
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

2018 

Network Data Analysis of Word Graphs With Applications to Network Data Analysis of Word Graphs With Applications to 

Authorship Attribution Authorship Attribution 

Timothy Leonard 
University of Rhode Island, timothy_leonard@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Leonard, Timothy, "Network Data Analysis of Word Graphs With Applications to Authorship Attribution" 
(2018). Open Access Master's Theses. Paper 1259. 
https://digitalcommons.uri.edu/theses/1259 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1259?utm_source=digitalcommons.uri.edu%2Ftheses%2F1259&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


NETWORK DATA ANALYSIS OF WORD GRAPHS WITH APPLICATIONS

TO AUTHORSHIP ATTRIBUTION

BY

TIMOTHY LEONARD

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2018



MASTER OF SCIENCE THESIS

OF

TIMOTHY LEONARD

APPROVED:

Thesis Committee:

Major Professor Noah Daniels

Natallia Katenka

Lutz Hamel

Lubos Thoma

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2018



ABSTRACT

Network data analysis is an emerging area of study that applies quantitative

analysis to complex data from a variety of application fields. Methods used in

network data analysis enable visualization of relational data in the form of graphs

and also yield descriptive characteristics and predictive graph models. This thesis

shows that a representation of text as a word graph produces the well documented

feature sets used in authorship attribution tasks such as the word frequency model

and the part-of-speech (POS) bigram model. This thesis applies nominal assor-

tativity of parts of speech, a network data characteristic of word graphs, to the

problem of authorship attribution and shows how these features are produced from

a word graph model. Specifically, it is shown that the nominal assortative mixture

of parts of speech, a statistic that measures the tendency of words of the same

POS in a word network to be connected by an edge, produces a feature set that

can be used to predict authorship. These results are compared to the POS bigram

model, a highly accurate authorship attribution model, and show that the nominal

assortativity model is competitive. Analysis of these models along with word graph

characteristics provides insights into the English language. Particularly, analysis

of the nominal assortative mixture of parts of speech reveals regular structural

properties of English grammar.
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1 Introduction [1]

Attempts to quantitatively evaluate writing date as early as the 19th century

with studies on Shakespeare’s plays [3]. By the mid 20th century Bayesian statis-

tical analysis was applied to a small set of common words to speculate over the

authorship of the Federalist Papers [3] [4]. The problem of authorship attribution

falls into the domain of natural language processing (NLP) and includes uncover-

ing plagiarism, determining ghost-writership and pen names, and speculating over

the authorship of unsigned supreme court decisions or anonymous blogs [5] [6]. As

is the case with most data applications in the 21st century, there is a wealth of

written data: large online text resources, blogs, community message boards such

as Twitter, Reddit, and Facebook, and traditional print sources such as newspa-

pers and books. Not surprisingly, there are a multitude of models designed to

classify authorship. These models are often quite complex both theoretically and

computationally and do not produce straightforward descriptions of language. The

network analysis techniques outlined in this paper are straightforward and provide

interesting descriptions of the English language. The purpose of this article is

to replicate a part-of-speech bigram model that has been used with prior success

at authorship prediction [6] [7] and show that it is part of a larger word-network

model [8]. From this network model, network data analysis allows us to observe

structural regularities of English grammar.

The part-of-speech (POS) bigram model is described as frequencies of pairs of

consecutive parts of speech in a sentence. For instance the sentence “the dog ate”

comprises two POS bigrams: a determiner and noun pair, and a noun and verb

pair. There are 36 parts of speech identified by the Penn Treebank. The Cartesian

product of these 36 parts of speech is the POS bigram feature set.

One desirable trait of the POS bigram model is its reduced feature space.
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In contrast to the 36 parts of speech, there are hundreds of thousands of English

words. While modern technology can manage large volumes of data faster than ever

before, and machine learning techniques such as random forests, support vector

machines (SVMs), and neural networks can handle numerous dimensions efficiently,

the high dimensionality of language data requires transformation or reduction of

the data to manage dimensionality [6] [7] [9]. The POS bigram model enables

speedy analysis of the English language through a reduced yet informative feature

space.
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2 Literature Review [1]

To compensate for high dimensionality it is common to target a single charac-

teristic of language for inclusion in a feature set, ignoring others. Broadly speaking

there are two types of authorship attribution models: those that model the text’s

content and those that model its structure [6] [7]. Content models encompass topi-

cal information such as word frequencies. Stylometric models capture the structure

of a language such as the frequency of POS bigrams in a sentence.

Diedrich, et al. [6] applied support vector machines to the two categories of

models mentioned above in order to evaluate their authorship prediction perfor-

mance. The first model captured content by recording word frequencies. The sec-

ond model combined function-word frequencies with frequencies of POS bigrams

between tagged nouns, verbs, and adjectives. Diedrich, et al. regarded this as a

structural model since it modeled grammar [6].

Diedrich, et al. found that reducing content words to generic parts of

speech had a deleterious effect on accuracy. However, their method was a hy-

brid POS/word frequency model and represented POS bigrams incompletely [6].

Hirst and Feiguina, on the other hand, found that a POS bigram model could

discern accurately between Charlotte and Emily Bronte, sisters whose writing is

known to be difficult to distinguish from each other’s [7]. We present a model that

offers a more complete representation of POS bigrams than those of Diedrich, et al.

and Hirst, et al., and is also highly predictive of authorship, validating Hirst and

Feiguina’s conclusions and justifying a deeper analysis of the POS bigram model.

As a vehicle for our analysis, this paper examines the nominal assortative

mixture of English parts of speech and applies the results to the problem of au-

thorship attribution. Nominal assortative mixture measures the selective linking,

by attribute, of vertices in a network model [10] [11]. In a word-network model,
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words are vertices and edges occur between sequential words that appear in a sam-

ple of writing. To calculate nominal assortativity of parts of speech and generate

a feature set for authorship attribution tasks, each vertex has as an attribute a

part of speech that can be compared to other vertices. The nominal assortative

mixture coefficients for parts of speech derive directly from the POS bigram model

which is part of this more complex word-network model.

Previous research applying network data analysis to authorship attribution

has not revealed network statistics to have predictive value 1. In 2006 Antiqueira

et al. proposed applying network analysis to the problem of authorship attribution

adding the observation that some authors, while less than the majority represented

in the sample, cluster by network characteristic when plotted visually [13]. Re-

search on word graphs sought to discover predictive features using network data

analysis but did not include the part of speech as an attribute of a vertex. Lahiri

and Mihalcea showed that although descriptive characteristics such as transitiv-

ity, clustering coefficient, density, etc., are not significant predictors, they may be

beneficial when included alongside other features such as word frequencies [14].

Amancio et al. also concluded that word network characteristics could be used in

conjunction more traditional approaches by examining additional network charac-

teristics such as shortest path, betweeness, and intermittency but did not achieve

remarkable accuracy with any feature set created by a combination of 15 network

characteristics [15] [16]. Mihalcea and Radev measured degree assortativity which

measures the tendency for vertices of same degree to be connected by an edge [17],

as opposed to nominal assortativity which compares the attributes of a vertex.

1Marinho, Hirst, and Amancio report the results from various authorship attribution tech-
niques all with varying degree of success [12]. The problem with comparing accuracy results
across different experiments is the lack of control over experimental design. Different trials in-
clude different number of authors, different size text, in addition to different scoring techniques.
The bigram model proposed by Hirst and Feiguina achieved very high accuracy, but on only two
authors [7] [12].
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Foster et al. recognized the strongly negative degree assortativity when applying

the pearson corellation, however, also kept their discussion limited to degree-degree

assortativity [18]. These previous studies did not examine nominal assortativity

of parts of speech. We find that while not as powerful as the POS bigram model,

the POS assortiative mixture model is competitive at authorship prediction.

More to the purpose of this article, we offer a meaningful description of the

English language in a way other discussions on authorship attribution regularly

fail to produce. Neural networks are especially criticized for being “black box”

models because neuron weights hidden in multiple layers do not naturally cor-

respond to language features. Comparatively, while it may be natural to count

word frequencies, the feature set by itself does not offer intuition about language.

Zipf discovered that word frequency is inversely proportional to rank [19] [6] [20],

an empirical law [21] observable by plotting word frequencies in sorted order. In

simplified mathematical terms, the sum of the relative frequencies is the harmonic

series [21]. The application of Zipf’s law is an approximation, not all corpora follow

identical word frequency distributions, however, in general Zipf’s approximation

holds across languages including English and Chinese [22]. With the goal of con-

tinuing statistical insight into language, network data analysis provides an avenue

for further exploration of linguistic relationships.

By measuring the tendency for same parts of speech to collocate, the nominal

assortative mixture model offers a glimpse into the characteristics of English sty-

lometry. Assortative mixture captures fundamental language characteristics such

as what same parts of speech pairs do and do not regularly occur in writing. For in-

stance, we find that the determiner-noun pair is a disassortative bigram that occurs

often in the English language. These frequent diassortative pairs contribute to an

overall distribution of English parts of speech that is disassortative. However there
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are parts of speech that do exhibit assortative qualities such as adjective-adjective

pairs. As a feature set the nominal coefficients distinguish stylistic preferences

between authors, yet regularities across authors reveal a grammar “signature” for

the English language.

The rest of this paper is outlined as follows: We begin with a definition of

the authorship classification problem in Section 3.1 and a description of the data

in Section 3.2. In Section 3.3 we describe the network model. In Section 3.4

we show how the POS bigram model is constructed from the graph object, and

explain how to calculate the nominal assortativity coefficients from POS bigram

data. In section 4.1 we visualize the data, describe network characteristics such

as graph density, and discuss the relationship between nominal assortativity and

degree assortativity for word graphs. In Section 4.2 we report the model testing

results for authorship prediction and conclude with a brief discussion in Section 5.
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3 Methodology [1]
3.1 Authorship Attribution Problem Formulation

Authorship attribution is a classification problem. The authors of text are

the classes and their related works are represented as a feature set. The task is to

apply the feature set as a labeling function to accurately discern authorship given

labeled training data. While the first step is described in Sections 3.4, the second

step is formally presented as follows, given:

1. a universe X of n written works by m authors A = {A1, · · · , Am}, such that

for each author Ai|i ∈ {1, · · · ,m} there exists a vector A′
i = [ai1 , · · · , aik ],

where k is the number of works written by author Ai and aij is the jth work

by author Ai,

2. a sample S|S ⊂ X,

3. a target labeling function f(x) : S → A,

4. a labeled training set D, where D are all the pairs (x, y) such that x ∈ S

and y = f(x)

compute a function f̂(x) : S → A from D such that f̂(x) ' f(x) for all x in X.

In the above definition, the universe of written works X includes n written

works from m distinct authors. Each label ai corresponds to an author labeled

1 to m. Labels are applied to the sample S of X such that each data point

is labeled with a single author to produce training dataset D. Since the target

labeling function f(x) is not truly known and can be applied in retrospect only,

the function f̂(x) is an approximation of the original function f(x) [23].

3.2 Data

The data set analyzed included 5 authors chosen from a subset of the Guten-

berg data set made available by Michigan University [24]. The authors were Jerome

7



Klapka Jerome (1859-1927), Thomas Hardy (1840-1928), Sir Arthur Conan Doyle

(1859-1930), Jane Austen (1775-1817), and Nathaniel Hawthorne (1804-1864). For

each experiment each author was represented by 30 fixed length excerpts (between

125 and 10000 words) taken from their larger written works. Each sample was man-

ually pre-processed to remove the author‘s names, chapter titles, chapter numbers,

subtitles, author‘s notes, editor‘s notes, and extraneous syntax such as brackets

and asterisks. The main purpose of cleaning the data was to avoid speech tagger

errors and remove extraneous information.

3.3 Word-Network Model

A word-network model is a directed graph G=(V, E) with a set V of vertices

represented as unique words and a set E of edges, where elements of E are ordered

pairs u, v, or bigrams, of distinct words u, v ∈ V appearing consecutively within

sentences in a sample text. The direction of an edge is consistent with the order

in which two words occur within each sentence, but edges do not span from a

word that ends a sentence to one that begins the next. Each edge represents a

unique word bigram, and its weight corresponds to its frequency. The degree dv of

a vertex v, in a word graph G, counts the number of edges (bigrams) in E incident

upon v. By computing the out-degree of each vertex in G, one can construct the

word frequency model2 discussed in the introduction. Each vertex in a word graph

is attributed with its part of speech. By reducing the word graph G to a POS

graph Gp = (Vp, Ep), where a set Vp of vertices represent unique POSs and a set

Ep of directed edges represents unique POS bigrams, we can count edge weights

to produce the POS bigram frequency model.

The directed graph in Figure 1 represents the following sentences:

2it is necessary for calculating vertex degree to connect words that end a sentence to a dummy
end vertex.
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• The quick brown fox jumped over the lazy dog.

• A fox jumped over Sir Walters the lazy dog

The representation of text as a word graph produces the well documented

feature sets such as the word frequency model and the part-of-speech bigram model

used in authorship attribution tasks (see Table 1 and Table 2). Additionally, this

graph representation allows application of various network data analysis methods,

such as the reporting of network characteristics including degree distribution, graph

density, and nominal assortativity.

Figure 1. Two sentences represented as a directed word graph. Each vertex is a
word attributed with the part of speech in the form word/POS. The direction of an
edge is consistent with the order of the words written.

3.4 Feature Sets

In this section we take a closer look at word graph analysis and the part-of-

speech bigram model as tools for feature set selection for authorship authentication

and outlook for the structure of English grammar.

Part of Speech Bigrams

POS bigrams represent adjacency between two consecutive parts of speech as

described in Section 3.3. POS bigram frequencies are derived from the word graph

representation in Table 2. The feature set includes 34 of 36 Penn Treebank parts

9



Table 1. Word bigram matrix of the two example sentences.

the a quick brown fox jumped over Sir Walters lazy dog
the/DT 0 0 1 0 0 0 0 0 0 1 0
a/DT 0 0 0 0 1 0 0 0 0 0 0

quick/JJ 0 0 0 1 0 0 0 0 0 0 0
brown/JJ 0 0 0 0 1 0 0 0 0 0 0
fox/NN 0 0 0 0 0 1 0 0 0 0 0

jumped/VBD 0 0 0 0 0 0 1 0 0 0 0
over/IN 0 0 0 0 0 0 0 1 0 0 0
Sir/NNP 0 0 0 0 0 0 0 0 1 0 0

Walters/NNP 1 0 0 0 0 0 0 0 0 0 0
lazy/JJ 0 0 0 0 0 0 0 0 0 0 1
dog/NN 0 0 0 0 0 0 0 0 0 0 0

Table 2. POS bigram matrix of the two example sentences.
DT JJ NN VBD IN NNP

DT 0 2 1 0 0 0
JJ 0 1 2 0 0 0
NN 0 0 0 1 0 0

VBD 0 0 0 0 1 0
IN 1 0 0 0 0 1

NNP 1 0 0 0 0 1

of speech.3 Hence, the resulting feature space is a 1156 (34 x 34) element vector

where each element is an ordered pair of sequential parts of speech.

Hirst and Feiguina used Cass, a partial parser to tag parts of speech from

short text and construct POS bigrams. The choice to do partial parsing was

a compromise between quick computations and complete parsing. While not as

accurate as complete parsing it was “accurate enough” [7].

This paper uses the POS tagger from the Stanford Natural Language Process-

ing Group. It achieves high accuracy and is very fast even on large documents [25].

The accuracy of the Stanford POS tagger enables more complete parsing of syn-

tactic labels compared to the partial parser used by Hirst and Feguina. We do not

3excluding symbols and list items markers
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feel it is necessary to compare Hirst and Feguina’s POS bigram model to our own,

however, since our results support their conclusion that the POS bigram model

distinguishes between authorship on small samples. Instead we expect that more

accurate and detailed parsing will improve results.

Tagging parts of speech for each sample, we represent these samples as word

graphs and produce the the feature set from the POS bigram frequencies. We

apply classification tools including random forest and support vector machines for

authorship classification. The results are summarized in Section 4.

Assortative Mixture of Parts of Speech

A word-graph model can be summarized by characteristics including degree

distribution, density, and assortativity. Nominal Assortativity is a vector of coeffi-

cients ranging between 1 and -1, each of which measures the absolute tendency for

graph vertices with the same attribute to share an edge. Positive coefficients indi-

cate positive assortativity, negative coefficients indicate negative assortativity. The

assortativity coefficient is analogous to the Pearson correlation coefficient[11][26].

The attribute being measured in this paper is the part of speech. For parts of

speech in a word graph, a positive assortativity coefficient suggests words of the

same POS occur sequentially, while negative assortativity suggests they do not.

The assortativity coefficient is calculated for each of 34 POSs to generate a feature

set of 34 elements. For each POS i, a nominal assortativity coefficient ri can be

computed as:

ri =

∑
fii −

∑
firfic

1−∑
firfic

(1)

where fii is the fraction of edges in a graph G that join a vertex in the ith

category to a vertex in the same (ith) category, fir and fic are the marginal row

and column sums respectively (see [10] [11] for more details). For the results in

11



this paper, the assortativity coefficient was calculated using word graph objects

with directed edges.

As an illustration, we computed nominal assortativity coefficients for the toy

sentences represented as a directed word graph visualized in Figure 1. Specifically,

to calculate the assortativity for POS, applying Equation (1) to the values in Table

2 reveals that the parts of speech DT, NN, VBD, and IN all have assortativity

coefficients of -1, while JJ and NNP have coefficients -0.202 and 0.333 respectively.

Here the parts of speech constitute a feature set of five elements. This example

supports our more general finding for larger data samples that parts of speech

possess some assortative (disassortative) properties.

3.5 Motifs

Motifs are defined as ”small subgraphs occurring far more frequently in a

given network than in comparable random graphs” [11]. To Marinho, Hirst, and

Amancio, ”the topology of a complex network is characterized by the number of

motifs found on its structure” [12]. Marinho et al. examined word graph motifs

between three vertices (see [27] [11] for more information on motifs. Figure 2 shows

the 13 possible motifs from three vertices.) and applied motif frequency to the

problem of authorship attribution [12]. In their discussion of past applications of

motifs to word networks, Marinho et al. commented on the work of Milo et al. who

showed that the languages of English, Spanish, French, and Japanese shared similar

motif profiles [12] [2]. Marinho et al. suggested as an explanation for similarities

between languages that ”languages possess an intrinsic structure, which divides

words into categories” where ”words from one category (e.g. prepositions) tend

to be with others from different categories (e.g. nouns or articles) [12]. Marinho’s

conjecture that word category collocation is dissasortative is supported by the

results in this paper.
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Figure 2. 13 motifs from three vertices. Motifs 1 - 6 are connected triples but not
triangles. Motifs 7 - 13 are triangles. Image taken from [2]

Clustering Coefficient

If the three vertex motifs described in [12] [2] are not random , thus consti-

tuting motifs, one indication would be that network characteristics generated by

random graphs are significantly different than characteristics of the true network.

One characteristic that applies to three vertex motifs is the clustering coefficient.

The clustering coefficient, also known as transitivity, measures the proportion of

connected triples that are triangles to those that are not [28] [11]. The ratio

between these two generic motifs (triangles, motifs 7 - 13 figure 2 vs connected

non-triangles, motifs 1 - 6 figure 2) describes which motif has a larger presence.

A graph exhibiting transitivity suggests there is a high proportion of triangles

compared to connected triples (that are not triangles), and vice verse.

To test the assumption that the presence or absence of these motifs is not

random, the transitivity for every sample of 1000 POS or more is compared cor-

respondingly to the transitivity of 1000 random graphs produced using the same

in-degree and out-degree as each sample (for details see degree.sequence.game ran-

dom graph generator from iGraph [11]).

The transitivity for word graphs of writing samples greater than or equal to

1000 POS is modeled using linear regression and visualized in figure 8. In equation

2, the dependent variable y is the clustering coefficient for a word graph from a

sample of n POS greater than or equal to 1000. The independent variable x11

is the number of vertices for a word graph representing a single sample. The

discreet categories of sample size (1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000,
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9000, 10000) are categorical dummy variables x1 through x10. The interaction

between number of vertices x11 and the dummy variables x1 through x10 produces

10 separate regression lines, one for each category of fixed sample size.

y = β0+β1∗x2+β2∗x3+. . .+β10∗x11+β11∗x2∗x11+β12∗x3∗x11+. . .+β19∗x10∗x11+ε

(2)

In equation 2 above, β0 is the coefficient for the slope. β1 through β10 are

the coefficients for the dummy categorical variables for sample size (x2 through

x10). β11 is the coefficient for the dependent variable x11. β12 through β19 are

the coefficients for the interaction terms. Lastly, ε is the error term. Regression

was applied under the assumptions that there is a linear relationship between

the dependent and independent variables y and x11 and that the distributions of

the variables are multivariate normal. Additionally it is assumed that there is

no collinearity between variables and that the error values are evenly distributed

along the regression line.
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4 Results [1]
4.1 Visualizations And Descriptive Analysis

In this section we demonstrate how the written text samples of the selected

authors listed in Section 3.2 can be visualized and characterized using word graphs

described in Section 3.3. Focusing on nominal assortativity coefficients of parts of

speech, we compare different authors and explore if their individual preferences

for POS usage elucidate their writing structure. Next, we apply the POS bigram

and POS assortative mixture models outlined in Section 3.4 to the problem of

authorship attribution using the data described in Section 3.2. We compare these

models in terms of predictive accuracy for authorship of various writing sample

sizes.

We begin by constructing a word graph for a selected writing sample. Fig-

ure 5 shows a visualization of the word graph obtained from a random sample

from Hawthorne. Descriptive characteristics of the networks for randomly selected

writing samples from each author, including the total number of words, number

of vertices and edges, graph density, and degree assortativity are summarized in

Table 3. We will discuss these characteristics later in this section.

Turning our attention to nominal assortativity, we computed POS nominal

assortativity coefficients for each author and visualized them in Figure 3. Note

that each colored bar in Figure 3 corresponds to an author and shows the range

of the assortativity coefficient for a POS. Positive assortative values indicate an

author’s preference for selectively linking the same POS, while negative values

indicate preference for dissassortative relationships between twin bigram pairs.

While the magnitude of each coefficient does not reliably measure the magnitude

of assortativity, the sign of the coefficient does distinguish between assortative

and disassortative preferences [26] [29]. Comparing different authors, it appears

that individual preferences for POS usage differentiates writing style. While only
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Figure 3. A visual representation of the vector space for each author. Each color
corresponds to an author, and each bar shows the range of the assortativity coef-
ficient for a part of speech.

Figure 4. Penn TreeBank POS tags color
coded to match groupings used in Figure
5 and Figure 6

Figure 5. Minimum spanning tree rep-
resentation of a writing sample from
Hawthorne. Each vertex is a word with
size proportional to frequency colored by
part of speech.

Figure 6. A directed word graph where vertices represents parts of speech. The
size of a vertex is proportional to POS (word) frequency. Each edge is weighted
by frequency of the out-degree of a vertex and edge colors are the direction of the
edge. Self loops indicate positive nominal assortativity, while edges between nodes
are disassortative connections.
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five authors are tested here, experiments using fewer authors yielded improved

results. It would be expected that more authors would see diminished results,

but not dramatically for the inclusion of just one additional author. While not

significantly as predictive as the POS bigram model, when applied to authorship

attribution tasks the POS assortativity model is competitive (see Section 4.2).

In general, across authors, one can observe from Figure 3 that determiners

(DT) and coordinating conjunctions (CC) exhibit disassortativity, while proper

nouns (NNP) exhibit positive assortativity. The coefficients for parts of speech

where the range includes zero indicate parts of speech that do occur sequentially

some of the time but not necessarily always, e.g. adjectives (JJ). Foreign words

(FW) are generically labeled as such and are not differentiated by the POS tagger,

an artifact that produces highly assortative values. These findings seem indicative

of the English language structure in general. Consistencies across authors suggests

an assortative “signature” for English grammar.

As opposed to nominal assortativity, which produces an assortativity coeffi-

cient for each distinct attribute of a vertex (the part of speech in the case of word

graphs), degree assortativity is a single coefficient that measures the likelihood for

vertices of fixed degree to attach to other vertices of the same degree (see [11]). For

word graphs, degree assortativity is negative, reflecting the fact that the most used

parts of speech (nouns, verbs prepositions, and determiners) are disassortative by

type (see Figure 6). However, degree disassortativity also accounts for the fact

that, for instance, that there are many determiner-to-noun transitions in English

speech 4 (see Figure 6), with a few hub determiners connected to a diverse set of

smaller-degree nouns (see Figure 5).

Table 3 gives descriptive statistics of a single writing sample of size 3000

POS. Recall that a vertex in a word graph represents a unique word, and the

4consider the French use of articles le and la
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Table 3. Descriptive statistics of five writing Samples with 3000 words
Hawthorne Austen Jerome Hardy Doyle

Vertices 1359 896 1213 1254 1181
Edges 2661 2591 2586 2662 2513

Density 0.001420194 0.00287061 0.001671286 0.001621667 0.001734514
Degree Assortativity -0.2302739 -0.26577 -0.2638668 -0.2265096 -0.287129

Transitivity 0.01468575 0.03807761 0.01992584 0.01811918 0.02269955
Number of Words 3256 3154 3230 3228 3224

total number of vertices in a word graph represents the total number of unique

words used by a particular author within a single writing sample. Since the the

number of vertices (unique words) determines the number of possible unique word

bigram edges, it follows that the more unique words an author uses within a

span of 3000 POS, the less dense the graph. This is a consequence of Zipf’s

observation that word frequency is inversely proportional to rank usage. In order

for a new vertex to contribute to an increase in word graph density it must form

unique edges with enough other vertices to exceed the ratio of vertices to edges

from the previous graph missing the new vertex. However, by Zipf’s law, a new

word should contribute fewer edges to the rest of the graph than previous words

because, by virtue of having a low frequency rank (a new word occurs once), also

as a consequence of occurring later in time, is it used less frequently given a fixed

sample size. This is supported by the information in table 3. Austen, with the

fewest number of unique words used, has the most dense graph, while Hawthorne

has the least dense graph because of his broader vocabulary use. However, the

same correlation does not occur with degree assortativity. Austen and Jerome

have approximately the same degree assortativity but the number of vertices differ

substantially.
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4.2 Model Testing

In this section we apply the POS bigram and POS nominal assortativity model

to authorship prediction. For each of five authors, we use 30 written text samples of

fixed length to derive the two models following the procedures described above. We

evaluate and compare these models in terms of accuracy for various text sizes using

support vector machines (SVMs) and random forests via 10 fold cross validation.

The results reported in Table 4 suggest the POS bigram model with support

vector machines is highly accurate confirming the power of the POS bigram model.

Even on small data sets of only 125 words the POS bigram model performed well.

The assortative mixture model, on the other hand, performed best using random

forests but could not achieve the near perfect accuracy of the POS bigram model

on samples of larger text. The 90% confidence intervals were calculated using the

bootstrap method on the 10 fold test statistic for the best performing classifier

given each model. While significantly not as predictive, the assortative mixture

model does perform competitively, especially for larger text sizes.

The assortativity model was also applied using a single layer neural network,

however, the results were mediocre compared to support vector machines and

random forests. While a more complicated neural network may perform more

optimally, the pursuit of such a network is not within the scope of this paper.

With five authors each with 30 samples, the sample space for each experiment

was not very large. This introduces the possibility of overfitting. The POS bigram

model using support vector machines was highly accurate, however, a large feature

space with few instances of test targets (only approximately three target authors

per cross validated test sample) may be the reason for exceptionally high accuracy.

Using fewer folds for validation or including more samples per author might might

remedy the potential for overfitting.
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Table 4. 10 fold cross validation and confidence interval for POS bigram and POS
assortativity feature sets using random forests and support vector machines.
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Figure 7. The variable importance plot ranks the most important parts of speech
from the nominal assortativity feature set when trained on random forests.

Variable Importance of Features

The variable importance plot in figure 7 returns by rank the most predictive

features when using random forests. For word graphs the nominal assortativity of

DT, CC, MD, and NN were the most important features. It should be noted that

different iterations of the random forest algorithm will produce different rankings,

however, in general the most used parts of speech were among the most important

variables and the ranking in figure 7 is reflective of that distribution.

4.3 Using Assortativity to Compare Word Networks

Caution is required when using the assortativity coefficient. Hofstad and

Litvak showed using a synthetic graph technique, as well as real-world network
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data, that for disassortative networks the magnitude of the correlation coefficient

(also known as assortative mixture) decreases as the network increases in size. The

assortativity calculation does give the correct sign of the coefficient (assortativity

vs disassortativity), however, the inconsistent magnitude introduces the problem

that the assortativity coefficient is not a good measurement for comparison between

graphs of different size [26] [29]. Table 5 shows the results using the assortativity

model on varied sample sizes between 9000 and 14000 words. While the model still

exceeds 90%, compared to tests on fixed sample size the model suffers considerably

(see table 4). The improved results when controlling for sample size reinforces the

conclusions of Hofstad and Litvak5.

Table 5. Accuracy of assortativity model with varying sample size between 9000 -
14000 words

Classifier 10-fold cross 95% conf interval 5% conf interval
SVM 90.67% 95.25% 85.00%

Random Forest 92.00% 97.72% 86.31%

However, with word graphs, it appears that the magnitude of the assortativity

coefficient does not decrease in magnitude indefinitely. Instead, once a word graph

is large enough, approximately 3000 POS or more, the magnitude of the assorta-

tivity coefficient stabilizes. This may explain why the model becomes more than

90% accurate once the word graph includes in excess of 3000 POS. The charts in

figure 10 show the average nominal assortativity for different parts of speech for

each of the five authors. In general, but not in all cases, the charts show a decrease

in the magnitude of the average nominal assortativity coefficient for disassortative

parts of speech. This observation supports Hofstad and Litvak. However, for 3000

parts of speech or more, the plot of the average nominal assortativity flattens out.

5Controlling for sample size has shown to improve results for other types of models. On
smaller sample sizes, Sanderson and Guenter saw as much as a 15% improvement in accuracy
when controlling for sample size. [30]
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The stabilizing behavior of the assortativity coefficient raises the possibility

that, for word networks, nominal assortative mixture is a valid measurement for

comparison between networks of different sizes. With 90% accuracy given word

networks of varied sizes suggests that for word graphs, nominal assortative mixture

is a valid comparator as long as the network sizes are comparable and of sufficient

size.

To observe more closely the behavior of the nominal assortativity coefficient,

the charts in figures 11 through 13 plot the nominal assortativity coefficient against

the size of the word graph for a particular author. The charts in figure 11 plot the

nominal assortativity coefficient for determiners (DT) for each author. The charts

in figure 12 plot the nominal assortativity coefficient for nouns, singular and mass,

(NN) for each author. The charts in figures 13 plot the nominal assortativity

coefficient for adjectives (JJ), verbs (VB), prepositions (IN), and coordinating

conjuctions (CC) for Nathaniel Hawthorne.

The charts in figures 11 through 13 show the behavior of the assortativity

coefficient for word networks of fixed size by cumulative word (POS) frequency

that increase step wise (see sections 3.2 and 4 for break down of sample sizes).

For smaller word networks the assortativity coefficient appears highly varied. As

the size of the word network increases, the assortativity coefficient converges to

tight bounds. For DT and NN the assortativity coefficient for all fives authors

exhibits this behavior. The same behavior is observed for JJ, VB, IN, and CC, for

Hawthorne. It appears that for all parts of speech the assortativity coefficient is

more varied for smaller networks and converges as the size of the network increases.

4.4 Motifs

For an example test of the assumption that three vertex motifs are not random

table 6 gives the transitivity of the 5 writing samples from table 3, as well as the
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transitivity range for 1000 random graphs with the same degree distribution as the

comparable sample of writing. In all five cases the true clustering coefficient of the

writing sample is below the range for 1000 random graphs. This indicates that the

clustering coefficient of word graphs is not random, and is consistently lower than

for random graphs. The low clustering coefficient means the absence of triangles is

not random for word networks. The low transitivity for words graphs is explained

by Milo et al. who found that three vertex motifs that were not triangles had a

higher significance of occurring than three vertex motifs that formed triangles [2].

Table 6. Clustering coefficient range for 1000 random graphs of same in/out-degree
distribution from five writing samples with sample size of 3000 words

Author Transitivity Range

Hawthorne 0.01468575 0.02981018 0.04172314
Austen 0.03807761 0.05655707 0.07976013
Jerome 0.01992584 0.03751943 0.05475122
Hardy 0.01811918 0.03171623 0.04831222
Doyle 0.02269955 0.04085767 0.06236037

The charts in figure 9 plot the clustering coefficient against vertex size for all

samples of each of the five authors. For large enough words graphs (about 1000

POS cumulative, or roughly 500 vertices) the clustering coefficient is consistently

below the lower bound for the transitivity of random graphs. However, for smaller

networks, the same is not true. For smaller networks the coefficient shows high

variance. As the network size increases the coefficient falls within bounds. Once

the word networks are large enough the clustering coefficient falls within regular

bounds for each of the five authors.

The charts in figure 9 show clustering of transitivity value for word graph

with similar number of vertices. In figure 8 vertical strips of points constitute

samples of a fixed frequency of POS. It appears by the downward slope of the

bands that for samples of fixed size an increase in the number of vertices results in
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lower transitivity. On a more macro scale, however, for large enough word graphs,

the range of the clustering coefficient between bands is consistent. This suggests

that while an increase in the word graph size results in lower trasnsitivy for fixed

samples sizes, transitivity is range bound for most of an author’s writing. Graph

size does appear to have a macro effect on transitivity in that the more unique

words an author uses, the lower the transitivity. Hawthorne, with the largest word

networks, produced the lowest clustering coefficient values, while Austen, with the

smallest word networks, produced the largest values.

Since the absence of triangles is significant for word graphs, it is worth asking

what triangles, by part-of-speech, do appear often. Given a sample of size 3000

POS, the triangle composed of verticex types DT, IN, and NN occurs singly more

often than any other triangle for each of the five authors. Compared to most other

POS triangles, with frequencies less than five in most cases, the DT, IN, and NN

triangle occurred tens of times more often.

4.5 Future Research

Future research could explore the relationships among natural languages (and

languages families) using nominal assortativity similar to the comparative work

done on motifs by Milo et al. Milo found that three vertex motifs occurred at

similar rates for different language such as French and Japanese.
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Figure 8. Clustering coefficient verse graph size. The sample size i.e. the number
of words is controlled and used as a dummy interaction term. The linear regression
lines show a negative correlation between clustering coefficient and the number of
vertices. As the number of words increases the slope becomes less steep.
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Figure 9. Clustering coefficient for five different authors over all samples. The
x axis is the number of vertices, the y axis is the clustering coefficient. Black
points are true transitivity and red points are the lower bounds for 1000 random
graphs of same in/out-degree distribution. Counting the vertical bands left to right
constitutes the number of words in the sample: 125, 250, 500, 1000, 2000, 3000,
4000, 5000, 6000, 7000, 8000, 9000, 10000.27



Figure 10. Average nominal assortativity for DT, CC, NN, VB, IN, TO, JJ, and
NNP for five different authors.
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Figure 11. Nominal assortativity DT plotted against graph size for five different
authors. The x axis is the number of words in the sample, the left (black) axis is
the number of vertices, and the right (red) axis is the assortativity coefficient.

29



Figure 12. Nominal assortativity NN plotted against graph size for five different
authors. The x axis is the number of words in the sample, the left (black) axis is
the number of vertices, and the right (red) axis is the assortativity coefficient.
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Figure 13. Nominal assortativity JJ, VB, IN, CC plotted against graph size for
Hawthorne. The x axis is the number of words in the sample, the left (black) axis
is the number of vertices, and the right (red) axis is the assortativity coefficient.
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5 Conclusions

Representation of text as relational data provides many advantages. The

information contained in a word graph produces several well documented feature

sets used in authorship attribution tasks including the part of speech bigram model

examined in this article. Since these feature sets have shown success in authorship

attribution tasks, it is worthwhile to analyze these models for insights into the

English language. Network data analysis provides an avenue to explore language

in this way.

When computed for different authors, nominal assortativity by parts of speech

appears to distinguish between the individual preferences of authors for part of

speech usage, revealing aspects of authors style. Assortative regularities across au-

thors reveals a grammar “signature” for the English language that exhibits mostly

disassortative properties but permits some assortative relationships. These dis-

assortative properties span the layered components of language. At the phonetic

level different speech sounds are put together to form syllables and make distinct

words. The same principle describes using different letters to write words. At

the grammar level, words of different parts of speech collocate to create sentences.

The combination of differing components enables the structured use of sound and

meaning.
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