
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

2018 

Isopycnal mixing in the North Atlantic oxygen minimum zone Isopycnal mixing in the North Atlantic oxygen minimum zone 

revealed by RAFOS floats revealed by RAFOS floats 

Donald William Rudnickas Jr. 
University of Rhode Island, dwrudnickas@gmail.com 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Rudnickas, Donald William Jr., "Isopycnal mixing in the North Atlantic oxygen minimum zone revealed by 
RAFOS floats" (2018). Open Access Master's Theses. Paper 1269. 
https://digitalcommons.uri.edu/theses/1269 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1269?utm_source=digitalcommons.uri.edu%2Ftheses%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


ISOPYCNAL MIXING IN THE NORTH ATLANTIC OXYGEN MINIMUM

ZONE REVEALED BY RAFOS FLOATS

BY

DONALD W. RUDNICKAS JR.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

OCEANOGRAPHY

UNIVERSITY OF RHODE ISLAND

2018



MASTER OF SCIENCE THESIS

OF

DONALD W. RUDNICKAS JR.

APPROVED:

Thesis Committee:

Major Professor Jaime B. Palter

H. Thomas Rossby

David L. Hebert

Stephen C. Licht

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2018



ABSTRACT

The Eastern Tropical North Atlantic Oxygen Minimum Zone (OMZ) is a

biogeochemically important area in the vicinity of the Cape Verde Islands formed

by a combination of biological and physical processes. We use data collected from

isopycnal RAFOS floats that were precisely ballasted into two groups and deployed

at five locations near the edge of the OMZ. One group was ballasted to drift on the

isopycnal where oxygen is at its minimum, and the other group about 300 m deeper.

Nearly every six hours for 600 days the floats recorded their positions, temperature,

pressure, and (at the isopycnal aligned with the O2 minimum) dissolved oxygen

concentration. Using the record of the float positions at each time interval, we

calculate the relative dispersion of pairs of floats. The time derivative of this

dispersion provides a diffusivity coefficient that serves to capture the net effect of

eddy driven mixing along each isopycnal. With its sluggish mean circulation, the

OMZ provided a study area in which this isopycnal mixing is observed with little

interference by background advection. The use of Lagrangian subsurface platforms

allowed us to investigate the scale dependent nature of two dimensional turbulence.

We show that the relative dispersion of the floats in the OMZ area obeyed the

canonical 4/3s power scaling that suggests it is representative of two dimensional

turbulence. By estimating the de-correlation length scale, we determined that

the maximum energy containing eddy length scale in the region is approximately

100 km in the zonal direction and 40 km in the meridional. At this length scale, the

effective diffusivity is 1400 ± 500 m2 s−1 in the zonal direction and 800 ± 300 m2

s−1 in the meridional. Within our quantification of error, the diffusivities on the

two isopycnals are indistinguishable from one another. We compared the estimate

of the diffusivity from the paired dispersion with a tracer-based mixing length

method. The magnitude of the diffusivity was similar with the two methods, but



the dispersion method revealed substantial anisotropy that cannot be diagnosed

from the mixing length method. We apply the isopycnal mixing coefficient in a

simple model aimed at understanding the steady state O2 budget in the oxygen

minimum zone. This model suggests that the vertical structure of the oxygen

minimum zone may be set by the vertical profile of biological respiration and that

the lateral structure on both isopycnals is set by a balance between the lateral

distribution of biological respiration and the zonal and meridional mixing supply

of oxygen.
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CHAPTER 1

Introduction

Between the energetic equatorial currents, the anticyclonic subtropical gyre,

and the highly productive coastal upwelling zone along the west coast of Africa,

lies the Eastern Tropical North Atlantic (ETNA) Oxygen Minimum Zone (OMZ).

Here, a combination of biological and physical processes gives rise to a low oxygen

tongue in the vicinity of the Cape Verde Islands. Upwelling along the coast and in

the OMZ leads to biologically productive surface waters and results in the export

of particulate organic carbon through the water column. Remineralization of these

particulates below the euphotic zone consumes oxygen. In OMZs, these high rates

of respiration occur where the time-averaged circulation is predominantly along

streamlines that close about themselves beneath a shallow mixed layer. There-

fore, there is no direct advective connection with a well-oxygenated mixed layer,

and a low O2 layer persists beneath the surface (Luyten et al., 1983). The ETNA

OMZ oxygen minimum is centered on the σθ = 1027.1 kg m−3 isopycnal at ap-

proximately 500 m depth. The core is hypoxic (dissolved oxygen concentrations

between 0.4 and 2 ml l−1) and is comprised of a mixture of South Atlantic Cen-

tral Water and Antarctic Intermediate Water, with a mean water mass age (i.e.

time since being at the ocean surface) of over 125 years (Stramma et al., 2016;

Gnanadesikan et al., 2013; Brandt et al., 2015).

OMZs are areas of great biogeochemical importance. Low dissolved oxygen

concentrations can trigger a shift from aerobic respiration to denitrification which

removes bioavailable nitrogen from the oceans, potentially limiting phytoplank-

ton productivity and impacting macrofauna distribution (Deutsch et al., 2011;

Deutsch et al., 2015). Reduced productivity diminishes the carbon stored in
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the ocean and increases the amount in the atmosphere (Thomas et al., 2004;

Codispoti et al., 2001). Stramma et al. (2008) predicted that OMZs would expand

with global warming, making the understanding of their formation and mainte-

nance processes of vital importance. The global climate models used for future

predictions are known to have major deficiencies in their representation of the

intensity of OMZs due to the inability to resolve key processes associated with

circulation and mixing (Brandt et al., 2015). Therefore, it is important to develop

a better understanding of the balance of processes that form and maintain these

regions.

The oxygen budget of a typical OMZ can be broadly defined in terms of

a balance between biological oxygen utilization and the net supply of oxygen

to the area by advection, lateral mixing, and vertical mixing. Advection by

meridionally stacked, eastward flowing zonal jets near the equator and the North

Equatorial Countercurrent are thought to be the dominant supply mechanisms

of dissolved oxygen to the upper 400 m of the ETNA OMZ, but the veloc-

ity of these currents decay with depth and are situated to the south of the

ETNA OMZ core so that advection below 400 m at the OMZ core is thought

to be weak (Ollitrault et al., 2006; Maximenko et al., 2008; Brandt et al., 2012;

Hahn et al., 2014; Brandt et al., 2015; Stramma et al., 2016). There is a per-

manent cyclonic circulation feature between the Cape Verde Islands and the

African coast called the Guinea Dome where isotherms are displaced upward

(Siedler et al., 1992; Stramma et al., 2016) and streamlines close about them-

selves. In this ”shadow zone” (Luyten et al., 1983) the dominant supply of oxy-

gen to the core of the OMZ must come from the lateral mixing terms, specifi-

cally at and below the O2 minimum (Gnanadesikan et al., 2013; Hahn et al., 2014;

Stramma et al., 2016).
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Turbulent mixing is typically parameterized as down-gradient diffusion with a

diffusivity coefficient that is a function of the turbulent flow field. Diapycnal mix-

ing results in a down-gradient flux of oxygen to the core mostly from surface waters

through the oxycline area of maximum gradient above the OMZ layer and below

the mixed layer (Fischer et al., 2013; Brandt et al., 2015) but also from below the

OMZ. Recent studies (Fischer et al., 2013; Banyte et al., 2012) have estimated the

diapycnal eddy diffusivity through an intentional tracer release and are in good

agreement (∼ 10−5 m2 s−1). Eddies also mix tracers along neutral density sur-

faces, processes often represented as along-isopycnal diffusion, which is thought be

the largest supply term of oxygen into the OMZ core (Gnanadesikan et al., 2013;

Stramma et al., 2016; Hahn et al., 2014). Estimates of isopycnal diffusivities from

baroclinic instability theory (Visbeck et al., 1997) give relatively low values of 100

- 300 m2 s−1, while a recent tracer release experiment in the ETNA OMZ region

gave larger, and highly anisotropic, diffusivities of 500 m2 s−1 in the meridional

direction and 1200 m2 s−1 in the zonal direction (Banyte et al., 2013). Mean-

while, uncertainties on the tracer-based diffusivities are 50% of the mean values.

Mid-latitude tracer and float experiments have yielded even higher diffusivities

(Ledwell et al., 1998). Both intentional tracer studies and theoretical scaling ar-

guments yield estimates of the diffusivities without revealing their time- and space-

scale dependence, a problem that can be addressed with Lagrangian floats.

Here, we directly measure isopycnal dispersion by analyzing a set of isopycnal

acoustically-tracked RAFOS floats deployed at the edge of the ETNA OMZ. The

floats were carefully ballasted and deployed in groups of five to ten at five loca-

tions on two isopycnals (Figure 1). The floats recorded their position, pressure,

temperature, and (on the isopycnal aligned with the oxygen minimum) dissolved

oxygen concentration every six hours for 600 days. These float data provide insight

3



into the scale-dependent nature of how water is stirred and mixed along constant

density surfaces by mesoscale eddies through the calculation of a diffusivity coef-

ficient. The use of RAFOS floats in an area of weak mean circulation such as the

ETNA OMZ enables a detailed analysis of Lagrangian methods concurrent with

an investigation of OMZ dynamics.

Figure 1: Float trajectories over the WOA13 Dissolved Oxygen Con-
centration (Garcia et al., 2013) interpolated to the two study isopyc-
nals. The float launch locations are marked by red asterisks.

Following this Introduction, we describe in more detail the data and methods

4



used to calculate the diffusivity coefficients by two methods: relative dispersion

and mixing length (Chapter 2). In Chapter 3, the results of the analysis are

presented and compared to similar studies that have used different methods toward

the same end. We further discuss the inclusion of chance float pairings into the

relative dispersion calculation with their associated benefits and challenges. With

a quantification of lateral mixing from the floats, we then apply our results in the

simplest model representation of the OMZ to probe the importance of diapycnal

and anisotropical isopycnal diffusion in the oxygen budget of the OMZ.

5



CHAPTER 2

Data and Methods

2.1 Platforms and Sensors

Isopycnal RAFOS floats are Lagrangian platforms that are designed to re-

main on a surface of constant density and record their position based on the

time of reception of an acoustic signal transmitted from a known sound source

(Rossby et al., 1986). Ninety-two isopycnal RAFOS floats (50 with Aanderaa oxy-

gen sensors) were purchased from Seascan, Inc. The floats were ballasted to within

0.02 kg m−3. In March and April 2003 the floats and four Webb sound sources

were deployed from the R/V SEWARD JOHNSON II near the edge of the ETNA

OMZ core (Figure 1). The premature surfacing of a float led to the discovery that

the four sound sources had failed after a period ranging from two to five months.

Fortunately, French and German sound sources in the area were within range of

the floats and provided location information until more sound sources could be

deployed. Due to this shift in acoustic coverage from changing sound sources,

there was some loss of float position information between mission day 140 and

278. Starting at approximately mission day 278 until 310 there was an almost

complete 32-day gap in location information, during which only 3 - 6 floats were

receiving acoustic signals (Figure 2).

In total, 82 floats returned data over the 600 day mission. Of these, 45 floats

with oxygen sensors were ballasted to follow the σθ = 1027.1 kg m−3 isopycnal

(27.1) at the core of the ETNA OMZ (approximately 400 - 500m) and 37 were for

the σθ = 1027.3 kg m−3 isopycnal (27.3) below the core (700 - 900m). The floats

were deployed at five locations near the boundary of the ETNA OMZ (Figure 1)

in groups of five to ten floats. With the exception of the transmission gap noted

above, the floats recorded their position, time, pressure, and temperature every six

6



Figure 2: The number of floats on each isopycnal that received
information from the sound sources over mission time. Note the
decline in number of floats starting at approximately mission day
140 with sharp drops at approximately day 150, 185, and 280.
The incorporation of nearby sound sources enabled the recovery
of some float position information between day 150 and 310 when
new sound sources were deployed.

hours for 600 days. The shallower floats also recorded oxygen concentration.

Figures 3, 4, and 5 compare the temperature and oxygen measurements

from the floats against the World Ocean Atlas 2013 climatology (WOA13)

(Locarnini et al., 2013; Garcia et al., 2013). Temperature correlated well with the

climatology, while the oxygen measured by the floats was systemically lower than

the climatology (Figure 5). Figure 4 shows an approximately -0.2 ml l−1 oxygen

bias from the start as well as a negative drift in the later half of the mission.

We suspect this offset to be due to a combination of calibration and drift of the
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Aanderaa Oxygen Sensors, as these were early generation instruments known for

negative drift over time (D’asaro and McNeil, 2013).

Figure 3: Comparison of the float oxygen (ml l−1; left) and tem-
perature (oC; right) measurements compared to the WOA13 cli-
matology (Garcia et al., 2013; Locarnini et al., 2013).

2.2 Analysis Methods
2.2.1 Relative Dispersion

Relative dispersion of the floats is due to the net effect of turbulence

along an isopycnal. Diagnosis of an effective isopycnal diffusivity through rel-

ative dispersion was done by tracking float positions over time, as in several

previous studies (Klocker et al., 2012; LaCasce, 2008; LaCasce and Bower, 2000;

Babiano et al., 1990). Starting with the original float groupings (i.e. those

launched at the same time and place), each float’s position was compared to the

others’ at each six-hour time step to measure the separation distance:
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Figure 4: Root mean square (top) and mean signed (bottom)
difference of oxygen and temperature from climatology (float -
WOA13) over the length of the mission. The time period with
sound source issues is shaded in gray. Note the ∼20 day adjust-
ment time at the beginning of the mission especially noticeable
with temperature on the 27.3. Also note the approximately linear
drift in the oxygen data after recovery from the acoustic failure.
We attribute the initial, nearly steady (approx. -0.2 ml l−1) dif-
ference in oxygen during the first 400 days to the calibration of
the sensors.

D(t) =
√
d2
x(t) + d2

y(t) (1)

Where dx(t) and dy(t) are the zonal and meridional differences in the float pair
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Figure 5: Histogram of float oxygen and temperature measure-
ment residuals. The WOA13 climatology (Garcia et al., 2013;
Locarnini et al., 2013) values were subtracted from the float ob-
served values.

positions at the time-step (t). The ensemble mean squared separation distance of

all pairs at a given time-step, 〈D2〉, can then be taken as:

〈D2(t)〉 =
1

N

∑
pairs

(d2
x(t) + d2

y(t)) (2)

Where N is the number of float pairings at the time-step, t. The relative dif-

fusivity (K) between two particles is half the time rate of change of the ensemble

mean squared separation distance. This, in turn, is twice the absolute diffusivity

calculated from a single particle. Since our goal is to calculate the effective dif-

fusivity (Nakamura, 2008) that relates to other parameterizations, we incorporate

this second division by two directly into our calculation as in Klocker et al. (2012):
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Figure 6: Schematic of the pair dispersion calculation
over four time steps with a simulated 10 float group.
The dashed lines at t3 represent the separation dis-
tance between the group pairings. 〈D2(t)〉 is then the
mean of all the squared separation distances at the
time step.

K =
1

4

d

dt
〈D2〉 (3)

The relative diffusivity was quantified in this manner at the oxygen minimum

(27.1) and below it (27.3). Next, to quantify the anisotropy in the diffusivity, we

repeated the calculation separately for zonal and meridional components of the

dispersion in equations 1 and 2 to calculate a Kx and Ky from equation 3.

Because relative dispersion depends on fluctuations at scales comparable with

the separation distance between the particle pairs, this method can shed light

on physics at different spatial scales (LaCasce and Bower, 2000; LaCasce, 2008;

Klocker et al., 2012). By considering the diffusivity in terms of the separation
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distance (D), we can make inferences about the size of the eddies in the en-

ergy cascade and the dispersion associated with those eddy sizes (Taylor, 1921;

Richardson, 1926; Batchelor, 1952; Garrett, 1983; Babiano et al., 1990). The dif-

fusivity is predicted to follow the well-known D4/3 law developed by Richard-

son (1926) where diffusivity increases as the separation distance (D) to the

4/3 power until the floats reach the separation scale of the largest energy con-

taining eddies, at which point individual float velocities become uncorrelated

(LaCasce and Bower, 2000).

This D4/3 dependence was observed by Richardson in 1926 in his seminal study

on the dispersion of smoke plumes from stacks. It was shown mathematically to

arise from a scaling argument of turbulent eddy characteristics related to energy

cascades. When energy is imparted into a system it is dissipated by smaller and

smaller eddies until it reaches the scale of molecular viscosity. In a statistically

steady state, the energy imparted at the largest scale will equal the energy dissi-

pated at the smallest scale. The energy dissipation rate, ε, with units of L2 T−3

encapsulates this cascade of energy from large to small scales. Assuming that the

characteristic velocity of eddies of various sizes in the cascade depends only on the

size of the eddy (d, with units of L) and the dissipation rate (ε) (i.e. Kolmogorov

(1941)), it follows that the velocity with units of L T−1 must be:

u(d) = A(εd)1/3 (4)

with A equal to a dimensionless constant. Diffusivity, with units of L2 T−1 is a

product of a velocity, u (i.e. a perturbation magnitude) and a length scale d (i.e.

the range of a perturbation). For a scale dependent diffusivity, we consider the

velocity associated with the length scale in the energy cascade (Equation 4) such

that the diffusivity must be:

K = u(d) d = Aε1/3 d4/3 (5)
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For distances (d) greater than the maximum length scale allowed by the sys-

tem, K will asymptote to a constant. We take this constant to be the

effective diffusivity of the mesoscale eddies in the region (Richardson, 1926;

Kolmogorov, 1941; Taylor, 1921; Lumpkin and Elipot, 2010; Klocker et al., 2012;

Cushman-Roisin and Beckers, 2011; LaCasce, 2008).

2.2.2 Chance Pairs

In addition to evaluating Equation 3 using the ensemble of “original pairs”

(i.e. those that were intentionally launched at a single time and location), we can

also analyze “chance pairs” (i.e. those floats that were either launched at separate

locations or separated during the course of their Lagrangian trajectory, and then

came within a threshold proximity of one another). The proximity threshold was

selected to be 10 km, after being separated by more than that distance for a

minimum of five days. 10 km was chosen because it is an order of magnitude

less than the size of the mesoscale eddy field that defines the maximum energy

containing eddy size in the study area, as further discussed in the Results Section.

The five day separation time threshold was selected to be greater than the mean

inertial period for the study area (3.5 days) in order to ensure that new pairings

were not created every time a pair of floats near the distance threshold completed

an inertial oscillation. Our maximum population on the 27.1 (27.3) was 145 (119)

original pairs. Using this chance pairing method provided an additional 115 (92)

float pairings, nearly doubling the ensemble size at some time steps (Figures A.5,

A.6, and A.7). Other threshold values for these parameters were tested, the results

of which are shown in Table A.1 and discussed below.
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2.2.3 Mixing Length

The floats provide data that can also be used to calculate diffusivity with

an independent technique called the mixing length parameterization. The mix-

ing length (Lm) represents the distance a fluid parcel could be transported before

significant irreversible mixing occurs. Lm is defined by relating tracer anoma-

lies to the mean gradients on isopycnals (Cole et al., 2015; Armi et al., 1983;

Ferrari and Polzin, 2005):

Lm =
〈
√
Q′Q′〉
|∇Q|

(6)

where Q is the tracer (temperature and oxygen used here), |∇Q| represents the

magnitude of the lateral gradient of the mean tracer value in a grid box, which

may be provided by the WOA13 climatology or from the bin averaged tracer ob-

servations from the floats. The prime indicates perturbation from the mean and

the brackets represent an ensemble mean of all float observed perturbations in a

grid bin. The study area was divided into geographic bins (0.25o and 0.5o were

tested) for the purpose of determining the mean and perturbations. The binned

means included all float observations over the 600 day mission. Perturbations were

determined and separately tested by two methods: first by taking the difference of

the observed tracer values at each time step in each geographic bin and the mean

tracer value for the bin determined from the float observations. Second, the cli-

matological mean for each bin from the WOA 2013 was subtracted from the float

observed value. Given the excellent accuracy of the temperature measurements

compared to the climatology discussed above, the calculation of mixing length

from temperature was insensitive to this method choice. Because the observed

oxygen values were lower than the climatological mean, we only used the oxygen

perturbations calculated from the mean of binned observations. The magnitude of
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the tracer gradient (|∇Q|) was calculated from the WOA 2013 climatology using

a centered difference method for each bin as:

|∇Q| =

√√√√(dQ
dx

)2

+

(
dQ

dy

)2

(7)

The centered difference gradient was taken from dx and dy set to values rang-

ing from 0.5o to 6o and this range of values contributed to the uncertainty. Of note,

the mixing length is only taken down the tracer gradient and provides a metric

for comparison to the isotropic relative diffusivity calculated above, but provides

no means of evaluating anisotropy. The isopycnal diffusivity is proportional to the

product of the mixing length and the velocity scale representative of the eddy field:

K = coLmUrms (8)

where co is a mixing efficiency and Urms is the root mean square perturbation

velocity calculated from the float trajectories. The mixing efficiency (co) was taken

as the global average: 0.16 (Wunsch, 1999). The perturbation velocity for each

geographic bin was calculated as:

Urms =
√
〈(ut − u)2〉+ 〈(vt − v)2〉 (9)

The brackets indicate the ensemble mean of all float velocity perturbations taken

as the difference of each float’s observed velocity (ut=
dx
dt

, vt=
dy
dt

, where x and y are

float displacements over a given time interval, t) and the mean float velocity in

geographic bins (u, v). When calculating the velocities, we tested for sensitivity to

various choices: First, we used a “time bin” method to remove the instantaneous

effect of inertial oscillations, by calculating the float velocity from displacements

over periods (dt) equal to the mean inertial period for the study area (3.5 days or 14
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consecutive float records) for both mean and instantaneous velocities. As discussed

below, the mixing length was quite sensitive to the duration of the displacements

used for calculating float velocity. We also tested the sensitivity of the calculation

to a “threshold number;” including only bins that contained a number of float

displacements above the a predefined number. The intent was to filter out bins

that may have been skewed by only a small number of float measurements but

both the mixing length and resultant diffusivity calculations were insensitive to

such a mask.

By the mixing length method, diffusivity was calculated using temperature

(on both isopycnals) and oxygen (on 27.1) for each geographic bin that included

float observations and the mean of these binned values was taken as the effective

diffusivity.

2.2.4 Error Calculation

Assuming a normal distribution of pair separation distance at each time step

(LaCasce and Bower, 2000), the 90% confidence interval for dispersion was calcu-

lated as:

〈D2(t)〉 ± z ∗ σ√
n

(10)

and for diffusivity as:

K ± z ∗
1

2∆t

√
σ2
t + σ2

t+1 − 2σt,t+1√
n

(11)

where the z score for a normal distribution (1.65 for 90%) was used, σ is the

standard deviation of the separation distances at each time step, σt,t+1 is the

covariance between time steps, and n is the number of pairings at each time step.
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In contrast, we estimate the uncertainty on the mixing length calculations,

from the range of values resulting from different subjective choices of the terms in

Equations 7 and 8. This is discussed in more detail below.
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CHAPTER 3

Results and Discussion

Snapshots of the float trajectories over the first 200 days are shown in Figure

7 and the results of our calculation of isopycnal diffusivity from relative dispersion

and mixing length methods are provided in detail below.

Figure 7: Float positions every 15 days starting on April 15, 2003 for
approximately the first 200 days of the mission. The red circles are
floats on the 27.1. Blue circles are floats on the 27.3. Gray tails are the
previous 14 days’ positions. Background color shading is the daily Sea
Level Anomaly (m) from AVISO, and the black contours are dissolved
oxygen from the WOA 2013 climatology for geographic reference. The
black asterisks mark the float launch locations.
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3.1 Diffusivity from Relative Dispersion
3.1.1 Anisotropic 2-D Turbulence

Isopycnal diffusivity in the ETNA OMZ was calculated from two-point dis-

persion of the Lagrangian RAFOS floats as a result of Equation 3 in which the

diffusivity, K, is taken as the time derivative of the squared ensemble mean sep-

aration distance, 〈D2〉, using a forward difference between consecutive time-steps.

At each 0.25 day time-step, the ensemble mean separation distance, 〈D〉, was cal-

culated as the square root of Equation 2. In order to examine the dependence of

K on the length scale, 〈D〉, the two are plotted against each other in Figure 8.

The results are consistent with the dynamics of 2-D turbulence (Richardson, 1926;

Babiano et al., 1990; Garrett, 1983), as the diffusivity increases in proportion to

the separation distance, D4/3 (Figure 8). Further, the dispersion was examined sep-

arately in the zonal and meridional directions and was found to be approximately

twice as large in the zonal direction as the meridional direction at all length scales

(Figure 9).

3.1.2 Largest Energy Containing Eddy Size

The separation length scale at which the motion of a pair of floats become

uncorrelated (i.e. the de-correlation scale) is considered an indication of the

maximum energy containing eddy size for a system (LaCasce and Bower, 2000;

LaCasce, 2008; Klocker et al., 2012). In order to estimate the effective mesoscale

diffusivity we assessed the relative diffusivity at this de-correlation length scale.

In Figure 8, this length scale can be observed as the point at which there is a

shift between the regime where diffusivity increases as D4/3 and the high variance

region beyond. Visually, Figure 8 suggests that this length scale is approximately

100 - 150 km on both isopycnals. To make a more quantitative estimate, we binned

the diffusivity results by separation distance and evaluated the standard deviation
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Figure 8: Relative diffusivity calculated from original pairs only
shown here smoothed by a 10 km running mean. Note the high
noise region on the 27.3 (blue line) at a separation distance be-
tween 40 and 100 km; we consider this high variance region to be
due to the number of floats still separated by less than 100 km
when the sound sources began to fail. The relative diffusiv-
ity increases as approximately D4/3 until reaching approximately
100 km, the maximum eddy containing eddy size for this area.
The dotted lines signify the 90% confidence interval.

from the mean in each bin. The mean was taken by two methods for compar-

ison: a 10 km running mean and in 10 km discrete bins and was only used for

visualizing the results and estimating the de-correlation length scale. Figure 10

shows that the standard deviation of the 10 km running mean of the relative dif-

fusivity increases by approximately an order of magnitude at length scales greater

than 150 km on the 27.1 isopycnal. Using the standard deviation as a guide, we

identified the separation length just prior to the standard deviation consistently

increasing from approximately 103 to 104. We next examined the 90% confidence

interval in pair dispersion at that length in the un-binned diffusivity results. Since
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Figure 9: Anisotropy in relative diffusivity calculated from original
pairs only. Zonal diffusivity (left) was found to be approximately
twice as large as the meridional diffusivity (right). The dotted
lines signify the 90% confidence interval.

the confidence intervals are based on the covariance of pair separation distances

between time-steps in the calculation of diffusivity (Equation 11), we further re-

fined our approximation of the de-correlation scale by identifying the length where

the 90% confidence threshold increased by an order of magnitude or more. The

standard deviation and error information helped to narrow the search and the last

step of the de-correlation length scale estimation was conducted through analyst

interpretation of the un-binned diffusivity results. Here, the diffusivities at each

time-step were sorted by mean separation distance at the time-step and examined

sequentially from smallest separation distance to largest. The separation distance

at which the diffusivity came approximately to a constant was compared to the

length at which the error and standard deviation increased and was estimated to

be the de-correlation length scale. The approximately constant diffusivity at this
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length scale was taken as the effective diffusivity. The results of this evaluation

method are shown in Table 1.

Figure 10: Standard deviation of the original pair relative diffu-
sivity 10 km running mean the on 27.1 (top) and 27.3 (bottom)
isopycnals. We use the separation distance at which the stan-
dard deviation increases above 104 m2 s−1 as the length scale for
the maximum energy containing eddies in this region. On the
27.1, this is approximately 150 km and on the 27.3 approximately
115 km. We attribute the spike in standard deviation on the 27.3
isopycnal when floats have a mean separation distance of approx-
imately 50 km to issues with the moored sound sources.

The sound source error presented a challenge to this method. There is an

increase in standard deviation on 27.3 at about 40 - 80 km as well as after 100 km.

We attribute the increase at the shorter length scale to the acoustic sound source

failure beginning around mission day 140. Figure 11 shows the mean separation

distance of float pairings on each isopycnal over time. Figure 12 shows the percent

of float pairings that are more than 100 km apart. In both figures, the magenta

line marks the 140 mission day mark where the sound sources began to fail. While
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Effective Diffusivity
(m2 s−1)

Pairs K Kx Ky

Original Only
27.1 145 1254 1410 800

± 518 ± 493 ± 313
Length Scale (km) 90 80 40

27.3 119 1484 1297 570
± 980 ± 630 ± 364

Length Scale (km) 100 75 40
Original - 140 day

27.1 145 1200 1446 844
± 515 ± 597 ± 364

Length Scale (km) 91 94 47
27.3 119 1160 1070 570

± 575 ± 806 ± 364
Length Scale (km) 101 87 40

Chance Only
27.1 115 1198 1418 357

± 1154 ± 1000 ± 563
Length Scale (km) 100 80 50

27.3 92 1417 1305 300
± 1271 ± 1277 ± 250

Length Scale (km) 100 80 40
Chance + Orig

27.1 296 1654 1747 541
± 624 ± 619 ± 376

Length Scale (km) 100 100 70
27.3 211 1652 1479 646

± 768 ± 855 ± 884
Length Scale (km) 100 100 70

Table 1: Diffusivity calculated from relative dispersion. These
values reflect an effective diffusivity estimated at the the maximum
energy containing eddy length scale recorded under each value.
The ± row denotes the 90% confidence threshold for each value.
The Original-140 day section is the results calculated using only
original float pair dispersion over the first 140 mission days in
order to exclude any impacts by the acoustic sound source failure.
For the chance pair only and chance plus original sections, a 10 km
and 5 day threshold for pair identification was used.
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∼65% of 27.1 pairings are beyond 100 km at the 140 day mark, only ∼28% of 27.3

pairings are. We therefore interpret the increase in standard deviation on the 27.3

at a mean separation distance less than 100 km as due to the sound source failure.

Figure 11: Mean separation distance of original pairs over the first
200 days. The 90% confidence interval is shown in the shading,
the magenta line demarks mission day 140 when the sound source
failures began, and the black line marks the 100km separation dis-
tance. Note that the mean separation distance on both isopycnals
is greater than 100km by the time the sound sources begin to fail.

To confirm that 100 km was a good approximation of maximum energy con-

taining eddy length scale on the 27.3 isopycnal given the ambiguity arising from

the sound source failure, we conducted the dispersion and diffusivity calculations

using only the float positions in the first 140 days, prior to the acoustic failures.

Figure 13 and Table 1 show similar diffusivity values to those when all float posi-

tions were included but without the variance in the 40 - 80 km range of separation

distances, supporting our assertion that the variance in this range in Figure 8 is

due to the sound source failures starting at day 140.

24



Figure 12: The percent of original pairs with a separation distance
of greater than 100km over time. The magenta line demarks mis-
sion day 140 when the sound source failures began.

As an additional diagnostic, we looked to the use of chance pairs. Because

the elapsed time starts at zero once a pair met a prescribed threshold and is not

dependent on the mission day, there is a greater spread in separation distance at

the time of the sound source issues. Figure 14 shows the standard deviation in

diffusivity compared to separation distance for chance pairs only that came within

10 km of each other after more than five days of separation. This method showed

no sign of the earlier increase in standard deviation seen in the original pairings

and a similar increase after a separation distance of 100 km.

Our ad-hoc approximation for the size of largest energy containing eddy based

on the dispersion statistics corresponds well with the Rossby Radius of Deformation

for this area. We calculated the first baroclinic mode radius of deformation from

the first baroclinic gravity-wave phase speeds from Chelton et al. (1998). This

radius of deformation was between 100 km and 140 km in the study region.
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Figure 13: Relative diffusivity calculated only from original pair
float dispersion in the first 140 days - prior to the acoustic sound
source failures. The results are similar (within the quantification
of error) to the results using the entire time-frame but support
that the high-variance region from 40-80 km seen in is due to the
sound source failures.

Table 1 shows that the approximate de-correlation length scale is roughly the

same on both isopycnals and shorter in the meridional direction. Figure 15 shows

that on both isopycnals, the floats dispersed in the zonal direction more than the

meridional. This anisotropic dispersion agrees with previous work showing that

eddies become more ellipsoid closer to the equator with perturbation velocities

larger in the zonal than meridional directions (Rypina et al., 2012).
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Figure 14: Standard deviation of the chance pairs only (with a
threshold of 10km and 5 days) relative diffusivity 10km running
mean on 27.1 (top) and 27.3 (bottom). Using chance pairs only,
compared to Figure 10, removes the noise that we associate with
the sound source failure and shows a length scale for the maxi-
mum energy containing eddy on both isopycnals of between 100 -
125 km.

3.1.3 Comparing diffusivity estimates on the two isopycnals

Given the 90% confidence intervals, the diffusivity on the 27.1 and 27.3 isopy-

cnals is virtually indistinguishable (Figure 8). The quantitative similarity is robust

whether assessed using original, original plus chance, or chance pairs only. Figure

11 shows the ensemble pair dispersion also nearly identical over the first 80 days

at which point the mean pair dispersion exceeds 100 km on both isopycnals.

Isopycnal mixing is known to be the main supply mechanism of oxygen to the

OMZ (Gnanadesikan et al., 2013; Fischer et al., 2013; Hahn et al., 2014). Given

our result that the turbulent diffusivity is indistinguishable on the two density lev-

els (Figure 8), yet oxygen is much more strongly depleted on the shallower isopycnal
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Figure 15: Anisotropy in original pair mean separation distance
over the first 200 days. The shaded area signifies the 90% confi-
dence interval.

(Figure 1), we hypothesize that the vertical oxygen gradient arises due to the ver-

tical profile of respiration either locally in the OMZ or in the high productivity

narrow coastal upwelling band, that is transported into our study region.

3.1.4 Incorporating Chance Pairs

The benefit of including chance pairings in our analysis was that they helped

to fill the time gap generated by the sound source failures given that each chance

pairing’s elapsed time started at 0 when they met the threshold criteria instead

of at launch. Table A.1 summarizes a series of tests conducted with different

distance thresholds and shows the number of pairs gained through each thresh-

old choice. The results show nearly identical diffusivity values but with increased

error, perhaps because the “chance” encounters may actually be caused by conver-

gent advective features that continue to influence the floats after they are brought
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Figure 16: Daily Eddy Kinetic Energy (EKE) calculated from
the perturbations of float velocity from the float velocity 0.25o bin
mean for the first 200 days. This is the geographic mean across the
study area. The mean EKE on 27.1 was calculated to be 5.3×10−3

and 3.5× 10−3 on 27.3. The magenta line marks mission day 140
when the sound sources began to fail.
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together so that not all meetings necessarily describe the processes of dispersion

by eddies of increasing size examined here.

3.2 Comparison with other methods and studies
3.2.1 Mixing Length Analysis

Our results for the diffusivity calculated from the mixing length parameter-

ization closely matched the estimates from the float dispersion. Several different

sets of values for geographic bin size, time bin size, gradient size, and threshold

number were tested. Of these, the mixing length was most sensitive to size of gra-

dient and the diffusivity was most sensitive to the time bin. The range of values

resulting from the various parameters were used to estimate the error associated

with this method. A subset of the results from the mixing length calculations with

a 0.25o geographic bin are presented in Tables 2 and 3. Overall, we take our mean

diffusivity result from mixing length to be 1550 m2 s−1± 600 m2 s−1 on the 27.1

and 1762 m2 s−1± 780 m2 s−1 on the 27.3, which agrees, within the quantification

of error, with the isotropic effective diffusivity from relative dispersion. The mix-

ing length on 27.1 is similar to the de-correlation scale determined above and the

Rossby Radius of Deformation. The fact that the 27.3 had longer mixing lengths

with nearly the same diffusivity makes sense given that the smaller velocities (Fig-

ure 16) and smaller gradients (Figure 1) would allow a parcel to travel farther and

retain its identifiable characteristics before mixing.

3.2.2 Comparison to results from previous studies

As a comparison to our findings, we summarize here the diffusivities found by

several other recent studies using different methods. Recent estimates in the ETNA

OMZ region have been smaller than what we diagnosed from float dispersion and

the mixing length analysis. A global analysis of lateral diffusivity by mixing length

from ARGO floats by Cole et al. (2015), found 500 m2 s−1(400 m2 s−1) at 500 m
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Table 2: A subset of mixing length results calculated in 0.25o geographical
bins by Equation 6 using the WOA13 climatology to calculate the means
and gradients and float measurements of temperature and oxygen for per-
turbations. The Threshold # column denotes the minimum number of
float records within a bin for the bin to be included in the calculation.
The Time Bin column describes the number of 0.25 day increments used
to calculate float velocity. A time bin of 1 means that each sequential float
position was used to calculate velocity whereas a time bin of 14 means that
the velocity was calculated over 14 time-steps. 14 was chosen because it
takes the net effect of inertial oscillations with a mean period for this area
of 3.5 days instead of the ”instantaneous” motions of each oscillation when
using 0.25 day increments. The Gradient Scale column identifies the length
in degrees over which the tracer gradient was calculated. This was done
with a centered difference so that the gradient at each position was taken
as the mid point in a line of this scale’s length. The mean mixing length
columns were taken as the mean value of all 0.25o bins that contained a
quantity of float records exceeding the threshold number and so is a geo-
graphic and temporal mean for the study area. The Mean and STD rows
take the mean and standard deviation, respectively, of the mixing length
results when using the different combinations of parameters.
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Table 3: Isopycnal diffusivity coefficients calculated in 0.25o geographical
bins by Equation 8 using temperature and oxygen float data. This used
the mixing lengths calculated in Table 2, co = 0.16, and URMS calculated
using the bin-mean float velocities compared to each float’s observation
for velocity perturbations. The mean diffusivity columns for each tracer
were taken as the mean value of all bins that contained a quantity of float
records exceeding the threshold number and, as such, is a geographic and
temporal mean for the study area. The Mean and STD rows take the
mean and standard deviation, respectively, of the mixing length results
when using the different combinations of parameters.
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(800 m) depth for the ETNA OMZ region. Other mooring and shipboard observa-

tions in the area were used to calculate values of 400 (300) m2 s−1 on 27.1 (27.3)

(Brandt et al., 2015) and 750 (250) m2 s−1 at 500 (800) m (Hahn et al., 2014). An

intentional tracer release experiment (Banyte et al., 2013) suggested values closer

to the ones we calculated: at 300 m depth Ky = 500 ± 200 m2 s−1 and Kx = 1200

± 600m2 s−1. Modeling studies of the circulation around the OMZ have typically

used smaller diffusivity values than is suggested by our float data: 100 m2 s−1

(Peña-Izquierdo et al., 2015) to 500 m2 s−1 (Brandt et al., 2010).

Until now, none of the previous studies have used Lagrangian platforms to

address the scale dependent nature of isopycnal mixing. Many also did not account

for anisotropy. Our diffusivity results are most similar in magnitude and anisotropy

to the results of Banyte et al. (2013), which were measured above the OMZ core.

3.3 Scale Analysis & Model Oxygen Budget Synthesis

To probe the impact of isopycnal mixing on the oxygen budget of the OMZ

at the core and below, a scale analysis and simple model was utilized that aimed

to explore the oxygen conservation equation on an isopycnal:

dO

dt
= −JO − u∂O

∂x
− v∂O

∂y
+Kx

∂2O

∂x2
+Ky

∂2O

∂y2
+Kz

∂2O

∂z2
(12)

Where O is the dissolved oxygen concentration, JO is the dissolved oxygen

consumption from biological respiration; u and v are the zonal and meridional ve-

locity components, respectively; Kx and Ky are the zonal and meridional isopycnal

eddy diffusivity coefficients, respectively; and Kz is the diapycnal eddy diffusivity

coefficient.

The meridional and zonal velocities (u and v) were both set to 0 in order to

remove the lateral advection terms from the model equation. This was done to
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directly probe the impact of the mixing terms and with full understanding that

our model might differ from reality without the small mean advection in the study

region. Qualitatively, Figure 1 shows the low mean velocity field given the fact

that the floats remained in the study region over the entire 600 day mission. To

quantitatively substantiate this assumption, the float displacements over time were

geographically binned and averaged to create a quasi-Eulerian mean velocity field

(Figures A.1 - A.4). Over the 600 day mission timeframe, the mean velocity was

near 0 on both isopycnals in the meridional direction and zonally on the 27.3.

The zonal velocity on 27.1, had a mean velocity of -0.1 cm s−1, with a sense of

anticyclonic circulation (Figure A.1).

For our scale analysis, we assumed that the system is in steady state and that

the time-mean advective supply of oxygen is small, so that Equation 12 reduces

to:

JO = Kx
∂2O

∂x2
+Ky

∂2O

∂y2
+Kz

∂2O

∂z2
(13)

To solve Equation 13, the geographic box of the WOA13 oxygen data inter-

polated to each isopycnal that contained our float trajectories (4-13oN and 015-

045oW) was used to calculate gradients and a point in the center of the box (8.5oN

030oW) was used as a test location. ∂2O
∂x2

was taken along the 8.5oN line of latitude

as:

∂2O

∂x2
=
O15oW − 2O30oW +O45oW

(45oW − 15oW )2
(14)

and ∂2O
∂y2

along the 030oW line of longitude as:

∂2O

∂y2
=
O13oN − 2O8.5oN +O4oN

(13oN − 4oN)2
(15)

Once converted from degrees to meters this resulted in ∂2O
∂x2

= 4.80× 10−14(5.16×

10−14) ml O2 l−1 m−2 and ∂2O
∂y2

= 5.21× 10−13(4.01× 10−13) ml O2 l−1 m−2 on the

27.1(27.3) isopycnals. Kx and Ky where taken from the original only values of
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Table 1 and after converted to days: Kx = 1.22× 108(1.12× 108) m2 day−1 and Ky

= 6.91× 107(4.92× 107) m2 day−1.

The vertical gradient was calculated from the WOA13 oxygen data at the

test point using the dissolved oxygen concentrations 100 m above and below the

climatological depth of each isopycnal: 500(700) m. With depths shown for 27.1

only:

∂2O

∂z2
=
O600m − 2O500m +O400m

(200m)2
= 7.50× 10−6(−2.00× 10−5)

mlO2

l m2
(16)

Kz was taken from Banyte et al. (2012) as 86400 × 10−5 m2 day−1 on both

isopycnals.

The biological respiration term was derived from a global dataset of particulate

organic carbon (POC) export at the bottom of the euphotic zone calculated by

Dunne et al. (2007) with units of µmolO2

m2day
. We calculated the vertical decline of

this particulate export to the 27.1 and 27.3 isopycnals from the well-known Martin

Curve (Martin et al., 1987):

ΦPOC(z) = ΦPOC
0 (

z

z0

)−b (17)

where ΦPOC(z) is the POC flux at depth z; ΦPOC
0 the POC flux at the bottom of

the euphotic zone (for z0 = 75m as in Dunne et al. (2007)) and b is the Martin

Attenuation Coefficient taken as 0.8 (Bianchi et al., 2012). The depth of each

isopycnal was taken from the climatology (WOA13). Assuming that no oxygen

is being added by photosynthesis below the euphotic zone and that biological

respiration is the only sink of POC between the depths considered, the amount of

POC removed from the water column at each isopycnal was calculated as the first

derivative of the flux (Equation 17):
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dΦPOC(z)

dz
= ΦPOC

0 zb0(−b)z−b−1 (18)

The amount of carbon remineralized at each isopycnal depth was converted

to oxygen consumption rates through the Redfield ratio where O2:C = 1.3

(Del Giorgio and Duarte, 2002; Cavan et al., 2017; Thomas, 2002). The power

law scaling from the Martin curve results in respiration rates that are approxi-

mately twice as high on the 27.1 isopycnal as the 27.3.

The resulting values for each term in Equation 13 are displayed in Table

4. THe scale analsyis suggests that the biological consumption term is mostly

balanced by meridional diffusion with non-negligible (10-20%) contributions from

the vertical and zonal diffusion terms. That the zonal diffusion is small compared

to the meridional term despite the larger diffusivity coefficient is not surprising

given that the 2nd derivative oxygen gradient is an order of magnitude smaller in

the zonal than meridional direction.

Description Term 27.1 (mlO2

l day
× 10−5) 27.3 (mlO2

l day
× 10−5)

Biological Consumption JO -4.5 -2.2

Zonal Diffusion Kx
∂2O
∂x2

0.6 0.6

Meridional Diffusion Ky
∂2O
∂y2

3.6 2.0

Vertical Diffusion Kz
∂2O
∂z2

0.7 -0.4
Residual 0.3 0.8

Table 4: Results of the scale analysis at 8.5oN 030oW. Note the negative value in
the vertical diffusion on 27.3. Due to the low oxygen core above this isopycnal,
vertical diffusivity acts to decrease oxygen on the 27.3 at the test location.

To further probe the importance of these terms to OMZ formation and main-

tenance, a simple model was constructed to test the hypothesis that the vertical

gradient in oxygen between the core of the OMZ and below the core is due to

the vertical respiration profile. We used 0.25o × 0.25o grid spacing to cover the

OMZ area (taken as a box from 4oN - 25oN and 5oW - 45oW) and then shifted
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to zonal coordinates of distance from the coast of Africa. The model grid was

two-dimensional, except that it utilized climatological (WOA13) data from above

and below the study isopycnals to calculate the vertical gradients in oxygen. Two

model grids were created to represent the 27.1 and 27.3 isopycnals independent

from each other.

The eastern boundary was set to a no zonal flux condition to simulate the west

coast of Africa. Zonal and meridional flux was allowed along the northern, western,

and southern boundaries that were set to restore oxygen toward the climatological

value at an assigned timescale simulating the area outside of the OMZ that is well

ventilated due to dynamics not examined here. A 100km (deformation radius)

wide region along the eastern boundary was also restored to climatology using the

same timescale. In this region, the upwelling and coastal dynamics not examined

here serve to restore oxygen, keeping it from reducing to zero. We determined

this approach to be reasonable because our study was focused on the mixing in

the OMZ away from the coast with no observations in any of these dynamically

different boundary regions. For these boundary regions an extra term was added

to Equation 12:

dO

dt
=

1

τ
(Oclimatology −Omodel) (19)

The restoration time scale (τ) served to slowly resupply dissolved oxygen

along the boundary of the OMZ to the climatological mean (WOA 2013). For this

time scale, we experimented with several different values and found that the best

representation of the OMZ was obtained by using 1,000 days. We acknowledge that

the vertical term would also require a restoration to climatology as the vertical

diffusion would deplete oxygen in the layers above and below. At present, we

neglect this detail and simply hold the oxygen levels above and below the subject
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isopycnals constant at the climatological value as the vertical supply term provides

only about 10% of the total supply. Realistically representing the O2 depletion and

restoration of the oxygen on the adjacent layers would simply decrease this small

term further.

Using the same methods as the scale analysis, the respiration rates, lateral

gradients, and vertical gradients were calculated for each grid cell in the model

space. The vertical oxygen gradients were calculated with the depths in Equation

16 adjusted to the climatological depth of the isopycnal in each grid cell. The

respiration rate was held constant throughout time in each grid cell but with

the spatial distribution derived from Dunne et al. (2007) and the lateral oxygen

gradients were calculated for each model time step based on the previous time

step’s result. Similar to the scale analysis, we used Kz = 10−5 m2 s−1 and Kx and

Ky from Table 1 (1410 and 800 m2 s−1, respectively).

The dissolved oxygen concentration initial condition was set to 3 ml O2 l−1

everywhere and the model concentration reached equilibrium at approximately

30,000 days using a time-step of 5 days to maximize the length of runs and minimize

processing time. Figures 17 through 20 show the output of the model using the

same diffusivities on each isopycnal (Kx(Ky) = 1410(800) m2 s−1). Confirming

the scale analysis results, the meridional diffusion was the dominant supply term.

Figure 19 shows that the model at equilibrium visually matches the shape of the

climatology and Figure 20 shows the mean model O2 concentration to be only

0.15(0.04) ml l−1 less than the climatological concentrations on the 27.1(27.3) at

equilibrium.

We also explored the sensitivity of the model to several variations. To test

the impact of the spatial distribution of biological consumption, we ran the model

with the same anisotropic K values on each isopycnal but with a spatially uniform
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biological consumption term on each isopycnal (4.5(2.2) ×10−5 ml O2 l−1 day−1 on

27.1(27.3)) (i.e. the respiration rate at the central point used to construct the scale

analysis in Table 4 was applied to every grid cell). Even with no spatial variability

in respiration, the O2 concentration pattern was virtually identical to the original

(not shown). Therefore, only the restoring term, vertical diffusion term, and/or

the anisotropic isopycnal diffusivity create this spatial pattern.

To test the sensitivity to the anisotropy in the diffusivity, a run in which the

diffusivity was isotropic (Kx = Ky = 1250 m2 s−1) and the same on each isopycnal

with the original spatial distribution of biological consumption produced the most

accurate results. In this case, the mean model O2 concentration was found to be

0.03(0.02) ml l−1 less(more) than the climatology on the 27.1(27.3) at equilibrium.

Due to the imposed isotropy, we increased the meridional diffusivity, which causes

higher rates of meridional oxygen transport into the simulated OMZ from the

restoring region around the edges. With the restoring region set to climatology,

the greater meridional transport leads to a simulated concentration closer to what

is seen in nature.

Additionally, to test our hypothesis that the vertical distribution of biological

consumption sets the difference in oxygen content between the two isopycnals, the

model was run with the 27.3 biological consumption distribution set equal to that

on the 27.1. As would be expected from the higher imposed respiration on the 27.3

isopycnal, this change created an average O2 bias on the 27.3 isopycnal relative

to climatology, of 0.27 ml l−1 at equilibrium. More importantly, the difference in

O2 concentration on the two isopycnals was only 0.16 ml l−1 when respiration was

set to be equal, compared to a difference of 0.4 ml l−1 when the Martin curve

(Equation 18) was used to deduce the respiration rate. The average difference

between O2 concentrations on the two isopycnals in the WOA13 climatology is 0.3
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ml l−1, a vertical gradient that can only be simulated when using a respiration rate

that declines with depth.

Figure 17: Model output on 27.1 after 40,000 days and 1,000 day
restoration timescale. The top left pane shows the oxygen field at
equilibrium. The subsequent panes show the spatial contribution
of each term at equilibrium. Outside of the black box represents
the area in which the restoration term was applied. On each isopy-
cnal, Kx(Ky) = 1410(800) m2 s−1.

This model exercise demonstrated that by using a parameterized advective

time scale on the boundaries of the OMZ to help slowly replenish areas outside of

the OMZ where other dynamics exist, we can replicate the shape and intensity of

the ETNA OMZ on two isopycnals using only the lateral and vertical mixing terms

acting on the large-scale oxygen gradient. In our brief exploration of the various

parameters, the model was most impacted by an increased value for meridional

diffusivity, supporting the observed result that this is the dominant resupply term.

Further,we saw that changing the biological consumption term to match on the

two isopycnals made the oxygen concentrations on the two isopycnals much closer
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Figure 18: Model output on 27.3 after 40,000 days and 1,000 day
restoration timescale. The top left pane shows the oxygen field at
equilibrium. The subsequent panes show the spatial contribution
of each term at equilibrium. Outside of the black box represents
the area in which the restoration term was applied. On each isopy-
cnal, Kx(Ky) = 1410(800) m2 s−1.

than they are in nature.
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Figure 19: Model output on 27.1 and 27.3 (top) after 40,000 days
and 1,000 day restoration timescale compared to the WOA13 dis-
solved oxygen field interpolated to each isopycnal and shifted to
be referenced to distance from the coast.
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Figure 20: Mean Oxygen concentration (top) on both isopycnals
compared to mean climatology and the mean contribution from
the supply terms (bottom two panels) through time at equilibrium.
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CHAPTER 4

Conclusion

This study used precisely ballasted isopycnal RAFOS floats deployed at the

edges of the ETNA OMZ to quantify an isopycnal diffusivity coefficient by two

methods. Within the margin of error, the two methods correlated well and showed

virtually indistinguishable diffusivity values for the OMZ core isopycnal (σθ =

1027.1 kg m−3) and the 1027.3 kg m−3 isopycnal below the core. The relative

dispersion method showed strong anisotropy with diffusivity in the zonal direction

nearly twice as large as in the meridional (1400 m2 s−1 zonally compared to 800

m2 s−1 meridionally). The incorporation of chance pairs provided a diagnostic tool

to assess whether a sound source error might have skewed the results, and helped

us evaluate the maximum energy containing eddy scale for the system. Despite a

higher margin of error, the mean diffusivity value using chance pairs matched well

with that resulting from analysis of the original pairs only.

The results from the relative dispersion method were used to probe OMZ

formation and maintenance processes in a simple model. The model assumes the

advection terms within the OMZ to be negligible and simply restores O2 concentra-

tions to climatology in a box around the model region where advection is known to

play a role in transporting oxygen (upwelling and coastal currents, the subtropical

gyre, and the equatorial current bands). Within the OMZ, the sole oxygen supply

terms represented are zonal and meridional diffusion, with anisotropic diffusivity

values taken from the results of our float analysis, and vertical diffusion, with a

diffusivity value taken from a recent intentional tracer release study. This simple

representation faithfully simulates the shape and magnitude of O2 concentrations

in the OMZ, as well as the difference in O2 levels between the two isopycnals. The
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model exercise supports the observed result that the dominant supply term for

the oxygen budget in the OMZ is meridional mixing, despite a smaller diffusivity

in the meridional than zonal direction. Since the diffusivity coefficients were es-

sentially the same at both the oxygen minimum (27.1) isopycnal and beneath it

(27.3 isopycnal) within our quantification of error, our model results support that

it is the vertical profile of biological oxygen consumption that sets the difference

between the two isopycnals. Further work could look at adjusting the boundary

conditions and restoration term in the model to probe this assertion in more detail.

Oxygen minimum zones are areas of great biogeochemical importance that

could have major impacts on the availability of nitrogen and oceanic sequestra-

tion of carbon in a warming climate. Understanding the processes that form and

maintain them is crucial to effectively predicting how they may change and what

those changes may mean. Our study has provided the first truly Lagrangian study

of isopycnal diffusivity in the ETNA OMZ region and found diffusivities that were

highly anisotropic and higher than other estimates.
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Supplemental Figures
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Figure A.1: Mean zonal velocity field (m s−1) on the 27.1 isopycnal calculated from
float positions in 0.25o with a 25 float record per bin threshold applied. Note the
zonal signature of an anti-cyclonic circulation.
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Figure A.2: Mean meridional velocity field (m s−1) on the 27.1 isopycnal calculated
from float positions in 0.25o with a 25 float record per bin threshold applied.
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Figure A.3: Mean zonal velocity field (m s−1) on the 27.3 isopycnal calculated from
float positions in 0.25o with a 25 float record per bin threshold applied.
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Figure A.4: Mean meridional velocity field (m s−1) on the 27.3 isopycnal calculated
from float positions in 0.25o with a 25 float record per bin threshold applied.
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Effective Diffusivity (m2 s−1)
Pairs K Kx Ky

Original Only
27.1 145 1254 1410 800

± 518 ± 493 ± 313
Length Scale (km) 90 80 40

27.3 119 1484 1297 570
± 980 ± 630 ±364

Length Scale (km) 100 75 40
Chance Only 10km 5 days 10 day start

27.1 115 1198 1418 357
± 1154 ± 1000 ± 563

Length Scale (km) 100 80 50
27.3 92 1417 1305 300

± 1271 ± 1277 ±250
Length Scale (km) 100 80 40
Chance + Orig 10km 5 days

27.1 296 1654 1747 541
±624 ± 619 ± 376

Length Scale (km) 100 100 70
27.3 211 1652 1479 646

±768 ±855 ±884
Length scale (km) 100 100 70

Chance Only 10km 3 days 10 day start
27.1 161 1161 1463 481

± 909 ± 968 ± 528
Length Scale (km) 100 100 55

27.3 123 1393 1365 154
± 1022 ± 888 ±905

Length scale 100 90 35
Chance Only 10km 10 days 10 day start

27.1 69 1067 1256 97
± 1571 ± 1401 ± 850

Length Scale (km) 100 97 70
27.3 68 1214 1272 526

± 1632 ± 1428 ± 488
Length Scale (km) 96 98 52

Chance Only 25km 5 days 10 day start
27.1 147 2004 2076 723

±1097 ±1319 ± 459
Length Scale (km) 116 107 50

27.3 157 1328 1477 648
± 1414 ± 1278 ± 478

Length Scale (km) 140 99 55
Chance Only 5km 5 days 10 day start

27.1 99 1094 1058 645
± 1111 ± 1170 ± 1520

Length Scale (km) 101 98 53
27.3 68 1158 1013 337

±1783 ± 1159 ± 843
Length Scale (km) 101 87 61

Table A.1: Results of the diffusivity calculations from relative dispersion in m2 s−1.
The number of pairings on each isopycnal using each set of parameters is listed in
the second column. The ”chance pair only” calculations considered only new pairs
starting after the 10th mission day to exclude original pairs. The thresholds used
to identify chance pairings are identified in the heading rows. The ± rows are from
the 90% confidence limit. The length scale rows identify the decorrelation length
scale (km) used for each estimation.
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Figure A.5: Float Pairing diagnostics for original pairs only.
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Figure A.6: Float Pairing diagnostics for chance pairs only. The chance pairings
here were identified using a 10km and 5day threshold.
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Figure A.7: Float Pairing diagnostics for a combination of chance and original
pairs. The chance pairings here were identified using a 10km and 5day threshold.
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