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ABSTRACT

As part of the International Polar Year, cDrake, an array of current and pressure record-

ing inverted echo sounders (CPIES), was deployed in Drake Passage in November 2007.

The array will be in place for four years and the data collected annually by acoustic

telemetry. The CPIES array consists of a transport line, 22 CPIES that span Drake

Passage and a local dynamics array, a grid of 21 CPIES centered on the surface eddy

kinetic energy maximum in the passage. Acoustic round-trip travel time and bottom

pressure anomaly are used to compute sea surface height anomaly (SSHA) at each site.

Round-trip travel time measurements are converted to geopotential using historical hy-

drography. Geopotential is divided by gravity to determine the steric component of

SSHA. The mass-loading component of SSHA is computed by dividing the bottom pres-

sure anomaly by the product of density and local gravity. The mass-loading and steric

SSHA components are uncorrelated, except in the eastern local dynamics array, at three

sites where strong deep cyclone formation associated with the meandering Polar Front

lead to correlation coefficients greater than 0.4. Relative contributions of steric and mass-

loading components vary along the transport line. North of 57◦S, steric SSHA variance

exceeds 60% of the total SSHA variance. South of 59◦S, the mass-loading SSHA variance

exceeds 40% of the total SSHA variance and in places reaches 65% of the total variance.

The CPIES-derived SSHA is compared with SSHA from an along-track and a merged

and mapped satellite SSHA product. Correlations with both products varied widely

depending on the variability in the records, but most were above 0.9 and statistically

significant. Notable exceptions occur along the southern end of the transport line, where

correlations dip to 0.2-0.7. The Nyquist frequency of the Topex/Poseidon, Jason-1 and

Jason-2 satellite repeat is 1/20 cycles-per-day. Signals with frequencies higher than this

will get aliased by the altimeter sampling. In cDrake, the aliased variance exceeds 20%

of the total signal variance in the middle of the dynamics array and on the southern



end of the transport line. There is potential of aliasing of both the steric and mass-

loading SSHA in Drake Passage. Analysis of the SSHA records with frequencies higher

than 1/20 cpd from recovered cDrake instruments shows no correlation with the high-

frequency barotropic model output used to correct altimetry measurements for high

frequency signals. The model underestimates the signals throughout the cDrake array.

Aliasing of these signals will continue unless a better correction for the mass-loading

variance is found and a steric high-frequency correction is developed.
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PREFACE

Rather than using the traditional division of the thesis into chapters, this thesis is written

in “manuscript” style. The main text is written in a manner appropriate for submission

to a scientific journal.
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MANUSCRIPT 1

Constituents of Sea Surface Height Variability in Drake Passage

1.1 Introduction

The Antarctic Circumpolar Current (ACC) is a unique oceanic feature in many

respects. It is the only zonally unbounded current system in the world, and is comprised

of three eastward flowing circumpolar jets. From north to south they are the Subantarctic

Front (SAF), the Polar Front (PF), and the Southern Antarctic Circumpolar Current

Front (SACCF) [Orsi et al., 1995]. The ACC connects the three major ocean basins, and

because of these connections, it permits a global meridional overturning circulation. The

jets are deep reaching and are steered in many areas by topography [Gille, 2002]. The

ACC is driven by the band of westerly winds at the same latitude in the atmosphere.

Ekman transport from the wind forcing helps transform and export water masses that

contribute to the overturning circulation [Speer et al., 2000].

Eddies play a significant role in transporting heat in the Southern Ocean. Heating

of the atmosphere is strongest at the equator and weakest at the poles. In order to keep

the atmospheric temperatures from becoming extreme, the ocean must redistribute the

excess heat in the equatorial regions poleward. In the southern hemisphere, the ACC

acts as a boundary, keeping the Antarctic continent isolated. Because of this separation,

eddies must be responsible for the heat flux to the higher latitudes to compensate this

lack of atmospheric heating [deSzoeke and Levine, 1981].

The Southern Ocean has been shown to be especially susceptible to climate change.

The atmospheric westerly winds over the Southern Ocean have increased wind stress over

the ACC [Yang et al., 2007]. In addition to this increased forcing, float and hydrographic

observations over the past fifty years have shown increasing temperatures [Gille, 2008].

While coarse resolution numerical models such as the one used by Gnanadesikan and
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Hallberg [2000] predict that the warming is accompanied by an increase in transport

throughout the ACC, observations have shown no change to the tilt of isopycnals across

the current, keeping the transport relatively stable [Böning et al., 2008]. There have been

two suggested mechanisms for the warming in the Southern Ocean. The first mechanism

is a poleward shift of the ACC [Gille, 2008]. The second is an increased heat flux. Hogg

et al. [2007] used an eddy resolving quasi-geostrophic model to study how increasing

wind stress could lead to an increase in heat flux. With the high resolution of their

model, they were able to see a first response in the form of increased Ekman transport

in the surface layers, which resulted in cooling. Ultimately, the model reproduced ocean

warming similar to the observation over the past 50 years because the increase in eddy

activity led to a net poleward heat flux. While there is lingering debate over the dynamic

mechanisms at work in the Southern Ocean, observations have shown that the ACC is

undergoing major changes.

Despite being the largest current system in the world, the transport of the ACC

has not been accurately monitored, due in part to its size. Geographically, there are

three horizontal chokepoints of the ACC between Antarctica and South America, Africa,

and Australia. The smallest of these is created by South America, in Drake Passage.

For this reason, many experiments have taken place there in an attempt to monitor the

ACC. The last major field experiment that aimed to measure total transport was in the

1970s. The first dynamic response and kinematic experiment used an array of current

meters and a pair of bottom pressure gauges to measure transport in Drake Passage.

The transport was estimated as 134±13 Sv [Whitworth, 1983; Whitworth and Peterson,

1985].

As part of the International Polar Year, the cDrake project is designed to study the

ACC using an array of current and pressure recording inverted echo sounders (CPIES)

and current-meter moorings (figure 1.1). The CPIES array consists of a transport line

comprising a line of CPIES that span Drake Passage (22 CPIES), and a local dynamics

array comprising a grid of 21 CPIES centered on the eddy kinetic energy maximum in

2



the passage around 57◦W 63◦S (figure 1.1). cDrake will quantify ACC transport and

dynamics. The transport line will determine horizontal and vertical structure of the

time-varying transport. The local dynamics array exists between the Subantarctic Front

and Polar Front within the region of maximum surface variability and will describe the

mesoscale eddy field. The full data set will also provide metrics to assess the skill of

model simulations. Ultimately, the cDrake project aims to provide guidance for future

monitoring and studies of the ACC.

Satellite altimetry has been utilized for the past 18 years to study the ocean with

mesoscale resolution and altimetry and other remotely sensed observations are likely to be

part of future monitoring of the ACC, as well as the global ocean. Altimeters provide sea

surface height measurements. New satellite missions aim at measuring temporal changes

in gravity, which provide estimates of changes in total water storage or mass. There is

community interest to combine these measurements in order to decompose the sea surface

height into its two constituents, steric and mass-loading [Jayne et al., 2003; Bingham

and Hughes, 2008]. The benefit of this decomposition is a better understanding of the

ocean’s variability. For example, low-frequency ACC variability may arise from changes

in heat content while the ACC’s high-frequency response to changes in atmospheric

forcing may be primarily mass-loading. In addition, uncertainties exist regarding the

potential aliasing of high-frequency ACC variability due to the sampling interval of

contemporary satellite missions. It is important to know the strengths and weaknesses of

the present and proposed satellite altimeters to better design comprehensive monitoring

systems in the future.

In the next section, details of the cDrake dataset and processing schemes are pro-

vided, as well as a description of the altimetric products utilized in the analysis. Section

1.3 shows the SSHA results as a function of time, space, and frequency. Steric and

mass-loading constituents of SSHA vary with latitude along the cDrake transport line,

with highest variance in the local dynamics array at frequencies longer than 1/20 cycles

per day. There is significant energy at frequencies below 1/20 cycles per day which are

3



aliased to frequencies measured by the altimeter. In section 1.5, comparisons are made

between the cDrake data and satellite altimetry data from AVISO (Archiving, Validation

and Interpretation of Satellite Oceanographic data). This paper will show that along-

track and merged, gridded products correlate best with CPIES measurements at sites

that have high variance, and in general correlations with the merged product are higher.

Analyses of high-frequency signals from the CPIES instruments reveal that in Drake

Passage the high-frequency correction applied to the altimetry measurements is not ad-

equate to prevent aliasing of mass-loading SSHA signals and furthermore a correction to

steric SSHA signals would be necessary to eliminate aliased high-frequency energy.

70oW 65oW 60oW 55oW

63oS

62oS

61oS

60oS

59oS

58oS

57oS

56oS

55oS

Figure 1.1: cDrake CPIES (purple triangles) span Drake Passage. Topography (Smith
and Sandwell [1997], version 6.2) color-shaded every 1000 m depth. Land is shown as
black. Two satellite altimeters operated during the cDrake measurement time period
discussed in this study (Nov. 2007 through Dec. 2009): ERS (light gray) and Jason-2
(dashed dark gray). Mean positions of three major ACC fronts inferred by altimetry
data as in Lenn et al. [2008] shown with thick green lines.
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Figure 1.2: Sites with recovered instruments (orange circles) within the cDrake CPIES
array (blue triangles).
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1.2 Data and Methods

1.2.1 The cDrake Array

cDrake CPIES measured round-trip travel time (τ), pressure, and bottom current. Tech-

niques have been developed that use τ as a proxy for temperature, salinity, and geopoten-

tial (T, S, and φ) in the ACC [Watts et al., 2001] as well as in the cDrake region [Sun and

Watts, 2001]. Briefly, a look-up table is created from historical hydrography that relates

a predetermined τ index to hydrographic profiles. This is the so-called gravest empirical

mode (GEM). Measured τ values are converted to a τ index and with the GEM, vertical

profiles of T and S can be estimated at any CPIES site. Due to inherent variability in

the upper ocean, there is some error introduced in the GEM and τ measurements. Part

of this variability is a seasonal cycle in T and S, and therefore τ . By quantifying and

removing the seasonal signal from the GEM and τ measurements, the errors from the

upper ocean variability can be reduced. The following sections outline the methods used

to construct a seasonal cycle, create cDrake GEMs, and process τ and bottom-pressure

data as well as introduce the satellite altimetry products.

6



1.2.2 Seasonal-Cycle Construction

Seasonal variations in heat and freshwater fluxes occur in the upper-water column [Watts

et al., 2001]. Due to these changes, there is more variability and therefore error in the

upper 150 meters of the GEM. To reduce the scatter, the seasonal correction to T, S,

and τ as a function of generic yearday was constructed and removed from hydrographic

casts as follows.

Conductivity, temperature, and depth (CTD) casts in Drake Passage during austral

winter were sparse, so to gain better resolution for all seasons, expendable conductivity,

temperature and depth (XCTD) casts were used to examine the seasonal cycle in the

upper ocean. XCTD data were made available by Janet Sprintall and are part of the

Scripps High Resolution XBT program in Drake Passage. There are at least 10 casts in

each month, and more than 20 during each of the austral winter months. The distribution

of the XCTD casts geographically, by month, and by year is shown in figure 1.3.

291 XCTD casts

66°W64°W62°W60°W58°W
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Figure 1.3: Left panel: Map of XCTD casts used to construct the seasonal cycles. Right
panels: Histograms of cast year (top) and month (bottom).

The first step computed the τ value of each cast between the shallowest level that
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had no seasonal signal (150 dbar) and the deepest level common to all casts (1000 dbar)

as

τ150−1000 =
∫ 1000

150

2
ρgc

dp, (1.1)

where g is gravity (9.8 m s−2), c is the speed of sound, ρ is the density of seawater, and

p is pressure. Upper-ocean τ0−150, temperature or salinity at a chosen pressure level

was plotted versus τ150−1000. A spline was fit (upper panel of each pair in figures 1.4

and 1.5) and then the residuals were computed. The residual was then sorted by generic

yearday (lower panel of each pair in figures 1.4 and 1.5). This made apparent the seasonal

signal. A 3-month running mean was computed to form a smoothed seasonal cycle for τ ,

temperature or salinity. The τ seasonal signal range was 0.9 ms in the upper 150 meters.

The seasonal cycle was mainly confined to the upper hundred meters. The maximum

temperature correction range was 2.2◦C at the surface. No correction was made below

150 m depth. The salinity signal has a maximum value at 40 m, and has a range of 0.08

PSU. Slight smoothing of the 3-month running mean resulted in the seasonal signal that

was removed from the hydrographic data or CPIES τ measurements (figure 1.6).

In the Subantarctic flux and dynamics experiment (SAFDE), the seasonal signal of

the Subantarctic Front south of Australia was quantified [Watts et al., 2001]. Table 1.1

shows the values in SAFDE and cDrake for τ , T, and S. In SAFDE, the seasonal cycle

extended to 200 m, slightly deeper than the cDrake seasonal correction. In addition, the

range in temperature correction at the surface was slightly lower and the salinity signal

was stronger in SAFDE.

The temporal and depth patterns of the temperature and salinity cycles in cDrake

were very similar to those seen in SAFDE. The temperature cycle showed warming in

austral spring and cooling in fall in the upper 50 dbar. There was a lag of up to a month

in the lower 100 dbar. The lag was smaller in the winter than the summer, as it was

in SAFDE. The small lag in winter can be attributed to increased winds cooling surface

waters quickly, causing buoyancy destabilization and therefore convective overturning

mixing the cold waters down through the water column quickly. The summer mixed layer

8



was thinner due to lighter winds, and the heating at the surface provided a stabilizing

force, making the temperature transfer occur more slowly [Watts et al., 2001].

The lag in the salinity seasonal cycle with depth was much more pronounced than

the lag in the temperature signal. The cDrake and SAFDE signals both show the signal

around 100 - 150 dbar having an offset of approximately 4 months. This makes the

minimum and maximum salinity signals at 125 dbar in cDrake in phase with the tem-

perature correction at the surface. Watts et al. [2001] explain this signal in terms of the

excess precipitation year-round combined with the mixed-layer cycles. Throughout the

summer, the excess freshwater decreases the salinity in the upper layer, but the lack of

winds keeps the signal from propagating downward. The seasonal pycnocline traps the

freshwater, and as austral fall progresses and winds increase, the fresh signal is mixed

downward and saltier water from deeper depths are mixed upward. The saltiest the

surface salinity is in the spring, before the shallow mixed layer of the summer season

begins.

SAFDE cDrake
min max min max

τ -0.3 ms 0.35 ms -0.5 ms 0.4 ms
T -1.0◦C 0.7◦C at the surface -1◦C 1.2◦C at the surface

-0.1◦C 0.1 ◦C at 200 dbar -0.1 ◦C 0.1 ◦C at 140 dbar
S -0.04 PSU 0.08 PSU at the surface -0.05 PSU 0.02 PSU at the surface

-0.01 PSU 0.01 PSU at 200 dbar -0.01 PSU 0.01 PSU at 130 dbar

Table 1.1: Seasonal cycle correction for cDrake (right column) and SAFDE, Subantarc-
tic flux and dynamics experiment, Watts et al. [2001] (left column) for τ (top row),
temperature (middle rows) and salinity (bottom rows).

Since the cDrake array covers a large geographical distance with the transport line,

it is possible that the seasonal cycle varies with latitude. XCTDs cannot be deployed

south of 61◦S due to pollution regulations, so the database cannot assess any latitudinal

dependence of the seasonal cycle. While the CTD database did not provide enough

temporal coverage during the austral winter months to resolve the salinity cycle, it does

resolve a similar temperature signal as the XCTDs and the CTD casts extended to the

southern end of Drake Passage. The latitudinal dependence of the salinity cycle could
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not be assessed with the available data sets.
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Figure 1.5: Seasonal cycle determined with XCTD data for salinity (left) and temper-
ature (right). For three selected depths, two plots are shown. In the upper-panel pair
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1.2.3 GEM Construction

A Gravest Empirical Mode (GEM) is a look-up table between a hydrographic property

such temperature, salinity, specific volume anomaly, or geopotential and an index, ver-

tical acoustic round trip travel time (τ). It is created with historical hydrographic data

[Meinen and Watts, 2000]. The cDrake GEM for temperature and salinity are shown in

figures 1.8 and 1.9. The GEM technique has been successfully utilized in the Southern

Ocean [Watts et al., 2001].

For the cDrake experiment, τindex was round trip travel time integrated between the

surface and 2000 dbar. In choosing the lower bound for this integral, there was a tradeoff

between having enough casts to construct the GEM while still capturing the variability at

greater depths. Depths deeper than 2000 dbar did not significantly improve the accuracy

of the GEM and there were more than four hundred casts that reach at least 2000 m

depth. For example, at 500 dbar the root mean square (RMS) of temperature (salinity)

was 0.23◦C (0.05 PSU) with 409 casts for τ2000 and 0.23◦C (0.04 PSU) with 290 casts for

τ3000. Table 1.2 shows values at other depths and for GEMS made with either different

indices or including the seasonal cycle in the upper 150 m.

Historical hydrography were gathered to construct the GEM for the time period

1970 to 2009 (figure 1.7). The latitudinal extent of the region selected for the GEM was

dictated by land masses, while the longitudinal extent was chosen based on the range of

τ values for the casts found in those regions. Further extension to the west included few

additional casts and showed no improvement to the GEM, and expanding to the east

included waters that were not representative of those in Drake Passage. The final box

chosen was 12◦ in longitude, which is similar to the 10◦ bin used by Sun and Watts [2001].

Most CTD casts occurred during the austral summer months. Data were gathered from

many sources, including the Southern Ocean database, Argo float profiles, and various

other modern Drake Passage field programs. Only casts with good vertical resolution

were included and all casts were quality controlled. Casts reaching to at least 2000 m

depth were used in the construction of the GEM (figure 1.7).
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The variability in the GEM decreases with depth in both temperature and salinity.

In the temperature GEM (figure 1.8), the RMS was highest in the surface layers in the

upper 200 m. Since the seasonal cycle has been removed, the upper-ocean variability

must be due to other processes. Two major high RMS features extended down to 200

dbar. For low τ , this high variability associates with Subantarctic Mode Water. For high

τ , the variability could be due to Upper Circumpolar Deep Water, Lower Circumpolar

Deep Water, and North Atlantic Deep Water variability [Speer et al., 2000]. The salinity

GEM variability is highest in the upper 1500 m. The increased RMS values are for

salinities less than 34.6 PSU for τ shorter than 2.687 s. For the higher τ values, the

increased variability could be due to deep water formation and ice formation and melt

along the Antarctic coast.

0-2000 with 

seasonal cycle

0-2000 

removing 

seasonal cycle

0-3000 
removing 

seasonal cycle

# CTD casts 409 409 290

RMS at 50 dbar of T 0.986 0.625 0.621

50 dbar of S 0.104 0.104 0.062

500 dbar of T 0.234 0.227 0.234

500 dbar of S 0.050 0.048 0.042

1000 dbar of T 0.103 0.091 0.076

1000 dbar of S 0.031 0.030 0.026

1500 dbar of T 0.083 0.073 0.056

1500 dbar of S 0.019 0.019 0.016

2000 dbar of T 0.089 0.082 0.060

2000 dbar of S 0.013 0.013 0.011

3500 dbar of T 0.106 0.103 0.095

3500 dbar of S 0.005 0.005 0.005

Table 1.2: Comparison between three GEM constructions (columns two through four).
For each GEM, the number of CTD casts are noted in the first row and subsequent rows
provide the RMS of the spline fit for temperature and salinity at selected depths.
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Figure 1.7: a) Location of the 409 CTD casts used to construct the final GEM. Each
cast is color-coded by τ0−2000 value and the colorbar is provided to the right of the map.
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Figure 1.8: Temperature GEM for Drake Passage. Left panels: Temperature contoured
as a function of pressure (black lines) and τ0−2000. Contour interval is 0.5◦C. The upper
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Figure 1.9: Salinity GEM for Drake Passage. Left panels: Salinity contoured as a
function of pressure (black lines) and τ0−2000. Contour interval is 0.1 PSU. The upper
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At site C17 at the southern tip of the transport line along the Antarctic continental

slope, the shallow depth of 1280 m and long τ values posed a challenge. Despite CTD

casts near the site, after recovering the first year of data it was discovered that the GEM

with 2000 dbar reference level did not have long enough travel times to accommodate all

of the signals at C17. It proved impossible to find casts with long enough travel times

that reached 2000 dbar, so a new GEM was created for use at only site C17. The same

method was employed, but by raising the reference level to 1000 dbar and expanding the

geographical area to include hydrographic data to the east and along the coast, more

appropriate τ values were found (figure 1.10). It appears that the cold water advects

from east to west near site C17. During the second telemetry cruise, fourteen CTDs were

taken between 61.4◦W and 59.4◦W and 61.75◦S and 62.25◦S. This increased the number

of casts with long τ0−1000 values in the C17 GEM. The accuracy of this new shallower

GEM (τ0−1000, figures 1.11 and 1.12) is comparable to that of the GEM (τ0−2000) used

for the rest of the array. For τ0−1000, the RMS of temperature (salinity) at 500 dbar was

0.198◦C (0.047 PSU), compared to τ0−2000 with 0.227◦C (0.048 PSU).
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Figure 1.10: a) Location of the 262 CTD casts used to construct the final τ0−1000 C17
GEM. Each cast is color-coded by τ0−1000 value and the colorbar is provided to the right
of the map. Distribution of casts by year (b), month (c), maximum pressure (d), and
data source (e).
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Figure 1.11: Temperature GEM for site C17. Left panels: Temperature contoured as a
function of pressure (black lines) and τ0−1000. Contour interval is 0.5◦C. The upper left
panel extends from 0 to 200 dbar to emphasize the upper-ocean structure. Right panels
show temperature at selected depths plotted as a function of τ0−1000 (black dots) with
the superimposed spline fit (blue line). The residual of the fit is denoted in the upper
right corner of each plot and color-shaded in the left panels. A colorbar to the right of
left panels provides the RMS color scale.
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Figure 1.12: Salinity GEM for site C17. Left panels: Salinity contoured as a function
of pressure (black lines) and τ0−1000. Contour interval is 0.1 PSU. The upper left panel
extends from 0 to 200 dbar to emphasize the upper-ocean structure. Right panels show
salinity at selected depths plotted as a function of τ0−1000 (black dots) with the super-
imposed spline fit (blue line). The residual of the fit is denoted in the upper right corner
of each plot and color-shaded in the left panels. A colorbar to the right of left panels
provides the RMS color scale.
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1.2.4 CPIES-Data Processing

The CPIES measure the vertical round-trip travel time from the seafloor to the surface

and back, as well as recording pressure at the seafloor and current speed and direction

50 m above the seafloor. The focus in this work was on the pressure and travel-time

measurements. The current speed and direction were used only in aiding the removal of

pressure drifts from the bottom-pressure sensors. Most of the analysis was performed on

a 2-year record of daily averages that were acoustically telemetered from the instruments

on the sea floor to a ship on the surface. Due to technical issues, 18 instruments were

recovered. Sites C09, D01 and E01 in 2008 and sites A01 and B03 in 2009 were recov-

ered because shipboard diagnostics suggested noisy τ data. These instruments provided

hourly measurements. Once recovered, more sophisticated processing of hourly records

can often improve the quality of the τ data. Spectral analysis of telemetered records at

sites B02 and E02 revealed that the τ values were noisy, and will therefore have higher

variance at high frequencies. The processing of the hourly and telemetered records is

explained in the following sections.

The inverted echo sounder in the CPIES emits a 12.0 kHz pulse 24 times per hour

and measures the amount of time it takes for the ping to reflect off the sea surface

and return to the detector. These measurements were stored in the instrument, and

were available upon recovery. The 24 pings were processed with a two-stage windowing

and median filtering to reduce scatter associated with sea surface roughness, yielding an

hourly measurement. The bottom pressure gauge measured every half hour and were

averaged to create an hourly estimate. In an effort to reduce pressure drift, each sensor

was pre-stressed. Despite this, there was still some residual drift in each pressure record.

A linear plus an exponential curve was removed from the pressure measurements at each

site as in Donohue et al. [2010]. Response analysis removed the semidiurnal and diurnal

tides [Munk and Cartwright , 1966]. The largest constituent was the semidurnal M2 tide

with an amplitude of 37-47 cm. The next largest were K1 and O2 (15-23cm), S2 (8-15

cm), and N2 (6-11 cm). P1, Q1 and K2 were all <6 cm each. The lunar monthly and
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fortnightly tides were removed using the Oregon State University tidal model [OSU ,

2009]. The fortnightly tide had an amplitude less than 3 cm and the monthly less than

1 cm.

Prior to recovery, annual telemetry cruises collected daily-average values of τ and

pressure. Thus the telemetered data required different but analogous processing from the

above hourly data. The CPIES instruments internally processes the τ measurements by

windowing and median filtering, and then computes a daily average. The pressure daily-

average values were internally computed using a Godin filter to remove the diurnal and

semidiurnal tides. The data in this study were collected on two telemetry cruises in 2008

and 2009. Post-processing further low-pass filtered with a 3-day cutoff and removed the

lunar and fortnightly tides using the Oregon State University tidal model [OSU , 2009].

The CPIES-measured τ were converted to τindex as outlined in Donohue et al. [2010].

First, the contribution to τ from the mass-loading constituent was removed to make τ

purely steric. The bottom pressure record was converted to an equivalent acoustic path

length and then subtracted from τmeasured. Next, the latitudinal and depth dependence

of gravity was removed as in Donohue et al. [2010] using the equation:

τdynamic = τmeasured

(
g(λ, 0)

9.8
(
1− P

1.017R

)) (1.2)

where g is gravity as a function of latitude (λ) at the sea surface, 9.8 is gravity in ms−2,

P is the depth of the instrument in dbar, and R is the radius of the earth (6371 km). The

seasonal signal (figure 1.6) was removed from dynamic τ . The final step was a conversion

from this τdynamic, which was a full water column round-trip travel time, to the τindex of

the GEM look-up table. This was accomplished by fitting a polynomial to the τdynamic

versus τ0−2000 relationship. The final τindex time series were combined with the GEM

look-up tables to produce daily temperature profiles, salinity profiles, or geopotential at

each site.

There are six or seven independent sources of error for hourly or daily measurements,

respectively (table 1.3). Error estimates for τindex closely follow Donohue et al. [2010].

The return acoustic signal contains scatter due to sea surface roughness. This error was
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determined by calculating the standard deviation of the scatter of all individual pings

that are the basis of each measurement and dividing by the square root of the number

of measurements. This yielded a 0.34 ms error for the hourly estimate and a 0.07 ms for

the daily estimate (Row 1 in table 1.3). The conversion from τmeasured to τindex has error

from several sources. First, the measurement must be a steric signal free of any influence

from barotropic processes. When creating a purely steric τ , the bottom pressure record

was converted to an equivalent acoustic path length and then subtracted from τmeasured.

Uncertainty in the pressure drift contributed the largest source of error to this adjustment

of τ and was estimated as 0.02 ms (Row 2 in table 1.3). The accuracy of the conversion

from τmeasured to τdynamic is six parts per million, so given an average depth of 4000 m,

the error in the cDrake region was 0.03 ms. Third, measured τ has not been corrected for

the pathlength due to the inverted-barometer response of the sea surface. RMS from the

European Center for Medium-Range Weather Forecasts (ECMWF) operational archive

atmospheric pressure fields determined the RMS variation of atmospheric pressure in

Drake Passage to be 0.2 dbar, with corresponding path-length error in τ of 0.27 ms.

Fourth, daily records have error associated with the acoustic telemetry. Comparison

between the telemetered records received on the ship with the files stored within recovered

instruments determined the 0.27 ms of telemetry error. At the conclusion of the cDrake

experiment, the recovered records instrument data sets will eliminate this error and

improve the accuracy of the CPIES measurements. Fifth, the conversion from τdynamic

to τ0−2000 (the index of the GEM look-up) was the single largest source of error. It was

estimated by the scatter in plotting τ0−2000 versus τ0−3500 for deep CTD hydrocasts and

is 0.46 ms. Finally, upper-ocean variability contributes an error. This is due to seasonal

and interannual variability in wind-induced mixing, atmospheric heating, and changes

in freshwater inputs from precipitation, ice formation, and ice melt. The seasonal cycle

was removed to help reduce this error, but the remaining scatter introduced to τ0−2000

from the upper τ0−200 was one of the largest errors in the steric SSHA (line 6). This

was reduced from 0.58 ms to 0.44 ms by removing the seasonal cycle. The total error in
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τ0−2000 was 0.77 ms (0.70 ms) for the hourly (daily) estimates and was determined by

taking the square root of the sum of the squares of the independent errors.

Hourly Daily

1 Scatter in measured /(N
1/2

) [ms] 0.34 0.07

2 Steric correction [ms] 0.02 0.02

3 dynamic [ms] 0.03 0.03

4 IB pathlength error [ms] 0.27 0.27

5 Telemetry error [ms] 0.27

6 Upper ocean variability [ms] 0.44 0.44

7 dyn to index [ms] 0.46 0.46

8 Total error in index [ms] 0.77 0.75

 Errors

Table 1.3: CPIES τindex errors.
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1.2.5 Computation of Sea Surface Height Anomaly from CPIES

The definition of sea surface height can be derived starting from the integral of the

hydrostatic equation as in Baker-Yeboah et al. [2009],∫ η′

−H
dz = −

∫ pa

pbot

1
ρg
dp, (1.3)

where η = η+η′ is total SSH, η is mean SSH over the record length, η′ is SSH anomaly, H

is the ocean depth, ρ is the density of seawater, g is gravity, pa is the surface atmospheric

pressure, and pbot is seafloor bottom pressure. Evaluating the integral on the left hand

side and redefining the integral on the right hand side of equation 1.3 yields

η′ +H =
∫ pbot

Pa

1
ρg
dp+

p′a
ρsg

, (1.4)

where p′a = pa − P a is the variation in surface atmospheric pressure relative to a mean

P a and g is the local gravitational acceleration. After further manipulation,

η′ − ηIB + (H −Hso) =
φP
g

+
pbot − P

ρbg
(1.5)

where η′ is the time-varying component of SSH, ηIB is the inverted barometer response,

H is the mean ocean depth at one geographic location, Hso is the mean standard ocean

depth, φP is the geopotential anomaly, P is the average bottom pressure, and ρb is bottom

density. ηIB represents the sea level response that the ocean would have to atmospheric

pressure if the bottom pressure were unaffected. The travel-time measurements have not

been corrected for the pathlength change due to the change in atmospheric pressure. On

the right hand side of equation 1.5, the first term represents the steric component and

the second term represents the mass-loading component of SSH.

In this work, sea surface height anomaly (SSHA) will be utilized. The steric com-

ponent of SSHA is given by the first term on the right hand side of equation 1.5 with

mean removed,

η′s =
φ′
P

g
. (1.6)

The GEM was used to convert from τindex to temperature and salinity profiles, which in

turn were used to compute φ′
P

and steric SSHA. The second term on the right hand side
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in equation 1.5, substituting bottom pressure anomaly for total bottom pressure,

η′m =
p′bot
ρbg

, (1.7)

is the mass-loading constituent of SSH. The term was calculated using the time series

of bottom pressure provided by the CPIES. In the above equations, the SSH and its

components were computed relative to the instrument’s depth. Referencing SSHA to the

seafloor resulted in two modes that can be identified with physical modes, a baroclinic

mode which contained the shear/steric signal and a barotropic/mass-loading mode which

was depth independent.

Note that for the analysis of the SSHA data calculated from the CPIES, the seasonal

signal has also been removed from the measurements. Altimetric products do not remove

the seasonal cycle, so for comparisons between the cDrake and AVISO data, the seasonal

signal has been added back in to the CPIES data.

In addition to the error in the τ2000 values as outlined in the previous section, there

are more errors associated with both the steric and mass-loading constituents of SSHA.

As an upper bound on the error for the cDrake region, individual contributions to the

total error in steric τ for hourly (daily) measurements was 7.29 cm (7.16 cm) as shown

in table 1.4. Because τ was used as proxy to determine temperature and salinity to

compute geopotential (φ), there was an error associated with the look-up tables. The

error in the geopotential itself was calculated by taking the RMS difference between φ

computed from CTD casts and the value of φ from the GEM given the CTD casts τ0−2000

value. For cDrake, this error expressed as δφ was 0.49 m2s−2. The relationship between

φ and τ0−2000 was linear with a slope ∂φ
∂τ of -0.68. The total error associated with the

look-up between travel time and geopotential is

εφ =

√(∣∣∣∣∂φ∂τ
∣∣∣∣ δτ)2

+ (δφ)2. (1.8)

Dividing εφ by gravity yields the total error in steric SSHA, which for the hourly mea-

surements is 7.29 cm and for daily measurements is 7.16 cm. Error in barotropic SSHA

derives from measurement error and uncertainty in the determination of the pressure
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drift. Based upon values determined in the Kuroshio Extension System Study [Donohue

et al., 2010], an estimate of 0.72 cm is used here.

The values for total SSHA error were slightly higher than those from Baker-Yeboah

et al. [2009] in the Agulhas Retroflection region, which had an error of 5.6 cm for total

SSHA. Unlike Baker-Yeboah et al. [2009], this study quantified the upper-ocean variabil-

ity in τ and partially corrected for a seasonal signal. No upper-ocean variability was

accounted for in the Agulhas Retroflection study. In addition, the daily values for the

cDrake experiment included a telemetry error. The combination of these errors accounts

for the discrepancies in error values.

Hourly Daily

1 Slope of 3500 versus 2000  [m
2
 s

-2
 ms

-1
] -0.68 -0.68

2 Error in  lookup [m
2
 s

-2
] 0.49 0.49

3 Total error in  [m2
 s

-2
] 0.71 0.70

4 Total error in Steric SSHA [cm] 7.29 7.17

Hourly Daily

5

Total error in mass-loading SSHA from 

paired site comparisons [cm] 0.72 0.72

Steric SSHA Errors

Mass-loading SSHA Error

Table 1.4: CPIES-derived sea surface height anomaly errors.

Error was also estimated for the cDrake CPIES steric SSHA by finding the noise

floor from spectral analysis. Due to the large changes in total variance across the passage,

a separate noise floor was found from the sites north and south of 58.5◦S. Figure 1.13

shows the difference in noise floor between the two regions. The northern sites had a

variance floor of 0.001 m2, whereas the southern sites had only 0.0003 m2. The error in

steric SSHA was calculated by

ε =

√
V ln

(
0.5

0.0078

)
(1.9)

where ε is the error, V is the noise floor, and 0.5/0.0078 is the ratio of the highest to
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Figure 1.13: Steric SSHA variance as a function of frequency for sites north (south) of
58.5◦S in black in the upper (lower) panel and the noise floor for each region in red .

lowest frequency for the dataset. The northern sites had an error of 6.5 cm, which is

close to the estimate from the tabulated errors in table 1.4. The southern sites, however,

had an error of only 3.5 cm from the spectral estimate, which is much lower than the

values in the northern sites.
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1.2.6 Satellite Altimetry

Satellite altimeter products are produced by SSALTO/DUACS and distributed by AVISO,

with support from CNES (http://www.aviso.oceanobs.com/duacs/). Two satellite al-

timeters occupy Drake Passage for the length of the cDrake deployment. The first is the

Jason-2 satellite whose groundtracks have a spacing of 315 km at the equator and a 10-

day repeat. The ERS satellite has much higher spatial resolution, more than triple that

of the Jason satellites with 90 km resolution at the equator. The ERS repeat interval

is longer than Jason occurring once every 35 days. These two satellites are combined

into the delayed-time, merged, reference, gridded sea level anomaly maps with temporal

resolution of 7 days mapped to a 1/3◦ grid. Satellite tracks and their relationship to the

cDrake array are shown in Figure 1.1. All except 6 sites fell along an ERS track and

only 7 sites fell on a Jason track.

The Aviso along-track products from the Jason and ERS satellites had errors of

3.4 cm [Aviso, 2008]. The merged product contains the same error in the individual

measurements, as well as the error from the mapping process. Aviso provides weekly

maps of the mapping error with the SSHA measurements [Aviso, 2010]. The time series

in figure 1.14 show the range of the mapping error for sites C04, D02, and C14. Errors

were higher when there was a strong SSHA event, such as a frontal meander or eddy. The

range at the northern transport line and LDA sites was 3 cm and the southern transport

sites peaked at 2 cm. Mapping errors combined with the along-track measurement error

yielded total errors ranging from 3.4 cm to 4.5 cm. The time series of SSHA for sites

C04, D02, and C14 are shown in figure 1.15 with total error bars.

Due to the low temporal resolution of the altimeters, any signals with a frequency

under 1/20 cpd will not be resolved by the Jason-1 or Jason-2 altimeters, and signal

frequencies under 1/70 cpd will not be resolved by ERS. The energy present in the

ocean at higher frequencies than resolved by the altimeters can be aliased. In order

to partially compensate for the atmospherically-driven component of this, Aviso ap-

plies what they call a dynamic atmospheric correction (DAC). Dynamic atmospheric
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Figure 1.14: Aviso mapping error for the merged SSHA product as a function of time
for 3 cDrake sites.

corrections are produced by CLS Space Oceanography Division using the a barotropic

tidal mode, Mog2D model from Legos and distributed by Aviso, with support from

Cnes (http://www.aviso.oceanobs.com/). The DAC consists of an inverted barometer

(IB) correction and output from a wind and atmospherically forced barotropic model

(Mog2D-G) on a 1/4◦ resolution global grid. The IB correction assumes a static response

of the ocean to atmospheric pressure forcing and neglects the wind response. AVISO

determines the ocean sea-level response to changes in atmospheric pressure using 6-hour

1/4 degree horizontal resolution European Center for Medium-Range Weather Forecasts

(ECMWF) surface pressures [Carrere and Lyard , 2003]. The IB correction range is

about 40 cm in Drake Passage. Mog2D-G is a high-resolution barotropic model with

a finite element space discretization with resolution ranging from 400 km in the deep
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Figure 1.15: Aviso merged product SSHA time series for 3 cDrake sites, error bars are
total measurement error.

ocean to 20 km in shallow coastal areas and is forced with 6-hour ECMWF wind and

pressure. The high-frequency (HF) correction consists of the model output restricted to

signals with frequencies greater than 1/20 cpd [Carrere and Lyard , 2003; Volkov et al.,

2007]. The DAC is applied to both the Jason and ERS satellites and is provided in

the geophysical data records. This study utilized the Jason-2 along-track geophysical

data records, which provide one value of the HF and IB every 10 days at the location

and time of each Jason-2 measurement. (Note that the high-frequency correction is for

signals greater then 1/20 cpd, even for the ERS satellite with a Nyquist frequency of

1/70 cpd. Aliasing of the energy between 1/20 cpd and 1/70 cpd is still possible).
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1.3 Constituents of Sea Surface Height Anomaly

The character of sea surface height anomaly (SSHA) varied across Drake Passage in

large part due to the meandering of the jets of the ACC. For example, consider a record

in northern Drake Passage, at site C04. There variance was high and the steric signal

dominates the total SSHA values for most of the record. The time series of SSHA

showed that the range was almost a meter (figure 1.16, upper panel). Large shifts were

attributed to the meandering Subantarctic Front (SAF). One of the most pronounced,

low-frequency changes occurred in July and August 2008 when a high is followed by a

low. To show how these events were due to SAF meanders and place them in a larger

spatial context, the top row of figure 1.17 shows SSH maps for several days during major

events and reveals that the SAF moved from south to north over the site over the course

of two weeks.

In the local dynamics array, variance was also high, and large changes were due

not only to SAF meanders but also PF meanders and eddies. D02 (middle panel of

figure 1.16) exhibited SSHA variability that was of larger magnitude (1.2 m range) than

observed at C04. At this site, both SAF and PF meanders and rings occurred, creating

the larger range in SSH in the time series. There was a brief but strong low event in

February 2008 which is shown in the progression of SSH maps in the middle row of figure

1.17 caused by a PF meander and eddy pinch-off. At the other extreme, a warm and

high SSHA, SAF ring passed over the site in January 2009 while interacting with the

SAF to the north and the PF to the south. As at C04, D02 was also dominated by the

steric signal associated with the strong lateral gradient in SSH across the SAF and PF.

The mass-loading constituent can, however, exceed 30% of the total signal, such as in

the event around October 26, 2008 at site D02 (figure 1.16).

There was less variability and higher amplitude mass-loading signals at site C14 on

the southern end of the transport line. The range of SSHA is one-third the size of the

sites further north (figure 1.16) due to the more moderate SSH gradients in the region.

For most of the record, the mass-loading and steric constituents are of similar magnitude.
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Figure 1.16: Time series of SSHA and its constituents at three sites, with pref equal to
the instrument’s depth. Note that the y-axis range is different for site C14, lowest panel.

There were three low SSH events between November 2008 and March 2009. These events

are the SACCF meandering over C14.
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Figure 1.17: Rows show sequences of SSHA events at sites C04 (top) and D02 (middle
and bottom). Color-shaded contours are SSH from the Aviso merged product with the
RIO05 mean dynamic topography every 20cm, thin black contours have a 5 cm contour
interval. A colorbar corresponding to the SSH values is located at the bottom of the
figure. The thick black lines are the estimated positions of the SAF (120 cm contour)
and the PF (65 cm contour) and their associated eddies. Land is shown in solid black.
cDrake sites are marked with white dots. Yellow dots represent the sites corresponding
with time series from figure 1.16 that correspond to the depicted event.
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The variance at northern sites is dominated by the steric signal while total variance

along the southern end of the transport line is split almost equally between the mass-

loading and steric constituents. Peak SSHA variance was found within the LDA sites

and a drastic decline of total and steric SSHA variance occured south of the Shackleton

Fracture Zone (figure 1.18). North of 57◦S, steric SSHA variance exceeded 60% of the

total SSHA variance. Large mass-loading contribution to SSHA events were often but not

always co-varying with the steric component, and this was due to periods of cyclogenesis

[Chereskin et al., 2009]. In fact, the site for the LDA was chosen as the region of highest

surface EKE with the objective of examining mesoscale processes (figure 1.19). The

coupling of the steric and mass-loading constituents during cyclogenesis led to the high

covariance values in the LDA. A drastic decline of total and steric SSHA variability

occurred south and west of the Shackleton Fracture Zone, at site C10 (inset of figure

1.18). In addition, the partition between mass-loading and steric contributions changed.

South of 59◦S, the mass-loading SSHA variance exceeded 40% of the total SSHA variance

and in places reaches 65% of the total variance. The two constituents are not correlated,

however.

62°S61°S60°S59°S58°S57°S56°S55°S
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

V
ar

ia
nc

e 
[m

2 ]

 

 C
01

C
02

C
03

C
04

C
21

C
05

C
19

C
06

C
07

C
08

C
18

C
09

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

SSH Variance
Steric
Mass−loading
Cov*2

62°S61°S60°S
−2

0

2

4

6

8
x 10

−3

Figure 1.18: Variance of SSHA and its constituents and their covariance along the trans-
port line as a function of latitude. Inset panel is an expanded y-axis for the southern
part of the Transport Line, units on y-axis are meters squared.
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Figure 1.19: Map of surface eddy kinetic energy. Colored contours are 17-year average (14
Oct 1992 to 18 Feb 2009) of surface eddy kinetic energy from altimetry from Chereskin
et al. [2009]. cDrake sites are shown with white triangles.

The SSHA variance of the cDrake sites in the LDA is comparable with the values

found in the South Atlantic Cape Basin in the Agulhas South-Atlantic Thermohaline

Transport Experiment (ASTTEX) by Baker-Yeboah et al. [2009]. The ASTTEX mass-

loading SSHA maximum variance is 25% higher than the maximum from the cDrake

array. In the Kuroshio Extension System Study, the total SSHA variance peaked at 0.2

m2 and the mass-loading constituent was much smaller than the cDrake study [Park ,

2010].

Examining SSHA variance as a function of frequency showed that most energy is at

frequencies of 1/20 cpd and lower (figure 1.20). Forty to fifty percent of the energy in
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total SSHA north of site C10 was associated with periods longer than 1/20 cpd. South

of 58.5◦S, periods longer than 20 days only account for 10 to 30%.

Meandering of the three ACC fronts about their mean positions occurred, creating

peaks in variance (upper panel of figure 1.21). The SAF meanders can be seen near 56◦S,

the PF between 57◦S and 59◦S, and the SACCF between 60◦S and 61.5◦S. The SAF and

PF were of similar strength (0.005 m2) while the SACCF was much smaller (0.0005 m2)

which was a reflection of its smaller steric signal.

Mass-loading variance is highest in the region of cyclogenesis and the magnitude

at all frequencies in northern Drake Passage is significantly smaller than the steric con-

stituent. Mass-loading spectra (bottom panel of figure 1.21) had increased variability

below 0.06 cycles per day, especially between 57◦S and 58◦S in the LDA. At 61◦S, the

mass-loading constituent has peaks in energy between 1/10 and 1/20 cpd, whereas the

steric constituent peaked at frequencies lower than 1/25 cpd at the same latitude.
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Figure 1.20: Spectral energy of total SSHA as a function of latitude along the transport
line and frequency.

39



Steric SSHA Variance [m2]

 
C02 
C03 
C04 
C21 
C05 
C19 
C06 
C07 
C08 
C18 
C09
 
C10
 
C11

 
C12
 
C13
 
C14
 
C15

 
C16 
C17

100 63 40 25 16 10  6  4  3

Period [days]

61°S 

60°S 

59°S 

58°S 

57°S 

56°S 

Frequency [cpd]

La
tit

ud
e

cD
ra

ke
 s

ite

0.01 0.02 0.03 0.04 0.06 0.10 0.16 0.25 0.40
0

0.25

0.5

1

2

3

4

5
x 10

−3

Mass−loading SSHA Variance [m2]

 
C02 
C03 
C04 
C21 
C05 
C19 
C06 
C07 
C08 
C18 
C09
 
C10
 
C11

 
C12
 
C13
 
C14
 
C15

 
C16 
C17

100 63 40 25 16 10  6  4  3

Period [days]

61°S 

60°S 

59°S 

58°S 

57°S 

56°S 

Frequency [cpd]

La
tit

ud
e

cD
ra

ke
 s

ite

0.01 0.02 0.03 0.04 0.06 0.10 0.16 0.25 0.40
0

0.25

0.5

1

2

3

4

5
x 10

−3

Figure 1.21: Upper (lower) panel is spectral energy of the steric (mass-loading) compo-
nent of SSHA as a function of latitude along the transport line and frequency.
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1.4 Aliasing of SSHA

Several oceanic processes affect SSH with periods between a few hours and 20 days, such

as tides, atmospherically-driven responses that are mainly barotropic, topographic and

shelf wave processes, and a variety of short period eddy variability. If these signals are not

adequately resolved by the sampling rate of measurements, the Nyquist theorem shows

that energy with periods shorter than twice the sampling period are aliased to different,

lower frequencies, making those lower frequencies appear on average more energetic

than they actually are. Using hourly records from recovered cDrake instruments, it

was possible to see how much energy was aliased by subsampling the data set at the

interval of satellite altimeters. The CPIES hourly measurements were subsampled at 10

day intervals, and the spectrum was computed. This process was iterated, offsetting the

starting point by 1 data point each time, until the spectrum had been computed for all

data points in the 10 day interval. The average of all individual spectra in the set was

computed. Figure 1.22 shows the spectra of the hourly measurements of each time series

with this averaged subsampled spectra overlaid to show the differences in energy. The

elevated energy at low frequencies in the subsampled spectra was the result of aliasing.

Note that C12 is plotted with a y-axis that is a factor of 10 smaller than the other 3

sites.
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Figure 1.22: Variance of hourly SSHA from the CPIES (black) and subsampled every 10
days (green) as a function of frequency.

The fraction of aliased energy can be quantified at each frequency by calculating

Ra = 1− E(f)
Esubsampled(f)

(1.10)

where 0 < f < 1/20 cpd [Gille and Hughes, 2001]. Negative values occur when not all

low-frequency energy is resolved by the subsampling, and zero values indicate perfectly

resolved signals. Positive values reveal that high-frequency energy has been aliased to

lower frequencies.

Another way to express the amount of aliased energy is in a signal to aliased-signal

ratio, reported in dB, similar to how a signal-to-noise ratios are commonly expressed.

For this study, the signal to aliased-signal ratio (SAR) is calculated by

SARdb = 10log10

(
E(f)

Esubsampled(f)− E(f)

)
, (1.11)

in the same manner as the signal-to-noise ratios (SNR) in Bendat and Piersol [2000].

Negative values indicate that there is more aliased energy than energy at that frequency
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in the original signal. Zero values indicate equal values of actual and aliased energy, and a

value of 6 dB corresponds approximately toRa of 0.25, or a quarter of the energy is aliased

from higher frequencies. Higher values reflect less aliasing. When discussing signal-to-

noise ratios in acoustic signal processing, the 6 dB cutoff represents the threshold at

which it becomes too difficult to detect the true signal through the noise, and 12 dB is

considered a good signal-to-noise ratio to decrease the chance of false detections [Urick ,

1967]. In the case of the SAR, it represents the value at which the aliasing becomes

too strong and the probability of false detection of signals is too high for the data to be

considered accurate.

Up to a quarter of the total energy in 10-day sampled SSHA at all frequencies

was due to aliasing in Drake Passage. For frequencies lower than 0.02 cpd, Ra values

ranged from 0 to 0.4, which indicated that up to 40% of energy at those frequencies

had been aliased (figure 1.23). Ra values fell between 0.4 and 0.8 at almost all sites

at a frequency of 0.04 (1/25) cpd. This indicated that at 1/25 cpd, more than half of

the energy seen in the subsampled time series was actually aliased from high-frequency

signals. Higher variance at frequencies between 1/20 and 1/50 cpd were seen along the

transport line compared to within the local dynamics array. The same results were seen

when expressing the SAR as a function of frequency (figure 1.24). The values above 6

dB at frequencies longer than 1/50 cpd indicate that if the aliased energy were treated as

noise, at low frequencies it would be possible to detect the real signals with a moderate

chance of false detection. For low frequencies at any sites have SAR above 12 dB, as

would have offered reliable interpretation of long-period signals. At all sites and high

frequencies less than 0.02 cpd, however, aliasing severely alters the true signals.

Due to the inclusion of steric SSHA in this analysis, these values provide better

estimates of the amount of energy aliased by the altimetric products.Gille and Hughes

[2001] based their Ra values on bottom pressure data with the underlying assumption

that bottom pressure variability would be a proxy for sea surface height variability. They

found that with a few exceptions, Ra was less than 0.5 for frequencies longer than 1/50
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cpd. Results here suggest that the outlook for total SSHA is slightly better in Drake

Passage, as the Ra values are less than 0.25 at most sites for lower frequencies.

The steric component of sea surface height showed a similar pattern to the total

sea surface height (figure 1.25) in that there was a peak in aliased energy at most sites

centered near 1/25 cpd and a quarter of the total energy there was due to aliasing.

At 1/100 cpd, there was relatively little aliasing (Ra < 0.25) and the subsampled time

series more closely determined the true signals at that low frequency. More energy at

frequencies higher than 1/30 cpd was aliased than in total SSHA.

The percentage of mass-loading SSHA energy that was aliased was greater than

steric SSHA energy. At most sites and frequencies, mass-loading Ra exceeded 0.2 (figure

1.26). The peak that was evident in the total and steric SSHA signals at 1/25 cpd was

also seen in the mass-loading constituent. However, for frequencies higher than 1/50

cpd, there was significantly more aliasing in the mass-loading constituent. This resulted

in aliased energy accounting for up to 50% of the total energy in the spectra, which is

consistent with the findings of Gille and Hughes [2001]. This study added many more

sites throughout the passage, enabling extension of the results further north, south, and

west from the Gille and Hughes [2001] sites.

While the percentage of energy aliased was larger for the mass-loading than steric

constituent, the total variance in each signal must also be considered. The mass-loading

signal was aliased more, but the total energy in the time series at sites in northern Drake

Passage was dominated by the steric signal. Therefore, when the steric constituent was

more than 2/3 of the total SSHA energy, then most of the aliased energy was due to

high-frequency steric signals. This was the case in northern Drake Passage and in the

LDA. For the southern end of the transport line, where the mass-loading and steric

constituents had similar variance, there was more aliased energy from the mass-loading

constituent.

44



0 0.01 0.02 0.03 0.04 0.05

0

0.2

0.4

0.6

0.8

1
Northern Transport Line

 

 
C02
C03
C04
C05

0 0.01 0.02 0.03 0.04 0.05

0

0.2

0.4

0.6

0.8

1
Southern Transport Line

 

 
C12
C16

0 0.01 0.02 0.03 0.04 0.05

0

0.2

0.4

0.6

0.8

1
Eastern LDA

 

 
C18
D01
D02
E01
F03
G02

0 0.01 0.02 0.03 0.04 0.05

0

0.2

0.4

0.6

0.8

1
Western LDA

Frequency (cycles per day)

R
a

 

 
A01
A02
B01
B03

Figure 1.23: Fraction of total sea surface height energy due to aliasing, computed by
equation 1.10.
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Figure 1.24: Signal to aliased signal ratio in dB for total SSHA, as computed in equation
1.11.
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Figure 1.25: Fraction of the steric constituent of sea surface height energy due to aliasing.
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Figure 1.26: Fraction of the mass-loading constituent of sea surface height energy due
to aliasing.
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1.5 Satellite Altimetry Comparisons

1.5.1 Along-Track Comparisons

The cDrake transport line was placed along an ERS satellite groundtrack. Due to the

presence of a topographic canyon in the continental slope at the northern edge of Drake

Passage, C01 through C04 were shifted up to 16 km east of ERS track 351. Fifteen

sites were co-located with track 351. The spatial resolution of the ERS satellite in Drake

Passage is approximately 40 km between tracks.

Broadly, the comparisons between CPIES-derived SSHA and altimeter SSH were

better in northern Drake Passage and within the LDA than those south of the Shack-

leton Fracture Zone. The three sites, highlighted in figure 1.27, had comparable RMS

differences between CPIES and altimeter SSHA near 0.06 m yet the visual correspon-

dence and correlations between the two products varied between these sites. C08 and

altimeter compared well; The correlation coefficient between CPIES and altimeter SSHA

was 0.93. A linear regression yielded a slope of 1.18, which indicated that the altimeter

measurements underestimated the SSHA, however, the slope was not statistically dif-

ferent from 1. The C08 time series illustrates how the 1/35 cpd ERS sampling often

missed SSHA signals: the low and two high peaks that occurred between December 2008

and June 2009 were not sampled by the satellite. At site C12, the correlation coefficient

between CPIES and altimeter SSHA was 0.65, less than at C08, yet clearly the two time

series tracked each other. The large high events between March and September 2008

were both captured by the altimeter. Plots of CPIES versus AVISO showed a slope of

only 0.76, but the large uncertainty of the slope again showed the relationship was not

statistically different from a slope of 1. In contrast, at C16 on the southern end of the

transport line, the correlation coefficient between CPIES and altimeter SSHA was only

0.26. There were not any large-amplitude low-frequency signals as there were in the C08

and C12 records. There were four events between June and September 2008 with an

amplitude of 10 cm that the altimeter sampling did not resolve.
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Figure 1.27: The left panels show time series of SSHA from CPIES and AVISO along-
track product. The black time series are daily values of SSHA from 3 CPIES sites along
the cDrake transport line coincident with ERS groundtracks. The blue crosshairs are
the measurements from the ERS satellite. Correlation and RMS difference is listed in
each plot title. The panels on the right are the CPIES values plotted against the AVISO
values (black dots), a linear fit (dashed red) with slope and 95% confidence interval of
the slope noted in the title, and the 1:1 ratio (gray line).
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There was strong latitudinal dependence of both correlation and variability in the

cDrake and AVISO SSHA products (figure 1.28). The correlations were high when the

recorded variance was high. Sites with RMS signal greater than 0.15 m had correlations

greater than 0.9. These sites with high signal and correlations were all north of the

Shackleton Fracture Zone (58.5◦S). Note that the RMS for the ERS and CPIES is actu-

ally a standard deviation since each time series has zero mean. The southern end of the

transport line was much less variable and the signal to noise ratio was close to 1. The

error in Aviso’s along-track product is 3.4 cm [Aviso, 2008] and the RMS of the ERS

measurements at sites C16 and C17 was only 3.7 cm. The error estimate from spectral

analysis of the CPIES data showed that in the southern end of the transport line, the

error is 3.5 cm, which was also close to the RMS value of the CPIES measurements. This

accounts for lower correlation coefficients there.

The determination of the statistical significance of the correlation coefficients de-

pends upon the effective degrees of freedom. The integral time scale for Drake Passage

was found to be 30 days from autocorrelation functions as in Emery and Thompson

[2001]. The effective degrees of freedom (N∗) is

N∗ =
N∆t
T

(1.12)

where N is the number of measurements, ∆t is the frequency of measurements, and T

is the integral time scale. Because ERS sampling at 35 days was longer than this 30 day

time scale, the effective degrees of freedom for timeseries used in the ERS-CPIES com-

parison equalled the number of measurements (table 1.5). With 13 degrees of freedom,

a correlation coefficient of 0.514 is statistically significant at the 95% confidence level.

Only 2 sites (C11 and C16) did not meet this criteria [Emery and Thompson, 2001].

There are several possible reasons for low correlations between the CPIES and al-

timeter measurements of SSHA. First, the distance between the two estimates was as

great as 9.5 km (Table 1.5) because the CPIES were compared to the closest standard-

grid point measurement along the altimeter track. Small spatial or temporal scale dis-

turbances could have caused discrepancies between the two. Secondly, the altimetry
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Figure 1.28: Top panel is the correlation coefficient between AVISO’s along-track ERS
product and CPIES SSHA at sites along the transport line plotted as a function of
latitude. The lower panel is the RMS of each signal, also as a function of latitude.

product processing could have introduced differences between the data sets. Processing

included some smoothing along the track and a barotropic high-frequency correction.

The smoothing is unlikely to impact the southern sites much since the correlation length

scales are so long there. The high-frequency correction needs improvement, which is

discussed in greater detail in section 1.5.3. Finally, error could be introduced by weather

and ice conditions. Increased sea surface roughness due to storms impact both the τ

measurements and the altimetry measurements. Sites far south, such as C16 and C17,

may be affected by sea ice in the austral winter months which would impact the altimetry

and CPIES measurements.
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Site Correlation Dist from
site [km]

RMS
ERS [m]

RMS CPIES
[m]

RMS differ-
ence [m]

#
points

C05 0.90 5.2 0.143 0.143 0.065 10
C06 0.87 5.7 0.142 0.164 0.082 15
C07 0.73 9.5 0.133 0.125 0.095 15
C08 0.93 4.7 0.128 0.161 0.062 13
C09 0.99 5.7 0.168 0.179 0.026 5
C10 0.95 7.9 0.150 0.160 0.051 14
C11 0.49 9.3 0.091 0.130 0.116 13
C12 0.65 3.1 0.061 0.072 0.056 15
C13 0.54 1.8 0.043 0.074 0.062 14
C14 0.63 3.4 0.051 0.065 0.052 14
C15 0.76 4.1 0.073 0.092 0.060 13
C16 0.26 1.8 0.037 0.065 0.066 15
C17 0.56 6.6 0.037 0.054 0.045 15
C18 0.95 4.5 0.113 0.127 0.039 10
C19 0.96 4.4 0.168 0.213 0.070 14

Table 1.5: Correlations between cDrake CPIES SSHA and AVISO’s along-track ERS
satellite product. ERS data is from the closest point along the track to the CPIES site.
The distance between the ERS measurement and the CPIES site is in column four. RMS
of CPIES is computed with only the measurements on days with an ERS measurement.
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1.5.2 Merged-Product Comparisons

In addition to the along-track data from the altimeters, Aviso produces a merged product

that combines both the ERS and Jason satellites to produce a gridded product every

7 days. While most cDrake sites did not lie on a Jason satellite line, the addition of

those tracks to the merged product enabled weekly comparisons between every cDrake

site and the mapped product. For this analysis, the merged product with 1/3◦ grid was

interpolated to each CPIES site.

The sites highlighted in the ERS along-track comparisons (figure 1.27) are repeated

using the mapped SSHA records (figure 1.29). At the site with highest variance, C08

displayed the same high correlation of 0.93 with the merged as the along-track product.

The addition of the neighboring ERS tracks and Jason satellite data enabled it to resolve

the large signals that the along-track data missed during the beginning of 2009. Site

C12, however, correlated worse with the merged product, dipping from a correlation

coefficient of 0.65 to 0.436. Its low variance and large distance to Jason groundtracks

likely made it susceptible to errors in the mapping process. Site C16 did not correlate

with either Aviso product.

The addition of the Jason satellite data and the mapping yielded a product that

resolved many more events than the ERS observations did alone. To illustrate this, figure

1.30 shows the time series at a cDrake site on the northern transport line, the middle of

the LDA, and on the southern transport line. At sites C04 and D02, the product resolved

the large and low-frequency events well, although for several events it underestimated

the change in SSHA. At site C14, a major event in January 2009 was completely missed.

Overall, however, more of the signal is resolved with the merged product.

Three sites along the A-line are presented (figure 1.31) because they have similar

characteristics yet different juxtapositions relative to altimeter tracks. Site A01 was on

both an ERS and Jason groundtrack, and close to a crossover point in both satellites

orbit paths. A02 was situated on the same ERS line as A01, but at a greater distance

to any Jason track. Site A03 was placed east of the ERS path to avoid a seamount. The
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Figure 1.29: The left panels show time series of SSHA from CPIES and AVISO merged,
gridded product. The black time series are daily values of SSHA from 3 CPIES sites along
the cDrake transport line coincident with ERS groundtracks that were also shown in the
comparison with the ERS along-track data. The blue crosshairs are the measurements
from the Aviso product. Correlation and RMS difference is listed in each plot title. The
panels on the right are the CPIES values plotted against the AVISO values (black dots),
a linear fit (dashed red) with slope and 95% confidence interval of the slope noted in the
title, and the 1:1 ratio (gray line).
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Figure 1.30: The left panels show time series of SSHA from CPIES and AVISO merged,
gridded product. The black time series are daily values of SSHA from 3 CPIES sites
along the cDrake transport line coincident with ERS groundtracks. The blue crosshairs
are the measurements from the Aviso product. Correlation and RMS difference is listed
in each plot title. The panels on the right are the CPIES values plotted against the
AVISO values (black dots), a linear fit (dashed red) with slope and 95% confidence
interval of the slope noted in the title, and the 1:1 ratio (gray line).
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best correlation would be expected from A01 due to its proximity to so many altimetric

measurements, however A02 actually agreed best with a correlation coefficient of 0.904,

which was 0.03 higher than at site A01. The AVISO merged product underestimated

the amplitude of signals by about 20%: the RMS of the Aviso product was smaller than

the CPIES subsampled at the same weekly interval, and the slope of the linear fit in

the right panels of figure 1.31 was greater and statistically different than 1. In addition

to smoothing introduced by the AVISO processing, this underestimation may also be

due to the mapping procedure used to create the merged product. Low-frequency, long-

wavenumber signals dominate in the LDA, which allowed for the good correlations in

this region regardless of distance to satellite tracks.

The RMS of the merged product along the transport line was lower at most sites

than the ERS altimeter alone. However, correlations were similar and the latitudinal

dependence was still apparent, as shown in figure 1.32. Overall the correlations were

good, especially in the northern transport line and LDA. The majority of sites had

correlations above 0.8. The effective degrees of freedom for the correlations with the

merged altimetry measurements is approximately 18 for most cDrake sites, as not all

measurements are independent. With 18 degrees of freedom, a correlation coefficient of

0.444 is statistically significant at the 95% confidence level, and only 3 sites (C12, C13,

and C16) did not meet this criteria [Emery and Thompson, 2001].

The errors in the Aviso merged product were a combination of the 3.4 cm error in

the along-track products and the error in the mapping process, bringing the total error

to 4.5 cm at times. Examples of mapping errors and total errors in relation to time series

are shown in section 1.2.6. The variable error may have contributed to the differences in

amplitude of eddies in their mapped products, which led to the RMS differences between

the CPIES data and the merged Aviso product. The altimeters will not perform as well

in areas where there are small spatial features or rapidly propagating features. These

signals would not be well-resolved by the individual altimeters, and therefore difficult to

map accurately.
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Figure 1.31: The left panels show time series of SSHA from CPIES and AVISO merged,
gridded product. The black time series are daily values of SSHA from 3 CPIES sites
along the cDrake transport line coincident with ERS groundtracks. The blue crosshairs
are the measurements from the Aviso product. Correlation and RMS difference is listed
in each plot title. The panels on the right are the CPIES values plotted against the
AVISO values (black dots), a linear fit (dashed red) with slope and 95% confidence
interval of the slope noted in the title, and the 1:1 ratio (gray line).
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Figure 1.32: Top panel is the correlation coefficient between AVISO’s merged, gridded
product and CPIES SSHA at sites along the transport line plotted as a function of
latitude. The lower panel is the RMS of each signal, also as a function of latitude.
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Table 1.6: Correlations between cDrake CPIES SSHA and AVISO’s merged satellite
product.
Site Correlation RMS of AVISO RMS of CPIES RMS difference # pts
A01 0.874 0.152 0.208 0.105 73
A02 0.904 0.174 0.238 0.110 87
A03 0.870 0.168 0.262 0.142 85
B01 0.829 0.142 0.190 0.107 88
B02 0.820 0.147 0.249 0.154 86
B03 0.832 0.166 0.216 0.121 88
C02 0.299 0.078 0.110 0.115 50
C03 0.723 0.094 0.136 0.094 88
C04 0.776 0.111 0.148 0.094 86
C05 0.814 0.123 0.178 0.106 55
C06 0.796 0.125 0.174 0.106 88
C07 0.709 0.120 0.156 0.111 86
C08 0.929 0.152 0.188 0.073 85
C09 0.954 0.219 0.266 0.087 33
C10 0.876 0.146 0.170 0.082 84
C11 0.776 0.105 0.136 0.086 83
C12 0.436 0.035 0.058 0.053 87
C13 0.286 0.027 0.044 0.045 87
C14 0.485 0.041 0.057 0.052 87
C15 0.736 0.047 0.082 0.057 87
C16 0.208 0.023 0.048 0.049 87
C17 0.445 0.022 0.053 0.047 86
C18 0.875 0.115 0.145 0.071 54
C19 0.732 0.125 0.154 0.106 86
C21 0.912 0.130 0.177 0.079 32
D01 0.656 0.131 0.158 0.122 87
D02 0.830 0.118 0.169 0.097 88
D03 0.898 0.127 0.167 0.077 87
E01 0.767 0.153 0.156 0.105 86
E02 0.461 0.126 0.156 0.149 86
E03 0.880 0.135 0.184 0.091 87
F01 0.870 0.157 0.173 0.085 87
F02 0.739 0.144 0.145 0.104 75
F03 0.836 0.138 0.173 0.095 88
G01 0.741 0.161 0.213 0.143 76
G02 0.799 0.117 0.141 0.085 88
G03 0.784 0.104 0.137 0.085 86

58



1.5.3 High-Frequency Corrections to Altimetry

Aviso is constantly trying to improve its processing schemes and corrections to reduce

SSHA errors. Spectral analysis of CPIES-derived SSHA showed variability at frequencies

higher than 1/20 cpd. The sampling rate of the altimeters will alias this high-frequency

variability. To reduce this aliasing, AVISO applies a dynamic atmosphere correction

(DAC). Unfortunately, AVISO does not save the Mog2D-G output offline but rather

bundles the HF and IB corrections and delivers this as a product. Because the IB and

HF corrections contain signals within the same frequency range it is impossible to isolate

the two corrections. AVISO does separate the corrections in their along-track Topex,

Jason-1 and Jason-2 geophysical data records. Therefore both the IB and HF corrections

are available at 1/20 cpd resolution.

Two recovered instruments coincided with Jason groundtracks, one within the LDA

(A01) and one just south of the LDA (C09). The comparison between these LDA mea-

surements and the HF correction is not likely to be favorable in this region because LDA

mass-laoding SSHA is strongly influenced by cyclogenesis. The DAC records were com-

pared with the mass-loading constituent of SSHA from the CPIES after being high-pass

filtered with a 20-day cut-off (4th order Butterworth filter). Site A01 showed no corre-

lation. Site C09 had a correlation coefficient of 0.78 (table 1.7). The RMS of the Aviso

records were both around 1.3 cm, while the CPIES at site A01 (C09) were 8.27 (2.20)

cm (table 1.7). The RMS difference was large, especially at A01 where the variance in

the CPIES record was very high.

AVISO [cm] CPIES [cm] RMS difference [cm] Correlation
A01 1.35 8.29 8.32 0.06
C09 1.28 3.00 2.20 0.78

Table 1.7: RMS of the high frequency signals of the AVISO model correction and the
high-pass filtered CPIES mass-loading SSHA, their RMS difference, and correlation.

To look at the pattern of RMS of the DAC across the entire cDrake array, the along-

track high-frequency barotropic model outputs from July 2008 through April 2010 were

mapped (left panel of figure 1.35). This showed a similar spatial pattern and range in
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the passage as the global map published on the AVISO website (figure 1.34). RMS of

the 20-day high-pass filtered CPIES measurements from recovered instruments (center

panel of figure 1.35) showed the spatial patterns are quite different. The model is much

weaker everywhere in Drake Passage and this disagreement was most pronounced in the

LDA and northern Drake Passage. The 3-day low-pass filtered telemetered data at every

cDrake site (right panel of figure 1.35) were utilized to see more of the spatial pattern

in the cDrake array. The variance for these records was lower than the hourly records

from the recovered instruments because of the averaging and filtering that went into the

telemetered records. The variance more closely agreed with the HF correction, which

showed that the model was underestimating the high-frequency mass-loading signals

everywhere in Drake Passage. The disagreement within the LDA could be anticipated

by recognizing that this variability is tied to instabilities within the baroclinic ACC

jets. It is also possible that smaller-horizontal scale boundary waves that have a bottom

pressure expression might not be resolved by the barotropic model.

The DAC also currently makes no effort to remove high-frequency signals in the

steric SSHA. There were high-frequency steric signals that were aliased to frequencies

resolved by the altimeters (section 1.3). The signal is of the same magnitude as the

mass-loading signal, and should therefore be addressed or accounted for in the error of

the altimetry measurements. Pascual et al. [2008] suggested the use of the Hindcast of

Dynamic Processes of the Ocean and Coastal Areas of Europe (HIOPCAS) model to

correct altimetry when there should be a separation between steric and mass contribu-

tions. Without an accurate model to correct for these steric signals, the aliased variance

must be accounted for in the error budget of the satellite altimeters.
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Figure 1.33: Time series of mass-loading SSHA from recovered CPIES instruments, high-
pass filtered with a 20 day cutoff shown in red and the AVISO high frequency signal from
the Mog2D-G model in black. The upper and middle panels are different time periods
at site A01. Lower panel is site C09.
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Figure 1.34: Variability of the ocean dynamic response (in cm) due to pressure
and winds, from shallow water hydrodynamic model Mog2D. (Credits CLS/Legos,
http://www.aviso.oceanobs.com/fileadmin/images/data/Products/auxiliaires/rms ibd pv.gif).
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Figure 1.35: Left panel is the RMS of the publicly available high-frequency correction
from the Aviso dynamic atmospheric correction for the Jason groundtracks. The colorbar
for all plots is shown to the right. The center (right) panel is the RMS value of high-pass
filtered cDrake hourly (low-pass filtered daily) CPIES mass-loading SSHA at each site.
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1.6 Conclusion

The cDrake project has provided an unprecedented dataset to analyze SSHA. Both the

steric and mass-loading constituents of SSHA contributed to the total SSHA signal.

Steric signals dominated SSHA north of 58.5◦S but were of the same order of magnitude

as the mass-loading signal along the southern transport line. In northern Drake Passage,

however, the mass-loading signal was influential during cyclogenesis and eddy events.

The agreements between the CPIES array and the satellite altimetry products were

generally favorable in regions of high SSHA variance. In these regions, the mapped

satellite SSHA compared well to CPIES SSHA regardless of distance to a satellite track

because in these regions, variability was dominated by low-frequency long-wavenumber

signals that were well resolved by the altimeter sampling.

Both constituents have high-frequency signals that the hourly and daily CPIES

measurements resolved. For frequencies between 1/50 and 1/20 cpd, between 25% and

75% of the total SSHA energy measured by the altimeter is due to aliasing of higher

frequency signals. These high percentages indicate that if satellite measurements were

left uncorrected for high-frequency signals, there would be a large error introduced into

the altimetric measurements at those frequencies. This work refines the conclusion of

Gille and Hughes [2001] who only considered the mass-loading component of SSHA. The

AVISO corrections for high-frequency signals (above the 1/20 cpd Nyquist frequency of

the Jason-1 and Jason-2 satellites) are made with a barotropic model. The model did

not correlate well with the CPIES mass-loading high-frequency signals. Furthermore, the

AVISO correction does attempt to correct for high-frequency steric signals. The aliasing

of higher frequency signals remains a significant problem and improvements to processing

procedures will be necessary if satellites are to be the basis of future monitoring efforts

in Drake Passage.
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