
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2018

DEEP GENERATIVE MODEL FOR MULTI-CLASS IMBALANCED DEEP GENERATIVE MODEL FOR MULTI-CLASS IMBALANCED

LEARNING LEARNING

Yazhou Zhang
University of Rhode Island, yazhou@ele.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Zhang, Yazhou, "DEEP GENERATIVE MODEL FOR MULTI-CLASS IMBALANCED LEARNING" (2018). Open
Access Master's Theses. Paper 1277.
https://digitalcommons.uri.edu/theses/1277

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1277?utm_source=digitalcommons.uri.edu%2Ftheses%2F1277&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

DEEP GENERATIVE MODEL FOR MULTI-CLASS IMBALANCED

LEARNING

BY

YAZHOU ZHANG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

2018

MASTER OF SCIENCE THESIS

OF

YAZHOU ZHANG

APPROVED:

Thesis Committee:

Major Professor Haibo He

Lutz Hamel

Yan Sun

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2018

ABSTRACT

Learning from imbalanced data has drawn growing attentions nowadays in the

machine learning and data mining area. The imbalanced distribution will influ-

ence the performance of many machine learning algorithms, especially those need

big amount of data. To reduce the influence of skewed data distribution on dis-

criminative models, various synthetic oversampling methods have been proposed

to generate extra samples for data balance. However, most of the classic oversam-

pling algorithms, such as Synthetic Minority Over-sampling Technique (SMOTE)

or Adaptive Synthetic Sampling Approach (ADASYN), were developed only focus-

ing on balancing the data distribution of low dimensional data in a binary feature

space, which limits their application on high dimensional multi-class data.

To deal with the deficiency of current imbalanced learning methods, this thesis

proposed a deep generative model based multi-class imbalanced learning algorithm.

Both Variational Autoencoder (VAE) and Generative Adversarial Network (GAN)

are implemented as data generators for creating high dimensional image data.

Besides, we designed an Extended Nearest Neighbor (ENN) based selection process

to add the most relevant samples to the original imbalanced database to further

improve the classification performance. Based on our experiments on two data

sets and comparisons with traditional oversampling algorithms, we demonstrate

the effectiveness and robustness of our model.

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Dr. Haibo He for the

useful comments, remarks and engagement through the learning process of this

master thesis. Furthermore I would like to thank Zhiqiang Wan who worked with

me on this research topics together all these months. Also, I like to thank all

the committee members: Dr. Yan Sun, Dr. Lutz Hamel and Defense Chair Dr.

Lisa DiPippo who shared their precious time during the reviewing process of my

thesis and proposal. I would like to thank my parents, who have supported me

throughout entire process, both by keeping me positive and helping me build my

confidence. I will be grateful forever for your love.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES . vii

CHAPTER

1 Introduction . 1

List of References . 4

2 Background . 6

2.1 Random Sampling Method . 6

2.2 Synthetic Oversampling Methods 6

2.3 Limitation of Conventional Oversampling Methods 11

List of References . 13

3 Methodology . 15

3.1 Deep Generative Model . 15

3.2 Variational Autoencoder Based Data Generation 16

3.3 Generative Adversarial Network Based Data Generation 20

3.4 Extended Nearest Neighbor Based Selection for Borderline Samples 22

List of References . 26

4 Simulations and Experiments . 28

iv

Page

v

4.1 Variational Autoencoder based generative model 28

4.2 Generative Adversarial Nets based generative model 28

4.3 Experiment on MNIST Data set 31

4.4 Evaluation Metrics . 34

4.5 Performance Comparison . 35

4.6 Experiment on NIST19 Data set 36

4.7 Performance Analysis . 38

List of References . 39

5 Conclusion . 41

APPENDIX

Appendix A . 43

A.1 Data sets and Computational Resources 43

List of References . 43

BIBLIOGRAPHY . 44

LIST OF FIGURES

Figure Page

1 The Image Samples Generated by GAN. 3

2 Random Oversampling. 7

3 Random Undersampling. 7

4 Synthetic Data Generation Based on SMOTE. 8

5 Synthetic Data Generation Based on ADASYN. 11

6 The Architecture of VAE. 18

7 The Architecture of VAE With ”Reparameterization trick” . . 19

8 The Architecture of GAN. 21

9 The Architecture of CNN Based Classifier 33

10 Snapshots of The Generated Images on MNIST Dataset 33

11 Snapshots of The Generated Images on NIST19 Dataset 36

12 The Data Generation of VAE and GAN 39

vi

LIST OF TABLES

Table Page

1 The Structure of VAE Encoder. 29

2 The Structure of VAE Decoder. 29

3 The Structure of GAN Generator. 30

4 The Structure of GAN Discriminator. 31

5 Evaluation Metrics and Performance Comparison on MNIST. . 35

6 Significance Test for ADASYN and VAE based Method on MNIST. 36

7 Evaluation Metrics and Performance Comparison on NIST19. . 37

8 Significance Test for ADASYN and VAE based Method on
NIST19. 37

vii

CHAPTER 1

Introduction

Learning from imbalanced data has drawn significant amount of attentions

nowadays owing to the pervasive skewed data distribution in numerous data bases.

It is a situation where the number of observations belonging to one class is signif-

icantly lower than those from the other classes. The skewed distribution leads to

poor performance when applying conventional machine learning methods, owing

to particularly underrepresented features learned from minority classes.

Furthermore, machine learning algorithms are usually created to improve ac-

curacy by avoiding the erroneous predictions. Therefore, most of these algorithms

ignore the data distribution among different classes. When facing imbalanced data

set, standard algorithms like K Nearest Neighbors [1] and Decision Tree [2] tend

to treat minority samples as noise and hence produce a strong bias towards the

majority class.

It is truly worthwhile to explore effective imbalanced learning methods, be-

cause imbalanced data is prevalent in many application areas in industry, where

anomaly detection is critical like electricity pilferage, fraudulent transactions in

banks, identification of rare diseases, etc [3]. In the cyber security area, recogniz-

ing patterns in imbalanced data plays a crucial role for data analysis. For instance,

to detect cyber attack in a large network, an unusual pattern only takes a relatively

small percentage of total data information but plays an crucial role in computer

intrusion detection [4]. In the financial engineering area, it is important to detect

fraudulent activities, such as credit card, insurance, and insider trading frauds,

among a large number of transactions [5].

In order to improve the classification performance of imbalanced data sets,

1

two sets of methodologies were proposed by data mining researchers. Published

imbalanced learning solutions can be categorized as algorithm level and data level

algorithm [6]. At algorithm level, the classifier itself is modified to bias towards the

minority class without changing the original data, such as cost-sensitive learning

and recognition-based learning [7]. Cost sensitive learning grants corresponding

weights to the cost of different kinds of misclassification. The goal of this type of

learning is to minimize the total cost [8]. At data level, oversampling and under-

sampling methods are applied to create or delete samples to achieve a balanced

data distribution.

The classic synthetic oversampling methods achieved the state-of-the-art per-

formance when dealing with imbalanced data. However, those methods are only

designed for low dimensional feature space samples in binary classification sce-

narios and hard to cope with high dimensional data samples, like images, audio

signals and time series. For multi-class scenerios, Wang [9] studied the challenges

from multi-class imbalanced problems and investigated the generalization abili-

ties of some ensemble solutions, including their recently proposed algorithm Ad-

aBoost.NC. Zong [10] propsed a weighted extreme learning machine method to

deal with multiclass imbalanced data which can also be generalized to cost sen-

sitive learning. Li [11] proposed a Boosting weighted Extreme learning machine

to solve the weight selection problems of weighted ELM, which also can be used

in multiclass imbalanced scenerio. However, all those methods designed for multi-

class imbalanced data just focused on balancing data distribution in feature space

and got tested on simple data set like UCI [12] and KEEL [13].

The emerging research surge of deep generative models gave us the inspira-

tions for alternative imbalanced learning method to deal with more complicated

imbalanced data. Variational Autoencoders (VAE) and Generative Adversarial

2

Figure 1: The Image Samples Generated by GAN.

Networks (GAN) as two of the most popular model to learn data distribution in

an unsupervised way, have already achieved success in generating a variety of com-

plex data, including handwritten digits, faces, house numbers and CIFAR images

[14]. Fig.1 shows the real images and the generated images by GAN .

In this thesis, we explore the possibilities of applying these two generative

models in imbalanced learning areas. We choose image data as the input of gen-

erative models, and apply Extended Nearest Neighbor (ENN) method to select

synthetic candidates for the minority class, and compare the generation results

with the traditional synthetic oversampling methods on several different evalua-

tion metrics.

This thesis consists of five chapters, which is arranged as follows: Chapter 1

provides some basic knowledge of traditional imbalanced learning problem and puts

forward some potential draw backs of classical approaches. Besides, we give some

insights of using deep generative models like GAN and VAE for imbalanced data

sets. Chapter 2 offers the details of the background of classical imbalanced learning

problems and compares the advantages and disadvantages of traditional oversam-

pling methods. Chapter 3 states the mathmatical foundations of two most famous

3

deep generative models: GAN and VAE, and proposes a novel ENN based selec-

tion method to find more suitable samples from the model outputs for imbalanced

learning. Chapter 4 provides the performance and analysis of the experiments on

two different data sets to prove the effectiveness of our proposed method. The last

chapter summarizes the whole thesis and shows the possible future works could be

done.

List of References

[1] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor
algorithm,” IEEE transactions on systems, man, and cybernetics, no. 4, pp.
580–585, 1985.

[2] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier method-
ology,” IEEE transactions on systems, man, and cybernetics, vol. 21, no. 3,
pp. 660–674, 1991.

[3] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Special issue on learning from
imbalanced data sets,” ACM Sigkdd Explorations Newsletter, vol. 6, no. 1, pp.
1–6, 2004.

[4] D. J. Marchette, Computer intrusion detection and network monitoring: a
statistical viewpoint. Springer Science & Business Media, 2001.

[5] M. Ahmed, A. N. Mahmood, and M. R. Islam, “A survey of anomaly detec-
tion techniques in financial domain,” Future Generation Computer Systems,
vol. 55, pp. 278–288, 2016.

[6] X.-Y. Liu and Z.-H. Zhou, “The influence of class imbalance on cost-sensitive
learning: An empirical study,” in Data Mining, 2006. ICDM’06. Sixth Inter-
national Conference on. IEEE, 2006, pp. 970–974.

[7] M. Kukar, I. Kononenko, et al., “Cost-sensitive learning with neural net-
works.” in ECAI, 1998, pp. 445–449.

[8] C. Ling and V. Sheng, “Cost-sensitive learning and the class imbalance prob-
lem. 2008.”

[9] S. Wang and X. Yao, “Multiclass imbalance problems: Analysis and potential
solutions,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 42, no. 4, pp. 1119–1130, 2012.

[10] W. Zong, G.-B. Huang, and Y. Chen, “Weighted extreme learning machine
for imbalance learning,” Neurocomputing, vol. 101, pp. 229–242, 2013.

4

[11] K. Li, X. Kong, Z. Lu, L. Wenyin, and J. Yin, “Boosting weighted elm for
imbalanced learning,” Neurocomputing, vol. 128, pp. 15–21, 2014.

[12] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.

[13] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garćıa, L. Sánchez, and
F. Herrera, “Keel data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework.” Journal of Multiple-Valued
Logic & Soft Computing, vol. 17, 2011.

[14] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

5

CHAPTER 2

Background

2.1 Random Sampling Method

Compared with cost sensitive imbalanced learning, the data level sampling

methods for imbalanced learning provides straight forward insights to overcome the

difficulties of skewed data set. Studies have shown that for several base classifiers,

a balanced data set improved overall performance compared with an imbalanced

one [1][2][3].

At data level, the goal is to re-balance the data distribution by resampling

the database, including oversampling the instances of minority class and under-

sampling the majority class.

Among all the resampling method, oversampling methods balance the data set

by increasing the number of minority samples, while undersampling methods tries

to reduce some majority samples to keep balance [4]. Random oversampling adds

the minority samples by randomly replicating existing minority members, which in

some degree improve the performance of learning process while it does not provide

any additional information to the training set. Besides, random oversampling

method may cause overfitting of machine learning models. Compared with random

oversampling, random undersampling methods even lose some training information

which may have a negative effect on the learning process [5]. Fig.2 and Fig.3 shows

the details of these two methods.

2.2 Synthetic Oversampling Methods

In order to provide more information to the training data, synthetic oversam-

pling methods create new samples to balance the data set and achieved better

learning performance.

6

6 4 2 0 2 4 6 8
6

4

2

0

2

4

6
Original set

6 4 2 0 2 4 6 8
6

4

2

0

2

4

6
Random over-sampling

Class #0 Class #1

Figure 2: Random Oversampling.

6 4 2 0 2 4 6
6

4

2

0

2

4

6
Under-sampling using random under-sampling

Class #0
Class #1
Removed samples

Figure 3: Random Undersampling.

7

Figure 4: Synthetic Data Generation Based on SMOTE.

As one of the most popular oversampling methods to cope with imbalanced

data, the Synthetic Minority Oversampling TEchnique (SMOTE) aims to create

”synthetic” examples based on original samples instead of adding replicated ones

to the minority class [6]. SMOTE generates samples according to the similarities

among existing minority instance. For specific feature sample xi in a feature set

S, SMOTE find the K-nearest neighbors of xi in the feature space. To generate

a synthetic sample, one of these K-nearest neighbors is randomly selected, then

calculate the euclidean distance between these two samples, and at last add the

multiplication result of the distance with a random number between [0, 1] to the

original feature instance [7]:

xnew = xi + (x̂i − xi) ∗ δ (1)

Fig.4 shows the process of SMOTE. Compared with random oversampling,

SMOTE reduces the overfitting problem to a certain degree and enlarges the mi-

nority data in a way that benefits the learning process. However, SMOTE also

have its disadvantages like generalization and variance issues [8].

8

Inspired by the SMOTE algorithm, Han et al. proposed Borderline-SMOTE

methods to generate synthetic samples on the borderline between two classes for

better classification results [9]. The idea resulted from the fact that the samples

close to the borderline are more significant for classification, considering that most

machine learning algorithms try to learn the borderline between each class.

The Borderline-SMOTE1 algorithm first finds every example’s k nearest neigh-

bors in the entire training set [9]. For every sample pi, let k′ be the number of

majority samples in p’s k nearest neighbors. If k′ = k, all the k nearest neigh-

bors are majority samples, which means this sample can be regarded as noise. If

k/2 ≤ k′ < k, more majority samples can be found in the k neighbors than the

minority ones, so we put pi in the DANGER set. If 0 ≤ k′ < k/2, pi won’t be

considered as an endangered sample. So DANGER set can be defined as:

DANGER = {p1, p2, ..., pdn}, 0 ≤ dn ≤ n (2)

Where dn is the number of endangered samples in training set, while n is the size

of the training set. At last, we calculate the differences difj between pi and its s

nearest neighbors. Then we can generate s new samples by:

syntheticj = pi + rj ∗ difj, j = 1, 2, ..., s (3)

Where rj is a random number between 0 and 1.

Different from Borderline-SMOTE1, Borderline-SMOTE2 not only creates

synthetic examples from the nearest minority neighbors of each sample in DAN-

GER set, but also does that from its nearest majority neighbors. Besides, to make

the synthetic examples closer to the minority class, a random number between

0 and 0.5 is multiplied by the difference between the endangered sample and its

neighbors [9].

9

In [10], a novel adaptive learning algorithm Adaptive Synthetic Sampling Ap-

proach (ADASYN) is proposed to balance the skewed data distribution by generate

synthetic samples adaptively. More synthetic examples are created for minority

samples which have more majority samples in their K nearest neighbors com-

pared with those have less majority neighbors. Consequently, ADASYN can au-

tonomously shift the decision boundary to those samples that are difficult to learn

by the classifier [10].

The procedure of ADASYN is described as below:

Step.1 To begin with, we assume there is an imbalanced data set Dimb with m

samples xi, yi, where i = 1, ...,m, xi and yi are data samples and labels respectively.

Besides, we define the number of majority samples are ml and the number of

minority samples are ms. Therefore, we got ms +ml = m and ms < ml [10].

Step.2 Calculate the imbalanced degree of this data set:

d = ms/ml (4)

where d ∈ (0, 1].

Step.3 Define a threshold for the maximum tolerable imbalance degree dth. If

d < dth:

(a) Calculate the exact number of samples need to be generated for the mi-

nority class:

G = (ml −ms) ∗ β (5)

where β ∈ [0, 1] is a number defined to specify the balance degree after sample

generation. Usually, β is set to 1 since in most situation, a completely balanced

data set is desired.

(b) For each sample xi in the minority class, find its K nearest neighbors

based on the Euclidean distance. Define ratio γi as

γi = ∆i/K, i = 1, ...,ms (6)

10

6 4 2 0 2 4 6 8
6

4

2

0

2

4

6
Original set

6 4 2 0 2 4 6 8
6

4

2

0

2

4

6
ADASYN

Class #0 Class #1

Figure 5: Synthetic Data Generation Based on ADASYN.

where ∆i is the number of majority samples in the K nearest neighbors of xi.

Therefore γi ∈ [0, 1].

(c) Do normalization for γ:

γ̂i = γi/
ms∑
i=1

ri (7)

(d) Find the number of synthetic examples which need to be generated for

each minority example xi:

gi = γ̂i ∗G (8)

where G is from Eq.5.

(e) Generate gi samples for each minority sample xi iteratively, based on

SMOTE algorithm:

xnew = xi + (x̂i − xi) ∗ δ (9)

where δ ∈ [0, 1], is a random number.

2.3 Limitation of Conventional Oversampling Methods

However, the vast majority of existing oversampling methods are proposed to

cope with two class scenario in the low dimensional feature space, which limits its

11

application of generating high-dimensional samples in raw data space.

However, all the synthetic sampling methods and techniques mentioned before

are designed for imbalanced data set in two-class scenarios. To apply those algo-

rithms in multiclass situations, researchers utilize class decomposition to convert

a multiclass problem to a set of binary class subproblems [11]. Given a data set

with multi-class N (N > 2), a common decomposition plan is to treat one class as

minority and to combine all the rest class together as the majority. This approach

is also referred as one-against-all (OAA) [12].

Besides the limitation of appliance in multiclass scenarios, introduced syn-

thetic oversampling methods seldom show their superiority when the target sam-

ple contains more complex or high-dimensional features, such as image or audio

samples. According to the research results from Blagus et al, when dealing with

high-dimensional class-imbalanced data, SMOTE does not reduce the classifica-

tion bias towards majority class for most classifiers, and even less effective than

random undersampling [13]. Furthermore, as the number of dimensions grows,

the Euclidean distance becomes a meaningless metric to measure the similarity

between samples [14]. In some situations, the distance between the target sample

and its nearest neighbor might be larger than the distance to its furthest neighbor.

Furthermore, the existing oversampling methods are proposed to deal with the

imbalanced learning problems in feature space where feature vectors are presented

in a fixed and regularized pattern. However, for the imbalanced data sets which is

hard to extract features in an regularized way (e.g. image data), those synthetic

oversampling methods fail to generate new samples similar as but different from

the original ones.

Therefore, it is necessary for researchers to explore new approaches to generate

samples to balance the skewed distribution of high-dimensional data.

12

List of References

[1] G. M. Weiss and F. Provost, “The effect of class distribution on classifier
learning: an empirical study,” Rutgers Univ, 2001.

[2] J. Laurikkala, “Improving identification of difficult small classes by balancing
class distribution,” in Conference on Artificial Intelligence in Medicine in
Europe. Springer, 2001, pp. 63–66.

[3] A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling method
for learning from imbalanced data sets,” Computational intelligence, vol. 20,
no. 1, pp. 18–36, 2004.

[4] N. Japkowicz and S. Stephen, “The class imbalance problem: A systematic
study,” Intelligent data analysis, vol. 6, no. 5, pp. 429–449, 2002.

[5] N. V. Chawla, “Data mining for imbalanced datasets: An overview,” in Data
mining and knowledge discovery handbook. Springer, 2009, pp. 875–886.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intelligence
research, vol. 16, pp. 321–357, 2002.

[7] Z. Wan, Y. Zhang, and H. He, “Variational autoencoder based synthetic data
generation for imbalanced learning,” in Computational Intelligence (SSCI),
2017 IEEE Symposium Series on. IEEE, 2017, pp. 1–7.

[8] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions
on knowledge and data engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[9] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-
sampling method in imbalanced data sets learning,” Advances in intelligent
computing, pp. 878–887, 2005.

[10] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sam-
pling approach for imbalanced learning,” in Neural Networks, 2008. IJCNN
2008.(IEEE World Congress on Computational Intelligence). IEEE Interna-
tional Joint Conference on. IEEE, 2008, pp. 1322–1328.

[11] G. Ou and Y. L. Murphey, “Multi-class pattern classification using neural
networks,” Pattern Recognition, vol. 40, no. 1, pp. 4–18, 2007.

[12] S. Wang and X. Yao, “Multiclass imbalance problems: Analysis and potential
solutions,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 42, no. 4, pp. 1119–1130, 2012.

[13] R. Blagus and L. Lusa, “Evaluation of smote for high-dimensional class-
imbalanced microarray data,” in Machine learning and applications (icmla),
2012 11th international conference on, vol. 2. IEEE, 2012, pp. 89–94.

13

[14] A. Holzinger, Machine Learning for Health Informatics: State-of-the-Art and
Future Challenges. Springer, 2016, vol. 9605.

14

CHAPTER 3

Methodology

3.1 Deep Generative Model

Based on previous statements, it is necessary to explore some new strategies to

generate new high-dimensional instances in the raw data space to compensate the

skewed distribution. Our research is gong to test the possibility of applying deep

generative models, like Variational Autoencoder (VAE) and Generative Adversarial

Network (GAN), to generate new samples for imbalanced database.

The generative models recently proposed by deep learning researchers achieved

prominent success in image data generation. Variational Autoencoders and Gener-

ative Adversarial Networks as two of the most popular models to learn complicated

distributions in an unsupervised way, have already show success in generating many

kinds of complex data, including handwritten digits, faces, house numbers and CI-

FAR image [1].

Generative modeling is a wide area of unsupervised learning methods which

attempts to learn the underlying data distributions of the original data set [2]. A

generative model captures the joint probability of the input data and labels P (x, y)

simultaneously, which can be used to generate new data sample similar to existing

ones. For example, considering images as input data, each sample (image) has

thousands of dimensions (pixels) and the generative model’s job is to capture the

dependencies between pixels, e.g., that pixels close to each other may be formed

into an recognizable object [1]. However, this is not enough for us to generate

more samples similar to those already in a database, but not exactly the same,

which is the purpose of imbalanced learning. Mathematically, we want to achieve

a distribution P which is as close as possible to the original data distribution Pori

and where we can get new sample from.

15

Training this kind of generative models has been a big challenge for several

decades, resulting from three serious drawbacks: First, strict assumptions on the

original data may be required to achieve reliable results. Second, it is easy to lead

to a local optimum if applying sever approximation about the data structure [3].

Third, when applying algorithms like Markov Chain Monte Carlo [4], the training

process is very computationally expensive .

3.2 Variational Autoencoder Based Data Generation

More recently, powerful function approximators like neural networks provide

more reliable way to training generative model through backpropagation. Varia-

tional Autoencoder is one of the most widely implemented deep generative models.

Unlike the traditional generative models which either require strong assumptions

about the structure of the data or rely on computationally expensive inference

procedures, VAE only makes weak assumption on the data, and the training pro-

cedure is fast via back propagation [1]. According to the variational auto-encoder

literature [1], we consider the following latent variable model for the data X.

VAE tries to learn the joint probability of the input data and labels P (X, y)

simultaneously, which can be used to generate new data sample similar to existing

ones. In Eq.(10), P (X | z) is almost zero for most value of z, therefore, z con-

tributes little to the estimation of P (X). The main goal of the VAE is to sample

those values of z which are very likely to generate the data X. Then, P (X) is

computed from those z based on Eq.(10).

P (X, y) =

∫
P (X | z; θ, y)P (z)dz. (10)

For the purpose of attaining those z values, we need a new function Q (z | X)

which outputs a distribution over z that are likely to produce data X. The Kull-

16

backLeibler (KL) divergence between Q (z | X) and P (z | X) is shown as

DKL (Q(z | X) ‖ P (z | X))

=Ez∼Q [logQ (z | X)− logP (z | X)]

=Ez∼Q [logQ (z | X)− logP (X | z)− logP (z)] + logP (X) (11)

Then, the marginal likelihood of each sample X can be written as Eq.(12)

logP (X) = DKL (Q(z | X) ‖ P (z | X))

+ Ez∼Q [logP (X, z)− logQ (z | X)] (12)

where the first term on the right hand side is the KL divergence between the

approximate and the true posterior distribution, and the second term is the vari-

ational lower bound on the marginal likelihood of sample X. Eq. (12) can be

rewritten as

logP (X)−DKL (Q(z | X) ‖ P (z | X))

=−DKL [Q (z | X) ‖ P (z)] + Ez∼Q [logP (X | z)] . (13)

Eq. (13) is the core of VAE. The left hand side is the one we want to maximize

while the right hand side is the one we can optimize via gradient descent. Our goal

is to maximize the marginal likelihood logP (X) and minimize the KL divergence

DKL (Q(z | X) ‖ P (z | X)). By minimizing the KL divergence, we are pushing

the approximate posterior Q (z | X) to match the true posterior P (z | X). The

architecture of VAE is shown in Fig. 6, where P and Q are implemented by neural

networks. The architecture of VAE is similar to that of autoencoder, Q encodes

data X into latent variable z, and P decodes z and reconstructs X.

During the training process, the right hand side of Eq.(13) is maximized by

gradient descent. Its first term is the KL divergence between the approximate

posterior and the prior distribution. The approximate posterior is often chosen as

17

X

Encoder

(Q)

μ(X) Σ(X)

DKL[Ν(μ(X), Σ(X))||Ν(0, I)] Z ~ Ν(μ(X), Σ(X))

Decoder

(P)

f(z)

||X-f(z)||2

Figure 6: The Architecture of VAE.

a multivariate Gaussian Q (z | X) = N (z | µ(X;ϑ),Σ(X;ϑ)), in which µ and Σ

are arbitrary deterministic functions whose distribution parameters ϑ are learned

from data [3]. In addition, Σ is constrained to be a diagonal matrix. For the

prior distribution, a common used prior over the latent variable is the centered

isotropic multivariate Gaussian P (z) = N (0, I). By choosing these multivari-

ate Gaussian distributions, it becomes very easy to compute the KL divergence

between Q (z | X) and P (z) as

DKL [N (µ(X),Σ(X)) ‖ N (0, I)]

=
1

2

[
tr (Σ(X)) + µ(X)Tµ(X)− k − log det (Σ(X))

]
, (14)

Where k is the dimension of the distribution. The second term on the right side of

Eq. (13) is an expected negative reconstruction error. Here, we take one sample

of z and use P (X | z) to approximate Ez∼Q [logP (X | z)]. In general, P (X | z)

18

X

Encoder

(Q)

μ(X) Σ(X)

DKL[Ν(μ(X), Σ(X))||Ν(0, I)]

Decoder

(P)

f(z)

||X-f(z)||2

ε ~ Ν(0, I)

*

z

sqrt

Figure 7: The Architecture of VAE With ”Reparameterization trick”

is a multivariate Bernoulli distribution so that

logP (X | z) =‖ X − f(z) ‖2

= X log f(z) + (1−X) log(1− f(z)). (15)

The forward pass of Fig.6 works fine, but we can not backpropagate the error

through the layer which samples from Q (z | X). This layer has no gradient be-

cause the sampling operation is non-continuous. The “reparameterization trick”

is proposed to solve this problem by moving the sampling operation to the input

layer. The architecture of the modified VAE is shown in Fig. 7. When given the

mean and covariance of Q (z | X), i.e., µ(X) and Σ(X), we can first sample ε from

N (0, I), then z will equal to µ(X) + Σ1/2(X) ∗ ε. With this modification, we can

backpropagate the error from the decoder to encoder [3].

The overall algorithm of VAE based synthetic data generation [3] is shown

in Algorithm 1. During the training process, the weights of VAE are updated by

minimizing the loss function. After VAE is well trained, we can randomly sample

19

Algorithm 1 VAE Based Synthetic Data Generation.

Require: Initialize weights θ of the encoder and decoder.

1: for epoch=1:N do
2: for batch num=1:M do
3: Randomly select minibatch of data.
4: Randomly sample ε from N (0, I).
5: Feed data and ε into VAE.
6: Update weights θ by minimizing the loss function
DKL [N (µ(X),Σ(X)) ‖ N (0, I)]− ‖ X − f(z) ‖2.

7: end for
8: end for

9: Randomly sample z from N (0, I) and input these values into the decoder to
generate new samples.

latent variable z from N (0, I) and apply the decoder to generate new samples.

3.3 Generative Adversarial Network Based Data Generation

Among all the recently proposed generative models, Generative Adversarial

Network, or GAN in short, is another outstanding and successful framework used

to generate image samples [5]. A GAN consists of two networks: a generative

net G that can be trained to acquire the knowledge of data distribution, and a

discriminative net D which aims to distinguish the generated samples from real

ones [6]. The simple structure of a generative adversarial network is shown in

Fig.8. The generator’s distribution PG over data x is modeled as a differentiable

function G(z; θg), which can be implemented by a neural network with parameters

θg and input noise variables z. The discriminator D(x; θd), also implemented by a

neural network with parameters θg, takes sample x as input and outputs a single

scalar representing the probability that x came from the data rather than PG. The

training goal of GAN is to learn a generator distribution PG(x) that matches the

real data distribution Pdata(x) [5]. To achieve this goal, a minimax gameplay value

20

Generator
Network

G(z)

Discriminator
Network

D(x)

Real Data

Generated Data

z∼Pz(z)

x∼Pdata(x)

Real/Fake

Figure 8: The Architecture of GAN.

function is proposed as follow:

min
G

max
D

V (D,G) = Ex∼Pdata
[logD(x)]

+Ez∼noise [log(1−D(G(z)))] (16)

In the training process, the discriminator aims to make D(G(z)) approach 0

and D(x) approach 1, while the generator attempts to make D(G(z)) approach

1 to maximize the probability of discriminator making a mistake. This network

structure corresponds to a minimax two-play game [6].

Concretely, if the batch size of noise variables and training samples is m, we

need to update the discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
i=1

[
logD

(
x(i)
)

+ log
(

1−D
(
G
(
z(i)
)))]

(17)

On the opposite, update the generator by descending its stochastic gradient:

∇θg

1

m

m∑
i=1

log
(

1−D
(
G
(
z(i)
)))

(18)

After proper training, the ideal solution to this minimax game is nash equilibrium

[7]. The overall algorithm of GAN is shown below:

To adapt to our situation, we can implement a Deep Convolutional Genera-

tive Adversarial Network(DCGAN) [8], which applied convolutional layers in the

21

Algorithm 2 Minibatch stochastic gradient descent training of generative adver-
sarial nets. The number of steps to apply to the discriminator, k, is a hyperpa-
rameter.

1: for number of training iterations do
2: for k steps do
3: Sample minibatch of m noise samplesz(1), ..., z(m) from noise prior pg(z)
4: Sample minibatch of m samplesx(1), ..., x(m) from noise prior pdata(z)
5: Update the discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
i=1

[
logD

(
x(i)
)

+ log
(

1−D
(
G
(
z(i)
)))]

(19)

6: end for
7: Sample minibatch of m noise samplesz(1), ..., z(m) from noise prior pg(z)
8: Update the generator by descending its stochastic gradient:

∇θg

1

m

m∑
i=1

log
(

1−D
(
G
(
z(i)
)))

(20)

9: end for
The gradient-based updates can use any standard gradient-based learning rule.

construction of discriminator and generator. DCGAN proves a powerful image

generative model which can be tested for the sample generation for imbalanced

image data.

3.4 Extended Nearest Neighbor Based Selection for Borderline Sam-
ples

Based on our previous research result [3], which is published in Computa-

tional Intelligence (SSCI), 2017 IEEE Symposium Series on IEEE, the outputs of

generative models (VAE) can be used together with original data to improve the

classification performance. However, not all of the generated instances are of the

same significance in classification process.

From the analysis in [9] and [10], most of the existing classifiers attempt to

learn the borderline between each class as accurately as possible in the training

process, which makes the examples close to the borderline are more likely to be

22

misclassified than ones far from the borderline, thus more significant for classifica-

tion.

Enlightened by the idea of synthesizing borderline samples, we proposed a

novel method to select borderline samples from generative model outputs based on

Extended Nearest Neighbor Method (ENN) [11]. Through our selection, only the

generated minority samples that close to the boundaries of classes are appended to

the original imbalanced data, in order to improve the performance of imbalanced

learning.

Compared with further improved versions of K-nearest neighbor(KNN)

method [12][13][14][15], the Extended Nearest Neighbor(ENN) predicts input pat-

terns on the basis of the maximum intra-class coherence increment [11]. ENN takes

into consideration not only the nearest neighbors of the test sample, but ones who

regard the test sample as their nearest neighbors. This two-way communication

style provides access to the integral distribution of training data, thus outperforms

other related pattern recognition algorithms [11].

The essential definition of ENN is the generalized class-wise statistic Ti. In

two-class classification scenario, the generalized class-wise statistic Ti for class i is

defined as the following:

Ti =
1

nik

∑
x∈Si

k∑
r=1

Ir(x, S = S1 ∪ S2)

i = 1, 2 (21)

where S1 and S2 represent samples in class 1 and class 2, respectively, x denotes one

single sample in S = S1∪S2, ni is the number of samples in Si, and k is the number

of nearest neighbors to search in the prediction process. The indicator function

Ir(x, S) specifies if both the sample x and its r−th nearest neighbor belong to the

23

same class, defined as follows:

Ir(x, S) =

1, if x ∈ Si and NNr(x, S) ∈ Si

0, otherwise

(22)

where NNr(x, S) represents the r−th nearest neighbor of x in S. This equa-

tion indicates that if both x and its r−th nearest neighbor in the pool of S belong

to the same class, then Ir(x, S) equals 1; otherwise, it equals 0. The large Ti sug-

gests that samples in Si are much closer together and their nearest neighbors are

dominated by the same class samples, whereas a small Ti indicates that samples

in Si have excessive nearest neighbors from other classes [11]. Accordingly, Ti can

be used to specify the data distribution across multiple classes. Therefore, the

concept of intra-class coherence is defined as follows:

Θ =
2∑
i=1

Ti (23)

To classify an unknown sample Z in multiclass situation, Z is assigned re-

spectively to class 1, class 2,...and class m, to obtain m2 generalized class-wise

statistics T ji :

T ji =
1

n
′
ik

∑
x∈S′

i,j

k∑
r=1

Ir(x, S
′
= S1 ∪ S2 ∪ Z)

i, j = 1, 2, ..., N (24)

where n
′
i is the size of S

′
i,j and S

′
i,j is defined as

S
′

i,j =

Si ∪ Z, if j = i

Si, if j 6= i

(25)

ENN classifier predicts Z’s membership according the following target function:

fENN = argmax
j∈1,2,...,N

nj∑
i=1

T ji = argmax
j∈1,2,...,N

Θj (26)

24

where

Θj =
N∑
i=1

T ji (27)

For computational convenience in practical applications, [11] recommended an

equivalent target function fENN.V 1 to replace fENN :

fENN.V 1 = argmax
j∈1,2,...,N

{(∆nji + ki − kTi
(ni + 1)k

)
i=j
−

N∑
i 6=j

∆nji
nik

}
(28)

where k is the defined number of nearest neighbors for prediction, ni is the number

of training samples for class i, ki is the number of the nearest neighbors of the test

sample Z from class i, ∆nji represents the change of k nearest neighbors for class

i when assigning the test sample Z to class j, and Ti represents the generalized

class-wise statistic of original class i without the introduction of Z.

Since fENN.V 1 and fENN are equivalent, we can instead use fENN.V 1 to predict

the class membership of every generated samples from out model. To select those

samples near the boundaries of classes, we proposed a criterion for the selection,

the chosen sample must meet the following two requirements:

1) The generated sample must be classified as its original class based on ENN.

2) The generated sample must be neighbored by at least one sample from

other class based on the number of nearest neighbor k defined in Eq.24.

Every qualified samples selected from the output of the generative models are

added to the original data set until the skewed data distribution is balanced. In

case of the situation of not enough samples having neighbors from other classes,

we only apply requirement 1) to select samples such that the data set can also be

balanced. The complete algorithm structure is shown as Algorithm.3.

Compared with directly using the generated images from our deep genera-

tive models, the ENN based selected samples provide more useful information on

the boundaries between different categories, therefore leads to better classification

performance.

25

Algorithm 3 Deep Generative Model Based Minority Class Data Generation.

Require: Training ENN with the target imbalanced data set

1: Train VAE/GAN with the samples from all the Nminority classes.
2: Sample a noise vector z as the input of generative network.
3: for n=1:Nminority do
4: for tthre=1:Nthre do
5: Generate a class n sample xgen and classify xgen based on ENN.
6: Name classification result as ygen
7: Attain the vector kn
8: if ygen== n and kn contains more than 1 none-zero elements :
9: Add xgen to the original data set, Ngen + +.
10: if Ngen +Nminority == Nmajority:
11: break
12: end for
13: if Ngen +Nminority = Nmajority :
14: continue
15: else :
16: repeat:
17: Step.5 to Step.7.
18: if ygen== n :
19: Add xgen to the original data set, Ngen + +.
20: until Ngen +Nminority == Nmajority

21: end for

List of References

[1] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

[2] E. L. Denton, S. Chintala, R. Fergus, et al., “Deep generative image models
using a laplacian pyramid of adversarial networks,” in Advances in neural
information processing systems, 2015, pp. 1486–1494.

[3] Z. Wan, Y. Zhang, and H. He, “Variational autoencoder based synthetic data
generation for imbalanced learning,” in Computational Intelligence (SSCI),
2017 IEEE Symposium Series on. IEEE, 2017, pp. 1–7.

[4] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo
in practice. CRC press, 1995.

[5] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv
preprint arXiv:1701.00160, 2016.

26

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in
neural information processing systems, 2014, pp. 2672–2680.

[7] R. Gibbons, A primer in game theory. Harvester Wheatsheaf, 1992.

[8] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[9] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-
sampling method in imbalanced data sets learning,” Advances in intelligent
computing, pp. 878–887, 2005.

[10] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sam-
pling approach for imbalanced learning,” in Neural Networks, 2008. IJCNN
2008.(IEEE World Congress on Computational Intelligence). IEEE Interna-
tional Joint Conference on. IEEE, 2008, pp. 1322–1328.

[11] B. Tang and H. He, “Enn: Extended nearest neighbor method for pattern
recognition [research frontier],” IEEE Computational intelligence magazine,
vol. 10, no. 3, pp. 52–60, 2015.

[12] H. Zhang, A. C. Berg, M. Maire, and J. Malik, “Svm-knn: Discriminative
nearest neighbor classification for visual category recognition,” in Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on,
vol. 2. IEEE, 2006, pp. 2126–2136.

[13] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to multi-
label learning,” Pattern recognition, vol. 40, no. 7, pp. 2038–2048, 2007.

[14] S. A. Dudani, “The distance-weighted k-nearest-neighbor rule,” IEEE Trans-
actions on Systems, Man, and Cybernetics, no. 4, pp. 325–327, 1976.

[15] T. Seidl and H.-P. Kriegel, “Optimal multi-step k-nearest neighbor search,”
in Acm Sigmod Record, vol. 27, no. 2. Acm, 1998, pp. 154–165.

27

CHAPTER 4

Simulations and Experiments

To prove the effectiveness of proposed model, we decided to use image data

as high-dimensional input of two deep generative models. The parameters of two

different models:VAE and GAN, are illustrated in this chapter. Furthermore, we

applied ENN based selection to choose most relevant samples for classification.

Generated pictures of classical synthetic oversampling methods and our proposed

models are also displayed. Finally, we use five different evaluation metrics to

compare the classification performance of different approaches.

4.1 Variational Autoencoder based generative model

First, we implement VAE for the image generation. The structure of VAE

here is a little different from the vanilla one: we applied convolutional layers [1]

here to extract and restore sufficient features of original data samples.

The encoder of VAE consists of six layers: three convolutional layers, one

dropout layer, one flatten layer and one dense layer. The kernel size of the con-

volutional layers is 5 ∗ 5 with a stride size of 2 ∗ 2. Both same padding and valid

padding are applied here. The encoder structure is shown in Table.1.

The decoder consists of 5 layers: one reshape layer and four deconvolutional

layers. The deconvolutional layer, also called transposed convolutional layer, is

implemented to map the input vector back to the image pixel space. The network

structure of decoder is shown in Table.2.

4.2 Generative Adversarial Nets based generative model

Besides VAE, we applied generative adversarial network as our generative

model to produce image samples for minority classes.

28

Table 1: The Structure of VAE Encoder.

Layer (type) Padding Output Shape

Input - (28, 28, 1)

Conv1 SAME (14, 14, 32)

Conv2 SAME (7, 7, 64)

Conv3 VALID (2, 2, 128)

Dropout - (2, 2, 128)

Flatten - (512)

Dense - (128)

Table 2: The Structure of VAE Decoder.

Layer (type) Kernel Size Stride Size Padding Output Shape

Input - - - (128)

Expand dims - - - (1, 1, 128)

De Conv1 (3, 3) (1, 1) VALID (3, 3, 128)

De Conv2 (5, 5) (1, 1) VALID (7, 7, 64)

De Conv3 (5, 5) (2, 2) SAME (14, 14, 32)

De Conv4 (5, 5) (2, 2) SAME (28, 28, 1)

The generator of our GAN model consists of 5 layers: two dense layers, one

dimension-expanding layer and two deconvolutional layers. The first dense layer

has the size of 1024, and the second dense layer has the size of 7∗7∗128. The first

deconvolutional layer has the kernel size of 4∗4 with a stride size of 2∗2, 64 feature

maps and Relu is used here as activation function. The second deconvolutional

29

Table 3: The Structure of GAN Generator.

Layer (type) Kernel Size Stride Size Padding Output Shape

Input - - - (128)

Dense - - - (1024)

Dense - - - (7*7*128)

Expand dims - - - (7, 7, 128)

De Conv1 (4, 4) (2, 2) VALID (16, 16, 64)

De Conv2 (4, 4) (2, 2) VALID (28, 28, 1)

layer has the kernel size of 4∗4 with a stride size of 2∗2, 1 feature map and sigmoid

is used here as activation function. The generator structure is shown in Table.3.

The discriminator consists of 6 layers: two convolutional layers, one flatten

layer and 3 dense layers. The first convolutional layer has the kernel size of 4 ∗ 4

with a stride size of 2∗2 and 64 feature maps as output. The second convolutional

layer has the kernel size of 4 ∗ 4 with a stride size of 2 ∗ 2 and 128 feature maps

as output. Both these two layers applys leaky Relu as the activation function.

The last dense layer has the ouptput size of 1, which represent the possibility of

whether generated image sample is real. The discriminator structure is shown in

Table 4.

In our implementation, we trained the GAN for 1000 epochs, with a 0.001

learning rate discriminator and a 0.004 learning rate for the generator, in order to

keep discriminator in an optimum state and make generator learn the distribution

steadily.

30

Table 4: The Structure of GAN Discriminator.

Layer (type) Kernal Size Stride Size Output Dimension

Conv1 (4,4) (2,2) 64

Conv2 (4,4) (2,2) 128

Flatten - - 7*7*128

Dense - - 1024

Dense - - 128

Dense - - 1

4.3 Experiment on MNIST Data set

To test the effectiveness of our proposed method, we trained our model on

MNIST data set and compared the performance result with other oversampling

methods. Since the original MNIST data set is a balanced data set with 6000

samples per class for label 0 to 9, we make some modifications on it to make it

unbalanced: we choose digits from 0 to 4 as the minority classes and pick 300

samples from these classes. Then, we pick 3000 samples from label 5 to 9 as the

majority classes. We divide this imbalanced data set averagely into three folds to

prepare for 3 folds cross validation.

To make this distribution balanced again, we apply VAE to train the minority

class samples. New samples will be created by feeding values of z ∼ N (0, I) into

the decoder. To attain suitable samples for the learning process, we apply ENN to

select borderline samples. The defined number of nearest neighbors kenn is 10. For

each class, 1800 more samples will be generated. To apply traditional sampling

methods in this situation, we apply one-verse-all technique, choosing one minority

class and combine other classes as one majority class to convert the multi-class

31

problem to a series of two-class subproblems.

For SMOTE, Borderline-SMOTE1, Borderline-SMOTE2, and ADASYN, we

set the parameters as below: the number of nearest neighbors used to construct

synthetic samples is 5. For Borderline-SMOTE1 and Borderline-SMOTE2, the

number of nearest neighbors used to determine whether a minority sample is in

danger is 15. For ADASYN, we set the number of nearest neighbors K = 10,

the balance level coefficient β = 0.1937 and the threshold for maximum tolerated

imbalance ratio dth = 0.5.

Fig.10 displays several snapshots of the generated images by SMOTE,

ADASYN, and proposed VAE based method. We can observe that in the im-

ages generated by SMOTE and ADASYN, numbers are overlapped and somehow

blurry. In contrast, VAE-generated numbers are much more clear and sharp. These

visual information gives us some insight about the drawback of the classic synthetic

sampling methods for high-dimensional data. According to [2], since the Euclidean

distance is unsuitable to measure the similarity between high-dimensional samples,

the synthetic sampling methods based on Euclidean distance will generate unrea-

sonable images.

To evaluate the performance of our proposed generative structure, we choose

convolutional neural networks (CNN)[3] as our basic classifier to do classification.

We applied two convolutional layers in our classifier. The first layer has a

kernel size of 3*3, the stride size is 1*1, and 32 feature maps, and the second layer

has the same kernel and stride size with Layer 1 with a feature map size of 64.

Then we applied 2*2 sized max pooling with a 0.25 dropout rate followed behind.

After that, we use a 128-dimension dense layer with 0.5 dropout rate before the

final softmax layer. Fig. 9 shows the structure of our classifier. The structure of

our CNN remains the same for all other databases used for all the method.

32

Figure 9: The Architecture of CNN Based Classifier

(a) SMOTE

(b) ADASYN

(c) VAE based Method

(d) GAN based Method

Figure 10: Snapshots of The Generated Images on MNIST Dataset

33

4.4 Evaluation Metrics

We further quantitatively compare the performance of our proposed method

with the synthetic sampling methods on the MNIST test set. Considering that

accuracy itself may not be sufficient for evaluating the performance of imbalanced

learning algorithm [4], we instead apply a set of assessment metrics, such as pre-

cision, recall, specificity, F1 score, and G mean.

1) Precision:

Precision =
TP

TP + FP
(29)

where TP represents True Positive and FP represents False Positive.

2) Recall:

Recall =
TP

TP + FN
(30)

where FN represents False Negative.

3) Specificity:

Specificity =
TN

TN + FP
(31)

where TN represents True Negative.

4) F1 score:

F1 score =
(1 + β2) · Precision ·Recall
β2 ·Recall + Precision

(32)

where β is a weight coefficient to adjust the significance of recall (usually β =1).

5) G mean:

G mean =
√
Recall · Specifity

=

√
TP

TP + FN
· TN

TN + FP
(33)

Since the above metrics are designed for two-class, to apply these metrics in

the multi-class scenarios, one-versus-all technique [5] is used to calculate average

values of these metrics over all the classes.

34

Table 5: Evaluation Metrics and Performance Comparison on MNIST.

Precision Recall F1 G mean Specificity

SMOTE 0.9356 0.9378 0.9323 0.9580 0.9926

SMOTE(bd1) 0.9357 0.9284 0.9263 0.9627 0.9922

SMOTE(bd2) 0.9325 0.9239 0.9257 0.9612 0.9918

ADASYN 0.9412 0.9349 0.9345 0.9660 0.9929

GAN Based 0.9442 0.9388 0.9386 0.9669 0.9934

VAE Based 0.9476 0.9411 0.9420 0.9682 0.9957

4.5 Performance Comparison

Table. 5 shows the performance of the proposed VAE based method compared

to the traditional methods. These results are based on 3 fold cross validation and

the high-lighted results are the best in each metrics. It illustrates that the proposed

method outperforms the synthetic oversampling methods evaluated by different

metrics. These results also show that our proposed method decreases the influence

of the skewed data distribution by improving the accuracy for both minority and

majority classes.

To demonstrate the credibility of our experimental results, we run 20 times

of 3 fold cross validation, and conduct the Student’s t-test to show significant

performance difference exists between the proposed method and ADASYN. Table.

6 shows the p-values of five metrics based on previous 10 run results. Obviously,

all these p-values < 0.05, which suggests that the means are significantly different

with a 95% confidence.

35

Table 6: Significance Test for ADASYN and VAE based Method on MNIST.

Precision Recall F1 G mean Specificity

P-value(×10−11) 2.77 2.64 4.75 1.67 3.47

(a) VAE based Method

(b) GAN based Method

Figure 11: Snapshots of The Generated Images on NIST19 Dataset

4.6 Experiment on NIST19 Data set

Similarly, we choose other data set NIST19 as the complements of the first

experiment. This data set consists of 128 ∗ 128 gray-scale handwritten English

letters, where we reshape the samples into 28 ∗ 28 and choose A to E as minority

classes with 600 randomly chosen samples and F to J as majority classes with 3000

randomly chosen samples. Then the imbalanced data set is divided into three parts

of same size, which will be used for cross validation. The parameters of VAE and

GAN for this database are the same as the one applied in MNIST but with a 1000

training epochs instead. Besides, we choose the exactly the same classifier with

Fig.9.

Fig.11 shows the selected generated images from both models. To attain suit-

able samples for the learning process, we apply ENN to select borderline samples.

The defined number of nearest neighbors kenn is 10. For each class, 1600 more

samples will be generated. Again, To apply traditional sampling methods in this

36

Table 7: Evaluation Metrics and Performance Comparison on NIST19.

Precision Recall F1 G mean Specificity

SMOTE 0.9394 0.9295 0.9291 0.9611 0.9922

SMOTE(bd1) 0.9390 0.9296 0.9278 0.9609 0.9919

SMOTE(bd2) 0.9302 0.9234 0.9254 0.9893 0.9917

ADASYN 0.9336 0.9319 0.9316 0.9624 0.9924

GAN Based 0.9382 0.9373 0.9370 0.9651 0.9920

VAE Based 0.9402 0.9395 0.9388 0.9672 0.9919

Table 8: Significance Test for ADASYN and VAE based Method on NIST19.

Precision Recall F1 G mean Specificity

P-value(×10−11) 2.58 4.28 3.74 2.81 3.39

situation, we apply one-verse-all technique, choosing one minority class and com-

bine other classes as one majority class to convert the multi-class problem to a

series of two-class subproblems. Table.7 shows the performance over 5 metrics

on NIST19 and Table.8 dispaly the significant test results between ADASYN and

VAE based method.

To demonstrate the credibility of our experimental results, we run 20 times of

3 fold cross validation, and conduct the Student’s t-test to show significant perfor-

mance difference exists between the proposed VAE based method and ADASYN.

Table. 8 shows the p-values of five metrics based on previous 10 results. Obviously,

all these p-values < 0.05, which suggests that the means are significantly different

with a 95% confidence.

37

4.7 Performance Analysis

Based on our experiment results, we can see that the generation results of

VAE and GAN are different in two aspects:

(1) Compared with GAN, VAE based model tends to produce blurry images,

but achieved better performance. (2) Compared with VAE, GAN based model

tends to produce clearer and sharper images but it is difficult to train and prone

to collapse.

According to [6], VAEs are easier to train and robust to hyperparameter

choices and give interpretable latent variables which is learned to map the in-

put to a lower dimensional space. The limitation of VAE is the approximation of

posterior P (X | z) is usually oversimplified, because we can’t parametrize much

more complex distribution than normal Gaussian.

On the other side, GAN have the advantages of generating clearer pictures

because it applied the adversarial mechanism, which force the generative net to

produce something hard for discriminator to distinguish. Hence the lack of adver-

sarial training might be the reason why VAE may generate blurry images.

However, besides the fact that GANs are usually trickier to train compared

with VAEs, the training process of GANs may ignore some patterns of original

distribution since its ultimate goal is to satisfy the requirements of generator and

discriminator.

Fig.12 shows the difference between VAE and GAN in data generation, where

the gray lines shows the original data distribution, and colored ones shows the

generated data distribution. We can see that from the probability point of view,

GAN tends to generate samples follows a specific pattern, while VAE may generate

more diverse data samples, some of which may locates out the range of the data

distribution.

38

Figure 12: The Data Generation of VAE and GAN

In summary, from perspective of the classification performance, VAE seems to

be better than GAN since it can generate samples possessing more diverse features

which benefit the training process of classifier. However, from the perspective

of generation quality, GAN does better than VAE, since the adversarial process

guarantees the output samples looks approximately like the original ones.

List of References

[1] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational
autoencoder for deep learning of images, labels and captions,” in Advances in
neural information processing systems, 2016, pp. 2352–2360.

[2] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behavior
of distance metrics in high dimensional space,” in International conference on
database theory. Springer, 2001, pp. 420–434.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[4] N. Japkowicz, “Assessment metrics for imbalanced learning,” Imbalanced learn-
ing: Foundations, algorithms, and applications, pp. 187–206, 2013.

[5] T. R. Hoens, Q. Qian, N. V. Chawla, and Z.-H. Zhou, “Building decision
trees for the multi-class imbalance problem,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, 2012, pp. 122–134.

39

[6] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Ar-
jovsky, and A. Courville, “Adversarially learned inference,” arXiv preprint
arXiv:1606.00704, 2016.

40

CHAPTER 5

Conclusion

Based on our previous analysis and model simulation, we can conclude that

deep generative models, like VAE and GAN, could be implemented as image gen-

erator to compensate the skewed data distribution, which produce more clear and

meaningful samples and performs better compared with traditional feature space

oversampling methods. The selection process based on ENN further optimizes the

generation process to make it easier to find classification boundaries.

From the generated samples and simulation results, we can see the difference

between VAE and GAN : VAE tends to generate a little blurrier imaged compared

with the sharp and clear images generated by GAN. However, VAE better captured

the distribution of original data base so it tends to lead to better classification

results.

Besides, we also test our generative model on more complicated data set like

CIFAR 50. However, it is hard to get clear and meaningful generation results,

which limit its application on complicated image (like scenery, animals) imbalanced

learning. As the best knowledge we have, our proposed model works well on simple

structured image data sets, such as MNIST, NIST19 and Fashion MNIST.

Multi-class imbalanced learning on complex data has always been a challenge

for data mining and machine learning research. Several published methods of

multi-class imbalanced learning just focus on the feature level data, which limits

their applications on real world raw data samples. This thesis proposed a deep

generative model based imbalanced learning method for image data and provided

some insights on how to deal with skewed data distributions by using the state-of-

the-art deep learning techniques. However, limited by current generation abilities

41

of GAN and VAE, our contribution is just a small step towards the goal of data

space imbalanced learning. We believe that the rising of deep learning, especially

the rising of new deep generative models will bring new breakthroughs on this

topic.

42

APPENDIX

Appendix A

A.1 Data sets and Computational Resources

To verify the effectiveness of the potential solutions, we consider to apply three

different image data set:

(1) MNIST database

The MNIST database of handwritten digits has a training set of 60,000 exam-

ples, and a test set of 10,000 examples. It is a subset of a larger set available from

NIST[1]. The digits have been size-normalized and centered in a fixed-size image.

(2) NIST19 database

NIST19 database is a handwritten English letter database. It publishes hand-

printed sample forms from 3600 writers, 810,000 character images isolated from

their forms, ground truth classifications for those images, reference forms for fur-

ther data collection, and software utilities for image management and handling.

Since the training and generating process of deep generative models costs lots

of computation time. We plan to run the program on the GPU supported computer

in our CISA lab.

The implement of our algorithm will be coded in Python using Tensorflow,

which is an open source deep learning framework developed by Google Brain[2].

List of References

[1] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning
on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

43

BIBLIOGRAPHY

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Cor-
rado, G. S., Davis, A., Dean, J., Devin, M., et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

Aggarwal, C. C., Hinneburg, A., and Keim, D. A., “On the surprising behavior
of distance metrics in high dimensional space,” in International conference on
database theory. Springer, 2001, pp. 420–434.

Ahmed, M., Mahmood, A. N., and Islam, M. R., “A survey of anomaly detec-
tion techniques in financial domain,” Future Generation Computer Systems,
vol. 55, pp. 278–288, 2016.

Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S., Sánchez, L.,
and Herrera, F., “Keel data-mining software tool: data set repository, integra-
tion of algorithms and experimental analysis framework.” Journal of Multiple-
Valued Logic & Soft Computing, vol. 17, 2011.

Asuncion, A. and Newman, D., “Uci machine learning repository,” 2007.

Blagus, R. and Lusa, L., “Evaluation of smote for high-dimensional class-
imbalanced microarray data,” in Machine learning and applications (icmla),
2012 11th international conference on, vol. 2. IEEE, 2012, pp. 89–94.

Chawla, N. V., “Data mining for imbalanced datasets: An overview,” in Data
mining and knowledge discovery handbook. Springer, 2009, pp. 875–886.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P., “Smote:
synthetic minority over-sampling technique,” Journal of artificial intelligence
research, vol. 16, pp. 321–357, 2002.

Chawla, N. V., Japkowicz, N., and Kotcz, A., “Special issue on learning from
imbalanced data sets,” ACM Sigkdd Explorations Newsletter, vol. 6, no. 1, pp.
1–6, 2004.

Denton, E. L., Chintala, S., Fergus, R., et al., “Deep generative image models
using a laplacian pyramid of adversarial networks,” in Advances in neural
information processing systems, 2015, pp. 1486–1494.

Doersch, C., “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

Dudani, S. A., “The distance-weighted k-nearest-neighbor rule,” IEEE Transac-
tions on Systems, Man, and Cybernetics, no. 4, pp. 325–327, 1976.

44

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky,
M., and Courville, A., “Adversarially learned inference,” arXiv preprint
arXiv:1606.00704, 2016.

Estabrooks, A., Jo, T., and Japkowicz, N., “A multiple resampling method for
learning from imbalanced data sets,” Computational intelligence, vol. 20, no. 1,
pp. 18–36, 2004.

Gibbons, R., A primer in game theory. Harvester Wheatsheaf, 1992.

Gilks, W. R., Richardson, S., and Spiegelhalter, D., Markov chain Monte Carlo in
practice. CRC press, 1995.

Goodfellow, I., “Nips 2016 tutorial: Generative adversarial networks,” arXiv
preprint arXiv:1701.00160, 2016.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y., “Generative adversarial nets,” in Advances in
neural information processing systems, 2014, pp. 2672–2680.

Han, H., Wang, W.-Y., and Mao, B.-H., “Borderline-smote: a new over-sampling
method in imbalanced data sets learning,” Advances in intelligent computing,
pp. 878–887, 2005.

He, H., Bai, Y., Garcia, E. A., and Li, S., “Adasyn: Adaptive synthetic sam-
pling approach for imbalanced learning,” in Neural Networks, 2008. IJCNN
2008.(IEEE World Congress on Computational Intelligence). IEEE Interna-
tional Joint Conference on. IEEE, 2008, pp. 1322–1328.

He, H. and Garcia, E. A., “Learning from imbalanced data,” IEEE Transactions
on knowledge and data engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

Hoens, T. R., Qian, Q., Chawla, N. V., and Zhou, Z.-H., “Building decision trees for
the multi-class imbalance problem,” in Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 2012, pp. 122–134.

Holzinger, A., Machine Learning for Health Informatics: State-of-the-Art and Fu-
ture Challenges. Springer, 2016, vol. 9605.

Japkowicz, N., “Assessment metrics for imbalanced learning,” Imbalanced learning:
Foundations, algorithms, and applications, pp. 187–206, 2013.

Japkowicz, N. and Stephen, S., “The class imbalance problem: A systematic
study,” Intelligent data analysis, vol. 6, no. 5, pp. 429–449, 2002.

Keller, J. M., Gray, M. R., and Givens, J. A., “A fuzzy k-nearest neighbor al-
gorithm,” IEEE transactions on systems, man, and cybernetics, no. 4, pp.
580–585, 1985.

45

Krizhevsky, A., Sutskever, I., and Hinton, G. E., “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, 2012, pp. 1097–1105.

Kukar, M., Kononenko, I., et al., “Cost-sensitive learning with neural networks.”
in ECAI, 1998, pp. 445–449.

Laurikkala, J., “Improving identification of difficult small classes by balancing class
distribution,” in Conference on Artificial Intelligence in Medicine in Europe.
Springer, 2001, pp. 63–66.

LeCun, Y., “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

Li, K., Kong, X., Lu, Z., Wenyin, L., and Yin, J., “Boosting weighted elm for
imbalanced learning,” Neurocomputing, vol. 128, pp. 15–21, 2014.

Ling, C. and Sheng, V., “Cost-sensitive learning and the class imbalance problem.
2008.”

Liu, X.-Y. and Zhou, Z.-H., “The influence of class imbalance on cost-sensitive
learning: An empirical study,” in Data Mining, 2006. ICDM’06. Sixth Inter-
national Conference on. IEEE, 2006, pp. 970–974.

Marchette, D. J., Computer intrusion detection and network monitoring: a statis-
tical viewpoint. Springer Science & Business Media, 2001.

Ou, G. and Murphey, Y. L., “Multi-class pattern classification using neural net-
works,” Pattern Recognition, vol. 40, no. 1, pp. 4–18, 2007.

Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., and Carin, L., “Vari-
ational autoencoder for deep learning of images, labels and captions,” in Ad-
vances in neural information processing systems, 2016, pp. 2352–2360.

Radford, A., Metz, L., and Chintala, S., “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

Safavian, S. R. and Landgrebe, D., “A survey of decision tree classifier methodol-
ogy,” IEEE transactions on systems, man, and cybernetics, vol. 21, no. 3, pp.
660–674, 1991.

Seidl, T. and Kriegel, H.-P., “Optimal multi-step k-nearest neighbor search,” in
Acm Sigmod Record, vol. 27, no. 2. Acm, 1998, pp. 154–165.

Tang, B. and He, H., “Enn: Extended nearest neighbor method for pattern recog-
nition [research frontier],” IEEE Computational intelligence magazine, vol. 10,
no. 3, pp. 52–60, 2015.

46

Wan, Z., Zhang, Y., and He, H., “Variational autoencoder based synthetic data
generation for imbalanced learning,” in Computational Intelligence (SSCI),
2017 IEEE Symposium Series on. IEEE, 2017, pp. 1–7.

Wang, S. and Yao, X., “Multiclass imbalance problems: Analysis and potential
solutions,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 42, no. 4, pp. 1119–1130, 2012.

Wang, S. and Yao, X., “Multiclass imbalance problems: Analysis and potential
solutions,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 42, no. 4, pp. 1119–1130, 2012.

Weiss, G. M. and Provost, F., “The effect of class distribution on classifier learning:
an empirical study,” Rutgers Univ, 2001.

Zhang, H., Berg, A. C., Maire, M., and Malik, J., “Svm-knn: Discriminative
nearest neighbor classification for visual category recognition,” in Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on,
vol. 2. IEEE, 2006, pp. 2126–2136.

Zhang, M.-L. and Zhou, Z.-H., “Ml-knn: A lazy learning approach to multi-label
learning,” Pattern recognition, vol. 40, no. 7, pp. 2038–2048, 2007.

Zong, W., Huang, G.-B., and Chen, Y., “Weighted extreme learning machine for
imbalance learning,” Neurocomputing, vol. 101, pp. 229–242, 2013.

47

	DEEP GENERATIVE MODEL FOR MULTI-CLASS IMBALANCED LEARNING
	Terms of Use
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	List of References

	Background
	Random Sampling Method
	Synthetic Oversampling Methods
	Limitation of Conventional Oversampling Methods
	List of References

	Methodology
	Deep Generative Model
	Variational Autoencoder Based Data Generation
	Generative Adversarial Network Based Data Generation
	Extended Nearest Neighbor Based Selection for Borderline Samples
	List of References

	Simulations and Experiments
	Variational Autoencoder based generative model
	Generative Adversarial Nets based generative model
	Experiment on MNIST Data set
	Evaluation Metrics
	Performance Comparison
	Experiment on NIST19 Data set
	Performance Analysis
	List of References

	Conclusion
	Appendix A
	Data sets and Computational Resources
	List of References

	BIBLIOGRAPHY

