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ABSTRACT

The Northeast Coast of the United States faces the possible damaging effects of

storm surge, waves, and wind due to Atlantic tropical and extratropical storms each year.

Historically, there have been several significant storm events that produced substantial

levels of damage to the region, most notably the Great Atlantic Hurricane of 1938,

Hurricane Carol, Hurricane Bob, and most recently Hurricane Sandy (2012). The

objective of this study was to develop an integrated modeling system that could be used

as a forecasting tool to evaluate and communicate the risk coastal communities face

from these aforementioned hazards. This system utilizes the ADvanced CIRCulation

(ADCIRC) model for storm surge predictions and the Simulating WAves Nearshore

(SWAN) model for the wave environment. The two models are tightly coupled, passing

information to each other and computing over the same unstructured domain, allowing

for the most accurate representation of the physical storm processes. The coupled

SWAN+ADCIRC model was extensively validated for Rhode Island coastal waters, and

has been set up to perform real-time forecast simulations. Modeled storm parameters

are then passed to a coastal risk assessment tool. This tool is universally applicable, and

generates spatial structural damage estimate maps on an individual structure basis for a

specific study area. The required inputs are detailed information about the individual

structures, inundation levels, and wave heights for the selected region. Additionally, an

option for estimating wind damage to structures was incorporated.

Once developed, the integrated coastal risk assessment system was tested and ap-

plied to Charlestown, a small vulnerable coastal town along the southern shore of Rhode

Island. The developed system was tested for Hurricane Sandy and a synthetic 100-year

storm. In both storm cases, a dune intact and dune eroded scenario were simulated. For

the dune intact scenario the current dune profile present was used, while for the dune

eroded case a 100-year storm dune eroded profile was used. The resulting damage maps



for Charlestown clearly show that the dune eroded scenarios affected more structures,

and increased the severity of the estimated damage. The system was also tested in fore-

cast mode for two large Nor’Easters, Stella (March 2017) and Riley (March 2018). The

results showed the coupled model performed well in forecast mode when compared to

observations. Neither Nor’Easter produced damage to the study area, which was why the

100-year stormwas used as a hypothetical future storm. This coastal risk assessment sys-

tem is unique because of its ability to provide real-time forecasting of structural damage

to a region. Ideally, this system’s estimated damage maps will be used by coastal zone

and emergency managers to identify high risk areas in coastal communities, allowing for

the determination of the best adaptation and mitigation strategies.
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MANUSCRIPT 1

Development of an Integrated Hydrodynamic and Coastal Risk Assessment Model
for Charlestown, RI

1.1 Introduction
1.1.1 Risk Overview and Background

The Northeast Coast of the United States is located in a precarious position when

observing the typical storm tracks for Atlantic tropical storms. The majority of Atlantic

tropical storms develop in the Atlantic near Cape Verde, move westward, and then begin

to bend northward traveling along the East Coast of the United States. As they move

northward along the coast, they begin to present a greater risk to the entire Northeast,

and therefore Rhode Island. Fortunately, in most cases the storms typically turn eastward

back out to the ocean before they become a significant problem for this area. Although

this is the norm for most storms, it is not always the case. There have been historical

storms that made landfall or traveled closely along the coastline producing significant

levels of damage in Rhode Island. The most recent was Hurricane Sandy, which did

not make landfall in Rhode Island, but had such a large radius of maximum wind that

it still produced a strong storm surge in Rhode Island, resulting in damage to coastal

communities. Additional historical storms that produced considerable damage to Rhode

Island were the Great New England Hurricane (1938), Hurricane Carol (1954), and

Hurricane Bob (1991). The tracks of these historical storms can be seen in Figure 1.1.

Hurricane Bob passed directly through Narragansett Bay, but the Great New England

Hurricane of 1938 was still the worst storm to impact Rhode Island. This storm made

landfall to the west of Rhode Island, placing the state in the front right quadrant of the

storm where the storm effects are the strongest due to the counter-clockwise rotation of

the winds. The destruction from this specific storm was amplified due to an increased

high tide occurring as a result of the autumnal equinox and a full moon.

1



Fig. 1.1. Storm tracks of historical hurricanes that impacted Rhode Island (NHC, 2018).

Rhode Island is becoming more vulnerable to these hazards as time passes. Climate

change is expected to begin increasing the intensity and frequency of these events, which

may lead to larger impacts from these storms on coastal communities (Parris et al., 2012).

One such change is sea-level rise (SLR), which the National Oceanic and Atmospheric

Administration (NOAA) has predicted SLR of around 3.4 m, according to their extreme

rate, by the year 2100 for the state, as displayed in Figure 1.2 (NOAA, 2018). The

culmination of these effects means that storms which would originally cause little to

no damage will now begin to present a larger risk. This amplifying risk puts a higher

number of structures, infrastructure, and most importantly residents in danger.

2



Fig. 1.2. NOAA’s relative sea-level change (RSCL) predictions for SLR at Newport, RI.
RSCL is SLR specific to a location/region (NOAA, 2018).

For these reasons, it is necessary to have a method to accurately forecast the storm

surge and wave effects of a given storm to convey the risk to emergency management

planners, government officials, and the public. This has lead to studies involving the

development of hurricane forecast systems along the east coast that utilize a suite of

different models and approaches. The National Weather Service (NWS) branch of

NOAA currently implements the storm surge model Sea, Lake, and Overland Surges

from Hurricanes (SLOSH) in real-time when a hurricane is threatening. The SLOSH

model contains 38 basins that correspond to 38 specific coastal areas along of the U.S.

coasts (Glahn et al., 2009). This forecast system is forced using the National Hurricane

Center’s (NHC) meteorological forecasts. SLOSH does have a basin that includes Rhode

Island, but the resolution is very coarse. SLOSH is also considered a simplistic storm

surge model as the tidal input is decoupled and not time dependent. Another forecast

3



system in place is the North Carolina Forecast System (NCFS), which implements the

ADvanced CIRCulation (ADCIRC) model (Mattocks and Forbes, 2008). The domain

for this system has high resolution around North Carolina, and encompasses the Western

Atlantic, the Gulf of Mexico, and the Caribbean Sea. The wind forcing for this model

utilizes a synthetic asymmetric Holland gradient wind model to construct a tropical

storm vortex from the NHC forecasts (Mattocks and Forbes, 2008). While this system

performs well and includes Rhode Island the resolution around the state is not sufficient,

which is expected as the focus is North Carolina.

The last two forecast systems did not include waves, and therefore were missing

a significant portion of the risk that tropical storms present. Another tool that has

been created is the ADCIRC Surge Guidance System (ASGS), which implements the

wave model Simulation WAves Nearshore (SWAN) coupled with the circulation model

ADCIRC. This system can be forced using two different wind products. The first is

from the National Centers for Environmental Prediction (NCEP), which has a North

American Mesoscale (NAM) model providing a 3.5 day forecast at a resolution of

12km. The second is similar to the North Carolina study, and utilizes a Generalized

Asymmetric HollandModel (GAHM)with the NHC forecast data (Fleming et al., 2008).

This system is meant to be portable, and in theory could be applied to a domain with

high resolution in Rhode Island. However, the current domain implemented in this

system has poor resolution in Rhode Island. Finally, the last forecast system reviewed

was the Northeast Coastal Ocean Forecast System (NECOFS), which is an integrated

atmospheric-ocean forecast model system developed for the northeast covering the area

from central New Jersey to Nova Scotia. This system includes wind forcing from the

mesoscale meteorological model Weather Research and Forecasting (WRF), the wave

model SWAVE (finite-volume modification of SWAN), and a Finite-Volume Community

Ocean Model (FVCOM) for ocean circulation (Beardsley and Chen, 2014). There are

4



several domains to this system due to the number of models, with the finest having

extremely high resolution in the Massachusetts area (up to 10m). The section of the

domain that covers Rhode Island has decent resolution, and was used as the starting

point for the forecast system utilized in this study. The forecast system for this study

implements the FVCOM Gulf of Maine version 4 (GOM4) mesh developed by the

University of Massachusetts Dartmouth (Chen et al., 2006). This mesh’s resolution was

increased to be much finer around Rhode Island. The details of this forecast system

developed for Rhode Island will be discussed later in the paper.

Not only is it important to have a system in place that is capable of ac-

curately forecasting storm surge, waves, and wind, but it is also important to

have a methodology for transferring these hazards into terms of risk for coastal

communities. In most cases, studies will utilize fragility curves or depth dam-

age functions. The wind loading and fragility curves are the most well de-

veloped (Ellingwood et al., 2004; Lee and Rosowsky, 2005; Li and Ellingwood, 2006;

Hamid et al., 2010; Li et al., 2011; Pinelli et al., 2011). These curves are the result of

years of laboratory and field measurements, engineering designs and analyses, and

numerical simulations (Tomiczek et al., 2013). As a result, the wind damage can be

estimated with reasonable accuracy. The attempts to quantify storm surge damage

are newer, more empirical based, and contain more uncertainty. These attempts usu-

ally involve functions quantifying the relationship between surge depth and damage

(Jonkman et al., 2008; FEMA, 2012; Tomiczek et al., 2013; USACE, 2015). In these

studies, the functions were developed based on historical damage to structures as a result

of storm surge. Due to the infrequency of historical storms resulting in damage these

damage functions are not as well developed, and therefore the damage estimates contain

substantial uncertainty. The attempts to develop wave damage functions are the newest,

and least studied (Tomiczek et al., 2013; USACE, 2015). The largest study to investigate
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this damage was the North Atlantic Coast Comprehensive Study (NACCS), performed

by the U.S. Army Corps of Engineers (USACE), and involved the generation of wave

damage functions based on observed damage from Hurricane Sandy. These functions

related wave crest height to structural and content damage. Similar to the storm surge

damage functions, these wave damage functions also contain substantial uncertainty.

The best possible method for improving the storm surge and wave damage functions

would be the implementation of full-scale laboratory testing to closely study the physical

relationship between storm surge, waves, and structural damage.

The fragility curves and damage functions are implemented in varying methods

for coastal risk assessment. In most cases, the studies do not focus on all the storm

effects (i.e. storm surge, waves, wind), and lack a real-time risk forecasting ability. For

example, many studies have been published involving the estimation of only wind dam-

age, and are mainly insurance related (Hamid et al., 2010; Li and Ellingwood, 2006).

The state of Florida developed an open-source probabilistic assessment of risk in

terms of losses to insured buildings due to hurricane winds on a county to state wide

scales (Hamid et al., 2010). Another study performed a similar probabilistic assess-

ment of wind damage from hurricanes to residential structures utilizing fragility curves

(Li and Ellingwood, 2006). In both cases, the risk assessment may be viable for struc-

tures set back from the coast that are only experiencing wind effects, but for coastal

structures their results would not be accurate since the damage is not just a function of

wind.

In other studies the effects from storm surge and/or waves have been considered.

A study in the Netherlands developed a model for the estimation of physical damage

caused by floods utilizing depth damage functions (Jonkman et al., 2008). The results

from this study were spatial distributions of damage intensity across a coastal community

or the entire country, but only from the effects of inundation. Another study was carried
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out following Hurricane Ike for the Bolivar Peninsula in Texas to investigate the ability

to model damage from storm surge and waves when compared to the actual damage

that occurred. The study focused on how different structural characteristics affected the

damage, determining the elevation of the structure was the most important factor, and

also concluded wave damage dominates (Tomiczek et al., 2013). These studies excluded

any effects from wind, and did not involve forecasting. It is noted that this literature

review is not exhaustive and the cited papers were simply selected as examples.

For these reasons, there have been efforts to include all the aforementioned hazards

from storms into one risk model. The most well-known of which is produced by the

Federal Emergency Management Agency (FEMA) called Hazus. This model contains a

standardized methodology that allows it to be nationally applicable estimating potential

losses from earthquakes, tsunamis, floods, and hurricanes. As a result the flood model

can be run for coastal flooding effects and the hurricane model can be run for wind effects

(Scawthorn et al., 2006; Vickery et al., 2006). The results of these models identify the

high-risk locations and the limits of the expected losses. For coastal risk assessment

purposes this system may be adequate, but it relies on readily available data for flooding

and wind. This data is not always available and can require external user generation.

Hazus also is not developed to be implemented in forecasting purposes.

In the state of Rhode Island, there is currently a developed Coastal Environmental

Risk Index (CERI) tool, which implements an inundation model, wave model, and the

USACE damage functions to estimate structural damage on an individual structure basis

for coastal communities (Small et al., 2016; Spaulding et al., 2016). The outputs from

CERI are maps that spatially display the estimated damage for each structure inside the

selected study area. The risk assessment for this study was based on the methodology for

CERI, with adaptations made to include a damage forecasting option and wind damage

option. Damage forecasting was determined to be extremely important because the
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previous risk assessment research focused on past events. Emergency planners and

government officials require a tool that is capable of providing information about the

potential damage of an approaching storm. This risk forecasting tool was developed and

originally implemented to Charlestown, RI, but is designed in a way that it is capable of

being applied to any coastal community.

1.1.2 Study Area

Charlestown is a coastal town located in southern Rhode Island, shown in Figure 1.3,

that is vulnerable to the effects of tropical storms, namely storm surge, waves, wind, and

erosion. The town is composed of predominantly low density single family residences,

and is located on a barrier system, which leaves its structures and infrastructure at

risk to the aforementioned hazards (Spaulding et al., 2016). The town historically has

been damaged from storms, and most recently by Hurricane Sandy. Hurricane Sandy

occurred in late October of 2012, and produced strong storm surge, large wave heights,

and powerful winds. The result of the combination of these storm effects can be viewed

in Figure 1.4. This figure shows four images that were taken post Sandy. The images

in (a) and (b) were taken very close to Charlestown. Image (a) shows an inlet that

formed during Hurricane Sandy allowing for more storm surge and larger wave heights

to propagate into the coastal pond, and (b) shows that the dunes were completely eroded

and moved backwards into the marsh. The two bottom images in the figure, (c) and (d),

show damaged structures that are located in Charlestown.
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Fig. 1.3. Satellite image of the selected study area of Charlestown, RI. The map insert in
the top left of the image shows the study area location in reference to the state, marked
in red.
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(a) (b)

(c) (d)

Fig. 1.4. Images taken post Hurricane Sandy near/in Charlestown, RI: (a) inlet that
formed to the northeast of the study area; (b) dune system eroded and pushed backwards,
also to the northeast; (c) structural damage to a house in the study area; (d) foundation
of structure compromised, also in the study area. Photos courtesy of the Rhode Island
Department of Transportation.

For these outlined reasons Charlestown was selected as the area of interest for this

study. The selected study area is shown in Figure 1.3, both locally and in relation to

Rhode Island. As the figure shows the study area is a barrier system with a prominent

headland, both of which have a high density of structures located on them. There is also

a coastal pond, Ninegret Pond, located behind the barrier system, which can allow for

back flooding damage to the structures located further away from the coastline.
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1.1.3 Objectives

The overreaching goal of this study was to develop an integrated modeling system

to forecast real-time coastal risk assessment on an individual structure basis. This was

achieved by completing the three main objectives, which were as follows:

1. Development of an integrated model system to predict storm surge, waves, and

damage to a selected coastal region from tropical or extratropical storm events.

2. Apply the model system to a case study of Charlestown, RI, and predict damage

for selected historical tropical storms.

3. Demonstrate the capability of the model system to forecast damage.

1.2 Methodology

Key terms have already been used, and will be used throughout this entire study

and must be defined. These definitions correspond to how the terminology is used in

this study, and may vary in other research. Hazard is defined as a dangerous physical

event that may cause loss of life and/or property damage, meaning the storm event

and its effects (i.e. storm surge, wave heights, and wind). Vulnerability is defined as

susceptibility to loss of life or structural damage from hazards, sometimes referred to

as exposure. The final term is risk, which is defined as the combination of hazard and

vulnerability. In this paper the risk is identified based on structural damage as a function

of a structures vulnerability to the hazard. It is also noted that all water levels and wave

heights presented throughout this paper are referenced to mean sea level (MSL). MSL is

0.09 m lower than NAVD88, which is the more commonly used vertical datum.

The integrated modeling system that was developed to perform the risk assessment

for this study is composed of several modules, shown in Figure 1.5. Each block of

the modeling system shown in the flowchart will be explained in detail throughout this

section. The very first step of this system involves making a decision on whether to
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perform the risk assessment on a hindcast event (historical storms) or forecast event

(future storms).

Fig. 1.5. Flowchart of the integrated modeling system for the risk assessment of coastal
storms.

1.2.1 Wind Data

The key input for numerical models is the meteorological forcing, which is the

primary controlling factor in the prediction of storm surge and wave heights in the model

output. This means utilizing the most accurate and realistic wind information is vital to

achieving model results that align well with observational data. The wind models that

were readily available for this study were from the National Hurricane Center (NHC),

which has two products the HURicane DATabase (HURDAT) and Extended Best Track

(EBT), the European Center forMedium-RangeWeather Forecasting (ECMWF), and the

NorthEast Coastal Ocean Forecast System (NECOFS)Weather Research and Forecasting

(WRF) winds. In a previous study Torres et al., (2017) investigated the availability and
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accuracy of each of thementioned wind products for Rhode Island, and it was determined

that the best wind product for the present study area was the NECOFS WRF model

(Torres et al., 2017).

The NECOFS WRF wind product is forced by a global North Atlantic Mesoscale

(NAM) weather model. The actual WRF model contains three grid domains with

varying resolution, the basin domain with 27 km resolution, the regional domain with 9

km resolution, and the local domain with 3 km resolution. For this model the regional

and local domains are run simultaneously through two-way interaction, which is a nesting

method in which the input from the coarse domain (regional) is included via boundaries

on the smaller nested domain (local). The nested domain results are then feedback to

the coarse domain (Chen et al., 2006). Three days of hindcast wind data and three days

of forecast wind data are provided by this model, which is updated automatically daily.

This intricate model setup is one of the reasons that this wind data is suitable for Rhode

Island, another reason is the high resolution (3 km) of the local domain, which covers

the case study area. This wind forcing was used throughout this study, both in hindcast

and forecast risk assessment modes.

1.2.2 Numerical Models
Regional Wave Model

The wave model implemented for this study was SWAN, which is a third-generation

discrete spectral wave model that characterizes the evolution of the two-dimensional

wave action density spectrum. In this model the action density spectrum (N = E/σ) is

used because action density is conserved in the presence of ambient currents, whereas the

the energy density (E(σ, θ)) is not (Booij et al., 1999). SWAN solves for the evolution

of the wave spectrum by solving the spectral action balance equation, shown in Equation

1.1 (Booij et al., 1999; Ris et al., 1999).
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where N(σ, θ; x, y, t) is the action density as a function of intrinsic frequency (σ),

direction (θ), horizontal coordinates (xandy), and time (t). The first term on the left is

the local rate of change of action density in time, the second and third terms represent the

propagation of action in space (with corresponding propagation velocities cx and cy in x

and y space), the fourth term is the shifting of relative frequency as a result of varying

depths and currents (with propagation velocity cσ inσ space), the fifth term characterizes

depth and current induced refraction (with propagation velocity cθ in θ space), and the

right hand side’s term represents all the possible source/sink terms (Booij et al., 1999;

Ris et al., 1999). These source terms are wind growth, nonlinear triplet and quadru-

plet wave-wave interactions, whitecapping, bottom friction, and depth-induced wave

breaking. The SWAN model can use a structured or unstructured computational mesh.

Regional Tidal and Storm Surge Model

The hydrodynamic numerical model used for this study was ADCIRC, which is

a two/three-dimensional unstructured finite element model capable of simulating tide,

storm surge, and tidal velocities. The model solves the equations of motion for a

moving fluid on a rotating earth, formulated using the traditional hydrostatic pressure and

Boussinesq approximations, which have been discretized in space and time utilizing the

finite element method and finite-difference method, respectively (Luettich et al., 1992).

For this study, ADCIRC was run as a two-dimensional depth-integrated (2DDI) model

that solves for water elevation based on the solution from the depth-integrated continuity

equation from the General Wave Continuity Equation (GWCE), shown in Equation 1.2.

The depth averaged velocities are obtained from the 2DDI momentum Equations 1.4 and

1.5. In both solutions all nonlinear terms have been retained (Luettich et al., 1992).
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where ζ is the surfacewater elevation, τ0 is the spatially varying numericalweighting

factor, and Ax, Ay are defined as follows:
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∂UH
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∂Qx
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∂t
+ τ0VH =

∂Qy
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(1.3)

where H is the total water depth, U and V are the tidal velocity components, and

Qx and Qy are the volumetric flux in x and y directions. The momentum equations can

be written as:

∂U
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∂U
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∂
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[
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]
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−
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+ V
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∂
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[
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ρ0
+ gζ − g(η − γ)

]
+

τsy

ρ0H
−

τby

ρ0H
+ Dy − By (1.5)

where f is the Coriolis parameter, ps is the atmospheric pressure at the free surface,

ρ0 is the density of water, g is the gravitational acceleration, (η − γ) represents Newto-

nian tidal potential, Earth tide, self-attraction, and load tide, (τsx, τsy) are applied free

surface shear stresses, (τbx, τby) are bottom shear stresses, (Bx, By) are 2DDI baroclinic

pressure gradients, and finally (Dx,Dy) are 2DDI momentum diffusion/dispersion terms

(Luettich et al., 1992).

Coupled Wave-Surge Model

The coupling of wave and circulation models allows for the wave-current interac-

tions, such as wave set-up and set-down, to be properly captured, resulting in more ac-
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curate wave and storm surge outputs. In this study, the tightly coupled SWAN+ADCIRC

model was implemented. At a given time step ADCIRC passes wind velocities, water

levels, currents, and friction roughness lengths to SWAN, SWAN then uses this infor-

mation to adjust its own computations (water depth and all wave related processes), and

then sends the wave radiation stress gradients as a forcing function back to ADCIRC

(Dietrich et al., 2011). The actual coupling of SWAN and ADICRC works because the

two models can be carried out over the same unstructured computational mesh utilizing

intra-core communication. In this coupled model, the computations are carried out in

parallel, allowing for the global mesh to be decomposed and distributed over several

computational cores. This minimizes inter-core communication due to the creation of

local sub-meshes where the boundary node information is shared at the sub-mesh inter-

faces (Dietrich et al., 2011; Dietrich et al., 2012). A schematic of the way this coupled

model communicates is shown in Figure 1.6. Another important aspect of this mesh

decomposition is it allows for an increase in the computational speed.
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Fig. 1.6. Schematic of the coupled SWAN+ADCIRC parallel computational communi-
cation (Dietrich et al., 2011).

The computational domain for the SWAN+ADCIRC model used in this study was

based on the NECOFS FVCOM GOM4 mesh, which has a total of 53,087 nodes and a

resolution of 1 km along the Rhode Island coastline. The resolution for Rhode Island

was increased to be around 200 m near the coast and approaches 20 m within the inlets,

coastal ponds, and rivers (Torres et al., 2017). The model domain for this study is shown

in Figure 1.7, with (a) showing the full regional model domain, (b) showing the increased

resolution around Rhode Island, and (c) showing the Charlestown study area. Increasing

the resolution for Rhode Island resulted in the full domain having a total of 105,560

nodes.
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(a)

(b) (c)

Fig. 1.7. Coupled SWAN+ADCIRC regional model domain. (a) Full regional model
computational domain, (b) focus on the increased domain resolution in Rhode Island,
and (c) zoomed in view of the domain for Charlestown.

STWAVE vs. SWAN

A comparison of the STeady-state specatral WAVE (STWAVE) model and SWAN

model wasmade in this section for two reasons: (1) Previous risk assessment studies have

used STWAVE for thewave climate, therefore it is important to compare themethodology
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of this research to the previous ones, and (2) STWAVE and SWAN are both accepted for

estimating offshore wave heights by FEMA, while for nearshore wave effects STWAVE

is approved as opposed to SWAN (FEMA, 2018).

STWAVE is a steady-state, phase averaged, spectral wave transformation model

based on the wave action balance equation. This model uses a wave action approach to

handle currents as an energy spectrum approach cannot. The STWAVE model incor-

porates several physical processes. It simulations both depth-and current-induced wave

refraction and shoaling, and includes many source/sink terms, which are: depth-and

steepness-induced wave breaking, wind-induced wave growth, wave-wave interactions,

and white-capping (Smith et al., 2001).

The SWAN model was already previously discussed in detail, and has many simi-

larities to STWAVE. To summarize, SWAN is also a phase averaged wave model based

on the spectral wave action balance. Like STWAVE, the SWAN model simulates both

depth-and current-induced shoaling and refraction, and includes several source/sink term

options: depth-induced breaking, wind-induced wave growth, wave-wave interactions

(triplet or quadruplet), white-capping, and bottom friction. Unlike STWAVE, SWAN

has the option to compute a time varying solution, rather than just a steady state one, and

can be executed over an unstructured domain.

The two models were setup to compute over the same size structured domain using

identical topo-bathy data, shown in Figure 1.8. The resolutions of the two model grids

were created to be about the same, and SWAN was run in stationary mode so the models

could be run utilizing the same basic inputs: significant wave height, peak period, swell

direction, wind velocity, and wind direction. The basic inputs used for the twomodels are

shown in Table 1.1. The swell direction and wind direction of 180◦ means propagation

from the south towards shore.
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Fig. 1.8. Idealized domain in Charlestown, RI used for the comparison between the
STWAVE and SWANwave models. The location of the three transects used for the wave
height comparison are shown. Note the grid shown is the STWAVE grid.

Table 1.1. Basic inputs for the STWAVE and SWAN comparison.

Hs (m) Tp (s) Wind Velocity (m/s) Swell Direction (◦) Wind Direction (◦)
6.0 20 20 180 180
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Fig. 1.9. Comparison of significant wave height between STWAVE and SWAN for the
three transects in Charlestown, RI.

The significant wave height comparison between the two models is shown in Figure

1.9. The figure shows that in the offshore region STWAVEwas typically predicting wave

heights ameter or so larger. As the twomodelsmove into the nearshore region it switches,

and SWANbegins to predict the larger wave heights. The best agreement in the nearshore

region is shown inTransect 3, where the twomodels alignwell. Generally, the twomodels

perform similar and predict wave heights relatively close to each other. However, it is

important to keep in mind that the difference in wave heights of a meter can have a

substantial impact when estimating damage to structures. These differences between the

two model outputs are attributed to the fact that each model uses different governing

equations to parameterize the source/sink terms, which can be found in each model’s

corresponding manuals (Booij et al., 1999; Smith et al., 2001). Generally, SWAN is

considered the more advanced model and has also been extensively validated. It is also

important to state that in this risk assessment, SWAN is not run in stationary mode,
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which will improve the accuracy of the results. The results show reasonable correlation,

but this was a simplistic comparison for the purposes of this study, further research is

necessary to determine if SWAN should be FEMA approved for nearshore modeling.

1.2.3 Forecast System

This study also implements a coastal risk assessment forecast system for Rhode

Island based on previous research (Hayward, 2017). The systemwas originally developed

and tested by Hayward (2017), and was maintained and implemented throughout this

study. Figure 1.10 shows a simplified flowchart for the forecast system. This system

utilizes the same coupled SWAN+ADCIRC model and computational domain that was

discussed in the previous section. It works by using a series of MATLAB and Bash

scripts that download and pre-process the wind forcing, change the required input files,

and then submits the files to begin the simulation. The system is run from a user

desktop for the pre-processing, and then the input files are automatically moved to a

High Performance Computing (HPC) cluster for the actual forecast simulations.

Fig. 1.10. Simplified flowchart for the SWAN+ADCIRC forecast system for Rhode
Island coastal waters (Hayward, 2017).
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In the current configuration of the system, it is setup to utilize the NECOFS

WRF wind, which was shown to be the most accurate wind model for this area

(Torres et al., 2017). The wind is downloaded as 3 days of hindcast data and 3 days

of forecast data, resulting in a total simulation of 6 days. Currently, the forecast system

runs on 64 processors allowing the simulation to be complete in just under 6 hours. This

means that the model’s forecast storm surge and wave height predictions can be made

available for emergency planners, government officials, and the public 6 hours after a

storm posing risk to Rhode Island is identified.

1.2.4 The North Atlantic Coast Comprehensive Study

Following the devastation caused by Hurricane Sandy, the USACE conducted the

North Atlantic Coast Comprehensive Study (NACCS), with the goals of providing a risk

management index for coastal areas, and to promote coastal resilient communities to

both short and long term risks (USACE, 2015). Through the completion of this study

damage functions were developed by analyzing the actual physical damage that occurred

to structures in New York and New Jersey. These damage functions correspond to

specific structure types that are typically found in coastal areas. The damage functions

can assess the risk to a structure from inundation, wave attack, and erosion. In this study

the inundation and wave attack damage functions were used, and the structures in the

study area were classified according to the NACCS methodology.

This study also aimed to investigate the future risk to communities. NACCS

investigated the threat from storms to the northeast U.S. by modeling the storm surge and

wave heights of 1,050 synthetic tropical storms and 100 historical extra-tropical storms

(USACE, 2015). The synthetic storms varied in magnitude, and some of the synthetic

tropical storms modeled matched the 100-year return period storm surge water level in

Newport, RI. Specifically, NACCS synthetic storm #492 was considered to represent a

100-year storm, which is defined as a storm that has a 1% annual chance of occurrence.
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1.2.5 Structure Information and Classification

For this risk assessment model, it was necessary to have the geographic reference

(Latitude and Longitude), and basic structural characteristics for every structure in the

selected study area. The structures must be characterized in a method that remains

internally consistent with the prototype classification for the damage functions. The

prototype classification is shown in Table 1.2.

Table 1.2. USACE NACCS damage function prototype classification (USACE, 2015).

NACCS Prototypes
Prototype Number Prototype Description

1A-1 One-Story Apartment-No Basement
1A-3 Three-Story Apartment-No Basement
1B-1 One-Story Apartment-With Basement
1B-3 Three-Story Apartment-With Basement
2 Commercial-Engineered
3 Commercial-Pre/non Engineered
4A Urban High Rise
4B Beach High Rise
5A Single-Story Residence, No Basement
5B Two-Story Residence, No Basement
6A Single-Story Residence, With Basement
6B Two-Story Residence, With Basement
7A Building with Open Pile Foundation
7B Building with Enclosed Pile Foundation

Another aspect of the structural characteristics that must be known was the first

Finished Floor Elevation (FFE), referring to the height above grade of the first floor for

each structure. This information is vital to implementing the damage functions, as the

damage calculations are very sensitive to this parameter. For example, a structure on

stilts (7A or 7B) has a higher FFE than any other prototype, and therefore is the most

resilient to the storm effects of inundation and waves. It is important to note however

that the more elevated the structure the more vulnerable it becomes to wind damage.

Typically the trade-off between elevating to minimize flood effects while increasing the

wind effects is still worthwhile. A schematic of this relationship is shown in Figure 1.11.
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As the figure shows, the structure that is elevated with the higher FFE is out of harms

way in regards to flooding effects, while the structure that is not raised with a low FFE

will be more affected by the flooding.

Fig. 1.11. FEMA diagram depicting the importance of elevated structures to increase
resilience to storm effects of inundation and waves (FEMA, 2015). BFE stands for base
flood elevation, and is the combination of the SWEL (still water elevation) and Wave
Heights.

For the application to Charlestown, the geographic location for each structure

was obtained from the emergency call data base (E911) that is available on a state-

wide basis from the Rhode Island Geographic Information System (RIGIS) website

(http://www.rigis.org/). In the selected study area a total of 1,323 structures were an-

alyzed, which were determined based on the 100-year storm with 7 ft of SLR flood

extent found on STORMSTOOLS (http://www.beachsamp.org/stormtools/). The neces-

sary structural characteristics, including prototype classification and FFE were provided

from a past study (Spaulding et al., 2016). The distribution of the structures by proto-

type throughout the study area is shown in Figure 1.12, and Table 1.3 shows the actual

total of each prototype. As both the figure and table show, the prototypes found in the

Charlestown study area are 5A, 6B, 7A, and 7B.
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Fig. 1.12. Location and prototype distribution for every structure found in the
Charlestown, RI study area.

Table 1.3. Total number of each NACCS prototype found in the study area.

Prototype Description Total Structures Percent of Total (%)
5A 1 story, no basement 369 28
6B 2 story, basement 878 66
7A Open Stilts 36 3
7B Enclosed Stilts 40 3

Total 1,323

1.2.6 Damage Functions

Asmentioned, NACCS developed damage functions that estimate structural damage

as a function of inundation and waves. This study used slightly modified versions of the

inundation and wave damage functions from NACCS to compute the structural damage

estimates. The damage functions were based on the best curve fit to the NACCS data

points to provide smoother damage curves. Each of the prototype classifications shown
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in Table 1.2 have a corresponding damage function for inundation and wave damage.

The damage functions work based on the flood depth level (ft) relative to FFE, and wave

crest (ft) relative to FFE. An example of these damage functions is shown in Figure 1.13,

where (a) is inundation damage and (b) is wave damage for prototype 5A (single-story, no

basement). The dots represent the actual data points, while the dashed lines are the best

curve fits. Each curve has a minimum, most likely, and maximum curve, which shows

the high level of uncertainty in these damage functions. NACCS also has developed

similar damage functions for content damage as well.

(a) (b)

Fig. 1.13. NACCS damage curves for prototype 5A showing minimum, most likely,
and maximum curves of damage. (a) Inundation Damage Curve and (b) Wave Damage
Curve.

An integral part of these damage curves is the way the estimated damage to a

structure changes depending on whether it has a basement or not, and whether the

structure is elevated. This is shown in Figure 1.14, which shows three inundation

damage functions: (a) 5B, two-story, no basement, (b) 6B, two-story, with basement,

and (c) 7A, stilted structure. When a basement is present, the damage to the structure

can begin below the FFE, meaning the water enters the basement and begins to cause

damage. When a structure is elevated it becomes much more resilient to the damaged
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produced by the storm effects.

(a) (b)

(c)

Fig. 1.14. NACCS damage curves for prototypes 5A, 5B, and 7A showing minimum,
most likely, and maximum curves of damage. (a) Prototype 5B (no basement), (b)
Prototype 6B (basement), and (c) Prototype 7A (open stilts).

1.2.7 Coastal Risk Assessment Model

This study implemented a Matlab based coastal risk assessment model. This model

is compatible with the coupled SWAN+ADCIRC model outputs, and allows for the

forecasting of structural damage to coastal communities. This coastal risk assessment

tool requires the storm water levels and corresponding wave conditions, individual

structure/infrastructure characteristics, and the NACCS damage functions. The outputs
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are geographic damagemaps displaying the expected total structural damage to individual

structures. The damage for each structure is defined as the maximum damage between

the calculated inundation and wave damage value, as outlined in the NACCS report

(USACE, 2015).

The required water levels and wave conditions implemented into the integrated risk

assessment model were extracted from the coupled SWAN+ADCIRCmodel simulations.

This coupled model has been set up to output the maximum water levels and significant

wave heights over the entire domain. These results are then interpolated onto each

individual structure in the Charlestown study area to give every structure a specific

georeferenced water level and wave height. Using the known FFE information for each

structure in the study area, the inundation depth above/below the FEE was determined.

This is the value that was utilized for the inundation damage functions. The required

input for the wave damage functions is the controlling wave crest (ηc). The wave crest

is defined as 0.7 times the controlling wave height (Hc), where this controlling wave

height is 1.6 times the significant wave height (Hs) assuming a Rayleigh distribution

(Grilli et al., 2017). To convert the model output of significant wave height to controlling

wave crest Equation 1.6 was used. This calculated controlling wave crest was added to

the storm surge levels, and was used to determine the wave crest height above/below

the FFE for every structure. The effects of wave runup were not considered in this

assessment to be internally consistent with the NACCS methodology.

ηc = 1.12Hs (1.6)

This coastal risk assessment tool also includes an additional option to add wind

damage estimates. The methodology to include the wind damage was based on a

previous study that discussed a Wind Protocol, which used the FEMA Hazus hurricane

loss model’s fragility curves, along with structural characteristics, surface roughness,
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and a determined wind gust speed (Bianchi et al., 2017). These fragility curves assess

probability of damage due to a given wind speed based on the aforementioned inputs.

In order to implement the fragility curves for wind damage, the following structural

characteristics must be known: number of stories, roof type, sheathing nail sizes, wall

type, and the use of hurricane straps versus toe-nails. Most of this information can

be derived from the Charlestown GIS database, but requires the user to identify and

note each individual structure’s information. For this study it was deemed unrealistic to

manually click to identify all 1,323 structures’ information, so the worst case scenario

of the inputs was assumed. This corresponded to a two story gable roofed structure with

wood frame, toe-nail strapping, and 6d sheathing (Bianchi et al., 2017).

The next required input was the surface roughness at each structure, which deter-

mines the corresponding vertical wind profile. These surface roughness values were

based on the land use, and were provided by other research on a 30 m by 30 m grid

for all of Rhode Island (Grilli et al., 2012). The values vary between 0.01 m and 0.73

m, and were then interpolated onto each structure in the study area. The next step was

to bin these surface roughness values according to the four values FEMA uses for their

fragility curves, which is shown in Table 1.4. The study area did not contain any urban

development so no structures were binned into this 1.0 m category shown in the table.

The wind forcing experienced by structures in high density suburban or urban areas is

much lower than those structures that are located in relatively unobstructed regions, such

as the open terrain.

Table 1.4. FEMA Hazus wind fragility curve surface roughness values based on land
use (FEMA, 2012).

Land Use Category Roughness Length (m)
Open Terrain 0.03
Suburban 0.35

Suburban High Density 0.70
Urban 1.00
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The final required input was the wind speed (in mph) that will be used to determine

probability of damage from the fragility curves. If the storm being simulated by the

coupled regional model has strong enoughwind speeds (> 60mph) then themodel’s wind

can be used. In the event that the simulated wind speed does not exceed this threshold

the information is found through the Applied Technology Council (ATC) website. ATC

publishes wind speed by location in accordance with the American Society of Civil

Engineers (ASCE) determination of design wind loads for structures. On this website it

is easy to find the wind speed for a selected area, and it provides an estimate for the 10,

25, 50, 100, 300, and 700 year return interval wind speed.

With the structural characteristics assumed, the surface roughness at each structure

known, and the wind speed for the region determined the fragility curves were imple-

mented. An example fragility curve is shown in Figure 1.15. As the figure shows there

are four different curves, which correspond to the four different damage states where the

assumed damage percentages are 10%, 30%, 60%, and 100%. The shown classification

also has fragility curves for surface roughness values of 0.35 m and 0.7 m.
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Fig. 1.15. FEMA Hazus wind fragility curve for a two-story gable roofed structure with
wood frame, toe-nail strapping, and 6d sheathing (FEMA, 2012).

A weighted damage calculation method was implemented to determine an actual

damage percentage for each structure. The equation used for this calculation is shown

in Equation 1.7, which multiples the assumed damage for each damage state with the

probability of each respective state at a given wind speed (Bianchi et al., 2017). The

products are then added and normalized over the summation of the assumedwind damage

percentages.

Dw =

∑
(DS ∗ P) − 4

200%
(1.7)

where Dw is the resulting wind damage as a percentage, DS refers to the four

different assumed damage state percentages, P is the associated damage probability for

the specific damage state, and 200% is the sum of all the assumed wind damage state
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percentages.

Once the damage from storm surge, waves, and wind are calculated separately the

total damage is set to be the maximum value between all three, shown by Equation 1.8.

DT = max(Ds,Dwa,Dw) (1.8)

where DT is the total damage, Ds is the surge damage, Dwa is the wave damage,

and Dw is the wind damage.

1.2.8 Storms of Interest and Validation

This sectionwill discuss the storms thatwere selected for the coastal risk assessment,

as well as the validation for the coupled SWAN+ADCIRC model for these storms. The

simulations were performed for both historical and future storms. The historical storm

that was selected as primary importance was Hurricane Sandy due to its recent impact,

and the availability of the NECOFS WRF wind data. Large winter storms, also known

as Nor’easters, were simulated in forecast mode and validated. However, these storms

produced little damage to the study area, and for this reason a hypothetical future storm

that would result in damage was used from the NACCS storm database. Both the

Hurricane Sandy and NACCS storm wind speeds did not exceed the 60 mph threshold in

the study area for the calculation of wind damage. In this risk assessment the 100-year

return wind speed was derived from the ATC website, and used for the wind damage

calculations. The damage was initially calculated just from the effects of storm surge

and wave attack, with the wind damage kept separate.

Hurricane Sandy occurred in late October 2012. When it made landfall in New

Jersey it was only a post-tropical cyclone, but was such a large storm in terms of radius

of maximum wind that it had strong surge impacts to the whole Northeast. The track of

Hurricane Sandy is shown in Figure 1.16. The combination of the storm surge and wave

heights from this storm produced damage to the southern coastal communities of Rhode
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Island. In many areas the dunes were fully eroded leading to over-topping, allowing the

storm effects to propagate further inland.

Fig. 1.16. Hurricane Sandy track including radius of maximum wind in nautical miles
(nm).

To ensure that the coupled SWAN+ADCIRCmodel was accurately simulating storm

surge and wave heights a model validation was performed. For this study the validation

was done by extracting NOAA recorded time series for water levels and wave heights at

certain locations, shown in Figure 1.17. There were two tidal gauge stations used in this

region: Newport (8452660) and Providence (8454000). The wave buoy used is located

to the southeast of Block Island (Station 44097). The validation for Hurricane Sandy’s

water level and wave heights is shown in Figure 1.18. The coupled model performs well

in simulating the water level at both locations, but has an issue at the beginning of the

simulation. This can be attributed to the ramp function used in the model as it takes the

model time to bring the tides up to phase. The model tends to underpredict the water

levels slightly at both locations, but accurately captures the peak surge values. The Root
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Mean Square Error (RMSE) values were 0.21 m at Newport and 0.24 m at Providence.

The difference between the recorded and modeled peak water level is shown in Table 1.5,

with both locations within 0.20 m of the observed value. Computed and observed wave

heights were also compared. There was a discrepancy at the beginning of the simulation.

This likely due to either the ramp function taking time to get the simulation up to speed

or issues in the initial wind data, but regardless it estimates the timing and peak of the

wave heights accurately. The RMSE for the significant wave height was 0.93 m for the

entire simulations, which improves to 0.57 m when the error in the initial stage of the

simulation was ignored. Table 1.5 shows that the difference between the modeled peak

significant wave height and the observed was 0.08m. Even with the small discrepancies

that were present it can be concluded that the model is performing well as it is reasonably

close to the recorded values, and captured the timing of the storm correctly.
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Fig. 1.17. Location of tidal and wave stations for model validation in Rhode Island.
NOAA PVD is the Providence (8454000) tidal station, NOAA NPT is the Newport
(8452600) tidal station, and NOAA BI is the wave station (44097).
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Fig. 1.18. Coupled SWAN+ADCIRC model validation for Hurricane Sandy water level
at Newport and Providence tidal stations, and for significant wave height at Block Island
wave station. The corresponding RMSE values were 0.21 m, 0.24 m, and 0.93 m,
respectively.

Table 1.5. Hurricane Sandy modeled and recorded peak value comparison.

Water Level
Station Modeled (m) Recorded (m) Difference (m) Error (%)
Newport 1.80 1.96 0.16 8
Providence 2.02 2.17 0.15 7

Significant Wave Height
Station Modeled (m) Recorded (m) Difference (m) Error (%)

Block Island 9.40 9.48 0.08 1

During the period of this study two large Nor’easters occurred for the region that

were used to test the forecast system. The first event was Nor’easter Stella, which was the

most significant extratropical storm event of 2017, with the peak of the storm occurring

on March 15th for Rhode Island. This storm produced levels of coastal flooding in New
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Jersey and brought snowfall totals between 3 to 5 ft to areas across the Northeast. The

second eventwasNor’easter Riley, whichwas the largest andmost damaging extratropical

storm event of 2018 at the time of this report. The peak of this storm occurred on March

3rd for Rhode Island. Like Nor’easter Stella, this storm produced large quantities of

snow, but the coastal flooding was much greater in comparison. The coastal flooding

from this storm resulted in damage to parts ofMassachusetts, New Jersey, and NewYork.

In both cases, the forecast system was run before the expected peak of the storm to test

the systems ability to properly forecast the maximum storm surge and wave heights. The

results of the forecast simulations for these storms are shown in Figure 1.19 and 1.20,

respectively.

The first validation for Nor’easter Stella shows good agreement between the model

results and the observed data for both water levels and wave heights. In this forecast

simulation, the RMSE value for water level was 0.16 m and was 0.58 m for significant

wave height. The peak value comparison between modeled and observed values is

shown in Table 1.6. The modeled peak surge value had an error of 12% and the peak

significant wave height value had an error of 10%. Towards the end of the forecast period

for the wave heights the system underpredicts the peak by about a meter, and continues

to underpredict by a meter for the rest of the simulation. For the Nor’easter Riley

simulation, the water level for was predicted well at both Newport and Providence with

RMSE values of 0.23 m 0.32 m, and the significant wave height matched observations

well at the initial stages of the simulation with a RMSE value of 0.92 m. The significant

wave height in the forecast period was overpredicted by approximately a meter.

For the peak value comparison, the water levels had an error of 2% and 3% at

Newport and Providence, and the significant wave height had a peak error of 1%, all

shown in Table 1.7. These results show a noticeable error that occurs around March 3rd

causing the water level to behave unexpectedly, and the wave heights around the peak

38



of the storm to be underestimated. The discrepancy was most significant in the wave

height results, and it is likely that the issue causing these errors was in the wind data. To

investigate if this was the reason, forecast wave height simulations that were performed

on March 2nd and March 5th were further analyzed, shown in Figure 1.21. Both forecast

system wave height results align much better with observations, capturing the ramp up

to the storm peak and the actual peak of the storm well. Towards the tail-end of the

storm both simulations tend to overpredict the wave heights by around a meter again.

The RMSE values for these wave height results were 0.85 m and 0.80 m, and had peak

errors of 13% and 15%. It was concluded that there was an issue in the wind data for the

period of largest error in the previous simulation run on March 3rd, Figure 1.20.
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Fig. 1.19. Comparison of Winter Storm Stella forecast system results to observed water
levels at the Newport tidal station and to significant wave heights at the Block Island
wave station. For this forecast simulation, the RMSE values were 0.16 m at Newport
and 0.58 m at Block Island. The blue region denotes the hindcast period and the
green region denotes the forecast period. This simulation was run on March 13, 2017
(Hayward, 2017).

Table 1.6. Nor’easter Stella modeled and recorded peak value comparison.

Water Level
Station Modeled (m) Recorded (m) Difference (m) Error (%)
Newport 0.87 0.99 0.12 12

Significant Wave Height
Station Modeled (m) Recorded (m) Difference (m) Error (%)

Block Island 6.22 6.90 0.68 10
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Fig. 1.20. Comparison of Winter Storm Riley forecast system results to observed water
levels at the Newport and Providence tidal stations, and to significant wave heights at the
Block Island wave station. For this forecast simulation, the RMSE values were 0.32 m,
0.23 m, and 0.92 m, respectively. The blue region denotes the hindcast period and the
green region denotes the forecast period. This simulation was run on March 3, 2018.
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Fig. 1.21. Comparison of Winter Storm Riley forecast system significant wave height
results to observed significant wave heights at the Block Island wave station. The top
simulation was run on March 2, 2018, and had an RMSE of 0.85 m. The bottom
simulation was run on March 5, 2018, and had an RMSE of 0.80 m. The blue region
denotes the hindcast period and the green region denotes the forecast period.

Table 1.7. Nor’easter Riley modeled and recorded peak value comparison.

Water Level
Station Modeled (m) Recorded (m) Difference (m) Error (%)
Newport 1.29 1.31 0.02 2
Providence 1.56 1.60 0.04 3

Significant Wave Height
Run Date Modeled (m) Recorded (m) Difference (m) Error (%)
March 2nd 6.65 5.90 0.75 13
March 3rd 5.82 5.90 0.08 1
March 5th 6.78 5.90 0.88 15

These winter storms were useful in testing the forecast systems ability to accurately

forecast the storm surge and wave heights in real-time. However, because these winter

storms did not produce significant damage to the study area they were not implemented

into the risk assessment system for this study. Instead a synthetic storm from the

NACCS study was used as a 100-year storm for the study area. The synthetic storm
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selected was storm #492, which had a storm surge around 2.0 m greater at Newport

than either Nor’easter. The track for this storm including radius of maximum wind

is shown in Figure 1.22. This synthetic storm was chosen because its peak storm

surge value in Newport, RI closely matched the NOAA upper 95% confidence interval

annual exceedance probability curve for the 100-year return period storm surge level for

Newport. This NOAA curve for Newport is shown in Figure 1.23. The blue circle on the

figure marks the water level value for the upper 95% interval, which is 2.80 m referenced

to Mean Higher High Water (MHHW). This converts to 3.35 m referenced to NAVD88,

and can be directly compared to the synthetic storm water level of 3.27 m (NAVD88),

which shows a close correlation in values. This synthetic storm produces a water level

of 2.89 m in Charleston, a difference of 0.38 m from the Newport value.

Fig. 1.22. NACCS synthetic storm #492 track including radius of maximum wind in
nautical miles (nm). The forward motion of this storm was 60 mph.
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Fig. 1.23. NOAA annual exceedance probability curve for their Newport, RI tidal gauge
station. The mean value is shown by the bold black line and the upper/ lower 95%
confidence values are shown by the lighter black lines. The blue circle denotes upper
95% confidence interval value for the 1% annual water level (NOAA, 2013).

The water level output for the regional model for the synthetic 100-year storm was

compared to NACCS save point data at Newport and Charlestown for this storm. This is

shown in Figure 1.24, which shows a close correlation at both save point locations. The

difference between the regional model and the NACCS save point data at Newport was

0.17 m and at Charlestown was 0.25 m. At the beginning of the simulation comparison

a notable difference can be seen, which is a result of the regional model simulation

including the effects of tides. This comparison was performed to ensure the regional

model was capable of properly simulating the NACCS storm.
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Fig. 1.24. Water level comparison of the regional model outputs for the synthetic 100-
year storm to save points for NACCS storm #492 simulation outputs at Newport and
Charlestown.

In the event of large tropical storms there is a high likelihood of dune erosion. This

was made evident during Hurricane Sandy when many dune systems were over-topped.

Numerical models have been developed that attempt to capture this erosion during the

simulation. XBeach is an example of a sediment transport model that analyzes beach

erosion. It is a fully integrated sediment transport model comprised of several mod-

ules: short wave, hydrodynamic and long wave, sediment transport, and morphologic

(Roelvink et al., 2009). It can be forced with results from a coupled SWAN+ADCIRC

model, and was shown to perform well in Charlestown, RI (Schambach et al., 2018).

However, this XBeach model is very computationally expensive, and would be imprac-

tical to implement in this risk assessment system for this reason.

Instead, a modified eroded dune profile was added into the regional model for the

Charlestown study area. This profile was loosely based on the 100-year storm dune

profile developed by Brian Oakley, found in his technical report (Oakley, 2016). The

term loosely was used because the coupledmodel works over an unstructured grid, which

45



does not guarantee nodes to be placed on/behind the dune system to fully capture the

profile. For future studies this is one of the areas that could be improved by redeveloping

the model domain to fully represent the dune profile. An example cross-section for this

100-year dune profile for Charlestown is shown in Figure 1.25. The figure shows that the

peak dune elevation is decreased by roughly 2 m and the dune is flattened backwards into

the coastal pond/marsh areas. This reduction in dune elevation allows stronger storm

effects to propagate inland.

Fig. 1.25. Cross-section of the 100-year storm dune profile in Charlestown.
Shows dune height (h) versus shore distance (X), vertically referenced to NAVD88
(Grilli et al., 2017).

Figure 1.26 shows the difference between the dune intact and dune eroded digital

elevation models (DEM) used for the regional model in the study area. Areas marked

by the orange and red colors show locations where the dunes were higher in the intact

case, and the blue colors show areas that were higher in the dune eroded case. This

means that the bright colors are the locations where the dunes were eroded and flattened

backwards to fill in the blue areas for the dune eroded DEM, which is consistent with

the cross-section profile shown in Figure 1.25.
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Fig. 1.26. Difference between the dune intact and dune eroded DEMs focused on
Charlestown.

The simulations that were performed for the risk assessment were Hurricane Sandy

and a synthetic 100-year storm, and in both cases simulations were performed with the

dunes intact as well as with the dunes eroded. The same dune eroded profile was assumed

for Hurricane Sandy to allow for a worst case scenario for the storm. Unfortunately,

neither storm had a wind speed in the study area greater than the 60 mph wind fragility

curve cut-off. To include wind damage, it was calculated using the published 100-year

wind speed from the ATC website. The wind damage calculation was originally kept

separate from the other damage calculations for the synthetic 100-year storm (i.e. storm

surge and wave attack). This was done since the synthetic 100-year storm that was used

did not have large enough wind speeds to result in damage. As a worst case scenario, the

the 100-year storm surge event was coupled with the 100-year wind speed event with the

eroded dune profile. It should be noted that this could also have been done for Hurricane
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Sandy (a 25-year storm surge event) by coupling it with the 25-year wind speed event.

In this scenario the wind speed did not produce any damage to the study area, so it was

ignored.

An important assumption that was made in these storms was that the 100-year wave

event occurred with the 100-year storm surge event. To add validation to this assumption,

Wave Information Studies (WIS) stations in the regionalmodel domainwere investigated.

These stations have published 100-year wave event values based on an extreme analysis

of 35 years worth of wave data. Four stations located near Block Island were selected,

and the corresponding values were compared to the coupled SWAN+ADCIRC model’s

significant wave height results for the synthetic 100-year storm. This comparison is

shown in Table 1.8. The error between the WIS station values and the modeled values

were all below 6%, and within 0.7 m of each other. This close correlation allows for the

conclusion that assuming the 100-year storm surge event and 100-year wave event occur

simultaneously was reasonable in this case.

Table 1.8. Comparison of the 100-year wave event value between WIS stations and the
coupled SWAN+ADCIRC model.

Water Level
WIS Station ID WIS Hs (m) Modeled Hs (m) Difference (m) Error (%)

63079 9.9 10.3 0.4 4
63095 11.0 11.7 0.7 6
63098 10.1 10.2 0.1 1
63101 10.8 11.5 0.7 6

It was also important to investigate if the 100-year synthetic storm produced the

100-year wind speed to justify a separate wind speed being used for the wind damage.

This is shown in Table 1.9, which shows the synthetic 100-year storm characteristics

compared to published values for storm surge, wave height, and wind speed. The storm

surge values comes from NOAA, the wave height is from a WIS station, and the wind

speed is from the ATC website. The table reinforces the fact that the synthetic 100-year
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storm does not result in the 100-year wind speed, but again it does results in the 100-year

storm surge and 100-year wave height.

Table 1.9. Comparison of the synthetic 100-year storm with published 100-year storm
surge, wave height, and wind values.

100-year Storm Characteristics
Event NACCS 492 Published

100-year Storm Surge (m) 3.3 3.4
100-year Wave Height (m) 10.3 9.9
100-year Wind Speed (m/s) 28.3 50.0

1.3 Results

The integrated modeling system was used to perform a risk assessment to

Charlestown for two main storm scenarios: Hurricane Sandy and the synthetic 100-

year storm. In both scenarios simulations were performed for the dunes remaining intact

as well as the dunes being eroded. Originally, a decoupled wind risk assessment was

done for the 100-year wind event, and later these damage estimates were coupled with

the 100-year storm surge damage estimates. The final results are presented in the form of

damage maps that visually display the estimates of damage for each individual structure.

For space purposes only the max structural damage is presented, but the minimum and

most likely damage estimates are also readily available.

1.3.1 Historical Storm Damage Assessment
Hurricane Sandy

The first storm scenario implemented was Hurricane Sandy with the dunes remain-

ing intact. Figure 1.27 displays the results from the SWAN+ADCIRC simulation focused

on the study area, where (a) shows the water level, (b) shows the controlling wave crest

height, and (c) shows the total water level. The total water level was defined as the

addition of (a) the water level and (b) the controlling wave crest. It is important to note

that these results showed little to no dune over-topping as a result of the dunes not being

eroded. These results can be directly compared to the next simulation, which was the

49



scenario where the dune system was eroded, shown in Figure 1.28. The effect from

removing the dunes is evident due to the increased water level and wave heights in the

coastal pond. With the dunes eroded larger wave heights were capable of propagating

further inland. This will result in increased damage to structures along the pond. To

allow this to be more easily observed, the difference in water level, wave crest heights,

and total water level between the dune eroded and dune intact cases is shown in Figure

1.29. This figure shows the removal of the dune system has a greater affect on the wave

heights.

(a) (b)

(c)

Fig. 1.27. Coupled SWAN+ADCIRC model simulation results for Hurricane Sandy
with dunes intact focused on the Charlestown study area: (a) water level, (b) controlling
wave crest, and (c) total water level. The black line displays the boundary of the regional
model’s domain, and is shown on all subsequent figures.
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(a) (b)

(c)

Fig. 1.28. Coupled SWAN+ADCIRCmodel simulation results for Hurricane Sandy with
dunes eroded focused on the Charlestown study area: (a) water level, (b) controlling wave
crest, and (c) total water level.
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(a) (b)

(c)

Fig. 1.29. Difference between the Hurricane Sandy results for the dunes eroded and
intact: (a) water level, (b) controlling wave crest, and (c) total water level.

To further elaborate on the implications of the dune system failing, Figure 1.30 was

created. This figure displays a transect taken along the dunes in front of the coastal pond,

showing the total water level over the DEM for the dunes remaining intact and the dunes

being eroded. As reference, this transect was taken in approximately the same location

as transect 2 from the STWAVE and SWAN comparison transects. The transect in the

figure aids in visualizing the effect the dunes had on the storm effects. It shows in the

intact case a dune elevation that is high enough to prevent over-topping from the storm

effects (red/black lines). When the transect is viewed in the eroded case the decrease in

dune elevation is easily observed (roughly 2 m), leading to the uninterrupted propagation

52



of the storm effects into the coastal pond (blue/green lines).

Fig. 1.30. Total water level transect taken in the Charlestown study area for Hurricane
Sandy. Approximate transect location corresponds to Transect 2 shown in Figure 1.8.

The first damage estimate map is shown in Figure 1.31, corresponding to the dune

intact scenario for Hurricane Sandy. The map shows that the study area was fairly

resilient to the effects of Hurricane Sandy when the dunes remained intact. A total of

55 structures were estimated to experience damage, and in most cases the damage was

less than 50%. Only 9 structures were estimated to have damage greater than 50%. This

50% mark was determined to be an important factor because if a structure experiences

structural damage equal to or exceeding 50% theCoastal ResourcesManagement Council

(CRMC) for Rhode Island enforces the homeowner to rebuild the structure to the new

building codes. The figure also shows that most of the damage that occurred in the study

area was to the structures located in the low-lying areas along the coastal pond. The

breakdown of damage by prototype is shown in Table 1.10.
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Fig. 1.31. Maximum percent damage by structure for Charlestown from Hurricane
Sandy with dunes intact.

Figure 1.32 displays the damage estimate to the study area from Hurricane Sandy in

the scenario where the dunes were eroded. In this case, the number of affected structures

has increased, as well as the severity of damage. The total structures damaged was 160,

meaning that 105 additional structures were affected due to the removal of the dunes.

Additionally, 67 structures were damaged 50% or greater, which was an increase of 58

structures. This was expected as the removal of the dune system was shown to have a

substantial impact on the storm effects in the study area. Table 1.10 shows the breakdown

of damage by prototype, and the comparison of the estimated damage between the two

scenarios for Hurricane Sandy. Unfortunately, an observed damage dataset following

Hurricane Sandy was not available for comparison. This would have allowed for the

validation of the modeled damage estimates. Without the model validated, the results
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should not be viewed as exact damage calculations, but instead as an indicator of the

high vulnerability areas in the community.

Fig. 1.32. Maximum percent damage by structure for Charlestown from Hurricane
Sandy with dunes eroded.
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Table 1.10. Summary of modeled structural damage for Hurricane Sandy for both dunes
intact and eroded.

Dunes Intact
Prototype Description Structures Damaged Structures Damaged > 50%

5A 1 -story, no basement 4 3
6B 2-story, basement 45 6
7A Open Stilts 2 0
7B Enclosed Stilts 4 0

Total Structures 55 9
Dunes Eroded

Prototype Description Structures Damaged Structures Damaged > 50%
5A 1-story, no basement 19 10
6B 2-story, basement 114 56
7A Open Stilts 14 0
7B Enclosed Stilts 13 1

Total Structures 160 67

1.3.2 Future Storm Damage Assessment
Synthetic 100-year Storm Surge Event

A synthetic 100-year storm surge event from the NACCS dataset was implemented

to represent a future storm for the study area. The synthetic 100-year storm was sim-

ulated for the dunes remaining intact and being eroded. The results from the coupled

SWAN+ADCIRC are shown in Figure 1.33, where (a) is the water level, (b) is the con-

trolling wave crest height, and (c) is the total water level. In the figure it can be observed

that the dune system has been over-topped in several locations even with the dunes intact.

Figure 1.34 displays the results for the simulation when the dune system was eroded.

The main difference in these results is the entire dune area is fully over-topped with the

dune system eroded. In general, the severity and flood extent remained the same in both

cases. This was a result of the dune intact case also having over-topping, allowing the

storm effects to propagate into the study area. The differences between the dune intact

and dune eroded results are shown in Figure 1.35. This figure helps to reaffirm the

conclusion that the main area of difference is along the dune system.
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(a) (b)

(c)

Fig. 1.33. Coupled SWAN+ADCIRC model simulation results for the synthetic 100-
year storm with dunes intact focused on the Charlestown study area: (a) water level, (b)
controlling wave crest, and (c) total water level.
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(a) (b)

(c)

Fig. 1.34. Coupled SWAN+ADCIRC model simulation results for the synthetic 100-
year storm with dunes eroded focused on the Charlestown study area: (a) water level, (b)
controlling wave crest, and (c) total water level.
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(a) (b)

(c)

Fig. 1.35. Difference between the snythetic 100-year results for the dunes eroded and
intact: (a) water level, (b) controlling wave crest, and (c) total water level.

A transect was taken in the study area to show the difference between the case of

the dunes remaining intact and being eroded. The transect is shown in Figure 1.36. The

dune intact DEM is shown by the black dotted line and the dune eroded DEM is shown

by the green dotted line. The figure shows there was a decrease of about 2 m in the

dune elevation. This transect also displays a location where the dune was able to prevent

over-topping when intact (red line), but is then easily over-topped when the dunes are

eroded (blue line).
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Fig. 1.36. Total water level transect taken in the Charlestown study area for the synthetic
100-year storm. Approximate transect location corresponds to Transect 2 shown in
Figure 1.8.

The damage estimate for the synthetic 100-year storm with the dunes remaining

intact is shown in Figure 1.37. In this case a total of 365 structures experience damage,

with 316 of those structures experiencing damage 50% or greater. The damage occurred

mainly to the structures in the low-lying areas surrounding the coastal pond, along with

several structures near the coastline. These results show the structures that were affected

by the storm were substantially impacted, with the majority being severely damaged (>

50%). The breakdown of the damage in the study area on a prototype basis is shown in

Table 1.11.

60



Fig. 1.37. Maximum percent damage by structure for Charlestown from the synthetic
100-year storm with dunes intact.

Figure 1.38 shows the damage estimate corresponding to the synthetic 100-year

storm with the dune system eroded for the simulation. This scenario estimated a total of

414 structures being damaged, and 378 of those structures damaged 50% or greater. The

very susceptible low-lying areas along the coastal pond experienced the most structural

damage. This map shows an increase in the number of damaged structures along the

coastline as well, which was a result of removing the dunes. The summary of damage

by prototype is shown in Table 1.11. An important conclusion is that between both

storm damage estimates (Hurricane Sandy and 100-year) the most affected structure was

always 6B (2-story, basement). This structure type is most affected due to the presence

of a basement, allowing the damage to begin occurring before storm effects reach the

FFE. The same conclusion was made in other risk assessment studies for coastal areas
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(Small et al., 2016; Spaulding et al., 2016).

Fig. 1.38. Maximum percent damage by structure for Charlestown from the synthetic
100-year storm with dunes eroded.

Table 1.11. Summary of modeled structural damage for the synthetic 100-year storm
for both dunes intact and eroded.

Dunes Intact
Prototype Description Structures Damaged Structures Damaged > 50%

5A 1-story, no basement 80 78
6B 2-story, basement 246 217
7A Open Stilts 18 6
7B Enclosed Stilts 21 15

Total Structures 365 316
Dunes Eroded

Prototype Description Structures Damaged Structures Damaged > 50%
5A 1-story, no basement 85 81
6B 2-story, basement 267 242
7A Open Stilts 29 24
7B Enclosed Stilts 33 31

Total Structures 414 378
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A unique aspect of this study was the ability to compare this coastal risk model’s

results directly to another study that performed a similar risk assessment in the same

study area. Spaudling et al., (2016) performed a risk assessment to Charlestown for a

100-year storm with both an intact and an eroded dune profile, and also incorporated the

effects of SLR. The study implementedwater levels based onNACCS save point data, and

simulated waves using STWAVE with a grid resolution of 10 m (Spaulding et al., 2016).

Besides the real-time forecasting option, the main differences between the two risk

assessments were the numerical models and the resolution of the model domains. Both

studies implement the NACCS damage functions allowing for the comparison of damage

estimates.

Figure 1.39 shows the total water level comparison at the same scale between the

two studies, with the major areas of difference highlighted by the purple boxes. In both

the dune intact and dune eroded scenario Spaulding et al., (2016) estimates a larger

flood extent and higher total water levels. The biggest difference is in the intact case for

Spaulding et al., (2016) the dunes are fully over-topped. Figure 1.40 shows the damage

maps for the two studies, where (a) and (b) are the comparison between the dunes intact

estimates and (c) and (d) are the comparison between the dunes eroded estimates. The

purple boxes indicate the major areas of difference in the number of affected structures

between the two studies. The detailed comparison for each dune scenario is shown

in Table 1.12 and Table 1.13, respectively. In both dune scenarios, Spaulding et al.,

(2016) predicts a larger number of structures to be damaged. For the dune intact case

the difference in affected structures was 504, and for the dune eroded case the difference

was 551 structures. The difference in the number of structures damaged greater than

50% was less dramatic, this study predicted 95 more structures in the intact scenario,

and Spaulding et al., (2016) predicted 163 more structures in the dune eroded scenario.

The reasons for these differences will be addressed in the discussion section.
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(a) (b)

(c) (d)

Fig. 1.39. Comparison of total water level estimates in meters with dunes intact from (a)
this study and (b) Spaulding et al., (2016), and with dunes eroded from (c) this study and
(d) Spaulding et al., (2016). The purple boxes denote the areas of the major differences.

64



(a) (b)

(c) (d)

Fig. 1.40. Comparison of damage estimates with dunes intact from (a) this study and (b)
Spaulding et al., (2016), and with dunes eroded from (c) this study and (d) Spaulding et
al., (2016). The purple boxes denote the areas of the major differences.
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Table 1.12. Comparison of modeled damage estimates between this study and Spaulding
et al., (2016) for the 100-year storm with the dunes intact in Charlestown, RI. Positive
difference means this study estimated more structures, and negative difference indicates
the other study estimated more structures.

Dunes Intact, this Study
Prototype Description Structures Damaged Structures Damaged > 50%

5A 1-story, no basement 80 78
6B 2-story, basement 246 217
7A Open Stilts 18 6
7B Enclosed Stilts 21 15

Total Structures 365 316
Dunes Intact, Spaulding et al., (2016)

Prototype Description Structures Damaged Structures Damaged > 50%
5A 1-story, no basement 189 17
6B 2-story, basement 618 204
7A Open Stilts 27 0
7B Enclosed Stilts 35 0

Total Structures 869 221
Difference

Prototype Description Structures Damaged Structures Damaged > 50%
5A 1-story, no basement -109 +61
6B 2-story, basement -372 +13
7A Open Stilts -9 +6
7B Enclosed Stilts -14 +15

Total Structures -504 +95
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Table 1.13. Comparison of modeled damage estimates between this study and Spaulding
et al., (2016) for the 100-year storm with the dunes eroded in Charlestown, RI. Positive
difference means this study estimated more structures, and negative difference indicates
the other study estimated more structures.

Dunes Eroded, this Study
Prototype Description Structures Damaged Structures Damaged > 50%

5A 1-story, no basement 85 81
6B 2-story, basement 267 242
7A Open Stilts 29 24
7B Enclosed Stilts 33 31

Total Structures 414 378
Dunes Eroded, Spaulding et al., (2016)

Prototype Description Structures Damaged Structures Damaged > 50%
5A 1-story, no basement 207 83
6B 2-story, basement 682 382
7A Open Stilts 36 36
7B Enclosed Stilts 40 40

Total Structures 965 541
Difference

Prototype Description Structures Damaged Structures Damaged > 50%
5A 1-story, no basement -122 -2
6B 2-story, basement -415 -140
7A Open Stilts -7 -12
7B Enclosed Stilts -7 -9

Total Structures -551 -163

1.3.3 Wind Damage Assessment
100-year Wind Event

A simplistic mono-culture decoupled wind damage assessment was performed for

the study area. The structures were assumed to possess the structural characteristics that

would result in the most damage from wind forcing. The damage estimate for the 100-

year return period wind speed (112 mph) can be viewed in Figure 1.41. This map shows

that every structure in the study area experienced minimal to moderate damage. A total

of 744 structures were estimated to receive damage between 1-10%, and the remaining

579 structures were estimated to be 20-30% damaged. The reason for the variation of the

wind damage estimates was the surface roughness value for each structure. The lower

67



the surface roughness value, the more damage the structure received.

Fig. 1.41. Percent damage by structure for Charlestown from the 100-year return wind
speed.

Combined Surge, Wave, and Wind Damage

Although the 100-year storm surge and 100-year wind speed are decoupled a com-

bined damage estimate was performed as a worst case scenario for Charlestown. This

estimate selected the highest value between inundation, wave, and wind damage as the

damage percentage for the structure. Figure 1.42 displays the damage estimate for the

synthetic 100-year storm with the dunes eroded and the 100-year wind speed of 112

mph. The results show that the severe damage was a result of the combined storm effects

of inundation and waves, and the lower damage spread throughout the study area was a

result of wind. In this scenario, every structure in the study area was estimated to receive

damage.
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Fig. 1.42. Percent damage by structure for Charlestown from the synthetic 100-year
storm surge event with dunes removed and the 100-year return wind speed.

1.4 Discussion

The coastal risk assessment in this study was performed in three phases. The first

phase was the development of the integrated model system, which involved testing and

validating the coupledSWAN+ADCIRCmodel for its ability to properly hindcast/forecast

storms. This hindcast mode was tested for Hurricane Sandy using the NECOFS WRF

wind data, and the results showed good agreement between the model’s predictions

and the recorded NOAA data for the storm. The forecast mode was verified for two

large Nor’easters that occurred, one in March 2017 and one in March 2018. The model

performed well when compared to the NOAA recorded data, but more discrepancies

were present in these predictions. This was an expected result as the system performed

forecast simulations based on forecast wind data, which has less accuracy compared to
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hindcast wind data. After the coupled model was verified, the results were implemented

into the coastal risk tool that was developed for this study to predict damage.

The second phase was to apply the developed model system to Charlestown, RI

to predict damage for a selected historical storm. The historical storm of interest was

selected to be Hurricane Sandy. When this storm impacted Rhode Island it was not

as devastating as other historical storms for the study area, but resulted in some dune

erosion and over-topping leading to levels of structural damage. The storm surge and

wave height results from the validated model for Hurricane Sandy were fed into the risk

assessment system to produce damage estimate maps on an individual structure basis.

These maps were created for a dune intact scenario as well as a dune eroded scenario.

During Hurricane Sandy, the dunes in the study area were not severely eroded, but the

eroded scenario was performed to investigate the impact an intact dune system can have

on preventing damage in smaller storm events. As expected, the number of structures

affected and the severity of damage increased in the dune removed scenario. This was

a result of larger wave heights propagating over the eroded dunes deeper into the study

area. In the dune intact case, 55 structures experienced damage, while 160 experienced

damage with the dunes removed. With the dunes intact 16% of the affected structures

were damaged greater than 50%, requiring them to build to new building codes. This

increased to 42% of the affected structures in the dune eroded case, indicating the

protection the dune system provided. The actual damage level in the study area resulting

from Hurricane Sandy was more similar to the dune intact estimates since the damage

was relatively low from this storm.

Unfortunately, a drawback of this study was the lack of an observed damage report

for Charlestown following the damage produced by Hurricane Sandy. Several attempts

were made to obtain such a dataset, with a rapid damage assessment dataset being

obtained, but this report was focused on Westerly, RI. With the lack of observed data the
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damage estimates were not validated, however the results still provide valuable insight

into the areas and structure types in the coastal community that were most vulnerable to

storm effects. In the case of Hurricane Sandy, the most vulnerable areas were the low-

lying areas directly on the coast and located around the coastal pond. The most damaged

structures were those with basements as the damage begins as water enters the basement.

Structures with low FFE values were also heavily damage, as the damage calculations

are strongly controlled by this variable. This result is in agreement with other published

risk assessment research (Small et al., 2016; Spaulding et al., 2016; Grilli et al., 2017).

The third and final phase was to demonstrate the ability of this integrated model

system to be applied in forecasting mode for a tropical/extratropical storm. Since the

forecast storms did not result in damage to the study area, the actual validated forecast

system results were not implemented into the damage assessment. Instead a hypothetical

future storm was used, which corresponded to NACCS synthetic storm #492. This storm

closely matched the upper 95% 100-year storm surge value for Newport, RI, and was

implemented as such a storm into the modeling system. Simulations for this synthetic

storm were carried out using the coupled SWAN+ADCIRC model for both a dune intact

and dune eroded scenario. Due to the magnitude of this storm the damage estimates for

the dune intact scenario show substantial damage, with 365 structures damaged and 86%

of those structures were damaged greater than the 50% mark. The removal of the dunes

resulted in a total of 414 structures damaged, with 91% of those structures damaged

greater than 50%. The damage that occurred was focused around the low-lying areas

directly along the coastal ponds, as well as the lower elevated areas of the coastline.

These damage estimates also show that due to the severity of the storm the majority of

the structures that encountered the storm effects received critical damage (>50%). In

this case, the most damaged structures were again those with basements and low FFE

values.
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A comparison between this study and the one performed by Spaulding et al., (2016)

was made. Both risk assessments utilized a 100-year storm surge event impacting

Charlestown, with Spaulding et al., (2016) implementing STWAVE as its wave model

at a higher resolution than the regional domain used in this study. The comparison

showed a large difference in the predicted total number of structures damaged for both

the dune intact and eroded scenarios. Several factors contributed to the differences,

namely boundary conditions, domain resolutions, and variations between STWAVE and

SWAN. The boundary condition for surge level in Spaulding et al., (2016) was derived

from the NACCS upper 95% confidence interval for the 100-year surge at NACCS save

points (Spaulding et al., 2015). At Newport this value is 3.93 m, which is 0.66 m higher

than the surge at Newport caused by the synthetic 100-year storm implemented in this

study. This increased water level would result in a larger flood extent, and allow larger

wave heights in the study area, increasing the total structures impacted. The resolution

of the domains were different in the study area, with the STWAVE resolution being much

higher (10 m) compared to the SWAN+ADCIRC varying resolution (10 m to 100 m).

This difference in resolution could lead to SWAN+ADCIRC underestimating the flood

extent, which would decrease the number of affected structures. The final reason for

the differences was attributed to the variations between STWAVE and SWAN that were

investigated in the methods section. As that section showed, it is possible that STWAVE

estimated wave heights on the order of 1 m or so higher than SWAN. This wave height

difference would be amplified by the increased surge level between the simulations as

well, resulting in more structures being damaged. The SWAN wave height calculations

were also done on a time-varying solution. It is not possible to determine the more

accurate risk assessment model, as neither have been validated, but both are useful tools

in highlighting the high risk areas in coastal communities. Both models highlighted the

vulnerability of the structures located around the coastal pond, and the structures located
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on the lower-lying areas of the dune system.

This risk assessment system also implemented simplified wind damage estimates

using Hazus fragility curves. The 100-year wind speed used for this assessment was 112

mph, which resulted in damage to every structure in the study area ranging from 1-30%.

Although the damage estimates were wide-spread the severity of the damage from the

100-year wind alone, even for the most susceptible structure characteristics, was fairly

low compared to the 100-year storm surge damage. This result leads to the conclusion

that in a large storm event (100-year storm surge or wind) the immediate effects of storm

surge and wave heights will be more damaging, but the wind damage will be much

more widespread. The possible combination of the effects can be devastating to coastal

communities.

A worst-case scenario was implemented in the risk assessment. This corresponded

to a 100-year storm surge and 100-year wind event occurring simultaneously with the

dune system eroded. In this case, the storm effects dominated the damage around the

coastal pond and coastline, and the wind damage dominated the rest of the study area.

The damage estimates for this scenario were clearly the worst as every structure was

affected.

Several sources of uncertainty can lead to inaccuracy in the presented results. Figure

1.43 shows the flowchart of the system color-coded according to the level of uncertainty

for each section. The higher the number/the darker the gray the more uncertainty in that

section. As the figure shows, the wind data, numerical models, and damage functions

contain uncertainty, and therefore the damage estimates do as well. The area with the

least uncertainty is the coupled SWAN+ADCIRC model because it was validated at

several locations. The area with the highest uncertainty is the risk assessment model,

because all of the previous levels of uncertainty propagate forward and are brought

together into the risk model.
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Fig. 1.43. Flowchart of the integrated modeling system with each section containing
uncertainty highlighted with a corresponding ranking. The higher number/darker gray
means more uncertainty is associated with that section.

The accuracy of wind data is crucial to the accurate prediction of storm surge and

wave heights. Torres et al., (2017) showed that wind data with an error within 20% of

the observed peak wind speed can still successfully be used to accurately model storm

surge and wave heights. This study also showed implementing poor wind data can result

in error as high as 50% in storm surge and wave height predictions (Torres et al., 2017).

The uncertainty in the wind data increases when dealing with forecast wind products, as

shown in the forecast model validations.

Numerical storm surge and wave models inherently contain a level of uncertainty,

which was investigated during the validation process. However, this validation has not

been performed for wave heights in the coastal zones/ponds due to the lack of observed

data leading to uncertainty in this area. Even with the models validated there was still

74



the potential for uncertainty throughout the domain due to possible resolution issues.

A study investigating the sensitivity of SWAN+ADCIRC results to domain resolution

found that for open areas coarse resolution (100 m to 500 m) was acceptable, but for

more inland areas (inlets, wetlands, rivers, and intertidal zones) resolution needs to be

improved (Kerr et al., 2013). The study found that a resolution between 30 m and 80 m

was sufficient for the inland areas, with the higher the resolution the better. The regional

model’s domain resolution in the study area varies from 20 m in the inlets and coastal

ponds to 200 m near the coast. For this study the resolution is adequate, but to avoid

possible uncertainty resulting from domain resolution future studies should increase the

selected study area resolution.

The largest uncertainty was in the NACCS damage functions, which was addressed

in the introduction section as well. These functions were based on observed damage

data, but these recordings were performed using a best guess as to what the actual water

level and corresponding wave height was at a location. Then these were attempted to

be related to percent of structural damage for an individual structure. Although there

might not be a better method to do this type of analysis it will lead to both over- and

under-estimates in the water levels, wave heights, and structural damage at each site,

leading to uncertainty in the damage estimates. In the case of Hurricane Sandy this

uncertainty could have been investigated if an observed damage report for Charlestown

was found to compare to the model’s damage results. Unfortunately, this was not the

case. Without a measure to compare the results to, the accuracy of the damage estimates

cannot be determined. This risk assessment system also ignores the process of wave

runup, which has the ability to increase the flood extent, and therefore the damage.

Investigating all the possible sources of uncertainty further was beyond the scope

of this study. However, because of these mentioned uncertainties it is important to view

the results more as a risk indicator rather than an exact structural damage calculator.
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This means that if one region showed numerous structures to be severely damage during

a storm, it is reasonable to assume that this area has high risk. Similar uncertainty

conclusions for damage assessments on a structure-by-structure basis were made in

other studies as well (Friedland, 2009; Grilli et al., 2017).

1.5 Conclusions

An integrated coastal risk assessment system was developed as a tool to forecast

the threat coastal communities face from significant storm effects. This system was

comprised of a coupled SWAN+ADCIRC model and a Matlab based risk assessment

model. The coupled wave-surge model is capable of predicting storm surge and wave

heights for both hindcast and forecast storm scenarios, and the risk model calculates

damage from storm surge, waves, and wind. This is notable, as previous works have not

provided an option for the real-time risk assessment of an approaching storm. In the

forecast mode the coupled model was validated for two large Nor’easters that impacted

the region, and performed well in both instances. The current configuration would allow

the system to perform the risk assessment a full 3 days prior to the storm making an

impact to the region. This system has been developed to be universally applicable to any

coastal area as long as an ADCIRC domain has been developed.

The system was first implemented for Charlestown, a vulnerable coastal community

in southern Rhode Island. It was tested for Hurricane Sandy and a synthetic 100-

year storm that acted as a possible future storm for the study area. For each storm,

simulations were performed assuming the dunes remained intact and became eroded.

As the results showed, the ability to run these simulations for both dune scenarios is

essential. The difference between the number of structures and severity of estimated

damage was significant between the intact and eroded cases. For Hurricane Sandy, the

number of impacted structures with the dunes intact was 55 and with the dunes eroded

was 160, an increase of 105 structures. Of those structures affected 16% and 42% would
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have to rebuild to new standards, respectively. An interesting finding was the removal

of the dunes had a greater impact on the Hurricane Sandy damage results compared to

the 100-year event. This was because the 100-year event over-tops the dunes in both

the intact and eroded cases, resulting in less of a change in storm effects for the study

area. For this event, the number of structures affected in the dune intact case was 365

and was 414 in the dune eroded case. This is an increase of 49, which was less when

compared to Hurricane Sandy showing the dune system provides more protection in the

smaller storm events. The 100-year event severely damaged the structures it impacted,

resulting in 86% and 91% of the structures to be damage greater than 50% in the dune

intact and eroded cases, respectively. This reinforces the conclusion that the dune system

does not provide as much protection in the large storm events. In both storm scenarios

investigated, the most vulnerable structures were two-story structures with basements,

and the most resilient were elevated structures. The structures located in the low-lying

areas around the coastal pond were also found to be very vulnerable in all scenarios.

A mono-culture wind damage assessment was implemented in this study as well,

performed for a decoupled scenario (100-year wind only) and a worst case coupled

scenario (100-year surge and 100-year wind event). The results from both cases show

that the wind damage was relatively low, between 1-30%, but was widespread throughout

the study area affecting all 1,323 structures. The location dependent surface roughness

parameter was the crucial characteristic in determining wind damage. Both scenarios

conclude that the critical damage to vulnerable coastal communities will primarily be a

result of the storm surge and wave effects, as no structure was damage greater than 50%

from just wind.

Regardless of the uncertainty present, this coastal risk assessment system is useful

in identifying the high risk areas in vulnerable coastal communities. Once identified,

the best adaptation and mitigation strategy can be determined and applied for hazard
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protection. The capability of real-time forecasting of individual structure risk is unique

to this system, and can provide vital information on approaching storms. With the

predicted change in frequency and intensity of future storms resulting from climate

change, this risk tool should prove beneficial for vulnerable coastal regions.

There are some future recommendations that would have been investi-

gated/implemented using this system if time allowed. The first is to increase the model

resolution in Charlestown (or selected study area) to fully capture the dune profile. This

would allow for a more thorough analysis of the affect the erosion of the dunes has on

the simulation results. Along the same line, a nearshore flood zone model could be

implemented, such as Xbeach, that would be dynamically capable of simulating dune

erosion instead of assuming a static profile, which is unrealistic. As mentioned earlier

these types of models are very computationally expensive, and would not be practical to

implement in the forecast mode of the system. The wind damage assessment could easily

be improved if all the necessary structural information was known. Another worthwhile

task would be attempting to determine the economic loss in terms of cost for each damage

estimate. This would require parcel information that provides the structure value, and

the development of a metric to convert structural damage to value loss. The final recom-

mendation would be to leverage to system to investigate different mitigation measures,

such as elevating structures and artificial dunes, and perform a cost benefit analysis on

the reduction of damage compared to the necessary cost for the corresponding mitigation

strategy.
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