
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2018

Positioning by Road Feature Correspondence Positioning by Road Feature Correspondence

Tyson Demarest
University of Rhode Island, tyson.demarest@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation Recommended Citation
Demarest, Tyson, "Positioning by Road Feature Correspondence" (2018). Open Access Master's Theses.
Paper 1278.
https://digitalcommons.uri.edu/theses/1278

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1278?utm_source=digitalcommons.uri.edu%2Ftheses%2F1278&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

POSITIONING BY ROAD FEATURE CORRESPONDENCE

BY

TYSON A. DEMAREST

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2018

MASTER OF SCIENCE THESIS

OF

TYSON A. DEMAREST

APPROVED:

Thesis Committee:

Major Professor Jean-Yves Hervé

 Lutz Hamel

 Peter Swaszek

 Nasser H. Zawia

 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2018

ABSTRACT

This research analyzes a new method to localize a moving vehicle within a

known road network using di↵erential odometry and a digital road map. The

technique proposes geometrically hashing road features whose curvature is great

enough to represent a distinct, measurable, real-world phenomenon. Several other

strategies using road map data to constrain a localization search are discussed.

In the recognition phase, this research proposes using a modified particle filter

provides a way to maintain, test, and resample multiple hypotheses of the vehicle’s

dead-reckoned location.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Jean-Yves Hervé for his extremely

valuable guidance, his generous patience, and his insightful lectures. He is an

institution in his own right, and his friendly presence and keen instruction are

greatly appreciated by the entire Department of Computer Science and Statistics.

I would also like to thank Dr. Lutz Hamel for his excellent lectures, many

of which inspired this research, and for his generosity in providing me with the

opportunity to address the programming language considerations specific to my

approach. Thanks also to Dr. Peter Swaszek for agreeing to be a member of my

committee and to Dr. Gérard Baudet for his inspiring lectures and scholastic guid-

ance. Additionally, I would like to thank Department Secretary Lorraine Berube

for her friendly help in preparing and filing the necessary forms with the Univer-

sity. I would also like to thank Dr. Marc Hutchison for his friendly, encouraging

advice and for being the chairman of my defense committee.

Finally, I would like to thank my lovely wife Elyse for her inspiration and

patience. Localization is not a di�cult problem when she is near.

iii

Contents

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

Contents . iv

List of Figures . vii

List of Tables . viii

List of Acronyms and Abbreviations ix

Chapter

1 Introduction . 1

1.1 Problem Context . 1

1.1.1 Distinctive Places and Features 2

1.1.2 Topometric Positioning 3

1.2 Significance of the Study . 4

1.2.1 Commercial Road Navigation 4

1.2.2 Defense Road Navigation 4

1.2.3 Extension to Indoor Localization 5

1.2.4 Game Non-Player Character Positioning AI 5

1.3 Related Work . 5

1.3.1 Map Constrained Tracking 5

1.3.2 Landmark Recognition 8

1.3.3 Geometric Hashing and Navigation 10

iv

Page

v

1.3.4 Geometric Hashing Overview 11

1.4 Thesis Statement . 12

List of References . 13

2 Methodology . 16

2.1 Architecture of the Positioning Strategy 16

2.2 Definitions . 17

2.3 Sensors and Data . 20

2.3.1 Odometric Sensor . 20

2.3.2 Map Data . 21

2.4 Data Centric Programming Language 22

2.4.1 Introduction . 22

2.4.2 Jog Modeling Language (JogML) 23

2.4.3 JogBin Data Format . 26

2.4.4 JogML Improvement Considerations 28

2.5 Training Phase: RoadMapHash Algorithm 29

2.5.1 Description . 30

2.5.2 Complexity Analysis . 33

2.5.3 Distributed RoadMapHash 38

2.6 Tracking Phase: RoadMapTrack 42

2.7 Localization Phase: RoadMapFilter Algorithm 43

2.7.1 Motion Model . 43

2.7.2 Uncertainty . 45

2.7.3 Turn State Machine . 46

Page

vi

2.8 RoadMapFilter . 46

List of References . 47

3 Testing Proposal . 57

3.1 Performance Criteria . 57

4 Conclusions and Future Research 59

List of References . 60

BIBLIOGRAPHY . 61

List of Figures

Figure Page

1 Overall System Diagram . 16

2 Example Jogs and their Nodes 18

3 Example Turn Event Key-Value Pair 20

4 OBDII Parameter ID Discovered by Logging During Short
Drive. Movement periods highlighted in blue. 50

5 Example OSM Roads in Newport, RI. Image from JavaOpen-
StreetMaps (JOSM). 51

6 JogML Grammar in Extended Backus-Naur Form (EBNF) . . 51

7 JogML Example . 52

8 High Curvature Areas Highlighted. Google Image. 53

9 Path Segment Shape Identified, Map Data Known 53

10 Path Segment is Matched to Road Map Data 53

11 Several Turn Events Terminating at Red Turns, Each Originat-
ing from a Single Green Turn 54

12 Work Distribution . 54

13 Distributed Speedup . 55

14 Di↵erential Odometry by Rear Wheel Motion 55

15 Change in distance and direction are given in a reference frame
of Feature fk. 56

16 Turn State Transition Table . 56

vii

List of Tables

Table Page

1 JogBin Header Structure . 27

2 JogBin Node Structure . 27

3 JogBin Jog Structure . 27

viii

LIST OF ACRONYMS AND ABBREVIATIONS

ABS Anti-lock Braking System

CUKF Constrained Unscented Kalman Filter

CAN Controller Area Network

DGPS Di↵erential Global Positioning System

EKF Extended Kalman Filter

GPS Global Positioning System

GNSS Global Navigation Satellite System

IMU Inertial Measurement Unit

INS Inertial Navigation System

KITTI Karlsruhe Institute of Technology and Toyota Technological Institute

MCL Monte Carlo Localization

OBD On Board Diagnostic

OSM OpenStreetMaps

PID Parameter ID

SLAM Simultaneous Localization and Mapping

UKF Unscented Kalman Filter

ix

CHAPTER 1

Introduction

1.1 Problem Context

Current positioning techniques fall within one of two categories: 1. Dead-

reckoning (sometimes written as ded-reckoning) where position is deduced metri-

cally from previously known positions, and 2. Position Fixing, where position is

determined by relation to infrastructure or landmarks [1]. Below is a brief summary

of each.

With dead-reckoning a navigator determines his or her position by accumu-

lating movements, i.e. displacements in position, and adding them to the last

known position. An everyday instance of dead-reckoning is the use of step-by-step

directions to a lost motorist.1 Here is a colloquial example: “Go to the stop sign

and take a right. Drive three blocks and the post o�ce is on your left.” The start-

ing position is where the conversation took place, and the change in position is

given. A distance measure, which in this example is the number of blocks, creates

a spatial reference frame in which odometry plays a necessary role. To use the

directions the navigator must count blocks. Additionally, because the navigator in

the example is on a surface and not a merely a line, the navigator must also keep

track of heading.

The second type of navigation is position fixing. Position fixing determines

one’s absolute location by using environmental or infrastructural indicators. This

navigation technique does not start with a known position but aims to resolve it

from surrounding fixtures. In the above example, the lost motorist might be aware

of the relative position of a shopping center and stop to find its absolute position

1As an aside, turn by turn instructions are known as “progressive taxi instructions” in the
aviation community [2].

1

on a map. The shopping center is the landmark and the navigator’s recognition

of it instigates a qualitative event [3]. Additionally, humans associate these kinds

of landmarks with their adjacency to other landmarks in a topological way. In

the above example, it is unlikely that the direction-giver links each landmark in

those directions by some geometric algorithm, but rather through a topological

connectedness, the memory of which is enhanced with numbers for precision. The

direction-giver might have thought before speaking, “If I get to the stop sign, then

I’ll be close to the post o�ce. If I take a left there I’ll get to the post o�ce in what

feels like about three blocks.”

A more sophisticated and popular example of position fixing is Global Navi-

gation Satellite Systems (GNSS), such as GPS, in which satellites transmit details

about their own position and time signals to navigators on the ground. In GNSS

the ground receiver uses the distance from each GNSS satellite to trilaterate its own

position. GNSS is an example of infrastructure-based positioning, which requires

a pre-existing man-made system in place.

1.1.1 Distinctive Places and Features

Kuipers and Byun in [4] define a “distinctive place” as “the local maximum

found by a hill climbing control strategy, given an appropriate distinctiveness mea-

sure.” However, we will relax this definition to be “the location of an appropriately

high distinctiveness measure.” We do this for two reasons. First because the re-

search here describes a passive system, where no control inputs influence the system

and position is estimated only after odometric measurements are made, we do not

have the ability to “hill climb” to maxima. Second, as will be described in the

Methodology Section, because we quantify the curvature of radius of the road to

which a vehicle is bound, we cannot maximize this quality even by driving it in a

2

slightly di↵erent way.2

To convey the importance of using landmarks and “distinctive places” in any

global localization strategy, it is instructive to examine techniques that do not use

features with obvious distinctiveness, but through automation recognize distinc-

tive features even still. Such an example is Terrain Reference Navigation (TRN),

in which environmental features sampled (typically by radar) belong to set of ele-

vations that exist on a continuous domain, i.e. the set real numbers between the

lowest and highest terrain [1]. The navigator using TRN continues to accumulate

elevation measurements and their relative positions until a su�cient terrain sig-

nature is generated and matched with a previously acquired database of terrain

elevations. The words “su�cient terrain signature” should evoke the same idea

of landmarks. The time series elevation data, despite being on a continuous do-

main and uninteresting to humans, becomes enough to distinguish itself from other

possibilities in a known dataset.

1.1.2 Topometric Positioning

The positioning solution proposed in this research derives from a human’s abil-

ity to navigate with turn-by-turn directions and simultaneously to locate oneself

by recognizing landmarks along the way. This instinctual approach to human po-

sitioning forms a subtle nexus between geometric navigation environments where

spatial relations determine one’s position in a reference frame, and qualitative or

topological navigation environments which highlight discrete landmarks whose ad-

jacencies form a navigable graph. The fusion of these environments has been called

topometric localization [5].

2We remark here that although measuring the path of a vehicle during a lane change in the
middle of a turn would indicate a di↵erent curvature than if the vehicle did not change lanes
during the turn, we note that this does not maximize the distinctiveness of the road’s curve, and
instead e↵ectively adds noise to the measurement of it.

3

1.2 Significance of the Study

For most people satellite navigation is the sole solution to the global position-

ing problem. However, alternative positioning strategies can augment GNSS in

several common situations, and provide a safeguard against GNSS outages. The

following subsections describe situations where a solution to road-based GNSS-free

localization might be useful.

1.2.1 Commercial Road Navigation

Global Positioning System authorities including The United States Air Force

guarantee ongoing availability and maintenance of American GPS service [6]. Nev-

ertheless, GNSS signals are easily jammed, interfered with, or blocked by weather

because they are relatively weak [7]. Accounting only for free-space dissipation,

the received signal’s strength is approximately -120dBm at the earth’s surface [7].

Additionally, a GPS receiver demands even greater signal strength than that re-

quired for tracking, and a GPS receiver may demand a even more time to get an

initial position in bad weather.

On the other hand, intrinsic sensors such as vehicle odometers can immediately

begin providing data to use for estimating location, despite any natural or man-

made radio frequency interference.

1.2.2 Defense Road Navigation

Although mention of military positioning systems conjures up the image of

soldiers, naval vessels, and fighter jets, there are many use-cases of military posi-

tioning that are similar to their civilian counterparts. Road-based vehicle patrols

or re-supply routes both require positioning that is constrained to a road network,

and both might take place in a GNSS-denied environment [8]. Further, the threat

of GNSS failure impinges most greatly those who are least trained to navigate

4

without it. Whereas the loss of GNSS would a↵ect pilots, sailors, and expert sol-

diers to some degree, such a loss might cripple some other military units’ ability

to navigate foreign roads and arrive on time.

1.2.3 Extension to Indoor Localization

With modification this research can be applied to indoor positioning. Indoor

positioning is an active area of study among the major technology companies, and

a lot of resources are being spent to bring indoors the high level of positioning

service that is o↵ered outside by GPS [9].

1.2.4 Game Non-Player Character Positioning AI

In many games a non-player character (NPC) is imbued with an automatic

awareness of location. On the other hand, the player is often forced to find himself

within the game world through trial and error. The technique researched here could

be cheaply integrated into the artificial intelligence of NPCs and give them a more

realistic ability to learn their locations. Here, the “mapping” part of Simultaneous

Localization and Mapping (SLAM) might or might not belong well to the game

story because the player or NPCs could already have a complete map at their

disposal [10, 11].

1.3 Related Work

Most of the current techniques in the field of map-based global localization can

be categorized as either “map constrained tracking” or as “landmark recognition.”

Below is a brief overview of each, followed by a closer look another even more

pertinent strategy.

1.3.1 Map Constrained Tracking

Most of these tracking techniques do not use roadmap data directly to address

the “kidnapped robot” problem; rather, they rely on an outside source of global

5

location information such as GPS or an otherwise previously known location. Only

after which point does the vehicle use dead-reckoning to move geometrically about

the state space and provide it with a continuous estimate of the position. When

digital map data is consulted in combination with this technique, the drift from

dead-reckoning is corrected to provide an even more accurate estimate. Usually

some form of map-matching technique, wherein a position estimate is given to the

algorithm as input, and a map edge or node is returned, is used.3

In [12] a survey of techniques are discussed, but the two relevant ones here are

detailed in the subsections “Dead reckoning: Map matching” and “Dead reckoning:

Dynamic filtering.”4 With these methods, a position is known at initialization and

is a) updated by the position on a map corresponding with a dead-reckoned change

in position or b) updated to be consistent with a motion model which is itself

corrected by additional measurements. In their research Karlsson and Gustafsson

only use the Anti-lock Braking System (ABS) Wheel Speed Sensor data from the

vehicle’s Controller Area Network (CAN) bus to perform di↵erential odometry,

although techniques using an IMU are discussed. As another important aside, the

authors also use the term “virtual sensor” when referring to measurements provided

by consulting the road map data, and we adopt that term in this research.

In [13] a similar technique using di↵erential odometry, roadmap data, and a

particle filter is discussed. The experiment is divided in the tracking task, i.e.

initial position is known, and the global localization task. For tracking it is un-

clear from the extended abstract how the road map data is traversed by hypothesis

particles, but it is likely the same map matching style used in [12] because of Mer-

riaux’s reference to similar work by Gustafsson. For localization, a much greater

3The sensors used for dead-reckoning are usually some combination of wheel speed sensors,
an Inertial Measurement Unit (IMU), a camera for visual odometry, or active range finder

4Karlsson and Gustafsson later discuss a Particle Filtering approach which inspired the re-
search here.

6

number of particles are spread uniformly across the search space, in this case a

road network of approximately 100km. With 3600 particles spread across this

map, the authors claim that global location is determined within 90 updates, each

of which taking 0.51s on a single core. Additionally, the authors identify a linear

relationship between runtime required to update all particles and the number of

particles.

In [14] Li and Leung propose a Constrained Unscented Kalman Filter (CUKF)

to fuse Global Positioning System (GPS), Inertial Navigation System (INS), and

digital map data. While GPS data provides the drift-free global localization ca-

pability of their system, the INS provides dead-reckoned position estimates with

higher resolution. In particular they use a measure of agreement of the vehicle’s

heading with the direction of roads in a neighborhood in order to further constrain

position estimates. They show that the CUKF significantly improves the position

estimates over a standard unconstrained Unscented Kalman Filter (UKF).

In [15], Najjar and Bonnifait directly address the issue of how best to select

a road to solve the road matching problem.5 Their approach consists of a Multi-

sensor Fusion Extended Kalman Filter (EKF) with Di↵erential Global Positioning

System (DGPS) and ABS wheel speed odometry as inputs. This position model

then feeds a set of road selection process whose criteria are based on 1) proximity

to the estimated position and 2) consistency with travel direction (as in [14] with

speed as an additional consideration for this consistency. In particular, the possi-

bility of a vehicle traveling at 40kph being on a road perpendicular to its trajectory

is highly unlikely and Najjar and Bonnifait’s model takes these sorts of constraints

into account.
5The road matching arises when global positioning data such as that from Global Navigation

Satellite System (GNSS) is too noisy to stay on a road and must be corrected to represent a
position on digital map data, especially GPS turn-by-turn navigation devices.

7

Summary

Landmarks distinguish roads so that each road is measured as in a way that

separates it spatially from other roads. Because of the limited degree of landmark

characterization in the above techniques, we classify these only as “map constrain-

ing,” and not as “feature detection” or “landmarking.” In the next subsection we

discuss several techniques that make more overt use of landmarking in order to

determine global location.

1.3.2 Landmark Recognition

The most e�cient techniques for global localization apply Kuipers’s idea of a

“distinctive place” [16] by fixing landmarks to an either learned or already known

map. If a known location is recognized to be close, the degree of confidence in a

navigator’s position can be restored to the degree of confidence held in the position

of the landmark. In some applications such as [11] the landmarks form a graph

whose measure of connectedness is the ability of a game character to navigate from

one landmark to another. In [11] Schra↵enberger and Hervé call this topology a

“Perceptual Navigability Graph.” The approaches discussed below apply the use

of landmarks to spatially distinguish roads (or in some cases spaces) with varying

measurable features.

In [17], Jensfelt and Kristensen present a technique that consider multiple

hypotheses by generating a set of possible poses when a known visual feature is

recognized. For example when their robot recognizes a door, a set of hypotheses

consistent with seeing the door under the circumstances, e.g. location of doors

previously known to be on the wall, is generated. Each hypothesis, similar to

particles in the particle filter, is updated with its own Kalman Filter estimates

and covariance matrices. Emphasis is placed on topology and map discovery.

Notably in this research odometric dead-reckoning and feature recognition are

8

reconciled by a process the authors term “data association,” wherein the authors

threshold a similarity measure given by squared Mahalanobis distance between the

pose hypothesis and the pose “candidates.” We assume the convention of naming

feature-generated locations as “candidates” in this research, as well as assuming

the terms coined by the authors in [17] to describe “supportive” estimates as

generated by dead-reckoning and “creative” estimates to be those generated by

feature recognition.6

In [5], Badino et al. also use images as recognition features along a navigable

path. In this case the research is performed outside with images similar to those in

Google Streetview, and range measurements are taken to accompany the images,

all taken periodically along a fixed 8km route. This route comprises a discrete

state space and topology of landmarks. In the query phase the authors use their

novel U-SURF and WI-SURF features to update a Bayesian filter. This technique

was 100% e↵ective in its ability converging to the correct global location. Another

notable detail is that the researchers in [5] created their image training set over

all four seasons in order to make querying resilient against changes in vegetation,

lighting, etc.

In [18] Floros et al. estimate the shape of a road by visual odometry and

match it with OpenStreetMap data. In their project they call “OpenStreetSlam”

the authors use Harris corners and RANSAC to update a Kalman Filter which

updates a camera’s pose estimate and, ultimately, the shape of a driven path.

The researchers make use of Monte Carlo Localization (MCL), or particle filter,

in order to maintain a distribution of possible locations. They update their hy-

potheses using measurements of their query shape against the road data with Fast

Directional Chamfer Matching across the entire set of possible roads. This is done

6Although in [17] the authors were also mapping the environment, we retain the notion of
a “creative” update because it is still one that could potentially create new hypotheses, and
otherwise provides additional confidence in hypotheses that already exist.

9

online while the vehicle is traveling a required initial distance and takes approxi-

mately 11.5s over the Karlsruhe Institute of Technology and Toyota Technological

Institute (KITTI) vision dataset consisting of a total driving distance of 39.2km

within a 1km radius [19]. The basic components of this approach, i.e. shape of

a traveled road as determined by odometry, OpenStreetMap data, particle filter

with updates based on shape correspondence, amount to a vast similarity in the

research that will be described here. We remark here that the work in [18] di↵ers

substantially from ours in that Floros et al. use visual odometry to detect roadmap

features and use line segments to represent them.

1.3.3 Geometric Hashing and Navigation

In their paper “Image-Based Navigation on a Chip,” Lifshits et al. propose a

navigation technique to locate the end e↵ector of robotic systems used for electronic

chip manufacturing functions such as “lithography, cutting and inspection” [20].

Given a known wafer map, the authors propose geometrically hashing all of the

features of the wafer map in a preprocessing stage, and subsequently locating the

robotic eye-point by geometrically hashing a subset of the features in a lookup

phase7. Although “navigation” here does not refer to that of a surface-bound

vehicle, the essential components of locating oneself with a limited perspective of a

known overall environment, a theoretical approach discussed in detail by Kuipers

in [21], still apply. Further, the research in [20] is the only previously existing

work to use geometric hashing to solve the “kidnapped robot” problem. As a

di↵erence to Lifshits et al.’s work and the work here, we want to emphasize that

our approach considers graph-like data, and not a point cloud. This distinction

significantly changes the nature of what comprises a feature and how those features

are discovered.
7Section 1.3.4 provides an overview of the classical geometric hashing technique used in [20].

10

1.3.4 Geometric Hashing Overview

The technique of geometric hashing has been used in many fields of research to

align a segment of graph data with its original set. Applications can be seen in pro-

tein structure alignment [22] digital photograph registration [23], and astrometry

[24].

The technique of geometric hashing can be broken down into two phases:

building a hash table (the Training Phase) and indexing test points within the hash

table to determine to which basis the points belong (the Recognition Phase)[25].

When building the geometric hash table, the goal is to create key-value pairs

whose keys represent test points in the coordinate system produced by the cor-

responding value, the coordinates in whose basis the keys exist. For example,

“1.05,-0.35”: (35143,85243: 35100,84987) represents a point whose coordinates are

1.05, -0.35 after it has undergone the change-of-basis transformation defined by the

two points 35143, 85243 and 35100, 84987. These two points are recorded in the

original coordinate system so that when the lookup phase takes place, the result

will be in a coordinate system useful to the user.

These key-value pairs are constructed by examining combinations of two points

on the model, creating a change-of-basis function using the two points as a new

basis, and then recording the coordinates of the remaining points in the new co-

ordinate system into the hash table. Below is a more thorough description.

An important caveat to note is that a query pattern may be matched to

more than one location in a set. Take for instance the short path consisting of a

straight drive forward for a trivial distance. This could be matched to any small

straight road portion of the map, whose matching paths will be many. Rather,

the technique of matching the geometry of a path to a map requires that the path

contain enough information, here unique points, to separate it from similar possible

11

paths.

The rest of the first phase is straightforward: a transformation C is con-

structed for each combination of two points in the model, and with that change-

of-basis operator, new coordinate values are calculated for the remaining points

in the model. The coordinate values are then inserted into the hash table as the

keys, and the basis as the value. If there is a collision, the additional bases are

appended and the value item forms a list. The matching phase is similar to the

building phase. Once a traveled set of test points is produced, a change-of-basis

is created with two of the appurtenant points. The rest of the traveled points

are transformed into the new basis, and their values are looked up in the hash

table generated from the model in the first step. All basis matches are recorded

and appended to a list. Then a voting scheme where the basis pair that is most

represented on the list determines the winner from the list. In application, these

two steps require significant attention to peculiarities among the data and com-

puting limitations. In the next section we will discuss in details specific to Path

Registration how our implementation deviated from the overall geometric hashing

strategy. [26]

1.4 Thesis Statement

This research analyzes a new method to localize a moving vehicle within a

known road network using di↵erential odometry and a digital road map. The

technique proposes geometrically hashing road features whose curvature is great

enough to represent a distinct measurable real-world phenomenon. In order to

withstand uncertainty and absence of measurement events, a modified particle

filter provides a way to maintain, test, and resample multiple hypotheses of the

vehicle’s dead-reckoned location.

12

List of References

[1] P. D. Groves, Principles of GNSS, Inertial, and Multi-Sensor Integrated Nav-
igation Systems Second Edition. Boston: Artech House, 2013.

[2] “Progressive Taxi Instructions,” 2017. [Online]. Available: https://www.
skybrary.aero/index.php/Progressive Taxi Instructions

[3] P. Ranganathan, J.-B. Hayet, M. Devy, S. Hutchinson, and F. Lerasle, “Topo-
logical Navigation and Qualitative Localization for Indoor Environment Using
Multi-Sensory Perception,” Robotics and Autonomous Systems, vol. 41, no. 2-
3, pp. 137–144, 2002.

[4] B. Kuipers and Y.-T. Byun, “A Robot Exploration and Mapping Strategy
Based on a Semantic Hierarchy of Spatial Representations,” Robotics and
Autonomous Systems, vol. 8, no. 1, pp. 47 – 63, 1991.

[5] H. Badino, D. Huber, and T. Kanade, “Real-Time Topometric Localization,”
in Proceedings of the 2012 IEEE International Conference on Robotics and
Automation, St. Paul, MN, USA, May 2012, pp. 1635–1642.

[6] National Coordination O�ce for Space-Based Positioning Navigation and
Timing, “Gps.gov: Frequently Asked Questions,” 2016, Accessed: 2016-2-21.
[Online]. Available: http://www.gps.gov/support/faq/#o↵

[7] NXP Semiconductors, “GPS, LNA, Sensitivity, Jamming, Cohabitation,
TTFF,” Eindhoven, 2009, Accessed: 2016-2-21. [Online]. Available:
http://www.nxp.com/documents/other/75016740.pdf

[8] C. Ho↵man, “China’s Space Threat: How Missiles Could Target
U.S. Satellites,” 2009, Accessed: 2016-2-21. [Online]. Available: http:
//www.popularmechanics.com/space/satellites/a1782/4218443/

[9] A. Schutzberg, “Ten Things You Need to Know about Indoor Positioning,”
2013, Accessed: 2016-2-21. [Online]. Available: http://www.directionsmag.
com/entry/10-things-you-need-to-know-about-indoor-positioning/324602

[10] N. K. Dhiman, D. Deodhare, and D. Khemani, “A review of path planning and
mapping technologies for autonomous mobile robot systems,” in Proceedings
of the 5th ACM COMPUTE Conference: Intelligent Scalable System
Technologies, ser. COMPUTE ’12. New York, NY, USA: ACM, 2012, pp.
3:1–3:8. [Online]. Available: http://doi.acm.org/10.1145/2459118.2459121

[11] M. Schra↵enberger and J. Y. Hervé, “Agent Abilities in a Landmark-Based
Mapping Model,” in Proceedings of the 2006 IEEE International Conference
on Systems, Man and Cybernetics, vol. 3, Oct. 2006, pp. 2493–2498, Taipei,
Taiwan.

13

https://www.skybrary.aero/index.php/Progressive_Taxi_Instructions
https://www.skybrary.aero/index.php/Progressive_Taxi_Instructions
http://www.gps.gov/support/faq/#off
http://www.nxp.com/documents/other/75016740.pdf
http://www.popularmechanics.com/space/satellites/a1782/4218443/
http://www.popularmechanics.com/space/satellites/a1782/4218443/
http://www.directionsmag.com/entry/10-things-you-need-to-know-about-indoor-positioning/324602
http://www.directionsmag.com/entry/10-things-you-need-to-know-about-indoor-positioning/324602
http://doi.acm.org/10.1145/2459118.2459121

[12] R. Karlsson and F. Gustafsson, “The Future of Automotive Localization Algo-
rithms: Available, Reliable, and Scalable Localization: Anywhere and Any-
time,” IEEE Signal Processing Magazine, vol. 34, no. 2, pp. 60–69, March
2017.

[13] P. Merriaux, Y. Dupuis, P. Vasseur, and X. Savatier, “Wheel Odometry-Based
Car Localization and Tracking on Vectorial Map,” in Proceedings of the 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC),
Qingdao, China, Oct. 2014, pp. 1890–1891.

[14] W. Li and H. Leung, “Constrained Unscented Kalman Filter Based Fusion of
GPS/INS/Digital Map for Vehicle Localization,” in Proceedings of the 2003
IEEE International Conference on Intelligent Transportation Systems, vol. 2,
Shanghai, China, Oct. 2003, pp. 1362–1367.

[15] M. E. B. E. Najjar and P. Bonnifait, “Road Selection Using Multicriteria Fu-
sion for the Road-Matching Problem,” Proceedings of the IEEE Transactions
on Intelligent Transportation Systems, vol. 8, no. 2, pp. 279–291, June 2007.

[16] B. J. Kuipers and Y. Byun, “A Qualitative Approach to Robot Exploration
and Map-Learning,” in Workshop on Spatial Reasoning and Multi-Sensor Fu-
sion, St. Charles, IL, USA, Oct. 1987, pp. 390–404.

[17] P. Jensfelt and S. Kristensen, “Active Global Localization for a Mobile Robot
Using Multiple Hypothesis Tracking,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 5, pp. 748–760, Oct. 2001.

[18] G. Floros, B. van der Zander, and B. Leibe, “OpenStreetSLAM: Global Ve-
hicle Localization Using OpenStreetMaps,” in Proceedings of the 2013 IEEE
International Conference on Robotics and Automation, Karlsruhe, Germany,
May 2013, pp. 1054–1059.

[19] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision Meets Robotics: The
KITTI Dataset,” International Journal of Robotics Research, vol. 32, no. 11,
pp. 1231–1237, 2013.

[20] M. Lifshits, E. Rivlin, and M. Rudzsky, “Image-Based Navigation on a Chip,”
in Proceedings of the 21st IEEE Instrumentation and Measurement Technology
Conference, vol. 1, Como, Italy, May 2004, pp. 504–509 Vol.1.

[21] B. J. Kuipers, “Representing Knowledge of Large-Scale Space,” Ph.D. disser-
tation, Massachusetts Institute of Technology, Cambridge, MA, USA, 1977.

[22] N. Leibowitz, Z. Y. Fligelman, R. Nussinov, and H. J. Wolfson, “Multiple
Structural Alignment and Core Detection by Geometric Hashing,” in Pro-
ceedings of the Seventh International Conference on Intelligent Systems for
Molecular Biology, Heidelberg, Germany, 1999, pp. 169–177.

14

[23] U. Bhosle, S. Chaudhuri, and S. Dutta Roy, “A Fast Method for Image Mo-
saicing Using Geometric Hashing,” IETE Journal of Research, vol. 48, no.
3-4, pp. 317–324, 2002.

[24] C. Harvey, “New Algorithms for Automated Astrometry,” Ph.D. dissertation,
University of Toronto, Toronto, Ont., Canada, 2004.

[25] H. Wolfson and I. Rigoutsos, “Geometric Hashing: An Overview,” IEEE Com-
putational Science and Engineering, vol. 4, no. 4, pp. 10–21, 1997.

[26] A. G. Konheim, Hashing and the Secure Distribution of Digital Media.
Hoboken, NJ, USA: John Wiley and Sons, Inc., 2010, pp. 320–323. [Online].
Available: http://dx.doi.org/10.1002/9780470630617.ch19

15

http://dx.doi.org/10.1002/9780470630617.ch19

CHAPTER 2

Methodology

Although only one of the modules (RoadMapHash, which preprocesses the

OpenStreetMaps data into a key-value database of recognizable curvature fea-

tures) has been fully implemented, we propose a control system architecture that

enables a vehicle to determine its location both on-line for use in consumer facing

applications, and o↵-line, in applications where the vehicle data is merely recorded

for later analysis by a management authority.

2.1 Architecture of the Positioning Strategy

Figure 1. Overall System Diagram

The components of the RoadMapLocate system are as follows. First,

RoadMapHash preprocesses the OpenStreetMaps data into a key-value database

of recognizable curvature features. Second, the RoadMapTrack sub-system, now

16

running on an Arduino Uno R3, reads the rear Wheel Speed Sensor data from

the vehicle’s CAN bus. This data may rest in a data store, such as an SD card,

for future o↵-line processing, or it may be fed directly to the RoadMapFilter sys-

tem, which performs the Monte Carlo Localization algorithm described in Sec-

tion 2.7. This last component analyzes the vehicle update data to identify high

curvature features, and identifies their signature in the RoadMapHash database.

This database may be used on-line as a file store or transfered over a network

connection. Ultimately, the RoadMapFilter algorithm returns a best hypothesis

to the user.

In the next sections we will set up the vocabulary necessary to discuss the

particularities of RoadMapHash, cover the sensors and data we use in this research,

propose a new data-centric language for conveying road curvature data, analyze

RoadMapHash, and finally provide an overview of the future components of the

overall RoadMapLocate system.

2.2 Definitions

Definition 2.2.1. Node

A node is a point on the Earth’s surface lying on a road. Nodes are the vertices in

the road network topology. They are described both in geographic coordinates on

the 1984 World Geodetic System (WGS84) ellipsoid and in Universal Transverse

Mercator coordinates on a projected flat-earth model.

Definition 2.2.2. Way

A way is a list of nodes connected by a whole or partial road, which is a real-world

drivable surface. The Nodes appear in order as one would drive them. Ways are

assumed to be drivable in two directions unless the road is specifically marked

as oneway in the data [1]. (Additionally, by specification of OSM, Ways cannot

overlap. This constrains the graph of nodes as a planar graph, the consequence of

17

which we profit from in Subsection 2.1.22.)

Figure 2. Example Jogs and their Nodes

Definition 2.2.3. Jog

A Jog is an ordered triple of nodes that represents three points connected by a

road path. It can be traveled from the first node through the second node to the

third node.

Remark. A Jog is not bidirectional. If three Nodes n1, n2, and n3 belong to ways

indicating travel is permitted both from n1 to n2 to n3 as well as from n3 to n2 to

n1, then two unique Jogs must represent each navigable path.

A Jog may not begin and end at the same node. In other words, U-Turns are

not considered as drivable paths.

The Jog structure is useful when calculating the change in direction, road

curvature, and distance along a path of connected nodes.

Remark. See that the set of Jogs JC traversing through a center node nC is a

subset of the Cartesian product of the set Nin of nodes, for which there exists

a way in-bound to nC , with the set Nout of nodes, for which there exists a way

18

out-bound from nC . Because U-turns are not included in the definition of a Jog,

JC is usually a proper subset of this Cartesian product, and does not include the

set of pairs where the start node nS is the same as the end node nE.

Definition 2.2.4. Sharp Jog

A Jog is “sharp” with respect to a given radius of curvature if the circle circum-

scribing the Jog has a radius less than the given one. On a map these look like

what we think of when we say “Turns” but because of the challenges in sensing

the phenomenon associated with Turns, a sharp Jog has only this constraint.

Definition 2.2.5. Turn

A Jog with su�cient curvature might be considered a Turn in the simple case

above; however, in general a Turn must meet additional criteria beyond being

such a Jog for several practical reasons. The most important of them is that a

road network may include chains of high-curvature Jogs, each of which may not be

in isolation considered a unique Turn. For instance, a mile-long elliptical race track

may be denoted on a map by hundreds of Jogs, but a Turn event might only be

measurable twice per lap, once at each curve. Instead of merely checking Jogs for

high curvature, there must be some thresholding put in place to determine where

a Turn starts and stops, and a Turn must include the possibility of incorporating

more than one Jog.

Definition 2.2.6. TurnEvent

TurnEvents are for the basis of the geometric hash map key and are combinations

of two Turns.

Definition 2.2.7. Jog Curvature

The radius of curvature RJ of a Jog consisting of three Nodes NS, NC , and NE is

equal to the radius of the circumcircle of the triangle 4NS, NC , NE .

19

Figure 3. Example Turn Event Key-Value Pair

Remark. By the definition of radius of curvature,

Let BS,C denote the perpendicular bisector of the line segment from NS to

NC , and let BC,E denote the perpendicular bisector of the line segment from NC

to NE.

We remark that the intersection of BS,C and BC,E is equidistant to each of

NS, NC , and NE and thus the center of the circumcircle of 4NS, NC , NE.

2.3 Sensors and Data
2.3.1 Odometric Sensor

In this research we intend to use the ABS wheel speed sensors to record the

di↵erential odometry of the moving vehicle1.

We refer here to [3], which makes the following remark on the accuracy of

ABS wheel speed sensors.

Typical accuracy of ABS wheel speed sensors over OBDII is 0.025 me-
ters/second, where as the accuracy of the transmission rotation sensor
is approximately 0.28 meters/second.

Although ABS wheel speed sensors are accurate and can be used to perform

di↵erential odometry, they are unfortunately di�cult to interface with. Whereas

1For a benchmark dataset we will also test our technique on the odometry data provided by
[2]. This data provides parameters given to a ClearPath Husky robot and must be modified
slightly to fit into the RoadMapTrack system.

20

vehicle speed (as measured from the transmission) is part of the “Mode 1” On

Board Diagnostic (OBD) interface, the OBD request codes for other systems such

as ABS are not openly published, and often come at a significant cost for scan tool

manufacturers.

Researchers use several strategies to determine these proprietary Parameter

ID (PID) codes2. An step-by-step overview of one of our strategies is given below.

1. Build a DIY scan tool with an Arduino Uno R3 and a CAN Bus Shield.

2. Brute force-scan the CAN bus for responses and record the PIDs that pro-

vided a response.3

3. Write an Arduino sketch that queries the responsive PIDs and records their

response.

4. Drive the vehicle in a known pattern while recording the values. A useful

pattern is a circle as in a roundabout. This will provide two di↵erent rear

wheel speeds that are generally constant during the evaulation period.

Figure 4 shows the response from the PID code 0x2103 4 indicating that a

sensor reading was zero, increased in value during a reverse movement, returned

to zero, increased during a forward movement, and finally settled at zero.

2.3.2 Map Data

This research uses the OpenStreetMap dataset. The OpenStreetMap (OSM)

dataset is an open source competitor to Google Maps and provides direct access to

geospatial vector data via its Planet.osm data file. The OpenStreetMap Markup

Language, denoted by the “.osm” file extension, is a spatial implementation of

2Wikipedia o↵ers a very informative overview of the OBD2 protocol at [4].
3Here the search can be limited by knowing the manufacturer’s specific PID header. Toyota’s

is 21.
4A response for PID 21 would be 0x40 greater than the code itself, so 0x61.

21

XML and provides a convenient way to define geographic types, especially road-

ways, and assign attributes to them. As in other vector file formats, nodes are given

in a coordinate system, and edges are implied by the inclusion of multiple nodes

within a shape. In OSM, the shapes are linestrings and polygons. Road Selection:

[5] succinctly summarizes the issues when selecting roads for localization:

This problem ... of selecting the “good” segments from the subset
{S1, ..., Sn} ... is di�cult because of several factors.

- The position is estimated with errors that can be magnified by
multipath e↵ects. In addition, the transformation between the
GPS coordinates (World Geodetic System 1984 reference system)
and the projection frame of the map [here, the French Nouvelle
Triangulation Française (NTF) Lambert coordinate system] can
induce errors.

- The coordinates of the segments are falsified by errors due to
terrain measurements that are carried out by cartographers as
well as due to numerical approximation.

- The road network in the database does not always correspond to
reality, i.e., it can contain old roads that no longer exist or new
roads that are not yet in the database.

- The map does not contain all road network details. For example,
a roundabout can be represented as a simple point.

- The vehicle is moving on a 3-D surface, whereas the map repre-
sents a planar view.

- The vehicle does not travel exactly on the segments representing
the roads.

2.4 Data Centric Programming Language
2.4.1 Introduction

Data Centric Programming Languages form a nexus between data and compu-

tation. The focus of a data language’s use coheres with its structure, and with the

rise of network analysis, graph-centric data languages have recently achieved first

class status [6, 7, 8]. In this research we devise an extended graph data language

in order to achieve three main goals. Primarily, the new language will provide a

means to serialize special data structures used in the research. Second, and more

22

importantly, the new data specification, in binary form, will form a basis for a self-

referencing database engine. Finally, distributed execution environments, such as

MapReduce, will benefit from the JogML and JogBin formats.

2.4.2 Jog Modeling Language (JogML)
JogML Introduction

Existing graph data languages have three features in common. One, they

emphasize universality with commonly used data specifications, such as XML.

Two, they provide extensibility for arbitrary types and attributes, such as with

tags or attributes. These features are unnecessary for this research because this

research provides its own data manipulation tools. And three, most current graph

languages are limited in their ability to describe hyper-edges [9]. This is unsuitable

for this research because it uses unique data structure called a “jog,” which is a

sub-graph consisting of three nodes. Thus, the data language requires the ability

to describe hypergraphs. Below is a summary of the nature of a need for Jog

Modeling Language (JogML) in order to further this research.

Why Yet Another Graph Language

The OpenStreetMap (OSM) dataset is an open source competitor to Google

Maps and provides direct access to geospatial vector data via its planet.osm data

file. The OpenStreetMap Markup Language, denoted by the .osm file extension,

is a spatial implementation of Extensible Markup Language (XML) and provides

a convenient way to define geographic types, especially roadways, and assign at-

tributes to them. As in other vector file formats, nodes are given in a coordinate

system, and edges are implied by the inclusion of multiple nodes within a shape.

In OSM, road shapes are linestrings, which is denoted in OSM as Ways.

Although this street map data is well laid out for rendering maps and ade-

quate for data transfer online, OSM requires multiple passes to recreate the network

23

topology of the roadway system itself and is somewhat bloated for the purposes

of RoadMapHash. Although a graph is implied by the data shapes in OSM, a

graph-specific data language can reduce the overhead in parsing and recreating

the graph structure by edges directly. Several such graph data languages exist.

The most prominent is Graph eXchange Language (GXL) described in [9] and

[10]. Despite the prevalence of GXL, Graph Modeling Language (GML), created

by Michael Himsolt [11, 12] provides an excellent base for redefining the Open-

StreetMap dataset for this research. Below is an explanation why this is.

Although GXL avails itself to existing XML parsers, GXL is unnecessarily

general and verbose for this research. In particular, one goal of the JogML is to

limit the value space of the terminals used in order to minimize the size of the

serialized data files. Additionally, community support for a proposed file type is

not necessary because this research provides a JogML parser, compiler, serializer,

and deserializer. Finally, although GML does not provide a way to describe hy-

pergraphs, it can be readily extended to do so. Hypergraphs are necessary here

because the research makes use of a unique data structure called a Jog, consisting

of three nodes. These three nodes comprise a one-way journey from a Start Node,

to a Central Node, and to an End Node (see Figure 2 for an example of three Jogs

over a sample road network). The three-node structure of a Jog is necessary for

measuring road curvature, which must be computed for comparison with inertially

sensed movement. Curvature is thus central to this research, and a data language

that directly describes curvature during graph traversal will significantly reduce

computation during data pre-processing. By redefining a road map as a set of

Jogs, the graph becomes a hypergraph. Each Jog describes a subgraph consist-

ing of a roadway node connected to two other roadway nodes, albeit in sequence.

Hence the need to extend GML to support the Jog data structure.

24

JogML Grammar Specification and Example

The grammar specification of JogML is provided in Figure 6. Of particular

note, Jogs are specified with a start, center, and end node, and each node optionally

includes a list of Jog Starts, Jog Centers, or Jog Ends. This is due to the fact that

a node may be member of one or more Jogs as its start, center, or end, but perhaps

at the exclusion of the other(s). In order to allow for a reduction in storage space,

these lists are made individually optional. All other attributes are required and

su�cient. The Kleene cross (+) is also used to indicate the presence of one or

more of the symbol preceding it. Additionally, the question mark (?) indicates

an optional presence of the preceding symbol. That is, the symbol before ? may

appear zero or one time.

Figure 7 provides a minimal example of a partial roadmap described with

JogML. This OpenStreetMap data describes a footpath twenty meters east of

Greene Hall on the URI campus. The Jogs and Nodes in this example replicate

the topology of Figure 2. They do not completely describe the topology among

those nodes and are meant only to be descriptive of JogML generally.

JogML Parse

As alluded to above, this work includes a recursive-descent LL(1) parser for

the JogML format [8]. This simple hand-written parser uses the C++ extraction

operator >> of the standard template library object std::stringstream as a lexer

of white space delimited tokens. There is a one token bu↵er kept in a string variable

“word”, and although the parser style is recursive-descent, the JogML format never

requires that recursion reach a depth greater than zero.

25

2.4.3 JogBin Data Format

In addition to JogML, this research produced the JogBin binary data format,

whose specification is designed to make use of memory mapped files. By using the

Unix-based mmap, or a similar system-specific memory interface, the binary data

can be written and accessed as though it were virtual memory. Because our data is

graph-like we can preserve the bidirectional connections between Nodes and Jogs

by representing their edges, not as identification numbers, but as relative memory

addresses. By retaining the connections within the binary data itself, the file can

be used in-place as a complete data context. All preliminary computations are

intrinsic to the file itself.

Issues with JogBin

In order to use relative memory addresses as a means to recreate the graph

relationships in the data context, the machine writing the data must have the same

data type sizes as the machine reading the data. Additionally, endianness may be

a problem for raw binary reads and writes on di↵erent machines. Although there

are some techniques to obviate these problems, the current implementation in this

research only accounts for one architecture. Additionally, the version code in the

file header is intended as a means to uniquely identify binary configurations, as

well as version di↵erences. Also, there is currently no system in place to keep the

JogBin memory-mapped file threadsafe. Compare this with the implementation as

used in MongoDB where the mmaped files are sequentially locked for individual

collections.

The three JogBin tables, Tables 1, 2, and 3, specify the three portions of

a JogBin file. The data is first converted into data structures that have been

optimized for 64-bit processor architecture [13], and then they are memory copied

to their respective file locations in the memory-mapped file.

26

Table 1: JogBin Header Structure
Type Data Size in Bytes
uint64 t Version code, specifies platform sizes 8
uint64 t Total file size in bytes 8
long Number of Nodes in the file 4
long Number of Jogs in the file 4
float Minimum Longitude of Nodes in the file 4

Table 2: JogBin Node Structure
Type Data Bytes
long long OSM Node Identification Number 8
double Latitude 8
double Longitude 8

Table 3: JogBin Jog Structure
Type Data Bytes
long ID Specific to JogML 4
float Curvature, i.e. 1 / Turn Radius 4
float Distance Between Start Node and Center Node, meters 4
float Distance Between Center Node and End Node, meters 4
size t File O↵set to Start Node 8
size t File O↵set to Center Node 8
size t File O↵set to End Node 8

27

2.4.4 JogML Improvement Considerations
MapReduce and Distributed Computation

A major advantage to serializing the data in the JogBin format is the compres-

sion that it a↵ords. Much like Google’s Protocol Bu↵er, JogBin can be transferred

over a network much more quickly without losing the structure necessary for follow-

on computation [14]. That is, JogBin is an excellent transfer and archival format

without having the expense of requiring additional processing to use it. It is thus

very well-suited to be used in a MapReduce distributed execution environment.

Database Engine

Currently the implementation of RoadMapHash uses C++ standard library

containers, especially the std::vector and std::map. However, with data serial-

ized in the JogBin format, the data could be traversed in-situ without conversion,

and thus duplication, back into the original data types. With similar considerations

in mind, database developers such as those at MongoDB have similarly employed

memory mapped files have as a basis for their database engines [15].

Language Conclusions

The RoadMapHash algorithm has substantially benefited from the improve-

ments of analysis from a Programming Language perspective. The JogML and

JogBin formats advanced the RoadMapHash from being a series of scripts to form-

ing the basis of a distributed graph database engine. The specification of JogML

allows for a text-based serialization of the RoadMapHash data structures, but

more importantly, it permitted the creation of JogBin, a binary datatype that can

be used as a graph-database. Finally, the added benefit of data compression and

fast serialization makes a distributed computation environment for RoadMapHash

more e↵ective.

28

2.5 Training Phase: RoadMapHash Algorithm

RoadMapHash is the first component of the RoadMapLocate system. It is

our most unique contribution to the field of odometry-based localization. Just as

in classic geometric hashing, the goal of RoadMapHash is to attempt to locate a

shape within a larger one. However, the geometric hashing method used in this

research does have two distinct di↵erences.

First, unlike in classical geometric hashing, the query, or test shape, need not

be scale invariant because the scale of the map is the same as the scale of the

odometric sensors. This alleviates the combinatorial cost of projecting each node’s

position into the bases defined by the pairs of its k-nearest neighbors’ coordinate

systems. Instead, the coordinate system used to describe features can be the ego

reference frame of the vehicle, with the center of the rear axle serving as the origin.

Features can thus be described in terms of its hypothetical movements along a path,

i.e. incremental changes in distance and direction.

Second, the features we seek to find in the hash table are not coordinates of

nodes at all. This is because most nodes are distributed arbitrarily within a road

section, and only describe along a continuous road space in the real world. As

described in [16] as a “distinctive place,” the localization framework must at some

point convert continuous measurements into discrete features. Here the features we

extract are high curvature areas. This leads to yet another issue: distinctiveness.

Many high-curvature areas are similar.

Take for instance a traditional 90� right turn. On most US highways this

maneuver will have a radius of curvature of approximately 5 meters and require a

distance of approximately 8 meters to complete. If the feature were constructed

from these two data, the feature’s entry in the resulting geometric hash table

would point to numerous similar right turn in the search space. This would not

29

a↵ord su�cient distinctiveness to separate the measured phenomenon from similar

features in the map.

Fortunately, there is more data that can be used to build a suitable feature.

Because the vehicle is measuring path distance, and inter-turn distance can be

calculated by projecting the geographic coordinates to a flat earth model, we can

link associate pairs of turns as distinct features.

The resulting turn-to-turn features, which we have defined as TurnEvents

above, have two useful properties. First they more adequately distinguish similar

road phenomena, and thus they reduce the number of collisions in the hash table.

Second, because included in each feature itself is the distance from another, moving

from TurnEvent to TurnEvent forms a near 5 transitive closure on the Ways in

the map data. This fact will be used to threshold the likelihood that a sensed

TurnEvent corresponds with a prior hypothesis.

2.5.1 Description

The RoadMapHash algorithm proceeds as follows.

Find Sharp Jogs Every Turn consists of at least one Sharp Jog. A Sharp Jog is

a jog with a curvature above a specified threshold.

Find Turn Entry Jogs Every Turn has an Entry Jog and an Exit Jog. The

entry and exit could be the same Jog, but not for all Turns. Consider a Turn

that consists of a sharp curve going into the turn, followed by an intermediate

curve of lesser but nonzero curvature, and finished with a sharp curve at the

end. Such a Turn comprises several Jogs and must be identified with an

approach that allows for multi-Jog Turns.

Find Turn Exit Jogs Starting with a Turn Entry as described above, Turns

5Dead ends and u-turns are not navigable by design decision.

30

proceed through a series of adjacent Jogs until they reach a Turn Exit Jog,

which is the last Jog of high curvature in the Turn. The goal in this step is to

identify where these Turn Exit Jogs occur. This process produces completed

Turns which are a combination of Turn Exit Jogs and Turn Entry Jogs, as

well as the array of intermediate Jogs between them.

Set Turn Origins As mentioned in the description above, a Turn on its own

is di�cult to distinguish in the real world. The degree of the turn and the

distance traveled to complete the turn are the most useful, and possibly only,

features that can be derived from the turn. However, the combination of a

turn preceded by another turn o↵ers a much richer set of data that can be

both identified in a roadmap and sensed in the real world. In particular, the

change in direction from the last turn, the distance traveled to the present

turn, and the change in direction in the present turn can provide enough

data for a geometric hash key to be specific but not result in an overly dense

table. It is thus necessary to associate each Turn with an origin turn in order

to create a Turn Event. This is done by a depth first traversal from the exit

turn of a Turn TA to any and all entry Turns T{Entry}, within a search limit

set by a configuration parameter. See Figure 11 for an example of a Turn

with several origin Turns.

Create TurnEvents TurnEvents are for the basis of the geometric hash map key

and are combinations of a Turn and a Turn Origin. Scaled rounding [17] is

applied to map-based distance and angle displacements in order to create

set of keys which are robust to the uncertainty of real world measurement.

The scale factor used here relates directly to the error variance used in the

motion model.

31

Create Hash Table With TurnEvents The geometric hash table for a given

area must be updated with the TurnEvents occurring in that area. The key

is the string-encoded Turn pair phenomenon found in the map data. The

value is the location (or optionally, several locations) where the phenomenon

occurred.

32

2.5.2 Complexity Analysis

Using the Random Access Machine model of computation, we calculate up to

a constant factor the worst case runtime of the RoadMapHash algorithm with only

the number of Jogs in the roadmap as input size. Although this calculation relies

on Jog-based data, one can also derive an upper bound on the number of Jogs

within a geographic area by using only the number of Nodes. That derivation,

followed by a brief time-complexity analysis of the steps of the RoadMapHash

algorithm follow.

Number of Jogs in a Digital Road Map

Road map data describes a graph whose points and edges reside in a plane.

However, for a graph G to be planar not only must each node reside in the

plane, but no edge may intersect with another edge. Luckily, we are given exactly

that constraint as a stipulation in the OpenStreetMaps (OSM) specification [cite

http://wiki.openstreetmap.org/wiki/Node#NodesonWays]. Because OSM street

data is planar, we can invoke Euler’s Formula described in Theorem 2.5.1 in order

to provide an upper bound on the number of nodes and edges. This theorem and

a proof are given in [18, pg. 22].

Theorem 2.5.1 (Euler’s Formula). Let G be a connected planar graph with n

vertices, m edges and f faces. Then n�m+ f = 2.

From Euler’s Formula, Kleitman in [19] proves a conclusion used for graph

coloring that we can apply here. That conclusion and Kleitman’s proof are given

as Lemma 2.5.2.

Lemma 2.5.2. A planar graph on v vertices can have at most 3v � 6 edges and

average degree strictly less than 6.

Proof. Each region defined by a drawing of G in the plane is bounded by a cycle

33

Algorithm 1 RoadMapHash
1: function RMHash(Ajog)
2: Let ASJ be a new dynamic array of Sharp Jogs
3: for each Jog J in Ajog do . Find Sharp Jogs
4: if J curvature C > Cthresh then
5: ASJ += J
6: end if
7: end for
8: Let SJEnt be an unordered set of Turn Entry Jogs
9: for each Sharp Jog J in ASJ do . Find Turn Entry Jogs
10: if Sharp Jog Not Already Explored then
11: while DFS Each Upstream Jog Ji = Ji�1 ! Jprev do
12: if J curvature C(Jprev) < Cthresh or C(J) ⇤ C(Jprev) < 0 then
13: SJEnt += Jprev
14: end if
15: end while
16: end if
17: end for
18: Let ST be an unordered set of Turns
19: for each Turn Entry Jog J in SJEnt do . Find Turn Exit Jogs, Turns
20: while DFS Each Downstream Jog Ji = Ji�1 ! Jnext do
21: if J curvature C < Cthresh or C(J) ⇤ C(Jnext) < 0 then
22: ST += T ({J : Jnext})
23: end if
24: end while
25: end for
26: for each Turn T in ST do . Set Turn Origins
27: while DFS Each Jog Jprev Upstream from T ! Jentry do
28: if Jprev is a Jexit for any Turn Ti then
29: T ! TurnOrigins += Ti

30: end if
31: end while
32: end for
33: Let STE be a set of TurnEvents
34: for each Turn Ti in ST do . Create Turn Events
35: for each Turn Tj in Ti ! TurnOrigins do STE += TE(Ti, Tj)
36: end for
37: end for
38: Let M be a map of type <string, vector<pair<float, float>>>
39: for each TurnEvent TE in STE do . Create Hash Table
40: Insert TE ! Signature, Location in M
41: end for
42: end function

34

of G. If that cycle is not a triangle, we can add an edge between two opposite

vertices and increase the number of edges.

We conclude then that a graph G on v vertices with the most edges will have

triangles for all its faces.

Then each face has three edges on its boundary, and the number of edge-face

pairs with the edge bounding the face will be 3f .

But each edge bounds 2 faces, so that the number of edge-face pairs with the

edge bounding the face will also be 2e.

We deduce then that f = 2e/3, so that in this case we can write Euler’s

formula as

v � e+
2e

3
= 2

3v = e+ 6

We notice also that the number of edge-vertex pairs with the vertex in the

edge, is 2e and is also the sum of the degrees of all the vertices.

This tells us that the sum of the degrees of the vertices of any edge maximal

planar graph on v vertices obeys:

The sum of the degrees of the vertices of G is 2e or 6v � 12.

The average degree of a vertex of G is therefore, 6� 12/v.

With this important observation as a basis, we can then draw the following

conclusion about the greatest number of Jogs in a Roadmap.

Theorem 2.5.3 (Greatest Number of Jogs in Roadmap). Let |J | be the cardinality

of the set of Jogs in a roadmap G and |N | be the number of Nodes in G. Then

|J | < 36|N |.

35

Proof. Choose any node n in the roadmap G. Let Nin be the set of nodes adjacent

to n which define edges in-bound to n, and let Nout be the set nodes with edges

out-bound from n. By Definition 2.2 of a Jog, the number of Jogs central to n is the

size of the set of ordered pairs (Nin⇥Nout)�C, where C = {(nin, nout)|nin = nout},

and C is then equal to the intersection Nin \Nout. So we have that

|J | = |(Nin ⇥Nout)\(Nin \Nout)| (1)

= |(Nin ⇥Nout)|\|(Nin \Nout)| (2)

<= |(Nin ⇥Nout)| (3)

<= |E|2, where E is the set of edges in G (4)

< 62|N | = 36|N | by Lemma 2.5.2 (5)

Time Complexity of RoadMapHash

Find Sharp Jogs As shown in lines 3 through 7 of Algorithm 2.5.1, the search

for Sharp Jogs is linear with respect to the number of Jogs. As detailed in

Subsection 2.5.2, the number of Jogs is linearly proportional to the number

of Nodes in the map data. So finding Sharp Jogs is O(NNodes) in time.

Find Turn Entry Jogs Lines 9 through 17 of Algorithm 2.5.1 show that for

each Sharp Jog, a depth first search on the space of Jogs “upstream”, or in

the direction opposite the flow of tra�c, from the Sharp Jog. In practice

this search is limited to a fixed distance and we can conclude that the time

required is of the order O(NJogs⇥1) = O(NNodes) = O(N); however, as in the

above if we allowed the search to continue without a distance constraint,this

36

step would require O(NJogs ⇥NJogs) = O(NNodes ⇥NNodes) = O(N2) time. 6

Find Turn Exit Jogs Lines 19 through 25 of Algorithm 2.5.1 show a phase of

RoadMapHash that is nearly identical to the previous step. Here, for each

Turn Entry Jog, a depth-first search is performed on the space of Jogs “down-

stream,” or in the direction of the flow of tra�c away from the Turn Entry

Jog. Again, this search is limited to a fixed distance and we can conclude

that the time required is of the order O(N); however, as in the above, if we

allowed the search to continue without a distance constraint, this step would

require O(N2) time. At this step we will observe that there are no more than

N2
Jogs Jog pairs, and thus the number of Turns has an upper bound of O(N2)

as well.

Set Turn Origins As lines 26 through 32 in Algorithm 2.5.1 indicate, Setting

Turn Origins is a process nearly identical to Finding Turn Entry Jogs, and its

asymptotic cost is proportional. So we have for each Turn (of which we have

O(N2)), we must search the space of Jogs once more. This step thus requires

O(N3) time with input size N given by the number of Nodes in the roadmap

data. Note that this is consistent with the complexity analysis provided by

Wolfson and Rigoutsos in [21], where regarding classical geometric hashing

the authors claim that

In general, if

• The database contains M known models, each comprising n
features,

• The scene during recognition contains S features, and

• c features are needed to form a basis,

6We note for completeness that there do exist O(log(N)) algorithms for DFS traversal of
planar graphs [20], but we remind the reader that the hypergraph formed by Jogs is not itself
planar. Consider for a a simple counterexample the three Jogs in Figure 2. Note that Jog 2
crosses both Jog 1 and Jog 3, and in general, Jogs may cross each other just as the set of drivable
routes over a roadmap must also cross.

37

then the time complexity of the preprocessing phase is O(Mnc+1).
[21, pg. 15]

In this research, the number of Turn features we use is 2, and our prepro-

cessing phase is dominated by a O(N3) operation.

Create TurnEvents As seen in lines 34 through 37 of Algorithm 2.5.1, creating

“TurnEvents”, or the key-value pairs to be inserted in the hash table is

an operation propotional to the number of Turn-TurnOrigin combinations

found. This is bounded above by O(N3), and because inserting into an

ordered set is a O(1) operation, this operation is also bounded by O(N3) for

N Nodes in the roadmap7.

Create Hash Table With TurnEvents Inserting into a hash table is a O(1)

operation and this is also linear over the set of O(N3) TurnEvents.

We remind the reader that in considering the runtime of RoadMapHash as a

function of the number of input nodes, we do constrain the search for Turns and

TurnEvents geographically. This is intuitive because a real-world turn event could

not span across continents, for instance. Similarly, we constrain the search of Turn

pairs (and thus TurnEvents) to be within the extent of a configured search radius,

nominally 10 kilometers. Thus the runtime of the entire system becomes linear with

respect to the total number of these search extents, as defined by the geographical

area we wish to cover. See Figure 12 for an illustration of this distribution.

2.5.3 Distributed RoadMapHash

The RoadMapHash algorithm has been parallelized to the extent that it makes

nearly maximum use of eight virtual cores. However, the vast data processing

7Although an ordered set is suitable for production, in our test implementation we use an
ordered std::map from the C++ Standard Template Library for debugging purposes.

38

demands of the RoadMapHash system exceed the computational capacity of a

single consumer PC. In order to further parallelize the RoadMapHash system, it

must be distributed across multiple computational units. This section will discuss

how the RoadMapHash system has now scaled horizontally as well as vertically.

Phases of Parallelization

Below is a brief summary of the RoadMapHash data processing algorithm,

which can be broken down into four key phases.

1. Raw Data Download. The unprocessed data in the form of OpenStreetMaps’s

version of XML, known as OSM, is downloaded from public servers. These

servers also provide some data filtering, such as limiting the type data only

to larger, arterial roads, for instance.

2. Jog Assembly from Nodes and Ways. The unprocessed data is a set of nodes

and a set of linestrings, known in OSM as Ways. In order for the curvature

based RoadMapHash algorithm to quickly traverse the roadmap graph in

search of curvatures, this data is reassembled into three-node sets called

Jogs.

3. Turn Search and Turn Pair Matching. Once the set of Jogs is available,

RoadMapHash can determine where in the road network turns can be sensed

by an inertial measurement unit and a speedometer. These turn features need

not simply be Jogs with high curvature; rather, they must be uniquely iden-

tifiable with sensors. Thus locating “Turns” is somewhat more complicated

and requires traversing the Jog graph extensively. Additionally, each Turn is

paired with another Turn by means of calculating the distance and change in

heading between the two. This is done in order to further distinguish Turn

features to spread out the lookup table.

39

4. Hash Table Updating. When the Turn features are discovered, they each

provide a unique turn signature and a set of coordinates to the location

of the turn. This key-value pair is entered into a MongoDB database by

means of batch uploading, and in turn upserting, JSON documents over the

Internet. This is the “Reduce” phase of the MapReduce process.

Distributed Implementation

Before the implementation of a distributed architecture, RoadMapHash had

been implemented in C++ without a command line interface. Raw data was ac-

quired before execution and processed hash tables were uploaded to the database

one at a time with a manually executed script. Additionally, the actual data pro-

cessing, comprising the second and third phases of the RoadMapHash algorithm,

was performed by one machine on the same set of data from start to finish. This fol-

lowing implementation provided opportunities for improvement using distributed

parallelization. Note that the parallel decomposition relies on two variables: the

number of servers as well as the number of map segments (and thus client threads).

Overall Workflow

1. Divide the map area into X equal sized rectangloids (not quite rectangles

because they are segments of the surface of an ellipsoid).

2. Provision N RoadMapHash worker servers.

3. Allocate the X segments to the N servers to do work.

Technologies Used

• C++. As mentioned above, the RoadMapHash algorithm itself is

implemented in C++ and uses LLVM C++ standard library threads

(std::thread) in order to parallelize work within each task.

40

• Go. The workers serve a web service written in Golang. There are REST

endpoints corresponding to the functions of the RoadMapHash algorithm.

There is not currently seamless integration between the RoadMapHash algo-

rithm and this web service. Rather, the binary ‘rmhash‘ utility is called as

an external process and the file system is used to poll the completion of each

file.

• Python. The distributed worker driver is written in Python with the Re-

quests library used to perform HTTP requests on the servers. The work-

flow described above is implemented in Python and extends the ‘thread-

ing.Thread‘ class in order to achieve parallel computation there.

• Docker. This project made use of Docker containers in order to deploy the

web application. A future goal of the research will be to orchestrate these

containerized services with Kubernetes.

• Cloud Resources. This project made use of virtual compute resources from

Microsoft Azure and Amazon Web Services.

Results

The results in Figure 13 show that the greatest speedup gained was approxi-

mately 2, when four map sections were processed. This is the result of a 1:1 map

section-to-server ratio, and the fact that each server had to download map data.

This bottleneck at the data download process created a linear time overhead in

the number of map sections, probably due to the slow down caused by multiple

HTTP requests and file handling. In general, however, the distributed architecture

shows promise. With 4 servers and 4 map sections, the distributed RoadMapHash

algorithm achieved a 1.90x speedup over a single machine working on a single map

section of the same area. This is consistent with the possibility that there is an

41

optimal coverage area that will balance the speedup gained in parallel processing

maps against the slow down caused by multiple data downloads and file operations.

Directions for Further Improvements

As mentioned above, the integration of the RoadMapHash algorithm with the

web API could be improved by making direct calls on a linked library as opposed

to making system calls to a binary executable, and then polling for completion.

Additionally, as mentioned in the results, the map data could be downloaded in

segments of optimal size because the downloads against the OSM server took a

significant portion of the within-worker time. Finally, the current system does

not yet implement the “Reduce” phase of the MapReduce workflow. That is, the

data is not yet merged back into a central data source. The scheme by which this

data will be merged must also be carefully considered. Because lookup tables for

each sub-region of the map may adequately describe a search space, each could be

independently useful to delineate the data result between service regions.

2.6 Tracking Phase: RoadMapTrack

The RoadMapTrack algorithm is the second subcomponent of the overall

RoadMapLocate system. Its purpose is limited and is designed operate on an em-

bedded system with as few features as necessary to record sensor data and perform

minor arithmetic calculations for final computation by another device. Ultimately,

RoadMapTrack will provide estimates of path displacement �Ut, change in head-

ing �✓t, instantaneous radius of curvature Rcurvet , and a timestamp ⌧t, for on-line

or o↵-line processing by the RoadMapFilter algorithm.

See in Algorithm 2 that RoadMap Track serves as a primary arithmetic stage

of sensor data processing. This is by design. Future implementations of RoadMap-

Track could included features such as run-length encoding for data records, and

42

possible integration with an IMU or GPS; however, in general we intend to restrict

the capabilities of RoadMapTrack so that it can operate on a stable, single pur-

pose platform. Also, see that Line 6 of the algorithm requires the constant b be

defined. This necessitates that the vehicle’s track width be known ahead of time

in order to use the data supplied by RoadMapTrack algorithm as an intermediate

virtual sensor. Finally note that in Line 7 of Algorithm 2, we compute the Radius

of Curvature by division. This requires checking that the change in heading �✓t

be non-zero, and otherwise returning infinity.

Algorithm 2 RoadMapTrack

1: function RMTrack(˙ULt, ˙URt, ⌧t)
2: Let ⌧ = ⌧t � ⌧t�1 . Time Since Update
3: Let �ULt = ˙ULt ⇤ ⌧ . Left Wheel Displacement
4: Let �URt = ˙URt ⇤ ⌧ . Right Wheel Displacement
5: Let �Ut = (�UtL +�UtR)/2 . Path Displacement
6: Let �✓t = (�UtL ��UtR) ⇤ b . Heading Displacement
7: Let Rcurvet = (�Ut/�✓t)� (b/2) . Radius of Curvature

return (�Ut,�✓t, Rcurvet , ⌧t)
8: end function

2.7 Localization Phase: RoadMapFilter Algorithm

In order to accurately estimate the pose of the vehicle8 we must review some

of the arithmetic performed by the RoadMapTrack subcomponent.

2.7.1 Motion Model

Di↵erential odometry is commonly used in two-wheeled robots and vehicles

with di↵erential drive in general. Here we use the di↵erential drive model described

in [22, pg. 19] coupled with the odometry motion model described in [23, pg.

95]. State updates from the wheel speed sensors are interpreted as changes in

position of the left and right wheels respectively. In the following description of

8We will refer to a “pose” of the vehicle as a hypothesis of its relative translation and rotation
from the last feature event.

43

our model we refer to the “pose” of the vehicle, Equation 6 as a three dimensional

vector corresponding to its horizontal translation, vertical translation, and change

in bearing from a previously known pose Xtk�1. This distinction is important for

further discussion because we uniquely expand on the need for a single vehicle-

intrinsic coordinate frame by updating this reference frame at each measurement

event k.

Xtk =

2

4
✓tk
xtk

ytk

3

5 (6)

We now look at the motion model which is similar to those used in [22] and

[24]. The di↵erential odometry model presented by Borenstein et al. describes

a vehicle whose left drive wheel moves �UL and whose right drive wheel moves

�UR . Borenstein’s model describes x, y, and ✓ displacement as a function of these

updates.

As in [22], the vector represented by Utk refers to a the control vector. Although

we discuss the control vector to remain consistent with the terminology used to

describe control theory in general, we point out that the measurements amounting

to this control are taken after the fact in our input-free system. As in [22], we

similarly use the convention of a positive �Dtk to refer to forward motion and a

positive �✓tk to refer to counter-clockwise rotation. One distinction to be made

is that we do not refer to the subscript t to be a global time elapsed since the

process began; rather we intend to refer to the time tk as the time instant since

measurement event k, which itself refers to the time of an update event as prompted

by recognizing a road feature. However, because tk is cumbersome, from here

forward, we will refer merely to the time t.

In considering the di↵erential drive, we describe our update vector as Equa-

44

tion 7.

�Dt = (�DtL +�DtR)/2�✓t = (�DtL ��DtR)/b (7)

These updates in path and heading change relate to our state vector with the

di↵erential drive system described in System 8 [23], [24].

F =

8
>>>>>><

>>>>>>:

f(✓t�1) = ✓t = ✓t�1 +�✓t

f(xt�1) = xt = xt�1 +�Dt cos ✓t

f(yt) = yt = yt�1 +�Dt sin ✓t

(8)

Finally, the system state vector can thus be written as Xt = [xt, yt, ✓t]⌧ , the

update vector as �Ut = [�Dt,�✓t]
⌧ , and the function vector f(X) = [fx, fy, f✓]⌧ .

2.7.2 Uncertainty

In Equation 7 we give the relative orientation given by di↵erence in change in

distance of the left wheel �DtL and change in distance of the right �DtR, where b

is the distance between the left rear wheel and the right rear wheel [22]9. However,

because the wheel speed sensors are error prone, and the e↵ects of odometric error

are cumulative, we model the true control vector as System 9.

ˆ�Dt = �Dt + ✏U (9)

�̂✓t = �✓t + ✏✓ (10)

In the literature an error in the observed or commanded change in heading

�✓ is occasionally modeled as a triangular distribution [23]. This model is suitable

for skidsteer vehicles and in robots with actual di↵erential drivetrains, where the

data generating process is a control on the degree of z axis twist, and ultimately

9The distance between the two rear wheels is known as the track width.

45

produces an “arc” of uncertainty. In [25] and [23], once the vehicle proceeds forward

after a change in rotation (or some sequence of similar infinitesimal movements)

the error in rotation should be considered from the perspective of z axis rotations

followed by forward movement.

However, here the data generating process is not control on the vehicle’s dif-

ferential drivetrain, rather, we passively collect wheel speed sensor data gathered

from both rear wheels. The error for this data needs to be modeled accordingly,

and we plan to implement an exponential parametric error system, describing un-

certainty in translation and rotation, as in [26]. In [26] the authors use a learned

parametric exponential model to test goodness-of-fit between range measurements

and model values.

2.7.3 Turn State Machine

Figure 16 shows the rule set used to determine whether a vehicle traveling on

a road of known curvature is in a turn or out of a turn. This finite state machine is

designed to threshold two levels of curvature. One is for maintaining a turn state,

when for example a vehicle travels a slightly curved portion of the road, but returns

to a straightaway. The second is a threshold after which the vehicle is considered

to be in a turn, which is nominally a turn radius of 15 meters. This two-phase turn

state process allows for vehicles to move with variance in road curvature without

overfitting too many turn events to the sequence of input.

2.8 RoadMapFilter

For the third phase of RoadMapLocate, we propose a sequential Monte Carlo

estimation process similar to the particle filter. The system should best approach

the ones specified by [27], [26], and [28] where estimates are probabilistic over a

set of hypotheses, and in some cases, the measurement phase requires adjustment

46

to the standard particle filter. Algorithm 3 sketches a possible method. Missing

however, is the incorporation of assigning probabilistic weights to the hypotheses.

As mentioned above in Motion Model, we suspect that the error models in [26] will

serve as a guide for this. Additionally, because the virtual measurements from the

hashtable may be multiple and very di↵erent, we further propose using the gating

technique in [27]. This is reflected in line 16 of Algorithm 3.

Algorithm 3 RoadMapFilter

1: function RoadMapFilter(X̄0, �X , ut)
2: Sample X0 ⇠ N(§,†)(X̄0, �X),U✓(�⇡, ⇡) . Initialize particles
3: while ut+1 6= ; do . Continuously Update
4: for i = 1 to Len(Xt) do . Loop over Hypotheses
5: xi = xi + ut + ✏x . Update Pose Hypotheses
6: end for
7: if Turn feature k detected from ut then
8: Zt = RoadMapHash(k) . Virtual Measurements
9: for i = 1 to N do
10: Sample xi from {Xt} . Sample from Xt with replacement
11: end for
12: for j = 1 to Len(zt) do . Loop over Candidates
13: Add zj to Xt . New Hypothesis
14: for i = 1 to Len(Xt) do . Loop over Hypotheses
15: if xi ⇡ zj then
16: xi = zt . Merge if Similar
17: end if
18: end for
19: end for
20: else
21: end if
22: end while
23: end function

List of References

[1] O. Members, “OGC R� Standards and Supporting Documents,” 2017.
[Online]. Available: http://www.opengeospatial.org/standards

[2] J. Bruce, J. Wawerla, and R. Vaughan, “The SFU mountain dataset: Semi-
structured woodland trails under changing environmental conditions,” in Pro-
ceedings of IEEE International Conference on Robotics and Automation 2015,

47

http://www.opengeospatial.org/standards

Workshop on Visual Place Recognition in Changing Environments, Seattle,
WA, USA, 2015.

[3] Advanced Navigation, “OBDII Odometer Reference Manual,” Web,
2014. [Online]. Available: http://www.advancednavigation.com.au/sites/
advancednavigation.com.au/files/obdii odometer reference manual.pdf

[4] Wikipedia Contributors, “OBD-II PIDs,” 2017. [Online]. Available:
https://en.wikipedia.org/wiki/OBD-II PIDs

[5] M. E. B. E. Najjar and P. Bonnifait, “Road Selection Using Multicriteria Fu-
sion for the Road-Matching Problem,” Proceedings of the IEEE Transactions
on Intelligent Transportation Systems, vol. 8, no. 2, pp. 279–291, June 2007.

[6] Neo4j Sta↵, “The Database Model Showdown: An RDBMS vs.
Graph Comparison - Neo4j Graph Database,” 2017. [Online]. Available:
https://neo4j.com/blog/database-model-comparison/

[7] Facebook, “GraphQL,” 2016. [Online]. Available: http://facebook.github.io/
graphql/October2016/

[8] Wikipedia Contributors, “Data-centric programming language,” 2017. [On-
line]. Available: https://en.wikipedia.org/wiki/Data-centric programming
language

[9] V. Engelmann, “www.Open-GraphTheory.org,” 2017. [Online]. Available:
http://www.open-graphtheory.org/gxlformat.html

[10] S. Mohammed and M. Bernard, Graph File Formats, 2004. [Online]. Available:
http://www2.sta.uwi.edu/⇠mbernard/research files/fileformats.pdf

[11] M. Himsolt, GML: A Portable Graph File Format. [Online]. Avail-
able: https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/
projekte/gml/gml-technical-report.pdf

[12] Wikipedia Contributors, “Graph modelling language,” 2017. [Online].
Available: https://en.wikipedia.org/wiki/GraphModellingLanguage

[13] E. Raymond, “The Lost Art of C Structure Packing,” 2017. [Online].
Available: http://www.catb.org/esr/structure-packing/

[14] Google, “Protocol Bu↵ers — Google Developers,” 2017. [Online]. Available:
https://developers.google.com/protocol-bu↵ers/

[15] L. Petit, “MongoDB WiredTiger: Why We Switched Back to
MMap,” 2015. [Online]. Available: https://tech.c-radar.com/2015/10/
12/mongodb-wiredtiger-why-we-switched-back-to-mmap/

48

http://www.advancednavigation.com.au/sites/advancednavigation.com.au/files/obdii_odometer_reference_manual.pdf
http://www.advancednavigation.com.au/sites/advancednavigation.com.au/files/obdii_odometer_reference_manual.pdf
https://en.wikipedia.org/wiki/OBD-II_PIDs
https://neo4j.com/blog/database-model-comparison/
http://facebook.github.io/graphql/October2016/
http://facebook.github.io/graphql/October2016/
https://en.wikipedia.org/wiki/Data-centric_programming_language
https://en.wikipedia.org/wiki/Data-centric_programming_language
http://www.open-graphtheory.org/gxlformat.html
http://www2.sta.uwi.edu/~mbernard/research_files/fileformats.pdf
https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://www.catb.org/esr/structure-packing/
https://developers.google.com/protocol-buffers/
https://tech.c-radar.com/2015/10/12/mongodb-wiredtiger-why-we-switched-back-to-mmap/
https://tech.c-radar.com/2015/10/12/mongodb-wiredtiger-why-we-switched-back-to-mmap/

[16] B. J. Kuipers and Y. Byun, “A Qualitative Approach to Robot Exploration
and Map-Learning,” in Workshop on Spatial Reasoning and Multi-Sensor Fu-
sion, St. Charles, IL, USA, Oct. 1987, pp. 390–404.

[17] Wikipedia Contributors, “Rounding,” 2017.

[18] D. Jungnickel, Graphs, Networks and Algorithms, 4th ed. New York, NY,
USA: Springer, 2014.

[19] D. Kleitman. “Planarity and Coloring.” 2004. [Online]. Available: http:
//www-math.mit.edu/⇠djk/18.310/18.310F04/planarity coloring.html

[20] T. Hagerup, “Planar Depth-First Search in O(log n) Parallel Time,” SIAM
Journal on Computing, vol. 19, no. 4, pp. 678–704, 1990. [Online]. Available:
https://doi.org/10.1137/0219047

[21] H. Wolfson and I. Rigoutsos, “Geometric Hashing: An Overview,” IEEE Com-
putational Science and Engineering, vol. 4, no. 4, pp. 10–21, 1997.

[22] J. Borenstein, H. Everett, and L. Feng, “Where am I? Sensors and Methods
for Mobile Robot Positioning, Tech. Rep. 120, 1996.

[23] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents series), ser. Intelligent Robotics and
Autonomous Agents. Cambridge, Massachusetts, USA: The MIT Press,
Aug. 2005. [Online]. Available: http://www.worldcat.org/isbn/0262201623

[24] E. Kiriy and M. Buehler, “Three-State Extended Kalman Filter for Mobile
Robot Localization,” Montreal, Que., Canada, Tech. Rep., 2002.

[25] K. T. Sutherland and W. B. Thompson, “Localizing in Unstructured Envi-
ronments: Dealing With the Errors,” IEEE Transactions on Robotics and
Automation, vol. 10, no. 6, pp. 740–754, Dec 1994.

[26] H. Badino, D. Huber, and T. Kanade, “Real-Time Topometric Localization,”
in Proceedings of the 2012 IEEE International Conference on Robotics and
Automation, St. Paul, MN, USA, May 2012, pp. 1635–1642.

[27] P. Jensfelt and S. Kristensen, “Active Global Localization for a Mobile Robot
Using Multiple Hypothesis Tracking,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 5, pp. 748–760, Oct. 2001.

[28] R. Karlsson and F. Gustafsson, “The Future of Automotive Localization Algo-
rithms: Available, Reliable, and Scalable Localization: Anywhere and Any-
time,” IEEE Signal Processing Magazine, vol. 34, no. 2, pp. 60–69, March
2017.

49

http://www-math.mit.edu/~djk/18.310/18.310F04/planarity_coloring.html
http://www-math.mit.edu/~djk/18.310/18.310F04/planarity_coloring.html
https://doi.org/10.1137/0219047
http://www.worldcat.org/isbn/0262201623

Figure 4. OBDII Parameter ID Discovered by Logging During Short Drive. Move-
ment periods highlighted in blue.

50

Figure 5. Example OSM Roads in Newport, RI. Image from JavaOpenStreetMaps
(JOSM).

Figure 6. JogML Grammar in Extended Backus-Naur Form (EBNF)

51

Figure 7. JogML Example

52

Figure 8. High Curvature Areas Highlighted. Google Image.

Figure 9. Path Segment Shape Identified, Map Data Known

Figure 10. Path Segment is Matched to Road Map Data

53

Figure 11. Several Turn Events Terminating at Red Turns, Each Originating from
a Single Green Turn

Figure 12. Work Distribution

54

Figure 13. Distributed Speedup

Figure 14. Di↵erential Odometry by Rear Wheel Motion

55

Figure 15. Change in distance and direction are given in a reference frame of
Feature fk.

Figure 16. Turn State Transition Table

56

CHAPTER 3

Testing Proposal

Below we discuss an experiment design for the RoadMapLocate system. The

experiment will be tested o↵-line after recording GPS coordinates and logging

ABS Wheel Speeds and timestamps from the CAN bus of a consumer vehicle.

In order to carry out the RoadMapTrack and RoadMapFilter phases of the over-

all RoadMapLocate system, experimental data must be generated from rear wheel

odometry over course where OSM data is available. The Arduino-bound RoadMap-

Track system will record this data for analysis o✏ine. For a real-world control, we

will use GPS and network location estimates taken from the Android operating

system interface. After processing the odometry data with RoadMapFilter, we will

analyze the results along the Performance Criteria stated below.

3.1 Performance Criteria

The most common performance measure is the physical distance between po-

sition estimates and a “ground-truth” position, which is usually measured by a

GPS device or corrected GPS track. We certainly care about that measurement

here, but there are several additional measures we will consider as listed below.

Extent of Map In the literature, the test map is usually only large enough to

contain the entire test track, and occasionally the size of the state space itself

may not even be cited as a relevant performance criterion. However, the extent of

the search on which a successful map-based localization strategy is performed is

possibly the second most important measure of performance. Bigger map is better

performance.

57

Computation Time We will benchmark each of the RoadMapLocate subcom-

ponents on their respective hardware. RoadMapHash, executed on on an Intel I7

(6th Gen) with 32GB RAM time, should be evaluated for runtime as a function of

N nodes in the roadmap. RoadMapTrack, executed on an ATmega328 with 2KB

RAM, should be evaluated mostly for the speed of I/O operations. We are specif-

ically interested in Bluetooth transfer rate. Finally, we expect RoadMapFilter to

be run on a 1.6GHz quad-core Qualcomm Snapdragon 821 processor with 4GB of

RAM, and we will estimate each particle update period in seconds.

Initial Position and Latency We want to quantify the necessary number of

features recognized in order to accurately determine a position. This will be a

function of map extent as well as the distribution of initial hypothesis across that

extent.

Data Size This is related to the extent of map necessary for localization, but in

this case, we seek to determine the geographical extent that could be stored on a

consumer SD card so that the mobile device need not have Internet connectivity.

Current estimates show that for an extent of approximately 100 square kilometers

(Aquidneck Island) the required storage is 74KB. Assuming the rest of the 9 million

square kilometers in the United States have similar road density, this translates to

an estimated 6.5GB of storage space for the entire U.S.1

1We note that this estimate is pessimistic and the western United States encompasses a
geographical extent with less road density.

58

CHAPTER 4

Conclusions and Future Research

Most map data-based localization strategies only tacitly recognize curvature

as a road’s fundamental feature. This research, in addition to developing recog-

nizable turn features in the RoadMapHash algorithm, also contributes a unique

technique to characterizing an entire roadmap based on an instinctual turn-by-

turn approach to navigation. With modern sensors, small form factor computers,

and a distributed computation environment, the success of the fully implemented

RoadMapLocate technique is realistic in the near future.

Future research may pertain directly to the performance criteria listed in the

Testing Proposal. However, we make acknowledge several additional items we

would like to consider.

Data

The road features extracted from curvature can be augmented including the

change in altitude between turns. This could reduce the load factor in the hashta-

bles. Along that vein, road slope can be included when calculating feature keys

so that distances covering any elevation during a real world drive will be more

accurately represented than in the current flat Earth model. Additional road pe-

culiarities, such as road surface width or speed limits might be of value.

Algorithmic Analysis

The majority of the work here concentrated on RoadMapHash, but the other

components of the RoadMapLocate deserve significant analysis also. Because

the error of each wheel speed is modeled as zero-mean Gaussian, we must de-

rive the propagated error in the ultimate motion model, which includes sine and

59

cosine functions, as a specific exponential probability distribution. Additionally,

the scaled rounding technique used in RoadMapHash to determine how to round

lookup keys must be properly parameterized, and adequately reflect error distri-

butions in distance and heading changes.

Application Environments

The current operating environment for the RoadMapLocate system is a con-

sumer vehicle with rear wheel speed sensors. However, we recognize several ap-

plications that could benefit from this research. For instance, visual odometry,

performed either from a land-based or aerial platform, could identify road seg-

ments and benefit from the virtual measurements provided by RoadMapHash as

well. Indoor navigation o↵ers similar constraints as road-bound navigation and

may benefit from a similar strategy. Finally, navigation in mines and tunnels,

where GPS signals cannot travel but which may be entirely charted, could benefit

from this strategy.[1]

List of References

[1] P. Debanne, J.-Y. Hervé, and P. Cohen, “Global Self-Localization of a Robot
in Underground Mines,” in Proceedings of the 1997 IEEE International Con-
ference on Systems, Man, and Cybernetics. Computational Cybernetics and
Simulation, vol. 5, Orlando, FL, USA, Oct. 1997, pp. 4400–4405 vol.5.

60

BIBLIOGRAPHY

“Progressive Taxi Instructions,” 2017. [Online]. Available: https://www.skybrary.
aero/index.php/Progressive Taxi Instructions

Advanced Navigation, “OBDII Odometer Reference Manual,” Web,
2014. [Online]. Available: http://www.advancednavigation.com.au/sites/
advancednavigation.com.au/files/obdii odometer reference manual.pdf

Arkin, E. M., Chew, L. P., Huttenlocher, D. P., Kedem, K., and Mitchell, J. S. B.,
“An E�ciently Computable Metric for Comparing Polygonal Shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 3, pp.
209–216, Mar 1991.

Badino, H., Huber, D., and Kanade, T., “Real-Time Topometric Localization,”
in Proceedings of the 2012 IEEE International Conference on Robotics and
Automation, St. Paul, MN, USA, May 2012, pp. 1635–1642.

Ballard, D. H., “Readings in computer vision: Issues, problems, principles, and
paradigms,” Fischler, M. A. and Firschein, O., Eds. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1987, ch. Generalizing the Hough
Transform to Detect Arbitrary Shapes, pp. 714–725. [Online]. Available:
http://dl.acm.org/citation.cfm?id=33517.33574

Bhosle, U., Chaudhuri, S., and Dutta Roy, S., “A Fast Method for Image Mosaicing
Using Geometric Hashing,” IETE Journal of Research, vol. 48, no. 3-4, pp.
317–324, 2002.

Borenstein, J., Everett, H., and Feng, L., “Where am I? Sensors and Methods for
Mobile Robot Positioning, Tech. Rep. 120, 1996.

Bruce, J., Wawerla, J., and Vaughan, R., “The SFU mountain dataset: Semi-
structured woodland trails under changing environmental conditions,” in Pro-
ceedings of IEEE International Conference on Robotics and Automation 2015,
Workshop on Visual Place Recognition in Changing Environments, Seattle,
WA, USA, 2015.

Carboni, D., Manchinu, A., Marotto, V., Piras, A., and Serra, A., “Infrastructure-
Free Indoor Navigation: A Case Study,” Journal of Location Based Services,
vol. 9, no. 1, pp. 33–54, 2015.

61

https://www.skybrary.aero/index.php/Progressive_Taxi_Instructions
https://www.skybrary.aero/index.php/Progressive_Taxi_Instructions
http://www.advancednavigation.com.au/sites/advancednavigation.com.au/files/obdii_odometer_reference_manual.pdf
http://www.advancednavigation.com.au/sites/advancednavigation.com.au/files/obdii_odometer_reference_manual.pdf
http://dl.acm.org/citation.cfm?id=33517.33574

Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M., “Detection
of Blood Vessels in Retinal Images Using Two-Dimensional Matched Filters,”
IEEE Transactions on Medical Imaging, vol. 8, no. 3, pp. 263–269, Sep 1989.

Chen, H. and Bhanu, B., “E�cient Recognition of Highly Similar 3D Objects in
Range Images,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 31, no. 1, pp. 172–179, 2009.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to
Algorithms, 3rd ed. Cambridge, MA, USA: The MIT Press, 2009.

Debanne, P., Hervé, J.-Y., and Cohen, P., “Global Self-Localization of a Robot
in Underground Mines,” in Proceedings of the 1997 IEEE International Con-
ference on Systems, Man, and Cybernetics. Computational Cybernetics and
Simulation, vol. 5, Orlando, FL, USA, Oct. 1997, pp. 4400–4405 vol.5.

Dhiman, N. K., Deodhare, D., and Khemani, D., “A review of path planning and
mapping technologies for autonomous mobile robot systems,” in Proceedings
of the 5th ACM COMPUTE Conference: Intelligent Scalable System
Technologies, ser. COMPUTE ’12. New York, NY, USA: ACM, 2012, pp.
3:1–3:8. [Online]. Available: http://doi.acm.org/10.1145/2459118.2459121

Durrant-Whyte, H. F., “Uncertain Geometry in Robotics,” IEEE Journal on
Robotics and Automation, vol. 4, no. 1, pp. 23–31, Feb 1988.

Engelmann, V., “www.Open-GraphTheory.org,” 2017. [Online]. Available:
http://www.open-graphtheory.org/gxlformat.html

Extract.bbbike.org, “Planet.osm Extracts — BBBike.org,” 2016, Accessed:
2016-2-21. [Online]. Available: http://extract.bbbike.org/

Facebook, “GraphQL,” 2016. [Online]. Available: http://facebook.github.io/
graphql/October2016/

Floros, G., van der Zander, B., and Leibe, B., “OpenStreetSLAM: Global Vehicle
Localization Using OpenStreetMaps,” in Proceedings of the 2013 IEEE Inter-
national Conference on Robotics and Automation, Karlsruhe, Germany, May
2013, pp. 1054–1059.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R., “Vision Meets Robotics: The
KITTI Dataset,” International Journal of Robotics Research, vol. 32, no. 11,
pp. 1231–1237, 2013.

Google, “Protocol Bu↵ers — Google Developers,” 2017. [Online]. Available:
https://developers.google.com/protocol-bu↵ers/

62

http://doi.acm.org/10.1145/2459118.2459121
http://www.open-graphtheory.org/gxlformat.html
http://extract.bbbike.org/
http://facebook.github.io/graphql/October2016/
http://facebook.github.io/graphql/October2016/
https://developers.google.com/protocol-buffers/

Grabler, F., Agrawala, M., Sumner, R. W., and Pauly, M., “Automatic
Generation of Tourist Maps,” ACM Transactions on Graphics, vol. 27, no. 3,
pp. 100:1–100:11, Aug. 2008. [Online]. Available: http://doi.acm.org/10.
1145/1360612.1360699

Greitans, M., Pudzs, M., and Fuksis, R., “Object Analysis in Images Using Com-
plex 2D Matched Filters,” in IEEE EUROCON 2009, May 2009, pp. 1392–
1397.

Grossmann, E. and Santos-Victor, J., “Uncertainty Analysis of 3D Reconstruction
from Uncalibrated Views,” Image and Vision Computing, vol. 18, no. 9, pp.
685–696, 2000.

Groves, P. D., Principles of GNSS, Inertial, and Multi-Sensor Integrated Naviga-
tion Systems Second Edition. Boston: Artech House, 2013.

Hagerup, T., “Planar Depth-First Search in O(log n) Parallel Time,” SIAM
Journal on Computing, vol. 19, no. 4, pp. 678–704, 1990. [Online]. Available:
https://doi.org/10.1137/0219047

Harvey, C., “New Algorithms for Automated Astrometry,” Ph.D. dissertation,
University of Toronto, Toronto, Ont., Canada, 2004.

Himsolt, M., GML: A Portable Graph File Format. [Online]. Avail-
able: https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/
projekte/gml/gml-technical-report.pdf

Ho↵man, C., “China’s Space Threat: How Missiles Could Target U.S.
Satellites,” 2009, Accessed: 2016-2-21. [Online]. Available: http:
//www.popularmechanics.com/space/satellites/a1782/4218443/

Jensfelt, P. and Kristensen, S., “Active Global Localization for a Mobile Robot
Using Multiple Hypothesis Tracking,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 5, pp. 748–760, Oct. 2001.

Jiang, X., Broelemann, K., Wachenfeld, S., and Kruger, A., “Graph-Based
Markerless Registration of City Maps Using Geometric Hashing,” Computer
Vision and Image Understanding, vol. 115, no. 7, pp. 1032–1043, July 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.cviu.2010.12.014

Jungnickel, D., Graphs, Networks and Algorithms, 4th ed. New York, NY, USA:
Springer, 2014.

Kalicinski, M., “RapidXml,” 2009. [Online]. Available: http://rapidxml.
sourceforge.net/

63

http://doi.acm.org/10.1145/1360612.1360699
http://doi.acm.org/10.1145/1360612.1360699
https://doi.org/10.1137/0219047
https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
https://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://www.popularmechanics.com/space/satellites/a1782/4218443/
http://www.popularmechanics.com/space/satellites/a1782/4218443/
http://dx.doi.org/10.1016/j.cviu.2010.12.014
http://rapidxml.sourceforge.net/
http://rapidxml.sourceforge.net/

Kalman, R. E., “A New Approach to Linear Filtering and Prediction Problems,”
Transactions of the ASME–Journal of Basic Engineering, vol. 82, no. Series
D, pp. 35–45, 1960.

Karlsson, R. and Gustafsson, F., “The Future of Automotive Localization Algo-
rithms: Available, Reliable, and Scalable Localization: Anywhere and Any-
time,” IEEE Signal Processing Magazine, vol. 34, no. 2, pp. 60–69, March
2017.

Karney, C. F. F., “GeographicLib,” 2015. [Online]. Available: https:
//geographiclib.sourceforge.io/

Kiriy, E. and Buehler, M., “Three-State Extended Kalman Filter for Mobile Robot
Localization,” Montreal, Que., Canada, Tech. Rep., 2002.

Kleitman, D. “Planarity and Coloring.” 2004. [Online]. Available: http:
//www-math.mit.edu/⇠djk/18.310/18.310F04/planarity coloring.html

Konheim, A. G., Hashing and the Secure Distribution of Digital Media. Hoboken,
NJ, USA: John Wiley and Sons, Inc., 2010, pp. 320–323. [Online]. Available:
http://dx.doi.org/10.1002/9780470630617.ch19

Kuipers, B., “Multiple Ontologies for Spatial Exploration and Mapping,” in
Proceedings of the Second ACM SIGSPATIAL International Workshop on
Indoor Spatial Awareness, ser. ISA ’10. New York, NY, USA: ACM, 2010,
pp. 24–24. [Online]. Available: http://doi.acm.org/10.1145/1865885.1865892

Kuipers, B. and Byun, Y.-T., “A Robot Exploration and Mapping Strategy
Based on a Semantic Hierarchy of Spatial Representations,” Robotics and
Autonomous Systems, vol. 8, no. 1, pp. 47 – 63, 1991.

Kuipers, B. J., “Representing Knowledge of Large-Scale Space,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, Cambridge, MA, USA, 1977.

Kuipers, B. J. and Byun, Y., “A Qualitative Approach to Robot Exploration and
Map-Learning,” in Workshop on Spatial Reasoning and Multi-Sensor Fusion,
St. Charles, IL, USA, Oct. 1987, pp. 390–404.

Leibowitz, N., Fligelman, Z. Y., Nussinov, R., and Wolfson, H. J., “Multiple Struc-
tural Alignment and Core Detection by Geometric Hashing,” in Proceedings
of the Seventh International Conference on Intelligent Systems for Molecular
Biology, Heidelberg, Germany, 1999, pp. 169–177.

Li, W. and Leung, H., “Constrained Unscented Kalman Filter Based Fusion of
GPS/INS/Digital Map for Vehicle Localization,” in Proceedings of the 2003
IEEE International Conference on Intelligent Transportation Systems, vol. 2,
Shanghai, China, Oct. 2003, pp. 1362–1367.

64

https://geographiclib.sourceforge.io/
https://geographiclib.sourceforge.io/
http://www-math.mit.edu/~djk/18.310/18.310F04/planarity_coloring.html
http://www-math.mit.edu/~djk/18.310/18.310F04/planarity_coloring.html
http://dx.doi.org/10.1002/9780470630617.ch19
http://doi.acm.org/10.1145/1865885.1865892

Lifshits, M., Rivlin, E., and Rudzsky, M., “Image-Based Navigation on a Chip,” in
Proceedings of the 21st IEEE Instrumentation and Measurement Technology
Conference, vol. 1, Como, Italy, May 2004, pp. 504–509 Vol.1.

Lin, S. S., Lin, C. H., Hu, Y. J., and Lee, T. Y., “Drawing Road Networks with
Mental Maps,” IEEE Transactions on Visualization and Computer Graphics,
vol. 20, no. 9, pp. 1241–1252, Sept 2014.

Liu, J. S. and Chen, R., “Sequential Monte Carlo Methods for Dynamic Systems,”
Journal of the American Statistical Association, vol. 93, pp. 1032–1044, 1998.

Liu, M. Y., Tuzel, O., Veeraraghavan, A., and Chellappa, R., “Fast Directional
Chamfer Matching,” in Proceedings of the 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, San Francisco, CA,
USA, June 2010, pp. 1696–1703.

Lundgren, M., Stenborg, E., Svensson, L., and Hammarstrand, L., “Vehicle Self-
Localization Using O↵-the-Shelf Sensors and a Detailed Map,” in Proceedings
of the 2014 IEEE Intelligent Vehicles Symposium, Ypsilanti, Michigan, USA,
June 2014, pp. 522–528.

Members, O., “OGC R� Standards and Supporting Documents,” 2017. [Online].
Available: http://www.opengeospatial.org/standards

Merriaux, P., Dupuis, Y., Vasseur, P., and Savatier, X., “Wheel Odometry-Based
Car Localization and Tracking on Vectorial Map,” in Proceedings of the 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC),
Qingdao, China, Oct. 2014, pp. 1890–1891.

Mohammed, S. and Bernard, M., Graph File Formats, 2004. [Online]. Available:
http://www2.sta.uwi.edu/⇠mbernard/research files/fileformats.pdf

Moreno Maza, M., “LL(1) Grammars,” 2004. [Online]. Available: http:
//www.csd.uwo.ca/⇠moreno/CS447/Lectures/Syntax.html/node14.html

Mugan, J. and Kuipers, B., “Autonomous Learning of High-Level States and Ac-
tions in Continuous Environments,” IEEE Transactions on Autonomous Men-
tal Development, vol. 4, no. 1, pp. 70–86, March 2012.

Najjar, M. E. B. E. and Bonnifait, P., “Road Selection Using Multicriteria Fusion
for the Road-Matching Problem,” Proceedings of the IEEE Transactions on
Intelligent Transportation Systems, vol. 8, no. 2, pp. 279–291, June 2007.

National Coordination O�ce for Space-Based Positioning Navigation and Timing,
“Gps.gov: Frequently Asked Questions,” 2016, Accessed: 2016-2-21. [Online].
Available: http://www.gps.gov/support/faq/#o↵

65

http://www.opengeospatial.org/standards
http://www2.sta.uwi.edu/~mbernard/research_files/fileformats.pdf
http://www.csd.uwo.ca/~moreno/CS447/Lectures/Syntax.html/node14.html
http://www.csd.uwo.ca/~moreno/CS447/Lectures/Syntax.html/node14.html
http://www.gps.gov/support/faq/#off

Neo4j Sta↵, “The Database Model Showdown: An RDBMS vs. Graph
Comparison - Neo4j Graph Database,” 2017. [Online]. Available: https:
//neo4j.com/blog/database-model-comparison/

NXP Semiconductors, “GPS, LNA, Sensitivity, Jamming, Cohabitation,
TTFF,” Eindhoven, 2009, Accessed: 2016-2-21. [Online]. Available:
http://www.nxp.com/documents/other/75016740.pdf

Petit, L., “MongoDB WiredTiger: Why We Switched Back to
MMap,” 2015. [Online]. Available: https://tech.c-radar.com/2015/10/
12/mongodb-wiredtiger-why-we-switched-back-to-mmap/

ProofWiki Contributors, “Set Di↵erence of Cartesian Products,” Aug 2008.
[Online]. Available: https://proofwiki.org/wiki/Set Di↵erence of Cartesian
Products

Ranganathan, P., Hayet, J.-B., Devy, M., Hutchinson, S., and Lerasle, F., “Topo-
logical Navigation and Qualitative Localization for Indoor Environment Using
Multi-Sensory Perception,” Robotics and Autonomous Systems, vol. 41, no. 2-
3, pp. 137–144, 2002.

Raymond, E., “The Lost Art of C Structure Packing,” 2017. [Online]. Available:
http://www.catb.org/esr/structure-packing/

Rigoutsos, I. and Wolfson, H. J., “Geometric Hashing,” IEEE Computational Sci-
ence and Engineering, vol. 4, no. 4, pp. 9–9, Oct. 1997.

Santana, A. M., Sousa, A. A., Britto, R. S., Alsina, P. J., and Dantas de Medeiros,
A. A., “Localization of a Mobile Robot Based on Odometry and Natural
Landmarks Using Extended Kalman Filter,” in Proceedings of the 2008 In-
ternational Conference on Informatics in Control, Automation and Robotics,
Funchal, Madeira, Portugal, 2008.

Schra↵enberger, M. and Hervé, J. Y., “Agent Abilities in a Landmark-Based Map-
ping Model,” in Proceedings of the 2006 IEEE International Conference on
Systems, Man and Cybernetics, vol. 3, Oct. 2006, pp. 2493–2498, Taipei, Tai-
wan.

Schutzberg, A., “Ten Things You Need to Know about Indoor Positioning,” 2013,
Accessed: 2016-2-21. [Online]. Available: http://www.directionsmag.com/
entry/10-things-you-need-to-know-about-indoor-positioning/324602

Sim, K. S., “Rotation-Invariant Reference Point Location Detection Using Com-
plex Filtering for Fingerprint Matching,” International Journal of Future
Computer and Communication, pp. 321–322, 2012.

66

https://neo4j.com/blog/database-model-comparison/
https://neo4j.com/blog/database-model-comparison/
http://www.nxp.com/documents/other/75016740.pdf
https://tech.c-radar.com/2015/10/12/mongodb-wiredtiger-why-we-switched-back-to-mmap/
https://tech.c-radar.com/2015/10/12/mongodb-wiredtiger-why-we-switched-back-to-mmap/
https://proofwiki.org/wiki/Set_Difference_of_Cartesian_Products
https://proofwiki.org/wiki/Set_Difference_of_Cartesian_Products
http://www.catb.org/esr/structure-packing/
http://www.directionsmag.com/entry/10-things-you-need-to-know-about-indoor-positioning/324602
http://www.directionsmag.com/entry/10-things-you-need-to-know-about-indoor-positioning/324602

StackExchange Contributors, “Since When is CAN Bus Mandatory for New
Vehicles?” 2017. [Online]. Available: https://law.stackexchange.com/
questions/1317/since-when-is-can-bus-mandatory-for-new-vehicles

Sta↵, N., “The Database Model Showdown: An RDBMS vs. Graph
Comparison - Neo4j Graph Database,” 2017. [Online]. Available: https:
//neo4j.com/blog/database-model-comparison/

Strecha, C., Bronstein, A., Bronstein, M., and Fua, P., “LDAHash: Improved
Matching with Smaller Descriptors,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 1, pp. 66–78, Jan 2012.

Sutherland, K. T. and Thompson, W. B., “Localizing in Unstructured Environ-
ments: Dealing With the Errors,” IEEE Transactions on Robotics and Au-
tomation, vol. 10, no. 6, pp. 740–754, Dec 1994.

Tanase, M. and Veltkamp, R. C., “Part-Based Shape Retrieval,” in Proceedings
of the 13th Annual ACM International Conference on Multimedia, Singapore,
2005.

Thrun, S., Burgard, W., and Fox, D., Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents series), ser. Intelligent Robotics and Autonomous
Agents. Cambridge, Massachusetts, USA: The MIT Press, Aug. 2005.
[Online]. Available: http://www.worldcat.org/isbn/0262201623

Vanasse Hangen Brustlin Inc. et al, Norwalk Transportation Management
Plan: State Project DOT01020336PE, 2014, ch. Intersection Design
Template. [Online]. Available: http://www.ct.gov/dot/cwp/view.asp?A=
3529&Q=542234

Wachenfeld, S., Broelemann, K., Jiang, X., and Kruger, A., “Graph-Based
Registration of Partial Images of City Maps Using Geometric Hashing,”
in Proceedings of the 7th IAPR-TC-15 International Workshop on Graph-
Based Representations in Pattern Recognition, ser. GbRPR ’09, Venice,
Italy, 2009, pp. 92–101. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-02124-4 10

Weiss, W. A. R., An Introduction to Set Theory. University of Toronto, 2008.

Weisstein, E. W., “Normal Di↵erence Distribution,” MathWorld, A Wol-
fram Web Resource. [Online]. Available: http://mathworld.wolfram.com/
NormalDi↵erenceDistribution.html

Whaite, P. and Ferrie, F. P., “From Uncertainty to Visual Exploration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 10,
pp. 1038–1049, Oct. 1991.

67

https://law.stackexchange.com/questions/1317/since-when-is-can-bus-mandatory-for-new-vehicles
https://law.stackexchange.com/questions/1317/since-when-is-can-bus-mandatory-for-new-vehicles
https://neo4j.com/blog/database-model-comparison/
https://neo4j.com/blog/database-model-comparison/
http://www.worldcat.org/isbn/0262201623
http://www.ct.gov/dot/cwp/view.asp?A=3529&Q=542234
http://www.ct.gov/dot/cwp/view.asp?A=3529&Q=542234
http://dx.doi.org/10.1007/978-3-642-02124-4_10
http://dx.doi.org/10.1007/978-3-642-02124-4_10
http://mathworld.wolfram.com/NormalDifferenceDistribution.html
http://mathworld.wolfram.com/NormalDifferenceDistribution.html

Whaite, P. and Ferrie, F. P., “Autonomous Exploration: Driven by Uncertainty,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 3, pp. 193–205, Mar 1997.

Wikipedia Contributors, “Data-centric programming language,” 2017. [On-
line]. Available: https://en.wikipedia.org/wiki/Data-centric programming
language

Wikipedia Contributors, “Graph modelling language,” 2017. [Online]. Available:
https://en.wikipedia.org/wiki/GraphModellingLanguage

Wikipedia Contributors, “Markov Property,” 2017. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Markov property&oldid=789272803,

Wikipedia Contributors, “OBD-II PIDs,” 2017. [Online]. Available: https:
//en.wikipedia.org/wiki/OBD-II PIDs

Wikipedia Contributors, “Rounding,” 2017.

Wolfson, H. and Rigoutsos, I., “Geometric Hashing: An Overview,” IEEE Com-
putational Science and Engineering, vol. 4, no. 4, pp. 10–21, 1997.

Yanchyshyn, R. “How-to Guide for OBDII Reader App Develop-
ment.” May 2014. [Online]. Available: http://blog.lemberg.co.uk/
how-guide-obdii-reader-app-development

Ying, F., Mooney, P., Corcoran, P., and Winstanley, A. C., “Using Shape
Complexity to Guide Simplification of Geospatial Data for Use in Location-
Based Services,” in 7th International Symposium on Location Based Services
& TeleCartography, Guangzhou, China, 2010, pp. 1–16. [Online]. Available:
http://eprints.maynoothuniversity.ie/4985/

Yip, M. and Tencent Corporation, “Rapidjson,” 2015. [Online]. Available:
http://rapidjson.org/index.html

68

https://en.wikipedia.org/wiki/Data-centric_programming_language
https://en.wikipedia.org/wiki/Data-centric_programming_language
https://en.wikipedia.org/w/index.php?title=Markov_property&oldid=789272803,
https://en.wikipedia.org/w/index.php?title=Markov_property&oldid=789272803,
https://en.wikipedia.org/wiki/OBD-II_PIDs
https://en.wikipedia.org/wiki/OBD-II_PIDs
http://blog.lemberg.co.uk/how-guide-obdii-reader-app-development
http://blog.lemberg.co.uk/how-guide-obdii-reader-app-development
http://eprints.maynoothuniversity.ie/4985/
http://rapidjson.org/index.html

	Positioning by Road Feature Correspondence
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Introduction
	Problem Context
	Distinctive Places and Features
	Topometric Positioning

	Significance of the Study
	Commercial Road Navigation
	Defense Road Navigation
	Extension to Indoor Localization
	Game Non-Player Character Positioning AI

	Related Work
	Map Constrained Tracking
	Landmark Recognition
	Geometric Hashing and Navigation
	Geometric Hashing Overview

	Thesis Statement
	List of References

	Methodology
	Architecture of the Positioning Strategy
	Definitions
	Sensors and Data
	Odometric Sensor
	Map Data

	Data Centric Programming Language
	Introduction
	Jog Modeling Language (JogML)
	JogBin Data Format
	JogML Improvement Considerations

	Training Phase: RoadMapHash Algorithm
	Description
	Complexity Analysis
	Distributed RoadMapHash

	Tracking Phase: RoadMapTrack
	Localization Phase: RoadMapFilter Algorithm
	Motion Model
	Uncertainty
	Turn State Machine

	RoadMapFilter
	List of References

	Testing Proposal
	Performance Criteria

	Conclusions and Future Research
	List of References

	BIBLIOGRAPHY

