
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2018

Implementation of Self-Organizing Maps with Python Implementation of Self-Organizing Maps with Python

Li Yuan
University of Rhode Island, li_yuan@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Yuan, Li, "Implementation of Self-Organizing Maps with Python" (2018). Open Access Master's Theses.
Paper 1244.
https://digitalcommons.uri.edu/theses/1244

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1244&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1244?utm_source=digitalcommons.uri.edu%2Ftheses%2F1244&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

IMPLEMENTATION OF SELF-ORGANIZING MAPS

WITH PYTHON

BY

LI YUAN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2018

MASTER OF SCIENCE THESIS

OF

LI YUAN

APPROVED:

Thesis Committee:

Major Professor Lutz Hamel

 Natallia Katenka

 Austin Humphries

 Nasser H. Zawia

 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2018

ABSTRACT

As a member of Artificial Neural Networks, Self-Organizing Maps (SOMs) have

been well researched since 1980s, and have been implemented in C, Fortran, R [1] and

Python [2]. Python is an efficient high-level language widely used in the machine

learning field for years, but most of the SOM-related packages which are written in

Python only perform model construction and visualization. However, the POPSOM

package, written in R, is capable of performing functionality beyond model construc-

tion and visualization, such as evaluating the model’s quality with statistical methods

and plotting marginal probability distributions of the neurons. In order to give the Py-

thon user the POPSOM package’s advantages, it is important to migrate the POPSOM

package to be Python-based. This study shows the details of this implementation.

There are three major tasks for the implementation: 1) Migrate the POPSOM

package from R to Python; 2) Refactor the source code from procedural programming

paradigm to object-oriented programming paradigm; 3) Improve the package by add-

ing normalization options to the model construction function. In addition to construct-

ing the model in Python, Fortran is also embedded to accelerate the speed of model

construction significantly in this project.

The final program has been completed, and it is necessary to guarantee the cor-

rectness of the program. The best way to achieve this goal is to compare the output of

the Python-based program to the output generated by the R-based program. For the

model construction function, the SOM algorithm initializes the weight vector of the

neurons randomly at the very beginning, and then selects the input vectors randomly

during the training. Due to these two random factors, one cannot expect the same input

(data set) will result in exactly the same output (neurons). Instead, to give evidence

that the Python program is working properly, there are two solutions that have been

proposed and applied in this project: 1) measuring the average difference of vectors

between two neurons which have been generated by the R and Python functions re-

spectively; 2) measuring the ratio of the variances and the difference of features’ mean

for the two neurons. Besides the model construction, model visualization and other

functions which take neurons as their input should return the same results by feeding

the same input (neurons). The detail of above verification will be represented in the

following chapters.

iv

ACKNOWLEDGMENTS

I would like to acknowledge many individuals for helping me during my master’s

study at University of Rhode Island. Particularly, I would like to express my sincere

gratitude to my advisor Dr. Lutz Hamel to provide the opportunity, knowledge and

support that enabled this study. I would also like to thank him for his continuous sup-

port, patience and guidance throughout the past two years.

I would also like to thank my committee members Dr. Natallia Katenka, Dr. Aus-

tin Humphries and Dr. Orlando Merino for generously offering their time, suggestions

and goodwill throughout the preparation and review of this document.

Thanks to Lorraine Berube, secretary of the Computer Science and Statistics de-

partment, for her never-ending encouragement and helpfulness.

A special thanks to my family – my wife Jieying, and my daughter Helena – for

their love and support. I would also like to thank my parents and parents-in-law for

their love and prayers.

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES .. ix

LIST OF FIGURES ... x

CHAPTER 1 ... 1

Introduction .. 1

CHAPTER 2 ... 7

Literature Review... 7

2.1 Self-Organizing Maps .. 7

2.2 Evaluation of the Quality of the Map ... 9

2.3 R-based POPSOM Package ... 11

2.4 Other Python-based SOMs packages ... 14

CHAPTER 3 ... 17

Methodology ... 17

3.1 Migration of POPSOM Package from R to Python ... 17

3.1.1 Naming Rules .. 17

3.1.2 Mathematical and Statistical Functions ... 18

3.1.3 Data Manipulation Functions .. 19

3.2 Rewriting Functions ... 19

3.2.1 Variety of T-test .. 20

vi

3.2.2 F-test .. 20

3.2.3 Kernel Smoother for Irregular 2-D Data ... 20

3.3 Programming Paradigm Refactoring.. 21

3.4 Normalization ... 22

3.5 Embed Fortran for Training ... 23

3.6 Speed Comparison between Python and Fortran ... 25

CHAPTER 4 ... 29

Results ... 29

4.1 Experiment Design ... 29

4.1.1 Data Set Selection ... 29

4.2 Iris Experiment Results .. 33

4.2.1 Initialize the Model (instantiate the Model) .. 33

4.2.2 Fit the data ... 34

4.2.3 Report the Significance of Each Feature ... 35

4.2.4 Report the map convergence index ... 36

4.2.5 Report the Map Embedding Accuracy .. 37

4.2.6 Report the Estimated Topographic Accuracy.. 38

4.2.7 Starburst Visualization of the Model ... 40

4.2.8 Visualization of the Marginal Probability Distribution of the Feature 42

4.2.9 Projection ... 44

4.2.10 Neuron ... 44

vii

4.3 Wheat Seed Experiment Results .. 45

4.3.1 Initialize the Model (instantiate the Model) .. 45

4.3.2 Fit the data ... 45

4.3.3 Report the Significance of Each Feature ... 46

4.3.4 Report the map convergence index ... 46

4.3.5 Report the Map Embedding Accuracy .. 47

4.3.6 Report the Estimated Topographic Accuracy.. 48

4.3.7 Starburst visualization of the model .. 49

4.3.8 Visualization of the Marginal Probability Distribution of the Feature 50

4.3.9 Projection ... 52

4.3.10 Neuron ... 52

4.4 Evaluating the Correctness of Python-based Package. .. 52

4.4.1 Evaluating the Model Training Function .. 53

4.4.2 Evaluating the Starburst Representation of the SOM Model 56

4.4.3 Evaluating the Density Plot Function. ... 57

CHAPTER 5 ... 60

Conclusion ... 60

5.1 Conclusions .. 60

5.2 Future Works .. 61

5.2.1 Submit the Python-based Package to Public Repository 61

5.2.2 Using animation to simulate the formation of the model. 61

viii

APPENDICES .. 62

Source Code (popsom.py) .. 62

LIST OF REFERENCE .. 103

BIBLIOGRAPHY .. 106

ix

LIST OF TABLES

TABLE PAGE

Table 1. The structure of the “map” object. ... 12

Table 2. Description of functions in the R-based POPSOM package.......................... 14

Table 3. Top 10 most popular (most “Star”) Python-based Self-Organizing Maps 14

Table 4. Three reserved words in R and Python. ... 18

Table 5. Examples of mathematical and statistical functions in R and Python. 19

Table 6. Examples of data manipulation functions in R and Python. 19

Table 7. Configurations for installing MinGW-64 on Windows 10. 24

Table 8. Speed comparison of Python versus Fortran (as the number of iterations..... 26

Table 9. Speed comparison of Python versus Fortran (as the number of iterations..... 27

Table 10. The processing time (in seconds) for training Iris Flower data and Wheat . 28

Table 11. Description of “__init__” function’s arguments. ... 33

Table 12. Description of convergence function’s arguments....................................... 36

Table 13. Description of embed function’s arguments. ... 38

Table 14. Description of topo function’s arguments. ... 39

Table 15. Description of starburst function’s arguments. .. 40

Table 16. The ratio of the variance between two neurons ... 55

Table 17. The difference of means between two neurons .. 55

x

LIST OF FIGURES

FIGURE PAGE

Figure 1. The significance of Iris dataset's individual features with respect to the self . 3

Figure 2. The starburst representation of the Self-Organizing Maps Model for Iris 4

Figure 3. Density plots showing the marginal probability distributions of Iris data set’s

 .. 4

Figure 4. Neighborhoods (Nc) for a rectangular matrix of cluster units: Nc = 0 in black

 .. 8

Figure 5. Comparison of the source code appearance of a procedural programming .. 21

Figure 6 The significance levels of the Iris dataset features. Left figure plots the 22

Figure 7. Source Code of “build.py” program ... 25

Figure 8. Speed comparison of Python versus Fortran (as the number of iterations ... 26

Figure 9. Speed comparison of Python versus Fortran (as the number of iterations ... 27

Figure 10. Accessing the Iris data set in R ... 30

Figure 11. Accessing and representing the Iris data set as a data frame in Python. 31

Figure 12. Accessing the Wheat Seed data set in R ... 32

Figure 13. Accessing and representing the Wheat Seed data set as a data frame in 33

Figure 14. Example of initializing the model in Python. ... 34

Figure 15. Example of fitting the Iris data and labels to the SOM model. 35

Figure 16. Reporting the significance of each feature by vector for the Iris data. 35

Figure 17. Graphically reporting the significance of each feature for the Iris data. 35

Figure 18. Reporting the convergence index of the map with default arguments. 36

xi

Figure 19. Reporting the convergence index of the map by selecting 100 samples 37

Figure 20. Reporting the map embedding accuracy and the estimated........................ 37

Figure 21. Reporting the convergence index of the map with the ks-test approach 37

Figure 22. Reporting the map embedding accuracy using the variance and mean...... 38

Figure 23. Reporting the map embedding accuracy using ks-test. 38

Figure 24. Reporting the estimated topographic accuracy with the default 39

Figure 25. Reporting the estimated topographic accuracy with k=100. 39

Figure 26. Reporting a vector of individual feature accuracies. 39

Figure 27. Reporting the estimated topographic accuracy without computing the...... 40

Figure 28. Starburst representation of the SOM model with default argument values. ..

Connected component lines represent that all nodes are connected to the 41

Figure 29. Starburst representation of the SOM model. Connected component lines . 42

Figure 30. Reporting the marginal probability distribution of the first........................ 43

Figure 31. Marginal probability distributions of each attribute of the Iris data. 43

Figure 32. Reporting the coordinate of each observation on the map. 44

Figure 33. Reporting the content of the observation by given coordinates. 44

Figure 34. Example of initializing the model in Python. ... 45

Figure 35. Fitting the Wheat Seed data and labels to the model. 45

Figure 36. Reporting the significance of each feature by vector for the Wheat 46

Figure 37. Graphically reporting the significance of each feature for the Wheat Seed 46

Figure 38. Reporting the convergence index of the map with arguments equal to 46

Figure 39. Reporting the convergence index of the map by selecting 100 samples 47

Figure 40. Reporting the map embedding accuracy and estimated topographic 47

xii

Figure 41. Reporting the convergence index of the map with the ks-test approach 47

Figure 42. Reporting the map embedding accuracy using the variance and mean...... 47

Figure 43. Reporting the map embedding accuracy using the ks-test. 47

Figure 44. Reporting the estimated topographic accuracy with arguments equal 48

Figure 45. Reporting the estimated topographic accuracy with k=100. 48

Figure 46. Reporting a vector of individual feature accuracies. 48

Figure 47. Reporting the estimated topographic accuracy without computing the...... 48

Figure 48. Starburst representation of the SOM model with arguments equal to default

 .. 49

Figure 49. Starburst representation of the SOM model. Connected component lines . 50

Figure 50. Reporting the marginal probability distribution of the second 50

Figure 51. Marginal probability distribution of each attribute of the Wheat Seed 51

Figure 52. Reporting the location of each observation on the map. 52

Figure 53. Reporting the content of the observation by given coordinates. 52

Figure 54. The average difference of vectors between two neurons. 54

Figure 55. Starburst Representation of the SOM model in R. 56

Figure 56. Starburst Representation of the SOM model in Python.............................. 57

Figure 57. Plots of the marginal probability distribution of each feature of the Iris data

 .. 58

1

CHAPTER 1

Introduction

Dimensionality reduction has been an important topic within the data analysis

community for some time. Several solutions have been proposed by researchers, one

of which is Principal Component Analysis (PCA), a statistical procedure based on or-

thogonal transformation. It has been used as a tool in exploratory data analysis and the

creation of predictive models. In the 1980s, another approach for dimensionality re-

duction was proposed by T. Kohonen [3] known as Self-Organizing Maps (SOMs), a

type of neural network for the visualization of high-dimensional data. Typically, the

SOM graphic represents [4] the high-dimensional input data with a 2-D grid map. This

type of map preserves the topology and neighborhood relationship of the input space

[5]. Additionally, indicated by [3], the convergence of the model is guaranteed after a

certain amount of iterations.

The SOM algorithm has been implemented by C, R, Fortran and Python [6]-[8].

To date, there are more than 100 packages available on the GitHub community. Alt-

hough the number of packages is sufficient and continually increasing, the functionali-

ties that are provided by these packages are quite similar. Most of these packages only

focus on model construction and model visualization. Few of them touch on the aspect

of evaluating the model’s quality. POPSOM, an R package [8] developed and main-

tained by Dr. Lutz Hamel and his former students, not only provides the model con-

struction and model visualization as other packages, but also provides a set of func-

2

tions for evaluating the model’s quality and visualizing the marginal probability distri-

bution of each feature. The purpose of this project is to migrate the POPSOM package

from R to Python so that researchers in the Python community may utilize it in their

research.

A Self-Organizing Map (SOM) is a specific type of Artificial Neural Network

whose purpose is to reduce the dimension of the input space. The resulting map is a

graphical representation easily interpreted by the end user [4]. From a practical point

of view, the SOM’s program package should include at least the following three main

functions: 1) model construction, 2) model evaluation, and 3) model visualization.

As the most important part of the SOM, the model construction algorithm has

been proposed by [3]. The basic idea of this algorithm is described in the following

two major steps:

1) Initiate the weight vector (or neuron) randomly.

2) Update the weight vector using the following formula with a certain number

of iterations.

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + ℎ𝑐𝑖[(𝑥(𝑡) − 𝑚𝑖(𝑡)] (1)

hci(t): neighborhood function, when t → 0, hci(t) → 0

 ℎ𝑐𝑖(𝑡) = {
 𝛼(𝑡), 𝑖 ∈ 𝑁𝑐
0, 𝑖 ∈ 𝑁𝑐

 (2)

 Nc: neighborhood set

 𝛼(𝑡): learning-rate factor which can be linear, exponential or inversely

 proportional.

3

Secondly, the model evaluation function is designed to help users determine the

appropriateness of the model after each training. Many quality measures have been

proposed to evaluate the quality of the resulting map [4]. Most of them either focus on

one aspect of a SOM or on the computational expense [9]. In 2017, Dr. Lutz Hamel

proposed an efficient statistical approach [9] to measure both the map embedding ac-

curacy (or convergence) and the estimated topographic accuracy of the model. This

approach has been since implemented in the R-based POPSOM package [8].

Most of packages available on GitHub only represent the resulting maps as heat

maps, while the R-based POPSOM package provides users with three kinds of graph-

ical reports: 1) the significance of each feature with respect to the self-organizing map

model (Figure 1), 2) the starburst representation of the SOM model (Figure 2), and 3)

the marginal probability distribution of the neurons and data (Figure 3).

Figure 1. The significance of Iris dataset's individual features with respect to the self

 organizing map model.

4

Figure 2. The starburst representation of the Self-Organizing Maps Model for Iris

 dataset. The centers of the starbursts are the centers of the clusters.

Figure 3. Density plots showing the marginal probability distributions of Iris data set’s

 dimensions overlaid with the neuron density for each dimension respectively.

5

As a kind of pre-processing method, standard normalization is not necessary for

the model training, but it may improve the map embedding accuracy [3] within the

SOM algorithm.

The R-based POPSOM package has been developed and maintained since 2013.

The latest version is 4.2, updated last on May, 31st 2017 [8]. R users are able to ex-

plore their data in a more detailed fashion using various aspects of the POPSOM

package. Unfortunately, Python users are currently limited to model construction and

visualization without the benefit of evaluating the model quality in regard to precise

convergence characteristics. To benefit the researchers within the Python community,

this project’s purpose is to migrate the POPSOM package from R to Python.

Both R and Python are widely used in data analysis, and they have a few func-

tions that share similar features. For this project, to successfully migrate the package

from R to Python, three features need to be migrated: 1) naming rules, 2) mathemati-

cal and statistical functions and 3) data manipulation functions. Most of the functions

in R already have counterparts in Python, but there are still some functions that are

only available in R, such as t.test (produces a variety of t-tests), var.test (performs an

F-test to compare the variances of two samples) and smooth_2d (performs kernel

smoother for irregular 2-D data). To migrate these functions, they must be rewritten in

Python from scratch.

Migrating all of the functionalities in the package from R to Python has been the

basic goal of this project. Besides preserving all the functionalities of the R-based

package, the following improvements have also been made: 1) refactoring the proce-

dural programming paradigm to object-oriented programming paradigm, 2) addition of

6

normalization as an optional argument for model initialization (or instantiation), and 3)

Fortran embeddedness as another option for model training.

Finally, the Fisher/Anderson Iris data set [10] and Wheat Seed data set [11] from

the UCI machine learning repository were utilized to evaluate the correctness of the

Python-based package. The reasoning stands that if the same input data is imputed into

both the R-based and Python-based packages and if the Python-based package is

working correctly, then both packages will return the same outcome. Since the SOM

algorithm initializes the weight vector randomly [3] at the beginning of model training

and selects the vector randomly during the training, even the same input data set will

return a different outcome (neurons) for a different training by one package. Thus, it is

not feasible to evaluate the correctness of the Python program by measuring the differ-

ence in the two neurons directly. In order to achieve this goal, two statistical meas-

urements have been proposed and applied in this project. 1) When measuring the aver-

age difference of vectors between the two neurons, the result should be closed to 0 at

the end of the training if the two neurons are drawn from the same input data space. 2)

The ratio of the variances and the difference of features’ means for both neurons are

evaluated. The ratio of the variances should be approximately equal to 1 and the dif-

ference of features’ means should be close to 0. Each of these respective values

should fall within the chosen computed confidence interval as appropriate if the two

neurons are drawn from the same input data space. Besides the model construction,

model visualization and other functions which take neurons as their input should re-

turn the same results as well by feeding the same neurons.

7

CHAPTER 2

Literature Review

2.1 Self-Organizing Maps

Since the dawn of the data era, more and more efficient data analysis technologies

have been researched, proposed and applied at a very fast pace, especially tools for

statistical analysis for high-dimensional data (data with multiple features). Self-

Organizing Maps (SOMs) proposed by [3] are considered effective tools for the visu-

alization of high-dimensional data [3]. The SOM algorithm is used to compress the

information to produce a similarity graph while preserving the topologic relationship

of the input data space. The convergence of the SOM has been previously discussed

and guaranteed [3].

The basic SOM model construction algorithm can be interpreted as follows:

1) Create and initialize a matrix (weight vector) randomly to hold the neurons. If

the matrix can be initialized with order and roughly compiles with the input density

function, the map will converge quickly [3];

2) Read the input data space. For each observation (instance), use the optimum

fit approach, which is based on the Euclidean distance

c = 𝑎𝑟𝑔min
𝑖

|| x – 𝑚𝑖 || (3)

to find the neuron which best matches this observation. Let x denote the training vec-

tor from the observation and 𝑚𝑖 denote a single neuron in the matrix. Update that neu-

ron to resemble that observation using the following equation:

8

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + ℎ𝑐𝑖(𝑡)[𝑥(𝑡) − 𝑚𝑖(𝑡)] (4)

𝑚𝑖(𝑡): the weight vector before the neuron is updated.

𝑚𝑖(𝑡 + 1): the weight vector after the neuron is updated.

𝑥(𝑡): the training vector from the observation.

ℎ𝑐𝑖(𝑡): the neighborhood function (a smoothing kernel defined over the lattice

 points), defined though the following equation:

 ℎ𝑐𝑖(𝑡) = {
 𝛼(𝑡), 𝑖 ∈ 𝑁𝑐

0, 𝑖 ∈ 𝑁𝑐
 (5)

𝑁𝑐: the neighborhood set, which decreases with time.

𝛼(𝑡): the learning-rate factor which can be linear, exponential or inversely

 proportional. It is a monotonically decreasing function of time (t).

 3) Update the immediate neighborhood of that neuron accordingly (Figure 4).

Figure 4. Neighborhoods (Nc) for a rectangular matrix of cluster units: Nc = 0 in black

 brackets, Nc = 1 in red, and Nc = 2 in blue.

As proposed by Cheng [12], after running this algorithm with a sufficient number

of iterations, the map will ultimately converge. However, it is difficult for users to de-

9

termine how many iterations are sufficient. Another practice measure is evaluating the

map’s quality, which can help users determine the optimal number of iterations.

2.2 Evaluation of the Quality of the Map

It is necessary to ensure that the model obtained from training is already well-

converged and reliable. In other words, the quality of the SOMs need to be measured

first before any further operation, such as visualization, is employed. Recently, many

different quality measures of SOMs have been proposed and argued [13], [14]. How-

ever, most of them either measure only one aspect of a SOM or are computationally

expensive. Some include both of these drawbacks [9]. Based on map embedding accu-

racy and estimated topographic accuracy, Dr. Hamel proposed a population-based [15]

computationally efficient statistical approach [9] to evaluate the quality of a SOM

model. This approach is based on two populations (one from the training data set and

the other from the neuron of the map) and evaluates the quality of a SOM by the

measure (or magnitude) of the convergence index, which is the linear combination of

the map embedding accuracy (convergence) and the estimated topographic accuracy.

The map embedding accuracy, derived from the theory proposed by Yin and Alli-

son [12], is limited in that the neurons of a SOM will converge on the probability dis-

tribution of the training data [12].

𝑒𝑎 =
1

𝑑
∑ 𝜌𝑖

𝑑

𝑖=1

where

𝜌𝑖 = {
1 if feature i is embeded,
0 otherwise,

10

The computational complexity of the embedding accuracy is

𝑂((𝑛 + 𝑚) × 𝑑)

where n is the number of observations in the training data, m is the number of neurons,

and d is the number of features in the training data. Without any exponential function,

the above equation indicates this computation is efficient in most cases (where 𝑑 ≪

𝑛, 𝑎𝑛𝑑 𝑑 ≪ 𝑚). Although the embedding accuracy measures the same thing as quan-

tization error, it confers the advantage of indicating when statistically there is no dif-

ference between two populations (training data and neurons).

Topographic error [9] can be defined as:

𝑡𝑒 =
1

𝑛
∑ 𝑒𝑟𝑟(𝑥𝑖)

𝑛

𝑖=0

Where

𝑒𝑟𝑟(𝑥𝑖) = {
1 if 𝑏𝑚𝑢(𝑥𝑖) and 2𝑏𝑚𝑢(𝑥𝑖) are not neighbors.

 0 otherwise,

where n is the number of observations in the training data, 𝑥𝑖 is the ith observation in

the training data, and 𝑏𝑚𝑢(𝑥𝑖) and 2𝑏𝑚𝑢(𝑥𝑖) (bmu stands for the best matching unit)

represent the best-matching and second best-matching unit for the training vector 𝑥𝑖.

Accordingly, the topographic accuracy could be defined as:

𝑡𝑎 = 1 − 𝑡𝑒

Computing the topographic accuracy is a time-consuming task, especially for a large

data set. To make this computation more efficient and practical, Dr. Hamel proposed

utilizing a sample of the training data, a smaller subset of all the training data, to esti-

mate the topographic error.

11

𝑡𝑒′ =
1

𝑠
∑ 𝑒𝑟𝑟(𝑥𝑖)

𝑠

𝑖=0

The estimated topographic accuracy [9] is defined as follows:

𝑡𝑎′ = 1 − 𝑡𝑒′

The values of the map embedding accuracy and estimated topographic accuracy are

numbers between 0 and 1. If the value is equal to 1, then one can interpret that the map

has converged well or is fully organized. Dr. Hamel proposed to use the convergence

index as defined by:

𝑐𝑖𝑥 =
1

2
 𝑒𝑎 +

1

2
 𝑡𝑎′

which is a linear combination of the map embedding accuracy and estimated topo-

graphic accuracy to evaluate the quality of a SOM model. This approach has been im-

plemented in the R-based POPSOM package [8].

2.3 R-based POPSOM Package

The R-based POPSOM package [8] has been developed and maintained by Dr.

Hamel and his former students since 2013. The latest version of this package is 4.2

updated most recently on 5/31/2017. This package involves model construction, model

evaluation and model visualization. Logically, these three functions should be execut-

ed sequentially.

map.build is the entrance of the POPSOM package. The input of this function is

the training data (or input space) in the form of a dataframe [16]. Each row of the

training data is an unlabeled training observation (or instance), and each column pre-

12

sents a feature of the observation. After a round of training, this function will generate

an object called “map” with the following structure:

Table 1. The structure of the “map” object.

Both neurons and visual fields are outcomes of the model training (map.build

function), and the rest of the arguments are input parameters of this function. All of

the input parameters are free to be adjusted within a reasonable scale by the end users.

map.convergence is the function utilized for evaluating the quality of a SOM

model. The outcome of this function is the linear combination of map embedding ac-

curacy and estimated topographic accuracy, or two convergence components separate-

ly. The input of this function is the “map” object that is generated by map.build. There

are two measurement options for evaluating the map embedding accuracy in this ap-

Name Description

Data Input data space, in form of a dataframe

labels Label for each observation of input data.

xdim Dimension of the map. (default = 10)

ydim Dimension of the map. (default = 5)

alpha Learning rate, a positive real number. (default =0.3)

Train Number of training iteration. (default = 1000)

algorithm Selection of training engine. (default = “vsom”)

neurons Neuron of the map, the outcome of training.

visual The list of best match neuron for each observation.

13

proach. One is ks-test (Kolmogorov-Smirnov convergence test) and the other is a

combination of the variance and mean test.

map.starburst is used to compute and display the starburst representation of the

SOM model. The heat map and the connected component lines generated by this func-

tion help the end user visualize the clusters in the map and the relationships between

grids.

map.significance computes the relative significance of each feature with respect

to the SOM model and graphically reports it. The purpose of developing this function

is to help the end user in making the decision as to whether or not it is necessary to

normalize the original input data space before training.

map.marginal plots one single dimension’s marginal probability distribution of

the map’s neurons and the input data space. That is another aspect of the convergence

of two populations.

The remaining functions within the POPSOM package are follows:

Name Description

map.embed Evaluates how well the map models the underlying training data

distribution.

map.embed.ks Reports the embedding accuracy using Kolmogorov-Smirnov

convergence test.

map.embed.vm Reports the embedding accuracy using the variance and mean

tests.

map.topo Reports the estimated topographic accuracy.

map.projection Generates a table with the association of the labels with map co-

14

Table 2. Description of functions in the R-based POPSOM package.

2.4 Other Python-based SOMs packages

As of the writing this paper, there are 113 Python-based self-organizing map re-

lated repositories available on GitHub.

Rank Repository Name Star Folk

1 JustGlowing/minisom 129 43

2 spiglerg/Kohonen_SOM_Tensorflow 32 11

3 mpatacchiola/pyERA 22 12

4 erogol/RSOM 21 4

5 hamilton/SelfOrganizingMaps 20 1

6 stephantul/somber 17 4

7 ramarlina/som 14 8

8 jlauron/Kohonen 13 15

9 PragmaticLab/spark-som 7 1

10 jgabriellima/self_organization_map 5 0

Table 3. Top 10 most popular (most “Star”) Python-based Self-Organizing Maps

 repositories on GitHub (as of 01/22/2018).

The top 6 packages with the highest Star value have been selected (“Star” indi-

cates how many people keep track of this repository and reflects the popularity of the

repository) for benchmark analysis.

1) minisom:

URL: https://github.com/JustGlowing/minisom

ordinates.

map.neuron Returns the contents of a neuron at (x,y) on the map as a vector.

map.normalize Normalizes the input data space.

https://github.com/JustGlowing/minisom

15

Pros: implements both stochastic training and batch training.

 Provides multiple map visualization options for the users.

2) Kohonen_SOM_Tensorflow:

URL:

https://github.com/spiglerg/Kohonen_SOM_Tensorflow/blob/master/som.py

Pros: exploits TensorFlow [17] (a package released by Google) for model

training.

3) pyERA

URL: https://github.com/mpatacchiola/pyERA

Pros: Provides an example of a SOM in which the model been applied in the

real world.

4) RSOM

URL: https://github.com/erogol/RSOM

Pros: Implements an extension version of SOM.

5) SelfOrganizingMaps

URL: https://github.com/hamilton/SelfOrganizingMaps

Pros: Provides 3-D visualization of the SOM model.

6) somber

https://github.com/spiglerg/Kohonen_SOM_Tensorflow/blob/master/som.py
https://github.com/mpatacchiola/pyERA
https://github.com/erogol/RSOM
https://github.com/hamilton/SelfOrganizingMaps

16

URL: https://github.com/stephantul/somber

Pros: Evaluates the quality of a SOM model using topographic accuracy.

Beyond the above listed packages, the others available are either not up to date or

not popular within the user community or both. All 6 of the aforementioned most pop-

ular packages analyzed provide model construction and visualization. The “somber”

package is the only package that has a function to measure the quality of the SOM

model using topographic accuracy. However, the approach is very time consuming [9].

None of the packages include map embedding accuracy. It should be mentioned that

all of the source codes of these packages are organized in an object-oriented pro-

gramming paradigm.

https://github.com/stephantul/somber

17

CHAPTER 3

Methodology

3.1 Migration of POPSOM Package from R to Python

Migrating the source code of the POPSOM package from R to Python is the first

step in implementing the SOM in Python. The goal of migration is to preserve all the

functionalities during the entire process. There are three kinds of objects that need to

be taken into account: 1) naming rules, 2) mathematical and statistical functions, and

3) data manipulation functions.

3.1.1 Naming Rules

In R, period separated (.) is allowed as a part of a variable’s or function’s name

which is unique to the R language. For Python, the period separated within the names

of variables or functions needs to be changed into another acceptable sign such as un-

derscore (_).

Both the left arrow sign (←) and the equals sign (=) are acceptable assignment

operators in R. The left arrow sign, which is not an acceptable assignment operator in

Python, has been applied widely within the R-based POPSOM package. Thus, each of

these left arrow signs be substituted by the equals sign in Python.

Finally, both R and Python are case sensitive languages. Generally, the reserved

words in Python [2] are in lower case except “True”, “False”, and “None”, which are

18

capitalized with their first letter. All letters of these three reserved words are upper

case in R [16].

R Python

NULL None

TRUE True

FALSE False

Table 4. Three reserved words in R and Python.

3.1.2 Mathematical and Statistical Functions

Beyond the basic arithmetic operations addition (+), subtraction (-), multiplication

(×), and division (÷), other mathematical and statistical operators in R and Python are

coded differently. In R, most of the mathematical and statistical operators use either

built-in functions [18] or a combination of operators (which start and end with the per-

centage sign (%)). In Python, most of these functions are supported by a third-party

library such as math library or numpy library or both.

Function R Python

Matrix Multiplication %*% numpy.dot(x,y)

Outer product %o% numpy.outer(x,y)

Modulo %% %

Integer Division %/% //

Log log(x) math.log(x[,base])

Sum sum(x) math.fsum(x)

Square Root sqrt(x) math.sqrt(x)

19

Mean mean(x) numpy.mean(x)

Median median(x) numpy.median(x)

Ceiling ceil(x) numpy.ceil(x)

Table 5. Examples of mathematical and statistical functions in R and Python.

3.1.3 Data Manipulation Functions

Both R and Python provide powerful data manipulation functions for data analy-

sis and research. R uses built-in functions to manipulate data, where as Python is pow-

ered by third-party libraries (e.g. numpy).

Functions R Python

Sorting Data sort(x) numpy.sort(x)

Ranked Position order(x) numpy.argsort(x)

Means of Column colMeans(x) numpy.true_divide(x)

Replicate Elements rep(x,n) numpy.linspace(x,x,n)

Table 6. Examples of data manipulation functions in R and Python.

3.2 Rewriting Functions

Although most of the mathematical and statistical functions in the R-based POP-

SOM package have counterparts in Python or third-party Python libraries, there are

three specific statistical functions in the R-based POPSOM package that are not avail-

able in any Python built-in or third-party libraries. Hence, these functions needed to be

constructed in Python from scratch.

20

3.2.1 Variety of T-test

“t.test” [19], which performs a variety of t-tests, has been applied in the R-based

POPSOM package to test the difference between the means of two data sets. One of

the data sets comes from an input data sample, while the other one comes from the

map. In Python, t-tests are implemented by utilizing the mean function (returns arith-

metic mean along specific axis) from the numpy [20] library and DescrStatsW (returns

descriptive statistics and tests with weights) and CompareMeans (returns a class for

two sample comparison) from the statemodels [21] library. The source code of this

function is presented in the appendix.

3.2.2 F-test

“var.test” [22] performs an F-test to test the ratio of variances of two data sets

from an input data space and the map respectively in R. An F-test is implemented in

Python with the help of the variance function (returns the sample variance of data)

from the statistics library [23] and ppf (percent point function) from the scipy [24] li-

brary.

3.2.3 Kernel Smoother for Irregular 2-D Data

“smooth.2d” [25] is utilized to approximate the Nadaraya-Watson kernel smooth-

er for irregular 2-D data. This function is implemented in Python by utilizing the ecu-

lidean_distances function from the sklearn [26] library and the fft (Discrete Fourier

Transform) function from the numpy [20] library.

21

3.3 Programming Paradigm Refactoring

The formal object-oriented programming concept was introduced in the mid-

1960s [27]. Many of the modern programming languages are multi-paradigm pro-

gramming languages that support the object-oriented programming paradigm. Python

is one of them. In the R-based POPSOM package, “map” has been defined as a class,

and all the hyper-parameters, input arguments, and neurons are member variables of

the class. However, all the methods are independent functions that take “map” as one

of the arguments. In order to build a pure object-oriented programming package (con-

vert all the independent methods into member methods of the class), the Python-based

POPSOM package was refactored from a procedural programming paradigm to an ob-

ject-oriented programming paradigm (Figure 5). After refactoring, the whole package

was defined as a class. All of the input hyper-parameters, input arguments, and neu-

rons are still member variables of the class, the same as in the R-based packages.

Figure 5. Comparison of the source code appearance of a procedural programming

 paradigm and an object-oriented programming paradigm.

22

All independent methods become member methods of the “map” class. Python

reserved method “__init__” was used as a constructor for the instance, and the

map.build name was changed to fit as it has been used as a conventional function

name for training the model (or instance) within the Python community.

3.4 Normalization

Different from PCA (Principle Component Analysis) [28], normalization is not

necessary in the SOM algorithm, but it may improve numerical accuracy as proposed

by [3]. A good rule of thumb, however, is for the end user to utilize the significance

function to graphically report the significance of each feature in order to facilitate

making a decision as to whether or not the original input data need to be normalized

before training.

The normalization method has been developed and reserved in the R-based POP-

SOM package, but works independently. In the Python-base package, not only is the

normalization method implemented, but it is also applied to the model training by add-

ing one more argument (option) in the model initialization function (“__init__”).

Figure 6 The significance levels of the Iris dataset features. Left figure plots the

 significance without data normalization. Right figure plots the

 significance with data normalization.

23

3.5 Embed Fortran for Training

There are three programming languages utilized for model training in the R-based

POPSOM package: C, R and Fortran. As a kind of imperative programming language,

Fortran is especially suited to numeric computation and scientific computing [28].

Hence, in addition to Python, one more training algorithm is also implemented in

Fortran in this project.

Several solutions for embedding Fortran in Python have been proposed and dis-

cussed. Two of them are highly recommended. The first is to write an extension mod-

ule, then to import into Python using the import command. The suffixes of extension

modules are different in Windows (pyd) and Unix-like operation systems (so). The

second is calling a shared-library subroutine directly from Python using the ctypes

modules. It requires the code to be wrapped as a shared library. After comparison

(more successful stories have been reported), the first solution is utilized in this project.

The laptop used for developing is running Windows 10 Home edition, x64-based

processor, 8GB RAM. The version of Python is 3.6.0. The following discussions are

all based on this development environment only.

Generally, there are five steps involved for the Fortran embedding:

1. Install MinGW-64

MinGW (Minimalist GNU for Windows) is a software development en-

vironment for creating Microsoft Windows applications. MinGW-64 is an

improved version of MinGW which supports both 32-bit and 64-bit proces-

sors. Installation is a little tricky. All of the following configurations are only

applied to the specific version of Python 3.6.0.

24

Version Architecture Threads Exception Build Version

6.4 x86_64 posix seh 0

Table 7. Configurations for installing MinGW-64 on Windows 10.

After successful installation, there are two more tasks:

1) Add the MinGW-64 bin path to the system path:

c:\mingw\mingw64\bin

2) Create a configuration file (named “distutils.cfg”) to connect Python with

MinGW-64:

[build]

Compiler = mingw32

2. Install F2PY

F2PY is a third-party Python library [29] which enables a Python script to

call a compiled Fortran extension module. F2PY is part of the numpy library.

Since numpy is already installed, there is no need to install F2PY for this pro-

ject.

3. Install GFortran

GFortran (or GNU Fortran) is the abbreviation for the GNU Fortran Com-

piler. It is used to compile a source file (.f90) to an object file (extension mod-

ule).

25

4. Compile the Fortran-extension module.

The standard Python build system numpy.distutils supports compiling

Fortran-extensions (.f90 file to .pyd file). A small Python program (Figure 7)

named “build.py” has been created to generate the extension module.

Figure 7. Source Code of “build.py” program

Next, execute the command: python build.py build. It will generate a file

named “vsom.pyd” which can be loaded directly.

5. Test the extension file

Execute the following command in Python prompt:

>>>import vsom

If there is no error message prompt, then the extension module has been

loaded successfully.

3.6 Speed Comparison between Python and Fortran

A comparison of the execution speeds of running the same model-training algo-

rithm upon the same data set in Python and Fortran with the same number of iterations

are of interest. The results are as follows:

26

Iteration Python (in seconds) Fortran (in seconds)

5000 2.158 0.055

10000 4.204 0.05

15000 6.632 0.06

20000 8.938 0.06

25000 11.811 0.062

30000 12.504 0.077

35000 14.787 0.076

40000 16.503 0.082

45000 17.645 0.122

50000 19.559 0.099

Table 8. Speed comparison of Python versus Fortran (as the number of iterations

 increases linearly).

Figure 8. Speed comparison of Python versus Fortran (as the number of iterations

 increases linearly).

2.158
4.204

6.632

8.938

11.811 12.504

14.787
16.503

17.645
19.559

0.055 0.05 0.06 0.06 0.062 0.077 0.076 0.082 0.122 0.0990

5

10

15

20

25

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Speed Comparison

Python Fortran

27

Iteration Python (in seconds) Fortran (in seconds)

1000 0.44 0.05

10000 3.91 0.06

100000 41.1 0.17

1000000 432.3 1.26

10000000 ☹ 12.4

Table 9. Speed comparison of Python versus Fortran (as the number of iterations

 increases exponentially).

Figure 9. Speed comparison of Python versus Fortran (as the number of iterations

 increases exponentially).

Based on the above speed comparisons, it is obvious that Fortran is much more

efficient than Python in numerical computations. Table 10 reports the processing time

(in seconds) for training the iris flower data set [10] and wheat seed data set [11] until

the maps fully converged using Python and Fortran respectively.

0.44 3.91
41.1

432.3

0.05 0.06 0.17 1.26 12.40

50

100

150

200

250

300

350

400

450

500

1000 10000 100000 1000000 10000000

Speed Comparison

Python Fortran

28

Data Set Iris Flower Wheat Seed

Observation 150 210

Feature 4 7

Iteration 1000 2000

Map Dimension 10 × 5 15 × 10

 Python Fortran Python Fortran

Convergence Index 0.939 0.959 0.97 0.89

Time (Seconds) 0.459 0.041 1.05 0.08

Table 10. The processing time (in seconds) for training Iris Flower data and Wheat

 Seed data using Python and Fortran.

29

CHAPTER 4

Results

4.1 Experiment Design

Since this project is inspired and based on the R-based POPSOM package, the en-

tire implementation of the Python-based package can be divided into migrating the R-

based package to Python-based and refactoring the source code from a procedural

programming paradigm to an object-oriented programming paradigm. After the Py-

thon-based package was complete, it was determined that the best way to evaluate the

correctness and quality of the Python-based package was to compare the outcome of

each function with the outcome from the R-base package. Most functions in the pack-

age run with a non-random algorithm. Hence, it is expected that the same input would

generate the same outcome, such as reporting the significance of each feature and plot-

ting the marginal probability distribution of neurons and input data. On the other hand,

some algorithms run with random factors, in particular the model-training algorithm.

4.1.1 Data Set Selection

As a kind of unsupervised learning algorithm, the major task of Self-Organizing

Maps is clustering the input data. Thus, the label of the observation is not necessary in

the algorithm, but it will help the end user to interpret the map. The ideal data for this

project is intuitive, easily interpreted and clustered (or categorized) by human beings

(although professional knowledge may be required in some cases). The data should

30

have at least three-dimensional measurements (two-dimensional data can be presented

by 2-D map without any learning). To evaluate the quality and capability of the Py-

thon-based package, two different data sets with different magnitudes of measure-

ments and observations for the experiment were selected.

The Iris flower data set [10] (sometimes called Fisher’s or Anderson’s data set)

introduced by Ronald Fisher in 1930s has been widely used as a “toy”/test data set

within the machine learning and statistics communities. There are 150 observations (or

instances) that are categorized into three species distributed evenly within the data set.

This data set has four measurements (or attributes): the sepal length, the sepal width,

the petal length and the petal width, all of which are measured on the same scale (in

centimeters). The Iris data set has been embedded in R (Figure 10) and can be ac-

cessed directly.

Figure 10. Accessing the Iris data set in R

The Iris data set has been embedded in the scikit-learn Python library. Before ac-

cessing this data set in Python, the sklearn library needs to be imported at the very be-

ginning of the source code. In order to represent it as a data frame (Figure 11), which

is friendlier to the end user, the pandas library should also be imported.

31

Figure 11. Accessing and representing the Iris data set as a data frame in Python.

In addition to the Iris data set, the Wheat Seed data set [11] was also selected

from UCI machine learning repository to evaluate the Python-based package. This da-

ta set of grain measurements, which was obtained from the real word, contains 210

observations clustered as 3 species (Kama, Rosa and Canadian), 70 elements for each.

There are 7 measurements of main geometric features obtained by X-ray technique:

area, perimeter, compactness, length of kernel, width of kernel, asymmetry coefficient,

and length of kernel groove. All of them are scaled by either millimeters or square

millimeters.

The original Wheat Seed data are stored in either a csv file or plain text file. The

read.csv (Figure 12) command in R and the open (Figure 13) command in Python

were utilized to access the Wheat Seed data set.

32

Figure 12. Accessing the Wheat Seed data set in R

33

Figure 13. Accessing and representing the Wheat Seed data set as a data frame in

 Python

4.2 Iris Experiment Results

4.2.1 Initialize the Model (instantiate the Model)

In the R-based POPSOM package, there is no independent function for initializ-

ing the model. However, after refactoring the Python-based package, it allows the user

to use the reserved function “__init__” to initialize the model (setup the hyper-

parameters for model training):

Argument Description Default

1 Xdim X-dimension of the map 10

2 Ydim Y-dimension of the map 5

3 Alpha Learning rate, should be a positive real number 0.3

4 Train Number of training iterations 1000

5 Algorithm Selection switch (Python or Fortran) som

6 Norm Switch, apply normalization to input data space False

Table 11. Description of “__init__” function’s arguments.

34

Figure 14. Example of initializing the model in Python.

Most of the arguments are easy to understand and setup. For the argument of

“train”, which indicates the number of iterations, there is no good rule of thumb rec-

ommended. Less iterations will result in insufficient converge, while more iterations

will increase unnecessary computational expense. Examining the quality of the map

after each training is the best way to determine the optimal number of iterations. For

the Iris data set, 1000 iterations will return better than a 0.9 convergence index in most

instances, which is acceptable for this project.

4.2.2 Fit the data

The R-based package merges the initialization and fitting the data into one func-

tion, called map.build, while the Python-based package has an independent fitting data

function: fit. The fit function only has two arguments, data and labels. This label is dif-

ferent with the one in other supervised algorithms. In the SOM algorithm, labels are

not involved in the training process. They are only used for labeling the grid of the

map after training.

35

Figure 15. Example of fitting the Iris data and labels to the SOM model.

4.2.3 Report the Significance of Each Feature

The significance of each feature can be reported in the form of either a vector

(Figure 16) or a graph (Figure 17) by switching graphics to True (which is default) or

False respectively.

Figure 16. Reporting the significance of each feature by vector for the Iris data.

Figure 17. Graphically reporting the significance of each feature for the Iris data.

36

4.2.4 Report the map convergence index

The convergence index is a linear combination of the map embedding accuracy

and the estimated topographic accuracy (Figure 18, 19, 20, 21). It is a criteria for eval-

uating the quality of the map [4] (or model). There are four arguments in this function:

Argument Description Default

1 conf_int Confidence interval of the quality assessment 0.95

2 K

Sample size used for the estimated topographic ac-

curacy computation

50

3 verb

True: report the map embedding accuracy and es-

timated topographic accuracy separately;

False: report the linear combination of map embed-

ding accuracy and estimated topographic accuracy.

False

4 ks

True: use the ks-test to report the map embedding

accuracy.

False: use the variance and mean tests to report the

map embedding accuracy.

False

Table 12. Description of convergence function’s arguments.

Figure 18. Reporting the convergence index of the map with default arguments.

37

Figure 19. Reporting the convergence index of the map by selecting 100 samples

 for the estimated topographic accuracy.

Figure 20. Reporting the map embedding accuracy and the estimated

 topographic accuracy separately.

Figure 21. Reporting the convergence index of the map with the ks-test approach

 for the map embedding accuracy.

4.2.5 Report the Map Embedding Accuracy

Report the map embedding accuracy using either the ks-test or the variance and

mean tests (Figure 22, 23).

Argument Description Default

1 conf_int Confidence interval of the quality assessment 0.95

2 verb True: report the map embedding accuracy and esti-

mated topographic accuracy separately;

False: report the linear combination of map embed-

ding accuracy and estimated topographic accuracy.

False

38

3 ks True: use the ks-test to report the map embedding

accuracy.

False: use the variance and mean tests to report the

map embedding accuracy.

False

Table 13. Description of embed function’s arguments.

Figure 22. Reporting the map embedding accuracy using the variance and mean

 tests.

Figure 23. Reporting the map embedding accuracy using ks-test.

4.2.6 Report the Estimated Topographic Accuracy

Estimated topographic accuracy is a part of the convergence index. It also can be

reported independently as well for this project (Figure 24, 25, 26, 27). As discussed in

[9], evaluating the SOMs topographic accuracy by using random samples instead of all

available input data is a reliably computational and efficient statistical approach.

Argument Description Default

1 conf_int Confidence interval of the quality assessment 0.95

2 k Sample size used for the estimated topographic accu- 50

39

racy computation

3

verb

True: report the map embedding accuracy and esti-

mated topographic accuracy separately;

False: report the linear combination of map embed-

ding accuracy and estimated topographic accuracy.

False

4

interval

True: confidence interval is computed

False: confidence interval is not computed

True

Table 14. Description of topo function’s arguments.

Figure 24. Reporting the estimated topographic accuracy with the default

 argument’s value.

Figure 25. Reporting the estimated topographic accuracy with k=100.

Figure 26. Reporting a vector of individual feature accuracies.

40

Figure 27. Reporting the estimated topographic accuracy without computing the

 confidence interval.

4.2.7 Starburst Visualization of the Model

Plotting the starburst representation of the SOM model is one of the most im-

portant functions in the POPSOM package. This function plots a 2-D heat map repre-

sentation (Figure 28, 29) based on the model that satisfies the user. In addition, this

function also plots the connected component lines over the heat map, which makes it

easy for users to identify the center of clusters and the associated boundaries.

Argument Description Default

1 explicit

Control the shape of connected components

True: show exact connected components.

False: all nodes are connected to their centroid

node.

False

2 smoothing Control the smoothing lever of the U-Matrix 2

3 merge_clusters Starburst clusters are merged together. True

4 merge_range

The percentage of a certain distance in the code

to determine whether components are closer to

their centroids or instead centroids are closer to

each other.

0.25

Table 15. Description of starburst function’s arguments.

41

Figure 28. Starburst representation of the SOM model with default argument values.

 Connected component lines represent that all nodes are connected to the

 center node.

42

Figure 29. Starburst representation of the SOM model. Connected component lines

 represent the exact connected components.

4.2.8 Visualization of the Marginal Probability Distribution of the Feature

This function shows the marginal probability distribution of the neurons and the

input data. The density of the training data frame and the neuron density of the same

dimension (or index) are to be overlaid on the plot (Figure 31). The more overlaid

these are indicates the higher quality of the model. The only argument of this function

is either the index of measurement (such as 0) or the name of the measurement (such

as "sepal length (cm)") as follows:

43

Figure 30. Reporting the marginal probability distribution of the first

 measurement by index or attribute name.

Figure 31. Marginal probability distributions of each attribute of the Iris data.

44

4.2.9 Projection

This function returns a table which reports the coordinate (location) of each ob-

servation on the map (Figure 32).

Figure 32. Reporting the coordinate of each observation on the map.

4.2.10 Neuron

This function returns the content of the observation by given coordinates (Figure

33).

Figure 33. Reporting the content of the observation by given coordinates.

45

4.3 Wheat Seed Experiment Results

4.3.1 Initialize the Model (instantiate the Model)

Since there are 210 observations in the Wheat Seed data set, a larger (15 × 10)

map is used to represent the model (Figure 34).

Figure 34. Example of initializing the model in Python.

4.3.2 Fit the data

The raw data of the Wheat Seed data set are stored in the text file without the

header. The data was loaded from the text file and the attribute name was inserted

manually (Figure 35).

Figure 35. Fitting the Wheat Seed data and labels to the model.

46

4.3.3 Report the Significance of Each Feature

Figure 36. Reporting the significance of each feature by vector for the Wheat

 Seed data.

Figure 37. Graphically reporting the significance of each feature for the Wheat Seed

 data.

4.3.4 Report the map convergence index

Figure 38. Reporting the convergence index of the map with arguments equal to

 default values.

47

Figure 39. Reporting the convergence index of the map by selecting 100 samples

 for estimated topographic accuracy.

Figure 40. Reporting the map embedding accuracy and estimated topographic

 accuracy separately.

Figure 41. Reporting the convergence index of the map with the ks-test approach

 for embedding accuracy.

4.3.5 Report the Map Embedding Accuracy

Figure 42. Reporting the map embedding accuracy using the variance and mean

 tests.

Figure 43. Reporting the map embedding accuracy using the ks-test.

48

4.3.6 Report the Estimated Topographic Accuracy

Figure 44. Reporting the estimated topographic accuracy with arguments equal

 to the default value.

Figure 45. Reporting the estimated topographic accuracy with k=100.

Figure 46. Reporting a vector of individual feature accuracies.

Figure 47. Reporting the estimated topographic accuracy without computing the

 confidence interval.

49

4.3.7 Starburst visualization of the model

Figure 48. Starburst representation of the SOM model with arguments equal to default

 values. Connected component lines represent that all nodes are connected

 to the center node.

50

Figure 49. Starburst representation of the SOM model. Connected component lines

 represent exact connected components.

4.3.8 Visualization of the Marginal Probability Distribution of the Feature

Figure 50. Reporting the marginal probability distribution of the second

 measurement by the index or attribute name.

51

Figure 51. Marginal probability distribution of each attribute of the Wheat Seed

 data.

52

4.3.9 Projection

Figure 52. Reporting the location of each observation on the map.

4.3.10 Neuron

Figure 53. Reporting the content of the observation by given coordinates.

4.4 Evaluating the Correctness of Python-based Package.

The R-based POPSOM package has been developed and verified, and this Py-

thon-based package was derived from it. Thus, the best way to evaluate the correctness

of the Python-based package is to measure the distance between the R-based package

and the Python-based package results. Three sophisticated functions from the package

53

were utilized to demonstrate this comparison: model training, starburst representation,

and visualization of marginal probability distribution.

4.4.1 Evaluating the Model Training Function

The R-based package used map.build to train the model, while the Python-based

package used __init__ and fit functions to complete this same task. There are two ran-

dom factors within the algorithm: 1) randomly initialized the neurons at the beginning

and 2) random selection of a vector from the input data space for training. Due to these

two random factors, it is not feasible to expect that the same training data will generate

exactly the same neurons from both the R and Python functions. In order to evaluate

the correctness of the Python program based on the two neurons generated, three sta-

tistical approaches have been proposed and applied in this project.

1) Measuring the average difference of vectors between the two neurons with fol-

lowing formula,

 𝑎𝑣𝑒 =
∑|𝑊𝑅 − 𝑊𝑃|

𝐷𝑁 ∗ 𝐹𝑁

WR: the single weight vector from R function.

WP: the single weight vector from Python function.

DN: the dimension of the neurons.

FN: the number of features.

The average difference should be approximately equal to 0 if the two neurons are

drawn from the same input data space. The following chart represents the average dif-

ferences of vectors between two neurons during the training.

54

Figure 54. The average difference of vectors between two neurons.

As can be clearly seen, the average difference descends to 0.2 at the end of the train-

ing. This result fulfills the expectation.

2) Measuring the ratio of the variances from the two neurons. [9], [30]

𝑆1
2

𝑆2
2 ∙

1

𝑓𝛼
2

,𝑛1−1,𝑛2−1

 <
𝜎1

2

𝜎2
2 <

𝑆1
2

𝑆2
2 ∙ 𝑓𝛼

2
,𝑛1−1,𝑛2−1

𝑆1
2, 𝑆2

2: The values of the variance from each neuron that have been generated by R

and Python function respectively.

𝑓𝛼

2
,𝑛1−1,𝑛2−1: The F distribution with n1 - 1 and n2 – 1 degrees of freedom.

n1, n2: the number of neurons generated by R and Python functions.

The ratio should be approximately equal to 1 if the two neurons are drawn from

the same input space. The following ratio of each features’ variances and correspond-

ing 95% confidence intervals were obtained from the Iris data experiments:

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

3
7

0

4
1

0

4
5

0

4
9

0

5
3

0

5
7

0

6
1

0

6
5

0

6
9

0

7
3

0

7
7

0

8
1

0

8
5

0

8
9

0

9
3

0

9
7

0

Average Difference Between Two Neurons

55

Lower bound 0.579149 0.582138 0.573727 0.582895

Ratio 1.020570 1.025837 1.011014 1.027170

Upper bound 1.798437 1.807719 1.781599 1.810068

Table 16. The ratio of the variance between two neurons

This result reveals that the two neurons have very similar distributions since all 4 rati-

os reported are not significantly different from 1.

3) Measuring the difference of the means of two neurons.

𝝁𝟏 − 𝝁𝟐 > (𝒙𝟏̅̅ ̅ − 𝒙𝟐̅̅ ̅) − 𝒛𝜶
𝟐

 ∙ √
𝝈𝟏

𝟐

𝒏𝟏
+

𝝈𝟐
𝟐

𝒏𝟐

𝝁𝟏 − 𝝁𝟐 < (𝒙𝟏̅̅ ̅ − 𝒙𝟐̅̅ ̅) + 𝒛𝜶
𝟐

 ∙ √
𝝈𝟏

𝟐

𝒏𝟏
+

𝝈𝟐
𝟐

𝒏𝟐

The following mean differences were obtained from Iris data experiments report-

ed with the corresponding 95% confidence intervals (𝛼 = 0.05):

Lower bound -0.305903 -0.117114 -0.579569 -0.248382

Difference -0.060282 -0.007240 -0.044441 -0.005211

Upper bound 0.185339 0.102633 0.490687 0.237959

Table 17. The difference of means between two neurons

These results show that 0 falls within each confidence interval obtained by apply-

ing the above formulas. This indicates that there is no statistical difference in the

means; the means of the two neurons are the same.

Based on the above statistical analysis, it is apparent that each feature in the two

neurons share the same distribution and the same means, and the average difference

56

between them is closed to 0. Since all the criteria are fulfilled, this evidence supports

the hypothesis that the Python package is working in the same way as the R package.

4.4.2 Evaluating the Starburst Representation of the SOM Model

Based on the same neurons and visual (the outcome from model training func-

tion), and with the same value of arguments, the starburst function from the R-based

and Python-based packages expect to report the same heat map and connected compo-

nents as well. In order to guarantee the input consistency, the model is trained in the

R-based POPSOM package, and then the neurons and visual result are shared with the

Python-based package. Results are plotted as starburst representations of the model by

the R-based package (Figure 57) and the Python-based package (Figure 58) respec-

tively as follow.

Figure 55. Starburst Representation of the SOM model in R.

57

Figure 56. Starburst Representation of the SOM model in Python.

It is clear by visual comparison of the starburst representations that the heat map

and connected components generated by R and Python are exactly the same.

4.4.3 Evaluating the Density Plot Function.

Plotting the density of training data overlaid with the neurons density for the same

features is easy for the user to interpret the quality of the map. Plotting the same densi-

ty representation by different programs (R-based and Python-based) is the best way to

reveal any differences between the two programs. The following are side-by-side dis-

plays of the density plots from both the R-based and Python-based packages for each

feature of the Iris data set (Figure 59).

58

Figure 57. Plots of the marginal probability distribution of each feature of the Iris data

 set. R-based results are on the left, and Python-based results are on the

 right.

59

These four groups of density plots are evidence that there is no difference be-

tween the R-based package and the Python-based package for this function. And, this

also indicates the Python-based package is working properly as the R-based package is

validated as reliable and consistent.

60

CHAPTER 5

Conclusion

5.1 Conclusions

Compared with other existing SOM packages in the public repository, the R-

based POPSOM package can be thought of as a one-stop solution for the Self-

Organizing Maps. Besides the basic model construction and visualization function, it

also provides a computationally efficient model evaluation function. This function

evaluates the quality of the model in regards to the map embedding accuracy and es-

timated topographic accuracy at the same time. With the purpose of sharing the benefit

of the R-based POPSOM package with Python users, this project successfully mi-

grates the entire R-based POPSOM package into the Python-based package. Two dif-

ferent data sets (the Iris data set and the Wheat Seed data set) with different features

from the UCI machine learning repository were utilized to demonstrate the function of

the Python-based package. In addition to migrating the functions within the package,

the entire package was refactored into an object-oriented programming paradigm and

required splitting the map.build function into __init__ and fit functions, which are both

conventional function names in machine learning community. Furthermore, to guaran-

tee the correctness and reliability of the Python-based package, the Python-based

package was verified by utilizing three statistical approaches that are based on specific

aforementioned comparisons of the outcomes from the R-based package and the Py-

thon-based package. The result of this benchmark is convincing evidence that the Py-

thon-based package is as trustable as the R-based package.

61

5.2 Future Works

5.2.1 Submit the Python-based Package to Public Repository

With the purpose of benefiting Python users with the SOM algorithm, the R-

based POPSOM package has been distributed as free software, so that everyone can

use, modify and redistribute it under the terms of the GNU General Public License

(published by the Free Software Foundation). PyPI (the Python Package Index) is a

public repository of software for the Python programming language. It contains

128882 packages as of 2/7/2018. Submitting the Python-based package used here to

the PyPI community will allow Python users to utilize these findings in their research.

In addition, the Python-based package can be published on GitHub as open-

source software to increase exposure to it as the R-based POPSOM package has been

added for R users.

5.2.2 Using animation to simulate the formation of the model.

Currently, what is obtained from the POPSOM package is a graphical report

(starburst representation) of a SOM model. Although the algorithm is not difficult to

understand, the end users without basic quantitative knowledge still view this algo-

rithm as a black box and might wonder what is happening during the training. Present-

ing the process of the heat map formation may give the user knowledge of the internal

mechanisms and make the magical box more transparent. This, in turn, gives evidence

to the end user that the algorithm is not a magic trick, but rather a reliable, predicable

and replicable process.

62

APPENDICES

Source Code (popsom.py)

import sys

import numpy as np

import pandas as pd

import seaborn as sns

import vsom # Call vsom.f90 (Fortran package)

from random import randint

from sklearn.metrics.pairwise import euclidean_distances

import statsmodels.stats.api as sms # t-test

import statistics as stat # F-test

from scipy import stats # KS Test

from scipy.stats import f # F-test

from itertools import combinations

import matplotlib.pyplot as plt

import time # Calculate the training time

class map:

 def __init__(self, xdim=10, ydim=5, alpha=.3,

train=1000, algorithm="som", norm=False):

 """ __init__ -- Initialize the Model

 parameters:

 - xdim,ydim - the dimensions of the map

 - alpha - the learning rate, should be a

positive non-zero real number

 - train - number of training iterations

 - algorithm - selection switch (som and

som_f)

 - norm - normalize the input data space

 """

 self.xdim = xdim

 self.ydim = ydim

 self.alpha = alpha

 self.train = train

 self.algorithm = algorithm

 self.norm = norm

 def fit(self, data, labels):

 """ fit -- Train the Model with Python or

Fortran

 parameters:

63

 - data - a dataframe where each row con-

tains an unlabeled training instance

 - labels - a vector or dataframe with one

label for each observation in data

 """

 start_time = time.time()

 if self.norm:

 data = data.div(data.sum(axis=1), axis=0)

 self.data = data

 self.labels = labels

 algorithms = ["som", "som_f"]

 # check if the dims are reasonable

 if (self.xdim < 3 or self.ydim < 3):

 sys.exit("build: map is too small.")

 try:

 _index_algorithm = algo-

rithms.index(self.algorithm)

 except ValueError:

 sys.exit("build only supports

'som','som_f'")

 if _index_algorithm == 0: # train the

model with python

 self.vsom_p()

 elif _index_algorithm == 1: # train the

model with Fortran

 self.vsom_f()

 else:

 sys.exit("build only supports

'som','som_f'")

 visual = []

 for i in range(self.data.shape[0]):

 b = self.best_match(self.data.iloc[[i]])

 visual.extend([b])

 self.visual = visual

64

 # print the number of iteration and training

time

 # print(str(self.train) + " Execute %s seconds

" % (time.time() - start_time))

 def marginal(self, marginal):

 """ marginal -- plot that shows the marginal

probability distribution of the neurons and data

 parameters:

 - marginal is the name of a training data

frame dimension or index

 """

 # check if the second argument is of type char-

acter

 if type(marginal) == str and marginal in

list(self.data):

 f_ind = list(self.data).index(marginal)

 f_name = marginal

 train = np.matrix(self.data)[:, f_ind]

 neurons = self.neurons[:, f_ind]

 plt.ylabel('Density')

 plt.xlabel(f_name)

 sns.kdeplot(np.ravel(train),

 label="training data",

 shade=True,

 color="b")

 sns.kdeplot(neurons, label="neurons",

shade=True, color="r")

 plt.legend(fontsize=15)

 plt.show()

 elif (type(marginal) == int and marginal <

len(list(self.data)) and marginal >= 0):

 f_ind = marginal

 f_name = list(self.data)[marginal]

 train = np.matrix(self.data)[:, f_ind]

 neurons = self.neurons[:, f_ind]

 plt.ylabel('Density')

 plt.xlabel(f_name)

 sns.kdeplot(np.ravel(train),

 label="training data",

 shade=True,

 color="b")

65

 sns.kdeplot(neurons, label="neurons",

shade=True, color="r")

 plt.legend(fontsize=15)

 plt.show()

 else:

 sys.exit("marginal: second argument is not

the name of a training \

 data frame dimension or in-

dex")

 def vsom_p(self):

 """ vsom_p -- vectorized, unoptimized version

of the stochastic SOM

 training algorithm written entirely

in python

 """

 # some constants

 dr = self.data.shape[0]

 dc = self.data.shape[1]

 nr = self.xdim*self.ydim

 nc = dc # dim of data and neurons is the same

 # build and initialize the matrix holding the

neurons

 cells = nr * nc # No. of neurons times number

of data dimensions

 # vector with small init values for all neurons

 v = np.random.uniform(-1, 1, cells)

 # NOTE: each row represents a neuron, each col-

umn represents a dimension.

 neurons = np.transpose(np.reshape(v, (nc, nr)))

rearrange the vector as matrix

 # neurons = np.reshape(v, (nr, nc)) # Another

option to reshape

 # compute the initial neighborhood size and step

 nsize = max(self.xdim, self.ydim) + 1

 nsize_step = np.ceil(self.train/nsize)

 step_counter = 0 # counts the number of epochs

per nsize_step

 # convert a 1D rowindex into a 2D map coordinate

 def coord2D(rowix):

66

 x = np.array(rowix) % self.xdim

 y = np.array(rowix) // self.xdim

 return np.concatenate((x, y))

 # constants for the Gamma function

 m = [i for i in range(nr)] # a vector with all

neuron 1D addresses

 # x-y coordinate of ith neuron: m2Ds[i,] = c(xi,

yi)

 m2Ds =

np.matrix.transpose(coord2D(m).reshape(2, nr))

 # neighborhood function

 def Gamma(c):

 # lookup the 2D map coordinate for c

 c2D = m2Ds[c,]

 # a matrix with each row equal to c2D

 c2Ds = np.outer(np.linspace(1, 1, nr),

c2D)

 # distance vector of each neuron from c in

terms of map coords!

 d = np.sqrt(np.dot((c2Ds - m2Ds)**2, [1,

1]))

 # if m on the grid is in neigh then alpha

else 0.0

 hood = np.where(d < nsize*1.5, self.alpha,

0.0)

 return hood

 # training #

 # the epochs loop

 for epoch in range(self.train):

 # hood size decreases in disrete nsize.steps

 step_counter = step_counter + 1

 if step_counter == nsize_step:

 step_counter = 0

 nsize = nsize - 1

 # create a sample training vector

67

 ix = randint(0, dr-1)

 # ix = (epoch+1) % dr # For Debugging

 xk = self.data.iloc[[ix]]

 # competitive step

 xk_m = np.outer(np.linspace(1, 1, nr), xk)

 diff = neurons - xk_m

 squ = diff * diff

 s = np.dot(squ, np.linspace(1, 1, nc))

 o = np.argsort(s)

 c = o[0]

 # update step

 gamma_m = np.outer(Gamma(c),

np.linspace(1, 1, nc))

 neurons = neurons - diff * gamma_m

 self.neurons = neurons

 def vsom_f(self):

 """ vsom_f -- vectorized and optimized version

of the stochastic

 SOM training algorithm written

in Fortran90

 """

 # some constants

 dr = self.data.shape[0]

 dc = self.data.shape[1]

 nr = self.xdim*self.ydim

 nc = dc # dim of data and neurons is the same

 # build and initialize the matrix holding the

neurons

 cells = nr * nc # no. of neurons times

number of data dimensions

 # vector with small init values for all neurons

 v = np.random.uniform(-1, 1, cells)

 # NOTE: each row represents a neuron, each col-

umn represents a dimension.

 neurons = np.transpose(np.reshape(v, (nc, nr)))

rearrange the vector as matrix

 neurons = vsom.vsom(neurons,

68

 np.array(self.data),

 self.xdim,

 self.ydim,

 self.alpha,

 self.train,

 dr,

 dc)

 self.neurons = neurons

 def convergence(self, conf_int=.95, k=50,

verb=False, ks=False):

 """ convergence -- the convergence index of a

map

 Parameters:

 - conf_int - the confidence interval of

the quality assessment (default 95%)

 - k - the number of samples used for the

estimated topographic accuracy computation

 - verb - if true reports the two conver-

gence components separately, otherwise it will

 report the linear combination of

the two

 - ks - a switch, true for ks-test, false

for standard var and means test

 Return

 - return value is the convergence index

 """

 if ks:

 embed = self.embed_ks(conf_int,

verb=False)

 else:

 embed = self.embed_vm(conf_int,

verb=False)

 topo_ = self.topo(k, conf_int, verb=False, in-

terval=False)

 if verb:

 return {"embed": embed, "topo": topo_}

 else:

 return (0.5*embed + 0.5*topo_)

69

 def starburst(self, explicit=False, smoothing=2,

merge_clusters=True, merge_range=.25):

 """ starburst -- compute and display the star-

burst representation of clusters

 parameters:

 - explicit - controls the shape of the

connected components

 - smoothing - controls the smoothing level

of the umat (NULL,0,>0)

 - merge_clusters - a switch that controls

if the starburst clusters are merged together

 - merge_range - a range that is used as a

percentage of a certain distance in the code

 to determine whether com-

ponents are closer to their centroids or

 centroids closer to each

other.

 """

 umat = self.compute_umat(smoothing=smoothing)

 self.plot_heat(umat,

 explicit=explicit,

 comp=True,

 merge=merge_clusters,

 merge_range=merge_range)

 def compute_umat(self, smoothing=None):

 """ compute_umat -- compute the unified dis-

tance matrix

 parameters:

 - smoothing - is either NULL, 0, or a pos-

itive floating point value controlling the

 smoothing of the umat repre-

sentation

 return:

 - a matrix with the same x-y dims as the

original map containing the umat values

 """

 d = euclidean_distances(self.neurons,

self.neurons)

 umat = self.compute_heat(d, smoothing)

 return umat

70

 def compute_heat(self, d, smoothing=None):

 """ compute_heat -- compute a heat value map

representation of the given distance matrix

 parameters:

 - d - a distance matrix computed via the

'dist' function

 - smoothing - is either NULL, 0, or a pos-

itive floating point value controlling the

 smoothing of the umat repre-

sentation

 return:

 - a matrix with the same x-y dims as the

original map containing the heat

 """

 x = self.xdim

 y = self.ydim

 heat = np.matrix([[0.0] * y for _ in range(x)])

 if x == 1 or y == 1:

 sys.exit("compute_heat: heat map can not

be computed for a map \

 with a dimension of 1")

 # this function translates our 2-dim map coor-

dinates

 # into the 1-dim coordinates of the neurons

 def xl(ix, iy):

 return ix + iy * x

 # check if the map is larger than 2 x 2 (other-

wise it is only corners)

 if x > 2 and y > 2:

 # iterate over the inner nodes and compute

their umat values

 for ix in range(1, x-1):

 for iy in range(1, y-1):

 sum = (d[xl(ix, iy), xl(ix-1,

iy-1)] +

 d[xl(ix, iy), xl(ix, iy-

1)] +

 d[xl(ix, iy), xl(ix+1, iy-1)]

+

 d[xl(ix, iy), xl(ix+1, iy)] +

71

 d[xl(ix, iy), xl(ix+1, iy+1)]

+

 d[xl(ix, iy), xl(ix, iy+1)] +

 d[xl(ix, iy), xl(ix-1, iy+1)]

+

 d[xl(ix, iy), xl(ix-1, iy)])

 heat[ix, iy] = sum/8

 # iterate over bottom x axis

 for ix in range(1, x-1):

 iy = 0

 sum = (d[xl(ix, iy), xl(ix+1, iy)] +

 d[xl(ix, iy), xl(ix+1, iy+1)] +

 d[xl(ix, iy), xl(ix, iy+1)] +

 d[xl(ix, iy), xl(ix-1, iy+1)] +

 d[xl(ix, iy), xl(ix-1, iy)])

 heat[ix, iy] = sum/5

 # iterate over top x axis

 for ix in range(1, x-1):

 iy = y-1

 sum = (d[xl(ix, iy), xl(ix-1, iy-1)]

+

 d[xl(ix, iy), xl(ix, iy-1)] +

 d[xl(ix, iy), xl(ix+1, iy-1)] +

 d[xl(ix, iy), xl(ix+1, iy)] +

 d[xl(ix, iy), xl(ix-1, iy)])

 heat[ix, iy] = sum/5

 # iterate over the left y-axis

 for iy in range(1, y-1):

 ix = 0

 sum = (d[xl(ix, iy), xl(ix, iy-1)] +

 d[xl(ix, iy), xl(ix+1, iy-1)] +

 d[xl(ix, iy), xl(ix+1, iy)] +

 d[xl(ix, iy), xl(ix+1, iy+1)] +

 d[xl(ix, iy), xl(ix, iy+1)])

 heat[ix, iy] = sum/5

 # iterate over the right y-axis

 for iy in range(1, y-1):

 ix = x-1

72

 sum = (d[xl(ix, iy), xl(ix-1, iy-1)]

+

 d[xl(ix, iy), xl(ix, iy-1)] +

 d[xl(ix, iy), xl(ix, iy+1)] +

 d[xl(ix, iy), xl(ix-1, iy+1)] +

 d[xl(ix, iy), xl(ix-1, iy)])

 heat[ix, iy] = sum/5

 # compute umat values for corners

 if x >= 2 and y >= 2:

 # bottom left corner

 ix = 0

 iy = 0

 sum = (d[xl(ix, iy), xl(ix+1, iy)] +

 d[xl(ix, iy), xl(ix+1, iy+1)] +

 d[xl(ix, iy), xl(ix, iy+1)])

 heat[ix, iy] = sum/3

 # bottom right corner

 ix = x-1

 iy = 0

 sum = (d[xl(ix, iy), xl(ix, iy+1)] +

 d[xl(ix, iy), xl(ix-1, iy+1)] +

 d[xl(ix, iy), xl(ix-1, iy)])

 heat[ix, iy] = sum/3

 # top left corner

 ix = 0

 iy = y-1

 sum = (d[xl(ix, iy), xl(ix, iy-1)] +

 d[xl(ix, iy), xl(ix+1, iy-1)] +

 d[xl(ix, iy), xl(ix+1, iy)])

 heat[ix, iy] = sum/3

 # top right corner

 ix = x-1

 iy = y-1

 sum = (d[xl(ix, iy), xl(ix-1, iy-1)] +

 d[xl(ix, iy), xl(ix, iy-1)] +

 d[xl(ix, iy), xl(ix-1, iy)])

 heat[ix, iy] = sum/3

 # smooth the heat map

 pts = []

73

 for i in range(y):

 for j in range(x):

 pts.extend([[j, i]])

 if smoothing is not None:

 if smoothing == 0:

 heat = self.smooth_2d(heat,

 nrow=x,

 ncol=y,

 sur-

face=False)

 elif smoothing > 0:

 heat = self.smooth_2d(heat,

 nrow=x,

 ncol=y,

 sur-

face=False,

 the-

ta=smoothing)

 else:

 sys.exit("compute_heat: bad value for

smoothing parameter")

 return heat

 def plot_heat(self, heat, explicit=False, comp=True,

merge=False, merge_range=0.25):

 """ plot_heat -- plot a heat map based on a

'map', this plot also contains the connected

 components of the map based on

the landscape of the heat map

 parameters:

 - heat - is a 2D heat map of the map re-

turned by 'map'

 - explicit - controls the shape of the

connected components

 - comp - controls whether we plot the con-

nected components on the heat map

 - merge - controls whether we merge the

starbursts together.

 - merge_range - a range that is used as a

percentage of a certain distance in the code

 to determine whether com-

ponents are closer to their centroids or

 centroids closer to each

other.

74

 """

 umat = heat

 x = self.xdim

 y = self.ydim

 nobs = self.data.shape[0]

 count = np.matrix([[0]*y]*x)

 # need to make sure the map doesn't have a di-

mension of 1

 if (x <= 1 or y <= 1):

 sys.exit("plot_heat: map dimensions too

small")

 tmp = pd.cut(heat, bins=100, labels=False)

 tmp_1 = np.array(np.matrix.transpose(tmp))

 fig, ax = plt.subplots()

 ax.pcolor(tmp_1, cmap=plt.cm.YlOrRd)

 ax.set_xticks(np.arange(x)+0.5, minor=False)

 ax.set_yticks(np.arange(y)+0.5, minor=False)

 plt.xlabel("x")

 plt.ylabel("y")

 ax.set_xticklabels(np.arange(x), minor=False)

 ax.set_yticklabels(np.arange(y), minor=False)

 ax.xaxis.set_tick_params(labeltop='on')

 ax.yaxis.set_tick_params(labelright='on')

 # put the connected component lines on the map

 if comp:

 if not merge:

 # find the centroid for each neuron

on the map

 centroids =

self.compute_centroids(heat, explicit)

 else:

 # find the unique centroids for the

neurons on the map

 centroids =

self.compute_combined_clusters(umat, explicit,

merge_range)

 # connect each neuron to its centroid

 for ix in range(x):

 for iy in range(y):

75

 cx = centroids['centroid_x'][ix,

iy]

 cy = centroids['centroid_y'][ix,

iy]

 plt.plot([ix+0.5, cx+0.5],

 [iy+0.5, cy+0.5],

 color='grey',

 linestyle='-',

 linewidth=1.0)

 # put the labels on the map if available

 if not (self.labels is None) and

(len(self.labels) != 0):

 # count the labels in each map cell

 for i in range(nobs):

 nix = self.visual[i]

 c = self.coordinate(nix)

 ix = c[0]

 iy = c[1]

 count[ix-1, iy-1] = count[ix-1, iy-

1]+1

 for i in range(nobs):

 c = self.coordinate(self.visual[i])

 ix = c[0]

 iy = c[1]

 # we only print one label per cell

 if count[ix-1, iy-1] > 0:

 count[ix-1, iy-1] = 0

 ix = ix - .5

 iy = iy - .5

 l = self.labels[i]

 plt.text(ix+1, iy+1, l)

 plt.show()

 def compute_centroids(self, heat, explicit=False):

 """ compute_centroids -- compute the centroid

for each point on the map

 parameters:

76

 - heat - is a matrix representing the heat

map representation

 - explicit - controls the shape of the

connected component

 return value:

 - a list containing the matrices with the

same x-y dims as the original map containing the centroid

x-y coordinates

 """

 xdim = self.xdim

 ydim = self.ydim

 centroid_x = np.matrix([[-1] * ydim for _ in

range(xdim)])

 centroid_y = np.matrix([[-1] * ydim for _ in

range(xdim)])

 heat = np.matrix(heat)

 def compute_centroid(ix, iy):

 # recursive function to find the centroid

of a point on the map

 if (centroid_x[ix, iy] > -1) and (cen-

troid_y[ix, iy] > -1):

 return {"bestx": centroid_x[ix, iy],

"besty": centroid_y[ix, iy]}

 min_val = heat[ix, iy]

 min_x = ix

 min_y = iy

 # (ix, iy) is an inner map element

 if ix > 0 and ix < xdim-1 and iy > 0 and

iy < ydim-1:

 if heat[ix-1, iy-1] < min_val:

 min_val = heat[ix-1, iy-1]

 min_x = ix-1

 min_y = iy-1

 if heat[ix, iy-1] < min_val:

 min_val = heat[ix, iy-1]

 min_x = ix

 min_y = iy-1

77

 if heat[ix+1, iy-1] < min_val:

 min_val = heat[ix+1, iy-1]

 min_x = ix+1

 min_y = iy-1

 if heat[ix+1, iy] < min_val:

 min_val = heat[ix+1, iy]

 min_x = ix+1

 min_y = iy

 if heat[ix+1, iy+1] < min_val:

 min_val = heat[ix+1, iy+1]

 min_x = ix+1

 min_y = iy+1

 if heat[ix, iy+1] < min_val:

 min_val = heat[ix, iy+1]

 min_x = ix

 min_y = iy+1

 if heat[ix-1, iy+1] < min_val:

 min_val = heat[ix-1, iy+1]

 min_x = ix-1

 min_y = iy+1

 if heat[ix-1, iy] < min_val:

 min_val = heat[ix-1, iy]

 min_x = ix-1

 min_y = iy

 # (ix, iy) is bottom left corner

 elif ix == 0 and iy == 0:

 if heat[ix+1, iy] < min_val:

 min_val = heat[ix+1, iy]

 min_x = ix+1

 min_y = iy

 if heat[ix+1, iy+1] < min_val:

 min_val = heat[ix+1, iy+1]

 min_x = ix+1

 min_y = iy+1

 if heat[ix, iy+1] < min_val:

 min_val = heat[ix, iy+1]

 min_x = ix

 min_y = iy+1

78

 # (ix, iy) is bottom right corner

 elif ix == xdim-1 and iy == 0:

 if heat[ix, iy+1] < min_val:

 min_val = heat[ix, iy+1]

 min_x = ix

 min_y = iy+1

 if heat[ix-1, iy+1] < min_val:

 min_val = heat[ix-1, iy+1]

 min_x = ix-1

 min_y = iy+1

 if heat[ix-1, iy] < min_val:

 min_val = heat[ix-1, iy]

 min_x = ix-1

 min_y = iy

 # (ix, iy) is top right corner

 elif ix == xdim-1 and iy == ydim-1:

 if heat[ix-1, iy-1] < min_val:

 min_val = heat[ix-1, iy-1]

 min_x = ix-1

 min_y = iy-1

 if heat[ix, iy-1] < min_val:

 min_val = heat[ix, iy-1]

 min_x = ix

 min_y = iy-1

 if heat[ix-1, iy] < min_val:

 min_val = heat[ix-1, iy]

 min_x = ix-1

 min_y = iy

 # (ix, iy) is top left corner

 elif ix == 0 and iy == ydim-1:

 if heat[ix, iy-1] < min_val:

 min_val = heat[ix, iy-1]

 min_x = ix

 min_y = iy-1

 if heat[ix+1, iy-1] < min_val:

 min_val = heat[ix+1, iy-1]

79

 min_x = ix+1

 min_y = iy-1

 if heat[ix+1, iy] < min_val:

 min_val = heat[ix+1, iy]

 min_x = ix+1

 min_y = iy

 # (ix, iy) is a left side element

 elif ix == 0 and iy > 0 and iy < ydim-1:

 if heat[ix, iy-1] < min_val:

 min_val = heat[ix, iy-1]

 min_x = ix

 min_y = iy-1

 if heat[ix+1, iy-1] < min_val:

 min_val = heat[ix+1, iy-1]

 min_x = ix+1

 min_y = iy-1

 if heat[ix+1, iy] < min_val:

 min_val = heat[ix+1, iy]

 min_x = ix+1

 min_y = iy

 if heat[ix+1, iy+1] < min_val:

 min_val = heat[ix+1, iy+1]

 min_x = ix+1

 min_y = iy+1

 if heat[ix, iy+1] < min_val:

 min_val = heat[ix, iy+1]

 min_x = ix

 min_y = iy+1

 # (ix, iy) is a bottom side element

 elif ix > 0 and ix < xdim-1 and iy == 0:

 if heat[ix+1, iy] < min_val:

 min_val = heat[ix+1, iy]

 min_x = ix+1

 min_y = iy

 if heat[ix+1, iy+1] < min_val:

 min_val = heat[ix+1, iy+1]

 min_x = ix+1

80

 min_y = iy+1

 if heat[ix, iy+1] < min_val:

 min_val = heat[ix, iy+1]

 min_x = ix

 min_y = iy+1

 if heat[ix-1, iy+1] < min_val:

 min_val = heat[ix-1, iy+1]

 min_x = ix-1

 min_y = iy+1

 if heat[ix-1, iy] < min_val:

 min_val = heat[ix-1, iy]

 min_x = ix-1

 min_y = iy

 # (ix, iy) is a right side element

 elif ix == xdim-1 and iy > 0 and iy <

ydim-1:

 if heat[ix-1, iy-1] < min_val:

 min_val = heat[ix-1, iy-1]

 min_x = ix-1

 min_y = iy-1

 if heat[ix, iy-1] < min_val:

 min_val = heat[ix, iy-1]

 min_x = ix

 min_y = iy-1

 if heat[ix, iy+1] < min_val:

 min_val = heat[ix, iy+1]

 min_x = ix

 min_y = iy+1

 if heat[ix-1, iy+1] < min_val:

 min_val = heat[ix-1, iy+1]

 min_x = ix-1

 min_y = iy+1

 if heat[ix-1, iy] < min_val:

 min_val = heat[ix-1, iy]

 min_x = ix-1

 min_y = iy

 # (ix, iy) is a top side element

81

 elif ix > 0 and ix < xdim-1 and iy ==

ydim-1:

 if heat[ix-1, iy-1] < min_val:

 min_val = heat[ix-1, iy-1]

 min_x = ix-1

 min_y = iy-1

 if heat[ix, iy-1] < min_val:

 min_val = heat[ix, iy-1]

 min_x = ix

 min_y = iy-1

 if heat[ix+1, iy-1] < min_val:

 min_val = heat[ix+1, iy-1]

 min_x = ix+1

 min_y = iy-1

 if heat[ix+1, iy] < min_val:

 min_val = heat[ix+1, iy]

 min_x = ix+1

 min_y = iy

 if heat[ix-1, iy] < min_val:

 min_val = heat[ix-1, iy]

 min_x = ix-1

 min_y = iy

 # if successful

 # move to the square with the smaller value,

i_e_, call

 # compute_centroid on this new square

 # note the RETURNED x-y coords in the cen-

troid_x and

 # centroid_y matrix at the current location

 # return the RETURNED x-y coordinates

 if min_x != ix or min_y != iy:

 r_val = compute_centroid(min_x,

min_y)

 # if explicit is set show the exact con-

nected component

 # otherwise construct a connected compo-

nenent where all

 # nodes are connected to a centrol node

 if explicit:

82

 centroid_x[ix, iy] = min_x

 centroid_y[ix, iy] = min_y

 return {"bestx": min_x, "besty":

min_y}

 else:

 centroid_x[ix, iy] =

r_val['bestx']

 centroid_y[ix, iy] =

r_val['besty']

 return r_val

 else:

 centroid_x[ix, iy] = ix

 centroid_y[ix, iy] = iy

 return {"bestx": ix, "besty": iy}

 for i in range(xdim):

 for j in range(ydim):

 compute_centroid(i, j)

 return {"centroid_x": centroid_x, "centroid_y":

centroid_y}

 def compute_combined_clusters(self, heat, explicit,

rang):

 # compute the connected components

 centroids = self.compute_centroids(heat, ex-

plicit)

 # Get unique centroids

 unique_centroids =

self.get_unique_centroids(centroids)

 # Get distance from centroid to cluster ele-

ments for all centroids

 within_cluster_dist =

self.distance_from_centroids(centroids,

 unique_centroids,

 heat)

 # Get average pairwise distance between clus-

ters

 between_cluster_dist =

self.distance_between_clusters(centroids,

83

 unique_centroids,

 heat)

 # Get a boolean matrix of whether two compo-

nents should be combined

 combine_cluster_bools =

self.combine_decision(within_cluster_dist,

 between_cluster_dist,

 rang)

 # Create the modified connected components grid

 ne_centroid =

self.new_centroid(combine_cluster_bools,

 cen-

troids,

 unique_centroids)

 return ne_centroid

 def get_unique_centroids(self, centroids):

 """ get_unique_centroids -- a function that

computes a list of unique centroids from

 a matrix of cen-

troid locations.

 parameters:

 - centroids - a matrix of the centroid lo-

cations in the map

 """

 # get the dimensions of the map

 xdim = self.xdim

 ydim = self.ydim

 xlist = []

 ylist = []

 x_centroid = centroids['centroid_x']

 y_centroid = centroids['centroid_y']

 for ix in range(xdim):

 for iy in range(ydim):

 cx = x_centroid[ix, iy]

 cy = y_centroid[ix, iy]

84

 # Check if the x or y of the current centroid

is not in the list

 # and if not

 # append both the x and y coordinates to the

respective lists

 if not(cx in xlist) or not(cy in

ylist):

 xlist.append(cx)

 ylist.append(cy)

 # return a list of unique centroid positions

 return {"position_x": xlist, "position_y":

ylist}

 def distance_from_centroids(self, centroids,

unique_centroids, heat):

 """ distance_from_centroids -- A function to

get the average distance from

 centroid by

cluster.

 parameters:

 - centroids - a matrix of the centroid lo-

cations in the map

 - unique_centroids - a list of unique cen-

troid locations

 - heat - a unified distance matrix

 """

 centroids_x_positions =

unique_centroids['position_x']

 centroids_y_positions =

unique_centroids['position_y']

 within = []

 for i in range(len(centroids_x_positions)):

 cx = centroids_x_positions[i]

 cy = centroids_y_positions[i]

 # compute the average distance

 distance = self.cluster_spread(cx, cy,

np.matrix(heat), centroids)

 # append the computed distance to the list

of distances

 within.append(distance)

 return within

85

 def cluster_spread(self, x, y, umat, centroids):

 """ cluster_spread -- Function to calculate the

average distance in

 one cluster given one

centroid.

 parameters:

 - x - x position of a unique centroid

 - y - y position of a unique centroid

 - umat - a unified distance matrix

 - centroids - a matrix of the centroid lo-

cations in the map

 """

 centroid_x = x

 centroid_y = y

 sum = 0

 elements = 0

 xdim = self.xdim

 ydim = self.ydim

 centroid_weight = umat[centroid_x, centroid_y]

 for xi in range(xdim):

 for yi in range(ydim):

 cx = centroids['centroid_x'][xi, yi]

 cy = centroids['centroid_y'][xi, yi]

 if(cx == centroid_x and cy == cen-

troid_y):

 cweight = umat[xi, yi]

 sum = sum + abs(cweight - cen-

troid_weight)

 elements = elements + 1

 average = sum / elements

 return average

 def distance_between_clusters(self, centroids,

unique_centroids, umat):

 """ distance_between_clusters -- A function to

compute the average pairwise

 distance be-

tween clusters.

 parameters:

86

 - centroids - a matrix of the centroid lo-

cations in the map

 - unique_centroids - a list of unique cen-

troid locations

 - umat - a unified distance matrix

 """

 cluster_elements =

self.list_clusters(centroids, unique_centroids, umat)

 tmp_1 =

np.zeros(shape=(max([len(cluster_elements[i]) for i in

range(

 len(cluster_elements))]),

len(cluster_elements)))

 for i in range(len(cluster_elements)):

 for j in range(len(cluster_elements[i])):

 tmp_1[j, i] = cluster_elements[i][j]

 columns = tmp_1.shape[1]

 tmp =

np.matrix.transpose(np.array(list(combinations([i for i

in range(columns)], 2))))

 tmp_3 = np.zeros(shape=(tmp_1.shape[0],

tmp.shape[1]))

 for i in range(tmp.shape[1]):

 tmp_3[:, i] = np.where(tmp_1[:, tmp[1,

i]]*tmp_1[:, tmp[0, i]] != 0,

 abs(tmp_1[:,

tmp[0, i]]-tmp_1[:, tmp[1, i]]), 0)

 # both are not equals 0

 mean = np.true_divide(tmp_3.sum(0), (tmp_3 !=

0).sum(0))

 index = 0

 mat = np.zeros((columns, columns))

 for xi in range(columns-1):

 for yi in range(xi, columns-1):

 mat[xi, yi + 1] = mean[index]

 mat[yi + 1, xi] = mean[index]

 index = index + 1

87

 return mat

 def list_clusters(self, centroids, unique_centroids,

umat):

 """ list_clusters -- A function to get the

clusters as a list of lists.

 parameters:

 - centroids - a matrix of the centroid lo-

cations in the map

 - unique_centroids - a list of unique cen-

troid locations

 - umat - a unified distance matrix

 """

 centroids_x_positions =

unique_centroids['position_x']

 centroids_y_positions =

unique_centroids['position_y']

 cluster_list = []

 for i in range(len(centroids_x_positions)):

 cx = centroids_x_positions[i]

 cy = centroids_y_positions[i]

 # get the clusters associated with a unique cen-

troid and store it in a list

 clus-

ter_list.append(self.list_from_centroid(cx, cy, cen-

troids, umat))

 return cluster_list

 def list_from_centroid(self, x, y, centroids, umat):

 """ list_from_centroid -- A funtion to get all

cluster elements

 associated to one

centroid.

 parameters:

 - x - the x position of a centroid

 - y - the y position of a centroid

 - centroids - a matrix of the centroid lo-

cations in the map

 - umat - a unified distance matrix

 """

88

 centroid_x = x

 centroid_y = y

 xdim = self.xdim

 ydim = self.ydim

 cluster_list = []

 for xi in range(xdim):

 for yi in range(ydim):

 cx = centroids['centroid_x'][xi, yi]

 cy = centroids['centroid_y'][xi, yi]

 if(cx == centroid_x and cy == cen-

troid_y):

 cweight = np.matrix(umat)[xi,

yi]

 cluster_list.append(cweight)

 return cluster_list

 def combine_decision(self, within_cluster_dist, dis-

tance_between_clusters, rang):

 """ combine_decision -- A function that produc-

es a boolean matrix

 representing which

clusters should be combined.

 parameters:

 - within_cluster_dist - A list of the dis-

tances from centroid to cluster elements for all cen-

troids

 - distance_between_clusters - A list of

the average pairwise distance between clusters

 - range - The distance where the clusters

are merged together.

 """

 inter_cluster = distance_between_clusters

 centroid_dist = within_cluster_dist

 dim = inter_cluster.shape[1]

 to_combine = np.matrix([[False]*dim]*dim)

 for xi in range(dim):

 for yi in range(dim):

 cdist = inter_cluster[xi, yi]

 if cdist != 0:

 rx = centroid_dist[xi] * rang

 ry = centroid_dist[yi] * rang

89

 if (cdist < centroid_dist[xi] +

rx or

 cdist < centroid_dist[yi] +

ry):

 to_combine[xi, yi] = True

 return to_combine

 def new_centroid(self, bmat, centroids,

unique_centroids):

 """ new_centroid -- A function to combine cen-

troids based on matrix of booleans.

 parameters:

 - bmat - a boolean matrix containing the

centroids to merge

 - centroids - a matrix of the centroid lo-

cations in the map

 - unique_centroids - a list of unique cen-

troid locations

 """

 bmat_rows = bmat.shape[0]

 bmat_columns = bmat.shape[1]

 centroids_x = unique_centroids['position_x']

 centroids_y = unique_centroids['position_y']

 components = centroids

 for xi in range(bmat_rows):

 for yi in range(bmat_columns):

 if bmat[xi, yi]:

 x1 = centroids_x[xi]

 y1 = centroids_y[xi]

 x2 = centroids_x[yi]

 y2 = centroids_y[yi]

 components =

self.swap_centroids(x1, y1, x2, y2, components)

 return components

 def swap_centroids(self, x1, y1, x2, y2, centroids):

 """ swap_centroids -- A function that changes

every instance of a centroid to

 one that it should be

combined with.

 parameters:

90

 - centroids - a matrix of the centroid lo-

cations in the map

 """

 xdim = self.xdim

 ydim = self.ydim

 compn_x = centroids['centroid_x']

 compn_y = centroids['centroid_y']

 for xi in range(xdim):

 for yi in range(ydim):

 if compn_x[xi, 0] == x1 and

compn_y[yi, 0] == y1:

 compn_x[xi, 0] = x2

 compn_y[yi, 0] = y2

 return {"centroid_x": compn_x, "centroid_y":

compn_y}

 def embed(self, conf_int=.95, verb=False, ks=False):

 """ embed -- evaluate the embedding of a map

using the F-test and

 a Bayesian estimate of the vari-

ance in the training data.

 parameters:

 - conf_int - the confidence interval of

the convergence test (default 95%)

 - verb - switch that governs the return

value false: single convergence value

 is returned, true: a vector of

individual feature congences is returned.

 - return value:

 - return is the cembedding of the map

(variance captured by the map so far)

 Hint:

 the embedding index is the variance

of the training data captured by the map;

 maps with convergence of less than

90% are typically not trustworthy. Of course,

 the precise cut-off depends on the

noise level in your training data.

 """

 if ks:

 return self.embed_ks(conf_int, verb)

91

 else:

 return self.embed_vm(conf_int, verb)

 def embed_ks(self, conf_int=0.95, verb=False):

 """ embed_ks -- using the kolgomorov-smirnov

test """

 # map_df is a dataframe that contains the neu-

rons

 map_df = self.neurons

 # data_df is a dataframe that contain the

training data

 data_df = np.array(self.data)

 nfeatures = map_df.shape[1]

 # use the Kolmogorov-Smirnov Test to test

whether the neurons and training

 # data appear

 # to come from the same distribution

 ks_vector = []

 for i in range(nfeatures):

 ks_vector.append(stats.mstats.ks_2samp(map_df[:, i],

data_df[:, i]))

 prob_v = self.significance(graphics=False)

 var_sum = 0

 # compute the variance captured by the map

 for i in range(nfeatures):

 # the second entry contains the p-value

 if ks_vector[i][1] > (1 - conf_int):

 var_sum = var_sum + prob_v[i]

 else:

 # not converged - zero out the proba-

bility

 prob_v[i] = 0

 # return the variance captured by converged

features

 if verb:

 return prob_v

 else:

 return var_sum

92

 def embed_vm(self, conf_int=.95, verb=False):

 """ embed_vm -- using variance and mean tests

"""

 # map_df is a dataframe that contains the neu-

rons

 map_df = self.neurons

 # data_df is a dataframe that contain the

training data

 data_df = np.array(self.data)

 def df_var_test(df1, df2, conf=.95):

 if df1.shape[1] != df2.shape[1]:

 sys.exit("df_var_test: cannot compare

variances of data frames")

 # init our working arrays

 var_ratio_v = [randint(1, 1) for _ in

range(df1.shape[1])]

 var_confintlo_v = [randint(1, 1) for _ in

range(df1.shape[1])]

 var_confinthi_v = [randint(1, 1) for _ in

range(df1.shape[1])]

 def var_test(x, y, ratio=1,

conf_level=0.95):

 DF_x = len(x) - 1

 DF_y = len(y) - 1

 V_x = stat.variance(x.tolist())

 V_y = stat.variance(y.tolist())

 ESTIMATE = V_x / V_y

 BETA = (1 - conf_level) / 2

 CINT = [ESTIMATE / f.ppf(1 - BETA,

DF_x, DF_y),

 ESTIMATE / f.ppf(BETA,

DF_x, DF_y)]

 return {"estimate": ESTIMATE,

"conf_int": CINT}

93

 # compute the F-test on each feature in our

populations

 for i in range(df1.shape[1]):

 t = var_test(df1[:, i], df2[:, i],

conf_level=conf)

 var_ratio_v[i] = t['estimate']

 var_confintlo_v[i] = t['conf_int'][0]

 var_confinthi_v[i] = t['conf_int'][1]

 # return a list with the ratios and conf

intervals for each feature

 return {"ratio": var_ratio_v,

 "conf_int_lo": var_confintlo_v,

 "conf_int_hi": var_confinthi_v}

 def df_mean_test(df1, df2, conf=0.95):

 if df1.shape[1] != df2.shape[1]:

 sys.exit("df_mean_test: cannot com-

pare means of data frames")

 # init our working arrays

 mean_diff_v = [randint(1, 1) for _ in

range(df1.shape[1])]

 mean_confintlo_v = [randint(1, 1) for _ in

range(df1.shape[1])]

 mean_confinthi_v = [randint(1, 1) for _ in

range(df1.shape[1])]

 def t_test(x, y, conf_level=0.95):

 estimate_x = np.mean(x)

 estimate_y = np.mean(y)

 cm =

sms.CompareMeans(sms.DescrStatsW(x), sms.DescrStatsW(y))

 conf_int_lo =

cm.tconfint_diff(alpha=1-conf_level, usevar='unequal')[0]

 conf_int_hi =

cm.tconfint_diff(alpha=1-conf_level, usevar='unequal')[1]

 return {"estimate": [estimate_x, es-

timate_y],

 "conf_int": [conf_int_lo,

conf_int_hi]}

 # compute the F-test on each feature in

our populations

94

 for i in range(df1.shape[1]):

 t = t_test(x=df1[:, i], y=df2[:, i],

conf_level=conf)

 mean_diff_v[i] = t['estimate'][0] -

t['estimate'][1]

 mean_confintlo_v[i] =

t['conf_int'][0]

 mean_confinthi_v[i] =

t['conf_int'][1]

 # return a list with the ratios and conf

intervals for each feature

 return {"diff": mean_diff_v,

 "conf_int_lo": mean_confintlo_v,

 "conf_int_hi": mean_confinthi_v}

 # do the F-test on a pair of datasets

 vl = df_var_test(map_df, data_df, conf_int)

 # do the t-test on a pair of datasets

 ml = df_mean_test(map_df, data_df,

conf=conf_int)

 # compute the variance captured by the map --

 # but only if the means have converged as well.

 nfeatures = map_df.shape[1]

 prob_v = self.significance(graphics=False)

 var_sum = 0

 for i in range(nfeatures):

 if (vl['conf_int_lo'][i] <= 1.0 and

vl['conf_int_hi'][i] >= 1.0 and

 ml['conf_int_lo'][i] <= 0.0 and

ml['conf_int_hi'][i] >= 0.0):

 var_sum = var_sum + prob_v[i]

 else:

 # not converged - zero out the proba-

bility

 prob_v[i] = 0

 # return the variance captured by converged

features

 if verb:

 return prob_v

 else:

 return var_sum

95

 def topo(self, k=50, conf_int=.95, verb=False, in-

terval=True):

 """ topo -- measure the topographic accuracy of

the map using sampling

 parameters:

 - k - the number of samples used for the

accuracy computation

 - conf_int - the confidence interval of

the accuracy test (default 95%)

 - verb - switch that governs the return

value, false: single accuracy value

 is returned, true: a vector of

individual feature accuracies is returned.

 - interval - a switch that controls wheth-

er the confidence interval is computed.

 - return value is the estimated topograph-

ic accuracy

 """

 # data.df is a matrix that contains the train-

ing data

 data_df = self.data

 if (k > data_df.shape[0]):

 sys.exit("topo: sample larger than train-

ing data.")

 data_sample_ix = [randint(1, data_df.shape[0])

for _ in range(k)]

 # compute the sum topographic accuracy - the

accuracy of a single sample

 # is 1 if the best matching unit is a neighbor

otherwise it is 0

 acc_v = []

 for i in range(k):

 acc_v.append(self.accuracy(data_df.iloc[data_sample_

ix[i]-1], data_sample_ix[i]))

 # compute the confidence interval values using

the bootstrap

 if interval:

96

 bval = self.bootstrap(conf_int, data_df,

k, acc_v)

 # the sum topographic accuracy is scaled by the

number of samples -

 # estimated

 # topographic accuracy

 if verb:

 return acc_v

 else:

 val = np.sum(acc_v)/k

 if interval:

 return {'val': val, 'lo': bval['lo'],

'hi': bval['hi']}

 else:

 return val

 def bootstrap(self, conf_int, data_df, k, sam-

ple_acc_v):

 """ bootstrap -- compute the topographic accu-

racies for the given confidence interval """

 ix = int(100 - conf_int*100)

 bn = 200

 bootstrap_acc_v = [np.sum(sample_acc_v)/k]

 for i in range(2, bn+1):

 bs_v = np.array([randint(1, k) for _ in

range(k)])-1

 a =

np.sum(list(np.array(sample_acc_v)[list(bs_v)]))/k

 bootstrap_acc_v.append(a)

 bootstrap_acc_sort_v = np.sort(bootstrap_acc_v)

 lo_val = bootstrap_acc_sort_v[ix-1]

 hi_val = bootstrap_acc_sort_v[bn-ix-1]

 return {'lo': lo_val, 'hi': hi_val}

 def accuracy(self, sample, data_ix):

 """ accuracy -- the topographic accuracy of a

single sample is 1 is the best matching unit

 and the second best matching

unit are are neighbors otherwise it is 0

97

 """

 o = self.best_match(sample, full=True)

 best_ix = o[0]

 second_best_ix = o[1]

 # sanity check

 coord = self.coordinate(best_ix)

 coord_x = coord[0]

 coord_y = coord[1]

 map_ix = self.visual[data_ix-1]

 coord = self.coordinate(map_ix)

 map_x = coord[0]

 map_y = coord[1]

 if (coord_x != map_x or coord_y != map_y or

best_ix != map_ix):

 print("Error: best_ix: ", best_ix, "

map_ix: ", map_ix, "\n")

 # determine if the best and second best are

neighbors on the map

 best_xy = self.coordinate(best_ix)

 second_best_xy =

self.coordinate(second_best_ix)

 diff_map = np.array(best_xy) -

np.array(second_best_xy)

 diff_map_sq = diff_map * diff_map

 sum_map = np.sum(diff_map_sq)

 dist_map = np.sqrt(sum_map)

 # it is a neighbor if the distance on the map

 # between the bmu and 2bmu is less than 2,

should be 1 or 1.414

 if dist_map < 2:

 return 1

 else:

 return 0

 def best_match(self, obs, full=False):

 """ best_match -- given observation obs, return

the best matching neuron """

 # NOTE: replicate obs so that there are nr rows

of obs

98

 obs_m = np.tile(obs, (self.neurons.shape[0],

1))

 diff = self.neurons - obs_m

 squ = diff * diff

 s = np.sum(squ, axis=1)

 d = np.sqrt(s)

 o = np.argsort(d)

 if full:

 return o

 else:

 return o[0]

 def significance(self, graphics=True, fea-

ture_labels=False):

 """ significance -- compute the relative sig-

nificance of each feature and plot it

 parameters:

 - graphics - a switch that controls wheth-

er a plot is generated or not

 - feature_labels - a switch to allow the

plotting of feature names vs feature indices

 return value:

 - a vector containing the significance for

each feature

 """

 data_df = self.data

 nfeatures = data_df.shape[1]

 # Compute the variance of each feature on the

map

 var_v = [randint(1, 1) for _ in

range(nfeatures)]

 for i in range(nfeatures):

 var_v[i] = np.var(np.array(data_df)[:, i])

 # we use the variance of a feature as likelihood

of

 # being an important feature, compute the Bayes-

ian

 # probability of significance using uniform pri-

ors

99

 var_sum = np.sum(var_v)

 prob_v = var_v/var_sum

 # plot the significance

 if graphics:

 y = max(prob_v)

 plt.axis([0, nfeatures+1, 0, y])

 x = np.arange(1, nfeatures+1)

 tag = list(data_df)

 plt.xticks(x, tag)

 plt.yticks = np.linspace(0, y, 5)

 i = 1

 for xc in prob_v:

 plt.axvline(x=i, ymin=0, ymax=xc)

 i += 1

 plt.xlabel('Features')

 plt.ylabel('Significance')

 plt.show()

 else:

 return prob_v

 def projection(self):

 """ projection -- print the association of la-

bels with map elements

 parameters:

 return values:

 - a dataframe containing the projection

onto the map for each observation

 """

 labels_v = self.labels

 x_v = []

 y_v = []

 for i in range(len(labels_v)):

 ix = self.visual[i]

 coord = self.coordinate(ix)

 x_v.append(coord[0])

 y_v.append(coord[1])

100

 return pd.DataFrame({'labels': labels_v, 'x':

x_v, 'y': y_v})

 def neuron(self, x, y):

 """ neuron -- returns the contents of a neuron

at (x,y) on the map as a vector

 parameters:

 - x - map x-coordinate of neuron

 - y - map y-coordinate of neuron

 return value:

 - a vector representing the neuron

 """

 ix = self.rowix(x, y)

 return self.neurons[ix]

 def coordinate(self, rowix):

 """ coordinate -- convert from a row index to a

map xy-coordinate """

 x = (rowix) % self.xdim

 y = (rowix) // self.xdim

 return [x, y]

 def rowix(self, x, y):

 """ rowix -- convert from a map xy-coordinate

to a row index """

 rix = x + y*self.xdim

 return rix

 def smooth_2d(self, Y, ind=None, weight_obj=None,

grid=None, nrow=64, ncol=64, surface=True, theta=None):

 """ smooth_2d -- Kernel Smoother For Irregular

2-D Data """

 def exp_cov(x1, x2, theta=2, p=2, distMat=0):

 x1 = x1*(1/theta)

 x2 = x2*(1/theta)

 distMat = euclidean_distances(x1, x2)

 distMat = distMat**p

 return np.exp(-distMat)

 NN = [[1]*ncol] * nrow

101

 grid = {'x': [i for i in range(nrow)], "y": [i

for i in range(ncol)]}

 if weight_obj is None:

 dx = grid['x'][1] - grid['x'][0]

 dy = grid['y'][1] - grid['y'][0]

 m = len(grid['x'])

 n = len(grid['y'])

 M = 2 * m

 N = 2 * n

 xg = []

 for i in range(N):

 for j in range(M):

 xg.extend([[j, i]])

 xg = np.matrix(xg)

 center = []

 center.append([int(dx * M/2-1), int((dy *

N)/2-1)])

 out = exp_cov(xg,

np.matrix(center),theta=theta)

 out = np.matrix.transpose(np.reshape(out,

(N, M)))

 temp = np.zeros((M, N))

 temp[int(M/2-1)][int(N/2-1)] = 1

 wght = np.fft.fft2(out)/(np.fft.fft2(temp)

* M * N)

 weight_obj = {"m": m, "n": n, "N": N, "M":

M, "wght": wght}

 temp = np.zeros((weight_obj['M'],

weight_obj['N']))

 temp[0:m, 0:n] = Y

 temp2 = np.fft.ifft2(np.fft.fft2(temp) *

weight_obj['wght']).real[0:weight_obj['m'],

 0:weight_obj['n']]

 temp = np.zeros((weight_obj['M'],

weight_obj['N']))

 temp[0:m, 0:n] = NN

 temp3 = np.fft.ifft2(np.fft.fft2(temp) *

102

weight_obj['wght']).real[0:weight_obj['m'],

 0:weight_obj['n']]

 return temp2/temp3

103

LIST OF REFERENCE

[1] R Core Team, R: A Language and Environment for Statistical Computing. Vienna,

Austria, R Foundation for Statistical Computing, 2017.

[2] Guido van Rossum, Python Programming Language, 2014.

[3] T. Kohonen, Self-organizing maps, Third edition.. ed. Berlin ; New York, Berlin ;

New York : Springer, 2001.

[4] G.T. Breard, "Evaluating self-organizing map quality measures as convergence

criteria," Evaluating SOM quality measuresThesis (M.S.)--University of Rhode Island,

2017 2017.

[5] B.H. Ott, "A convergence criterion for self-organizing

maps,"DigitalCommons@URI 2012.

[6] V. Moosavi, S. Packmann and I. Vallés, "A python library for self organizing map

(SOM),", 1/17/ 2018.

[7] Peter Wittek, Shi Chao Gao, Ik Soo Lim and Li Zhao, "Somoclu: An ecient paral-

lel library for self-organizing maps,", 5/7/ 2013.

[8] Lutz Hamel, Benjamin Ott, Greg Breard,Robert Tatoian, Vishakh Gopu, "Pop-

som,", vol. 4.2 2017.

[9] L. Hamel, SOM Quality Measures An Efficient Statistical

Approach, 2017.

[10] Anonymous UCI machine learning repository: Iris data set [Online]. available:

http://archive.ics.uci.edu/ml/datasets/Iris. 2018

[11] Anonymous UCI machine learning repository: Seeds Data Set [Online]. available:

http://archive.ics.uci.edu/ml/datasets/seeds. 2018

[12] H. Yin and N.M. Allinson, "On the distribution and convergence of feature space

in self-organizing maps," Neural Comput., vol. 7, no. 6, pp. 1178-1187 1995.

[13] R. Mayer, R. Neumayer, D. Baum and A. Rauber, "Analytic comparison of self-

organising maps," Advances in Self-Organizing Maps, pp. 182-190 2009.

[14] G. Pölzlbauer, Survey and comparison of quality measures for self-organizing

maps, na, 2004.

http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/seeds

104

[15] L. Hamel and B. Ott, "A population based convergence criterion for self-

organizing maps," in Proceedings of the International Conference on Data Mining

(DMIN), 2012, pp. 1.

[16] M.L. Rizzo, Statistical computing with R. Boca Raton [u.a.], Chapman &

Hall/CRC, 2008.

[17] P. Goldsborough, "A tour of TensorFlow," 2016.

[18] A. Ohri, Python for R Users. Somerset, John Wiley & Sons, Incorporated, 2017.

[19] Anonymous Student's T-Test [Online]. available:

https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.test. 2018

[20] Eric Jones, Travis Oliphant and Pearu Peterson. (-). Open source scientific tools

for Python [Online]. available: http://www.scipy.org/. 2018

[21] Anonymous Python statsmodels [Online]. available:

http://www.statsmodels.org/stable/index.html. 2018

[22] Anonymous Var Test [Online]. available:

https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/var.test. 2018

[23] Anonymous Python Statistics [Online]. available:

https://docs.python.org/3/library/statistics.html. 2018

[24] Anonymous Python Scipy [Online]. available: https://www.scipy.org/. 2018

[25] Anonymous Kernel Smoother For Irregular 2-D Data [Online]. available:

https://www.rdocumentation.org/packages/fields/versions/9.0/topics/smooth.2d. 2018

[26] Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B.

and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V.

and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M.

and Duchesnay, E., "Scikit-learn: Machine learning in python," Journal of Machine

Learning Research, vol. 12, pp. 2830 2011.

[27] M. Abadi and Luca Cardelli, A Theory of Objects, Springer Verlag, 1998.

[28] K. Pearson. On Lines and Planes of Closest Fit to Systems of Points in Space.

Philosophical Magazine. pp. 559–572.

[29] Magnus H-S Dahle, "A quick guide on how to use the fortran-to-python (F2PY)

module,", Feb. 2015.

https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.test
http://www.scipy.org/
http://www.statsmodels.org/stable/index.html
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/var.test
https://docs.python.org/3/library/statistics.html
https://www.scipy.org/
https://www.rdocumentation.org/packages/fields/versions/9.0/topics/smooth.2d

105

[30] I. Miller, John E. Freund's mathematical statistics with applications, 7th ed. / Ir-

win Miller, Marylees Miller.. ed. Upper Saddle River, NJ, Upper Saddle River, NJ :

Prentice Hall, 2004.

106

BIBLIOGRAPHY

"Discrete Fourier Transform," , accessed 1/31/,

2018, https://docs.scipy.org/doc/numpy/reference/routines.fft.html.

"Fortran Pgoramming Language," , accessed 1/31/,

2018, https://en.wikipedia.org/wiki/Fortran.

"Kernel Smoother For Irregular 2-D Data," , accessed 1/30/,

2018, https://www.rdocumentation.org/packages/fields/versions/9.0/topics/smo

oth.2d.

"Math — Mathematical functions," , accessed 1/29/,

2018, https://docs.python.org/3/library/math.html.

"MinGW," , accessed 2/1/, 2018, https://en.wikipedia.org/wiki/MinGW#MinGW-w64.

"numpy.mean," , accessed 1/30/, 2018, https://docs.scipy.org/doc/numpy-

1.13.0/reference/generated/numpy.mean.html.

"PYPI Python Package Index," , accessed 2/7/, 2018, https://pypi.python.org/pypi.

"Python Keywords and Identifier," , accessed 1/29/,

2018, https://www.programiz.com/python-programming/keywords-identifier.

"Python Scipy," , accessed 1/30/, 2018, https://www.scipy.org/.

"Python Statistics," , accessed 1/30/,

2018, https://docs.python.org/3/library/statistics.html.

"Python statsmodels," , accessed 1/30/,

2018, http://www.statsmodels.org/stable/index.html.

"Python Statsmodels CompareMeans," , accessed 1/30/,

2018, http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.

CompareMeans.html.

https://docs.scipy.org/doc/numpy/reference/routines.fft.html
https://en.wikipedia.org/wiki/Fortran
https://www.rdocumentation.org/packages/fields/versions/9.0/topics/smooth.2d
https://www.rdocumentation.org/packages/fields/versions/9.0/topics/smooth.2d
https://docs.python.org/3/library/math.html
https://en.wikipedia.org/wiki/MinGW#MinGW-w64
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.mean.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.mean.html
https://pypi.python.org/pypi
https://www.programiz.com/python-programming/keywords-identifier
https://www.scipy.org/
https://docs.python.org/3/library/statistics.html
http://www.statsmodels.org/stable/index.html
http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.CompareMeans.html
http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.CompareMeans.html

107

"Python Statsmodels DescrStatsW," , accessed 1/30/,

2018, http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.

DescrStatsW.html.

"Reserved Words in R," , accessed 1/29/, 2018, https://stat.ethz.ch/R-manual/R-

devel/library/base/html/Reserved.html.

"Scikit-learn," , accessed 1/31/, 2018, http://scikit-learn.org/stable/.

"Student's t-test," , accessed 1/30/, 2018, https://en.wikipedia.org/wiki/Student%27s_t-

test.

"Student's T-Test," , accessed 1/30/,

2018, https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.te

st.

"UCI machine learning repository: Iris data set," , accessed Jan,16th,

2018, http://archive.ics.uci.edu/ml/datasets/Iris.

"UCI machine learning repository: Seeds Data Set," , accessed 2/3/,

2018, http://archive.ics.uci.edu/ml/datasets/seeds.

"UCI machine learning repository: Wine data set," , accessed Jan,16th,

2018, http://archive.ics.uci.edu/ml/datasets/Wine.

"UCI machine learning repository: Wine Quality Data Set " , accessed 2/2/,

2018, http://archive.ics.uci.edu/ml/datasets/Wine+Quality.

"Var Test," , accessed 1/30/,

2018, https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/var

.test.

M. Abadi and Luca Cardelli, A Theory of Objects:Springer Verlag, 1998.

G. T. Breard, "Evaluating self-organizing map quality measures as convergence crite-

ria,"Thesis (M.S.)--University of Rhode Island, 2017, , 2017.

http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.DescrStatsW.html
http://www.statsmodels.org/dev/generated/statsmodels.stats.weightstats.DescrStatsW.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html
http://scikit-learn.org/stable/
https://en.wikipedia.org/wiki/Student%27s_t-test
https://en.wikipedia.org/wiki/Student%27s_t-test
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.test
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/t.test
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/seeds
http://archive.ics.uci.edu/ml/datasets/Wine
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/var.test
https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/var.test

108

D. H. Brown, Cartogram data projection for self-organizing

maps:DigitalCommons@URI, 2012.

Y. Cheng, Neural Computation 1997.

P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, Modeling wine preferences

by data mining from physicochemical properties 2009.

Eric Jones, Travis Oliphant and Pearu Peterson, "Open source scientific tools for Py-

thon," , accessed 1/30/, 2018, http://www.scipy.org/.

P. Goldsborough. "A Tour of TensorFlow." . 2016.

Guido van Rossum, Python Programming Language 2014.

L. Hamel, SOM Quality Measures An Efficient Statistical

Approach 2017.

L. Hamel and C. Brown, Practical Tools for Self-Organizing Maps.

L. Hamel and B. Ott, "A population based convergence criterion for self-organizing

maps," in Proceedings of the International Conference on Data Mining

(DMIN): The Steering Committee of The World Congress in Computer Sci-

ence, Computer Engineering and Applied Computing (WorldComp)2012, pp. 1.

T. Kohonen, Self-organizing maps, Third edition.. ed. Berlin ; New York:Berlin ; New

York : Springer, 2001.

E. Loh. "The Ideal HPC Programming Language." Queue, vol. 8, no. 6 , pp. 30-38,

Jun 1,. 2010.

doi:10.1145/1810226.1820518. http://dl.acm.org/citation.cfm?id=1820518.

Magnus H-S Dahle, A Quick Guide on How to Use the Fortran-to-Python (F2PY)

Module.

Małgorzata Charytanowicz, Jerzy Niewczas, Piotr A. Kowalski, Piotr Kulczycki,

Szymon Łukasik, and Sławomir Z. ak, A Complete Gradient Clustering Algo-

rithm for Features Analysis of X-ray Images.

http://www.scipy.org/
http://dl.acm.org/citation.cfm?id=1820518

109

R. Mayer, R. Neumayer, D. Baum, and A. Rauber. "Analytic comparison of self-

organising maps." Advances in Self-Organizing Maps, pp. 182-190. 2009.

I. Miller, John E. Freund's mathematical statistics with applications, 7th ed. / Irwin Miller,

Marylees Miller.. ed. Upper Saddle River, NJ:Upper Saddle River, NJ : Prentice

Hall, 2004.

V. Moosavi, S. Packmann, and I. Vallés, A Python Library for Self Organizing Map

(SOM).

A. Ohri, Python for R Users. Somerset:John Wiley & Sons, Incorporated, 2017.

K. Pearson. "On Lines and Planes of Closest Fit to Systems of Points in

Space." Philosophical Magazine, pp. 559–572. 1908.

Pearu Peterson, "F2PY Users Guide and Reference Manual," , accessed 2/1/,

2018, https://docs.scipy.org/doc/numpy-dev/f2py/.

Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and

Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V.

and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and

Perrot, M. and Duchesnay, E. "Scikit-learn: Machine Learning in Py-

thon." Journal of Machine Learning Research, vol. 12, pp. 2830. 2011.

Peter Wittek, Shi Chao Gao, Ik Soo Lim, and Li Zhao, Somoclu: An Ecient Parallel

Library for Self-Organizing Maps.

G. Pölzlbauer, Survey and comparison of quality measures for self-organizing

maps:na, 2004.

R Core Team, R: A Language and Environment for Statistical Computing. Vienna,

Austria:R Foundation for Statistical Computing, 2017.

M. L. Rizzo, Statistical computing with R. Boca Raton [u.a.]:Chapman & Hall/CRC,

2008.

N. J. Salkind, "Encyclopedia of research design," Sage.

Yan Jun, R-based SOM Package. https://github.com/cran/som.

https://docs.scipy.org/doc/numpy-dev/f2py/
https://github.com/cran/som

110

H. Yin and N. M. Allinson. "On the distribution and convergence of feature space in

self-organizing maps." Neural Comput., vol. 7, no. 6 , pp. 1178-1187. 1995.

	Implementation of Self-Organizing Maps with Python
	Terms of Use
	Recommended Citation

	_

