63 67.18±16.48 50.68±24.57 0.57±0.24 

NTC-1 100.00 90.40 75.32 62.98 0.69 

NTC-2 100.00 95.34 88.44 82.86 0.86 

NTC-3 100.00 92.66 82.64 70.60 0.76 

NTC-4 95.24 94.09 86.42 76.19 0.81 

NTC-5 100.00 95.74 91.11 82.50 0.87 

NTC-6 100.00 96.07 90.43 85.48 0.88 

NTC-7 100.00 96.51 93.97 84.40 0.89 

NTC-8 100.00 97.36 93.90 90.00 0.92 

NTC-9 100.00 96.59 92.61 86.43 0.89 

NTC-10 100.00 95.04 90.86 78.10 0.84 

NTC-11 100.00 91.90 79.47 69.29 0.74 

NTC-12 100.00 96.82 92.69 87.86 0.90 

NTC-13 96.43 96.43 91.58 86.43 0.89 

NTC-14 92.86 92.35 80.47 70.00 0.75 

NTC-15 100.00 92.65 81.00 72.50 0.76 

NTC-16 100.00 94.85 87.21 80.89 0.84 

NTC Mean±STD 99.03±2.18 94.67±2.09 87.38±5.86 79.16±8.02 0.83± 0.07 
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The mixed-effects models investigating whether the effects of single-trial ERP 

latencies on whole-epoch CBLE shifts differed between groups were significant for the 

P200, N200, and P300 (p<0.05), but not for the N100. In particular, single-trial P200, 

N200, and P300 latencies contributed less strongly to CBLE shifts in people with ALS. 

This indicates that not only does CBLE reflect other factors in addition to P300 jitter, 

but that the relationship between classifier-based latency estimates and single-trial ERP 

feature latencies is likely disrupted in ALS. The mixed-effects models investigating 

group as a moderator of the relationship between single-trial feature latencies and 

whole-epoch shifts are shown in Table 4.16. 

The disruption of relationships between whole-epoch shifts estimated with CBLE 

and single-trial feature latencies is also apparent in the portion of sessions recorded 

from each group in the models investigating these relationships were significant, 

shown in Tables 4.2 and 4.8. Notably, models of whole epoch latency shifts (CBLE) 

were significant for 90.2% of sessions recorded from neurotypical participants, but 

only 50.9% of sessions recorded from participants with ALS (p<0.001), indicating that 

CBLE estimates are less dependent on latency shifts and more influenced by other 

factors, such as reduced amplitudes or increased neural noise, in people with ALS than 

in neurotypical controls. P200 latencies were significantly (p=0.038) more likely to be 

contributors to whole-epoch latency shifts in neurotypical controls (46.3%) than in 

people with ALS (24.6%). N200 latencies were also more likely to be significant 

contributors to CBLE in neurotypical participants (70.7%) than in people with ALS 

(41.1%, p=0.003), as were P300 latencies, which contributed significantly to CBLE 

shifts in 61.0% of sessions recorded from neurotypical participants but only 33.3% of 
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sessions recorded from participants with ALS (p=0.013). However, the portion of 

sessions in which N100 latencies contributed to CBLE shifts were not significantly 

different between neurotypical participants (0.0%) and participants with ALS (5.3%, 

p=0.262). 

The mixed-effects models investigating whether the effects of single-trial ERP 

amplitudes on whole-epoch CBLE shifts differed between groups were not significant 

for any ERP feature. These results are shown in Table 4.17. However, as reported in 

Tables 4.3 and 4.9, single-trial N100 (p=0.006) and P200 (p=0.001) amplitudes were 

more likely to be significantly associated with CBLE shifts for sessions recorded from 

neurotypical participants than from participants with ALS -- there may be some 

disruption in associations between single-trial amplitudes and CBLE shifts in people 

with ALS, but this is not conclusive. 

Table 4.16. Mixed effects model evaluating differences in the effects of single-trial 

ERP latencies on classifier-based latency estimates between neurotypical participants 

and participants with ALS. 
 

Test for heterogeneity Effect of Group 
 

I2 

(%) 

Q p R2 

(%) 

Difference 95% confidence interval p 

N100 0.00 79.72 0.884 0.00 0.02 (0.00, 0.04) 0.132 

P200 75.06 427.91 <0.001 12.99 0.08 (0.04, 0.13) <0.001 

N200 77.96 480.85 <0.001 19.82 0.11 (0.06, 0.16) <0.001 

P300 77.07 471.38 <0.001 8.61 0.07 (0.02, 0.12) 0.005 

 

 

Table 4.17. Mixed effects model evaluating differences in the effects of single-trial 

ERP amplitudes on classifier-based latency estimates between neurotypical 

participants and participants with ALS. 
 

Test for heterogeneity Effect of Group 
 

I2 
(%) 

Q p R2 
(%) 

Difference 95% confidence interval p 

N100 45.09 174.43 <0.001 3.67 0.03 (-0.01, 0.06) 0.111 

P200 67.15 298.99 <0.001 0.00 0.00 (-0.04, 0.04) 0.951 

N200 69.29 318.32 <0.001 0.00 0.00 (-0.05, 0.04) 0.875 

P300 61.21 249.15 <0.001 0.00 0.02 (-0.02, 0.05) 0.427 
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Disruptions were also observed in associations between earlier and later single-

trial ERP latencies, as shown in Table 4.18. Mixed-effects models investigating group 

as a moderator of the relationships between single-trial P200 latencies and single-trial 

N200 latencies (p=0.006) and between single-trial P200 latencies and single trial P300 

latencies (p=0.041) were both significant, indicating disrupted assocciations between 

single-trial P200 latencies and single-trial latencies for later ERP features in people 

with ALS. There were not significant disruptions (p>0.05) in the associations between 

single-trial N100 or N200 latencies and single-trial latencies for later ERP features. 

The portions of sessions with significant relationships between single-trial latencies 

for earlier ERP features and single-trial latencies for later ERP features, found in 

Tables 4.4 and 4.10, were not significant for any pairs of ERP features. 

Table 4.18. Mixed effects model evaluating differences in associations between earlier 

and later single-trial ERP latencies between neurotypical participants and participants 

with ALS. 
 

Test for heterogeneity Effect of Group 
 

I2 

(%) 

Q p R2 

(%) 

Difference 95% confidence interval p 

Differences in associations between single-trial P300 latencies and earlier single-trial ERP latencies 

N100 16.75 114.13 0.100 0.00 0.00 (-0.03, 0.02) 0.841 

P200 37.08 151.10 <0.001 8.37 0.03 (0.00, 0.06) 0.041 

N200 77.37 454.83 <0.001 1.53 0.03 (-0.01, 0.09) 0.151 

Differences in associations between single-trial N200 latencies and earlier single-trial ERP latencies 

N100 0.84 95.90 0.484 2.33 0.01 (-0.01, 0.04) 0.323 

P200 83.88 721.87 <0.001 7.77 0.08 (0.02, 0.14) 0.006 

Differences in associations between single-trial P200 latencies and earlier single-trial ERP latencies 

N100 30.20 136.50 0.042 0.00 0.00 (-0.03, 0.03) 0.927 

 

Within-session spearman correlation coefficients between the amplitudes and 

latencies of single trial features (e.g., N100 amplitude with N100 latency) did not 

differ significantly between groups (p>0.05). Results from the mixed-effects models 
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comparing these within-session correlations between participants with ALS and 

neurotypical participants are shown in Table 4.19 

Table 4.19. Mixed effects model evaluating differences between participants with 

ALS and neurotypical participants in the spearman correlations between single-trial 

amplitudes and latencies within ERP features. 
 

Test for heterogeneity Effect of Group 
 

I2 

(%) 

Q p R2 

(%) 

Difference 95% confidence interval p 

N100 77.26 420.03 <0.001 0.00 -0.01 (-0.07, 0.04) 0.605 

P200 71.98 339.66 <0.001 0.00 0.01 (-0.04, 0.06) 0.720 

N200 68.50 303.37 <0.001 0.00 -0.01 (-0.05, 0.04) 0.686 

P300 73.42 360.47 <0.001 0.48 -0.03 (-0.08, 0.02) 0.244 

 

4.4 DISCUSSION 

 

In this study, we investigated trial-to-trial variability in the N100, P200, N200, and 

P300, along with whole-epoch latency shifts calculated with classifier-based latency 

estimation (CBLE), in both neurotypical participants and participants with ALS. In 

doing so, we determined which ERP features contribute to classifier-based latency 

estimates in both groups, as well as examining the effects of single-trial latencies from 

earlier ERP features on the single-trial latencies of later ERP features. We also 

determined which component jitters are relevant to BCI performance. Finally, we 

longitudinally investigated N100, P200, N200, and P300 jitter in people with ALS. 

We found that latency variability was increased in participants with ALS as 

compared to neurotypical controls for the P200, N200, and P300. We interpreted the 

increased whole-epoch latency jitter (vCBLE) in our prior work as indicating increased 

P300 latency jitter (Zisk et al., 2020). In addition to the connection between stimulus 

evaluation time and single-trial P300 latencies (Kelly & O'Connell, 2013; Verleger, 

1997), single-trial latencies of both the P200 and N200 also appear to be connected to 
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perceptual decision-making (Nunez, Vandekerckhove, & Srinivasan, 2017). Our study, 

then, indicates increased intra-individual variability in people with ALS for several 

attention-related components, including but not limited to the P300.  

Our investigation of the single-trial features reflected in classifier-based latency 

estimates revealed that single-trial latency shifts in all four ERP features we investigated, 

specifically N100, P200, N200, and P300, were reflected in the CBLE shifts in 

neurotypical participants. That is, CBLE significantly reflects P300 latency jitter, as 

previously shown by Thompson and colleagues (Thompson et al., October 23, 2019), 

and it also reflects latency jitter in other ERP features as would be expected from a 

method considering shifts of the entire ERP complex (Mowla et al., 2020; Thompson et 

al., 2012). However, the correlations between whole-epoch latency shifts and P200, 

N200, and P300 latency shifts were all disrupted in participants with ALS, and the 

correlation between N100 latency shifts and whole-epoch latency shifts did not reach 

significance in participants with ALS. There are multiple possible explanations for these 

disruptions.  

First, smaller single-trial ERP amplitudes were significantly associated with greater 

detected latency shifts, both within ERP features (e.g., smaller N100 amplitudes on trials 

with greater detected N100 latency shifts) and between ERP feature amplitudes and 

whole-epoch latency shifts (e.g., smaller P300 amplitudes in trials where CBLE found 

a larger latency shift). These relationships between increased single-trial latency shifts 

and decreased single-trial amplitudes were present in both groups and were not 

disrupted in participants with ALS. These relationships are consistent with the fact that 

single-trial ERP latency detection is subject to greater error as the signal-to-noise ratio 
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decreases (Michalewski et al., 1986), which could occur from reduced ERP amplitudes 

commonly reported in ALS (Raggi, Iannaccone, & Cappa, 2010; Riccio et al., 2013; 

Vieregge, Wauschkuhn, Heberlein, Hagenah, & Verleger, 1999), including in our work 

with these same participants (Zisk et al., 2020). Reduced signal-to-noise ratios have 

previously been reported as a concern for BCI performance among participants with 

ALS (Geronimo, A., Simmons, & Schiff, 2016), and could be relevant to the disruption 

of associations between single-trial whole-epoch latency shifts and single-trial N100, 

P200, N200, and P300 latencies.  

Second, associations between single-trial P300 latencies and reaction times are 

known to be disrupted under certain conditions, including tasks where the focus is on 

speed (Verleger, 1997) and in people who have increased reaction time variability 

(Saville et al., 2011). While the single-trial latencies calculated in the current study are 

not reaction times, as P300 BCIs are designed for use by people with no voluntary motor 

control, similar factors could be involved. Whole-epoch, P200, N200, and P300 latency 

jitter were all increased in participants with ALS as compared to neurotypical controls, 

similar to the case of disrupted associations in people with increased intra-individual 

variability. The 93.75 ms stimulus with 62.5 ms breaks between stimuli used in this 

studies P300 speller paradigm additionally requires participants to evaluate 6.4 stimuli 

per second, with a target stimulus approximately every second. While fairly typical for 

P300 speller applications, this is much faster than would be expected in typical cognitive 

studies of the P300 (Barry et al., 2020; Verleger, Baur, Metzner, & Śmigasiewicz, 2014; 

Vieregge et al., 1999).  
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Considering the effects of earlier ERP features on later features, our current study 

found that both single-trial P200 and N200 latencies were significant contributors to 

single-trial P300 latencies in neurotypical participants, but N100 latencies did not 

contribute significantly to P300 latencies. This aligns with prior work examining the 

relationships between single-trial features with an auditory stimulus (Michalewski et al., 

1986), though the relationships found in our work were comparatively weaker, possibly 

due to more rapid stimulus presentation with overlap between epochs. In participants 

with ALS, single-trial N200 latencies still contributed significantly to P300 latencies, 

but P200 latencies did not. The relationship between single-trial P200 and N200 

latencies was also disrupted in participants with ALS, though this relationship was still 

present in both groups. As interrelationships between single-trial ERP features are not 

often investigated, it is not clear what might cause this disruption. However, as these 

disruptions involved the same ERP features for which latency jitter was increased in 

ALS, the disruptions may again be a result of relatively increased neural noise.  

Our longitudinal analysis in participants with ALS did not find N100, P200, N200, 

or P300 jitter to increase over time, though there was a non-significant positive trend in 

P300 jitter over time. This is of interest, as whole-epoch latency jitter measured CBLE 

did increase significantly over time, both in our current analysis and with classifiers 

trained on data from prior sessions (Zisk et al., 2021). It would be interesting to know 

whether this pattern holds in an independent longitudinal sample, and if so, what 

contributor to whole-epoch jitter is increasing over time.  

In our prior work, whole-epoch jitter did not significantly correlate with session-

average ERP amplitudes in people with ALS, while there were significant correlations 
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for neurotypical control participants (Zisk et al., 2020). As there were fewer participants 

with ALS and thus fewer sessions recorded from participants with ALS, we considered 

the possibility that this might be a result of there being fewer sessions available. 

However, these correlations were again not significant over the current longitudinal 

recordings. This indicates that, like in other conditions where both increased jitter and 

reduced session-average amplitudes appear, jitter likely does not explain the amplitude 

differences (Ford et al., 1994; Saville et al., 2015; Unsal & Segalowitz, 1995; Walhovd, 

Rosquist, & Fjell, 2008). 

Single-session cognitive scores did not correlate significantly with BCI 

performance or with any measure of latency variability, aligning with prior results in 

which clinical scores are not correlated with BCI performance in people with ALS 

(McCane et al., 2015; Zisk et al., 2020)  

Overall, the current study complements prior work on within-session variability in 

BCI use by examining several ERP features in concert with CBLE, a strong predictor 

of BCI performance. It also investigates these measures of variability longitudinally in 

people with ALS, supporting a better understanding of single-trial ERP features, their 

interrelationships, and their relevance to BCI performance in ALS. We have 

additionally worked to address a theoretical weakness of vCBLE as a measure of latency 

variability, showing that it reflects latency jitter in several ERP features including but 

not limited to the P300. 

One limitation of the current study is that despite the longitudinal recordings, the 

number of participants with ALS is still low. Another limitation is that with spatial PCA 

and Woody templates determined separately for each session to allow for potential 
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changes in waveforms over time in participants with ALS, our single-trial amplitude 

measures are not well-suited to analyses combining information from multiple sessions. 

The use of a single set of spatial factors and Woody templates for each participant, or 

even for each group, could address this limitation, but with an increased risk of selecting 

spatial factors and templates that may not be appropriate for all participants.  

 

REFERENCES 

Allison, B. Z., Kübler, A., & Jin, J. (2020). 30 years of P300 brain–computer 

interfaces. Psychophysiology, 57(7), e13569.  

Aloe, A. M. (2014). An empirical investigation of partial effect sizes in meta-

analysis of correlational data. The Journal of General Psychology, 141(1), 47-64.  

Aloe, A. M., & Thompson, C. G. (2013). The synthesis of partial effect sizes. 

Journal of the Society for Social Work and Research, 4(4), 390-405.  

Aricò, P., Aloise, F., Schettini, F., Salinari, S., Mattia, D., & Cincotti, F. (2014). 

Influence of P300 latency jitter on event related potential-based brain–computer 

interface performance. Journal of Neural Engineering, 11(3), 035008.  

Bakdash, J. Z., & Marusich, L. R. (2017). Repeated measures correlation. Frontiers 

in Psychology, 8, 456.  

Barry, R. J., Steiner, G. Z., De Blasio, F. M., Fogarty, J. S., Karamacoska, D., & 

MacDonald, B. (2020). Components in the P300: Don’t forget the novelty P3! 

Psychophysiology, 57(7), e13371.  

Bonett, D. G., & Wright, T. A. (2000). Sample size requirements for estimating 

Pearson, Kendall, and Spearman correlations. Psychometrika, 65(1), 23-28.  

Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., & 

Nakanishi, A. (1999). The ALSFRS-R: A revised ALS functional rating scale that 

incorporates assessments of respiratory function. BDNF ALS study group (phase III). 

Journal of the Neurological Sciences, 169(1-2), 13-21.  

Chennu, S., Craston, P., Wyble, B., & Bowman, H. (2009). Attention increases the 

temporal precision of conscious perception: Verifying the neural-ST2 model. PLoS 

Computational Biology, 5(11), e1000576.  

Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice MIT 

press. 



 

142 
 

Coles, M. G., Gratton, G., Kramer, A. F., & Miller, G. A. (1986). Principles of 

signal acquisition and analysis. In M. G. Coles, E. Donchin & S. W. Porges (Eds.), 

Psychophysiology: Systems, processes and applications (pp. 183-221). New York: 

Guilford Press. 

Dinstein, I., Heeger, D. J., & Behrmann, M. (2015). Neural variability: Friend or 

foe? Trends in Cognitive Sciences, 19(6), 322-328.  

Espeseth, T., Endestad, T., Rootwelt, H., & Reinvang, I. (2007). Nicotine receptor 

gene CHRNA4 modulates early event-related potentials in auditory and visual oddball 

target detection tasks. Neuroscience, 147(4), 974-985.  

Fabiani, M., Gratton, G., Karis, D., & Donchin, E. (1987). Definition, identification, 

and reliability of measurement of the P300 component of the event-related brain 

potential. Advances in Psychophysiology, 2(3), 1-78.  

Fabiani, M., Karis, D., & Donchin, E. (1986). P300 and recall in an incidental 

memory paradigm. Psychophysiology, 23(3), 298-308.  

Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: Toward a 

mental prosthesis utilizing event-related brain potentials. Electroencephalography and 

Clinical Neurophysiology, 70(6), 510-523.  

Fisher, R. A. (1922). On the interpretation of χ 2 from contingency tables, and the 

calculation of P. Journal of the Royal Statistical Society, 85(1), 87-94.  

Fjell, A. M., Rosquist, H., & Walhovd, K. B. (2009). Instability in the latency of 

P3a/P3b brain potentials and cognitive function in aging. Neurobiology of Aging, 30(12), 

2065-2079.  

Ford, J. M., White, P., Lim, K. O., & Pfefferbaum, A. (1994). Schizophrenics have 

fewer and smaller P300s: A single-trial analysis. Biological Psychiatry, 35(2), 96-103.  

Geronimo, A., Simmons, Z., & Schiff, S. J. (2016). Performance predictors of 

brain–computer interfaces in patients with amyotrophic lateral sclerosis. Journal of 

Neural Engineering, 13(2), 026002.  

Geronimo, A. M., & Simmons, Z. (2017). The P300 ‘face’ speller is resistant to 

cognitive decline in ALS. Brain-Computer Interfaces, 4(4), 225-235.  

Hochberg, Y., & Benjamini, Y. (1990). More powerful procedures for multiple 

significance testing. Statistics in Medicine, 9(7), 811-818.  

Hoffmann, U., Vesin, J., Ebrahimi, T., & Diserens, K. (2008). An efficient P300-

based brain–computer interface for disabled subjects. Journal of Neuroscience Methods, 

167(1), 115-125.  



 

143 
 

Huggins, J. E., Alcaide-Aguirre, R. E., & Hill, K. (2016). Effects of text generation 

on P300 brain-computer interface performance. Brain-Computer Interfaces, 3(2), 112-

120.  

Jaśkowski, P., & Verleger, R. (2000). An evaluation of methods for single-trial 

estimation of P3 latency. Psychophysiology, 37(2), 153-162.  

Kelly, S. P., & O'Connell, R. G. (2013). Internal and external influences on the rate 

of sensory evidence accumulation in the human brain. Journal of Neuroscience, 33(50), 

19434-19441.  

Kimura, M., Katayama, J., Ohira, H., & Schröger, E. (2009). Visual mismatch 

negativity: New evidence from the equiprobable paradigm. Psychophysiology, 46(2), 

402-409.  

Knapp, G., & Hartung, J. (2003). Improved tests for a random effects meta‐

regression with a single covariate. Statistics in Medicine, 22(17), 2693-2710.  

Krusienski, D. J., Sellers, E. W., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. 

R. (2008). Toward enhanced P300 speller performance. Journal of Neuroscience 

Methods, 167(1), 15-21. doi: 10.1016/j.jneumeth.2007.07.017 

Krusienski, D. J., Sellers, E. W., Cabestaing, F., Bayoudh, S., McFarland, D. J., 

Vaughan, T. M., & Wolpaw, J. R. (2006). A comparison of classification techniques for 

the P300 speller. Journal of Neural Engineering, 3(4), 299.  

Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: 

The P300 as a measure of stimulus evaluation time. Science, 197(4305), 792-795.  

Magnuson, J. R., Iarocci, G., Doesburg, S. M., & Moreno, S. (2020). Increased 

Intra‐Subject variability of reaction times and Single‐Trial Event‐Related potential 

components in children with autism spectrum disorder. Autism Research, 13(2), 221-

229.  

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random 

variables is stochastically larger than the other. The Annals of Mathematical Statistics, 

50-60.  

McCane, L. M., Heckman, S. M., McFarland, D. J., Townsend, G., Mak, J. N., 

Sellers, E. W., . . . Vaughan, T. M. (2015). P300-based brain-computer interface (BCI) 

event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. 

age-matched controls. Clinical Neurophysiology, 126(11), 2124-2131.  

McCane, L. M., Sellers, E. W., Mcfarland, D. J., Mak, J. N., Carmack, C. S., Zeitlin, 

D., . . . Vaughan, T. M. (2014). Brain-computer interface (BCI) evaluation in people 

with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal 

Degeneration, 15(3-4), 207-215.  



 

144 
 

Michalewski, H. J., Prasher, D. K., & Starr, A. (1986). Latency variability and 

temporal interrelationships of the auditory event-related potentials (N1, P2, N2, and P3) 

in normal subjects. Electroencephalography and Clinical Neurophysiology/Evoked 

Potentials Section, 65(1), 59-71.  

Mowla, M. R., Gonzalez-Morales, J. D., Rico-Martinez, J., Ulichnie, D. A., & 

Thompson, D. E. (2020). A comparison of classification techniques to predict brain-

computer interfaces accuracy using classifier-based latency estimation. Brain Sciences, 

10(10), 734.  

Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017). How attention 

influences perceptual decision making: Single-trial EEG correlates of drift-diffusion 

model parameters. Journal of Mathematical Psychology, 76, 117-130.  

Ouyang, G., Hildebrandt, A., Sommer, W., & Zhou, C. (2017). Exploiting the intra-

subject latency variability from single-trial event-related potentials in the P3 time range: 

A review and comparative evaluation of methods. Neuroscience & Biobehavioral 

Reviews, 75, 1-21.  

Pal, M., & Bandyopadhyay, S. (2016). Many-objective feature selection for motor 

imagery EEG signals using differential evolution and support vector machine. Paper 

presented at the 2016 International Conference on Microelectronics, Computing and 

Communications (MicroCom), 1-6.  

Patterson, J. V., Michalewski, H. J., & Starr, A. (1988). Latency variability of the 

components of auditory event-related potentials to infrequent stimuli in aging, 

Alzheimer-type dementia, and depression. Electroencephalography and Clinical 

Neurophysiology/Evoked Potentials Section, 71(6), 450-460.  

Raggi, A., Iannaccone, S., & Cappa, S. F. (2010). Event-related brain potentials in 

amyotrophic lateral sclerosis: A review of the international literature. Amyotrophic 

Lateral Sclerosis: Official Publication of the World Federation of Neurology Research 

Group on Motor Neuron Diseases, 11(1-2), 16-26. doi:10.3109/17482960902912399 

Riccio, A., Simione, L., Schettini, F., Pizzimenti, A., Inghilleri, M., Olivetti 

Belardinelli, M., . . . Cincotti, F. (2013). Attention and P300-based BCI performance in 

people with amyotrophic lateral sclerosis. Frontiers in Human Neuroscience, 7 

doi:10.3389/fnhum.2013.00732 

Saville, C. W., Dean, R. O., Daley, D., Intriligator, J., Boehm, S., Feige, B., & 

Klein, C. (2011). Electrocortical correlates of intra-subject variability in reaction times: 

Average and single-trial analyses. Biological Psychology, 87(1), 74-83.  

Saville, C. W., Feige, B., Kluckert, C., Bender, S., Biscaldi, M., Berger, A., . . . 

Klein, C. (2015). Increased reaction time variability in attention‐deficit hyperactivity 

disorder as a response‐related phenomenon: Evidence from single‐trial event‐related 

potentials. Journal of Child Psychology and Psychiatry, 56(7), 801-813.  



 

145 
 

Schalk, G., & Mellinger, J. (2010). A practical guide to brain–computer interfacing 

with BCI2000: General-purpose software for brain-computer interface research, data 

acquisition, stimulus presentation, and brain monitoring Springer Science & Business 

Media. 

Schettini, F., Risetti, M., Aricò, P., Formisano, R., Babiloni, F., Mattia, D., & 

Cincotti, F. (2015). P300 latency jitter occurrence in patients with disorders of 

consciousness: Toward a better design for brain computer interface applications. Paper 

presented at the 2015 37th Annual International Conference of the IEEE Engineering 

in Medicine and Biology Society (EMBC), 6178-6181.  

Shahriari, Y., Vaughan, T. M., McCane, L., Allison, B. Z., Wolpaw, J. R., & 

Krusienski, D. J. (2019). An exploration of BCI performance variations in people with 

amyotrophic lateral sclerosis using longitudinal EEG data. Journal of Neural 

Engineering,  

Siegel, S., & Tukey, J. W. (1960). A nonparametric sum of ranks procedure for 

relative spread in unpaired samples. Journal of the American Statistical Association, 

55(291), 429-445.  

Smulders, F. T., Kenemans, J. L., & Kok, A. (1994). A comparison of different 

methods for estimating single-trial P300 latencies. Electroencephalography and 

Clinical Neurophysiology/Evoked Potentials Section, 92(2), 107-114.  

Tang, Z., Li, C., & Sun, S. (2017). Single-trial EEG classification of motor imagery 

using deep convolutional neural networks. Optik-International Journal for Light and 

Electron Optics, 130, 11-18.  

Team, R. C. (2019). R: A language and environment for statistical computing 

[computer software]. Vienna, Austria: 

Thompson, D. E., Mowla, M. R., & Huggins, J. E. (October 23, 2019). Evidence 

of latency variation in the P3 speller brain computer interface. Paper presented at the 

Society for Neuroscience,  

Thompson, D. E., Warschausky, S., & Huggins, J. E. (2012). Classifier-based 

latency estimation: A novel way to estimate and predict BCI accuracy. Journal of 

Neural Engineering, 10(1), 016006.  

Unsal, A., & Segalowitz, S. J. (1995). Sources of P300 attenuation after head injury: 

Single‐trial amplitude, latency jitter, and EEG power. Psychophysiology, 32(3), 249-

256.  

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.) 

Springer. 

Verleger, R. (1997). On the utility of P3 latency as an index of mental chronometry. 

Psychophysiology, 34(2), 131-156.  



 

146 
 

Verleger, R., Baur, N., Metzner, M. F., & Śmigasiewicz, K. (2014). The hard 

oddball: Effects of difficult response selection on stimulus‐related P 3 and on response‐

related negative potentials. Psychophysiology, 51(11), 1089-1100.  

Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance estimators 

in the random-effects model. Journal of Educational and Behavioral Statistics, 30(3), 

261-293.  

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. 

Journal of Statistical Software, 36(3), 1-48.  

Viechtbauer, W., López-López, J. A., Sánchez-Meca, J., & Marín-Martínez, F. 

(2015). A comparison of procedures to test for moderators in mixed-effects meta-

regression models. Psychological Methods, 20(3), 360.  

Vieregge, P., Wauschkuhn, B., Heberlein, I., Hagenah, J., & Verleger, R. (1999). 

Selective attention is impaired in amyotrophic lateral sclerosis—a study of event-related 

EEG potentials. Cognitive Brain Research, 8(1), 27-35.  

Walhovd, K. B., Rosquist, H., & Fjell, A. M. (2008). P300 amplitude age 

reductions are not caused by latency jitter. Psychophysiology, 45(4), 545-553.  

Wolpaw, J. R., Bedlack, R. S., Reda, D. J., Ringer, R. J., Banks, P. G., Vaughan, 

T. M., . . . Winden, S. (2018). Independent home use of a brain-computer interface by 

people with amyotrophic lateral sclerosis. Neurology, 91(3), e258-e267.  

Woody, C. D. (1967). Characterization of an adaptive filter for the analysis of 

variable latency neuroelectric signals. Medical and Biological Engineering, 5(6), 539-

554.  

Woolley, S. C., York, M. K., Moore, D. H., Strutt, A. M., Murphy, J., Schulz, P. 

E., & Katz, J. S. (2010). Detecting frontotemporal dysfunction in ALS: Utility of the 

ALS cognitive behavioral screen (ALS-CBS). Amyotrophic Lateral Sclerosis: Official 

Publication of the World Federation of Neurology Research Group on Motor Neuron 

Diseases, 11(3), 303-311. doi:10.3109/17482961003727954 

Wu, W., Wu, C., Gao, S., Liu, B., Li, Y., & Gao, X. (2014). Bayesian estimation 

of ERP components from multicondition and multichannel EEG. NeuroImage, 88, 319-

339.  

Yu, X. (2016). The impact of latency jitter on the interpretation of P300 in the 

assessment of cognitive function  

Zisk, A. H., Borgheai, S. B., McLinden, J., Hosni, S. M., Deligani, R. J., & 

Shahriari, Y. (2020). P300 latency jitter and its correlates in people with amyotrophic 

lateral sclerosis. Clinical Neurophysiology,  



 

147 
 

Zisk, A. H., Borgheai, S. B., McLinden, J., & Shahriari, Y. (2021). Improving 

longitudinal P300-BCI performance for people with ALS using a data augmentation and 

jitter correction approach. Under Review at Journal of Neural Engineering.  



 

148 
 

APPENDIX 1: SUPPLEMENTARY TABLE 

 

Table A.1 shows the selected parameters for each participant and set of two training 

sessions with one testing session numbers. The symmetric time shifts and use or non-

use of per-epoch shifts in augmentation are those determined from the procedure in 

section 3.2.4.2, and the correction windows are those determined as in section 3.2.4.3. 

Symmetric time-shifts for data augmentation were between 10 and 30 ms for five of the 

six participants. For these same five participants, correction windows were between 0 

and 40 ms. For the remaining participant, ALS-01, symmetric time-shifts reached a 

maximum of 54.69 ms and correction windows had a maximum of 101.56 ms. Note: the 

individualized parameters vary both between participants and between training sets. 
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