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ABSTRACT 

IMPORTANCE: Patients using prescription opioid are embedded in a network due 

provider-sharing and living in the same community. As a result, they may exert 

influence on each other’s treatment preferences and share attitudes towards 

prescription opioid use and misuse. 

OBJECTIVE: To determine patient characteristics associated with the observed 

pattern of shared prescribers in a network and identify influential patients in the 

network.  

DESIGN, SETTING, AND PARTICIPANTS: We conducted a cross-sectional 

network-based study using the Rhode Island (RI) Prescription Drug Monitoring 

Program (PDMP) data for the 2015 calendar year. All patients who filled at least one 

opioid prescription at a retail pharmacy were eligible. The analysis was limited to 

patients who were on a stable opioid regimen and used only one source of payment, 

and filled only one type of opioid medication (oxycodone, hydrocodone or 

buprenorphine/naloxone) from ≥ 3 prescribers, and visited ≥ 3 pharmacies during the 

year. To minimize the influence of less relevant network connections, we excluded 

institutional providers and providers who issued opioid prescriptions to ≤ 6 patients. 

We applied social network analysis (SNA) methods to a sample of 372 patients 

connected to each other through provider-sharing. We used the exponential random 

graph model (ERGM) assuming conditional dyadic independence to examine the 

relationship between patient attributes and the likelihood of forming network ties. 

Homophily was defined as the tendency of patients to associate with others who have 

similar characteristics. Three centrality measures (degree, closeness, and betweenness) 



 

were used to identify patients with potential influence in the opioid prescription 

network.  

MAIN OUTCMES AND MEASURES: We provide a visual and descriptive 

characterization of the network, used centrality measures to identify influential 

patients, and ERGM to assess homophily and differential homophily.  

RESULTS: The mean age of patients included in the analysis was 51 years; 53% 

were female; 57% took oxycodone, 34% took hydrocodone and 9% took 

buprenorphine/naloxone. On average, 53% of patients received less than 50 morphine 

milligram equivalents (MME) daily, and the mean (standard deviation [SD]) number 

of opioid prescriptions per patient was 14.4 (6.6). Sixty-four percent of patients had 

commercial insurance, 28% had Medicaid, 5% had Medicare, and almost 2.5% used 

cash payment only. All three centrality measures were in agreement on the 

identification of the most influential patient in the opioid prescription network but 

overall correlation between the measures was low. After controlling for the main 

effects in the ERGM model, homophily was associated with age group, method of 

payment, number and type of opioid prescription filled, mean daily MME, and number 

of providers seen. 

CONSLUSIONS: Characteristics of patients in an opioid prescription network may 

influence which provider they choose and which patients they are connect to through 

provider sharing. Interventions targeted at influential patients in the network may have 

potential to influence social norms around the use and misuse of prescription opioids 

that may lead to reductions in prescription opioid-related overdose deaths. 
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PREFACE 

This thesis is written in the manuscript format, and is comprised of a single 

manuscript, which applied network analysis to advance our understanding of an opioid 

prescription network in the state of Rhode Island. We propose approaches to identify 

and target influential patients for interventions to alter social norms around opioid 

misuse. Its focus is on the application of the methods and it is written for a non-

statistical audience. A more statistical discussion of essential concepts is presented in 

the Technical Appendix.  
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ABSTRACT 

IMPORTANCE: Patients using prescription opioid are embedded in a network due to 

provider-sharing and living in the same community. As a result, they may exert 

influence on each other’s treatment preferences and share attitudes towards 

prescription opioid use and misuse. 

OBJECTIVE: To determine patient characteristics associated with the observed 

pattern of shared prescribers in a network and identify influential patients in the 

network.  

DESIGN, SETTING, AND PARTICIPANTS: We conducted a cross-sectional 

network-based study using the Rhode Island (RI) Prescription Drug Monitoring 

Program (PDMP) data for the 2015 calendar year. All patients who filled at least one 

opioid prescription at a retail pharmacy were eligible. The analysis was limited to 

patients who were on a stable opioid regimen and used only one source of payment, 

and filled only one type of opioid medication (oxycodone, hydrocodone or 

buprenorphine/naloxone) from ≥ 3 prescribers, and visited ≥ 3 pharmacies during the 

year. To minimize the influence of less relevant network connections, we excluded 

institutional providers and providers who issued opioid prescriptions to ≤ 6 patients. 

We applied social network analysis (SNA) methods to a sample of 372 patients 

connected to each other through provider-sharing. We used the exponential random 

graph model (ERGM) assuming conditional dyadic independence to examine the 

relationship between patient attributes and the likelihood of forming network ties. 

Homophily was defined as the tendency of patients to associate with others who have 

similar characteristics. Three centrality measures (degree, closeness, and betweenness) 
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were used to identify patients with potential influence in the opioid prescription 

network.  

MAIN OUTCMES AND MEASURES: We provide a visual and descriptive 

characterization of the network, used centrality measures to identify influential 

patients, and ERGM to assess homophily and differential homophily.  

RESULTS: The mean age of patients included in the analysis was 51 years; 53% 

were female; 57% took oxycodone, 34% took hydrocodone and 9% took 

buprenorphine/naloxone. On average, 53% of patients received less than 50 morphine 

milligram equivalents (MME) daily, and the mean (standard deviation [SD]) number 

of opioid prescriptions per patient was 14.4 (6.6). Sixty-four percent of patients had 

commercial insurance, 28% had Medicaid, 5% had Medicare, and almost 2.5% used 

cash payment only. All three centrality measures were in agreement on the 

identification of the most influential patient in the opioid prescription network but 

overall correlation between the measures was low. After controlling for the main 

effects in the ERGM model, homophily was associated with age group, method of 

payment, number and type of opioid prescription filled, mean daily MME, and number 

of providers seen. 

CONSLUSIONS: Characteristics of patients in an opioid prescription network may 

influence which provider they choose and which patients they are connect to through 

provider sharing. Interventions targeted at influential patients in the network may have 

potential to influence social norms around the use and misuse of prescription opioids 

that may lead to reductions in prescription opioid-related overdose deaths. 
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KEY POINTS 

Questions: What patient characteristics explain the pattern of shared-provider 

connections among patients in an opioid prescription network and can we identify 

influential patients as potential targets for opioid misuse prevention interventions? 

Findings: In this social network analysis of PDMP data, we found extensive 

homophily that was associated with age group, method of payment, number and type 

of opioid prescription filled, mean daily dose, and number of prescribers ordering 

opioid prescriptions. All three commonly used centrality measures identified the same 

individual as the most influential patient in the network. 

Meaning: Some patients in an opioid prescription network occupy influential 

positions through a large number of shared providers or by virtue of their location on 

paths between other patients in the network. Patients with similar characteristics tend 

to share providers with each other. These findings suggest that interventions targeted 

at influential, well-connected patients in the network may alter social norms around 

prescription opioid use and misuse in a community.  
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INTRODUCTION 

The United States is experiencing an unprecedented prescription opioid overdose 

crisis driven in part by few patients who possibly engage in doctor shopping which 

may be identified in this context as patients obtaining opioid prescriptions from 

multiple providers without the prescribers’ knowledge of other opioid prescriptions.1-3 

Prescribers may be sought by patients using opioids because of their reputation around 

opioid prescribing patterns such as use of high daily dose, use of combination opioids, 

and frequent refills. Knowledge about individual prescriber clinical practices and 

preferences may be shared among patients during co-visitation or social encounters in 

the community. A recent study demonstrated that health care providers tended to share 

patients with providers who have similar patients in their practice.4  This suggests that 

patients prescribed opioids in a single state could be conceptualized as a network of 

patients with connections through shared providers which we define in an opioid 

prescription network. We hypothesized that patients within an opioid prescription 

network may exert influence on each other’s opioid prescription utilization, including 

opioid misuse as a result of living in the same community or sharing a common opioid 

prescriber in the network, thereby impacting their network member’s opioid 

prescription utilization and social norms around opioid use and misuse.5  

Limited data suggests that a few high-intensity prescribers play a central role 

in sustaining the prescription opioid epidemic.6,7 The pattern of provider-sharing may 

help identify corresponding influential or central patients in a network, thereby 

providing a clearer picture of where doctor shopping for prescription opioids may be 

occurring. This understanding can inform the implementation of targeted interventions 
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designed to improve prescription opioid utilization, prevent misuse, and treat opioid 

use disorder among patients in a network. A network-based perspective has been used 

to study a wide range of relational processes involving the flow of information 

between network members connected to each other in a social network. This 

perspective provides a framework that can be used to understand the structure of a 

network and how it influences the behavior of individual members in the network.8-10 

Landon et al. recently used network-based methods to demonstrate that characteristics 

of patient-sharing networks and the position of providers in the network are associated 

with healthcare resource utilization and cost.11 Another study used network analysis to 

show racial differences in referral patterns for total hip replacement between 

communities with low and high concentrations of back residents.12 Similar studies 

have not been done using an opioid prescription network. 

There is a dearth of knowledge about characteristics of patients possibly 

engaged in doctor shopping for opioid prescriptions and methods to identify 

prescription opioid doctor shopping behavior are limited. To the best of our 

knowledge, network analysis has not yet been used to study an opioid prescription 

network within any state. The purpose of this study was to explore and characterize a 

patient-based opioid prescription network using social network analysis (SNA) 

methods. Specifically, we described patterns of relationships between patients within 

an opioid network, identified patients who have an influential role in the network, and 

examined patient characteristics that may explain the observed pattern of provider-

sharing relationships. We used the exponential random graph model (ERGM) 

assuming conditional dyadic independence to examine the influence of some 
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characteristics of individual patients in the network on their likelihood to form 

network connections through provider sharing.  

BACKGROUND 

Over the past three decades opioid prescribing has increased tremendously in the 

United States, with a corresponding rise in opioid misuse and opioid overdose-related 

deaths.13,14 An important feature of this opioid epidemic is the association between 

increasing rates of opioid prescribing and opioid-related morbidity and mortality.15-17 

Among people who died of opioid overdoses, up to 66% used prescription opioid 

analgesics originally prescribed for someone else; with doctor shopping being an 

important means for acquiring these prescription opioids for misuse.18-24 In one study 

designed to determine the prevalence of doctor shopping for different controlled 

substances, prescription opioid medications (12.8%) were the most frequently 

involved, followed by benzodiazepines (2.4%), and stimulants (1.4%).25 A cross-

sectional study of French patients on buprenorphine maintenance treatment identified 

opioid misuse as a significant problem.3 Similar findings were reported in a review of 

buprenorphine misuse.26 Doctor shopping for prescription opioid medications often 

precedes fatal overdose, and accounts for about 40% of opioid-related overdoses, and 

up to 30% of deaths.18,27-30 According to data from the Rhode Island Department of 

Health, overdose deaths increased by more than 90% between 2011 and 2016. There 

were 426 overdose deaths, of which 32% were related to fentanyl products, about 70% 

were males, and 25% were in their 50s.31  

In response to the epidemic of opioid misuse, state-run Prescription Drug 

Monitoring Programs (PDMPs) were implemented in 49 states. These electronic 
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databases collect information on controlled substance prescriptions including opioid 

prescriptions, regardless of the sources of payment. These databases have been used 

by prescribers and others to examine filling patterns consistent with prescription 

opioid shopping behavior and potential misuse.32-34 The number of providers involved 

in the care of a patient is often considered to be one of the strongest predictors of 

potential opioid misuse because until recently providers often did not have ready 

access to complete and accurate medication history at time of opioid prescribing.35-41 

The use of the number of prescribers to fill controlled substances, referred to as 

multiple prescriber episodes (MPE), has frequently been used as an indicator of doctor 

shopping in PDMP databases. The absence of a universally accepted definition for a 

threshold has led to wide variations in national estimates of doctor shopping, and 

associated difficulties in making comparisons across different settings to evaluate the 

effectiveness of interventions to prevent or reduce prescription opioid doctor shopping 

behavior.18,32,34,42 We sought to evaluate the influence of MPE, number of opioid 

prescriptions, number of pharmacies used, method of payment, age group,  and gender 

on the likelihood to form network connections through provider sharing. 

Standard statistical approaches often assume independence of patients and/or 

providers and ignore contextual relationships between providers and patients, and 

among patients due geographic proximity, social influence, and local medical practice 

norms; thereby, limiting our ability to evaluate prescription opioid doctor shopping 

behavior. The goal of this study was to incorporate relational information using SNA. 

These findings will better inform future intervention policies designed to improve 
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social norms around prescription opioid use and prevent potential misuse among 

patients within a community of patients using prescription opioids.  

METHODS 

Data source: We conducted a cross-sectional network-based study using the Rhode 

Island (RI) PDMP data for the 2015 calendar year when the opioid crisis was a major 

statewide concern to patients, prescribers and public health regulators. The 2015 data 

contains records of schedule II to IV controlled substances dispensed by all retail 

pharmacies in the state. It includes de-identified unique patient, prescriber, and 

dispensing pharmacy information, and a limited number of variables such as age (in 

years) and sex of the patient, National Drug Code (NDC), product name, strength, 

formulation, and therapeutic class code of the drug plus number of days’ supply, 

metric quantity dispensed, method of payment, and the date each prescription was 

filled. Daily morphine milligrams equivalents (MME) were estimated using standard 

conversion factors published by the Center for Disease Control and Prevention. 

Cohort selection: A total of 2,058,816 controlled substance prescriptions were 

dispensed in RI in 2015 including opioid analgesics, benzodiazepines, 

psychostimulants, skeletal muscle relaxants, and sleep aids.43 Unique NDC codes were 

used to identify 809,195 schedules II-IV opioid prescriptions filled at retail 

pharmacies by 222,513 patients (Figure 1). To minimize the impact of less clinically 

relevant network connections, we excluded institutional providers and prescribers who 

issued opioid prescriptions to ≤ 6 patients during the study year. An institutional 

provider was defined as any prescriber who had more than 2,400 patients on opioid 

prescriptions medications per year attributed to their Drug Enforcement 
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Administration (DEA) number. Institutional DEA numbers are used by medical 

students and residents to prescribe controlled substances under the supervision of a 

licensed attending physician. Patients were required to have used only one type of 

opioid medication and one source of payment method during the study period in order 

to capture patients who were more likely on a stable pain management regimen and to 

facilitate meaningful interpretation of the impact of these patient attributes. We limited 

our analysis to commonly used and misused types of opioid medications (i.e., 

oxycodone and hydrocodone), and buprenorphine/naloxone that is used to treat opioid 

use disorders. We hypothesized that patients on buprenorphine/naloxone for opioid 

use disorders would connect to one another more often than expected by chance.  In 

addition, we restricted our analysis to patients who saw ≥ 3 prescribers for the same 

opioid prescription and filled their opioid prescriptions at ≥ 3 pharmacies within one 

year in order to capture patients with meaningful involvement in the patient-based 

opioid prescription network. Multiple visits allow the network to capture relationships 

between patients using opioid prescriptions. Several studies have used higher 

thresholds of 4 or 5 to flag doctor/pharmacy shopping behavior when applied to 

multiple types of opioid prescription per patient.42,44 We evaluated the influence of age 

or age category, sex, source of payment, and type of opioid medication, number of 

opioid prescriptions, average daily MME, number of providers, and number of 

pharmacies on the likelihood of having a network connection defined by having one or 

more shared providers in an opioid prescription network.   
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Network-based framework  

A network may be defined as a collection of points (i.e., vertices, nodes) and lines 

(i.e., edges, ties, links, connections) joining them. In a social network, these vertices 

represent people or groups of people and edges represent a kind of interaction between 

them. PDMP data links each patient who received at least one opioid prescription to 

one or more providers who ordered the opioid prescription(s). The receipt of one or 

more opioid prescriptions from a prescriber was used as a proxy for a relationship or 

interaction between a patient and a provider because state regulation requires a 

physician visit for a written opioid prescription. These prescription records were used 

to create an edge list, a two-column table, mapping patients to providers, each row 

representing an individual opioid prescription. The edge list was used to create a 

bipartite (two-mode) network where all pairs of patients and providers are joined by 

an edge. The bipartite network was represented as a provider-by-patient incidence 

matrix with cell entries indicating whether a provider wrote an opioid prescription to a 

particular patient (Figure 2). The rows of the matrix consisted of individual patients 

and columns identified providers. Pre-multiplying the bipartite incidence matrix by its 

transpose gave a symmetric unipartite (one-mode) adjacency matrix with either 

providers or patients only. The diagonal elements of the unipartite square matrix 

corresponded to the number of providers who wrote at least one opioid prescription to 

a given patient while the off-diagonal elements indicate the number of providers any 

two patients had in common. This analysis focused on the patient-based network 

where all nodes are represented by patients and connections (or edges) correspond to 

shared-provider relationships. To avoid the creation of loops and multi-edges, 
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diagonal elements were set to zero and off-diagonal elements with values greater than 

one were set to 1, respectively. The construction of a simple patient-based network 

graph is illustrated in Figure 3.  

Network visualization: Network visualizations were selected to optimally place 

nodes in positions that visually convey important information in the network, such as 

the overall structure, location of influential patients in the network, and the presence of 

distinctive subgroups (or clusters within the network).45,46 Some patient characteristics 

were incorporated into visualizations using different node colors. Graphical 

representation was used to examine degree, triangles, dyad-wise shared partners 

(DSP), and edgewise shared partners (ESP) distributions to explore the network in 

order to understand its structures. A DSP is a linked or unlinked dyad (i.e., patient 

pair) where both patients are linked to a third network member. ESP is a linked dyad 

in which both patients of the dyad are linked to a third network member. The 

distribution of ESP in a network was used to show how many dyads had one shared 

partner, two shared partners, and so on. Similarly, the distribution of DSP was used to 

show the number of dyads in the network with one shared partner, two shared 

partners, and so on. Node degree and triangles are defined below. 

Network description: We evaluated the network with basic description of the 

network size, density, and number of components, diameter, clustering, centrality and 

modularity. The network size is defined as the number of nodes (i.e., patients) in the 

network and its density is defined as the proportion of observed connections in the 

network to the maximum number of possible connections in a randomly-generated 

network of the same size. A path is a series of steps required to go from patient A to 
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patient B. The shortest path is called the geodesic (distance) and the longest path is its 

diameter. A component is a subgroup of patients in the network such that there is a 

path connecting any two patients in the component directly or indirectly. A network is 

said to be connected if all pairs of nodes are connected directly or indirectly. When the 

largest connected component (LCC) is much bigger than the other components in a 

network it is called the giant component. The LCC was used to improve visualization, 

apply centrality measures, and develop ERGM models.  

Global clustering measures the tendency of a network to form closed triangles 

(i.e., connections between three patients). A triangle closes when three patients share 

an opioid prescriber. Transitivity or clustering coefficient is the proportion of paths of 

length two that are closed. For each patient, it refers to the ratio of the total number of 

connections that exist among neighbors of the patient in the network to the total 

number of possible connections that could exist if they were completely connected.47  

This local clustering coefficient describes the extent to which network neighbors of a 

particular patient are directly connected to each other and may be interpreted as the 

probability that any two randomly selected neighbors of a particular patient in the 

network are connected to each other. Lower local clustering coefficients indicate 

fewer structural holes in the network and greater patient centrality.47,48 

Network measures of centrality attempt to determine which patients are the 

most influential or central persons in a network.47 The influence of an individual 

patient on others in a network through dissemination of information may influence 

social norms around opioid misuse and the sharing of opioid prescriptions in the 

network. In general, we expect patients with more connections to exert greater 
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influence on others in the network by sharing their attitudes towards opioid 

prescription use with a wider group of patients. We employed three commonly used 

centrality measures: degree, closeness, and betweenness centralities. Firstly, a 

patient’s degree centrality is the number of other patients with direct connections to 

the patient or simply the number of shared providers. Secondly, closeness centrality 

measures how close a patient is to every other patient in the network, and reflects how 

fast information and influence of a particular patient can disseminate to other patients 

in the network. Formally, it is the inverse of the sum of all distances between patient  

and all other patients in the network. Thirdly, betweenness centrality measures the 

extent to which a patient acts as a bridge between pairs of other patients in the network 

to facilitate the flow of information through the network. This implies that patients 

with larger betweenness centralities are more likely to have contacts with many other 

patients and may have greater influence regarding social norms around the use and 

potential misuse of prescription opioids in the network.49,50 To estimate this measure, 

we used a commonly applied algorithm proposed by Freeman.51 The most influential 

patient in the network was identified using each centrality measure and a subgraph 

corresponding to that individual and his or her immediate neighborhood was 

constructed.52  

The LCC was used to calculate centrality measures that were standardized for 

comparison. Degree and closeness centralities were standardized dividing the estimate 

by their maximum possible values,  and , respectively, while the 

betweenness was normalized by dividing through the number of pairs of vertices not 

including the index vertex, . A chi-squared test was used to 
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compare the distribution of patient attributes across tertiles of the standardized 

centrality measures in the LCC. Assuming standardized centrality measures are 

independent and identically distributed across patients, three separate multivariable 

logistic regression models were fit to predict membership in the highest tertile of the 

standardized centrality measure. We used Pearson’s correlation coefficient and 28 

(10%) patients with the highest values for each standardized centrality measure to 

assess the level of agreement in identifying the most influential patients. 

Modularity, a chance-corrected statistic, is defined as the proportion of 

connections that fall within observed groups based on patient characteristics minus the 

expected proportion if the connections were randomly distributed. The scores ranges 

from  to  and the closer the score value is to 1, the more the network exhibits 

clustering with respect to the grouping factor. Modularity scores were used to examine 

the influence of patient characteristics on patterns of connections in the opioid 

prescription network. Furthermore, because network visualization and modularity 

showed some evidence of clustering, mixing matrices and Pearson’s correlation were 

examined. Mixing matrices were used to examine the number of connected dyads for 

each possible combination of levels of categorical patient characteristic. These 

exploratory analyses identified patient characteristics that were included in the ERGM.  

Statistical network modeling: ERGMs were used to estimate the influence of 

covariates on the likelihood of ties in the opioid prescription network. This class of 

models formulates the probability of observing a set of network edges (and non-edges) 

as: 

, 
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where,  is the random set of relationships (edges and non-edges) in a network,  is 

the observed set of relationships,  is a matrix of attributes for the vertices in that 

network,  is a vector of the network statistics,  is the vector of coefficients, 

and  is a normalizing constant. Alternatively, the model states that the log odds 

for any given edge to exist conditional on the remaining network connections, and can 

be written as: 

, 

where,  is an indicator for a connection between pairs of patients in Y, and 

  is the change in  value as  is toggled from 0 to 1 (See 

Technical Appendix for details).  

We first modeled a simple random graph (i.e., null model) which contained 

only an edges term to capture the network density.53 A simulated network of the same 

size and density as the observed opioid prescription network was compared to the 

observed network in order to identify important differences between the two networks. 

The main effects and pairwise homophily interaction terms were added sequentially to 

the null model to represent attributes of patients in the network. Homophily was 

defined as the tendency for patients to connect with others like themselves. To 

examine the influence of node attributes on the likelihood of having a shared provider 

in the network, patient attributes were added to the model as main effects. We 

hypothesized that specific patient attributes, including number of opioid prescriptions, 

sex, age group, type of insurance coverage, type of opioid prescription, number of 

prescribers and pharmacies, explain the pattern of patient connections through 

provider sharing.  
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Homophily or assortative mixing is a tendency of patients to associate with similar 

patients, while disassortative mixing is the tendency to associate with dissimilar 

patients. Two types of dyadic interaction terms were added to the main effects model 

to assess assortative and disassortative mixing in the network leading to patterns of 

homophily or heterophily, respectively. First, we assessed the likelihood of provider 

sharing when both patients in a dyad had the same level of a categorical attribute. The 

number of opioid prescriptions was added as a continuous attribute. We hypothesized 

that two patients with a similar number of opioid prescriptions filled during the study 

year were more likely to form a network connection based on having a shared 

provider. Secondly, we assessed the likelihood of provider sharing when both patients 

in a dyad had different levels (i.e., dissimilar) of a categorical attribute such as type of 

opioid prescription (differential homophily).  

We limited this analysis to ERGM models that assume dyadic independence of 

network connections.54 This assumption specified that patients sharing a provider were 

dependent but independent if they had no provider in common. The null and main 

effects models with and without homophily and differential homophily terms were 

compared using Log L and related measures of deviance (-2LogL), the Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC).55,56 All tests 

of statistical significance were two-sided and performed at the 0.05 significance level. 

Data manipulation was performed with SAS, version 9.4 (SAS Institute, Cary, NC) 

and network analysis was implemented with R statistical software, version 3.2.3 (R 

Core Team 2016). The study was approved by the Institutional Review Board at 

University of Rhode Island.  
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RESULTS 

A total of 372 patients prescribed opioids by 746 providers during a one-year study 

period met the inclusion criteria for meaningful involvement in the opioid prescription 

network in RI. Table 1 presents a summary of the characteristics of all the patients 

compared to those in the LCC. The mean (SD) age of all patients in the sample was 51 

(14) years with 50% aged 45-64 years, and 53% were female. More than 5,000 opioid 

prescriptions were filled, of which 57% were prescriptions for oxycodone, 34% were 

for hydrocodone and 9% were for buprenorphine/naloxone. The mean number of 

opioid prescriptions filled per patient was 14.4 (SD=6.6) with 53% receiving on 

average less than 50 MME daily. However, 25% of patients had on average more than 

90 MME per day. Most patients paid for all their opioid prescriptions with commercial 

insurance and only 2.4% used cash payment exclusively. About half of the patients 

filled opioid prescriptions written from ≥4 prescribers while 31% filled their opioid 

prescriptions at ≥4 pharmacies during the one-year study period.  

Network characteristics: The bipartite network had a total of 1,118 nodes (746 

providers plus 372 patients) with 1,460 unique connections between them 

corresponding to unique patient-provider relationships resulting from one or more 

opioid prescriptions. There were more prescribers in the network than patients. The 

overall bipartite density was only 0.5%. The full opioid network contained 372 

patients with 1,980 connections among them; 32 (8.6%) had no shared providers 

(isolates) [Figure 4]. The full network had 55 connected components including 32 

isolates, and the LCC contained 74% of all the patients in the network including 

95.66% of all connections; the second largest connected component consisted of only 
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2.4% (Figure 5). The full network and its LCC demonstrated apparent clustering with 

at least 4-5 large clusters. There was some evidence of clustering by age group, opioid 

type, average daily dose, and method of payment; however, no pattern by gender was 

apparent. The most obvious clustering is seen among patients who were on 

buprenorphine/naloxone. One possible explanation for this clustering is that under the 

Drug Addiction Treatment Act (DATA) of 2000, only certain qualified providers are 

authorized to prescribe buprenorphine/naloxone as medication-assisted treatment for 

people diagnosed with an opioid use disorder. 

Characteristics of the full opioid network and its LCC are presented in Table 2. 

The LCC had an overall density of 5% compared with 3% for the whole network. The 

average number of shared providers was higher among those in the LCC (13.8) 

compared to the whole network (10.6). The average path length and longest path were 

the same (≈ 10) suggesting that the rate of flow of information diffusion in the LCC 

would be similar to that of the full network. However, the density around the most 

central patient was 65%, average number of shared providers was 25 (SD=9) and the 

average path length only 1.4 (Figure 6). Assortative mixing and the fraction of 

transitive triples (transitivity) were higher for the whole cohort. About 85% of patients 

who shared a provider were connected to other patients who also shared a provider 

with each of them. Seventy-five of patients were connected to one or more patients 

with at least one similar characteristic.  

 The number of shared providers was quite heterogeneous across patients 

(Figure 7). While there are many patients with few shared providers, there was a non-

trivial number with many shared providers. In particular, there are 28 patients with 29 
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shared prescribers. This may correspond to providers in the same practice or on-call 

group. Given the nature of the decay in the degree distribution, a log-log scale was 

used to assess the results. The middle panel in Figure 7 shows a somewhat linear 

decay in the log-frequency as a function of the log-degree. A plot of the average 

neighbor degree versus vertex degree suggests that while there is a tendency for 

patients with many shared providers to connect to each other, those with fewer shared 

providers tend to connect with both patients having lower and higher number of shared 

providers (assortative degree network). This is illustrated by the high network density 

around the most influential patient (Figure 6). 

Centrality measures: Overall, there was moderate correlation between degree and 

closeness (r = 0.53; p < 0.001), and between closeness and betweenness(r = 0.48; p < 

0.001) centralities. However, correlation between degree and betweenness centralities 

was low (r = 0.19; p=0.002).  Among 56 patients with the highest standardized 

centrality values for any of the three measures, 14 (25%) were identified by degree 

and closeness centralities, 12 (21%) by closeness and betweenness centralities, 7 

(12%) by degree and betweenness centralities, and only 5 (8.93%) by all three 

measures. However, all three measures identified the same patient as the most 

influential patient in the network; a 48-year-old female on Medicare taking 

Oxycodone who filled 19 prescriptions for an average daily MME > 90 and saw 5 

different providers and visited 5 different pharmacies during one calendar year (data 

not shown).  

Tertiles of standardized centrality measures estimated from the LCC are 

presented in Table 3. Age group, type of opioid used, average daily dose, and number 



21 
 

of opioid prescribers were associated with at least one standardized centrality measure 

while gender, method of payment, and number of pharmacies were not associated with 

any centrality measure. Based on multivariable logistic regression model, age group, 

type of opioid used, average daily dose, and number of opioid prescribers were 

associated with the highest tertile of at least one standardized centrality measure, after 

adjusting for other covariates in the model (Table 4). Patients aged 45-64 years were 

most likely to be classified as having the highest levels of standardized degree 

centrality tertile as compared to those ages 65 years and older. Furthermore, patients 

who took on average > 90 daily MME were 6.7 times more likely to have the highest 

standardized degree centrality tertile compared to those on < 50 MME per day. This 

suggests that patients on higher daily doses of opioids tend to have more shared 

providers. Based on standardized closeness and betweenness centralities, patients who 

had ≥ 4 providers were more likely to be classified in the highest tertile of their 

respective standardized centrality measures. As compared with patients on 

hydrocodone, patients on buprenorphine/naloxone were less likely to be in the highest 

standardized degree centrality tertile and more likely to be in the highest standardized 

betweenness centrality tertile. This suggests that patients with few connections may be 

crucial for the diffusion of information and prescription opioids in the network.  

Network connectivity: Graphical examination of triangles, degree, DSP, and ESP were 

used to understand the network structure (Figure 8). The observed LCC of the network 

had many more completed triples than a randomly-generated network of the same size 

and density. Similarly, the LCC had many patients with few shared providers (low-

degree nodes) and few patients with many shared providers (high-degree nodes) 
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compared with a random network of the same size and density. Edgewise and dyad-

wise shared partner distributions also differed in the observed LCC and random 

networks with the observed LCC having more patients with multiple ESP and DSP 

compared with the random network, which indicated a large number of patients with 

one or two shared partners, and hardly any higher level multiples.  

Mixing matrices is presented in Table 5. Provider sharing tended to be between 

two patients who are both female, one younger and the other middle-aged, both on 

commercial insurance, both on oxycodone, one on low-dose and the other on 

intermediate daily dose, or both with 4 or more opioid prescribers. For example, of 

825 connected pairs of patients who took hydrocodone in opioid type mixing matrix, 

659 (80%) are connected to a patient who took only hydrocodone. This suggested a 

higher likelihood of patients who took hydrocodone to share providers with other 

patients who also took hydrocodone (i.e., homophily of opioid prescribing). From 

Table 6 opioid type, number of providers, average daily MME and age group had the 

highest modularity score and may explain some of the clustering observed in the 

network. From the perspective of the network connections and patient attributes, the 

GC was a reasonable representation of the full opioid prescription network.  

Results from ERGMs: Based on a null model with only the edge term to account for 

the number of connections in the network, the probability of a connection between any 

randomly selected two patients was 0.06 (i.e., density of the network). This baseline 

model was compared to models with more constraints. Although the null model 

provided a reasonable representation of the observed network density, it failed to 

represent other features of the network such as transitivity. A plot of 1,000 simulated 
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networks of the same size and density as the null model was used to assess how well 

the null model captured transitivity. The point on the x-axis in Figure 9 corresponds to 

the location of 12,514 triangles in the observed patient network, which was much 

higher than the number of triangles in any of the 1,000 simulated networks. This 

suggested that a more complex model with constraints on the number of triangle was 

needed to capture transitivity and other network characteristics in the observed opioid 

prescription network. 

Model with main effects of patient attributes: Based the modularity score and clinical 

importance, we selected gender, age category, payment method, opioid type, number 

of prescriptions, average daily dose in MME, number of provider who wrote opioid 

prescriptions to the patient in one calendar year (categorical) and number of 

pharmacies visited during the year to fill opioid prescriptions (categorical) to include 

in the main effects model. The null hypothesis was that there was no association 

between each patient attribute and the likelihood of a patient having a connection 

through provider sharing, after controlling for all other attributes in the model. The 

results of the main effects model are summarized in Table 7. Positive coefficients (i.e., 

log odds of a connection) indicate a higher likelihood of sharing a provider with 

another patient in the network (compared to the reference level for categorical 

attributes) and negative coefficients indicate lower likelihood. The total number of 

opioid prescription filled was positively associated with an increased likelihood of 

having a shared provider. Male patients were less likely to have a shared provider in 

the network than female patients, although this difference was not statistically 

significant. Unlike patients on Medicare, patients who used Medicaid or cash 
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payments exclusively were less likely to have a shared provider with other patients in 

the opioid prescription network than patients who used commercial insurance but the 

difference was not statistically significant for the use of cash term. With only 9 

patients who used cash exclusively, there may not have been enough power to detect 

any difference. Patients who took either hydrocodone or oxycodone were more likely 

to have a shared provider in the network. A higher average daily dose of opioids was 

associated with a greater the chance of having a shared provider in the network. 

Furthermore, patients who had ≥ 4 opioid prescribers in one year were more likely to 

have at least one shared provider in the opioid prescription network than those with 

fewer providers. However, patients who filled their opioid prescriptions at ≥ 4 

pharmacies were less likely to have a shared provider in the network than those who 

used fewer pharmacies. These results are consistent with our results of network 

visualizations, mixing matrices, Pearson’s correlation coefficients and modularity 

scores.  

Model with main effects and homophily terms: We hypothesized that two patients with 

the same level of a categorical attribute, or similar number of opioid prescriptions 

filled during the study year, were equally likely to form a network connection based 

on having a shared provider. The results of the model with main effects and 

homophily terms are summarized in Table 8. Positive and significant parameter 

estimates for gender, age category, opioid type, average daily MME, and number of 

providers all indicated the presence of homophily effects for these patient attributes, 

after controlling for their main effects in the model. All homophily interaction terms 

were statistically significant at 0.05 level except for method of payment that was only 
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significant at 0.10 significance level. Use of ≥ 4 pharmacies had no homophilic 

effects. For the number of opioid prescriptions filled during the year, a negative 

coefficient indicated homophily because the absolute difference in size decreases as 

the sizes of both values in a dyad becomes more identical. The addition of homophilic 

terms did not alter the qualitative associations of the main attributes. 

Model with main effects and differential homophily terms: The results of the model 

with differential homophily terms are presented in Table 9. Overall homophilic effects 

of gender were seen mainly among females; for age mainly among patients 65 years 

and older; for opioid type among all levels especially those on 

buprenorphine/naloxone subgroup; and for number of providers mainly among those 

who saw ≤ 4 providers in a year, after controlling for other variables in the model, 

respectively. Overall homophily effects of payment type were significant at the 0.10 

level only among those on commercial insurance and there were no homophilic effects 

within other subgroups of payment method. Adjusted homophily effects of opioid 

dose and number of pharmacies did not achieve statistical significance. The addition 

of homophily terms did not alter the qualitative association of the main attributes, 

except for the subgroup of patients aged 65 and older. The model with main effects 

and differential homophily terms had a lower AIC than the baseline model and the 

model with main effects and homophilic terms. 

DISCUSSION 

This study suggests that patients in an opioid prescription network were highly 

connected. Our sample of 372 patients had 1,980 shared-provider connections and 

almost 75% of patients were connected to each other either directly or indirectly in 
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one giant component that consisted of 96% of all connections in the full network. The 

intensity of prescription opioid use and possible misuse is reflected in the number of 

prescribers in the network. There were twice as many providers as patients using 

prescription opioids. More than half the patients saw at least four providers although 

they appeared to be on a stable opioid regimen. A majority of patients were female 

and aged 45-64 years old. The underlying structure of the network was significantly 

different from that of a randomly-generated network of the same size and density. The 

random network was never designed as a model for observed networks because it 

ignores node attributes that may explain observed clustering. The distribution of the 

number of shared providers was bimodal with a second peak corresponding to 29 

shared prescribers. This may represent a group of patients who belong to a large 

medical group with many providers who cater for all the patients, including pain 

management.  

Our opioid prescription network demonstrated homophily by opioid type, 

opioid dose, age group, sources of payment and number of providers. The most 

obvious clustering on visualization was seen among patients on 

buprenorphine/naloxone. One possible explanation for this clustering is that under the 

Drug Addiction Treatment Act (DATA) of 2000, only certain qualified providers are 

authorized to prescribe buprenorphine/naloxone as medication-assisted treatment for 

people diagnosed with an opioid use disorder. Such patients are more likely to seek 

certified providers in the network. Overall, 75% of patients were connected to one or 

more patients with at least one similar characteristic. Furthermore, patients with many 

shared providers were more likely to connect to each other and such patients may have 
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patterns of use consistent with potential abuse. Although older patients with more 

medical conditions tend to be on opioid therapy, they had fewer shared providers 

compared to younger patients. This may be due older patients having a stable health 

insurance and an established primary care provider who meets their medical needs.  

Centrality measures suggested that relatively few patients were at the center of the 

opioid prescription network. Similar conclusions have been drawn about providers 

using standard statistical methods.6,7 The level of connectedness was captured by 

degree and closeness centrality measures, which identified higher daily opioid dose to 

be associated with the number of shared providers (i.e., degree centrality) and 

closeness centrality, which is a measure of how quickly information emanating from 

one patient in the network could spread to other patients assuming each shared 

provider relationship offers ample opportunities to disseminate information and 

training on opioid misuse prevention.  

If network connections represent the flow of information and influence, then a 

measure of how often a patient in the network acts as a bridge between other patients 

may provide a more useful measure. Betweenness centrality assumes there is flow of 

information in a network and attempts to capture the influence of each member over 

the spread of that information. However, in calculating this measure it is assumed that 

all patients in the network have the same probability of sharing information received 

and that the information spreads around via the shortest paths. This suggests that more 

information would pass through patients with larger betweenness centralities whose 

removal from the network could disrupt the network cohesion. In practice, patients 

may not spread information at the same rate and information may not spread through 
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the shortest paths.47 Despite these limitations, betweenness centrality remains a very 

useful guide to the potential influence a network member over the flow of information 

and may serve as a useful way to identify patients for prevention and treatment 

interventions. It also has a wide range of values making it easier to distinguish 

between central and less central patient targets. Our analysis suggested that such 

intervention would seek patients with MPE or those on opioid use disorder treatment 

first. These findings support the use of multiple provider episodes as an indicator of 

potential opioid misuse.44,57,58 Additional studies are needed to evaluate the practical 

advantages of using betweenness centrality with or without MPE. This can be easily 

implemented through sequential analysis of PDMP data which were instituted or 

strengthened primarily in response to the prescription opioid epidemic. 

Our results suggest that patients on prescription opioid medications are not 

isolated from their social environment, but rather are connected to each other via 

provider sharing. Sharing an opioid prescriber may increase the probability of 

establishing a personal relationship with another patient on opioid therapy through a 

chance encounter in a physician office or the community because, unlike some other 

controlled substances, oxycodone, hydrocodone and buprenorphine/naloxone require 

an office visit for a written prescription. These relationships form a basis for 

constructing an opioid prescription network using comprehensive and reliable 

prescription information captured by the PDMP at the state-level irrespective of the 

payer. New state regulations and laws mandates quantity limits on opioid 

prescriptions. For patients requiring chronic opioid therapy, this may lead to biweekly 

or monthly office visits for opioid prescription renewals. Refills may be provided by a 
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partner in the same practice or a provider on-call. After office hours, the patient may 

visit the emergency room or a walk-in clinic for a short supply. Broadly defined, 

doctor shopping involves visiting many providers during an episode of illness, or to 

acquire controlled substances illicitly. In the context of acquiring prescription opioid 

medications for potential misuse, patients may engage in doctor shopping because of 

long waiting times for an appointment, inconvenient office hours, persistence of 

painful condition, provider attitude, or absence because of vacation.59-61 Hence, doctor 

shopping behavior may be a reflection of fragmented care in a patient with persistent 

pain. We had no clinical diagnosis information, place of service, geographic location, 

or provider specialty to impugn any diagnosis or clinical condition for opioid 

prescriptions.  

A recent social network analysis of physicians in the United States showed that 

providers tend to be connected to other providers with similar patients in a patient-

sharing network.5 Our study shows substantial clustering and assortative mixing 

driven by patient characteristics. The extent of homophily is similar to what has been 

observed in other social settings.62,63 The cross-sectional nature of our study does not 

allow us infer the reasons for preferential connections of patients using prescription 

opioid to other patients with similar characteristics. One implication of homophily is 

that it could facilitate the spread of valuable health information through targeted 

training of influential patients in the network and reduce the diffusion of risky 

behavior around prescription opioid use and misuse.  
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The successful application of network science to a systematic problem such as 

the opioid crisis requires careful consideration of the choice of nodes and the 

connections between them to ensure clinical significance. This study demonstrates 

several advantages of using PDMP to identify connections within a network of 

patients on prescription opioid therapy. The sample for this analysis was derived from 

a statewide PDMP data which provided a unique opportunity to identify virtually all 

provider-sharing relationships among patients on prescription opioids regardless of the 

sources of payment. Because the data is collected for use in clinical decision-making 

at the point of patient care, it is assumed to be accurate and comprehensive. It provides 

data that can be used to identify patterns of opioid prescription filling that raise 

concerns for potential opioid misuse. 

LIMITATIONS 

These analyses are subject to a few limitations. First, the sharing of an opioid 

prescriber was used to infer an information sharing relationship between patients on 

prescription opioids. Patterns of provider sharing may be a reflection of fragmented 

care rather than doctor shopping of prescription opioids for illicit use. We cannot 

identify doctor shopping from prescription data because in this context doctor 

shopping often involves an illegal and covert activity. PDMP data do not reveal the 

reasons why patients obtained multiple prescriptions from so many different 

prescribers. Second, we excluded providers with very few patients or potential 

institutional providers. We have no evidence that all prescribers were licensed in the 

state for the whole calendar year and such providers may have fewer patients. Their 

removal may cause network fragmentation, fundamentally altering some of the 
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properties of the network. Third, we used a threshold of 2,400 for so-called 

institutional providers but there could have been other institutional prescribers with 

fewer patients similar to non-institutional providers. Furthermore, providers in single 

group practice are more likely to see the same patients creating a false pattern of 

doctor shopping behavior. Because our analysis did not account for the grouping of 

physician practices, there is potential for misclassification of the number of providers 

seen. Moreover, our analysis failed to capture evidence of geographic proximity, co-

visitation to providers, or community social interactions. Fourth, our data was limited 

to a single calendar year for one state with very few variables making it difficult to 

characterize the nature of the relationships. We did not account for prescription opioid 

fills across the state-lines. Indeed, PDMP data may underestimate the prevalence of 

prescription opioid misuse because it focuses on prescribers and patients ignoring 

other sources of illicit prescription opioid use, including theft, illicit drug use, and 

unlicensed internet pharmacies. Fifth, the enforcement of regulations on electronic 

filing of controlled substance fillings, merging of prescriber practices, entry and exit 

of providers and pharmacies from the market may alter the patterns of relationships 

substantially. Sixth, the usefulness of closeness centrality in observed networks is 

often limited by the existence of several components because distance between two 

patients in different components is considered infinite. In addition, the range of 

closeness centrality values is relatively narrow, making it difficult to distinguish 

between an influential and a less influential patient in the network for the purpose of 

designing interventions. Seventh, the ERGM model of characteristics associated with 

network connections, homophily and differential homophily assumes conditional 
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independence of dyads, which is largely unrealistic in practice.64 ERGM models of 

large networks perform poorly due time-consuming algorithms and non-converging 

Markov chains, and associated model degeneracy. Furthermore, nodes are assumed 

fixed and homogenous except for differences captured in available nodal attributes. 

The use of a subnetwork in which these assumptions hold limits generalizability of 

results because every network is unique due to inconsistency under sampling. 

CONCLUSIONS 

Patterns of provider sharing in a patient-based prescription opioid network, suggest 

that patients prescribed opioids may have extensive connections with other that could 

be leveraged to improve dissemination of health promotion or disruption of negative 

behaviors with the use and misuse of opioid prescriptions. The characteristics of these 

patients and the structure of the network uniting them influence their health choices. 

The analysis suggests that opioid prescribers could easily be sought by patients who 

doctor shop for prescription opioids. Interventions targeted at influential patients in the 

network may have potential to influence social norm around the use and misuse of 

prescription opioids eventually leading to reductions in opioid overdoses and opioid 

use disorders.  
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TABLES AND FIGURES 

 

Table 1. Characteristics of Patients in an Opioid Prescription  
Network of Patients in the RI PDMP in 2015 (n=372) 
Characteristic All (N=372) LCC (N=274) 

 Mean (SD) 
Number of providers 
Number of pharmacies 
Number of opioid Rx 
Total daily MME, mg  
Age (years) 

  3.92 (1.27) 
  3.47 (0.82) 
14.36 (6.56) 
1,238 (1,958)  
50.59 (13.84) 

3.99 (1.34) 
3.49 (0.85) 
14.01 (5.52) 
1262 (1976) 
49.34 (13.45) 

 N (%) 
Age group (years) 

21-44 
45-64 
65+ 

 
126 (33.87) 
189 (50.81) 
  57 (15.32) 

 
103 (37.59) 
134 (48.91) 
37 (13.50) 

Gender 
Female 
Male  

 
197 (52.96) 
175 (47.04) 

 
139 (50.73) 
135 (49.27) 

Method of payment for opioids 
Commercial 
Medicare 
Medicaid 
Cash  

 
239 (64.25) 
104 (27.96) 
  20 (5.38) 
    9 (2.42) 

 
178 (64.96) 
5 (1.82) 
15 (5.47) 
76 (27.74) 

Number of providers  
3 
4+ 

 
187 (50.27) 
185 (49.73) 

 
134 (48.91) 
140 (51.09) 

Number of pharmacies 
3 
4+ 

 
257 (69.09) 
115 (30.91) 

 
187 (68.25) 
87 (31.75) 

Type of opioid medication used 
Buprenorphine/naloxone 
Hydrocodone 
Oxycodone 

 
33 (8.87) 
126 (33.87) 
213 (57.26) 

 
32 (11.68) 
93 (33.94) 
149 (54.38) 

MME category, mg 
< 50 
50-90 
>90 

 
197 (52.96) 
81 (21.77) 
94 (25.27) 

 
136 (49.64) 
67 (24.45) 
71 (25.91) 

Abbreviations: LCC= largest connected component; Rx=prescription(s) 
SD=standard deviation; MME=morphine milligram equivalent 
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Table 2. Summary of Characteristics of a Network of Patients and a  
Network of Providers in the RI PDMP in 2015 
Network characteristics Patient-based Network Provider-based Network 
Basic characteristics All LCC All LCC 
Number of vertices 
Number of edges 
Density  
Average degree (SD) 
Average path length 
Diameter  
Global transitivity 
Mean Local transitivity 
Assortative coefficient 
Number of components 
Size of LCC 

372 
1,980 
0.0287 
10.7 (11.7) 
4.18 
10 (13) 
0.853 
0.731 
0.785 
55 
274 

274 
1,894 
0.0506 
13.8 (12.0) 
4.19 
10 (13) 
0.852 
0.718 
0.751 
1 
274 

746 
1,901 
0.0068 
5.1 (4.1) 
5.05 
11 
0.498 
0.839 
0.156 
55 
479 

479 
1,437 
0.0126 
6.0 (4.7) 
5.10 
11 
0.460 
0.789 
0.040 
1 
479 

 Abbreviations: LCC= largest connected component; SD=standard deviation.
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Table 3. Distribution of standardized centrality measures by patient characteristics using the largest connected component  
of the opioid prescription network 
 Quartiles of standardized centrality measures 

 Betweenness centrality Degree centrality Closeness centrality 

 
Characteristic 

T 1 
(n=91) 

T 2 
(n=92) 

T 3 
(n=91) 

p-value T 1 
(n=93) 

T 2 
(n=89) 

T 3 
(n=92) 

 
p-value 

T 1 
(n=92) 

T 2 
(n=91) 

T 3 
(n=91) 

 
p-value 

Age group (years) 
21-44 
45-64 
65+ 

 
36 
36 
19 

 
28 
55 
9 

 
39 
43 
9 

 
0.022 

 
36 
41 
16 

 
35 
38 
16 

 
32 
55 
5 

 
0.035 

 
37 
38 
17 

 
33 
45 
13 

 
33 
51 
7 

 
0.178 

Gender 
Female 
Male 

 
45 
46 

 
51 
41 

 
43 
48 

 
0.518 

 
51 
42 

 
45 
44 

 
43 
49 

 
0.545 

 
45 
47 

 
45 
46 

 
49 
24 

 
0.765 

Payment method 
Commercial 
Medicare 
Medicaid 
Cash  

 
54 
29 
6 
2 

 
61 
24 
5 
2 

 
63 
23 
4 
1 

 
0.883 

 
61 
25 
5 
2 

 
54 
27 
7 
1 

 
63 
24 
3 
2 

 
0.825 

 
55 
29 
6 
2 

 
65 
22 
3 
1 

 
58 
25 
6 
2 

 
0.750 

Number of providers  
3 
4+ 

 
58 
33 

 
42 
50 

 
34 
57 

 
0.001 

 
50 
43 

 
43 
46 

 
41 
51 

 
0.453 

 
53 
39 

 
46 
45 

 
35 
56 

 
0.032 

Number of pharmacies 
3 
4+ 

 
62 
29 

 
69 
23 

 
56 
35 

 
0.148 

 
64 
29 

 
61 
28 

 
62 
30 

 
0.976 

 
64 
28 

 
61 
30 

 
62 
29 

 
0.934 

Most commonly filled opioids 
Bup/naloxone 
Hydrocodone 
Oxycodone 

 
3 

36 
52 

 
12 
31 
49 

 
17 
26 
48 

 
0.024 

 
10 
46 
37 

 
21 
25 
43 

 
1 

22 
69 

 
< 0.001 

 
7 

38 
47 

 
14 
32 
45 

 
11 
23 
57 

 
0.106 

MME category, mg 
< 50 
50-90 
>90 

 
49 
20 
22 

 
43 
26 
23 

 
44 
21 
26 

 
0.784 

 
66 
12 
15 

 
41 
19 
29 

 
29 
36 
27 

 
< 0.001 

 
53 
18 
21 

 
49 
19 
23 

 
34 
30 
27 

 
0.057 

Abbreviations: MME=morphine milligram equivalent, Bup=Buprenorphine; T1-T3=Tertile 1, Tertile 2 & Tertile 3. 



 

 
 

Table 4. Odds Ratios (95% CI) Associated with a Patient being Classified in the Upper Tertile of Standardized  
Centrality Measures 
 Standardized betweenness centrality Standardized degree centrality Standardized closeness centrality 
Characteristic Unadjusted OR Adjusted OR Unadjusted OR Adjusted OR Unadjusted OR Adjusted OR 
Number of opioid Rx 0.96 (0.92, 1.01) NS 1.10 (1.047, 1.155 NS 1.01 (0.96 1.05) NS 
Age group (years) 

65+ 
21-44 
45-64 

 
Ref. 
1.90 (0.81, 4.43) 
1.47 (0.64, 3.38) 

 
NS 

 
Ref. 
2.88 (1.03, 8.08) 
4.46 (1.63, 12.15)  

 
Ref. 
4.27 (1.41, 12.86) 
5.12 (1.77, 14.83) 

 
Ref. 
2.02 (0.80, 5.07) 
2.63 (1.08, 6.44) 

 
NS 

Gender 
Female 
Male 

 
Ref. 
1.232 (0.744, 2.04) 

 
NS 

 
Ref. 
1.27 (0.77, 2.10)  

 
NS 

 
Ref. 
0.83 (0.50, 1.37) 

 
NS 

Payment method 
Cash  
Commercial 
Medicare 
Medicaid 

 
Ref. 
2.19 (0.24, 20.03) 
1.46 (0.12, 17.23) 
1.74 (0.18, 16.39) 

 
NS 

 
Ref 
0.82 (0.13, 5.05) 
0.69 (0.11, 4.42) 
0.38 (0.04, 3.36) 

 
NS 

 
Ref. 
0.73 (0.12, 4.46) 
0.74 (0.12, 4.69) 
1.00 (0.13, 7.89) 

 
NS 

# of providers  
3 
4+ 

 
Ref. 
2.02 (1.21, 3.38) 

 
Ref. 
2.62 (1.49, 4.59) 

 
Ref. 
1.30 (0.79, 2.15) 

 
NS 

 
Ref. 
1.89 (1.13, 3.15) 

 
Ref. 
2.09 (1.21, 3.64) 

# of pharmacies 
3 
4+ 

 
Ref. 
1.60 (0.93, 2.68) 

 
NS 

 
Ref. 
1.06 (0.62, 1.82) 

 
NS 

 
Ref. 
1.01 (0.59, 1.73) 

 
NS 

Opioid type 
Hydrocodone 
Bup/naloxone 
Oxycodone 

 
Ref. 
2.92 (1.28, 6.69) 
1.23 (0.69, 2.16) 

 
Ref 
4.18 (1.73, 10.07)  
1.13 (0.63, 2.02) 

 
Ref. 
0.10 (0.01, 0.81) 
2.78 (1.56, 4.95) 

 
Ref.  
0.02 (0.00, 0.16) 
1.10 (0.52, 2.33) 

 
Ref. 
1.59 (0.67, 3.80) 
1.89 (1.06, 3.35) 

 
NS 

MME category, mg 
< 50 
50-90 
>90 

 
Ref. 
0.96 (0.51, 1.79) 
1.21 (0.66, 2.21) 

 
NS 

 
Ref. 
4.29 (2.28, 8.06) 
2.26 (1.21, 4.26) 

 
Ref. 
4.18 (1.97, 8.84) 
6.73 (2.69, 16.86) 

 
Ref. 
2.43 (1.31, 4.51) 
1.84 (0.99, 3.41) 

 
Ref. 
2.32 (1.24, 4.34) 
2.31 (1.20, 4.44) 

Abbreviations: CI=confidence interval; OR=odds ratio; Rx=prescription; MME=morphine milligram equivalent, Bup=Buprenorphine,  
NS=not statistically significant 
 
 



 

 
 

Table 5.  Mixing Matrices of Categorical Patient Attributes for an Opioid Prescription  
Network of Patients 
 All, N=372  LCC, N=274 
Patient Attributes  Mixing matrix   Mixing matrix 
 N (%) 1 2 3 4a  N(%) 1 2 3 4a 
Gender 

Female 
Male  

 
197 (52.96) 
175 (47.04) 

 
496 
949 

 
949 
535 

    
139 (50.73) 
135 (49.27) 

 
479 
904 

 
904 
511 

  

Age category 
<44 
45-64 
65+ 

 
126 (33.87) 
189 (50.81) 
  57 (15.32) 

 
263 
745 
119 

 
745 
635 
192 

 
119 
192 
26 

   
103 (37.59) 
134 (48.91) 
  37 (13.50) 

 
262 
723 
111 

 
723 
606 
170 

 
111 
170 
22 

 

    Use of cash 
Cash only 
Insurance only 

 
  9 (2.42) 
33 (97.58) 

 
1 
73 

 
73 
1906 

    
    5 (1.82) 
269 (98.18) 

 
1 
69 

 
69 
1824 

  

Payment method 
Commercial 
Medicaid 
Medicare 
Cash  

 
239 (64.25) 
  20 (0.00) 
104 (27.96) 
    9 (2.42) 

 
887 
95 
701 
52 

 
95 
3 
60 
2 

 
791 
60 
160 
19 

 
52 
2 
19 
1 

  
178 (64.96) 
  15 (0.00) 
  76 (27.74) 
    5 (1.82) 

 
855 
92 
664 
49 

 
92 
2 
59 
2 

 
664 
57 
154 
18 

 
49 
2 
18 
1 

Type of opioid medication 
Bup/Naloxone 
Hydrocodone 
Oxycodone  

 
  33 (0.00) 
126 (33.87) 
213 (57.26) 

 
88 
14 
76 

 
14 
158 
687 

 
76 
687 
957 

   
  32 (0.00) 
  93 (33.94) 
149 (54.38) 

 
88 
14 
76 

 
14 
152 
659 

 
76 
659 
905 

 

Daily MME 
<50 
50-90 
>90 

 
197 (52.96) 
  81 (21.77) 
  94 (25.27) 

 
339 
491 
370 

 
471 
231 
336 

 
370 
336 
233 

   
136 (49.64) 
  67 (24.45) 
  71 (25.91) 

 
301 
457 
347 

 
457 
231 
329 

 
347 
329 
229 

 

Number of prescribers 
3 
4+ 

 
187 (50.27) 
185 (49.73) 

 
526 
718 

 
718 
736 

    
134 (48.91) 
140 (51.09) 

 
512 
    

 
693 
689 

 
 

 

Number of pharmacies 
3 
4+ 

 
257 (69.09) 
115 (30.91) 

 
908 
883 

 
883 
189 

    
187 (68.25) 
  87 (31.75) 

 
856 
852 

 
852 
186 

  

Abbreviations: LCC= largest connected component; Bup=Buprenorphine; MME=morphine milligram equivalent,  
aNumber of categories for each attribute



 

46 
 

Table 6. Clustering by Node Attribute using Modularity Score  
Node attributes Total LCC 
Gender 
Age group (years) 
Age, years (continuous) 
Payment method 
Number of providers (continuous) 
Number of providers (categorical) 
Number of pharmacies (continuous) 
Number of pharmacies (categorical) 
Type of opioid prescription used 
Number of opioid prescriptions 
Total daily dose, MME (mg) 
MME category, mg 

0.021 
-0.012 
0.024 
0.013 
0.080 
0.132 

-0.009 
-0.012 
0.080 
0.018 

-0.006 
0.068 

0.023 
0.025 

-0.013 
0.015 
0.078 
0.130 

-0.009 
-0.012 
0.082 
0.018 

-0.007 
0.066 

Abbreviations: LCC= largest connected component; MME=morphine milligram equivalent.  
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Table 7.  Main Effects Model to Estimate the Log odds of a tie between two  
patients in the Opioid Prescription Network of Patients Using the LCC 
Term Estimate  SE P-value 
Edges 
Number of opioid prescriptions 

-5.661    
0.009 

0.174  
0.003            

< 0.001 
0.004 

Gender 
Female 
Male  

 
Ref. 
-0.002    

 
 
0.035 

 
 
0.953     

Age category 
<44 
45-64 
65+ 

 
Ref. 
0.064    
-0.620    

 
 
0.038 
0.074       

 
 
0.091 
< 0.001 

Payment method 
Commercial 
Medicaid 
Medicare 
Cash  

 
Ref. 
-0.468    
0.132    
-0.201    

 
 
0.086 
0.045  
0.127          

 
 
< 0.001 
0.003 
0.115     

Opioid type 
Buprenorphine/Naloxone 
Hydrocodone 
Oxycodone  

 
Ref. 
0.875 
0.983   

 
 
0.092     
0.080       

 
 
< 0.001 
< 0.001 

Daily MME 
<50 
50-90 
>90 

 
Ref. 
0.533    
0.703    

 
 
0.048       
0.060 

 
 
< 0.001 
< 0.001 

Number of prescribers 
3 
4+ 

 
Ref. 
0.133    

 
 
0.036       

 
 
< 0.001 

Number of pharmacies 
3 
4+ 

 
Ref. 
-0.040    

 
 
0.037       

 
 
 0.284     

Abbreviations: SE=standard error; MME=morphine milligram equivalent;  
AIC=Akaike information criterion; BIC=Bayesian information criterion, 
 LCC= largest connected component. 
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Table 8. Main Effects Model with Homophily Terms to Estimate  
the Log odds of a tie between two patients in the Opioid  
Prescription Network of Patients Using the LCC 
Term Estimate SE P-value 
Edges 
Number of opioid prescriptions 

-6.283 
0.031 

0.191 
0.004 

< 0.001 
< 0.001 

Gender 
Female 
Male  

 
Ref. 

-0.011 

 
 

0.034 

 
 

0.746 
Age category 

<44 
45-64 
65+ 

 
Ref. 

0.064 
-0.637 

 
 

0.039 
0.076 

 
 

0.845 
< 0.001 

Payment method 
Commercial 
Medicaid 
Medicare 
Cash  

 
Ref. 

-0.431 
0.178 

-0.116 

 
 

0.094 
0.050 
0.134 

 
 

< 0.001 
< 0.001 

0.386 
Type of opioid prescription 

Buprenorphine/Naloxone 
Hydrocodone 
Oxycodone  

 
Ref. 

0.786 
0.776 

 
 

0.091 
0.081 

 
 

< 0.001 
< 0.001 

Average daily MME, mg 
<50 
50-90 
>90 

 
Ref. 

0.476 
0.711 

 
 

0.048 
0.060 

 
 

< 0.001 
< 0.001 

Number of prescribers 
3 
4+ 

 
Ref. 

0.094 

 
 

0.033 

 
 

0.005 
Number of pharmacies 

3 
4+ 

 
Ref. 

-0.066 

 
 

0.043 

 
 

0.130 
Homophily  terms    
Number of opioid prescriptions 
Gender 
Age category 
Method of payment 
Type of opioid prescription 
Average daily MME, mg 
Number of prescribers 
Number of pharmacies 

-0.060 
0.106 
0.107 
0.107 
0.456 
0.169 
0.579 

-0.062 

0.006 
0.048 
0.053 
0.060 
0.059 
0.052 
0.050 
0.056 

< 0.001 
0.027 
0.016 
0.074 

< 0.001 
0.001 

< 0.001 
0.265 

Abbreviations: SE=standard error; MME=morphine milligram equivalent;  
AIC=Akaike information criterion; BIC=Bayesian information criterion.  
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Table 9. Main Effects Model with Differential Homophily Terms to Estimate the Log odds of a tie between  
two patients in the Opioid Prescription Network of Patients Using the LCC  
 Main effects  Differential homophily 
Term Estimate SE P-value  Estimate SE P-value 
Edges 
Number of opioid prescriptions 

-9.485 
0.031   

0.412 
0.004             

< 0.001 
< 0.001 

               NA 
-0.060    

             NA 
0.006       

NA 
< 0.001 

Gender 
Female 
Male  

 
Ref. 

0.094 

 
Ref. 

0.059       

 
 

 0.110     

  
0.212    

NA 

 
0.097  

NA      

 
0.028 

NA 
Age category 

<44 
45-64 
65+ 

 
Ref. 

-0.071    
-0.744    

 
Ref. 

0.126      
0.096      

 
 

0.576    
< 0.001 

  
-0.058    
0.152    
0.505   

 
0.148       
0.139       
0.264       

 
0.697     
0.273 
0.056     

Payment method 
Commercial 
Medicaid 
Medicare 
Cash  

 
Ref. 

-0.304       
0.349    

-0.031    

 
Ref. 

0.136       
0.151       
0.164       

 
 

0.025  
0.021 
0.852     

  
0.263    

-0.480    
-0.152    
0.774    

 
0.159       
0.740       
0.179       
1.097       

 
0.098 
0.516     
0.397     
0.480     

Type of opioid prescription 
Buprenorphine/Naloxone 
Hydrocodone 
Oxycodone  

 
Ref. 

1.760    
2.661    

 
Ref. 

0.138       
0.276       

 
 

< 0.001 
< 0.001 

  
4.776 
0.919   

-0.719       

 
0.327       
0.315      
0.300       

 
< 0.001 

0.004 
0.016 

Average daily MME, mg 
<50 
50-90 
>90 

 
Ref. 

0.447    
0.725   

 
Ref. 

0.088       
0.088       

 
 

< 0.001 
< 0.001 

  
0.083    
0.151    
0.028    

 
0.118  
0.118       
0.130            

 
0.480     
0.202     
0.831     

Number of prescribers 
3 
4+ 

 
Ref. 

0.642    

 
Ref. 

0.058       

 
 

< 0.001 

  
1.104    

NA 

 
0.101       

NA 

 
< 0.001 

NA 
Number of pharmacies 

3 
4+ 

 
Ref. 

-0.127    

 
Ref. 

0.086       

 
 

0.139     

  
-0.122    

NA 

 
0.112       

NA 

 
0.273     

NA 
Abbreviations:  NA=not applicable; SE=standard error; MME=morphine milligram equivalent;  

AIC=Akaike information criterion; BIC=Bayesian information criterion. 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study Sample Selection Flowchart showing number of patients, providers, and 
opioid prescriptions with exclusion criteria 

 

 

 

Schedule II-IV opioid prescription in 2015 
Patients  

n=222,513 
Providers  
n=16,548 

Prescriptions 
n=809,195 

 

Excluding compounding products 
Patients  

n=222,464 
Providers  
n=16,544 

Prescriptions 
n=808,963 

 

Excluding Buprenorphine products 
Patients  

n=222,442 
Providers  
n=16,544 

Prescriptions 
n=808,914 

 

Excluding institutional DEA prescribers 
Patients  

n=209,716 
Providers  
n=16,540 

Prescriptions 
n=778,515 

 

Excluding providers who prescribed to < 6 patients per year 
Patients  

n=196,933 
Providers  
n=4,100 

Prescriptions 
n=748,202 

 

1 of 3 opioid types/1payment method/≥6 opioid Rx fills per year 
Patients  

n=10,100 
Providers  
n=2,262 

Prescriptions 
n=124,963 

 

Excluding patients who saw < 3 providers or used < 3 pharmacies per year 
Patients  
n=372 

Providers  
n=746 

Prescriptions 
n=5,274 
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  Providers 

Pa
tie

nt
s 

 X Y Z  
 
 
 
 

 1 2 3 4 5 6 
1 1 1 0 1 2 1 1 1 1 0 
2 1 0 0 2 1 1 0 0 0 0 
3 0 1 0 3 1 0 1 1 1 0 
4 0 1 1 4 1 0 1 2 2 1 
5 0 1 1 5 1 0 1 2 2 1 
6 0 0 1 6 0 0 0 1 1 1 

 
Figure 2: Matrix illustration of the construction of a simple network. Bipartite 
incidence matrix, A (left panel) shows the relation “prescribed opioid analgesic(s) to” 
and the one-mode projection adjacency matrix B (right panel) shows the provider-
sharing relationships between patients. One-mode projection of the bipartite network 
is obtained by post-multiplying the matrix A by its transpose, AT.  
 

 

 
 
Figure 3. Schematic illustrating a projection from a two-mode to a one-mode network. 
Bipartite network graph of “prescribed opioid analgesic(s) to” relation for 3 providers 
(X, Y, Z) and 6 patients (1-6) [left panel] and a unipartite network graph of “shares a 
provider with” relation for 6 patients (right panel). 
 

 

 

 

AAT 

B 
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Figure 4. Four depictions of the full patient network: (a) Full network with few isolates 
and clusters; (b) clustering by age category; (c) clustering by sex; and (b) clustering by 
opioid type. 
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Figure 5. Four depictions of the largest connected component: (a) The largest connected 
component with few clusters; (b) clustering by age category; (c) clustering by sex; and 
(b) clustering by opioid type. 
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Figure 6: Ego-centric network around the most influential patient (# 24) identified by 
degree, closeness, and betweenness centrality measures. This ego-centric network is 
subgraph corresponding to the most influential patient with his or her immediate 
neighborhood. 
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Figure 7. Degree distribution in original scale (top panels), log-log scale (middle panels), 
and the average neighbor degree versus vertex degree on a log-log scale (bottom panels) 
for complete network (left) and its largest connected component (right). 



 

56 
 

 

 
Figure 8: Plots of degree and shared partnerships (DSP and ESP) in the largest connected 
component of the network (left) and a randomly generated network of the same size and 
density (right). Abbreviations: DSP=dyad-wise shared partners, ESP= edgewise shared 
partners, GC=giant component. 
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Figure 9: Number of triangles in 1000 networks simulated based on the null model of the 
largest connected component of the network. 
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FUTURE RESEARCH WORK 

In the future we plan to incorporate structural properties of the observed opioid network 

as model covariates thereby allowing the observed network to be conditioned on 

observed degree distribution and level of transitivity. This will be implemented in R 

using a Bayesian approach which exhibits better convergence properties than non-

Bayesian method used in this analysis. We also plan to analyze corresponding provider- 

and pharmacy-based networks where connections between providers or pharmacies 

represent patient-sharing. These analyses will also use centrality measures to identify the 

most influential providers and pharmacies and evaluate whether patterns of opioid 

prescribing or dispensing vary by communities in the network. 
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TECHNICAL APPENDIX 
 

A. NETWORK CHARACTERIZATION AND MEASUREMENTS 
 
This Technical Appendix provides statistical formulations of key terms used in this 

thesis. The notations and definitions are adapted from Kolaczyk.1 In general, let 

uppercase letters denote random variables and lowercase denote realizations of those 

random variables. We assume the observed network is fixed and does not vary over time. 

We also assumed that we ascertained the full network sample.  

 

Defining a Network: A graph G = (V, E) is a mathematical structure consisting of a set 

V of vertices or nodes and a set E of edges or links, where elements of E are unordered 

pairs {u,v} of distinct vertices u,v ∈ V for an undirected graph. The number of vertices Nv 

= |V| and the number of edges Ne = |E| are called the order and size of the graph G, 

respectively. A graph H = (VH, EH) is a subgraph of another graph G = (VG, EG) if VH ⊆ 

VG and EH ⊆ EG. An induced subgraph of G is a subgraph  = ( , ), where ⊆ V is a 

pre-specified subset of vertices and ⊆ E is the collection of edges to be found in G 

among that subset of vertices. A simple graph has no edges for which both ends connect 

to a single vertex (i.e., no loops) and no pairs of vertices with more than one edge 

between them (i.e., no multi-edges). Two vertices u,v ∈ V are said to be adjacent if joined 

by an edge in E, and two edges e1,e2 ∈ E are adjacent if joined by a common endpoint in 

V. A vertex v ∈ V is incident on an edge e ∈ E if v is an endpoint of e.  

A network therefore consists of a set of nodes and the relationships (ties, links, 

edges, connections) among them. The relationship can be directed or undirected and 

dichotomous (present or absent). All pairs of nodes in a network are dyads while all sets 
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3 nodes form triads. These dyads and triads can be linked or unlinked. A group of k 

nodes taking a star format with a node at the center linked to all others in the group is 

called k-star.  An undirected network has two types of dyads (null or present) and four 

types of triads defined by the number of connected edges (0, 1, 2 or 3) and may have a 3-

star, 4-star, and 5-star formats. We also distinguish edgewise shared partnership (ESP) 

and dyad-wise shared partnership (DSP). A DSP is a linked or unlinked dyad where both 

members of the dyad are linked to a third network member. ESP is a subset of DSP with 

a linked dyad in which both members of the dyad also have a link to a third network 

member. The distribution of ESP in a network shows how many dyads have one shared 

partner, two shared partners, and so on. Similarly, the distribution of DSP shows the 

number of dyads in the network with one shared partner, two shared partners, and so on. 

 A bipartite network is a graph G = (V, E) such that the vertex set V may be 

partitioned into two disjoint sets, say V1 and V2, and each edge in E has one endpoint in 

V1 and the other in V2. Specifically, a graph G1 = (V1, E1) may be defined on the vertex 

set V1 by assigning an edge to any pair of vertices that both have edges in E to at least 

one common vertex in V2. Similarly, a graph G2 may be defined on V2. 

Several notions are related to the concept of movement around a graph. A walk on a 

graph G, from v0 to vl, is an alternating sequence {v0, e1, v1, e2, . . . ,vl−1, el , vl}, where the 

endpoints of ei are {vi−1, vi}. The length of this walk is said to be . A trail is a walk 

without repeated edges and a path is a trail without repeated vertices. A vertex v in a 

graph G is said to be reachable from another vertex u if there exists a walk from u to v. 

The graph G is said to be connected if every vertex is reachable from every other. A 

component of a graph is a maximally connected subgraph. Geodesic (distance) is the 
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length of the shortest path(s) between the vertices (which we set equal to infinity if no 

such path exists). The diameter of the graph is the value of the longest distance in a 

graph. 

  Algebraic graph theory has several applications in social network analysis. The 

connectivity of a graph G may be captured and stored in an Nv×Nv binary, symmetric, 

adjacency matrix A with entries:   

Ai j =  

where A is non-zero for entries whose row-column indices correspond to vertices in G 

joined by an edge, and zero, for those that are not. The row sum Ai+ = Σj Ai j is equal to 

the degree di of vertex i. and by symmetry, Ai+ = A+i.  The structure of a graph G may 

also be captured in an Nv×Ne binary, incidence matrix B with entries: 

 

Suppose that G = (V, E) is a graph corresponding to an observed social network among 

individuals i ∈ V, with a social tie between individuals i, j ∈ V indicated by an edge {i, j} 

∈ E. Let Yi j = Yji = 1 if {i, j} ∈ E, and zero if not. Y = [Yi j] is the adjacency matrix for G, 

and treated as a random matrix.  

 

Modularity: The process of community detection can be approached as an optimization 

problem using computational algorithms developed for studying similar networks.2,3 The 

algorithm detects subgroups within networks that are more inter-connected than would be 

expected by chance alone.3-5 In our example, each provider was assigned to a single 

community, such that communities are comprised of distinct, non-overlapping groups of 

providers in the network. The null model adjusts for node degree so that patients with 
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high nodal degree are more likely to be connected than those with low nodal degree 

thereby maintaining the expected degree distribution of the network.4 The optimization 

process involves the maximization of the quantity: 

, 

where  is nonzero if and only if node  and  are connected by a tie, and its value 

quantifies the number of providers the two patients share;  is the degree of node ,  is 

the number of edges in the network (or their total weight in weighted networks),  is the 

community assignment of node , and  is the Kronecker delta which is equal to 1 

if the arguments are identical, otherwise it is zero.  We used the greedy  optimization 

method which has been shown to perform well for a variety of networks6.  

 

Centrality measures: A patient that is connected to many other patients in a network is 

in a prominent or influential position within the network. This simplest measure of 

centrality is based on the notion that a patient with more direct connections in the 

network is more influential than one with fewer or no connections at all. The degree dv of 

a vertex v, in a network graph G = (V, E), is the number of edges in E incident upon v, 

that is, at distance one and mean degree is the average degree of all patients in the opioid 

network. Vertex degree is arguably the most widely used measure of vertex centrality. In 

our setting, the patients with higher degrees are more central because in many social 

settings people with more connections tend to be more influential. A patient’s degree is 

the total number of other patients within the network who are connected to the patient 

through provider sharing. Degree centrality we can be standardized by dividing by the 

maximum possible value of |V|-1. 
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Given a network graph G, we define fd to be the fraction of vertices v ∈ V with degree dv 

= d. The collection {fd}d≥0 is called the degree distribution of G. The degree distribution 

provides a summary of the connectivity in the graph.  

Another notion of a ‘central role in the network’ is that a vertex be ‘close’ to many other 

vertices. The standard approach, introduced by Sabidussi, is to let the centrality vary 

inversely with a measure of the total distance of a vertex from all others.7  

cl(v) = , 

where dist(v,u) is the geodesic distance between the vertices u,v ∈ V. Using this 

formulation, the more central a node is, then the lower its total distance to all other nodes. 

For comparison across networks and with other centrality measures, this measure is 

normalized or standardized to lie in the interval [0,1], through multiplication by a factor 

Nv−1. 

Betweenness centrality is based upon the perspective that importance relates to 

where a vertex is located with respect to the paths in the network graph. If we assume 

those paths as the routes by which communication and other exchanges takes place, 

vertices that sit on many paths are likely more critical to the communication and other 

dissemination processes. Betweenness centrality measures are aimed at summarizing the 

extent to which a vertex is located ‘between’ other pairs of vertices. This is defined as the 

proportion of times the provider lies on the shortest paths in the network. A patient is 

central in the network if he/she is located between many non-adjacent patients on their 

geodesics (shortest) paths. The most commonly used betweenness centrality, introduced 

by Freeman,8 is defined as   

cB(v) = , 
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where σ (s, t|v) is the total number of shortest paths between s and t  that pass through v, 

and σ (s, t) = Σvσ (s, t|v). In the event that shortest paths are unique, cB(v) just counts the 

number of shortest paths going through v. This centrality measure can be normalized 

through division by a factor of (Nv−1)(Nv−2)/2. 

 

Network cohesion: The definition of network cohesion depends on the context. 

Generally, network cohesion refers to the extent to which subsets of nodes are connected 

to each other to form triads, components, clusters, and communities. 

Network density: For a graph G with no self-loops and no multiple edges, the density of a 

subgraph H = (VH, EH) is 

den(H) =  

The value of den(H) lies between zero and one.  

Clustering coefficient and transitivity: A triangle is a complete subgraph of order three. A 

connected triple is a subgraph of three vertices connected by two edges. A measure of the 

frequency with which connected triples form closed triangles provides some indication of 

the extent to which edges are ‘clustered’ in the graph. Let  denote the number of 

triangles in G into which v ∈ V falls, and τ3(v), the number of connected triples in G for 

which the two edges are both incident to v.  The local clustering coefficient, den(Hv) can 

be re-expressed as cl(v) =  for those vertices v with τ3(v) > 09. The 

corresponding clustering coefficient for G takes the form:  

cl(G) = , 

where V’ ⊆V is the set of vertices v with dv ≥ 2. 
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The clustering coefficient is the ratio of total the number of connections that exist among 

neighbors of the patient in the network to the total number of potential connections that 

could exist if they were completely connected.  It is used to describe the extent to which 

network neighbors of a particular patient are directly connected to each other and 

interpreted as the probability that any two randomly selected neighbors of a particular 

patient in the network are connected to each other. 

Assortativity and mixing: Assortative mixing is the selective linking among 

vertices, according to a certain characteristic(s), and measures that quantify the extent of 

assortative mixing in a given network have been referred to as assortativity coefficients. 

Suppose that each vertex in a graph G can be labeled according to one of M categories. 

Let fij be the fraction of edges in G that join a vertex in the ith category with a vertex in 

the jth category; denote the ith marginal row and column sums of the resulting matrix f by 

fi+ and f+i, respectively. We then define the assortativity coefficient ra to be 

ra = . 

The value ra is equal to zero when the mixing in the graph is no different from that 

obtained through a random assignment of edges that preserves the marginal degree 

distribution. Similarly, it is equal to one when there is perfect assortative mixing (i.e., 

when edges only connect vertices of the same category). When the mixing is perfectly 

disassortative, the value takes its minimum value, that is, every edge in the graph 

connects vertices of two different categories. 
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B. The Exponential Random Graph Model (ERGM) 

A discrete random vector Z is said to belong to an exponential family if its probability 

mass function may be expressed in the form 

, 

where θ ∈  is a p×1 vector of parameters, g(·) is a p-dimensional function of z, and ψ(θ 

) is a normalization term, ensuring that Pθ (·) sums to one over its range. The class of 

discrete exponential families includes many familiar distributions, such as the binomial, 

geometric, and Poisson. In the case of continuous exponential families, where an 

analogous form of the equation holds for probability density functions, examples include 

the Gaussian and chi-square distributions.  

Consider G = (V, E) as a random graph. Let Yij =Yji be a binary random variable 

indicating the presence or absence of an edge e ∈ E between the two vertices i and j in V. 

The matrix Y = [Yij] is thus the (random) adjacency matrix for G. Denote by y = [yij] a 

particular realization of Y. An exponential random graph model is a model specified in 

exponential family form for the joint distribution of the elements in Y. An ERGM takes 

the form 

Pθ (Y = y) = , 

where the following conditions hold: 

(i) each H is a configuration is a set of possible edges among a subset of the vertices in G; 

(ii) gH(y) = , and is either one if the configuration H occurs in y, or zero, 

otherwise; 

(iii) a non-zero value for θH means that the Yij are dependent for all pairs of vertices {i, j} 

in H, conditional upon the rest of the graph; and 
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(iv) κ =κ(θ ) is a normalization constant, where 

κ(θ) = . 

The summation in the previous equation is over all possible configurations H. Note that 

this model implies a certain (in)dependency structure among the elements in Y. 

Generally, such assumptions specify that the random variables {Yij}(i,j)∈A  are independent 

of , conditional on the values of , for given index sets A ,B, and 

C .  

Bernoulli or Simple Random Graph: The simple random graph model randomly 

distributes ties or connections among network members based on the same specified 

probability.10,11 Network density or the probability of a tie occurring is the proportion of 

observed ties out of all possible ties: 

den(H) =  

This calculation assumes that ties are independent and identically distributed and ignores 

the attributes of network members that may influence the probability of a tie. Suppose we 

specify that, for any given pair of vertices, the presence or absence of an edge between 

that pair is independent of the status of possible edges between any other pairs of 

vertices. That is, for each pair {i, j}, we assume that Yij is independent of  , for any 

{ } {i, j}. This assumption implies that θH = 0 for all configurations H involving 

three or more vertices. In this case, the only relevant functions gH are those of the form: 

gH(y) = gij(y) = yij, and the ERGM reduces to   

Pθ (Y = y) = , 

This implies that each edge {i, j} is present in the graph independently with probability  
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pij = exp(θij)/[1+exp(θij)] . 

However, this entails a model with  parameters, which is likely far too parameterized 

for many data sets. 

In order to reduce the total number of parameters, it is common to impose an 

assumption of homogeneity across certain vertex pairs. For example, assuming 

homogeneity across all of G (i.e., θij ≡θ , for all {i, j}) yields 

Pθ (Y = y) = , 

where L(y) = Σi,j yij = Ne is the number of edges in the graph. In this case, the Bernoulli 

random graph model is recovered, with p = exp(θ )/[1+exp(θ )] . 

Assumptions of complete independence among possible edges are largely 

untenable in practice. In general, Bernoulli-like random graphs lack the ability to 

reproduce many of the most basic structural characteristics observed in most real-world 

networks. However, the simple random graph model provides a baseline to compare with 

more complex models and assess improvements in model fit using simulation methods. 

Markov Random Graphs: Frank and Strauss introduced the notion of Markov 

dependence for network graph models, which specifies that two possible edges are 

dependent whenever they share a vertex, conditional on all other possible edges, and 

independent if they do not.12 That is, the presence or absence of {i, j} in the graph will 

depend upon that of {i,k}, for a given k j, even given information on the status of all 

other possible edges in the network. A random graph G arising under Markov 

dependence conditions is called a Markov graph. This model was extended by assuming a 

more general conditional dependence among ties in a network (i.e., two connections are 

conditionally dependent if the conditional probability that both connections exist in the 
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network does not equal the product of their marginal conditional probabilities, given all 

other network ties.) Under an assumption of homogeneity, Frank and Strauss showed that 

G is a Markov graph if and only if Pθ (·) may be expressed as 

Pθ (Y = y) = , 

where S1(y) = Ne is the number of edges, Sk(y) is the number of k-stars, for 2 ≤ k ≤ Nv−1, 

and T(y) is the number of triangles. The statistics Sk in and T, can be correlated. We see 

from the definitions of the statistics Sk and T that Markov dependence results are 

explicitly parameterized to account for some effects of transitivity.  

 In practice, it is common to include star counts Sk no higher than k=2 or at most 

k=3, by setting  =…= =0. This often leads to model degeneracy. Inclusion of a 

large number of higher order terms does not solve this problem. Partial conditional 

dependence assumption has been proposed to address issues of degeneracy. For example, 

Snijders et al proposed a solution by imposing a parametric constraint of the form 

 upon the star parameter, for all k ≥ 2, for some  larger than one.13 This 

tactic combines all k-star statistics Sk(y), for k ≥ 2, into a single alternating k-star statistic 

of the form 

 

and weighting that statistic by a single parameter θAKS that takes into account the star 

effects of all orders simultaneously. The alternating signs allow the counts of k-stars of 

successively greater order to balance each other, rather than simply ballooning. We often 

assume that dependence between ties that do not share a node is due to the presence of 

other ties in the network.14 To account for this partial conditional dependence, three non-
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linear terms are often added to the model: geometrically weighted degree (GWD), 

geometrically weighted DSP (GWDSP), and geometrically weighted ESP (GWESP). The 

statistic AKSλ (y) is a linear function of GWD count. The GWD term is designed to 

account for the decreasing degree distribution in observed networks while GWESP term 

is designed to account for clustering in observed networks. Finally, the GWDSP term 

accounts for the number of dyads with shared partners, often found within clusters in the 

network. 

 

C. Constructing the Exponential Random Graph Models 

Several packages are available for estimating network models. Our analysis was 

conducted in R-statnet, a suit of packages for building ERGMs in R. We first employed 

the null model which corresponds to the simple random graph model and can be written 

as: 

. 

The model was estimated by maximum likelihood estimation and served as a comparator 

for assessing model fit as more useful and complex models were constructed.  

Adding attributes: We first considered whether the addition of node attributes influenced 

the likelihood of a tie in the network. These nodal attributes accounted for the 

characteristics of each individual network member. To examine the effects of these 

attributes on the likelihood of a tie, these attributes were added to the model as main 

effects. The null and alternate hypotheses are: 

H0: There is no association between node attribute and the likelihood of a patient to form 

ties. 
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Ha: There is association between node attribute and the likelihood of a patient to form 

ties. 

In statnet, categorical and continuous main effects are added using nodefactor and 

nodecov(), respectively. Nodefactor main effect term adds multiple statistics to the model 

output, each corresponding to the number of times a node with the specified attribute is at 

one end of an edge. The  corresponding to a categorical node attribute can be 

summarized as follow: 

 

The reference group which is omitted in the output can be changed using the base 

argument. 

The nodecov main effect term adds one network statistic to the output that sums the 

attribute of interest for the two nodes in a dyad.  

Interaction terms for nodal attributes to account for the attributes of both members of a 

dyad in the network. Homophily interaction terms were included in the model using 

nodematch. Differential homophily was requested by specifying diff=TRUE after the 

name of the attribute in a nodematch term. The homophily change statistics is defined as: 

 

And the differential homophily change statistics is as: 

 

A potential limitation is that models that include the interaction terms are dyadic 

independence models which assume that each dyad is independent of all other dyads in 

the model.  
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Model fit and diagnostic assessments: Model fit assessment involves a systematic 

examination of how well the model actually captures the observed network structures 

being modeled. We compared models using the statistical measures of log-likelihood and 

the related deviance (-2LogL), the Akaike information criterion (AIC), or the Bayesian 

information criterion (BIC). The log-likelihood is calculated by summing the difference 

between predicted probabilities of  and the observed value of   

 

The deviance is a measure of lack of fit and a larger deviance indicates a greater the lack 

of fit. The deviance gets smaller as more parameters are added to the model. The AIC and 

BIC account for this by penalizing models with more parameters that do not improve the 

model fit.  

AIC = Deviance + 2p, 

BIC = Deviance + p*2ln(N), 

where p is the number of parameters and N is the network size.   

Both values of the AIC and BIC were used to compare nested and non-nested models. 

These measures of model fit were developed for the analysis of data that are assumed to 

meet the independence of observation assumption. The null, main effect, and homophily 

models which assume dyadic independence were compared using deviance, AIC, and 

BIC. Models to account for non-uniform degree distribution and transitivity resulting 

from complex of dependence in observed social networks GWD, GWESP, and GWDSP 

were not evaluated in this analysis.  
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