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ABSTRACT 

Herbivores can have a significant impact on plant host development.  While altered 

plant development most commonly results from defoliation, some causes are more 

cryptic. Effects on development can be difficult to detect in long-lived woody plant 

species. Hemlock woolly adelgid is a piercing-sucking herbivore that has been 

previously been observed to have substantial effects on eastern hemlock.  Observations 

of bud break were carried out on a three-day-on, one-day-off rotation from April through 

May in 2016 and 2017. We found that hemlock woolly adelgid delayed bud break in 

eastern hemlock. Our findings suggest that piercing-sucking herbivores can also 

significantly affect the early development of long-lived woody plant species.   
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PREFACE 

The following thesis will be submitted as a single chapter, in manuscript format 

following the formatting guidelines of the scientific journal Ecology.   
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INTRODUCTION 

 

Herbivores can have dramatic effects on plant growth and fitness. The damage 

done by feeding guilds such as leaf chewers and twig browsers is easily quantified, but 

some effects are far less obvious (Preisser and Bastow 2006). These 'cryptic' impacts 

can include resource loss or reallocation, defensive induction, and other alterations to 

plant physiology (Karban and Baldwin 1997). Because these changes often occur 

internally and take time to manifest, their effect on plant fitness can be difficult to 

quantify, and the impact of herbivores on their host plants may be underestimated.  

While plant phenology is largely driven by abiotic factors like temperature and 

day length (Schwartzberg et al. 2014, Rossi and Isabel 2017), the influence of 

herbivores has received increasing attention. These impacts can be difficult to detect in 

long-lived plants like trees because herbivory and the resulting phenologic changes 

often occur in separate growing seasons, as when summer defoliation delays budburst 

the following spring. Several studies on outbreaking folivores have found that severe 

(50-100%) defoliation is required to alter bud break even slightly (Haukioja et al. 

1988, Kaitaniemi et al. 1997, Quiring and McKinnon 1999). These phenologic effects 

may reflect altered plant resource levels and allocation (Tuomi et al. 1989), and may 

also affect the synchrony between bud break and folivore emergence.  

The hatching of many early-season herbivores is timed to coincide with the 

presence of young leaves. Because newly-hatched folivores are highly vulnerable to 

starvation, even short delays in bud break may be harmful (Van Asch and Visser 
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2007).  Several studies, however, have found that these delays do not affect, and may 

actually benefit, some herbivores (Kaitaniemi et al. 1997, Carroll and Quiring 2003). 

Such mismatches should have even less effect on herbivores that do not consume 

leaves, and phenologic alteration by a non-folivore has only been reported once: 

Quiring and McKinnon (1999) found that moderate-to-high densities of the galling 

insect Adelges abietis delayed budburst by a single day.  

Although herbivore-driven changes in tree phenology have been documented 

in multiple plant species, this research has been conducted on plants growing in 

moderate- to full-light conditions (Tuomi et al. 1989, Quiring and McKinnon 1999, 

Carroll and Quiring 2003). In such environments, the consequences of a delay in 

photosynthate production from new tissue is likely to be minimal across an entire 

growing season. In contrast, the seedlings of many canopy-dominant tree species 

begin their lives in shady forest understories (Canham et al. 1990). Woody plants 

growing under such conditions may be so light-limited that they produce little or no 

new growth annually (e.g., Hadley 2000b). While the consequences of delayed bud 

break for young plants growing in the understory may differ from that of mature 

individuals, we are unaware of any research addressing whether phenologic delays 

occur in this life stage.  

Since many long-lived woody plants can grow for years in low-resource 

understory environments, it is also important to measure such impacts on these 

vulnerable ontogenetic stages (sensu Boege and Marquis 2005, Barton and Koricheva 

2010). Saplings of canopy-dominant conifers like hemlocks (Tsuga sp.), for instance, 

rely heavily on carbon acquisition in the early spring prior to leaf-out of deciduous 
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canopy trees (Hadley and Schedlbauer 2002). These and other long-lived species may 

be especially susceptible if herbivore damage delays the production of new spring 

growth (Augspurger 2008). The resulting impacts may decrease the fitness of these 

dominant species, altering successional dynamics with long-term consequences for the 

surrounding ecosystems (Polgar and Primack 2011). 

Eastern hemlock, Tsuga canadensis, is a canopy-dominant conifer in the 

temperate deciduous forests of the eastern United States. It is highly shade-tolerant, 

with seedlings and saplings often persisting for decades under shady conditions 

(Hadley 2000b). Its year-round foliage and resulting deep shade generates unique 

microclimates that have led to it being considered a 'foundational species' in eastern 

North American forests (Ellison et al. 2005). It is threatened throughout its native 

range by an invasive sap-feeding insect, the hemlock woolly adelgid Adelges tsugae 

('HWA'). This insect is capable of killing even mature trees within four years 

(McClure 1991b), and few infested trees survive for more than a decade (Orwig et al. 

2002). Even though HWA-mediated mortality of mature hemlocks in the Northeastern 

United States has been slowed by cold winter temperatures, hemlock seedling/saplings 

have virtually disappeared from HWA-invaded hemlock stands throughout this region 

(Preisser et al. 2011).  

We report the results of three separate field experiments, conducted in 

consecutive years, measuring the impact of HWA infestation on bud break in 

understory eastern hemlock saplings. We also assessed the impact of another 

similarly-sized invasive phytophagous insect, the elongate hemlock scale Fiorinia 

externa ('EHS'), whose densities equal or exceed those of HWA but is less harmful to 
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hemlock health (Gómez et al. 2015). We hypothesized that HWA, but not EHS, would 

alter the timing of hemlock bud break, and that the magnitude of this effect would 

increase at higher insect densities. 
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METHODS 

 

2015 

Experiment #1: In early spring 2011, 200 hemlock saplings (~0.3m) were 

purchased from Vans Pines Nursery (West Olive, MI; Wilson et al. In Press). Saplings 

were then planted into a mixed hardwood forest (maple/oak dominant) at the Kingston 

Wildlife Research Station (South Kingstown, RI). Hemlocks were planted in a 10 x 20 

grid with 1-1.5m between individual trees (Wilson et al. 2018). Chicken wire cages 

were placed over each tree to protect them from deer browse. Additionally mesh bags 

(Agribon- 15, Jonny’s Selected Seeds, Waterville, ME, USA; 90% light transmission) 

were used over each cage to protect against cross-treatment contamination. Trees were 

initially randomly assigned to one of four herbivore treatment of either: control (no 

HWA or EHS), HWA-only, EHS-only or both (Wilson et al. 2018). 

 Starting in 2011, trees were manually inoculated annually with either neither 

insect (control), HWA, EHS, nor both.  The timing of these inoculations reflects the 

natural dispersal period for HWA and EHS; both insects overwinter as adults whose 

eggs hatch into mobile crawlers (McClure 1989). The dispersal of these crawlers is 

aided by the relatively high sub-canopy wind velocities that occur prior to canopy leaf-

out (McClure 1990). Because HWA disperses approximately one month earlier than 

EHS, we inoculated them in April and May, respectively. We used foliage infested 

with each insect to inoculate the appropriate trees, a standard protocol (Butin et al. 

2007); control trees were 'inoculated' with herbivore-free foliage to control for 

inoculation-related disturbance. These treatments would continue for four years 
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(HWA-4, EHS-4, and Both-4, respectively; 13, 9, and 6 trees respectively). In 2013, 

some HWA- and EHS-only trees were thereafter annually inoculated with both 

insects, creating two ‘priority effect’ treatments (i.e. HWA  Both, and EHS  Both; 

9 and 12 trees respectively). In the same year (2013) some trees that were uninfested 

(controls) were transitioned into HWA, EHS, and both for two years (control  

HWA-2, control  EHS, and control  Both-2; 10, 9, and 7 trees respectively; 

Wilson et al. 2018). Twelve trees remained herbivore-free for the entirety of the 

experiment (Wilson et al. 2018).  

 2015 data collection: From 30 April to 16 May 2015, we monitored three 

marked branches per tree for terminal bud break every other day.   Trees used for 

phenological data collection were chosen based on three different criteria: 1) whether 

or not trees were ‘clean’ in their given treatment (i.e., no unintentional cross 

contamination of non-experimental organisms); 2) insect densities on treatment trees 

were typical of those occurring in the field; 3) were scored at having little to no 

damage from deer, gypsy moth (Lymantria dispar), and spruce spider mite 

(Oligonychus unuguis). A total of 12 control trees, 23 HWA trees, 18 EHS trees, and 

34 Both trees, an overall total of 87 trees, were monitored for phenology.  No trees 

broke bud prior to the 30 April start date; any branches that had not broken bud by 18 

May (the day that harvest began), were scored as broken on 19 May.  

2016-2017 

Experiment #2a: In early spring 2014, we purchased 350 hemlock saplings (0.5m-

0.7m) from Vans Pines Nursery (West Olive, MI). The hemlocks were grown from 

seed collected in Indiana County PA, were free of herbivores, and had not been treated 
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with insecticides. In April 2014, the 320 healthiest trees were planted in the understory 

of a mixed hardwood stand adjacent to experiment one at the Kingston Wildlife 

Research Station (South Kingstown, RI). The trees were planted in five 64-tree blocks; 

each block contained eight rows and columns, with 1-1.5m between individual trees. 

Chicken-wire cages were placed over each tree to protect them from deer browse. To 

protect against cross-treatment contamination, mesh bags (Agribon-15, Johnny’s 

Selected Seeds, Waterville, ME, USA; 90% light transmission) were placed over each 

wire cage; we used ground staples to attach each mesh-enclosed cage to the ground. 

Within each block, 16 trees were randomly assigned to one of the following three 

treatments: control (no HWA or EHS), HWA-only, or EHS-only. There were 16 

“both” treatments in blocks that were used in unrelated experiments but were not 

monitored for phenology.  

In mid-spring 2014 and 2015 we inoculated trees in each treatment with the 

appropriate insect.  Inoculations were carried out in the same manner as in 2015.  

2016 data collection: In early spring 2016, we selected trees from four of the five 

64-tree blocks for phenology monitoring; we excluded the fifth block because deer 

had broken into many cages. Within each block, we chose five trees from each of the 

three treatments for monitoring, a total of 60 trees (three treatments * four blocks * 

five trees). All selected trees had zero or very low densities of gypsy moth (Lymantria 

dispar) and spruce spider mite (Oligonychus ununguis), two herbivores common at 

our field site that occasionally colonized trees in our experiment. 

In early April 2016, we surveyed all branches emerging from the main stem of 

each experimental tree to determine branch-level insect densities (measured in insects 
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cm-1 branch). Because of our interest in assessing the impact of herbivory on bud 

break, we selected the highest-insect-density branch on each tree (the 'marked branch') 

for the bud phenology survey detailed below. We recorded the length of each marked 

branch, defined as the distance from the main trunk to the furthest terminal bud.  

On April 15th, prior to the start of bud break, we began daily counts of the 

opened terminal and axillary buds on the single marked branch. Daily counts were 

taken for three days, followed by a one-day break; this 3-1 rotation continued until 

May 20th, one week after the last bud-break was observed.  

After all bud count data were collected we determined the date of first, mean, and 

last bud break for each tree. First bud break was defined as the first day that a tree had 

one or more open buds. Mean bud break was defined as the day at which at least half 

of the buds that would break had broken bud. Last bud break was defined as the first 

day on which all of the buds that would break had broken.  

Experiment #2b: 2017 data collection: None of the 2016 trees were included in 

the 2017 experiment. In 2017, our goal was to explicitly assess the relationship 

between insect density and bud break. Therefore, we selected trees that collectively 

encompassed the widest range of HWA or EHS densities. In early spring 2017, we 

selected trees from three of the five 64-tree blocks for phenology monitoring; we 

excluded the fourth block because of the difference in canopy composition (fourth 

block had a more open canopy in comparison to the rest), and the fifth block because 

deer had broken into some of its cages. Within each block, we chose eight trees from 

the two insect-present (i.e., HWA-only and EHS-only) treatments for monitoring, for a 

total of 48 trees (two treatments * three blocks * eight trees). We subsequently lost 
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several trees in both treatments to deer dislodging the cages, leaving us with 19 HWA 

and 20 EHS replicates. 

In early April 2017, we chose one branch from each remaining tree, recorded its 

length, and measured insect density on it (insects cm-1 branch).  As with the year 

before all selected trees had zero or very low densities of gypsy moth (L. dispar) and 

spruce spider mite (O. ununguis), which were common in the field experimental site 

for 2016-2017 data collection.  

On April 12th (prior to the start of bud break), we began conducting daily counts 

of the opened terminal and axillary buds on each marked branch. Daily counts were 

taken for three days in a row, followed by a one-day break; this continued until May 

26th, one week after bud-break ceased.  

Statistical Analysis 

2015: We fit linear mixed effects models and used a backward-model-selection 

approach to examine the individual and interactive effects of HWA and EHS on bud 

break. HWA and EHS were treated as fixed factors, each with three levels 

corresponding to the length of infestation (0, 2, or 4 years) and an interactive term 

(HWA × EHS). Random effects included in models are described below. Full and 

reduced models were ranked and compared based on Bayesian Information Criterion 

(BIC) values, a standard criterion for model selection. The lme4 package was used to 

generate and compare models (Pinheiro et al. 2014).  

In the full model, initial trunk diameter at planting was included as a covariate 

and row position (1-20) of each tree was included as a random effect in the linear 

mixed effects model. We used this approach to examine how HWA and EHS affected 
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the date of bud break. All analyses were performed using R v. 3.2.2 (RCoreTeam 

2014) 

2016: We first analyzed among-treatment differences in the date of first, mean, 

and last bud break, as well as the number of buds broken. We excluded data from a 

single EHS tree on which only a single bud broke (i.e., same date for all three bud 

break variables). We used mixed linear models (normal distribution, identity link) fit 

using restricted maximum likelihood methods, with 'branch length' and 'block' as 

covariates. Chi-square and p-values were obtained for response variables via L-R χ2 

tests. 

We also analyzed the within-treatment relationship between insect density and the 

date of first, mean, and last bud break, as well as the number of buds broken. We used 

mixed linear models (normal, identity) fit using restricted maximum likelihood 

methods. Both 'branch length' and 'block' were included as covariates. P-values were 

again derived using L-R χ2 tests. 

2017: Our analysis of the 2017 data was identical to that used for the 2016 data, 

with the following two differences. First, we excluded data from a single HWA tree on 

which only a single bud broke. Second, since the 'block' term was never significant as 

a covariate, it was removed and the analyses were rerun without it. 

The 2016 and 2017 analyses were conducted using JMP 10 (SAS Institute, Cary 

North Carolina USA).
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RESULTS 

 

2015: Adelgid feeding delayed bud break by 3-4 days (F2,79 = 8.88, p < 0.001; 

Fig. 1a). Adelgid-free trees broke bud on average by May 7th, whereas trees infested 

with adelgid for two and four years had a mean bud break date of May 10th and 11th, 

respectively. In contrast, scale did not alter bud break (Fig. 1).  

2016: There was a marginal effect of treatment on the number of buds broken (χ2 

= 5.28, p = 0.072), with a trend for HWA branches having fewer buds (17.6 ± 3.03 

[SE]) than either EHS or control trees (21.3 ± 2.12 and 23.1 ± 2.15 buds, respectively). 

There were, however, no treatment-level differences in the date of first, mean, or last 

bud break (all p > 0.2). Insect densities in the HWA treatment ranged from zero to 

0.56 cm-1 (mean: 0.11 ± 0.035); EHS densities ranged from zero to 0.84 cm-1 (mean: 

0.26 ± 0.067).  

There were positive within-treatment relationships between HWA density and 

first bud break (Fig. 2a; χ2 = 19.14, p < 0.001), mean bud break (Fig. 2b; χ2 = 9.91, p = 

0.002), and last bud break (Fig. 2c; χ2 = 6.52, p = 0.011). Increasing HWA density 

from zero to 0.56 insects cm-1 delayed first bud break by 14.0 days, mean bud break 

by 10.6 days, and last bud break by 5.5 days (r2 = 0.55, 0.37, and 0.17, respectively; 

Figure 2). HWA density did not, however, affect the number of buds (χ2 = 1.89, p = 

0.169). 

EHS density did not affect most of the measured variables (p > 0.2 for all). The 

one exception was the date of first bud break (χ2 = 5.52, p = 0.019), where increasing 
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EHS density from zero to 0.56 insects cm-1 accelerated bud break by 4.3 days (r2 = 

0.14). 

2017: HWA density on marked branches ranged from zero to four insects cm-1 

(mean: 1.32 ± 0.335 [SE]). There was a positive relationship between HWA density 

and the date of first bud break (Fig. 2d; χ2 = 4.47, p = 0.0345) and mean bud break 

(Fig. 2e; χ2 = 8.61, p = 0.0033). Increasing HWA density from zero to one insects cm-

1 delayed first bud break by 1.4 days and mean bud break by 0.92 days (r2 = 0.20 and 

0.35, respectively). There was no relationship between HWA density and date of last 

bud break or the number of buds broken (both p > 0.5).  

EHS density ranged from 0.2 to 33 insects cm-1 (mean: 5.90 ±1.970). There was 

no relationship between scale density and any of the examined variables (all p > 0.10).
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DISCUSSION 

 

In this study, we found that a piercing-sucking herbivore can have residual effects 

on eastern hemlock phenology, as hemlocks that were infested with HWA were 

delayed in bud break the following spring. There was, however, substantial annual 

variation in the effect of HWA on bud break. For example, depending on year, trees 

with moderate to high (2016: 0-0.56 insects cm-1; and 2017:0-4 insect cm-1) HWA 

densities, densities that were representative of the field experiment site, broke bud 

anywhere from 1.4 to 14.0 days later than control or EHS-infested trees. Despite this 

difference, there were no treatment differences or density effects on overall bud 

production. The HWA-caused delay in bud break could have major implications for 

this conifer, as its understory saplings rely heavily on early spring carbon-acquisition 

for growth, which almost entirely occurs prior to overstory canopy leaf-out in the 

spring (Hadley 2000b). 

HWA vs. EHS 

EHS was included in this study as a means of observing another prevalent 

invasive within the eastern hemlock system. EHS feeding occurs through similar 

mechanisms to that of HWA, although it feeds on needles rather than at the twig-

needle junction (McClure 1979). The separation in feeding locations allows these two 

insects to coexist on a shared host (McClure 1991a, but see Gomez et al 2014). 

Whereas HWA has been shown to manipulate tree chemistry (Gómez et al. 2012), 

EHS is known mostly to cause discoloration in needles and, if in high enough 
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densities, kill a hemlock in approximately 10 years (McClure 2002). HWA results in a 

hypersensitive-like response, where hydrogen peroxide (Radville et al. 2011), amino 

acids (Gómez et al. 2012), and salicylic acid (Schaeffer et al. 2018) accumulate, and 

the emission of methyl salicylate increases (Pezet et al. 2013, Pezet and Elkinton 

2014). HWA also appears to cause water stress and false ring formation (Gonda-King 

et al. 2012, Domec et al. 2013), but EHS does not stress trees to the same extent. 

These differences in effects between HWA and EHS in the eastern hemlock system 

could contribute to the reasons why we did not observe a delay in bud break in eastern 

hemlock in the presence of scale. 

Relevance of new flush 

Hemlock is similar to other conifer species (ex. Abies sp.) in its long period of 

needle retention (Baiser et al. 2014). While this may allow for continued 

photosynthesis throughout the year (Givinish 2002, Robakowski and Bielinis 2017), 

the combination of environmental factors and new flush in early spring makes this 

time a critical window for eastern hemlock and other conifer species. Robakowski and 

Bielinis (2017) found that net CO2 assimilation rate in Abies alba decreased over time 

with needle age, and  that CO2 assimilation rates of one-year-old foliage were six 

times higher than that of seven-year-old needles (Robakowski and Bielinis 2017). 

Abies sp., like eastern hemlock, are relatively shade-tolerant conifers whose dense 

canopies can easily shade out their own foliage. Similar relationships between CO2 

assimilation and foliar age have been found in a variety of Abies, Picea, and Pinus sp. 

(Freeland 1952, Weikert et al. 1989, Wang et al. 1995, Brooks et al. 1996, Kitajima et 
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al. 1997, Olekysn et al. 1997, Jach and Ceulemans 2000, Crous and Ellsworth 2004, 

and Warren 2006).   

Impact of herbivore-induced phenologic delays on plant performance 

Photosynthesis in hemlock does occur through the autumn and winter months, but 

at substantially reduced levels due to cold temperatures and low photon flux densities 

(PFD) (Hadley 2000a). Photosynthesis through the winter months (roughly December 

through March) accounts for only about 10% of the annual total of photosynthesis for 

hemlock (Hadley 2000b). Indeed, throughout the months of April, May, and into July, 

hemlocks in the understory of a deciduous canopy experience maximum carbon gain 

due to high enough levels of PFD (Hadley 2000b, Hadley and Schedlbauer 2002).  In 

early spring after deciduous canopy leaf-out, understory hemlocks subsist on a 

drastically-reduced quantity and quality of light, and ‘sunflecks’ (i.e., short periods of 

direct sunlight lasting on the scale of minutes) become the only source of light capable 

of activating meaningful (i.e., carbon-fixing) levels of photosynthesis (Hadley 2000b). 

After leaf abscission in the fall, the low solar angle (and therefore low PFD) reduces 

light levels enough to preclude substantial carbon fixation. This means that early 

spring, prior to canopy leaf-out, is the critical growth window for understory 

hemlocks.  

The narrow growth window for understory hemlocks, limited in the early spring 

by temperature and solar angle and in the early summer by canopy leaf out, means that 

delays in spring bud break and the full leaf-out of new foliage are likely to be harmful 

with respect to putting on new growth. Hadley (2000) found that during the summer 

(after canopy leaf out) understory hemlocks get an average PFD of 20µmol m-2s-1; 
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only in instances of strong sun flecks did this value rise to 100µmol m-2s-1. In contrast, 

during early spring hemlocks regularly experienced PFDs above 200µmol m-2s-1 

(Hadley 2000). Between the early spring and summer, based on Hadley’s (2000) PFD 

values, hemlocks experience at least a 50-90% decrease in available photon flux 

density. The same research also showed that photon flux density shared a linear 

relationship with net photosynthesis (Hadley 2000). HWA-infested understory 

hemlocks would thus gain less photosynthate than uninfested trees.  

In addition to photosynthate losses caused by delayed-bud break-related decreases 

in PFD availability, HWA infestation can also reduce hemlock needle biomass 

(Wilson et al. 2018). Hemlocks infested with HWA have 15% lower above-/below-

ground biomass ratios and 16% lower aboveground needle/woody biomass ratios, than 

non-infested controls (Wilson et al. 2018). These reductions are likely to interact with 

the negative effects of delayed bud break to strongly inhibit the growth of HWA-

infested understory hemlocks.  

Herbivore induced delays and herbivore performance 

Herbivore-induced shifts in the timing of bud burst during the following season 

can have major implications for the population dynamics of subsequent herbivores 

(Quiring and McKinnon 1999). Shifts in bud break phenology due to previous-season 

herbivory have been documented in woody plants primarily for defoliating herbivores 

(Haukioja et al. 1988, Kaitaniemi et al. 1997, Quiring and McKinnon 1999). However, 

Quiring and McKinnon (1999) reported a slight (one day) but significant delay in 

white spruce (Picea glauca) bud break following infestation of the pineapple galling 

adelgid, Adelges abietis.  The authors attributed this delay to the ability of the gall to 
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act as a sink, pulling resources away from shoots. In our system, the magnitude of 

HWA-mediated delay in bud break (e.g. a 14 day-delay in 2016; Figure 2), coupled 

with the scale of the HWA invasion in North America, means that this stylet-feeder 

could have enormous effects on other herbivores that rely on a hemlock as a food 

source. Many hemlock folivores such as the hemlock looper (Lambdina fiscellaria) 

are dependent on the synchronization between larval emergence and bud break (Butt 

et al. 2010). 

Chewing herbivores such as the hemlock looper may not be the only species 

affected by a delay in bud break. The summer-emerging sistens generation of HWA 

depends on new foliage that develops from burst buds (McClure 1989). The ability of 

piercing-sucking insects like HWA to insert a stylet into foliage that is more lignified 

could be advantageous. Delays in bud break and inevitable canopy closure from a 

deciduous leaf out in the canopy could give second generation crawlers better 

potential synchrony for settling on hemlock foliage that takes longer to fully elongate 

and may be more lignified.  

Future directions 

External environmental factors can also significantly impact phenological timing 

(Chmielewski and Rötzer 2001 and Cleland et al. 2007) and a warming climate may 

result in earlier bud break. Many deciduous trees can accelerate the timing of bud 

break to coincide with earlier onset of spring (Kramer et al. 2000, Sparks et al. 1997, 

2000, Chmielewski and Rötzer 2001). The effect of climate change on conifer 

phenology is less clear, with most studies pointing to genus- or species-specific 

responses to altered climates and local environmental changes (Kramer et al. 2000, 
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Royce and Barbour 2001, Richardson et al. 2009, Ribbons 2014). Future research 

might address the interaction between climate change and delayed bud break in this 

system. 

While bud break has largely been explored in relation to external environmental 

factors and folivore impacts, piercing-sucking insects such as HWA can also alter the 

phenology of long-lived woody plant species. Our findings highlight a cryptic but 

important pathway by which non-defoliating herbivores can affect plant phenology 

and thus fitness; similar effects may occur in a number of other systems.  



 

19 
 

FIGURES 

 

Figure 1. 

 

 

 

 

 



 

20 
 

Figure 2. 
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