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ABSTRACT 

The world is going through rapid urbanization resulting in cities turning into 

megacities. This rapid change turns into unplanned development in order to adapt to 

the growing population while the importance of the sustainability of the natural 

environment is neglected during the whole process. Along with the effects of climate 

change, flood disasters are becoming more frequent in megacities resulting in huge 

financial burden. Two driving factors behind urban flood disasters, anthropogenic and 

natural, are considered here: (i) Land Use and Land Cover (LULC) change, and (ii) 

intensity and frequency of precipitation. We focus on four major cities from across the 

world that are prone to chronic urban flooding problems: Houston, United States, 

Mexico City, Mexico, Jakarta, Indonesia, and Dhaka, Bangladesh. The aim of this 

study is to identify the main drivers behind flood disasters to improve disaster 

management and urban planning in these megacities. Utilizing the vantage of and 

recent advances in Earth Observations (EO) images and data, we assess urbanization 

patterns and associated hydrological changes for these cities. We found that LULC 

change is a principal driving factor behind urban flooding in Houston, Mexico City, 

and Dhaka. For Jakarta, both factors are equally important for urban flooding.  
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PREFACE 

This thesis is submitted in a Manuscript Format. The first chapter is an 

introduction. The second chapter titled “Analyzing Urban Flood Disasters in Emerging 

Megacities Using Earth Observations” is prepared for submitting in Geophysical 

Research Letters, an American Geophysical Union (AGU) Journal. 
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CHAPTER 1 

Economic betterment is the root cause of the global phenomenon of rural to urban 

migration (Cohen, 2003). This mass movement of populations has been a vital part of 

the urbanization process from ancient times and continues till now (Lall, Selod, & 

Shalizi, 2006). Accepting the challenge of accommodating the increased population as 

part of the global urbanization process – cities are turning to megacities. A strong 

association is seen between population growth and land cover change (Dewan & 

Yamaguchi, 2009) while this urban expansion and growth lacks proper planning in 

necessary infrastructural development (Akanda & Hossain, 2012). 

Urbanization is causing drastic changes in city layout and water infrastructures that are 

less resilient to natural disasters such as urban flooding. Land use land cover change  

 (K. A. Aderogba, 2012; K. Aderogba, Oredipe, Oderinde, & Afelumo, 2012; 

Odunuga, 2008), population growth, topography of an area, alteration in precipitation 

pattern and intensity, inadequate urban planning, and arbitrary solid waste disposal 

(Adeloye & Rustum, 2011; Lamond, Bhattacharya, & Bloch, 2012) are some of the 

reasons behind urban flooding. Among those, we selected two major factors, one 

anthropogenic and one natural, behind chronic urban flooding in emerging megacities: 

(i) land use land cover change – anthropogenic factor and (ii) changes of intensity and 

frequency of precipitation – natural factor.  

The objective of this MS thesis is to uncover and understand the relative importance 

between (a) land use land cover change and (b) intensity and frequency change of 

precipitation for urban flooding. We found that LULC change is a principal driving 
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factor behind urban flooding in Houston, Mexico City, and Dhaka. For Jakarta, both 

factors are equally responsible for urban flooding.  
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Abstract 

The world is going through rapid urbanization resulting in cities turning into 

megacities. This rapid change turns into unplanned development in order to adapt to 

the growing population while the importance of the sustainability of the natural 

environment is neglected during the whole process. Along with the effects of climate 

change, flood disasters are becoming more frequent in megacities resulting in huge 

financial burden. Two driving factors behind urban flood disasters, anthropogenic and 

natural, are considered here: (i) Land Use and Land Cover (LULC) change, and (ii) 

intensity and frequency of precipitation. We focus on four major cities from across the 

world that are prone to chronic urban flooding problems: Houston Metropolitan 

Statistical Area, United States, Mexico City, Mexico, Jakarta, Indonesia, and Dhaka, 

Bangladesh. The aim of this study is to identify the main drivers behind flood disasters 

to improve disaster management and urban planning in these megacities. Utilizing the 

vantage of and recent advances in Earth Observations (EO) images and data, we assess 

urbanization patterns and associated hydrological changes for these cities. We found 

that LULC change is a principal driving factor behind urban flooding in Houston, 

Mexico City, and Dhaka. For Jakarta, both factors are equally important for urban 

flooding.  

Keywords: urbanization, urban flooding, Land Use and Land Cover, flood disasters, 

Earth Observations  
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1 Introduction 

1.1 Background 

Urban floods are an increasingly frequent and damaging environmental disasters 

across the globe. Due to high population growth, rapid urbanization and unplanned 

expansion is continuing in many regions of the planet and resulting in changes in land 

cover and land use (Dewan & Yamaguchi, 2009). In many developing regions of the 

world, this urban expansion and development lacks proper urban and regional 

planning and has led to large concentrations of substandard housing settlements with 

inadequate water, sanitation, and drainage infrastructure (Akanda & Hossain, 2012). 

As a result, a large portion of the world’s urban dwellers has become vulnerable to 

natural disasters, especially during floods.  

Changes in land use in many of these emerging megacities have exasperated 

hydrological processes and resulting flood events. Hydrological modifications from 

increased urbanization impact infiltration and evaporation at both temporal and spatial 

scales (Ali, Khan, Aslam, & Khan, 2011). Hence, runoff generation and flow patterns 

are altered, resulting in changes in the recurrence and severity of flooding (Ali et al., 

2011). An increase in the volume of rainwater runoff and a decrease in natural storm 

water retention areas are also the consequences of illegal encroachment and 

development of catchment areas. Lack of proper solid waste management and illegal 

dumping of bigger populations also decrease the drainage capacity of natural canals. 

Land subsidence is also increasing at alarming rates in many megacities due to the 

unplanned extraction of groundwater (The World Bank, 2011). The gravitational 

capacity of natural drainage channels is hampered by land subsidence, which has 
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added more vulnerability to flooding and increased the risk of coastal flooding as well. 

The disaster risks in coastal cities are thus much greater when above factors are 

combined with sea-level rise and intense rainfall (The World Bank, 2011). 

Change of land use is not only a physical process of transforming one land use to 

another but also is linked to the alteration of the social, political, economic, and 

cultural orientation of any society (Pangaribowo, 2018). Conversion of agricultural 

land to non-agricultural land is increasing to meet the land and housing requirements 

of growing populations, which has an impact on economy, society, and environment 

as well. Socio-economic factors, i.e., higher land price near the urban areas, the 

opportunity of diverse livelihoods, and chances of high income in urban areas, 

subsequently, have an impact on the land use change processes (Larasati & Hariyanto, 

2018). 

In this study, Houston Metropolitan Statistical Area, Texas, Mexico City, Mexico, 

Jakarta, Indonesia and Dhaka, Bangladesh have been chosen as example cities of 

urbanization and associated hydrological and land cover changes. These four major 

cities are all prone to chronic urban flooding problems, but each is chosen from four 

difference economic groups: a developed (United States), upper middle income 

(Mexico), and lower middle-income (Indonesia), and a recently graduated lower 

middle income from a least developed economy (Bangladesh). These countries have 

been selected to effectively compare the evolution of these trends and correlate the 

changes in each city’s individual development contexts.  

 

 

https://en.wikipedia.org/wiki/Metropolitan_statistical_area
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1.2 Objectives 

Among many responsible driving factors, an area’s topography, changes in land use 

and land cover (K. A. Aderogba, 2012; K. Aderogba et al., 2012; Odunuga, 2008), 

changes in precipitation intensity and frequency, urbanization and population growth, 

defective urban planning, and arbitrary solid waste disposal (Adeloye & Rustum, 

2011; Lamond et al., 2012) are some important factors behind urban flooding. Among 

these, we investigate two major driving factors, one natural and one anthropogenic, 

behind the evolution of urban flooding in this study: (i) land use and land cover 

change, and (ii) intensity and frequency of precipitation. The goal of the study is to 

assess the relative importance to anthropogenic (land use land cover change) and 

natural (precipitation frequency and intensity) to urban flooding vulnerability and 

determine the strength and role of these drivers in the context of the four growing 

regions. The study covers the time period from 1979 to 2017, with a two-decade 

period (1997-2017) of overlapping availability of ground and Earth Observations (EO) 

of precipitation and land use land cover data.  

2 Materials & Method 

2.1 Study Area 

In the United States, flooding is regarded as the number one among all natural 

disasters in terms of frequency as 28 out of 60 natural disasters were flood related 

between year 1980 to 2004 (Fang, Safiolea, & Bedient, 2006). Houston, Texas, ranked 

as the fifth largest metro area in the U.S. with a population over 7 million, is 

chronically vulnerable to large flooding disasters. The city is flood prone due to its 

close proximity to the Gulf of Mexico, the strong nature of Gulf Coast rainfall, rapid 
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urban growth resulting in more paved areas and roadways, the presence of clayey soils 

reducing infiltration, and high runoff rates along with mild slopes (Fang et al., 2006). 

Large flooding events in the city of Houston have occurred in 1989, 1992, 1994, 1998, 

2001, 2003 (Fang et al., 2006), 2015 (Bass, Juan, Gori, Fang, & Bedient, 2016), 2016 

and 2017 resulting in billions of dollars in damage and restoration costs. Over US$52 

billion costs due to flood damages at counties along the Gulf of Mexico in between 

2000-2005 including US$19 billion from the National Flood Insurance Program 

(NFIP) (Brody, Peacock, & Gunn, 2012). With current growth trends, the metro region 

of Houston, along with critical energy infrastructure, is likely to be highly vulnerable 

to future natural disasters. 

Mexico City is located on the basin of Mexico, a lake basin, which is around 2260 

meter above MSL. The city is surrounded by large mountains on three sides (Ochoa, 

Quintanar, Raga, & Baumgardner, 2015). This area had a large number of lakes and 

wetlands until the 1500s, and were subsequently drained and filled after the Spanish 

Conquest. The land cover of the city was a combination of shrubs and deciduous 

vegetation along with willows and pines on mountains before urbanization took place 

(Torres‐Vera, Prol‐Ledesma, & García‐López, 2009). The growth of the city over the 

last 50 years can be divided into two groups: planned urban area for the middle and 

upper class population and unplanned urban areas near the periphery of the city for the 

poor and immigrants (Torres‐Vera et al., 2009). Urbanization has intervened mostly in 

central and northern parts of the city whereas southern part is a blend of conserved 

forests, agricultural lands, wetlands and grasslands (Zambrano, Pacheco-Muñoz, & 

Fernández, 2018). The total urbanized area of the city consists nearly 20 million 
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people (Quintana-Belmares et al., 2018). A long history of illegal settlement and lack 

of demarcated land use between the center and the suburbs of Mexico City (Platt, 

2010) led to unplanned urban development. Unceasing urban expansion along with 

climate change intensify spatial and temporal extent of flooding (Eakin et al., 2017). It 

has flooding history in the year of 1976, 1979, 1982, 1987, 1989, 1990, 1992, 1994, 

1998, 1999, 2000, 2010 (Tellman et al., 2018). Most precipitation is observed between 

May and September with a variation in the northern and southern parts of Mexico 

City. The average annual precipitation in the southern areas is 1,200 mm, which is 600 

mm in the northern areas (Romero Lankao, 2010). 

Jakarta, the capital of Indonesia is also highly vulnerable to flooding disasters. Since 

1980, Jakarta has undergone a dramatic transformation due to massive land-

development projects (Padawangi & Douglass, 2015). In the last fifty years, Jakarta’s 

population has increased from 2.7 million in 1960 to about 9 million in 2007 

(Budiyono, Aerts, Brinkman, Marfai, & Ward, 2015). This drastic increase has 

resulted in rapid changes in land use (Verburg & Bouma, 1999). Urban areas have 

become denser and only one-third of the city’s area remains green and unpaved 

(Padawangi & Douglass, 2015). Real estate developers have invested in large 

geographical areas to maximize profits, resulting in large-scale land development 

projects, shifting existing land surfaces to urban areas. Floods have become a common 

consequence of the significant increase in paved area. In Jakarta, devastating flooding 

disasters occurred in 1996, 2002, 2007 and 2013, which inundated about 40% of the 

city in 2007. Such massive development has also led to significant subsidence in the 

northern parts of the Jakarta metro area, where a number of neighborhoods often 
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experience coastal flooding and the old port area had to be protected by a seawall. 

Flood risk has dramatically increased due to population growth and a subsidence rate 

of 10 cm/year in some areas (Brinkman & Hartman, 2008). 

Dhaka, the capital city of Bangladesh is an example of unplanned urbanization. It is 

one of the most densely populated cities in the world, with the highest growth rate in 

unplanned settlements (Akanda & Hossain, 2012). The population of Dhaka has 

increased from 3.44 million in 1981 (Dewan & Yamaguchi, 2009) to about 18 million 

in 2017 (The World Bank, 2017). Most of this growth have been absolved in 

unplanned settlements, where a large number of people have moved in from rural 

areas as economic migrants, climate refugees, and victims of natural disasters. Dhaka 

has an annual mean rainfall of 1920 mm and heaviest rainfalls occur between June and 

August (Hossain, Fien, & Horne, 2018). The city was originally developed in flood-

free high lands, but the recent occupation of low-lying riparian suburbs around the city 

has drastically increased the flood vulnerability of the people (Adikari, Osti, & Noro, 

2010). Low lying lands, rivers, canal, and water bodies are increasingly being filled to 

construct new accommodations on lands that previously worked as natural drainage 

channels (Hassan & Southworth, 2017). Artificial drainage is also hampered due to 

poor design of drains and sewer networks, unplanned construction, and dumping of 

uncollected wastes on the roadside (Yasmin & Rahman, 2017). Wetlands also operate 

as a recharge source of groundwater storage and allow drainage of extra precipitation 

that may otherwise cause urban flooding (IRIN, 2012). Thus, their recession has made 

the city more vulnerable to larger flooding events (IRIN, 2012). In addition, there is an 

embankment surrounding the Dhaka city to protect from river flooding. During 
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monsoon, river water levels are often higher than the city’s water level inside the 

embankment, which creates hindrance in drainage by gravity (Mark, Wennberg, Van 

Kalken, Rabbi, & Albinsson, 1998). 

2.2 Data 

2.2.1 Landsat Images 

All Landsat images for Houston, Jakarta and Dhaka were collected from the United 

States Geological Survey (USGS) Earth Explorer (USGS, 2017). Three years with 

decadal frequency were selected for comparison: 1997, 2007, and 2017. All images 

have a spatial resolution of 30 m. Only day-time images with cloud cover less than 

10% were used for this analysis to allow the best visibility of land use and land cover. 

Landsat 5 imagery was used for 1997 and 2007, while Landsat 8 (launched in 2013) 

imagery was used for 2017. 

2.2.2 Precipitation Data 

We collected precipitation data (TRMM_3B42_Daily) from Tropical Rainfall 

Measuring Mission (TRMM) using the GES-DISC (Goddard Earth Sciences Data and 

Information Services Center) (Goddard Earth Sciences Data and Information Services 

Center (GES DISC), n.d.) for the specific Area of Interest (AOI) for the year of 1998 

to 2017. The spatial resolution is 0.25° x 0.25° and temporal resolution is 1 day. The 

precipitation time-series is aggregated to several temporal scales (weekly, monthly, 

seasonal, and annual) for anomalies and trend analyses. Mann Kendall trend analysis 

and Sens’s Slope is determined to better understand the statistically significant change 

in the precipitation trend. Trend of monthly maximum rainfall, total monthly rainfall, 

number of rainy days per month, total annual rainfall, maximum Consecutive Wet 
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Days (CWD) in a year (annually maximum number of consecutive days with 

precipitation ≥ 1 mm), R10 (number of days annually when precipitation ≥ 10 mm), 

R20 (number of days annually when precipitation ≥ 20 mm), monthly and seasonal 

rainfall for each area were calculated. For longer-term trend analysis, CPC Global 

Unified Gauge-Based Analysis of Daily Precipitation (1979-2017) data 

(NOAA/OAR/ESRL PSD, Boulder, Colorado, n.d.) were collected for Houston and 

Jakarta. Bangladesh Meteorological Department Data (1953-2017) were collected for 

Dhaka. In CPC Global Unified Gauge-Based Analysis of Daily Precipitation, long 

range precipitation data are not available for Mexico. So TRMM data were used for 

trend analysis and SPI calculation of Mexico City.  

2.3 Method 

(a) Detecting changes in LULC using Landsat Images: 

For Landsat 5 images, bands 1 to 5 were stacked to a single layer; and for Landsat 8 

images, another layer was created by stacking bands 2 to 6. As we compared images in 

this study, we stacked bands of Landsat images with similar wavelengths (μm). A 

subset was created with each stacked layer according to the Area of Interest (AOI) and 

then unsupervised image classification with 40 classes is done. With the help of 

ERDAS IMAGINE 2016 software, each class was geo-referenced with Google Earth 

image of that particular period and assigned to a specific land cover: urban areas, 

vegetative cover, waterbodies, barren land, sand filled areas, future housing projects, 

and forest land. This helps to visualize the changes in land use/land cover over time. In 

the post classification process, urban areas were used as masks to detect other land 
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uses that were transformed to urban land use and the area calculation was done in 

acres.  

(b) Creating land use/land cover change index:  

The land use/land cover change index was created on the basis of infiltration capacity 

in this study. The lands which have more infiltration or drainage capability and 

transferred to paved areas are categorized with the highest index. The determination of 

the land-use index is shown in Table 1. 

Table 1: Land use/land cover change index on the basis of infiltration capacity 

Initial Land use Transformed 

Land use 

Land Use/Land 

Cover Change 

Index 

Waterbodies Urban Area 7 

Vegetative Cover Urban Area 6 

Forest Land Urban Area 5 

Barren Land Urban Area 4 

Future Housing Projects Urban Area 3 

Sand filled Area (compacted) Urban Area 2 

Urban Area Urban Area (No 

change) 

1 

 

(c) Non-parametric Mann-Kendall (MK) Trend Test 

To determine the monotonic increasing or decreasing trend of climatological variables, 

non-parametric Mann-Kendall (MK) test (Mann, 1945) & (Kendall, 1955) ((Yu, Zou, 
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& Whittemore, 1993); (Douglas, Vogel, & Kroll, 2000); (Singh, Kumar, Thomas, & 

Arora, 2008)) is highly used due to its accommodating ability of missing values 

(Gajbhiye, Meshram, Mirabbasi, & Sharma, 2016). In this trend test, the null 

hypothesis (H0) is there is no monotonic trend in the precipitation over time and the 

alternative hypothesis (HA) is there is a monotonic trend (increasing or decreasing) 

available in precipitation over time. In any rainfall trend analysis, outliers will be there 

due to extreme rainfall events. These outliers have less impact (Birsan, Molnar, 

Burlando, & Pfaundler, 2005) on the result of this MK test as its statistics is based on 

positive or negative sign rather than any value (Gajbhiye et al., 2016). Here, 

“modifiedmk” package of RStudio software is used to determine the Mann-Kendal 

Trend and Sen’s slope.  We assume that the rainfall time series is independent. 

𝑆 = ∑  𝑛−1
𝑖=1 ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛
𝑗=𝑖+1         (1)

   

where 𝑥𝑖 and 𝑥𝑗 are sequential data for the ith and jth terms, sign is the signum 

function, and n is the sample size. 

𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑥𝑗) = {

+1, 𝑖𝑓 𝑥𝑗 − 𝑥𝑖 > 1

0, 𝑖𝑓 𝑥𝑗 − 𝑥𝑖 = 0

−1, 𝑖𝑓 𝑥𝑗 − 𝑥𝑖 < 1 
      (2) 

The statistic S is nearly Gaussian when n = 18 with the mean E(S) and variance Var(S) 

of the statistic S given by 

𝐸(𝑆) = 0, 𝑉𝑎𝑟 (𝑆) =
𝑛(𝑛+1)(2𝑛+5)

18
       (3)  

If there is tie in the dataset, then Var (S) has to be adjusted and becomes 

𝑉𝑎𝑟(𝑆) =
1

18
{𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑝 (𝑡𝑝 − 1)(2𝑡𝑝 + 5)}

𝑞
𝑝=1     (4) 
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The variable q and tp are the number of tied groups and number of data values in the 

pth group, respectively. The standardized statistic (Z) for one-tailed test of the statistic 

S is given as follows: 

𝑍𝑚𝑘 = 

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
     𝑖𝑓 𝑆 > 0

0                  𝑖𝑓 𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
    𝑖𝑓 𝑆 < 0

        (5) 

An increasing trend is identified with a positive 𝑍𝑚𝑘 and a decreasing trend is 

identified with a negative 𝑍𝑚𝑘. For 95% confidence interval (or significance level, 𝛼= 

0.05, the critical Z value = ± 1.96 (for a two tailed test) and for 90% confidence 

interval, |Z| = 1.65 (Q. Zhang, Xu, & Zhang, 2009). If |Z| > 1.96 (Q. Zhang et al., 

2009), the null hypothesis can be rejected. For 99% confidence interval, |Z|  =  2.58 

(Q. Zhang et al., 2009). 

Sen’s Slope 

The magnitude of the trend change can be identified by a slope estimator 𝛽, which was 

first proposed by Sen (Sen, 1968) and then extended by Hirsch (Hirsch, Slack, & 

Smith, 1982).  𝛽 is the median of overall all possible combinations of pairs for the 

whole dataset. The magnitude of trend was calculated predicted by the Sen’s slope 

estimator with the slope 𝑇𝑖 of all data pairs was computed as follows: 

𝑇𝑖 =
𝑥𝑗−𝑥𝑖

𝑗−𝑖
          (6) 

Where x j and x i are considered as data values at time j and I (j > i) correspondingly. 

The median of these N values of T i is represented as Sen’s estimator of slope. Sen’s 

estimator is computed as 

𝑄𝑚𝑒𝑑 =
𝑇(𝑁+1)

2
         (7) 
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when N is odd, and it is considered as  

𝑄𝑚𝑒𝑑 =
[𝑇(

𝑁

2
)+

𝑇(𝑁+2)

2
]

2
         (8) 

when N is even. At the end, Q med is computed by two-sided test at 100 (1 − α) % 

confidence interval, and then a true slope can be obtained by the non-parametric test. 

A positive value of Q i indicates an upward or increasing trend, and a negative value 

gives a downward or decreasing trend in the time series. 

(d) Standardized Precipitation Index (SPI): 

Standardized Precipitation Index (SPI) was calculated for determining flood risks. SPI 

is generally used for monitoring drought (McKee, 1995) (McKee, Doesken, & Kleist, 

1993) but has also been used to identify flood conditions where SPI can detect the 

development of soil-saturation conditions (Seiler, Hayes, & Bressan, 2002).  SPI can 

be calculated for various temporal scales such as 1 month, 3 months, 6 months, 12 

months, 24 months. SPI for 1 month is used here as the most relevant measure for 

appropriate soil moisture conditions for flooding. Long term precipitation data are 

required to calculate SPI, then the probability distribution function (Hayes, Svoboda, 

Wilhite, & Vanyarkho, 1999) is obtained from the data. Then, the cumulative 

distribution is transferred to normal distribution with a standard deviation of one, 

keeping zero as a mean value. Any positive SPI value indicates greater than median 

precipitation and vice versa. In 2000, Hayes et al. reported the interpretation of the 

Standardized Precipitation Index values (Hayes, 2000) into soil wetness 

measurements. The theoretical probability (Bonaccorso, Cancelliere, & Rossi, 2015) 

of occurrence of each interpretation derived from normal probability density function 

(Guhathakurta, Menon, Inkane, Krishnan, & Sable, 2018) is also given below:  
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Table 2: Standardized Precipitation Index (SPI) ranges 

SPI Interpretation Theoretical Probability 

2.0 + Extremely Wet 2.3 

1.5 to 1.99 Very Wet 4.4 

1.0 to 1.49 Moderately Wet 9.2 

-0.99 to 0.99 Near Normal 68.2 

-1.0 to -1.49 Moderately Dry 9.2 

-1.5 to -1.99 Severely Dry 4.4 

-2.0 and less Extremely Dry 2.3 

 

(e) Risk Index:  

Using the land use/land cover change index and the SPI, the risk index was created 

and transferred to a flood risk map for four cities for different months. Each SPI 

range has a probability of occurrence. Multiplying the SPI with LULC change 

index is giving us a probability which can be termed as risk index, which will give 

us an idea about how much urban flood risk any area has in terms of LULC change 

and precipitation alteration. The equation of risk index and the interpretation of the 

risk index range is given below. 

 

Risk Index = Land Use/Land Cover Change Index X SPI   (9) 
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     Table 3: Risk Index and interpretation 

 

Risk Index Range Interpretation 

≤0 No Risk 

0.01-6.00 Low Risk 

6.01-12.00 Moderate Risk 

12.01-18.00 High Risk 

18.01-21.00 Extreme Risk 

 

 

The flowchart of the methodology of this study is outlined below in Figure 1. 
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Satellite data collection

Land Use/Land Cover Data

Landsat Images

Layer Stack

Creating subset

Unsupervised Image Classification

Separate data into groups with clustering

Classify data into groups

Assign name to each cluster

Post-classification land-cover change detection 
by Masking 

Creating Land Use/Land Cover change Index

Identify Main Driver Behind Urban Flooding

Creating flood risk maps

Precipitation Data

TRMM Precipitation Data (1998-2017), 
Bangladesh Meteorological Department Data 

(1953-2017), CPC Global Precipitation (1979-
2017)

Analyzing consecutive wet days, when 
precipitation ≥1 mm per day 

Analyzing trend of daily maximum and 
Monthly total rainfall

Calculating trend of Consequitive Wet Days 
(CWD), extremely heavy precipitation events 

(R10, R20), when number of days per year 
when rainfall amount was greater than 10 and 

20 mm

Calculating trend of Consequitive Wet Days 
(CWD), Analyzing trend of seasonal and 

annual rainy days

Standardized Precipitation Index (SPI)

 

 

Figure 1: Land Use Land Cover Change Index using Landsat imagery (left 

column) and precipitation index using TRMM, CPC & BMD data (right column) were 

independently processed then findings are merged to identify the Urban Flood Risk. 
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3 Results 

Land Use and Land Cover Data Analysis 

In Houston, forest land and urban areas are the most changed land use and land cover 

categories from 1997 to 2017 (figure 2A-2C). According to figure 2A-2C, 33% of the 

total area was forest land in 1997 which was reduced to 20% in 2017. Vegetative 

cover was 29% of the total area in 1997 and has decreased to 24% in 2017. The 

percentage of barren land in 1997 was 3% of the total area, which has increased to 8% 

in 2017. Urban area, the most dominating land use in Houston, has increased from 

31% to 45% between 1997 and 2017. Between 1997 to 2007, around 141,680 acres of 

different land covers were converted to urban areas, the changed land cover amount is 

120,390 acres between 2007 and 2017.   

In Mexico City, increase of barren land is observed from 1997 to 2007, which shows a 

decrease in 2017 (Figure 2D-2F). Urban area has increased from 33% to 37% of the 

total area from 1997 to 2017. Vegetative cover, which was 25% in 1997, is decreased 

to 22% in 2017. Around 35,000 acres and 54,000 acres of different land covers were 

converted to urban area in 1997 to 2007 and 2007 to 2017 respectively. 

Table 4: Land use/ Land cover changes from 1997 to 2017 in Houston, and 

Mexico City 

Land Cover/ 

Land use 

Houston Metropolitan Statistical 

Area (acres) 

Mexico City (acres) 

year 

1997 year 2007 year 2017 

year 

1997 

year 

2007 

year 

2017 

Barren Land 29,475 53,843 71,783 51,235 60,159 44,274 

Forest Land 299,820 267,997 181,988 201,980 177,932 195,658 
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Land Cover/ 

Land use 

Houston Metropolitan Statistical 

Area (acres) 

Mexico City (acres) 

year 

1997 year 2007 year 2017 

year 

1997 

year 

2007 

year 

2017 

Urban Area 282,092 348,966 405,239 206,679 208,183 232,631 

Vegetative 

Cover 262,610 201,341 214,019 158,016 168,633 139,357 

Water 10,584 15,286 19,252 3,814 6,816 9,804 

Sand Filling 15,253 12,402 7,555       

Future 

Housing 

Projects             

Total Area 899,835 899,835 899,835 621,724 621,724 621,724 

 

Extreme growth of urbanization is observed in Jakarta between the year 1997 to 2017. 

During this 20 years, urban areas have increased from 41% to 60% of the total area, 

which clearly reflects the haphazard urban expansion pattern. Apart from urban areas, 

vegetative cover and barren land are the two most changed land covers in this 20 years 

of span, both showing decreasing trends (Figure 2G-2I).  3% of the total area was 

designated as future housing projects in 2007 which is altered to urban areas in 2017. 

Around 48,000 acres of different land covers were transferred to urban areas between 

1997 to 2007, which is increased to 69,000 acres between 2007 to 2017.  
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In Dhaka, vegetative cover and urban area are the two most changed land use and land 

covers among all the land use and land covers categories. From 2007, two new land 

uses and land covers are observed in Dhaka: sand filled areas and future housing 

projects, where both show increasing trends between 2007 and 2017. In 1997, 

vegetative cover consists 60% of the total area, which is reduced to 34% in 2017 

(Figure 2J-2L). The percentage of urban area in 2017 has increased 1.5 times from that 

observed in 1997. The area that changed from different land covers to urban areas 

were 38,000 acres and 40,500 acres in 1997 to 2007 and 2007 to 2017 respectively. In 

2017, 11% area of Dhaka city is designated as new housing projects apart from the 

existing urban area. These urban housing projects are not finished yet and will add 

more paved area in the city after completion.  

Table 5: Land use/ Land cover changes from 1997 to 2017 in Jakarta, and 

Dhaka 

Land Cover/ 

Land use 

Jakarta (acres) Dhaka (acres) 

year 1997 year 2007 year 2017 year 1997 year 2007 year 2017 

Barren Land 39,544 18,134 3,586 7,442 11,908 12,239 

Forest Land 70,678 54,810 73,810 47,441 64,225 55,191 

Urban Area 145,052 159,137 210,043 52,845 65,959 80,532 

Vegetative 

Cover 64,588 81,860 35,691 189,984 147,469 106,299 

Water 29,857 26,800 26,590 17,220 16,282 17,792 

Sand Filling         3,565 7,524 

Future 

Housing   8,977     5,524.51 35,355.24 
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Land Cover/ 

Land use 

Jakarta (acres) Dhaka (acres) 

year 1997 year 2007 year 2017 year 1997 year 2007 year 2017 

Projects 

Total Area 349,719 349,719 349,719 314,933 314,933 314,933 
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Figure 2: Decadal Land use / Land cover changes from 1997 to 2017 in 

Houston (2A, 2B, 2C), Mexico City (2D, 2E, 2F), Jakarta (2G, 2H, 2I) and Dhaka (2J, 

2K, 2L). The expansion of urban growth and transformation of other land uses and 

land covers to urban area in these cities with respect to times are shown in this figure. 
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Precipitation Analysis 

(i) Detection of Mann-Kendall Trend Test and Sen’s Slope 

Mann-Kendall trend test was accomplished on the TRMM data, Bangladesh 

Meteorological Department (BMD) data, and Climate   Prediction   Center (CPC) 

Global Unified Gauge-Based Analysis of Daily Precipitation dataset for each of the 

study area. The test determines the trend change of monthly maximum rainfall, total 

monthly rainfall, number of rainy days per month, total annual rainfall, maximum 

Consecutive Wet Days (CWD) in a year (annually maximum number of consecutive 

days with precipitation ≥ 1 mm), R10 (number of days annually when 

precipitation ≥ 10 mm), R20 (number of days annually when precipitation ≥ 20 mm), 

monthly and seasonal rainfall for each area. For 95% confidence interval (or 

significance level, 𝛼= 0.05, the critical Z value = ± 1.96 (for a two tailed test) and for 

90% confidence interval, |Z| = 1.65 (Q. Zhang et al., 2009). If |Z| > 1.96 (Q. Zhang et 

al., 2009), the null hypothesis can be rejected. For 99% confidence interval, |Z|  =

 2.58 (Q. Zhang et al., 2009). 

In both locations of Houston (using CPC data), the monthly total precipitation in 

January, March, May, July, September, October, November and August (in location 2 

only) is showing negative trend as both Z and Sen’s slope is negative for these months 

but not statistically significant except the month of July for location 2. Same months 

showed negative trend in daily maximum rainfall analysis also, where July is showing 

statistically significant decreasing trend in both locations. In both locations, the trends 

of annual rainfall, R10, R20, total and maximum rainfall of summer, winter, spring, 

fall, dry and wet season are decreasing. Consecutive Wet Days (CWD) showed an 
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increasing trend in both locations, which are not statistically significant. For Mexico, 

maximum and total rainfall in dry months are showing positive trend and it shows 

decreasing trend for wet months. R10 and R20 is showing increasing trend, whereas 

CWD and annual rainfall in showing decreasing trend. None of them is statistically 

significant. The wet months of Mexico City is from May to October. Negative Z value 

and Sen’s slope is observed in monthly total rainfall, daily maximum rainfall and 

number of wet days in those wet season months, which matches with the decreasing 

trend of annual rainfall and CWD. A long data series can help to better understand the 

trend. In Jakarta, the total and maximum rainfall in wet and dry period is showing 

positive trend along with positive Sen’s slope. As one of the wet period months, 

January is only showing decreasing trend in monthly total, daily maximum and 

number of wet days on that month. February is showing statistically significant 

positive trend in monthly total and daily maximum. The trend of total and maximum 

rainfall for January-March is showing statistically significant positive trend. For 

Dhaka, the daily maximum rainfall trend for monsoon months (Jun-August) along 

with one pre-monsoon month (May) showing decreasing trend. Number of rainy days 

in monsoon months (June, August) showing decrease, which is statistically significant 

for June only. Maximum and total rainfall trend in monsoon and wet periods, annual 

rainfall and CWD are decreasing and only R10 and R20 is showing positive trend for 

Dhaka. The result of the Mann Kendal Trend Analysis and Sen’s Slope are given 

below: 
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Table 6:  Mann Kendal Trend Analysis and Sen’s Slope Analysis of Houston, 

CPC Location 1 

 

Trend detection of station data of Houston, CPC Location 1 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

 S        Var(S)       p 

value       

    Tau  

M
o
n
th

ly
 T

o
ta

l 
R

ai
n
fa

ll
 

January -1.016 -0.922 -85 6833.667 0.310 -0.115 

February 0.363 0.288 31 6833.667 0.717 0.042 

March -0.823 -0.991 -69 6833.667 0.411 -0.093 

April 0.169 0.132 15 6833.667 0.866 0.020 

May -0.871 -0.556 -73 6833.667 0.384 -0.099 

June 0.774 0.903 65 6833.667 0.439 0.088 

July -1.669* -2.404 -139 6833.667 0.095 -0.188 

August 0.024 0.029 3 6833.667 0.981 0.004 

September -0.387 -0.590 -33 6833.667 0.699 -0.045 

October -0.629 -0.583 -53 6833.667 0.529 -0.072 

November -0.556 -0.573 -47 6833.667 0.578 -0.063 

December 0.653 0.470 55 6833.667 0.514 0.074 
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Trend detection of station data of Houston, CPC Location 1 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

 S        Var(S)       p 

value       

    Tau  

D
ai

ly
 M

ax
im

u
m

 R
ai

n
fa

ll
 

January -0.073 -0.021 -7 6833.667 0.942 -0.009 

February 0.508 0.208 43 6833.667 0.611 0.058 

March -0.097 -0.030 -9 6833.667 0.923 -0.012 

April 0.653 0.217 55 6833.667 0.514 0.074 

May -0.944 -0.221 -79 6833.667 0.345 -0.107 

June 0.895 0.337 75 6833.667 0.371 0.101 

July -1.984* -0.723 -165 6833.667 0.047 -0.223 

August -1.258 -0.477 -105 6833.667 0.208 -0.142 

September -0.532 -0.213 -45 6833.667 0.595 -0.061 

October -0.460 -0.190 -39 6833.667 0.646 -0.053 

November -0.435 -0.179 -37 6833.667 0.663 -0.050 

December 0.508 0.143 43 6833.667 0.611 0.058 
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Trend detection of station data of Houston, CPC Location 1 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

 S        Var(S)       p 

value       

    Tau  

N
o
. 
o
f 

R
ai

n
y
 d

ay
s 

(R
ai

n
fa

ll
 ≥

 1
m

m
) 

January -2.327** -0.118 -192 6739.333 0.020 -0.259 

February -0.292 0.000 -25 6740.333 0.770 -0.034 

March -1.458 -0.083 -121 6775.667 0.145 -0.163 

April -1.923* -0.087 -158 6664.667 0.054 -0.213 

May -1.253 -0.061 -104 6758.000 0.210 -0.140 

June 0.304 0.000 26 6774.667 0.761 0.035 

July -0.474 0.000 -40 6758.667 0.635 -0.054 

August 0.293 0.000 25 6732.333 0.770 0.034 

September 0.328 0.000 28 6762.000 0.743 0.038 

October -0.859 0.000 -71 6645.667 0.391 -0.096 

November -1.720* -0.071 -142 6718.000 0.085 -0.192 

December -0.134 0.000 -12 6722.667 0.893 -0.016 

Annual Rainfall -1.476 -6.175 -123 6833.667 0.140 -0.166 
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Trend detection of station data of Houston, CPC Location 1 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

 S        Var(S)       p 

value       

    Tau  

Consecutive Wet 

Days (CWD) 

0.110 0.000 10 6676.667 0.912 0.013 

R10 -1.079 -0.138 -90 6809.333 0.281 -0.121 

R20 -1.894* -0.162 -157 6786.333 0.058 -0.212 

Total Rainfall of 

Spring 

-1.331 -2.707 -111 6833.667 0.183 -0.150 

Total Rainfall of 

Summer 

-0.508 -1.536 -43 6833.667 0.611 -0.058 

Total Rainfall of 

Fall 

-1.427 -2.437 -119 6833.667 0.153 -0.161 

Total Rainfall of 

Winter 

-0.266 -0.299 -23 6833.667 0.790 -0.031 

Maximum Rainfall 

in Spring 

-1.282 -1.317 -107 6833.667 0.200 -0.144 
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Trend detection of station data of Houston, CPC Location 1 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

 S        Var(S)       p 

value       

    Tau  

Maximum Rainfall 

in Summer 

-1.282 -2.005 -107 6833.667 0.200 -0.144 

Maximum Rainfall 

in Fall 

-0.677 -0.694 -57 6833.667 0.498 -0.077 

Maximum Rainfall 

in Winter 

-1.065 -0.781 -89 6833.667 0.287 -0.120 

Total Rainfall in 

Wet Season (MAR-

NOV) 

-1.766* -6.282 -147 6833.667 0.077 -0.198 

Total Rainfall in 

Dry Season (DEC-

FEB) 

-0.266 -0.299 -23 6833.667 0.790 -0.031 

Maximum Rainfall 

in Wet Season 

(MAR-NOV) 

-1.355 -1.888 -113 6833.667 0.175 -0.152 
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Trend detection of station data of Houston, CPC Location 1 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

 S        Var(S)       p 

value       

    Tau  

Maximum Rainfall 

in Dry Season 

(DEC-FEB) 

-1.065 -0.781 -89 6833.667 0.287 -0.120 

95% confidence interval (**), 90% confidence interval (*)  

Table 7:  Mann Kendal Trend Analysis and Sen’s Slope Analysis of Houston, 

CPC Location 2 

Trend detection of station data of Houston, CPC Location 2 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

            

S      

  Var(S)       P-

value       

    Tau  

M
o
n
th

ly
 T

o
ta

l 
R

ai
n
fa

ll
 

January -0.847 -0.833 -71 6833.667 0.397 -0.096 

February -0.097 -0.122 -9 6833.667 0.923 -0.012 

March -1.065 -1.087 -89 6833.667 0.287 -0.120 

April 0.290 0.340 25 6833.667 0.772 0.034 
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Trend detection of station data of Houston, CPC Location 2 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

            

S      

  Var(S)       P-

value       

    Tau  

May -0.774 -0.322 -65 6833.667 0.439 -0.088 

June 0.750 0.537 63 6833.667 0.453 0.085 

July -2.226** -2.472 -185 6833.667 0.026 -0.250 

August -0.387 -0.378 -33 6833.667 0.699 -0.045 

September -1.016 -0.978 -85 6833.667 0.310 -0.115 

October -1.137 -0.938 -95 6833.667 0.255 -0.128 

November -0.798 -0.604 -67 6833.667 0.425 -0.090 

December 0.992 0.713 83 6833.667 0.321 0.112 

D
ai

ly
 M

ax
im

u
m

 R
ai

n
fa

ll
 

January 0.000 -0.004 -1 6833.667 1.000 -0.001 

February 0.460 0.117 39 6833.667 0.646 0.053 

March -0.290 -0.152 -25 6833.667 0.772 -0.034 

April 0.944 0.255 79 6833.667 0.345 0.107 

May -0.992 -0.193 -83 6833.667 0.321 -0.112 
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Trend detection of station data of Houston, CPC Location 2 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

            

S      

  Var(S)       P-

value       

    Tau  

June 0.968 0.313 81 6833.667 0.333 0.109 

July -2.153** -0.629 -179 6833.667 0.031 -0.242 

August -1.718* -0.393 -143 6833.667 0.086 -0.193 

September -0.290 -0.105 -25 6833.667 0.772 -0.034 

October -0.823 -0.356 -69 6833.667 0.411 -0.093 

November -0.653 -0.221 -55 6833.667 0.514 -0.074 

December 0.895 0.252 75 6833.667 0.371 0.101 

N
o
. 
o
f 

R
ai

n
y
 d

ay
s 

(R
ai

n
fa

ll
 ≥

 1
m

m
) 

January -1.962** -0.097 -162 6735.333 0.050 -0.219 

February -1.134 -0.056 -94 6726.667 0.257 -0.127 

March -1.630 -0.094 -135 6757.000 0.103 -0.182 

April -1.976** -0.083 -163 6724.333 0.048 -0.220 

May -0.815 -0.037 -68 6753.333 0.415 -0.092 

June 1.033 0.069 86 6765.333 0.301 0.116 
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Trend detection of station data of Houston, CPC Location 2 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

            

S      

  Var(S)       P-

value       

    Tau  

July -0.243 0.000 -21 6751.000 0.808 -0.028 

August 0.000 0.000 1 6745.000 1.000 0.001 

September -1.044 -0.069 -87 6781.667 0.296 -0.117 

October -0.904 -0.032 -75 6703.000 0.366 -0.101 

November -1.822* -0.077 -150 6690.667 0.069 -0.202 

December -0.757 0.000 -63 6708.333 0.449 -0.085 

Annual Rainfall -2.008** -6.995 -167 6833.667 0.045 -0.225 

Consecutive Wet 

Days (CWD) 

0.061 0.000 6 6737.333 0.951 0.008 

R10 -1.541 -0.185 -128 6791.333 0.123 -0.173 

R20 -1.639 -0.143 -136 6780.667 0.101 -0.184 

Total Rainfall of 

Spring 

-1.331 -2.427 -111 6833.667 0.183 -0.150 
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Trend detection of station data of Houston, CPC Location 2 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

            

S      

  Var(S)       P-

value       

    Tau  

Total Rainfall of 

Summer 

-0.847 -1.684 -71 6833.667 0.397 -0.096 

Total Rainfall of 

Fall 

-1.790* -3.125 -149 6833.667 0.073 -0.201 

Total Rainfall of 

Winter 

-0.290 -0.242 -25 6833.667 0.772 -0.034 

Maximum Rainfall 

in Spring 

-1.185 -1.092 -99 6833.667 0.236 -0.134 

Maximum Rainfall 

in Summer 

-2.056** -2.621 -171 6833.667 0.040 -0.231 

Maximum Rainfall 

in Fall 

-1.258 -1.228 -105 6833.667 0.208 -0.142 

Maximum Rainfall 

in Winter 

-0.750 -0.459 -63 6833.667 0.453 -0.085 
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Trend detection of station data of Houston, CPC Location 2 (1979-2017) 

Mann-Kendall Trend Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

            

S      

  Var(S)       P-

value       

    Tau  

Total Rainfall in 

Wet Season (MAR-

NOV) 

-2.032** -6.693 -169 6833.667 0.042 -0.228 

Total Rainfall in 

Dry Season (DEC-

FEB) 

-0.290 -0.242 -25 6833.667 0.772 -0.034 

Maximum Rainfall 

in Wet Season 

(MAR-NOV) 

-1.935* -2.480 -161 6833.667 0.053 -0.217 

Maximum Rainfall 

in Dry Season 

(DEC-FEB) 

-0.750 -0.459 -63 6833.667 0.453 -0.085 

95% confidence interval (**), 90% confidence interval (*)  
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Table 8:  Mann Kendal Trend Analysis and Sen’s Slope Analysis of Mexico 

City, TRMM Location 5 

Trend detection of Mexico City, TRMM (1998-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

    S        Var(S)       P-

value       

    Tau  

M
o
n
th

ly
 T

o
ta

l 
R

ai
n
fa

ll
 

January 0.357 0.077 12 950.000 0.721 0.063 

February -0.519 -0.087 -17 949.000 0.603 -0.089 

March 1.006 0.666 32 950.000 0.315 0.168 

April 0.292 0.243 10 950.000 0.770 0.053 

May 1.460 2.633 46 950.000 0.144 0.242 

June -0.422 -0.773 -14 950.000 0.673 -0.074 

July 0.941 0.959 30 950.000 0.347 0.158 

August -0.357 -0.366 -12 950.000 0.721 -0.063 

September -0.876 -2.520 -28 950.000 0.381 -0.147 

October -1.914* -2.354 -60 950.000 0.056 -0.316 

November -0.032 -0.015 -2 950.000 0.974 -0.011 
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Trend detection of Mexico City, TRMM (1998-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

    S        Var(S)       P-

value       

    Tau  

December -1.720( -0.210 -54 950.000 0.086 -0.284 

D
ai

ly
 M

ax
im

u
m

 R
ai

n
fa

ll
 

January 0.097 0.017 4 950.000 0.922 0.021 

February -0.519 -0.054 -17 949.000 0.603 -0.089 

March 1.395 0.300 44 950.000 0.163 0.232 

April 1.655* 0.411 52 950.000 0.098 0.274 

May 1.330 0.729 42 950.000 0.183 0.221 

June -0.357 -0.102 -12 950.000 0.721 -0.063 

July -0.162 -0.051 -6 950.000 0.871 -0.032 

August 1.006 0.802 32 950.000 0.315 0.168 

September -1.460 -0.449 -46 950.000 0.144 -0.242 

October -0.357 -0.140 -12 950.000 0.721 -0.063 

November 0.876 0.128 28 950.000 0.381 0.147 

December -0.487 -0.019 -16 950.000 0.626 -0.084 
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Trend detection of Mexico City, TRMM (1998-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

    S        Var(S)       P-

value       

    Tau  

N
o
. 
o
f 

R
ai

n
y
 d

ay
s 

(R
ai

n
fa

ll
 ≥

 1
m

m
) 

January 0.132 0.000 5 915.000 0.895 0.026 

February -1.100 -0.056 -34 899.333 0.271 -0.179 

March 0.624 0.068 20 926.000 0.532 0.105 

April -1.310 -0.154 -41 933.000 0.190 -0.216 

May 1.113 0.222 35 933.000 0.266 0.184 

June -0.491 -0.059 -16 932.667 0.623 -0.084 

July -0.426 0.000 -14 930.667 0.670 -0.074 

August -2.819*** -0.317 -87 931.000 0.005 -0.458 

September -0.982 -0.191 -31 933.667 0.326 -0.163 

October -2.280** -0.500 -71 942.333 0.023 -0.374 

November -0.230 0.000 -8 930.000 0.818 -0.042 

December -0.036 0.000 -2 792.667 0.972 -0.011 

Annual -0.681 -2.436 -22 950.000 0.496 -0.116 
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Trend detection of Mexico City, TRMM (1998-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

    S        Var(S)       P-

value       

    Tau  

Consecutive Wet 

Days (CWD) 

-0.361 0.000 -12 929.333 0.718 -0.063 

R10 1.433 0.394 45 942.333 0.152 0.237 

R20 0.297 0.000 10 919.333 0.767 0.053 

Total Rainfall 

(NOV-JAN) 

1.071 0.665 34 950.000 0.284 0.179 

Maximum Rainfall 

(NOV-JAN) 

1.071 0.541 34 950.000 0.284 0.179 

Total Rainfall (FEB-

APR) 

1.200 1.401 38 950.000 0.230 0.200 

Maximum Rainfall 

(FEB-APR) 

1.720* 1.003 54 950.000 0.086 0.284 

Total Rainfall 

(MAY-JUL) 

0.746 1.642 24 950.000 0.456 0.126 
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Trend detection of Mexico City, TRMM (1998-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

    S        Var(S)       P-

value       

    Tau  

Maximum Rainfall 

(MAY-JUL) 

-0.552 -0.541 -18 950.000 0.581 -0.095 

Total Rainfall 

(AUG-OCT) 

-1.330 -3.668 -42 950.000 0.183 -0.221 

Maximum Rainfall 

(AUG-OCT) 

-0.941 -1.440 -30 950.000 0.347 -0.158 

Total Rainfall in Wet 

Period (MAY-OCT) 

-0.876 -4.374 -28 950.000 0.381 -0.147 

Total Rainfall in Dry 

period (NOV-APR) 

1.590 1.700 50 950.000 0.112 0.263 

Maximum Rainfall 

in Wet Period 

(MAY-OCT) 

-1.071 -1.906 -34 950.000 0.284 -0.179 

Maximum Rainfall 

in Dry period (NOV-

1.784* 0.943 56 950.000 0.074 0.295 
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Trend detection of Mexico City, TRMM (1998-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

    S        Var(S)       P-

value       

    Tau  

APR) 

99% confidence interval (***), 95% confidence interval (**), 90% confidence  

interval (*)  

Table 9:  Mann Kendal Trend Analysis and Sen’s Slope Analysis of Jakarta 

Trend detection of station data of Jakarta (1979-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

   S        Var(S)       P-

value       

    Tau  

M
o
n
th

ly
 T

o
ta

l 
R

ai
n
fa

ll
 

January -0.121 -0.197 -11 6833.667 0.904 -0.015 

February 2.976*** 4.420 247 6833.667 0.003 0.333 

March 1.210 0.858 101 6833.667 0.226 0.136 

April 0.750 0.638 63 6833.667 0.453 0.085 

May 0.677 0.570 57 6833.667 0.498 0.077 

June 1.573 1.064 131 6833.667 0.116 0.177 
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Trend detection of station data of Jakarta (1979-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

   S        Var(S)       P-

value       

    Tau  

July 0.798 0.878 67 6833.667 0.425 0.090 

August -0.992 -0.531 -83 6833.667 0.321 -0.112 

September -0.871 -0.644 -73 6833.667 0.384 -0.099 

October 0.218 0.159 19 6833.667 0.828 0.026 

November 1.185 1.038 99 6833.667 0.236 0.134 

December -1.331 -1.395 -111 6833.667 0.183 -0.150 

D
ai

ly
 M

ax
im

u
m

 R
ai

n
fa

ll
 

January 1.573 0.423 131 6833.667 0.116 0.177 

February 2.952*** 0.909 245 6833.667 0.003 0.331 

March 1.355 0.227 113 6833.667 0.175 0.152 

April 0.121 0.027 11 6833.667 0.904 0.015 

May 1.234 0.203 103 6833.667 0.217 0.139 

June 1.766* 0.314 147 6833.667 0.077 0.198 

July 0.677 0.116 57 6833.667 0.498 0.077 
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Trend detection of station data of Jakarta (1979-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

   S        Var(S)       P-

value       

    Tau  

August -0.750 -0.128 -63 6833.667 0.453 -0.085 

September -0.242 -0.082 -21 6833.667 0.809 -0.028 

October -0.073 -0.008 -7 6833.667 0.942 -0.009 

November 0.024 0.011 3 6833.667 0.981 0.004 

December 1.089 0.280 91 6833.667 0.276 0.123 

N
o
. 
o
f 

R
ai

n
y
 d

ay
s 

(R
ai

n
fa

ll
 ≥

 1
m

m
) 

January -0.085 0.000 -8 6778.667 0.932 -0.011 

February 1.515 0.074 125 6701.667 0.130 0.169 

March 0.365 0.000 31 6758.333 0.715 0.042 

April 1.034 0.054 86 6754.667 0.301 0.116 

May 0.707 0.029 59 6736.333 0.480 0.080 

June 0.194 0.000 17 6777.000 0.846 0.023 

July 0.461 0.048 39 6801.667 0.645 0.053 

August -0.668 -0.056 -56 6788.667 0.504 -0.076 
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Trend detection of station data of Jakarta (1979-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

   S        Var(S)       P-

value       

    Tau  

September -0.703 -0.067 -59 6798.333 0.482 -0.080 

October 0.582 0.042 49 6794.333 0.560 0.066 

November 0.451 0.000 38 6737.333 0.652 0.051 

December -0.558 -0.050 -47 6789.000 0.577 -0.063 

Annual Rainfall 1.573 12.553 131 6833.667 0.116 0.177 

Consecutive Wet 

Days (CWD) 

1.410 0.091 117 6769.000 0.159 0.158 

R10 0.788 0.200 66 6812.667 0.431 0.089 

R20 1.297 0.182 108 6801.333 0.194 0.146 

Total Rainfall 

(JAN-MAR) 

2.468** 7.161 205 6833.667 0.014 0.277 

Total Rainfall 

(APR-JUN) 

 

1.210 2.217 101 6833.667 0.226 0.136 
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Trend detection of station data of Jakarta (1979-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

   S        Var(S)       P-

value       

    Tau  

Total Rainfall 

(JUL-SEP) 

-0.290 -0.898 -25 6833.667 0.772 -0.034 

Total Rainfall 

(OCT-DEC) 

0.435 1.277 37 6833.667 0.663 0.050 

Maximum 

Rainfall (JAN-

MAR) 

1.984* 4.406 165 6833.667 0.047 0.223 

Maximum 

Rainfall (APR-

JUN) 

0.653 0.359 55 6833.667 0.514 0.074 

Maximum 

Rainfall (JUL-

SEP) 

 

 

-0.145 -0.182 -13 6833.667 0.885 -0.018 
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Trend detection of station data of Jakarta (1979-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

   S        Var(S)       P-

value       

    Tau  

Maximum 

Rainfall (OCT-

DEC) 

-0.097 -0.077 -9 6833.667 0.923 -0.012 

Total Rainfall in 

Wet Season 

(OCT-MAR) 

2.516** 9.246 209 6833.667 0.012 0.282 

Total Rainfall in 

Dry Season 

(APR-SEP) 

0.508 1.952 43 6833.667 0.611 0.058 

Maximum 

Rainfall in Wet 

Season (OCT-

MAR) 

1.645* 3.350 137 6833.667 0.100 0.185 

Maximum 

Rainfall in Dry 

Season (APR-

1.161 0.839 97 6833.667 0.246 0.131 
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Trend detection of station data of Jakarta (1979-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value Sen's 

slope 

   S        Var(S)       P-

value       

    Tau  

SEP) 

99% confidence interval (***), 95% confidence interval (**), 90% confidence  

interval (*)  

Table 10:  Mann Kendal Trend Analysis and Sen’s Slope Analysis of Dhaka 

Trend detection of BMD station data of Dhaka (1953-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value 

Sen's 

slope 

S Var(S) P-value Tau 

M
o
n
th

ly
 T

o
ta

l 
R

ai
n
fa

ll
 

January -0.255 0.000 -42 25947.333 0.799 -0.021 

February 0.332 0.000 58 29532.000 0.740 0.029 

March 1.179 0.233 204 29656.000 0.238 0.101 

April 0.348 0.240 61 29785.000 0.728 0.030 

May -0.336 -0.240 -59 29782.333 0.737 -0.029 

June -0.829 -0.734 -144 29790.000 0.407 -0.071 
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Trend detection of BMD station data of Dhaka (1953-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value 

Sen's 

slope 

S Var(S) P-value Tau 

July 0.295 0.362 52 29790.000 0.768 0.026 

August 0.220 0.140 39 29784.333 0.826 0.019 

September 0.267 0.214 47 29789.000 0.790 0.023 

October 0.238 0.171 42 29785.333 0.812 0.021 

November -0.843 0.000 -143 28349.667 0.399 -0.071 

December 0.701 0.000 106 22418.667 0.483 0.053 

D
ai

ly
 M

ax
im

u
m

 R
ai

n
fa

ll
 

January -0.267 0.000 -44 25950.000 0.790 -0.022 

February -0.151 0.000 -27 29507.667 0.880 -0.013 

March 1.185 0.141 205 29633.667 0.236 0.102 

April 0.157 0.009 28 29758.000 0.876 0.014 

May -0.151 -0.018 -27 29760.333 0.880 -0.013 

June -0.852 -0.200 -148 29768.000 0.394 -0.073 

July -0.875 -0.213 -152 29770.667 0.381 -0.075 



 

51 
 

Trend detection of BMD station data of Dhaka (1953-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value 

Sen's 

slope 

S Var(S) P-value Tau 

August -0.568 -0.147 -99 29781.000 0.570 -0.049 

September -0.435 -0.122 -76 29777.333 0.664 -0.038 

October 0.713 0.141 124 29772.000 0.476 0.062 

November -0.778 0.000 -132 28346.667 0.437 -0.065 

December 0.701 0.000 106 22419.333 0.483 0.053 

N
o
. 
o
f 

R
ai

n
y
 d

ay
s 

(R
ai

n
fa

ll
 ≥

 1
m

m
) 

January -0.234 0.000 -37 23623.667 0.815 -0.018 

February 0.708 0.000 120 28246.667 0.479 0.060 

March 0.750 0.000 129 29127.000 0.453 0.064 

April 0.782 0.000 135 29381.000 0.434 0.067 

May 1.027 0.000 177 29345.000 0.304 0.088 

June -2.978*** -0.063 -512 29452.000 0.003 -0.254 

July 0.397 0.000 69 29311.667 0.691 0.034 

August -1.152 0.000 -198 29240.667 0.249 -0.098 
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Trend detection of BMD station data of Dhaka (1953-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value 

Sen's 

slope 

S Var(S) P-value Tau 

September 1.055 0.020 182 29433.333 0.291 0.090 

October -0.625 0.000 -108 29294.667 0.532 -0.054 

November -0.678 0.000 -113 27254.333 0.498 -0.056 

December 0.428 0.000 63 21019.667 0.669 0.031 

Annual Rainfall -0.145 -0.521 -26 29790.000 0.885 -0.013 

Consecutive Wet 

Days (CWD) 

-1.489 -0.043 -257 29562.333 0.137 -0.127 

R10 0.824 0.058 143 29709.667 0.410 0.071 

R20 0.522 0.022 91 29670.333 0.601 0.045 

Total Rainfall 

(DEC-FEB) 

0.371 0.036 65 29729.667 0.711 0.032 

Maximum 

Rainfall (DEC-

FEB) 

0.522 0.057 91 29721.667 0.602 0.045 
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Trend detection of BMD station data of Dhaka (1953-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value 

Sen's 

slope 

S Var(S) P-value Tau 

Total Rainfall 

(MAR-MAY) 

0.232 0.308 41 29787.000 0.817 0.020 

Maximum 

Rainfall (MAR-

MAY) 

-0.180 -0.106 -32 29783.333 0.857 -0.016 

Total Rainfall 

(JUN-SEP) 

-0.214 -0.768 -38 29792.000 0.830 -0.019 

Maximum 

Rainfall (JUN-

SEP) 

-0.689 -0.875 -120 29788.000 0.491 -0.060 

Total Rainfall 

(OCT-NOV) 

 

0.029 0.025 6 29790.000 0.977 0.003 

Maximum 

Rainfall (OCT-

0.023 0.000 5 29781.667 0.982 0.002 
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Trend detection of BMD station data of Dhaka (1953-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value 

Sen's 

slope 

S Var(S) P-value Tau 

NOV) 

Total Rainfall in 

WET Season 

(MAY-OCT) 

-0.504 -1.306 -88 29788.000 0.614 -0.044 

Maximum 

Rainfall in WET 

Season (MAY-

OCT) 

-0.904 -0.942 -157 29789.000 0.366 -0.078 

Total Rainfall in 

DRY 

Season(NOV-

APR) 

 

 

0.423 0.338 74 29786.000 0.672 0.037 
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Trend detection of BMD station data of Dhaka (1953-2017) 

Mann-Kendall Test & Sen’s Slope 

Indicators Z-Value 

Sen's 

slope 

S Var(S) P-value Tau 

Maximum 

Rainfall in DRY 

Season(NOV-

APR) 

0.267 0.163 47 29783.000 0.790 0.023 

99% confidence interval (***), 95% confidence interval (**), 90% confidence  

interval (*)  

(ii) SPI Calculation 

For urban floods, we only consider SPI values for 1 month periods with values greater 

than 1, as -0.99<SPI<0.99 is near normal and negative values are typically considered 

for drought scenarios. Here, all the graphs are created for 1 month SPI to determine 

the soil moisture condition conducive to urban flooding. In the SPI graphs for 

Houston, it is clear that SPI values higher than 2, which indicates extremely wet 

conditions, are not frequent. Most of the SPI values are below 1 with some exceptional 

months. Year 1992, 1994, 1998, 2001, 2003, 2015 and 2017 are some of the flood 

years of Houston, which justifies their high SPI value. For Mexico City, only 4-5 

months SPI values crossed 2. Moderately wet and very wet conditions are not 

recurrent. In Jakarta, SPI values greater than 1 are observed since 2007 (2007, 2010, 
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2012, 2013, 2017), which ranges from moderately wet to very wet. Extreme wet 

conditions are very few for Jakarta. For Dhaka, moderately wet to very wet condition 

is frequent since 1956. Extremely wet condition for Dhaka is observed very 

occasionally. The SPI graphs for all study areas are represented in Figure 3.  

 
 

(A) SPI graph for Houston in Location 1 of CPC 

gauge 

(B) SPI graph for Houston in Location 2 of CPC 

gauge 

 
 

(C) SPI graph for Houston in Location 7 of 

TRMM gauge 

(D) SPI graph for Mexico City in Location 5 of 

TRMM gauge 

 
 

(E) SPI graph for Jakarta in Location 1 of CPC 

gauge 

(F) SPI graph for Jakarta in Location 2 of TRMM 

gauge 

 

 

(G) SPI graph for Dhaka in Location 1 of BMD 

gauge 

(H) SPI graph for Dhaka in Location 5 of TRMM 

gauge 

Figure 3: Standardized Precipitation Index (SPI) graphs for different 

megacities 
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Validation of the LULC Analysis 

The validation of the LULC analysis for Houston for year 2007 is done using 2006 

National Land Cover Dataset (NLCD). The comparison of the total area and 

percentage is given below. 

Table 11:  Validation of LULC Analysis for Houston 

Houston 2007 Area 

(acres) 

Percentage Houston2006 

(NLCD) 

Area 

(acres) 

Percentage 

Barren Land 53,843 5.98 Barren Land + 

Herbaceous 

32364 3.41 

Forest Land 267,997 29.78 Deciduous Forest + 

Evergreen Forest + 

Mixed Forest + 

Shrub/Scrub 

149491 15.76 

Urban Area 348,966 38.78 Developed Low 

Intensity + 

Developed Medium 

Intensity + 

Developed High 

Intensity 

471023 49.64 

Vegetative 

Cover 

201,341 22.38 Hay/Pasture + 

Cultivated Crops + 

Woody Wetlands + 

Developed Open 

Space 

273435 28.82 

Water 15,286 1.70 Open Water 14392 1.52 

Sand Filling 12,402 1.38 Wetlands 8116 0.86 

Future 

Housing 

Projects 

  _   _ 

Total  899,835 100.00 Total  948822 100.00 
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Urban Flood Risk Maps 

The risk index calculated from equation (9) are subdivided into 5 classes. The risk 

index value ranges from -21 to 21. Any area is considered in no risk zone if the index 

value is negative or zero, as we are considering urban flood here. Other classes are: 

low risk (0.01-6), moderate risk (6.01-12), high risk (12.01-18) and extreme risk 

(18.01-21). Figure 4 represents the urban flood risk of study area for specific month 

and year. 

  

(i) Houston, August 2007 (ii) Houston, August 2017 

 

 

(iii) Mexico City, August 2007 (iv) Mexico City, August 2017 
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(v) Jakarta, December 2007 (vi) Jakarta, December 2017 

  
(vii) Dhaka, July 2007 (viii)Dhaka, July 2017 

 

Figure 4: Urban Flood risk map of different wet season months of each study 

area to compare the change of risk between the year 2007 and year 2017 
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Validation of Urban Flood Risk Map with Federal Emergency Management 

Agency (FEMA) Flood Hazard layer 

  In our risk index calculation, we took LULC change and rainfall components only. 

Land elevation is another important factor that needs to be considered while 

calculating the urban flood risk index. For validating the urban flood risk map, we 

overlaid the map on the Federal Emergency Management Agency (FEMA) flood 

hazard layer for Houston. For better visualization, only a part of Houston is focused in 

Figure 5. FEMA updates their flood hazard data through Flood Insurance Rate Maps 

(FIRMs) (Xian, Lin, & Hatzikyriakou, 2015). FIRMs demarcate flood risk zones using 

hydrological and topographic survey outputs (Xian et al., 2015). The high risk and 

moderate risk areas of the urban flood risk maps match with 1% annual chance flood 

hazard, floodway, and 0.2% annual chance flood hazard area in most of the places 

with some exceptions. 1% annual chance flood hazard areas are defined as the areas 

that are situated on 100-year flood zones (Grineski, Collins, Chakraborty, & 

Montgomery, 2015). The FEMA flood map does not provide information on actual 

flood events but the probability of flooding (Grineski et al., 2015). A qualitative check 

on the two maps shows partial validation of our risk calculation approach, while there 

is room for improvement for areas that are prone to flooding due to distinct elevation 

changes such as rivers, streams, and bayous. 
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Figure 5: Validation of Urban Flood risk map of Houston with FEMA  

flood hazard layer 
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4 Discussions and Conclusion 

With the expansion of urbanization, vegetated soils convert to impervious surfaces 

that increase storm water flow and decrease both infiltration and natural storage 

(Wheater & Evans, 2009). Higher vegetative cover facilitates higher infiltration rate 

and quantity (Loch, 2000). The rate and magnitude of infiltration are dependent on the 

type, duration and intensity of precipitation, initial soil moisture content, soil type, 

evaporation, vegetation coverage, and terrain slope (G. Zhang, Qian, Wang, & Zhao, 

2014). The soil composition of Houston is mainly the combination of fine sandy loam 

and clay, which has poor draining capacity (Muñoz, Olivera, Giglio, & Berke, 2018). 

Like Houston, the soil profile of Central Jakarta consists of alluvial clay in the form of 

soft to stiff (Hsiung, Yang, Aila, & Ge, 2018) and Dhaka city is a blend of Pleistocene 

clayey soils and Holocene clayey and sandy soils (Rahman, Kamal, & Siddiqua, 

2018). As infiltration capacity of the clayey soil is less than that of sandy soil due to 

its smaller pore size, it is understood to be one of the main reasons that cause urban 

flooding in our study areas. In addition, rain on barren land compacts the upper layer 

of soil, creating hindrance in infiltration and causing excess runoff. Therefore, 

increasing amount of barren lands in these megacities are also responsible for urban 

flooding. According to Manning’s equation, the velocity of the storm water flow is 

indirectly proportional with the roughness of the land surface (Leopold, Wolman, & 

Miller, 2012). Therefore, increasing paved smooth surfaces amplify the storm water 

flow more than any natural rough surface (Jacobson, 2011). Also, higher soil moisture 

has less ability to absorb extra runoff after precipitation. After analyzing the SPI 

graphs, it becomes clear that urban flooding is occurring despite of having low SPI 
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values, where low value indicates that the soil moisture is not high to be considered 

extremely wet. Rather, the values are indicating nearly normal to moderately wet soil 

moisture condition except some exceptional months.  

Absence of zoning ordinance in Houston enables unplanned rapid increase of 

urban areas (Lynn, 2017). However, planners and developers have enough room to 

provide plans that can maximize urban and suburban vegetation within any 

development project (Conlon, Monaghan, Hayden, & Wilhelmi, 2016). The flat 

topography adds more difficulty in the flooding situation. Apart from planners, 

communities have started working on sustainable solution by changing unused golf 

courses to detention basins in the southeastern part of Houston to accommodate extra 

water after heavy precipitation (Landers, 2017). As reducing impervious layer is not 

easy inside cities, Low Impact Development (LID) practices can be helpful in 

reducing the excess runoff. These practices are used to manage storm water at the 

source by providing permeable pavements, bio-retention areas, and creating 

intermittent impervious surface (Damodaram et al., 2010). These could be potential 

remedies to decrease the heavy runoff due to impervious layers. 

Due to the combined sewer system in Mexico City, volume of wastewater after 

heavy rainfall increases immensely. In base flow conditions, the waste water volume 

is 45 m3/s, which increases to 300 m3/s in peak flow conditions (Siemens, Huschek, 

Siebe, & Kaupenjohann, 2008). The pipe network of the combined sewer system is 

complex due to large difference in pipe diameter (0.30 m to 3.05 m). The system also 

generates sediment (Jiménez, Méndez, Barrios, Salgado, & Sheinbaum, 2004), which 

hampers the flow and creates more flood risk eventually for the city. The authority 
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extracts 0.85 Mm3 of sediments (Jiménez et al., 2004) from the system every year and 

disposes as landfill, but cannot cope with the heavy rate of sedimentation in combined 

sewers.  

Imprudent storm water drainage (Padawangi & Douglass, 2015) of Jakarta is another 

reason that is responsible for repetitive flood occurrence. Besides, insufficient finances 

to develop institutional capabilities, regulatory framework is also responsible for this 

situation (Kartez & Lindell, 1987). Changes of land ownership and extensive land 

development projects have influence on urban flooding (Walker, Whittle, Medd, & 

Walker, 2011). East flood canal project, the World Bank funded project named Jakarta 

Urgent Flood Mitigation Project / Jakarta Emergency Dredging Initiative 

(JUFMP/JEDI), proposed sea wall project is expected to be helpful in decreasing the 

flood risk in urban Jakarta (Padawangi & Douglass, 2015).  

Apart from natural factors, stormwater management of these cities is also 

responsible for the situation. For example, Dhaka has only 30% and 38% coverage of 

sewerage and storm water systems, respectively (World Bank: BD: Dhaka Water 

Supply & Sanitation Project, 2017).  Many areas of Dhaka have local combined sewer 

facilities, which cannot accommodate the excess runoff due to high-intensity 

precipitation. Surface runoff goes to underground sewer networks through catch pits. 

Inadequate intake capacity of catch pits or insufficient drainage capacity of sewer 

pipes cause surface flooding, which can contribute to urban flooding (Mark, 

Apirumanekul, Kamal, & Praydal, 2001).  

The result of the study shows strong evidence that land use and land cover change 

(LULC) and insufficient water and drainage infrastructure development is mostly 
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accountable for urban flooding with moderate impact from precipitation alteration. 

Urban flood can occur any time but the frequency of occurrence is higher in wet 

periods of any area. The rainfall trends in wet periods of Houston, Mexico City and 

Dhaka are negative and for Jakarta, it is positive. It implies that land use land cover 

change is the main driving factor behind urban flooding in Houston, Mexico City, and 

Dhaka. For Jakarta, both factors are equally important for urban flooding. 

Before approving any area as urban area, planners should test soil characteristics, 

which play a vital role in infiltrating floodwater and excess runoff. Accuracy metrics 

for LULC change analysis should be added in future analysis. In addition to protecting 

as much land as possible to preserve natural hydrological and drainage characteristics, 

installation of high capacity pumping stations, accommodating Low Impact 

Development (LID) practices should be incorporated at planning and implementation 

levels. Natural canal excavation to increase capacity, reclaiming illegally filled canals, 

separate sewage and storm water drainage system, and provision of retention basins 

and rainwater harvesting can further reduce the intensity of urban flooding conditions 

in developing cities. Strict law enforcement is also required in order to track and stop 

the illegal landfilling of the natural drainage system. Proper zoning is necessary to 

stop haphazard urbanization. As the world is rapidly urbanizing, steps to identify and 

reduce urban flooding disasters with the assistance of Earth Observations based 

analysis in the fastest growing megacities should be encouraged and adopted. 
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Appendix I: Map of Unsupervised Image Classification of the study areas 

Figure: Land Cover changes in Houston, USA  
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Figure: Land Cover changes in Mexico City, Mexico 
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Figure: Land Cover changes in Jakarta, Indonesia 
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Figure: Land Cover changes in Dhaka, Bangladesh 
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Appendix II: Post-classification land-cover change detection of the study areas  
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Appendix III: Transformation of different land use/ land covers to urban areas 

Land Use/Land Cover changed 
to Urban Area 

Houston Mexico City 

year 1997 
to 2007 Percentage 

year 2007 
to 2017 Percentage 

year 1997 
to 2007 Percentage 

year 2007 
to 2017 Percentage 

barren land to urban  8,707.88 6.15 19,342.10 16.07 19,440.23 55.74 12,157.67 22.38 

forest land to urban  64,048.87 45.21 53,895.66 44.77 5,796.95 16.62 18,400.74 33.87 

urban area (no change) 207,286.17 0.00 284,848.77 0.00 170,949.90 0.00 178,305.75 328.22 

vegetative cover to urban  56,029.96 39.55 38,263.96 31.78 9,527.40 27.32 21,930.36 40.37 

waterbodies to urban  530.63 0.37 1,474.04 1.22 112.53 0.32 1,836.98 3.38 

sand filled area to urban 12,362.06 8.73 7,413.98 6.16 - 0.00 - 0.00 

future housing projects to urban - 0.00 - 0.00 - 0.00 - 0.00 

total area ( urban not included) 141,679.41 
 

120,389.74 
 

34,877.11 
 

54,325.75 
 

 
Land Use/Land Cover changed 
to Urban Area 

Jakarta Dhaka 

year 1997 
to 2007 Percentage 

year 2007 
to 2017 Percentage 

year 1997 
to 2007 Percentage 

year 2007 
to 2017 Percentage 

barren land to urban  15,176.23 31.51 10,529.74 15.32 1,348.60 3.54 3,357.27 8.28 

forest land to urban  11,573.89 24.03 20,188.35 29.37 9,222.72 24.21 14,111.64 34.80 

urban area (no change) 110,970.56 0.00 141,308.13 0.00 27,863.41 0.00 39,985.73 0.00 

vegetative cover to urban  20,269.97 42.08 32,152.75 46.78 25,767.58 67.64 19,908.57 49.10 

waterbodies to urban  1,146.45 2.38 2,547.09 3.71 1,756.47 4.61 1,608.58 3.97 

sand filled area to urban - 0.00 - 0.00 - 0.00 414.77 1.02 

future housing projects to urban - 0.00 3,317.02 4.83 - 0.00 1,146.00 2.83 

total area ( urban not included) 48,166.53 
 

68,734.95 
 

38,095.37 
 

40,546.83 
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Appendix IV: Specifications of Landsat TM and OLI images 

Satellite Sensor Path
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tion 
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(m
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Wavelength 

(μm) of the 

stacked 

Spectral 
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Useful for Mapping 

Landsat 

5 

(1984–

2012) 

 

 

Thema

tic 

Mappe

r (TM) 

137/

44 

January 

26, 

1997 

30 Blue (Band 1: 

0.45–0.52) 

 

Bathymetric mapping, 

distinguishing soil from 

vegetation, and deciduous 

from coniferous 

vegetation(Hugh-Jones, 

1989) 

Green (Band 

2: 0.52–0.60) 

 

Emphasizes peak 

vegetation, which is 

useful for assessing plant 

vigor 

Red (Band 3: 

0.63–0.69) 

Discriminates vegetation 

slopes 

January 

22, 

2007 

Near-infrared 

(Band 4: 

0.76–0.90) 

Emphasizes biomass 

content and shorelines 

Shortwave-

infrared 1 

(Band 5: 

1.55–1.75) 

Discriminates moisture 

content of soil and 

vegetation; penetrates thin 

clouds 

Landsat 

8 OLI / 

TIRS 

(2013–

Now) 

(Gorelic

k et al., 

2017)  

OLI_T

IRS 

137/

44 

January 

17, 

2017 

30 Blue (Band 2: 

0.452–0.512) 

 

Bathymetric mapping, 

distinguishing soil from 

vegetation, and deciduous 

from coniferous 

vegetation 

Green (Band 

3: 0.533–

0.590) 

 

Emphasizes peak 

vegetation, which is 

useful for assessing plant 

vigor 

Red (Band 4: 

0.636–0.673) 

Discriminates vegetation 

slopes 

Near-infrared 

(Band 5: 

0.851–0.879) 

Emphasizes biomass 

content and shorelines 
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Shortwave-

infrared 1 

(Band 6: 

1.566–1.651) 

Discriminates moisture 

content of soil and 

vegetation; penetrates thin 

clouds 

(Pal & Ziaul, 2017) 

 Appendix V: Location of the TRMM stations and CPC gauges for all study areas 
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Location 4 29.625 -95.125 Location 

4 19.375 -99.375 

Location 5 29.875 -95.875 Location 

5 19.375 -99.125 Location 6 29.875 -95.625 

Location 7 29.875 -95.375 Location 

6 19.375 -98.875 Location 8 29.875 -95.125 

Location 9 30.125 -95.875 Location 

7 
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Houston 
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Appendix VI: Standardized Precipitation Index Graphs 

Standardized Precipitation Index Graphs for Houston 
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Standardized Precipitation Index Graphs for Mexico City 
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Standardized Precipitation Index Graphs for Jakarta 
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Standardized Precipitation Index Graphs for Dhaka 
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Appendix VII: Urban Flood Risk Maps 
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