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ABSTRACT

A cooperative adaptive learning-based control (CALC) method and a corre-

sponding experience-based controller for a group of identical unicycle-type ground

vehicles are proposed in this research, through both state feedback and output

feedback. Specifically, consider the generalized dynamic model of the unicycle-

type vehicle with unstructured system uncertainties, the proposed CALC method

is able to drive all vehicle agents in the multi-agent system (MAS) to their re-

spective desired reference trajectories and accurately approximate the unmodeled

vehicle dynamics with radial basis function (RBF) neural network (NN) at the

same time. Furthermore, it is shown that the approximation of the unknown dy-

namics, presented by the NN weights, will reach consensus by converging to the

optimal value of approximation along the union of reference trajectories, for all

vehicle agents in the MAS.

In addition, a high-gain observer is also developed to estimate the generalized

velocities of the vehicles, in case that only the vehicle’s generalized coordinates are

measured and accessible for the proposed control methods. It is shown that the

proposed state feedback controllers can be modified using output feedback with

the estimated velocities, and the objectives of trajectory tracking and accurate

learning can still be achieved.

An important novelty of the proposed adaptive learning algorithm is that

it grants every vehicle in the group the ability of locally accurately identifying

the vehicle dynamics not only along the trajectory experienced by itself, but also

along the union trajectories experienced by all other vehicles as well, for both state

feedback and output feedback controllers. Another novelty of this research is that

the control methods proposed in this research can be applied to a more generalized

vehicle model with fewer constraints and assumptions, compared to other research



results for controlling the unicycle-type vehicles using adaptive learning.

Theoretical analysis, as well as simulations, are provided to show the track-

ing convergence, learning consensus, and accurate approximation of the proposed

control methods.
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CHAPTER 1

Introduction

1.1 Backgrounds

The two wheel-driven, unicycle-type ground vehicle is one of the most widely

used mobile robot systems due to its simplicity and practicality. With two actuated

wheels installed on each side of the vehicle’s body and caster wheel(s) preventing

the vehicle from falling down, this unmanned ground vehicle (UGV) has the same

kinematic model as a unicycle travelling on a flat plane. Numerous results have

been published based on this type of unmanned ground vehicle (UGV), focusing on

various fields of research such as trajectory tracking [1, 2, 3, 4, 5], formation control

[6, 7, 8, 9, 10], path planning [11, 12, 13, 14, 15], localization [16, 17, 18, 19, 20],

etc.

Independently driven by two actuated wheels, a common approach of control-

ling this unicycle-type vehicle is to design a controller at the kinematic level and

generate the desired linear and angular velocities of the vehicle, then use a lower

level controller to drive the actuated wheels to the speed calculated from the desired

linear and angular velocities with the differential drive method [21]. With the lower

level controller integrated into hardware (e.g. Arduino motor shield [22]) with the

desired velocity input (e.g. PWM signals), researchers and developers can thereby

focus on developing control methods on the kinematic level [8, 14, 16, 23, 24] and

developing associated velocity commands for simulations and applications.

1.2 Challenges and Objectives

Despite the simplicity of the two level control setup mentioned above, however,

the lower level controller is usually required to be much faster than the differential

drive controller at the kinematic level, i.e., the settling time of the lower level con-
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troller needs to be significantly shorter than the kinematic controller. In case of

tracking a fast time-varying reference trajectory, the lower level controller must be

fast and powerful enough to overcome the force generated by inertia and friction

almost instantly, which will significantly increase the cost of the hardware and ac-

tuators. Therefore, a controller considering the second-order model of the vehicle,

including both kinematics and dynamics, should be developed for quick response

and accurate tracking.

Following standard back-stepping control method [25] and the virtual velocity

tracking controller at the kinematic level [1], a force/torque controller can be easily

developed to control the second-order model of the vehicle [26]. However, this full

state feedback controller relies on the measurement of all state variables and the

accurate modelling of the vehicle, which may raise some challenges in applications.

The first challenge is to have access to all state variables of the system. For

the unicycle-type vehicle used in this research, the vehicle position and velocity are

typically both required for the force/torque controller. With exteroceptive sensors

such as cameras and GPS signals, obtaining the vehicle’s position is usually not

an issue, however, direct measurement of the vehicle’s velocity is more challenging.

State observer has been proposed to estimate the full state of the system using the

measurable signals [27, 28], however, traditional observers require the knowledge

of the system model for accurate state estimations. High-gain observer has been

proposed to estimate the unmeasured state variables in case that the system model

is not fully known to the observer, and the estimated states can be used for control

purposes [29, 30, 31, 32]. In this research, we follow the standard high-gain observer

design method [30] to obtain the estimation of vehicle velocities using the measured

vehicle position.

The second challenge is the accurate modeling of the vehicle. For traditional

2



controller design, the state-space model is required by the controller and built

based on the knowledge of physical model and measurement of the system param-

eters. For the ground vehicle used in this research, the measurement of kinematic

parameters, such as wheel separation and diameter, are usually quite straightfor-

ward. However, the dynamic parameters (e.g. moment of inertia, position of the

mass center, friction applied on the wheels) can be difficult to measure or model.

Different methods have been developed for controlling this vehicle without fully

knowing the system model, such as robust control [33, 34, 35, 36, 10] and adap-

tive control [37, 38, 39, 9, 40]. Particularly, for systems whose model is known

yet inaccurate, robust control methods ensure the system stability if the modeling

error is bounded [41]. For systems whose model is partially unknown, adaptive

control methods are able to adapt/update the parameters of the controller (direct

adaptive control) or the system model (indirect adaptive control) to stabilize the

system if the system dynamics is time invariant or slowly time-varying [42].

A drawback for the traditional adaptive control methods is that the algorithm

is only able to approximate parameters of the structured system uncertainties. For

systems with unstructured uncertainties, the deterministic learning (DL) theory

was recently proposed to approximate the unmodeled system dynamics with radial

basis function (RBF) neural network (NN), use the approximation to design a

controller tracking the reference trajectory, and update the NN weights at the same

time [43]. Moreover, under the condition of partial persistency of excitation (PE),

the system uncertainties can be locally accurately represented by the converged NN

weights [44], and the learned knowledge can be directly applied to an experience-

based controller without repeating the learning process for future control tasks with

similar reference trajectories. Based on this DL method, the problem of composite

trajectory tracking control and accurate adaptive learning (i.e., convergence of

3



associated NN weights to their true values) was solved for single unicycle-type

vehicles, and the learned knowledge (experience) could be reused for latter controls

facing same or similar tasks [31].

One major feature of the DL methods is that the RBFNN approximation is

locally accurate along the PE trajectory [44, 31], i.e., the converged NN weight

will accurately present the unmodeled system dynamics only along the trajectory

experienced by itself. As a result, for vehicles required to cope with multiple

tracking tasks with different reference trajectories, traditional DL methods requires

the vehicle to run its own learning process and store the NN weight separately for

every task, even when the parameters of the vehicles are identical and remain

unchanged.

To solve this problem, we take the idea from distributed control of nonholo-

nomic systems in MAS literature [9, 23, 24, 45, 46, 47, 48, 49, 50, 51] to extend

the DL theory from controlling single dynamical systems to MASs by sharing the

learning information/knowledge among multiple agents. To be more specific, we

will propose a cooperative deterministic learning (CDL) method by deploying a

group of identical vehicles running different tasks and communicating inside the

MAS in real-time. By sharing the learning information of NNs through a MAS

consensus control approach [52, 53, 33], our method enables all vehicle agents to

learn the unmodeled dynamics (presented by a common RBFNN weight) of the

vehicle agent not only along its own trajectory, but also along the union of tra-

jectories experienced by all vehicles in the MAS. Moreover, this cooperative DL

method enables all vehicles to achieve tracking and learning simultaneously within

one learning process, and the associated weights of all neural networks will reach

consensus by converging to the common optimal RBFNN approximation of the

vehicle dynamics. In addition, the learned knowledge presented by the converged

4



NN weight can be re-utilized for controlling the vehicle following the trajectories

not only experienced by itself, but also by all other vehicle agents in the MAS as

well.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows.

In Chapter 2, notations used in this dissertation and some preliminaries are

introduced, including graph theory, RBFNNs based DL method, and the physical

model of the unicycle-type vehicles.

In Chapter 3, a cooperative adaptive learning-based controller (CALC) is pro-

posed to drive a group of unicycle-type ground vehicles tracking desired reference

trajectories and approximating system uncertainties with RBFNN at the same

time. With the learned knowledge presented by the NN weights, an experience-

based controller is also proposed for vehicles in the MAS to track the learned

trajectories. Analytical analysis and MATLAB simulation results are provided to

show the tracking convergence and accurate approximation of the proposed con-

trollers.

In Chapter 4, we further propose the output-feedback controllers based on

the results from Chapter 3, with the linear and angular velocities of the vehicles

estimated by the observer. A high-gain observer is introduced to estimate the

generalized velocities of all vehicle agents in the MAS using the measurement of

generalized coordinates. The cooperative adaptive learning-based controller and

experience-based controller proposed in Chapter 3 are modified, such that the

trajectory tracking and accurate learning can still be achieved with the observer

estimation. Analytical analysis and MATLAB simulation results are also provided

to show the effectiveness of the proposed controllers.

In Chapter 5, a simulation is run on Gazebo with the proposed controllers.
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The model is built in Gazebo simulator for a group of unicycle-type ground vehicles,

the proposed controllers are transferred into Python codes, and the simulation is

run through the Robot Operating System (ROS).

In Chapter 6, we conclude this work and highlight the contributions of our

research, as well as discuss the potential future work.
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CHAPTER 2

Preliminaries

Notations: R, R+ and Z+ denote, respectively, the set of real numbers, the

set of positive real numbers and the set of positive integers; Rm×n denotes the set

of m × n real matrices; Rn denotes the set of n × 1 real column vectors; Om×n

denotes the zero matrix with dimension of m × n; N (A) denotes the nullspace

of matrix A; In denotes the n × n identity matrix; Subscript (·)k denotes the kth

column vector of a matrix; | · | is the absolute value of a real number, and || · || is

the 2-norm of a vector, i.e. ||x|| = (xTx)
1
2 ; ż denotes the total derivative of z with

respect to the time; ∂/∂z denotes the Jacobian matrix as ∂
∂z

=
[
∂
∂z1

· · · ∂
∂zn

]
,

with z =
[
z1 z2 · · · zn

]T
.

2.1 Graph Theory

In a graph defined as G = (V , E ,A), the elements in set V = {1, 2, . . . , n} are

called vertices, the elements of E are pairs (i, j) with i, j ∈ V , i 6= j called edges,

and the matrix A is called the adjacency matrix. If (i, j) ∈ E , then agent i is able

to receive information from agent j, and agent i and j are called adjacent. The

adjacency matrix is thus defined as A = [aij]n×n, in which
aij > 0 (i, j) ∈ E ,

aij = 0 (i, j) /∈ E .
(1)

For any two nodes vi, vj ∈ V , if there exists a path between them, then the graph

G is called connected. Furthermore, the graph G is called fixed if E and A do not

change over time, and called undirected if ∀(i, j) ∈ E , pair (j, i) is also in E .

Lemma 1. [1] For the Laplacian matrix L = [lij]n×n associated with the undirected
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graph G, in which

lij =


∑n

j=1,j 6=i aij i = j,

−aij i 6= j.

(2)

If the graph is connected, then L is a positive semi-definite symmetric matrix, with

one zero eigenvalue and all other eigenvalues to be positive and hence, rank(L) ≤

n− 1.

2.2 RBFNN Approximation and Deterministic Learning

The RBF neural network output function can be described by fnn(Z) =∑Nn
i=1wisi(Z) = W TS(Z) [2], where Z ∈ ΩZ ⊂ Rq is the input vector, W =[

w1 · · · wNn
]T ∈ RNn is a vector of NN weights, Nn is the NN node number,

and S(Z) =
[
s1(||Z − µ1||) · · · sNn(||Z − µNn||)

]T
, with si(·) being a radial basis

function, and µi (i = 1, 2, · · · , Nn) being the coordinate vectors of distinct points in

state space. The Gaussian function si(||Z−µi||) = exp[− (Z−µi)T (Z−µi)
η2i

] is one of the

most commonly used radial basis functions, where µi =
[
µi1 · · · µiq

]T ∈ Rq is the

center of the receptive field and ηi is the width of the receptive field. The Gaussian

function belongs to the class of localized RBFs in the sense that si(||Z −µi||)→ 0

as ||Z − µi|| → ∞. It is easily seen that S(Z) is bounded and there exists a real

constant SM ∈ R+ such that ||S(Z)|| ≤ SM [3].

It has been shown in [2, 4] that for any continuous function f(Z) : ΩZ → R

where ΩZ ⊂ Rq is a compact set, and for the NN approximator, where the node

number Nn is sufficiently large, there exists an ideal constant weight vector W ∗,

such that for any ε∗ > 0, f(Z) = W ∗TS(Z)+ε, ∀Z ∈ ΩZ , where |ε| < ε∗ is the ideal

approximation error. The ideal weight vector W ∗ is an ‘artificial’ quantity required

for analysis, and is defined as the value ofW that minimizes |ε| for all Z ∈ ΩZ ⊂ Rq,

i.e. W ∗ := arg minW∈RNn{supZ∈ΩZ
|f(Z) − W TS(Z)|}. Moreover, based on the

localization property of RBF NNs [3], for any bounded trajectory Z(t) within the
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compact set ΩZ , f(Z) can be approximated by a limited number of neurons located

in a local region along the trajectory: f(Z) = W ∗T
ζ Sζ(Z) + εζ , where εζ is the

approximation error, with εζ = O(ε) = O(ε∗), Sζ(Z) =
[
sj1(Z) · · · sjζ(Z)

]T ∈
RNζ , W ∗

ζ =
[
w∗j1 · · · w∗jζ

]T ∈ RNζ , Nζ < Nn, and the integers ji = j1, · · · , jζ are

defined by |sji(Zp)| > θ (θ > 0 is a small positive constant) for some Zp ∈ Z(k).

It is shown in [3] that for a localized RBF network W TS(Z) whose centers are

placed on a regular lattice, almost any recurrent trajectory 1 Z(k) can lead to the

satisfaction of the PE condition of the regressor subvector Sζ(Z). This result can

be formally summarized in the following lemma.

Lemma 2 ([3, 5]). Consider any recurrent trajectory Z(k): Z+ → Rq. Z(k)

remains in a bounded compact set ΩZ ⊂ Rq, then for RBF network W TS(Z)

with centers placed on a regular lattice (large enough to cover compact set ΩZ),

the regressor subvector Sζ(Z) consisting of RBFs with centers located in a small

neighborhood of Z(k) is persistently exciting.

2.3 Vehicle Model

The physical model of the unicycle-type vehicle is shown in Figure 1. The

body-fixed frame of the vehicle is defined using the following forward-left-up right-

handed Cartesian coordinate system:

• The origin (reference point) is the center point between two actuated wheels.

• The XV (forward) axis is pointing towards the center of the front caster.

• The YV (left) axis is pointing towards the center of the left actuated wheel,

along the joints of the actuated wheels.

1A recurrent trajectory represents a large set of periodic and quasiperiodic trajectories gen-
erated from linear/nonlinear dynamics systems. A detailed characterization of recurrent trajec-
tories can be found in [3].
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• The ZV (up) axis is pointing upwards and perpendicular to the XV − YV

plane

R
R

x xc

y

yc
d

XV

YV

X

Y Center of mass

Actuated wheels

Figure 1: Unicycle-type vehicle

By defining the coordinates of the reference point in the ground frame as (x,

y) and the angle between XV and the X axis of the ground frame as θ, the vehicle’s

position and orientation can be thereby combined into a generalized coordinates

vector q =
[
x y θ

]T
. Therefore, the unicycle-type ground vehicle is a 3-DOF

system.

The mass center of the vehicle is on the XV axis of the body-fixed frame,

whose distance from the reference point equals to d and hence, then the generalized
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coordinates of the mass center in the ground frame is

qc =

xcyc
θc

 =

x+ d cos θ
y + d sin θ

θ

 . (3)

As is shown in Figure 1, this unicycle-type vehicle is a nonholonomic system,

with the constraint force preventing the vehicle from sliding along the axis of the

actuated wheels (YV ). The nonholonomic constraint, also known as the kinematic

constraint, can be expressed in the Pfaffian form as [6]

ẋ sin θ − ẏ cos θ = 0, (4)

or equivalently, in the matrix form

AT (q)q̇ = 0, (5)

where AT (q) =
[
sin θ − cos θ 0

]
. With this constraint, the mobility of the ve-

hicle is limited and hence, q̇ must be in the null space of AT (q). Therefore, the

time derivative of the generalized coordinates q can be constructed as a linear

combination of two independent generalized velocities u1 and u2 as

q̇ = j1u1 + j2u2, (6)

where j1 and j2 are basis ofN (AT (q)). A natural choice of the generalized velocities

is the linear velocity v along XV axis, and the angular velocity ω with respect to

ZV axis, then the non-slippery kinematics of the vehicle can be presented as

q̇ =

ẋẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

[v
ω

]
def
= J(q)u, (7)

where J(q) =
[
j1 j2

]
, and u =

[
u1 u2

]T
=
[
v ω

]T
. Notice that j1, j2, and A

compose a set of orthonormal basis of the linear space R3

For the dynamics of the vehicle, the state-space model can be described by a

2nd order ordinary differential equation (ODE) of the generalized coordinates q [7]

M(q)q̈ + C(q, q̇)q̇ + F (q, q̇) +G(q) = B(q)τ + A(q)λ, (8)
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in which M ∈ R3×3 is a positive definite matrix that denotes the inertia, C ∈ R3×3

is the centripetal and Coriolis matrix, F ∈ R3×1 is the friction vector, G ∈ R3×1 is

the gravity vector. τ ∈ R2×1 is a vector of system input, i.e. the torque applied

on each actuation wheel, B = 1
r

cos θ cos θ
sin θ sin θ
R −R

 ∈ R3×2 is the input transformation

matrix, projecting the system input τ onto the space spanned by the generalized

coordinates q, where R is the distance from the actuation wheel to the origin of

the body-fixed frame, and r is the radius of the wheel. λ is a Lagrange multiplier,

and A(q)λ ∈ R3×1 denotes the constraint force.

Matrices M and C in equation (8) can be derived using the Lagrangian equa-

tion with the following steps. First we derive the kinetic energy of the vehicle using

the linear and angular velocities with respect to the mass center

T =
m(ẋ2

c + ẏ2
c )

2
+
Icθ̇

2
c

2
, (9)

where m is the mass of the vehicle, Ic is the moment of inertia measured at the

center of mass. From equation (3), we can derive the time derivative of qc

ẋc = ẋ− dθ̇ sin θ,

ẏc = ẏ + dθ̇ cos θ,

θ̇c = θ̇,

(10)

then the kinetic energy (9) can be rewritten into

T (q, q̇) =
m[(ẋ− dθ̇ sin θ)2 + (ẏ + dθ̇ cos θ)2]

2
+
Icθ̇

2

2

=
1

2
[mẋ2 +mẏ2 + (md2 + Ic)θ̇

2 − 2md sin θẋθ̇ + 2md cos θẏθ̇]

=
q̇TM(q)q̇

2
,

(11)

in which

M =

 m 0 −md sin θ
0 m md cos θ

−md sin θ md cos θ md2 + Ic

 . (12)
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It will be shown later that the inertia matrix M given above is identical to

that in equation (8). The dynamics equation (8) can be derived from the following

Lagrangian equation [6]:

d

dt

(
∂L

∂q̇

)T
−
(
∂L

∂q

)T
= A(q)λ+ Q, (13)

in which L(q, q̇) = T (q, q̇) − U(q) is the Lagrangian of the vehicle with U(q)

presenting the potential energy, λ is the Lagrangian multiplier, and A(q)Tλ denotes

the constraint force. Q = B(q)[τ − f(u)] denotes the external force, where τ is the

force generated by the actuator, and f(u) is the friction on actuators, joints, and

the wheel surface. Then equation (13) can be rewritten into

M(q)q̈ + Ṁ q̇−
(
∂T

∂q

)T
+

(
∂U

∂q

)T
+B(q)f(u) = A(q)λ+B(q)τ. (14)

By setting C(q, q̇)q̇ = Ṁ q̇−
(
∂T
∂q

)T
, F (q, q̇) = B(q)f(q̇), and G(q) =

(
∂U
∂q

)T
,

equation (14) can be thereby transferred into (8), with the inertia matrix M iden-

tical to that in (11). Notice that the form of Cn×n is not unique, however, with

a proper definition of the matrix C, we will have Ṁ − 2C to be skew-symmetric

[6]. The (i, j)th entry of C is defined as cij =
∑n

k=1 cijkq̇k, where q̇k is the kth entry

of q̇, and cijk = 1
2

(
∂mij
∂qk

+ ∂mik
∂qj
− ∂mjk

∂qi

)
is defined using the Christoffel symbols of

the first kind [6]. Then we have the centripetal and Coriolis matrix calculated as

C =

0 0 −mdθ̇ cos θ

0 0 −mdθ̇ sin θ
0 0 0

 . (15)

With the vehicle operating on the ground, the potential energy U is a constant

value, and we thereby have the gravity vector G =
(
∂U
∂q

)T
equals to zero. The

friction vector F is assumed to be a nonlinear function of the generalized velocity

u and unknown to the controller.

To reduce the degree of freedor (DOF) of the system into two and eliminate

the nonholonomic constraint force A(q)λ from equation (8), we left multiplying
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JT (q) to the equation, it yields:

JTMJu̇ + JT (MJ̇ + CJ)u + JTF + JTG = JTBτ + JTAλ. (16)

Since columns of J and A are orthonormal basis of R3, then we have JTA = 02×1,

and the dynamic equation of u can be simplified as

M̄(q)u̇ + C̄(u)u + F̄ (u) + Ḡ(q) = τ̄ , (17)

where

M̄ = JTMJ =

[
m 0
0 md2 + Ic

]
,

C̄ = JT (MJ̇ + CJ) =

[
0 −mdθ̇

mdθ̇ 0

]
,

F̄ = JTF,

Ḡ = JTG = 02×1,

τ̄ =

[
τ̄v
τ̄ω

]
= JTBτ =

[
1/r 1/r
R/r −R/r

]
τ.

(18)

Notice that md2 + Ic = I is the moment of inertia with respect to the reference

point, which can be derived using the parallel axis theorem [8].

The DOF of the vehicle dynamics is now reduced to two with the constraint

force taken out of the equation. Since JTB is of full rank, then for any transformed

torque input τ̄ , there exists a unique corresponding actual torque input τ ∈ R2

that applied on each wheel. With the state-space model fully described by the

kinematic equation (7) and dynamic equation (17), we can now proceed to discuss

the problem statement and controller design in the following chapters.
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CHAPTER 3

The cooperative adaptive learning and control (CALC) framework via
state feedback

3.1 Problem Statement

Consider a group of unicycle-type ground vehicles with identical mechanical

model, the objective of this research is to design a trajectory tracking controller.

For traditional control methods such as pole placement, optimal control, and input-

output linearization, the accurate description of the system model is required for

controller design. Recall the parameters in the vehicle dynamics equation (17)

M̄ = JTMJ =

[
m 0
0 I

]
, C̄ = JT (MJ̇ + CJ) =

[
0 −mdθ̇

mdθ̇ 0

]
,

F̄ = JTF, Ḡ = JTG = 02×1, τ̄ =

[
τ̄v
τ̄ω

]
= JTBτ =

[
1/r 1/r
R/r −R/r

]
τ.

(19)

For the input transformation matrix JTB, the measurement of dimensional

parameters (wheel offset R and radius r) are quite straightforward. However, mea-

suring the moment of inertia I and the position of mass center d usually takes much

more effort. In addition, the linear model of Coulomb friction may not accurately

present the actual friction F̄ applied on the vehicle. To control the vehicles with

unknown dynamic parameters, we introduce a cooperative adaptive learning-based

controller and an experience-based controller for the trajectory tracking task, using

the RBFNN approximation of the unstructured system uncertainties. In order to

apply the cooperative adaptive learning algorithms, we have the following assump-

tions for our multi-agent system (MAS)

Assumption 1. The communication graph G associated to the MAS is undirected

and connected.

Assumption 2. The reference trajectories for all vehicle agents in the MAS are

bounded continuous functions.
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Assumption 3. The state variables, i.e., generalized coordinates and velocities,

associated to all reference trajectories are recurrent.

Based on the vehicle model in Section 2.3 and the assumptions shown above,

the objective of this dissertation can be concluded as follows. Consider an MAS

containing n identical unicycle-type vehicles with the state-space model of each

vehicle in the MAS described by the kinematics equation (7) and the dynamics

equation (17), under the Assumptions 1, 2, and 3, the proposed control algorithms

will achieve the following objectives

i) Trajectory tracking: Each vehicle in the MAS will track its desired reference

trajectory qri(t), i.e., limt→∞(qri(t)− qi(t)) = 0, ∀i ∈ {1, · · · , n}.

ii) Consensus learning: The homogeneous unmodeled dynamics of all the vehi-

cles can be locally accurately identified, i.e., the NN weights for all vehicle

agents in the MAS reach their common optimal value, along the union of the

trajectories experienced by all vehicle agents in the MAS.

iii) Experience-based control: The learned knowledge from the cooperative learn-

ing phase can be re-utilized by each local vehicle to perform stable trajectory

tracking without adaptive updating opearations.

3.2 CALC with Tracking Stability and Weight Convergence Analysis

For better analyzing the tracking convergence, we first define the tracking

error q̃i of the ith vehicle by projecting the tracking error measured in the ground

frame onto the body-fixed frame of the vehicle, as shown in Figure 2:

q̃i =

x̃iỹi
θ̃i

 =

 cos θi sin θi 0
− sin θi cos θi 0

0 0 1

xri − xiyri − yi
θri − θi

 , (20)

in which the subscript r denotes the variables of the reference trajectories. Us-

ing the constraint (5) and the kinematics (7), we then have the derivative of the
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Figure 2: Projecting tracking error onto the body-fixed frame
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tracking error as

˙̃xi = (ẋri − ẋi) cos θi − (xri − xi) sin θiθ̇i + (ẏri − ẏi) sin θi + (yri − yi) cos θiθ̇i

= vri cos θri cos θi + vri sin θri sin θi + ỹω − vi

= vri cos θ̃i + ωiỹi − vi

˙̃yi = −(ẋri − ẋi) sin θi − (xri − xi) cos θiθ̇i + (ẏri − ẏi) cos θi − (yri − yi) sin θiθ̇i

= −vri cos θri sin θi + vri sin θri cos θi − x̃ω

= vri sin θ̃i − ωix̃i
˙̃θi = ωri − ωi

(21)

in which vi and ωi are the linear and angular velocities of the ith vehicle, respec-

tively.

In order to utilize the backstepping control theory [1], we treat vi and ωi in

equation (21) as virtual inputs, then following the methodology from [2], we can

design a stabilizing virtual controller as

uci =

[
vci
ωci

]
=

[
vri cos θ̃i +Kxx̃i

ωri + vriKyỹi +Kθ sin θ̃i

]
, (22)

in which Kx, Ky, and Kθ are all positive constants. It can be shown that this

virtual velocity controller is able to make the tracking error qi converge to zero

asymptotically on the kinematic level. Specific proofs can be done by replacing

the vi and ωi in equation (21) with the virtual controller vci and ωci , respectively.

To this end, we define the following Lyapunov function for the ith vehicle

V1i =
x̃2
i

2
+
ỹ2
i

2
+

(1− cos θ̃i)

Ky

(23)
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and the derivative of V1i is

V̇1i = x̃i ˙̃xi + ỹi ˙̃yi +
sin θ̃i
Ky

˙̃θi

= x̃i(vri cos θ̃i + ωiỹi − vci) + ỹi(vri sin θ̃i − ωix̃i) +
sin θ̃i
Ky

(ωri − ωci)

= x̃i(ωiỹi −Kxx̃i) + ỹi(vri sin θ̃i − ωix̃i) +
sin θ̃i
Ky

(−vriKyỹi −Kθ sin θ̃i)

= −Kxx̃
2
i −

Kθ

Ky

sin2 θ̃i ≤ 0

(24)

Since V̇1i is negative semi-definite, we can conclude that the system is stable,

with the tracking error q̃i to be bounded for all vehicle agents in the MAS.

Remark 1. In addition to the stable conclusion above, we could also conclude

the asymptotic stability by finding the invariant set of V̇1i = 0 [3]. By setting

V̇1i = 0, we have x̃i = 0 and sin θ̃i = 0. Applying this result into equation (21) and

(22), we have the invariant set equals to {x̃i = 0, ỹi = 0, θ̃i = 0} ∪ {x̃i = 0, ỹi =

0, θ̃i = −π, vri 6= 0, ωri = 0} ∪ {x̃i = 0, ỹi 6= 0, sin θ̃i = 0, vri = 0, ωri = 0}. With

the assumption 3, the generalized velocities of the reference trajectory cannot be

constant over time, then we can conclude that the only invariant subset of V̇1i = 0

is the origin q̃i = 0. Therefore, we can conclude that virtual controller (22) will

make the tracking system asymptotically stable.

With the idea of backstepping control, we then derive the transformed torque

input τ̄i for the ith vehicle with the following steps. By defining the error between

the virtual controller uci and the actual velocity ui as ũi =
[
ṽi ω̃i

]T
= uci − ui,
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we can rewrite equation (21) in terms of ṽi and ω̃i as

˙̃xi = vri cos θ̃i + ωiỹi − vci + ṽi

= −Kxx̃i + ωiỹi + ṽi

˙̃yi = −ωix̃i + vri sin θ̃i

˙̃θi = ωri − ωci + ω̃i

= −vriKyỹi −Kθ sin θ̃i + ω̃i

(25)

Then we define a new Lyapunov function V2i = V1i +
ũTi M̄ ũi

2
for the closed-loop

system (25), whose derivative can be written as

V̇2i = x̃i ˙̃xi + ỹi ˙̃yi +
sin θ̃i
Ky

˙̃θi + ũTi M̄ ˙̃ui

= x̃i(−Kxx̃i + ωiỹi + ṽi) + ỹi(−ωix̃i + vri sin θ̃i)

+
sin θ̃i
Ky

(−vriKyỹi −Kθ sin θ̃i + ω̃i) + ũTi M̄ ˙̃ui

= −Kxx̃
2
i −

Kθ

Ky

sin2 θ̃i + ũTi

([
x̃i

sin θ̃i
Ky

]
+ M̄ ˙̃ui

)
(26)

To make the system stable, the term ũTi

([
x̃i

sin θ̃i
Ky

]
+ M̄ ˙̃ui

)
needs to be nega-

tive definite. From the definition of ũi and equation (17), we have

M̄ ˙̃ui = M̄ u̇ci − M̄ u̇i = M̄ u̇ci + C̄ui + F̄ − τ̄i (27)

Motivated from the results of [4], it is easy to show that this term is negative

definite if τ̄i is designed to be

τ̄i = M̄ u̇ci + C̄ui + F̄ +Kuũi +

[
x̃i

sin θ̃i
Ky

]
, (28)

where Ku ∈ R+, and

u̇ci =

[
v̇ri − vri sin θ̃i

˙̃θi +Kx
˙̃xi

ω̇ri + v̇riKyỹi + vriKy
˙̃yi +Kθ cos θ̃i

˙̃θi

]
, (29)
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with ˙̃xi = vri cos θ̃i+ωiỹi−vi, ˙̃yi = vri sin θ̃i−ωix̃i, and ˙̃θi = ωri−ωi given by (21).

To control the vehicles following their reference trajectories, system parameter

matrices M̄ , C̄, and F̄ need to be approximated by the RBFNN, i.e.

H(Xi) = M̄ u̇ci + C̄(ui)ui + F̄ (ui) = W ∗TS(Xi) + εi, (30)

in which S(Xi) ∈ RN is a vector of RBFs, where Xi =
[
u̇Tci uTi

]T
is the input

vector of the NN, and N is the number of neurons in the network, W ∗ ∈ RN×2

is the common ideal approximation weight of this RBFNN, and εi is the ideal

approximation error, which can be made arbitrarily small given sufficiently large

number of neurons. Consequently, we propose the implementable controller for the

ith vehicle by replacing the unstructured system uncertainties with the RBFNN

approximation

τ̄i = Ŵ T
i S(Xi) +Kuũi +

[
x̃i

sin θ̃i
Ky

]
, (31)

where Ŵi is the approximation of the ideal NN weight by the ith vehicle agent. To

drive this approximation Ŵi converging to the common ideal value W ∗, we propose

an online NN weight updating law as follows

˙̂
Wi = ΓS(Xi)ũ

T
i − γŴi − β

n∑
j=1,j 6=i

aij(Ŵi − Ŵj), (32)

in which ΓS(Xi)ũi is the local updating term using the tracking error ũi, −γŴi is

the leakage term inspired from the robust adaptive control to stabilize the system in

case of disturbance [3], and −β
∑n

j=1 aij(Ŵi−Ŵj) is the cooperative updating term

to share information/knowledge inside the MAS. Γ and β are positive constants,

γ is a positive constant close to zero, aij = 1 if agent i and j are connected, and

aij = 0 otherwise.

Theorem 1. Consider the closed-loop system including n unicycle-type vehicles

described by equation (7) and (17), the desired reference trajectory qr(t), adaptive
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NN controller (31) with the virtual velocity (22), and the online weight updating

law (32), under the assumptions 1, 2, and 3, then for any bounded initial condition

of all the vehicles and Ŵi = 0, the tracking error q̃i converges asymptotically to a

small neighborhood around zero for all vehicle agents in the MAS.

Proof. From equation (27) and (31), we have the error dynamics of the velocity

error ũi as

˙̃ui = M̄−1(M̄ u̇ci + C̄ui + F̄ − τ̄i)

= M̄−1

{
W ∗TS(Xi) + εi − Ŵ T

i S(Xi)−Kuũi −

[
x̃i

sin θ̃i
Ky

]}

= M̄−1

{
W̃ T
i S(Xi) + εi −Kuũi −

[
x̃i

sin θ̃i
Ky

]} (33)

By defining the error between the ideal and actual weight as W̃i = W ∗ − Ŵi,

the error dynamics of the NN weight is

˙̃Wi = − ˙̂
Wi = −ΓS(Xi)ũ

T
i + γŴi + β

n∑
j=1,j 6=i

aij(Ŵi − Ŵj)

= −ΓS(Xi)ũ
T
i + γŴi + β

n∑
j=1,j 6=i

aij(−(W ∗ − Ŵi) + (W ∗ − Ŵj))

= −ΓS(Xi)ũ
T
i + γŴi − β

n∑
j=1,j 6=i

aij(W̃i − W̃j)

(34)

or equivalently,

˙̃Wi = −ΓS(Xi)ũ
T
i + γŴi − β

n∑
j=1

lijW̃j (35)

where lij is the (i, j)th entry of the Laplacian matrix L associated with the undi-

rected graph G.

For the closed-loop system given by equation (25), (33), and (35), we can

build a new Lyapunov function of the whole MAS as

V =
n∑
i=1

[
x̃2
i

2
+
ỹ2
i

2
+

(1− cos θ̃i)

Ky

+
ũTi M̄ ũi

2
+

trace(W̃ T
i W̃i)

2Γ

]
(36)
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whose derivative is

V̇ =
n∑
i=1

[
x̃i ˙̃xi + ỹi ˙̃yi +

sin θ̃i
Ky

˙̃θi + ũTi M̄ ˙̃ui +
trace(W̃ T

i
˙̃Wi)

Γ

]
(37)

Apply equation (25), (33), and (35) to (37), we have

V̇ =
n∑
i=1

{
x̃i(ṽi + ωiỹi −Kxx̃i) + ỹi(vri sin θ̃i − ωix̃i)

+
sin θ̃i
Ky

(ω̃i − vriKyỹi −Kθ sin θ̃i) + ũTi

[
W̃ T
i S(Xi) + εi −Kuũi −

[
x̃i

sin θ̃i
Ky

]]

+ trace

(
W̃ T
i

[
−S(Xi)ũ

T
i +

γŴi

Γ
− β

Γ

n∑
j=1

lijW̃j

])}

=
n∑
i=1

{
−Kxx̃

2
i −

Kθ

Ky

sin2 θ̃i −Kuũ
T
i ũi + ũTi εi + ũTi [W̃ T

i S(Xi)]

− trace
(

[W̃ T
i S(Xi)]ũ

T
i

)
+ trace

(
γW̃ T

i Ŵi

Γ

)}

− trace

(
n∑
i=1

β

Γ
W̃ T
i

n∑
j=1

lijW̃j

)

=
n∑
i=1

{
−Kxx̃

2
i −

Kθ

Ky

sin2 θ̃i −Kuũ
T
i ũi + ũTi εi +

γ

Γ
trace

(
W̃ T
i Ŵi

)}
− β

Γ
trace

(
W̃ T (L⊗ I)W̃

)
(38)

where W̃ =
[
W̃ T

1 · · · W̃ T
n

]T
, and the operator ⊗ denotes the Kronecker product

of two matrices. Since β and Γ are all positive, and L is positive semi-definite,

then we have β
Γ

trace
(
W̃ T (L⊗ I)W̃

)
≥ 0. Notice that the approximation error

can be made arbitrarily small with a sufficient large number of neurons, and γ is

a small positive constant. Therefore, we can conclude that the closed-loop system

(25), (33), and (35) is stable, i.e. V̇ ≤ 0, if the following condition stands

Kxx̃
2
i +

Kθ

Ky

sin2 θ̃i +Kuũ
T
i ũi ≥ ũTi εi +

γ

Γ
trace

(
W̃ T
i Ŵi

)
(39)
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Hence, the closed-loop system is stable, and all tracking error are bounded. Since

all variables in (37) are continuous and bounded (i.e. V̈ is bounded), then with

the application of Barbalat’s lemma [5], we have limt→∞ V̇ = 0, which implies that

the tracking error q̃i for all agents will converge to a small neighborhood of zero,

whose size depends on the norm of ũTi εi + γ
Γ

trace
(
W̃ T
i Ŵi

)
.

To this point, we have fulfilled the first objective of trajectory tracking raised

in Section 3.1. In the following part, we will further show that convergence of

NN weight approximation by each vehicle agent is guaranteed not only along its

own trajectory, but along trajectories experienced by other vehicle agents as well,

i.e., Ŵi for all vehicle agents will converge to the common ideal approximation

weight W ∗ along the union trajectory (denoted as ∪ni=1ζi[Xi(t)]) experienced by all

vehicles in the MAS.

By defining ṽ =
[
ṽ1 . . . ṽn

]T
, ω̃ =

[
ω̃1 . . . ω̃n

]T
,

W̃v =
[
W̃1,1 . . . W̃n,1

]T
, W̃ω =

[
W̃1,2 . . . W̃n,2

]T
, and S =

diag(S(X1), S(X2), . . . , S(Xn)), we combine the error dynamics in equations (33)

and (35) for all vehicles into the following form:
˙̃v
˙̃ω
˙̃Wv

˙̃Wω

 =

[
A B
−C −D

]
ṽ
ω̃

W̃v

W̃ω

+ E (40)
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in which

A2n×2n = −Ku(M̄
−1 ⊗ In),

B2nN×2n = (M̄−1 ⊗ In)(I2 ⊗ S) = M̄−1 ⊗ ST ,

C2n×2nN = Γ(I2 ⊗ S),

D2nN×2nN = βI2 ⊗ (L⊗ IN),

E(2nN+2nN)×1 =


E1

E2

E3

E4

 ,

E1 =
1

m

εv1 − x̃1
...

εvn − x̃n

 ,

E2 =
1

I


εω1 − sin θ̃1

Ky
...

εωn − sin θ̃n
Ky

 ,

E3 = γ

Ŵ1,1
...

Ŵn,1

 ,
E4 = γ

Ŵ1,2
...

Ŵn,2

 .
As is shown in Theorem 1, the tracking errors ṽi and ω̃i will converge to a small

neighborhood around zero, ∀i = 1, . . . , n. Furthermore, the ideal approximation

errors εvi and εωi can be made arbitrarily small given sufficiently large number of

RBF neurons, and γ is chosen to be a small positive constant, therefore, we can

conclude that the norm of E in equation (40) has a small value. In the following

theorem, we will show that Wi =
[
Wi,1 Wi,2

]
converges to a small neighborhood

of the common ideal weight W ∗ for all i = 1, . . . , n under assumptions 1 and 3.

Before proceeding further, we denote the parts of the NN weight W related

to the region close to and away from the trajectory ζ as Wζ and Wζ̄ , respectively
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[6].

Theorem 2. Consider the error dynamics (40), under the assumptions 1, 2, and

3, then for any bounded initial condition of all the vehicles and Ŵi = 0, along

the union of the system trajectories ∪ni=1ζi[Xi(t)], all locally approximated neural

weights Ŵζi (i = 1, · · · , n) used in (31) converge to a small neighborhood of their

common ideal value W ∗
ζ , and locally accurate identification of nonlinear uncertain

dynamics H(X(t)) can be achieved by Ŵ T
i S(X) as well as W̄ T

i S(X) obtained from

any vehicle agent in the MAS, for all X ∈ ∪ni=1ζi[Xi(t)], where

W̄i = mean
tai≤t≤tbi

Ŵi(t) (41)

with [tai , tbi ] (tbi > tai > Ti) being a time segment after the transient period of

tracking control.

Proof. According to [6], if the nominal part of closed loop system shown in (40) is

uniformly locally exponentially stable (ULES), then ṽ, ω̃, W̃v, and W̃ω will converge

to a small neighborhood of the origin, whose size depends on the value of ||E||.

Now the problem boils down to proving ULES of the nominal part of sys-

tem (40). To this end, we need to resort to the results of Lemma 5′ in [7]. It is

stated that if the Assumptions 1′ and 2′ therein are satisfied, then the nominal

part of (40) is ULES if there exist two positive constants T0 and α, such that∫ t+T0

t

[(BTB) +D]dτ ≥ αI2nN (42)

holds for all t ≥ 0.

The assumption 1′ therein is automatically verified since S is bounded, and

Assumption 2′ therein also holds if we set the counterparts P = Γ(M̄ ⊗ In) and

Q = 2ΓKuI2n. Furthermore, the PE condition presented by equation (42) is met if

the RBFNN input signal Xi is recurrent for all i = 1, · · · , n [6], which is guaranteed

31



by our Assumption 3 and results from Theorem 1. Therefore, we can obtain the

conclusion that ṽ, ω̃, W̃v, and W̃ω will converge to the neighborhood of the origin,

whose size depends on the small value of ||E||.

Similar to [8], the convergence of Ŵζi to a small neighborhood of W ∗
ζ implies

that for all X ∈ ∪ni=1ζi[Xi(t)], we have

H(X) = W ∗T
ζ + εζ = Ŵ T

ζi
Sζ(X) + W̃ T

ζi
Sζ(X) + εζi = Ŵ T

ζi
Sζ(X) + ε1ζi (43)

where ε1ζi = W̃ T
ζi
Sζ(X) + εζi is close to εζi due to the convergence of W̃ζi . With

the W̄i defined in (41), then equation (43) can be rewritten into

H(X) = Ŵ T
ζi
Sζ(X) + ε1ζi

= W̄ T
ζi
Sζ(X) + ε2ζi

(44)

where W̄ T
ζi

=
[
w1ζ · · · wkζ

]T
is a subvector of W̄i and ε2ζi is the error using

W̄ T
ζi
Sζ(X) as the system approximation. After the transient process, ||ε1ζi || and

||ε2ζi || are small for all i = 1, · · · , n.

On the other hand, due to the localization property of Gaussian RBFs, both Sζ̄

and W̄ζ̄Sζ̄(X) are very small. Hence, along the union trajectory ∪ni=1ζi[Xi(t)], the

entire constant RBF network W̄ TS(X) can be used to approximate the nonlinear

uncertain dynamics

H(X) = W ∗T
ζ Sζ(X) + εζ

= Ŵ T
ζi
Sζ(X) + Ŵ T

ζ̄i
Sζ̄(X) + ε1i

= Ŵ T
i S(X) + ε1i

= W̄ T
ζi
Sζ(X) + W̄ T

ζ̄i
Sζ̄(X) + ε2i

= W̄ T
i S(X) + ε2i

(45)

where ||ε1i ||, ||ε1ζi ||, ||ε2i ||, and ||ε2ζi || are all small for all i = 1, · · · , n. Therefore,

the conclusion of Theorem 2 can be drawn.
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3.3 Experience-based Controller Design and Stability Analysis

After showing that the NN weight for any vehicle agent in the MAS locally

converged to the common ideal value W ∗ along the union trajectory ∪ni=1ζi[Xi(t)],

we further propose an experience-based trajectory tracking controller without the

adaptive/updating operations for decreasing the computational complexity. In

addition, we will show that with any NN weight W̄i obtained from equation (41),

all vehicle agents in the MAS are able to track the trajectory not only experienced

by vehicle agent i, but all trajectories experienced in the learning phase as well.

To this end, we replace the NN weight Ŵi in equation (31) by the converged

constant NN weight W̄j taken from a random vehicle agent j in the MAS. Then

for the ith vehicle, the experience-based controller is thereby constructed

τ̄i = W̄ T
j S(Xi) +Kuũi +

[
x̃i

sin θ̃i
Ky

]
, (46)

Theorem 3. Consider the closed-loop system including n unicycle-type vehicles

described by equation (7) and (17), the desired reference trajectory qri ∈ ∪nj=1qj(t),

and the experience-based controller (46) with the virtual velocity (22), for any

bounded initial condition, the tracking error q̃i converges asymptotically to a small

neighborhood around zero, ∀i = 1, · · · , n.

Proof. Similar to the proof of Theorem 1, we first derive the error dynamics of the

velocity error ui with the proposed experience-based controller (46) as

˙̃ui = M̄−1(M̄ u̇ci + C̄ui + F̄ − τ̄i)

= M̄−1

{
ε2j −Kuũi −

[
x̃i

sin θ̃i
Ky

]}
(47)

where ε2j = H(Xj)− W̄ T
j S(Xj) is small along the union of reference trajecotries.

Similarly, we can build a positive definite function of this closed-loop system of

the ith vehicle as

Vi =
x̃2
i

2
+
ỹ2
i

2
+

1− cos θ̃i
Ky

+
ũTi M̄ ũi

2
(48)
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whose derivative is

V̇i = x̃i ˙̃xi + ỹi ˙̃yi +
sin θ̃i
Ky

˙̃θi + ũTi M̄ ˙̃ui

= −Kxx̃
2
i −

Kθ

Ky

sin2 θ̃i −Kuũ
T
i ũi + ũTi ε2j

(49)

Since the Lyapunov function Vi is positive definite and V̇i is negative definite

in the region Kxx̃
2
i + Kθ

Ky
sin2 θ̃i+Kuũ

T
i ũi ≥ ũTi ε2j , under the condition that Kx, Ky,

Kθ, and Ku are all positive, we can thereby conclude that the closed-loop system

for trajectory tracking with the experience-based controller (46) is asymptotically

stable, and the tracking error for any vehicle will converge to a small neighborhood

of zero, whose size depends on the norm of ũTi ε2j .

3.4 Simulation Study (MATLAB Results)

In this section, we conduct a simulation using the MATLAB to demonstrate

the effectiveness of the proposed controllers. Specifically, we consider four identical

unicycle-type ground vehicles tracking four different trajectories while communi-

cating inside the MAS. For each vehicle, the state-space model is described by the

kinematics (7) and dynamics (17), with matrices of the dynamic model given by

(18) and friction model F̄ =

[
0.1mvi + 0.05mv2

i

0.2Iωi + 0.1Iω2
i

]
, all unknown to the controller.

The physical parameters of the vehicles are shown in Table 1.

Table 1: Parameters of the vehicle model in MATLAB

vehicle model parameter value
wheel radius (r) 0.06 m
wheel separation (D = 2R) 0.22 m
location of mass center (d) 0.1 m
mass (m) 2 kg
moment of inertia (I = md2 + Ic) 0.2 kg ·m2
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The the reference trajectories of the three vehicles are given by
xr1 = − sin t

yr1 = 2 cos t


xr2 = 2 cos t

yr2 = sin t


xr3 = −2 sin t

yr3 = 3 cos t


xr4 = 3 cos t

yr4 = 2 sin t

(50)

and for all vehicles, the orientations and velocities of the reference trajectories

satisfy the following equations

tan θri =
ẏri
ẋri

,

vri =
√
ẋ2
ri + ẏ2

ri,

ωri =
ẋriÿri − ẍriẏri
ẋ2
ri + ẏ2

ri

.

(51)

The parameters of the cooperative adaptive-based controller (31) with (22) and

weight updating law (32), as well as the experience-based controller (46), are given

by Table 2

Table 2: Parameters of controllers and continuous-time weight updating law

controller parameter value
Kx 1
Ky 1
Kθ 1
Ku 2
Γ 100
γ 0.001
β 10

For each i = 1, 2, 3, 4, we normalize Xi =
[
u̇Tci uTi

]T ∈ R4×1 from [−2, 2] ×

[−2, 2] × [0, 4] × [0, 4] to the space [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1], then we

construct the Gaussian RBFNN ŴiS(Xi) using N = 5 × 5 × 5 × 5 = 625 neuron

nodes with the centers evenly placed over that space and the respective field η

of the Gaussian function equal to 0.5. The connection between vehicle agents is
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shown in Figure 3, and the Laplacian matrix L associated with the graph G is

L =


2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2



1

32
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Figure 3: Connection between four vehicles

For the simulation on MATLAB, the function ode45 is used to solve a group

of ordinary differential equations (ODEs), including the vehicle kinematics (7),

dynamics (17), and the weight updating law (32). The vehicles are simulated on

the time period from 0 to 300 seconds, with the initial position of the vehicles

set at the origin of the ground frame, the velocities set to be zero, and the initial

weights of RBFNNs set to be zero as well. Simulation results are shown as follows.

Figure 4 shows that all vehicles (blue triangles) will track their own reference

trajectories (red solid circles), and Figure 5 shows that all tracking errors x̃i and

ỹi will converge to zero, within 30 seconds of the simulation in the learning phase.

Figure 6 shows that the norm of the NN weights Ŵi for all vehicle agents converge

to the same constant, and Figure 7 shows that the approximation errors of all

vehicle agents converg to a small neighborhood around zero, suggesting that all

vehicle agents in the MAS are able to accurately approximate the unstructured

system uncertainties M̄ u̇ci + C̄iui + F̄i along the union of trajectories.
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Figure 4: Snapshot of trajectory tracking using CALC.
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Figure 5: Tracking errors using CALC.
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Figure 6: Weight vector 1-norm of Ŵi.
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Figure 7: Approximation errors using CALC.

After the learning phase shown above, we calculate and store the average of NN

weights over the last 3 seconds using equation (41). With this learned knowledge,

we also show the tracking convergence using the experience-based controller (46).

Figures 8 and 9 show that the tracking errors converge to zero at a similar rate as

the CDL-based controller did, with all vehicle agents using the learned knowledge

W̄ randomly selected from vehicle agent 3.

3.5 Summary

In this chapter, we proposed a cooperative adaptive learning-based controller

(CALC) and an experience-based controller for the trajectory tracking problem of a

group of identical unicycle-type ground vehicles. Theoretical analysis are provided

to show that the adaptive tracking convergence (Theorem 1), cooperative learning

consensus and accurate approximation (Theorem 2), as well as trajectory tracking

using learned knowledge (Theorem 3), can all be achieved by the proposed control

algorithms. MATLAB simulation results show that the objectives set in section 3.1
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Figure 8: Snapshot of trajectory tracking using experience-based controller.
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Figure 9: Tracking errors using experience-based controller.

are reached by the proposed CALC and experience-based controller.
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CHAPTER 4

High-gain observer-based CALC via output feedback

4.1 Problem Statement

The state feedback controllers proposed in Chapter 3, including both learning-

based (31) and experience-based (46), require the generalized velocities ui to cal-

culate the velocity error ũi and the RBFNN input Xi. Directly measuring the

velocity of an objective (e.g. Doppler effect method [1]) is usually difficult to be

applied on small UGVs. For indirect velocity measurements, the most commonly

used method is to apply an encoder or a rev-counter to the actuator and count

the steps in a certain time period, then calculate the speed of the wheel using the

gear reduction rate. Despite the simplicity of hardware and calculation required by

this method, encoder/rev-counter based measurements also bring new issues. One

issue is that the calculation of vehicle’s velocities from the speed of the wheels is

based on the assumption that no slippery exists between the wheel and the ground,

which may not be applicable on the real vehicle control. Another potential issue

is the sampling interval of the hardware for encoders might not be short enough

when the wheel is rotating at low speed.

With the issues brought by proprioceptive sensors (e.g. encoder, rev-counter)

and the incapability of the exteroceptive sensors (e.g. Doppler radar), we use the

high-gain observer in this research to estimate the vehicle’s velocities from the

measurement of the coordinates. To be specific, consider the same MAS used in

Chapter 3 with only vehicle’s generalized coordinates measured, a high-gain ob-

server will be developed to accurately estimate the vehicle’s generalized velocities,

and the state feedback controllers proposed in the previous chapter are modified

to control the multi-vehicle system with the estimated velocities, such that all ob-

jectives raised in Chapter 3, including tracking convergence, learning consensus,
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and experience-based trajectory tracking control can also be achieved via output

feedback.

4.2 High-gain Observer-based Trajectory Tracking with CALC

In this section, we follow the high-gain observer design method in [2, 3] and

introduce a high-gain observer to estimate the velocities using the measurement

of robot positions. First, we define two new variables for the ith vehicle agent as

follows

pxi = xi cos θi + yi sin θi,

pyi = yi cos θi − xi sin θi.
(52)

Notice that the operation above can be considered as a projecting the vehicle posi-

tion onto the a rotational frame, whose origin is fixed to the origin of ground frame

and the axes are parallel to the body-fixed frame of the vehicle. The coordinates of

the vehicle in this rotational frame is (pxi , pyi), which can be calculated based on

the measurement of the vehicle’s generalized coordinates qi. The rotation rate of

this frame equals to the vehicle’s angular velocity ωi. Based on these definitions,

we first design the high-gain observer for the angular velocity ωi of the ith vehicle

as

˙̂
θi = ω̂i +

l1
δ

(θi − θ̂i)

˙̂ωi =
l2
δ2

(θi − θ̂i)
(53)

in which δ is a small positive scalar to be designed, and l1 and l2 are parameters

to be chosen, such that

[
−l1 1
−l2 0

]
is Hurwitz stable, i.e., l1 > 0 and l2 > 0. The

time derivative of this coordinates defined in (52) is given by

ṗxi = vi + pyiωi

ṗyi = −pxiωi
(54)
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then we design the high-gain observer for the linear velocity vi of the ith vehicle

based on equation (54) as

˙̂pxi = v̂i + pyiω̂i +
l1
δ

(pxi − p̂xi)

˙̂vi =
l2
δ2

(pxi − p̂xi)
(55)

Theorem 4. Consider the closed-loop system for the ith unicycle-type vehicles with

the dynamics described by equation (17), and the proposed high-gain observer (53)

and (55) with l1 > 0, l2 > 0, and δ being a small positive constant, for any

bounded initial condition, the estimation error between the actual and estimated

velocities zi = ui − ûi converge asymptotically to a small neighborhood around

zero, ∀i = 1, · · · , n.

Proof. To show the convergence of estimation error of the generalized velocity

vector zi = ui − ûi for the ith vehicle, we further define the error between the

actual and estimated coordinates as

ei =

[
pxi − p̂xi
θi − θ̂i

]
, (56)

then the time derivative of ei and zi can be derived using (17), (53), and (55) as

ėi =

[
ṗxi − ˙̂pxi

θ̇i − ˙̂
θi

]

=

[
vi + pyiωi − v̂i − pyiω̂i − l1

δ
(pxi − p̂xi)

ωi − ω̂i − l1
δ

(θi − θ̂i)

]
= − l1

δ
ei +

[
1 pyi
0 1

]
zi,

żi = u̇i − ˙̂ui

= − l2
δ2
ei + M̄−1(τ̄i − C̄ui − F̄i),

(57)

or in the equivalent matrix form of[
ėi
żi

]
=

[
−(l1/δ)I2 P
−(l2/δ

2)I2 O2×2

] [
ei
zi

]
+

[
O2×1

M̄−1(τ̄i − C̄ui − F̄i)

]
, (58)
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where P2×2 =

[
1 pyi
0 1

]
.

To show that the nominal part of (58) is stable, we analyze the eigenvalue of[
−(l1/δ)I2 P
−(l2/δ

2)I2 O2×2

]
by calculating the determinant of the following matrix

λI4 −
[
−(l1/δ)I2 P
−(l2/δ

2)I2 O2×2

]
=

[
(λ+ l1/δ)I2 −P

(l2/δ
2)I2 λI2

]
. (59)

For block square matrix, we have det(

[
A B
C D

]
) = det(D) · det(A − BD−1C) [4],

then the determinant of (59) equals to

det(λI2) · det((λ+
l1
δ

)I2 − (
l2
δ2

)I2 · (λI2)−1 · P )

=λ2 · det(

[
λ+ l1

δ
+ l2

λδ2
l2pyi
λδ2

0 λ+ l1
δ

+ l2
λδ2

]
)

=(λ2 +
l1
δ
λ+

l2
δ2

)2,

(60)

Then the eigenvalues of the nominal part of (58) are the values of λ that make

the determinant (60) singular. It can be easily shown that the real parts of all

eigenvalues λ are negative, given the condition that l1, l2, and δ are all positive.

In addition, the real parts of λ are proportional to 1/δ, then we can conclude that

the settling time of the observer is smaller if the δ is chosen to be smaller.

Therefore, we have proved that the closed-loop system of the estimation

error (58) is stable, and the estimation error zTi is bounded and converges to

a constant vector, whose norm depends on the product of δ and the norm of

M̄−1(τ̄i − C̄ui − F̄i). Since δ is a small positive constant, and the norm of

M̄−1(τ̄i− C̄ui− F̄i) is bounded, then we can conclude that the estimation error zi

for the ith vehicle will converge to a small neighborhood around zero.

Remark 2. To prevent peaking while using this high-gain observer and in turn

improving the transient response, parameter δ cannot be too small [3]. Due to the

use of a globally bounded control, decreasing δ does not induce peaking phenomenon
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of the state variables of the system, while the ability to decrease δ will be limited

by practical factors such as measurement noise and sampling rates [5, 6].

With the generalized velocities accurately estimated by the high-gain observer,

we can now proceed to the trajectory tracking with this estimation. In the proposed

state feedback controller (31) with (29) and the online weight updating law (32),

the RBFNN input Xi contains the generalized velocity vector ui. In addition, u̇c,

uc, and ũi are all calculated using ui. By replacing ui in (29), (31) and (32) with

the estimated velocity vector ûi, we modify the state feedback controller (31) and

the online weight updating law (32) as follows

τ̄i = Ŵ T
i S(X̂i) +Ku(uci − ûi) +

[
x̃i

sin θ̃i
Ky

]
, (61)

˙̂
Wi = ΓS(X̂i)(u

T
ci
− ûTi )− γŴi − β

n∑
j=1,j 6=i

aij(Ŵi − Ŵj), (62)

with X̂i =
[
u̇Tci ûTi

]T
and

u̇ci =

[
v̇ri − vri sin θ̃i

˙̃θi +Kx
˙̃xi

ω̇ri + v̇riKyỹi + vriKy
˙̃yi +Kθ cos θ̃i

˙̃θi

]

=

[
v̇ri − vri sin θ̃i(ωri − ω̂i) +Kx(vri cos θ̃i + ω̂iỹi − v̂i)

ω̇ri + v̇riKyỹi + vriKy(vri sin θ̃i − ω̂ix̃i) +Kθ cos θ̃i(ωri − ω̂i)

]
,

(63)

Theorem 5. Consider the closed-loop system including n unicycle-type vehicles

described by equation (7) and (17), the desired reference trajectory qr(t), high-gain

observer (53) and (55), adaptive NN controller (61) with the virtual velocity (22),

and the online weight updating law (62), under the assumptions 1, 2, and 3, for

any bounded initial condition of all the vehicles and Ŵi = 0, both tracking control

and learning objectives can be achieved at the same time for all vehicle agents in

the MAS, i.e.,

• The tracking error q̃i converges asymptotically to a small neighborhood

around zero for all vehicle agents in the MAS.
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• The NN weights Ŵ for all vehicles locally converge to a small neighborhood

of the common optimal NN weights W ∗ along the union of trajectories expe-

rienced by all vehicles.

Proof. With the output feedback controller (61), the error dynamics of ũi and W̃i

can be rewritten into

˙̃ui = M̄−1(M̄ u̇ci + C̄ui + F̄ − τ̄i)

= M̄−1

{
W ∗TS(Xi) + εi − Ŵ T

i S(Xi)−Ku(uci − ui + ui − ûi)−

[
x̃i

sin θ̃i
Ky

]}

= M̄−1

{
W̃ T
i S(Xi) + εi −Ku(ũi + zi)−

[
x̃i

sin θ̃i
Ky

]}
,

(64)

and

˙̃Wi = −ΓS(Xi)(ũ
T
i + zTi ) + γŴi − β

n∑
j=1

lijW̃j, (65)

respectively. Then with the same Lyapunov function used in Theorem 1, we apply

equation (64) and (65) to (37), and the time derivative of the Lyapunov function

is
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V̇ =
n∑
i=1

[
x̃i ˙̃xi + ỹi ˙̃yi +

sin θ̃i
Ky

˙̃θi + ũTi M̄ ˙̃ui +
trace(W̃ T

i
˙̃Wi)

Γ

]

=
n∑
i=1

{
x̃i(ṽi + ωiỹi −Kxx̃i) + ỹi(vri sin θ̃i − ωix̃i)

+
sin θ̃i
Ky

(ω̃i − vriKyỹi −Kθ sin θ̃i)

+ ũTi

[
W̃ T
i S(Xi) + εi −Ku(ũi + zi)−

[
x̃i

sin θ̃i
Ky

]]

+ trace

(
W̃ T
i

[
−S(Xi)(ũ

T
i + zTi ) +

γŴi

Γ
− β

Γ

n∑
j=1

lijW̃j

])}

=
n∑
i=1

{
−Kxx̃

2
i −

Kθ

Ky

sin2 θ̃i −Kuũ
T
i ũi −Kuũ

T
i zi + ũTi εi + ũTi [W̃ T

i S(Xi)]

− trace
(

[W̃ T
i S(Xi)]ũ

T
i + [W̃ T

i S(Xi)]z
T
i

)
+ trace

(
γW̃ T

i Ŵi

Γ

)}

− trace

(
n∑
i=1

β

Γ
W̃ T
i

n∑
j=1

lijW̃j

)

=
n∑
i=1

{
−Kxx̃

2
i −

Kθ

Ky

sin2 θ̃i −Kuũ
T
i ũi + ũTi εi +

γ

Γ
trace

(
W̃ T
i Ŵi

)
−zTi

[
Kuũi + W̃ T

i S(Xi)
]}
− β

Γ
trace

(
W̃ T (L⊗ I)W̃

)
.

(66)

From Theorem 4, we have zi converging to a small neighborhood around

zero, ∀i = 1, · · · , n, then following the same process in the proof of Theorem 1,

we can conclude that the tracking error q̃i for all agents will converge to a small

neighborhood of zero, whose size depends on the norm of ũTi εi+
γ
Γ

trace
(
W̃ T
i Ŵi

)
−

zTi

[
Kuũi + W̃ T

i S(Xi)
]
.

In addition, we can also show the NN weights of all vehicle agents converging

to their optimal values by following a similar line of the proof of Theorem 2. By
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combining (64) and (65) for all vehicles, We have the matrix form:
˙̃v
˙̃ω
˙̃Wv

˙̃Wω

 =

[
A B
−C −D

]
ṽ
ω̃

W̃v

W̃ω

+ E, (67)

in which

A2n×2n = −Ku(M̄
−1 ⊗ In),

B2nN×2n = (M̄−1 ⊗ In)(I2 ⊗ S) = M̄−1 ⊗ ST ,

C2n×2nN = Γ(I2 ⊗ S),

D2nN×2nN = βI2 ⊗ (L⊗ IN),

E(2nN+2nN)×1 =


E1

E2

E3

E4

 ,

E1 =
1

m

 εv1 − (v1 − v̂1)− x̃1
...

εvn − (vn − v̂n)− x̃n

 ,

E2 =
1

I


εω1 − (ω1 − ω̂1)− sin θ̃1

Ky
...

εωn − (ωn − ω̂n)− sin θ̃n
Ky

 ,

E3 =

−(v1 − v̂1)− γŴ1,1
...

−(vn − v̂n)− γŴn,1

 ,
E4 =

−(ω1 − ω̂1)− γŴ1,2
...

−(ωn − ω̂n)− γŴn,2

 .
As is shown in Theorem 4, the estimation error (vi− v̂i) and (ωi− ω̂i) converge

quickly to a small neighborhood around zero, ∀i = 1, . . . , n. In addition, it is

shown in the tracking part of Theorem 5 that tracking errors ṽi and ω̃i for all

vehicles also converge to a small neighborhood around zero. Furthermore, the ideal

approximation errors εvi and εωi can be made arbitrarily small given sufficiently
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large number of RBF neurons, and γ is chosen to ba a small positive constant,

therefore, we can conclude that the norm of E in (40) is a small value. Then ṽ,

ω̃, W̃v, and W̃ω will converge to a small neighborhood of the origin, whose size

depends on the value of ||E||, if the nominal part of closed loop system shown in

(40) is uniformly locally exponentially stable (ULES).

Similar to the proof of Theorem 2, we can easily reach the conclusion that

under the assumptions 1, 2, and 3, ṽ, ω̃, W̃v, and W̃ω will converge to the neigh-

borhood of the origin, whose size depends on the small value of ||E||, i.e., the

unmodeled vehicle dynamics can be locally accurately approximated by the NN

weights of all vehicle agents along the union of the reference trajectories.

4.3 High-gain Observer-based Trajectory Tracking with Experience

After showing the the convergence of NN weights to their common optimal

value W ∗ alone the union of reference trajectories, we now further propose an

experience-based output feedback controller based on the high-gain observer (53)

and (55), using the learned knowledge presented by the time average of the NN

weights given by equation (41). For the ith vehicle, we choose the converged NN

weight from a random vehicle agent, marked as j, and the experience-based con-

troller is thereby constructed as

τ̄i = W̄ T
j S(X̂i) +Ku(uci − ûi) +

[
x̃i

sin θ̃i
Ky

]
, (68)

Theorem 6. Consider the closed-loop system including n unicycle-type vehicles

described by equation (7) and (17), the desired reference trajectory qri ∈ ∪nj=1qj(t),

high-gain observer (53) and (55), and the experience-based controller (68) with the

virtual velocity (22), then for any bounded initial condition, the tracking error q̃i

converges asymptotically to a small neighborhood around zero.

Proof. Similar to the proof of Theorem 5, we first derive the error dynamics of the
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velocity error ui with the proposed experience-based controller (46) as

˙̃ui = M̄−1(M̄ u̇ci + C̄ui + F̄ − τ̄i)

= M̄−1

{
ε2j −Ku(ũi + zi)−

[
x̃i

sin θ̃i
Ky

]}
(69)

where ε2j = H(Xj)−W̄ T
j S(Xj). Similarly, we can build a positive definite function

of this closed-loop system of the ith vehicle as

Vi =
x̃2
i

2
+
ỹ2
i

2
+

1− cos θ̃i
Ky

+
ũTi M̄ ũi

2
(70)

whose derivative is

V̇i = x̃i ˙̃xi + ỹi ˙̃yi +
sin θ̃i
Ky

˙̃θi + ũTi M̄ ˙̃ui

= −Kxx̃
2
i −

Kθ

Ky

sin2 θ̃i −Kuũ
T
i ũi + ũTi (ε2j −Kuzi)

(71)

Then following the similar arguments in the proof of Theorem 5, given positive

Kx, Ky, Kθ, and Ku, we can conclude that the Lyapunov function Vi is positive

definite and V̇i is negative semi-definite in the region Kxx̃
2
i + Kθ

Ky
sin2 θ̃i+Kuũ

T
i ũi ≥

ũTi (ε2j − Kuzi). Since the approximation error ε2j and the observer estimation

error zi are both close to zero, then follow the proof of Theorem 3, it can be shown

that the tracking errors will converge to a small neighborhood around zero for

any vehicle agent in the MAS, given any learned experience W̄j obtained from the

learning phase.

4.4 Simulation Study (MATLAB Results)

In this section, we conduct the MATLAB simulation following the similar

setup in Chapter 3, i.e., using four unicycle-type vehicle with the same parameters

given in Table 1, and following the same reference trajectories (50). Parameters for

the controller and weight updating law using output feedback remain unchanged

from the state feedback case as shown in Table 2. The RBFNN setup also remains
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unchanged from Chapter 3, while the parameters for the high-gain observer is given

in Table 3.

Table 3: Parameters of the high-gain observer

observer parameter value
l1 1
l2 2
δ 0.01

Using the same ode45 function in MATLAB, we perform the simulation on

solving a group of ODEs, including the vehicle kinematics (7), dynamics (17), high-

gain observer (53) and (55), as well as the weight updating law (32), on the time

period from 0 to 300 seconds. The initial conditions of the ODEs are the same as

those in Chapter 3, with the initial state of the observer set to zero. Simulation

results are shown as follows.

Figure 10 shows that all vehicles (blue triangles) will track their own reference

trajectories (red solid circles), and Figure 11 shows that all tracking errors x̃i and

ỹi will converge to zero, within 30 seconds of the simulation in the learning phase.

Figure 12 shows that the observer error will converge to a close neighborhood

around zero in a very short time period. Figure 14 shows that the norms of the

NN weights Ŵi for all vehicle agents converge to the same constant, and Figure 13

shows that the approximation errors of all vehicle agents converge to a small neigh-

borhood around zero, suggesting that all vehicle agents in the MAS are able to

accurately approximate the unstructured system uncertainties M̄ u̇ci + C̄iui + F̄i

along the union of trajectories.

After the learning phase shown above, we calculate and store the average of NN

weights over the last 3 seconds using equation (41). With this learned knowledge,

we also show the tracking convergence using the experience-based controller (68).
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Figure 10: Snapshot of trajectory tracking using CALC via output feedback.
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Figure 11: Tracking errors using CALC via output feedback.
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Figure 12: Observer error with CALC via output feedback.
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Figure 13: Approximation errors using CALC via output feedback.
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Figure 14: Weight vector 1-norm of Ŵi
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Figure 15: Snapshot of trajectory tracking using experience-based controller via
output feedback.
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Figure 16: Tracking errors using experience-based controller via output feedback.
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Figure 17: Observer error with experience-based controller via output feedback.

58



Figures 15 and 16 show that the tracking errors converge to zero at a similar rate as

the CDL-based controller did, with all vehicle agents using the learned knowledge

W̄ randomly selected from vehicle agent 4. Figure 17 shows that the observer error

will converge to a close neighborhood around zero in a very short time period for

the experience-based control simulation.

4.5 Summary

In this chapter, we designed a high-gain observer to estimate the generalized

velocities of the vehicles using measured generalized coordinates, and modified the

controllers proposed in the previous chapter for the output feedback control prob-

lems. Theoretical analysis has been provided to show that the adaptive tracking

convergence using CALC and learned experience, as well as learning consensus

and accurate approximation achieved by the state feedback controller shown in

Chapter 3, can still be achieved by the controller proposed in this chapter via

output feedback. MATLAB simulation results show that the objectives raised in

section 4.1 are reached by the proposed output feedback controllers. Simulation

results also show effectiveness of the proposed output-feedback controllers.
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CHAPTER 5

Gazebo simulator development and validation

5.1 Problem Statement

In Chapters 3 and 4, we performed simulations on the proposed controllers

using MATLAB. To simulate the state variables of the MAS, a group of ODEs,

including the vehicle model and the control algorithms, are solved using the ode45

function. To this end, the physical model of the unicycle-type vehicle is translated

into the differential equations (8) and (17), under the assumption that no relative

slipping occurs between the wheels and the ground plane, which can be presented

by the nonholonomic constraint (5). Although these ODEs for the vehicles satisfy

the non-slippery assumptions, it may not be applicable for actual vehicles, consid-

ering the thickness of the wheels and the maximum friction that can be applied

on the vehicle.

To analyze capability of the proposed controllers for the trajectory tracking

tasks on real vehicles, a simulation tool that is more powerful and closer to real

world is required. The Gazebo simulator [1] is one of the most widely used sim-

ulators in robotics for designing, testing, and AI training. Based on the Open

Dynamics Engine [2], Gazebo is able to simulate the dynamics and sensoring of

robot models, as well as the interaction between models and the environment.

Models simulated in the Gazebo can be defined using Unified Robot Description

Format (URDF) [3] or Simulation Description Format (SDF) [4]. Properties of the

model, including but not limited to, dimension, inertia, friction, and stiffness, can

be defined in the .urdf or .sdf of the model to make the model closer to the actual

robot in the real world. Control inputs of the model, such as the torque applied

on the joints, can be specified by either directly defining them in the simulator or

through a Gazebo plugin. Model states during the simulation can be viewed in
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the Gazebo’s graphical user interface (GUI), or exported through its application

programming interface (API).

For better organizing the simulation, from launching Gazebo to recording

data, we use the Robot Operating System (ROS) [5] on Linux. ROS is a set

of software libraries and tools that help researchers and developers to build

robotic applications [5], on which information from different programming lan-

guages/applications can be shared. roslaunch can be used to launch vehicle

models into Gazebo and create ROS nodes, which can be treated as publishers

and subscribers for information. rostopic is a package to transfer and display

messages between ROS nodes. rosbag is a tool for recording ROS topics. Other

applications of ROS can be found on the ROS documentation page [6].

5.2 Simulation Design

To demonstrate the effectiveness of the proposed controllers on models closer

to the real world, we performe a simulation using the Gazebo simulator in this

Chapter. Specifically, a group of unicycle-type ground vehicle models are built in

the Gazebo, with a C++ Gazebo plug-in receiving control inputs and applying

driving torque on the joints of the wheels. The control algorithm, both learning-

based and experience-based, are coded in Python. Robot Operating System (ROS)

is used as a platform to coordinate the Gazebo simulator and the Python con-

troller: vehicle models are loaded into Gazebo using the roslaunch command

with a .launch file, vehicle states and control inputs are transferred between the

simulator and controller through rostopic, and simulation data are recorded into

a .bag file through the rosbag command. The structure and the data flow of the

simulation is shown in Figure 18.

As is shown in Figure 19, the unicycle-type ground vehicle model contains

a body, a front caster, and two actuated wheels. The ball-shaped front caster
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Figure 18: Structure and data flow of the simulation

Figure 19: Vehicle model in the Gazebo simulator
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is mounted at center front of the body’s bottom, and two actuated wheels are

connected to the body through driving joints located at the center rear of the

body’s sides. The parameters of the vehicle are listed in table 4.

Table 4: Parameters of the vehicle model in Gazebo

distance
from the
reference
point

shape mass friction
coefficient

body —
l 0.3 m
w 0.2 m
h 0.1 m

1 kg —

front caster 0.3 m r 0.01 m 0.1 kg 0.2

actuated wheels R = 0.11 m
r 0.06 m
h 0.02 m

0.1 kg 1

Figure 20: Testing field in the Gazebo simulator

The testing field in Gazebo is shown in Figure 20. The initial positions of

vehicles are 1 m from the origin, along (x, y) axis of the test field. After the

simulation starts, all vehicles will track the following reference trajectories
xr1 = 5− sin t

yr1 = 2 cos t


xr2 = 2 cos t

yr2 = 5 + sin t


xr3 = −5− 2 sin t

yr3 = 3 cos t


xr4 = 3 cos t

yr4 = −5 + 2 sin t

Compared to the reference trajectories used for the MATLAB simulation, the

centers of the trajectories, marked by four mailboxes, are moved from the center

of the ground frame to avoid collisions between vehicles.
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Different from the continuous-time simulation run on MATLAB in previous

chapters, the Python control algorithms we have for the Gazebo simulator is de-

signed for discrete-time control, which is more common for control tasks in the real

world. To this end, we transform the weight updating law (32) from the differential

equation into the following iteration form using the zero-order hold approach

Ŵi[k + 1] = Ŵi[k] +

[
ΓS(Xi)ũ

T
i − γŴi − β

n∑
j=1,j 6=i

aij(Ŵi − Ŵj)

]
∆t, (72)

where ∆t is the time interval for each iteration step. Apart from this change, other

parts of the control algorithm, i.e., the cooperative adaptive-based controller (31)

and the experience-based controller (46), remain unchanged. The parameters of the

cooperative adaptive-based controller (31) with (22) and weight updating law (72),

as well as the experience-based controller (46), are given by Table 5

Table 5: Parameters of controllers and discrete-time weight updating law

controller parameter value
Kx 1
Ky 1
Kθ 0.1
Ku 2
Γ 0.1
γ 0.005
β 0.01

For each i = 1, 2, 3, 4, we normalize Xi =
[
u̇Tci uTi

]T ∈ R4×1 from [−4, 4] ×

[−4, 4] × [0, 4] × [0, 4] to the space [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1], then we

construct the Gaussian RBFNN ŴiS(Xi) using N = 5 × 5 × 5 × 5 = 625 neuron

nodes with the centers evenly placed over that space and the respective field η of

the Gaussian function equal to 0.5.

The connection between vehicle agents remains unchanged from the simula-

tions in previous chapters, which can be seen in Figure 3, and the Laplacian matrix
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L associated with the graph G is still given by

L =


2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


After the NN weight converged in the learning-based control simulation, the

average value of the NN weight over the last 3 seconds is stored for the experience-

based control simulation. Following the experience-based control method shown

in the previous section, we randomly choose the average weight W̄ from one of the

vehicle agents and apply it on all vehicles to track their reference trajectories. The

parameters of the experience-based controller are the same as those in the CALC.

5.3 Simulation Results and Discussions

Simulation results are shown as follows.

Figure 21 shows that tracking errors for all vehicles converge to a small neigh-

borhood of zero, and Figure 22 shows that the norms of the NN weights Ŵi for all

vehicle agents converge as the same constant did, suggesting that the consensus of

NN weights is reached for all vehicle agents in the MAS.

Figure 23 to 26 show that the tracking error for all vehicles converge to zero

at a similar rate to the CDL-based controller, with all vehicle agents using the

learned knowledge W̄ from vehicle agent 1 to 4, respectively. Therefore, we can

conclude that both learning-based and experience-based controllers are able to

drive the vehicles to their reference trajectories, and the NN weights for all vehicle

agents reach consensus with the discrete-time weight updating law (72). The

approximation accuracy cannot be directly examined since the exact model of

C̄(ui)ui + F̄ (ui) is unknown, however, we can still conclude that the NN weight

Ŵi of any vehicle agent in the MAS converges to the common ideal value W ∗ along

the union of reference trajectories, because the tracking error will converge to zero

only if the RBFNN approximation W̄S(X) is accurate.
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Figure 21: Tracking errors using CALC with discrete-time weight updating law.
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Figure 22: Weight vector 1-norm of Ŵi.
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Figure 23: Tracking errors using experience-based controller with NN weight from
vehicle agent 1.
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Figure 24: Tracking errors using experience-based controller with NN weight from
vehicle agent 2.
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Figure 25: Tracking errors using experience-based controller with NN weight from
vehicle agent 3.
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Figure 26: Tracking errors using experience-based controller with NN weight from
vehicle agent 4.
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To show the advantages of learning consensus with the proposed CALC, we

also preformed a comparing simulation using traditional DL-based controller de-

signed for single agent systems, with the same vehicles running same trajectories

used in the CALC simulation. The discrete-time weight updating law is shown in

the following iteration form

Ŵi[k + 1] = Ŵi[k] +
[
ΓS(Xi)ũ

T
i − γŴi

]
∆t. (73)

Compared to our cooperative weight updating law (72), the traditional DL weight

updating law does not have the communication term β
∑n

j=1,j 6=i aij(Ŵi−Ŵj), which

only guarantees the accurate approximation along the trajectory experienced by

the vehicle itself. The learning-based and experience-based controller, as well as

the controller parameters, remain unchanged in this comparing simulation.

Figure 27 shows that tracking errors for all vehicles converge to a small neigh-

borhood of zero, while Figure 28 shows that the norm of the NN weights Ŵi for all

vehicle agents do not converge to the same constant, suggesting that the RBFNN

weight for a specific vehicle agent will only locally represent the unmodeled dy-

namics along the trajectory experienced by itself.

With all vehicles running on the NN weight taken from vehicle agent 4 using

traditional DL algorithm without communication, it is shown in Figure 29 that

the tracking errors for vehicle agents 1 and 2 are much larger than those of vehicle

agents 3 and 4, suggesting that the NN weight taken from vehicle agent 4 does not

accurately approximate the unmodeled dynamics along the trajectories of agents

1 and 2, when communication among vehicles is not available. Compared to the

results shown in Figures 23 to 26, it is clear that the proposed CALC improved

the local approximation capability of RBFNNs over traditional DL algorithms by

reaching learning consensus and accurately approximating the unstructured system

uncertainties along the union trajectories experienced by all vehicle agents in the
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Figure 27: Tracking errors using traditional DL-based controller without commu-
nication.
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Figure 29: Tracking errors using experience-based controller with NN weight from
vehicle agent 4 with traditional DL algorithm.
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MAS.

5.4 Summary

In this chapter, we performed a physical simulation of the proposed controllers

using the Gazebo simulator. Models of the unicycle-type vehicle are built in the

Gazebo, and the proposed controllers are coded into Python, with the original

weight updating law transferred into the discrete-time form. Gazebo simulation

results show that tracking convergence is achieved using the proposed CALC, and

the NN weights for all vehicle agents in the MAS reached consensus with the

discrete-time weight updating law. It is also shown that the proposed experience-

based controller is also able to drive the vehicles to their desired reference trajec-

tories using any converged NN weight from the learning phase. In addition, the

comparison of simulation results show the superiority of the proposed CALC over

traditional DL algorithms.
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CHAPTER 6

Conclusions

6.1 Dissertation Contributions and Concluding Remarks

In this research, we consider a group of unicycle-type vehicles with generalized

model assumptions and proposed a cooperative adaptive learning-based controller

(CALC) and an experience-based controller for the trajectory tracking tasks in

Chapter 3. Theoretical analysis and MATLAB simulations are provided to demon-

strate the effectiveness of the proposed control methods, including adaptive track-

ing convergence, cooperative learning consensus and accurate approximation, as

well as trajectory tracking using learned knowledge. Compared to results of tradi-

tional learning-based control methods designed for single agent systems, where NN

weight convergence is only guaranteed locally along the PE trajectory of its own,

it is shown that the proposed cooperative learning algorithm is able to accurately

approximate the unstructured system uncertainties along the union of reference

trajectories experienced by all vehicle agents in the MAS.

In Chapter 4, we extend the results of state feedback controllers proposed

in Chapter 3 to output feedback cases with the estimated generalized velocities

obtained from a high-gain observer. It is shown that the objectives raised for

state feedback controllers can also be reached by the proposed output feedback

controllers. Simulation results show effectiveness of the proposed output-feedback

control algorithms.

In Chapter 5, we performed a simulation of the proposed controllers using the

Gazebo simulator. To save the computational power for simulating the solutions of

ODEs, the proposed continuous-time weight updating law is transformed into the

discrete-time iteration form. Gazebo simulation results show that tracking con-

vergence is achieved using the proposed CALC, and the NN weights for all vehicle
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agents in the MAS reached consensus with the discrete-time weight updating law.

It is also shown that the proposed experience-based controller is also able to drive

the vehicles to their desired reference trajectories using any converged NN weight

from the learning phase.

Therefore, we can conclude that the objectives of this research, including

tracking convergence, cooperative learning consensus, and accurate approximation

along all trajectories, are achieved by the proposed CALC and experience-based

control methods, through both state feedback and output feedback.

6.2 Future Works

Despite the contributions made in this research, there are still improvements

and potential follow-up work to be done in the future. One potential improvement

is the design of discrete-time observers under the condition that exact system

model is not available.

Another potential improvement is to integrate the proposed control methods

with collision avoidance. Different from the MATLAB simulation, where collision

between vehicles is not considered, vehicle models could run into each other in

the Gazebo simulator. Although the reference trajectories are moved apart in

the Gazebo simulation to avoid potential collision, vehicles may still collide when

running wider than the reference trajectories, especially at the beginning of the

simulation when the vehicle dynamics is not yet accurately approximated by the

RBFNN.

At last, further simulation studies should be performed to analyze the robust-

ness of the proposed controller before moving to the applications on real vehicles,

by introducing measuring noise in the simulation and minor difference on the ve-

hicle models.

For further researches and applications based on the results in this study, the
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unicycle-type vehicle can serve as a mobile platform and be extended by mounting

robotic manipulators. Applications for such mobile manipulators may include

warehouse or home delivery, as well as operations on assembly lines where products

can be assembled while moving along the line.
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