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Abstract

Spectral classification is a commonly used technique for discriminating between

two or more signals. The first step in the classification process is to sample a

signal with an analog-to-digital converter. Then the power spectral density is

estimated. To classify the data, the estimated power spectral density of the un-

known signal is compared to power spectral densities from two or more known

templates using a classifier. Despite the substantial prior research effort put into

developing a robust classifier, the results are not great and in some instances

are not even satisfactory.

The topic of this thesis is to evaluate a classifier that may be more robust than

those currently used; the realizable Poisson likelihood function. Robustness is

determined by the probability of correct classification when there are differ-

ences between training data and observed data. Taking the familiar form of the

Kullback-Leiber divergence, the realizable Poisson likelihood function is math-

ematically tractable since it is derived from an alternative model for the power

spectral density of a non-homogeneous Poisson process.

The realizable Poisson likelihood function was compared to other popular clas-

sifiers. Monte Carlo simulations were done using autoregressive processes with

and without distortions added to the observed data. Then a more thorough

analysis was done using actual data. Results are presented that show the re-

alizable Poisson likelihood function to be a robust classifier. The performance



of the realizable Poisson likelihood function decreases only very slightly with

moderate signal-to-noise ratios and in the presence of channel distortions. This

is compared to significant performance reduction of other classifiers.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The performance of modern spectral classification techniques is severely dimin-

ished when there are differences in the training spectra and the spectra under

test. The objective of this work is to compare the robustness of the newly devel-

oped realizable Poisson likelihood function (RPLF) classifier to other classifiers

typically used in research or industry.

1.2 Motivation

The Merriam-Webster dictionary defines “robust” as “capable of performing

without failure under a wide range of conditions” [20]. While most people are

aware of how changing physical conditions like temperature and vibration test

the robustness of hardware, an analogy can be made to software. Software is

used in almost every industry now, with applications ranging from medical to

economics, engineering to sports and everything in between. Let us consider

a well-known example, the modern smartphone. The electronics must work

in a wide range of environmental conditions, input power conditions, and

conditions with high electromagnetic interference. The software must adjust

with different users in different conditions. One example is the touch algorithm

that is an essential part of the user interface. One user may have small fingers

1



and another quite large. Varying finger size will create two different responses

from the electronics but the software is expected to react the same.

Software algorithms must be able to adjust to accommodate these classification

problems. A classification problem is one in which there are two or more known

items and one unknown. The unknown item is determined to be associated

with one of the known items. In the above touch example, the known items are:

1) the response of the electronics to a touch, and 2) a response to a no touch.

The unknown is the current signal coming from the electronics. This touch

example is an example of a simple binary classifier; however most classifiers are

much more complicated, one such example is speech recognition software.

According to Markel and Gray (1982), though many different signal models

have been postulated, no single model has been developed which can account

for all of the observed characteristics of human speech. One of the most widely

used models of speech is the linear prediction speech model which uses a

mathematical technique called linear prediction [19]. This technique is not just

used for speech but for many applications where the signal to be modeled is

very complex.

Many times the input to the linear prediction model is assumed to be a

Gaussian random process [15]. There is a good reason for this. It has been

well studied, is mathematically tractable, and results from the central limit

theorem [19]. The Gaussian input is then processed with a linear filter. With

2



a Gaussian input and a linear filter the output will then also take the form of

a Gaussian random process.

With this representation of a linear prediction model two separate likelihood

functions can be derived. These likelihood functions can be used as classifiers

when trying to associate an unknown signal to known signals. The first

likelihood function is the exact Gaussian. The exact Gaussian can produce

great results but includes the inverse of a matrix, which is a computationally

extensive process even with moderate size matrices. The other likelihood

function is asymptotically equivalent to the exact Gaussian. This asymptotic

equivalent requires fewer calculations, due to the efficiency of Fourier transform

properties. In this thesis the asymptotic equivalent will take the form of a

normalized Itakura-Saito distance measure, and will be referred to as just the

Itakura-Saito.

The Itakura-Saito is not very robust in nature; noise, channel deformation, and

shape of the spectrum are a few issues that can lead to errors [15], [25]. A more

robust classifier would reduce these errors and lead to more reliable solutions.

Kay [15] derived a likelihood function that bases the frequency spectrum on

a nonhomogeneous Poisson process that appears to be more robust. This

likelihood function is termed the Realizable Poisson likelihood function or

RPLF and, in this thesis will be referred to as both the RPLF or Poisson.

This thesis will test this theory using simulations, data analysis and analytical

3



derivations.

1.3 Contributions

The two main contributions to state of the art statistical signal processing that

this thesis provides are:

� An indepth look at the RPLF, an alternative classifier that will prove to

be more robust when used in simulations and on data.

� An analytical expression for the divergence between the exact Gaussian

likelihood function and the asymptotic Gaussian for an autoregressive

process with a single pole.

1.4 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 presents some

background on spectral classification. Chapter 3 includes the methods used to

determine the robustness of the derived classifier. This includes the plan for

simulations, and a discussion of the data used and the method of data analysis.

Chapter 4 will give results of the simulations and the data analysis. The final

chapter summarizes conclusions and further research.
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CHAPTER 2

BACKGROUND

2.1 Summary

The intent of this chapter is to give enough information so the reader un-

derstands the subsequent chapters, but in no way does it attempt to be a

complete treatment of the subject of parametric modeling or Poisson processes.

There are a number of good books the interested reader could reference. These

include Modern Spectral Estimation by Kay [14], Linear Prediction of Speech

by Markel and Gray [19] and, Random Point Processes by Snyder [23]. First,

the all-pole model for signal representation and some of the issues that arise

while using this model are described. Next a seldom-used model for the Fourier

spectrum of a non-homogenous Poisson process is discussed, which leads to

a new classifier. Next, an example of a classification problem is presented.

Lastly, the chapter concludes with a brief background on speech.

2.2 Autoregressive Process

There seems to be many ways to represent a signal. Two of the most common are

the time domain representation and the frequency domain representation. The

well-known continuous-time Fourier transform is the method used to convert

from the time domain representation to the frequency domain representation

5



and vice versa.

X(f) =

∞∫
−∞

x(t)e−j2πftdt (2.1)

x(t) =

∞∫
−∞

X(f)ej2πftdf (2.2)

The continuous time transform consists of the analysis(2.1) and synthesis(2.2)

equations, leading to the Fourier transform pair,

x(t)
F←→ X(f) (2.3)

When analyzing signals, the power in each of the frequencies is of particular

interest, not just in the frequency content. A classical technique for estimating

the power in the signal was developed by Schuster in 1898, called the peri-

odogram [14], which is the magnitude squared of the Fourier transform. Based

on the discrete-time Fourier transform the periodogram takes the form of,

P̂X(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πfn

∣∣∣∣∣
2

The periodogram has been shown not to be a suitable measure of the distribution

of power with frequency [13]. If an expectation operator and an infinite length

6



realization are used the power spectral density(PSD) is realized, then

PX(f) = lim
M→∞

1

2M + 1
E

∣∣∣∣∣
M∑

n=−M

x[n]e−j2πfn

∣∣∣∣∣
2


Kay (2016) states that, the fact that the PSD is completely analogous to a

probability density function (PDF). The average power of the random process

in the frequency band f1 ≤ f ≤ f2 is equivalent to the area under the PSD

curve in that band. The probability of an event is equivalent to the area under

the PDF in between the desired points. If the PSD is normalized, all the same

mathematical tools may be used [15], [17]. Conveniently, the PSD is also simply

the Fourier transform of the autocorrelation function.

rX [n]
F←→ PX(f)

Thus, the average power of the signal can be found by estimating the autocor-

relation function at zero lag rX [0].

Parametric modeling is the technique used to model the PSD of a random

process. While there are different types of parametric models it is frequently

modeled as a zero mean wide sense stationary (WSS) white Gaussian random

process put through a linear all-pole filter, also known as an autoregressive

(AR(p)) process. The AR(p) process is widely used because it models the PSD

well and is mathematically tractable [21].

7



1
1+a[1]z−1+...+a[p]z−p

u[n] x[n]

Figure 2.1: AR(p) process

Figure 2.1 is a diagram of an AR(p) process with order p. The input u[n] is the

WSS Gaussian random process with a PDF of:

pXXX(x) =
1

(2πσ2)
N
2

exp

(
− 1

2σ2

N∑
i=1

x2i

)

Since the AR(p) is linear, the output x[n] can also be shown to be Gaussian

and takes the form of:

pXXX(xxx) =
1

(2π)N/2det1/2(CCC)
exp

(
−1

2
xxxTCCC−1xxx

)
(2.4)

The covariance matrix CCC is determined by the AR(p) process, and is the same

as the autocorrelation matrix RRR when u[n] is zero mean.

The two most common ways of estimating the a[k] coefficients are the covariance

method of linear prediction and the autocorrelation method of linear prediction.

The autocorrelation method, sometimes called the Yule-Walker method, uses

the Levinson recursion to solve a system of linear equations. Using the auto-

correlation method, the resulting estimated poles are guaranteed to be within

8



the unit circle [14]. The set of autocorrelation equations is:



r̂xx[0] r̂xx[−1] . . . r̂xx[−(p− 1)]

r̂xx[1] r̂xx(0) . . . r̂xx[−(p− 2)]

...
...

. . .
...

r̂xx[p− 1] r̂xx[p− 2] . . . r̂xx[0]





â[1]

â[2]

...

â[p]


= −



r̂x[1]

r̂x[2]

...

r̂x[p]


(2.5)

Figure 2.2 is an example of a signal modeled with an AR(p) process. The signal

is of the letter “A” being spoken by a male. Figure 2.2a is the waveform of the

entire utterance, Figure 2.2b is a 30ms sample from the middle of the utterance.

Figures 2.2c and 2.2d are the periodograms, in blue, and power spectral densities

with the model order of p = 8 and p = 14 AR(p) process, in red-dashed.

9



(a) (b)

(c) (d)

Figure 2.2: Example of a signal being modeled by an AR(p) process

The PDF in equation (2.4) is also a likelihood function; the parameters that

make it most likely will maximize it. As mentioned before, the computation of

this likelihood function requires a lot of processing time due to the large number

of computations needed to invert the covariance matrix. An asymptotic log form

can be derived from equation (2.4) [12], and takes the form of

ln(pXXX(xxx)) = −N
2

ln(2π)− N

2

1
2∫

− 1
2

(
ln(PX(f)) +

I(f)

PX(f)

)
df

10



Where I(f) is the PSD. Since this thesis is concerned with classification, a

constant not affecting the PSD will not affect the results. Therefore, this log-

likelihood function is shown to be equivalent to [15],

ln(pXXX(xxx)) = −
∫ 1

2

− 1
2

(
I(f)

PX(f)
− ln

I(f)

PX(f)
− 1

)
df

This takes the form of the Itakura-Saito distance [6], a distance measure between

two spectra. For this thesis we will assume the PSD PX(f) is normalized and

the periodogram Ī(f) is also normalized leading to the final form of the test

statistic,

ln(pXXX(xxx)) = −
∫ 1

2

− 1
2

(
Ī(f)

PX(f)
− ln

Ī(f)

PX(f)
− 1

)
df (2.6)

where Ī(f) is given by,

Ī(f) =

1
N

∣∣∣∣N−1∑
m=0

x[m]e(−j2πfm)

∣∣∣∣2
1
2∫
− 1

2

I(f)df

(2.7)

The classifier is defined to be the maximum value calculated by the set of test

statistics,

max(ln(pXXX(xxx))) (2.8)

This classifier will be referred to as the Itakura-Saito, as to not create confusion

11



between it and the exact Gaussian. One last thing to notice is the Itakura-

Saito(2.6) is a convex function taking the form,

−
(
x

y
− ln

x

y
− 1

)

In this form the result is always less then or equal to zero, with equality only

when x = y.

Since the Itakura-Saito is equivalent to the asymptotic form of the Gaussian

likelihood function it should be the one that will give the best results when

assuming a Gaussian noise distribution [15]. However, the performance of

the Itakura-Saito is severely diminished when there are differences between

the spectra obtained for the training data and the spectra obtained for the

operational data [24]. Major differences occur in environments or when there

are differences in the production of the data. A production difference in speech

recognition will occur even with the same speaker. In this example, when the

templates are made, the user is healthy with a nice clear voice. But if the

user gets sick with a cold, then the voice changes drastically, due to a blockage

of the nasal cavity. Environmental differences between the training data and

observed data are largely due to noise and channel distortion. Noise can be

introduced by the addition of unwanted signals, while a major source of channel

distortion is multipath [5], [16], [25], [9]. To a lesser extent, pole placement has

also been shown to affect the robustness of the Itakura-Saito classifier, [15].
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2.3 Poisson Random Process

Another model for the PSD is a model based on a non-homogeneous Poisson

point process [15]. It is not the intention of this thesis to study the Poisson

process, that in itself has been the topic of many thesis’s. However, some

basic definitions are necessary in order to understand the rest of this thesis.

The book Random Point Processes by Snyder gives a simple explanation of a

Poisson process [23].

“A Poisson process is the simplest process with counting a random num-

ber of points.”

“A random point process is a mathematical model for a physical phenomenon

characterized by highly localized events distributed randomly in a continuum.”

Some examples include lightning discharges, radioactivity and, seismic

events. The Poisson model is also often described as arrivals entering a

system [4], such as trains arriving at a station or people forming a line. These

points/arrivals in time are an easy concept to understand. An analogy can

be made for points/arrivals in frequency. This model was developed by Kay
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in [15] to take the form of,

X[n] =
1√
λ0/2

Np∑
k=−1

Akcos(2πFkn+ Φk) −∞ < n <∞

where, AK ,Φk are IID random variables, the amplitudes are independent of

phases, the number of sinusoids Np is a Poisson random variable with mean λ0,

and Fk are the point events in frequency of a non-homogeneous Poisson random

process where, 0 ≤ AK <∞, 0 ≤ f ≤ 1
2

and, 0 ≤ Φk < 2π. Figure 2.3 provides

an example.

Figure 2.3: Illustration of an outcome of a marked Poisson process. [15]

For a more detailed look at this process see [15]. From this spectral representa-

tion Kay derived a new classifier called the realizable Poisson likelihood function

or RPLF, which takes the form of,

max(l
′

R) = −
∫ 1

2

− 1
2

Ī(f) ln

(
Ī(f)

PX(f)

)
df (2.9)
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Mostly used to find the divergence between two PDFs, the Kullbeck-Liebler

divergence [18] is commonly used by statisticians. As previously stated, the

only difference between a PDF and a PSD/periodogram is that the PDF inte-

grates to one. If the PSD/periodogram are normalized then Kullbeck-Liebler

divergence becomes a good measure of the divergence between spectra [15].

Much like the Itakura-Saito likelihood function the Kullbeck-Liebler divergence

is greater then or equal to zero, with equality only when Ī(f) = PX(f).

2.4 Classification

Classifiers that have been defined in equations (2.4) ,(2.6), and (2.9) are the ex-

act Gaussian likelihood function, the Itakura-Saito (modified asymptotic Gaus-

sian likelihood function) and the RPLF, respectively. Figure 2.4 is an example

of a binary classification problem where there is a spectrum belonging to an un-

known class that needs to be classified as one of two known classes of spectra.

In practice the spectra of the known classes are estimated from template data

and the spectrum of the unknown class is estimated from operational data. In

this example, the known spectra are generated as the PSD of two second-order

all-pole filters. The unknown data is generated by filtering a Gaussian ran-

dom process with one of the filters. The purpose of the classifier is to correctly

identify which filter generated the process.
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unknown class

?

known classes

?

Figure 2.4: Classification of an spectrum

In Figure 2.4, if the filters that generated the process are different enough any

classifier would be able to successfully identify which filter generated the ob-

served process. Difficulties arise, when the distance between spectra is small.

So how exactly does a classifier work? We start by labeling the known classes

as seen in Figure 2.4. Class one represents the top spectrum and class two

represents the bottom spectrum. Next we calculate the two normalized PSDs

associated with those spectra, PX1(f) and PX2(f). To identify the spectrum

in the unknown class belonging to the input data we employ the normalized

periodogram Ī(f) equation (2.7). If the RPLF is the algorithm used for classi-

fication, the following two test statistics are calculated.

l
′

R1 = −
∫ 1

2

− 1
2

Ī(f) ln

(
Ī(f)

PX1(f)

)
df
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l
′

R2 = −
∫ 1

2

− 1
2

Ī(f) ln

(
Ī(f)

PX2(f)

)
df

Once we have these results we will need to decide which one is the correct one.

When both classes are equally probable, the spectrum under test is said to be

classified according to the class associated with max(l
′
R1, l

′
R2).

2.5 Speech Data

Spectral analysis is a useful tool in a wide range of applications, including but

not limited to medical, engineering, economics, and environmental data [3], [13].

One important area of study that has been getting much attention lately is

automatic speech recognition. While the work presented in this thesis can be

applied beyond the field of automatic speech recognition, speech data was chosen

to be used. This is for three reasons,

1. There is a large amount of readily available data.

2. There is an established base of research and prior work in the field.

3. The AR(p) process is one of the most successful models for speech data

[19] [9].

There are many good resource texts on speech production and the linear speech

production model such as Linear Prediction of Speech by Markel and Gray [19]

and Spoken Language Processing, A Guide to Theory, Algorithm, and System
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Development by Huang, Acero, and Hon [9]. A brief overview of this work is

presented in the next few paragraphs.

Pioneers in the field, Davis, Biddulph, and Balashek built an isolated digit

recognition system for a single speaker at Bell labs in 1952. Since that time

there has been incredible advancements in the technology so automatic speech

recognition is no longer limited to Sci-Fi movies. It can be seen in everyday life.

From phones to cars to personal assistants automatic speech recognition gives

people an easy interface with computer systems. However, achieving a robust

machine is still something that has not been realized [22], [10].

Speech is divided into two categories, voiced and unvoiced. Voiced sounds are

produced by the vibration of the vocal cords and have a roughly regular pattern

in their time and frequency structure [9], [11]. In contrast the vocal cords do

not vibrate while producing unvoiced sounds. The smallest unit of speech is

a phoneme. These are the perceptually distinct units of sound in language

that distinguish one word from another. There are forty-four phonemes in the

English language that can be divided into two types, consonants and vowels. A

consonant is a phoneme that is articulated with the complete or partial closure

of the vocal tract. A vowel is a phoneme articulated without major constrictions

and obstructions.

What is heard by the ear is an acoustic pressure wave that starts with the

contraction of the lungs. Referring to Figure 2.5 the air is pushed between the
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vocal folds, through an area called the glottis and out through the vocal tract [9].

The vocal tract is a non-uniform, time varying acoustic tube. Changes in the

vocal tract are mainly due to the lips, jaw, tongue, and velum; with the nasal

cavity as an additional acoustic tube which generates sounds [11], [22]. The

fundamental frequency of the voice originates in the vocal folds. The greater

the vocal fold tension, the higher the pitch. As the time-varying components

of the vocal tract are manipulated, speech is produced. The vocal tract is

essentially an all-pole model consisting of a cascade of a small number of two

pole resonators; with each resonance defined as a formant [19].

Figure 2.5: Cross sectional view of the human vocal tract showing the major
anatomical structures used in speech production [19]
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CHAPTER 3

SIMULATION AND ANALYSIS PLAN AND SETUP,
METHODOLOGIES

3.1 Summary

Chapter 3 focuses on the plan and methodology employed to demonstrate

that the RPLF is a robust classifier compared to other classifiers. As stated

in chapter two, the large number of computations required to calculate the

inverse covariance matrix of the exact Gaussian likelihood function renders it

impractical. Therefore, this work compares the RPLF and the Itakura-Saito.

During simulation a comparison to the exact Gaussian likelihood function is

done, and this will be presented in chapter 4. The first part of this chapter

describes the plan for simulations and how these simulations were performed.

The final portion takes a look at the data used and provides a plan for the

analyses using the data.

3.2 Simulation

In research the outcome usually cannot be anticipated. With this in mind,

the initial simulations are simple binary classifications using AR(2) processes.

Simple simulations like these may be analytically explained if the results appear

to be incorrect or unexpected. Initially, the simulations have no added noise or

channel distortion. A flow chart is presented first with each step described in
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detail after.

Realize two all pole filters
Filter1, Filter2

Select one filter

generate AR(2) process

Classify process

Calculate Probability of
correct classification

Shift pole of Filter1

20000
realizations

sweep
frequency

Figure 3.1: Flow chart for initial simulations

An AR(2) process uses a second order infinite impulse response (IIR) filter with

coefficients a[1] and a[2] and frequency respose H(f),

x[n] = u[n]− a[1]x[n− 1]− a[2]x[n− 2];

H(f) =
1

1 + a[1]e−j2πf + a[2]e−j4πf

PX(f) =
σ2
u

|1 + a[1]e−j2πf + a[2]e−j4πf |2

(3.1)

The frequency has been normalized, resulting in a range from 0 to 1, around

the unit circle. Figure 3.2 is a pole-zero map for a second order all-pole filter,

with poles at radius r and angles θ where θ = ±2πf .
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Figure 3.2: Pole-Zero plot for an AR(2) process. f = 0.30, r = .7

The coefficients are found using,

a[1] =− 2rcos(2πf)

a[2] =r2
(3.2)

Two all-pole filters were designed with the same radius and a frequency differ-

ence of f1−f2 = 0.05. One of the filters was selected to generate an AR process

using the first equation in (3.1), with each filter having an equal probability of

being selected, p(fi) = 1
2
, i = 1, 2. The first 200 samples were discarded, allow-

ing the process to get past the correlation time and become WSS. The classifiers

were calculated using equations (2.6) and (2.9). If the correct spectrum was se-

lected by the Itakura-Saito, a counter was incremented. The same was done
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for the RPLF using a separate counter. The inner loop of selecting filters and

classifying AR processes was repeated for twenty thousand realizations. After

the twenty thousand realizations were completed, the probability of correct clas-

sification was calculated by dividing the total number each classifier correctly

classified by the number of realizations. Then the frequency of the second filter

was shifted by ∆f = 0.01 and the entire process was repeated. This procedure

was completed for a total frequency shift of 0.1, so (f1−0.05) ≤ f2 ≤ (f1+0.05).

The next step was to compare the performance of the classifiers as the signal-

to-noise (SNR) was decreased. In practical applications, there are many types

of noises which affect the system in different ways. Examples include: audi-

ble noise, electromagnetic interference and light noise. In an automatic speech

recognition (ASR) system the template data may be collected in a quiet set-

ting such as one’s home but the ASR system is used in a noisy environment

such as in a car or restaurant. In this thesis, noise is modeled by a zero mean

independent WSS Gaussian random process ∼ N (0, σ2), where “∼” specifies,

distributed according to.
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Realize two all pole filters
Filter1, Filter2

Select one filter

Generate AR(2) process
with added noise

Classify process

Calculate Probability of
correct classification

Increase noise variance σ2

20000
realizations

Figure 3.3: Flow chart for added noise simulations

Since the signal is zero mean the average power in a signal can be defined

as the expected value of x2[n]. Therefore, the average power in the signal

can be found by computing the autocorrelation sequence at lag zero. Another

method that leads to the same result can be seen by noticing that the inverse

Fourier transform of the PSD is the autocorrelation sequence. This highlights

the important relationship between the autocorrelation sequence, the average

power, and the PSD. Since the noise is zero mean WSS Gaussian, the power in
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the noise is simply the variance or σ2. The signal to noise ratio is defined as,

SNR =
Signal Power

Noise Power
=
r[0]

σ2

in dB

SNR = 10log10(
r[0]

σ2
)

This simulation was done much like the previous simulation. Modifications

include.

1. The filters were designed and fixed.

2. The noise variance was increased, decreasing the SNR.

The final simulations were performed to evaluate the addition of channel dis-

tortion to the data. This channel distortion takes the form of multiple paths

or multipath. Multipath occurs when the signal has more than one path to

the sensor. Under these conditions, the signal is attenuated and time delayed.

When it is thought of as a filter, it has an impulse response of,

h[n] =
∞∑
k=0

ρk
rk
δ[n− Tk] (3.3)

where rk is the distance to travel and ρk is the combined attenuation of the kth

reflected sound wave [9]. Upon examining equation (3.3), multipath is simulated

by adding zeros. A source of multipath is the sound emanating from the human
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mouth, combined with the delayed sound emanating from the nose. This type

of multipath adds pair of zeros to the model.

Realize two all pole filters
Filter1, Filter2

Select one filter

Generate AR(2) process
with added zeros

Classify process

Calculate probability of
correct classification

Increase radii of zeros

20000
realizations

Figure 3.4: Flow chart for added multipath simulations

The PSD P̂X(f) for the templates was calculated in the same way as previous

simulations. Next, two all-pole filters were designed with two sets of zeros;

these zeros were designed to have the same frequency as the poles of the filters.

One of the sets was selected at random with a probability of 1
2

for each. An

AR(p) process is a process that uses an all-pole filter, the added zeros create

an autoregressive - moving average process (ARMA). An ARMA process has
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a z-domain representation of,

H(z) =
X(z)

U(z)
=

1 + b[1]z−1 + b[2]z−2

1 + a[1]z−1 + a[2]z−2

Taking the inverse z-transform gives the result,

x[n] = −a[1]x[n− 1]− a[2]x[n− 2] + u[n] + b[1]u[n− 1] + b[2]u[n− 2]

where a[1] and a[2] are the all-pole filter coefficients designed in step one and b[1]

and b[2] are the coefficients designed to place the zeros. These zero coefficients

were also designed using equations (3.2). The radii of the zeros was increased

the same way the noise power was increased in the previous simulation. Each

set of zeros starts at the origin and increases radius at the same frequency until

it reaches the pole. Figure 3.5 shows one set of the pole-zero combination.
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Figure 3.5: Pole-Zero plot for an AR(2) process with added zeros

3.3 Data Analysis

Once the simulations were completed and the results looked reasonable it was

time to introduce real world data: data that is simple and easy to divide up.

There are many types of data that are well suited to demonstrate the potential

of the RPLF, medical, economic and chemical to name a few. Speech data also

has the desired characteristics and is readily available. The ISOLET database

consists of spoken letters, or more precisely the names of the letters. In the

database there are 150 people, 75 female, and 75 male, saying each letter two

times. At the top level, the database is broken up into 5 folders, isolet1 - isolet5,

Figure 3.6 top. Each one of these 5 top-level folders itself contains 30 folders,

15 male and 15 female speakers, Figure 3.6 middle. Each of the people folders
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contain two utterances of each letter, Figure 3.6 botton. The structure of the

database is outlined in Figure 3.6.

Isolet1 Isolet2 Isolet5

Person 2
female 2

Person 1
female 1

Person 30
male 15

B1 B2A2A1 Z2

Figure 3.6: Folder structure for ISOLET data base

The write-up that came with the database describing the data is in appendix

B [1].

The folders containing the speech are named in the following manner. The

first letter is the gender, “m” for male and “f” for female. Next are the per-

sons initials, either 2 or 3 letters. The folder ends with a 0 or 1 depending on

whether there is a previous folder with the same beginning name. The names

of the files containing the utterances begin with the folder name, followed by

the letter spoken, and a 1 or 2 depending on whether it is the first or second
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utterance of that letter. All files end with a -t. For example, a female would

the have the folder name “fgh0” and the first “A” utterance file for that same

female would be “fgh0-A1-t”.

The creators of the database calculated the SNR for the database. An exact

description of how it was calculated can be found in the information accompa-

nying the database [2]. The mean SNR is 31.5dB with a standard deviation of

5.6dB.

The analysis of the data for this thesis followed the same basic structure as the

simulations. First a baseline analysis was completed. Second, noise was added

to the data. Then finally, channel distortion was added to the data. Although

the analysis procedure was more complex than the procedure for the simula-

tions, the initial flow chart only consists of four blocks. The first block would

be to create templates, then import data, classify vowel and finally calculate

the probability of correct classification. To include noise or multipath, two ad-

ditional blocks were added. The first block adds the noise or multipath to the

data. The second block alters the amount of noise or shifting of the zeros.

Before the analysis could begin, the data needed to be divided up into the train-

ing data and the observed data and then the templates made. In order to keep

the analysis simple five letters were chosen, A, E, I, O and, U. Prior research

commonly divides data up into 10-30 ms intervals [8]. After dividing up the

data into various lengths up to 50ms and performing the classifications it was
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decided to use 30 ms intervals. Lengths longer then 30 ms only minimally im-

proved the classification while shorter lengths did not perform as well. A data

length of 30 ms would equate to 480 samples per letter.

In order to extract a WSS sample, the midpoint of the data set was chosen and

then a 30ms sample was taken. If the sample s[n] is taken from the data x[n]

then s[n] = x[n], n = (mean−240), (mean−239), ...(mean+239). For example,

a letter has 7000 data points, with a midpoint of 3500. Samples 3260 ≤ n ≤ 3739

would be extracted. Figure 3.7 is an example of the letter “A” spoken by a male

for both the entire letter, Figure 3.7a, and the 30ms sample, Figure 3.7b.

(a) (b)

Figure 3.7: Example of the letter “A”

The data in Figure 3.7b is a good example of data that can be used to demon-

strate the potential of the RPLF.

Once the analysis data was chosen, the next step was to design the templates.

In the simulations the templates were the power spectral densities of all-pole

filters, which is a simple task to estimate. Designing the templates with the
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speech data was a much more complicated process. The following steps were

used,

1. Choose the data to be used for the templates and the data to be

for the observed, or test data - It was desired to make the analysis

speaker independent. Therefore, the first four folders, isolet1 - isolet4,

were used for template data and the isolet5 folder data was the observed

data. There are 30 people in each folder and 2 utterances of each letter

per person which equals 240 utterances of each letter for the templates.

This would leave 60 utterances of observed data for each letter to perform

the classification with.

2. Choose the number of AR(p) coefficients - In order to model the first

three to five format peaks, an eighth to fourteenth order model is typically

used [11]. Analysis of the data was tried with p = 8, 10, 12 and 14. An

order of twelve was chosen because fourteen lead to an minimal increase

but did moderately better then ten.

3. Calculate the AR(p) coefficients - Using the autocorrelation method

described above, the autocorrelation sequence was calculated for each ut-

terance, leading to the formulation of the autocorrelation matrix described

in equation (2.5). The AR(p) coefficients were solved using the Levinson

recursion, which led to 240 AR models, one for each utterance.
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4. Calculate the templates - The 240 models were averaged together to

create the AR(p) model for each letter, equation (3.4). PSD templates

were calculated from the averaged a[k] parameters. Figure 3.8 represents

the power spectral densities for the five templates.

at[k] =
1

M

M−1∑
m=0

ad[m, k] (3.4)

where at[k] are the averaged linear prediction coefficients for the five let-

ters, ad[m, k] are the linear prediction coefficients for each of the spoken

utterances, and M = 240. The PSDs for the five templates are shown in

Figure 3.8

Figure 3.8: Power spectral densities for calculated templates

The initial analysis used equations (2.6) and (2.9) to classify the vowels in the
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observed. This included five test statistics each for Itakura-Saito and the RPLF.

Then the classifier identified the spoken letter based on the maximum of those

test statistics.

l
′

Ri = −
∫ 1

2

− 1
2

Ī(f) ln

(
Ī(f)

PXi(f)

)
df 1 ≤ i ≤ 5

Where PX1(f) is the PSD for the “A” template, PX2(f) is the PSD for the “E”

template and so on. For example, if the observed utterance was an “E” each of

the test statistics calculate an output value. The letter is classified as the letter

corresponding to the maximum value of the output of those five test statistics,

hopefully, an “E”.

The analysis kept track of the observed data letter and the result of the clas-

sification. The final results are displayed in a confusion matrix. Because the

confusion matrix displays the true value against the classified value, the more

diagonal the matrix is, the better the results. In this analysis, a perfect ma-

trix would have 60s on the main diagonal because there are 60 utterances of

observed data for each letter.

Figure 3.10 is a flow chart that describes the method used to import and pro-

cessing the observed data. First the data is imported from the file. Next, the

imported data is multiplied by a 30ms rectangular window. After windowing,

the autocorrelation sequence is estimated from the windowed data. From the

autocorrelation sequence the AR(p) linear prediction coefficients are calculated.
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Calculate templates of
all 5 vowels

Select/import
one vowel

Classify vowel

Calculate Probability of
correct classification

All vowels

Figure 3.9: Flow chart for vowel clas-
sification

Import Data

WindowingW [n]

Autocorrelation
Analysis

LPC Analysis

PSD calculation

Classify vowel

s[n]

x[n]

r[k]

AR(p)

Figure 3.10: expanding Select/Import
block of Figure 3.9

The next couple of analyses repeated the above process but added noise or

channel distortion to the data. The analysis including noise was accomplished

by adding zero-mean independent WSS Gaussian noise with variance σ2, while

keeping the SNR constant. This can be done two ways, leading to the same

result. The first is by calculating the signal power for each utterance and then

adjusting the noise power. This is done by calculating the autocorrelation se-

quence, with the average power autocorrelation at zero lag. Then the noise

power is adjusted to keep the same SNR. A second option is to normalize the
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signal power in each utterance and then calculate the appropriate noise power

based on the desired SNR. The normalization is calculated by,

xn[n] =
x[n]√

1
N

∑
x2[n]

where xn[n] is the normalized x[n]. This analysis used the second option.

Channel distortion was added by including a pair of zeros where it had an effect

on the PSD’s. Referring to Figure 3.8, zeros placed at a frequency of ±0.2

would have a large effect because it has the effect of diminishing the observed

peaks in the frequency response. Depending on the zero radius, the zeros would

cancel out some of the power around this frequency. In contrast, if the zeros

were placed at a frequency of ±0.4 they would have very little effect, if any at

all. Then the signal power was again normalized because of the added zeros.

The data we have selected is speech data and a classifier used in many modern

ASR systems that has shown good results is a Euclidean distance measure of

the linear prediction cepstral coefficients (LPCC) [22]. So we will compare

the RPLF to the LPCC classifier as well. The cepstrum is the inverse Fourier

transform of the log magnitude of the Fourier transform of a signal.

c[n] =

1
2∫

− 1
2

ln |X(f)|ej2πfndf

There are a many reasons the cepstrum is used over other transformations. Two
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of the most important are first, the cepstrum provides source-filter separation.

Second, cepstral coefficients provide a compact representation of the spectral

envelope. [7]. There are other transformations that have these same qualities,

but the LPCC better models speech than other models [6]. Given a set of

linear prediction coefficients, a[k], the linear prediction cepstrum coefficients

are derived from the following equations.

ĉ[n] =



0 n < 0

−ln(a[n]) n = 0

−a[n]−
n−1∑
k=1

(
k
n

)
ĉ[k]a[n− k] 0 < n ≤ p

−
n−1∑

k=n−p

(
k
n

)
ĉ[k]a[n− k] n > p

(3.5)

This leads to the test statistic,

CCTs =
N−1∑
i=0

(ĉt[n]− ĉo[n])2 (3.6)

where ĉt[n] is the template LPCC and ĉo[n] is the observed data LPCC. This

leads to a classifier min(CCTsi).

The next analysis was a comparison of the cepstrum classifier, the Itakura-Saito

classifier and the RPLF, with noise added to the data. This analysis followed

the same procedure as the simulation with added noise, shown in Figure 3.11.
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Calculate templates of
all 5 vowels

Select one vowel

add noise to data

Classify vowel

Calculate Probability of
correct classification

Increase noise variance σ2

1000
realizations

Figure 3.11: Flow chart for vowel classification with added noise

Unlike the first few data analyses, in this analysis the probability of correct clas-

sification was not kept for each individual letter, but for all results. Therefore,

the results are not presented in a confusion matrix but in a graph of probability

of the correct classification versus signal to noise ratio in dB.

In the final analysis a pair of zeros was added to simulate multipath in the data.

The procedure combined the flowcharts in Figures 3.4 and 3.11.
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Calculate templates of
all 5 vowels

Select one vowel

add multipath
to data

Classify vowel

Calculate Probability of
correct classification

move the zero

1000
realizations

Figure 3.12: Flow chart for vowel classification with added multipath

The analysis of including a zero to simulate multipath was completed two dif-

ferent ways. The first consisted of the zero moving out along a radius with a

fixed frequency, the same as in the simulation. In the second the zero was swept

through the frequency while keeping the radius constant.
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CHAPTER 4

SIMULATION AND ANALYSIS RESULTS

4.1 Summary

This chapter will begin by presenting the simulation results, and the data

analysis will follow. Simulation or analysis checks will also be included to

lend credence to the accuracy of the procedure and final results. Detailing

this process is important because there is an unexpected result that initially

appears to be incorrect. The chapter will conclude with a brief look at the

templates created from the known data, and present the results of classifications

performed with modified templates that increase the probability of correct

classification. For all simulations, the poles of the AR(p) processes will be

placed inside the unit circle for stability.

4.2 Simulation Results

The initial simulation was kept very simple for two reasons. The first reason

was to be able to validate the algorithm by checking expected results It

is expected that the the Itakura-Saito would outperform the RPLF in the

absence of noise or channel distortions. This is because the simulation data

is independent and identically distributed WSS Gaussian noise being filtered

by a linear all-pole filter. Therefore, the output will be Gaussian. Since
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the Itakura-Saito is derived from an asymptotic equivalent of the likelihood

function for a Gaussian random process it should outperform the RPLF. It is

also expected that when the poles of the two possible filters are right on top

of each other, the probability of correct classification is one half, Pcc = 0.5.

This is expected because then both processes are generated from exactly the

same filter, so classification is a “50-50 shot”. The second reason the initial

simulation was kept simple is so there are not any assumptions made that may

affect the results, whether known or unknown. Simple simulations utilizing

WSS Gaussian noise and a simple filter ensures the exclusion of anything

unknown in the data.

The first simulation was performed using the procedure presented in Figure

3.1. Figure 4.1a shows the PSDs used in the test statistics for this simulation

with Figure 4.1b an example periodogram for the data to be classified. Figure

4.2 shows the output of the simulation with the number of samples equal to

250. The frequency f0 is the frequency of the poles for the second filter, the

filter where the poles are fixed.
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(a) f0 = 0.25, 0.3, radius = 0.9 (b) f0 = 0.3,, radius = 0.9

Figure 4.1: Power spectral densities for initial simulations, (4.1a) for the all-pole
filters, (4.1b) for one instance of the AR(p) process.

Figure 4.2: Simulation result AR(2), f0 = 0.3, radius = 0.9, N= 250

This result are exactly as expected, the Itakura-Saito outperformed the RPLF.

Also, the probability of correct classification is one half when the poles are
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exactly the same. The RPLF did very well, giving hope that it will outperform

the Itakura-Saito when noise or channel distortion is added. However, it is

difficult to differentiate between the two classifiers because there is a 100%

probability of correct classification by the time the two peaks are separated by

a frequency of 0.03. In order to get results that may better distinguish between

thee classifiers the number of samples was decreased to 50 and the simulation

was run again, results presented in Figure 4.3.

Figure 4.3: Simulation result AR(2), f0 = 0.3, radius = 0.9, N= 50

Restricting the number of samples to fifty yielded unexpected results: in the

top right corner of the figure, when the pole crosses over around 0.34 the RPLF

starts to outperform the Itakura-Saito. The next step was to determine if the

algorithm or the data was responsible for the unexpected results. The simulation
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was repeated and included the exact Gaussian classifier, equation (2.4), since

the expected result of the exact Gaussian classifier is the true upper bound.

This simulation is presented in Figure 4.4. This result is as expected, the exact

Gaussian outperforms both the RPLF and the Itakura-Saito, indicating the

data is generated correctly and the algorithm is functioning correctly.

Figure 4.4: Simulation result AR(2), f0 = 0.3, radius = 0.9, N= 50

To further analyze the problem, if the number of samples was increased

would the Itakura-Saito approach the exact Gaussian? For the next simulation

the number of samples was set to 500 and results are presented in Figure 4.5.
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Figure 4.5: Simulation result AR(2), f0 = 0.3, radius = 0.9, N= 500

As the number of samples increases the Itakura-Saito does approach the exact

Gaussian. This result also indicates the algorithm and the data are correct, so

why does the RPLF outperform the Itakura-Saito? To investigate this further,

a simulation using an AR(1) process was completed since it is even simpler then

the AR(2) process employed so far. An AR(1) process has a linear filter with a

single pole where,

x[n] = u[n]− a[1]x[n− 1];

H(f) =
1

1 + a[1]e−j2πf

Px(f) =
σ2
u

|1 + a[1]e−j2πf |2

(4.1)
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The AR(1) filter has a single pole and for a real process, that pole must be

on the real axis. In this simulation, the first filter had a fixed pole location at

a[1] = −0.8 while the pole from the second filter was swept from −1 < a[1] < 1.

The output of the simulation is shown in Figure 4.6.

Figure 4.6: Simulation result AR(1), a[1] = 0.8, radius = 0.9, N= 50

It is interesting to note how the Itakura-Saito drops off dramatically as the

pole gets closer the unit circle. Due to the simplicity of an AR(1) process, it

is possible to go back to first principles and derive the Itakura-Saito and the

exact Gaussian based only on pole location, a[1], and the number of samples,

N . The difference and a divergence are calculated using this basic informa-

tion. The derivation for the divergence is in appendix (A), along with results
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from [14], [12]. The derivation starts with the log-pdfs version of the exact

Gaussian,

ln(pE(xxx)) = −N
2

ln(2π)− 1

2
ln(det(CCC))− 1

2
xxxTCCC−1xxx

and the asymptotic Gaussian,

ln(pA(xxx)) = −N
2

ln(2π)− N

2

1
2∫

− 1
2

(
ln(P (f)) +

I(f)

P (f)

)
df

The PDFs were found in the desired form and are presented below. First the

exact Gaussian,

ln(pE(xxx)) =− N

2
ln(2π)− N

2
lnσ2

u +
N

2
ln(1− a2[1])

− 1

2σ2

[
x2[0] + 2a[1]x[0]x[1] + x2[1]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2
] (4.2)

Then the asymptotic Gaussian

ln(pA(xxx)) =− N

2
ln(2π)− N

2
lnσ2

u

− 1

2σ2
u

[
x2[0] + x2[1] + 2a[1]x[0]x[1] + a2[1]x2[0]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2 + a2[1]x2[N − 1]
] (4.3)
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And the difference,

= ln(pE(xxx))− ln(pA(xxx))

=
N

2
ln(1− |a[1]|2) +

1

2

[
a2[1]x2[0] + a2[1]x2[N − 1]

]
The Kullback-Leibler divergence is the divergence between two PDFs. For this

divergence we have used the exact Gaussian and the asymptotic Gaussian as

PDFs. While the asymptotic Gaussian is not a true PDF, as it does not integrate

to one, the Kullback-Leibler divergence may provide some useful insight. The

derivation of the result is presented in appendix (A.2). The Kullback-Leibler

divergence takes the form,

∞∫
−∞

pE(xxx) ln

(
pE(xxx)

pA(xxx)

)
dxxx (4.4)

where pE(xxx) is the PDF of the exact Gaussian and pA(xxx) is the PDF of the

asymptotic Gaussian. After taking the exponential of (4.3) and (4.2) and sub-

stituting them into (4.4) the result is,

=
N

2
ln(1− a2[1]) +

a2[1]

(1− a2[1])

Examining this result as |a[1]| −→ 1 the second term in the equation takes over

and the divergence goes to infinity. Figure 4.7 plots the divergence for different

number of samples N as |a[1]| goes from 0 −→ 1.
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Figure 4.7: Divergence for the difference between asymptotic Gaussian and
exact Gaussian

As discussed previously the Kullback-Leibler divergence can not be negative,

however, the functions in the above figure go negative. This is explained by

the fact that of the asymptotic Gaussian is not really a PDF. In order to be

a true PDF, the asymptotic Gaussian would need to be normalized. Despite

this limitation, the above figure shows that as the pole radius approaches the

unit circle, the distance between the exact Gaussian and asymptotic Gaussian

increases, especially for smaller sample sizes. This effect holds true for an AR(2)

process, as presented in the following figures. Figures 4.8 - 4.11 number of

samples increases, while holding the radius constant. While in Figures 4.12

- 4.14 the radius of the zeros increases while holding the number of samples

constant.
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Figure 4.8: Simulation results, N = 50, f0 = 0.1, radius = 0.7.

Figure 4.9: Simulation results, N = 100, f0 = 0.1, radius = 0.7.
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Figure 4.10: Simulation results, N = 250, f0 = 0.1, radius = 0.7.

Figure 4.11: Simulation results, N = 500, f0 = 0.1, radius = 0.7.
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Figure 4.12: Simulation results, N = 100, f0 = 0.1, radius = 0.5.

Figure 4.13: Simulation results, N = 100, f0 = 0.1, radius = 0.7.
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Figure 4.14: Simulation results, N = 100, f0 = 0.1, radius = 0.9.

In order to get reliable results from the simulations utilizing an AR(2) process,

the poles were kept in a location where their position did not have an adverse

effect on the result. In the initial simulations, placement had a significant effect

on the Itakura-Saito but the RPLF was much less affected. This is the first

indication of the RPLF being more robust.

Using the procedure in Figure 3.1, many different simulations were performed

utilizing different frequencies, radii and number of samples. The Itakura-Saito

outperformed the RPLF when the poles were placed away from the unit circle

and away from the real axis, f0 = 0 and f0 = .5. Table 4.1 summarizes the

results. In Table 4.1 the frequency column is the frequency of the the fixed

53



pole location filter associated with the second AR(p) processes. Both of the

processes had the same fixed radii, presented in the radius column.

Simulation Frequency Radius Summary

1 0.1 0.9 The Itakura-Saito performed
much worse then expected, espe-
cially at N= 50 and 100 and did
not perform as well as the RPLF.

2 0.1 0.7 The Itakura-Saito unperformed
compared the RPLF at N = 50
and 100.

3 0.1 0.5 The Itakura-Saito outperformed
the RPLF, and got very close to
the Exact Gaussian at N = 250
and 500.

4 0.2 0.9 The Itakura-Saito outperformed
the RPLF in all cases except
a very little at N=50. Both
the Itakura-Saito and the RPLF
came close to the exact Gaussian

5 0.3 0.9 As originally expected the
Itakura-Saito outperformed the
RPLF and came very close to the
exact Gaussian.

6 0.3 0.5 All methods performed almost
exactly the same.

7 0.4 0.9 Almost identical to simulation 1
except for a mirror image.

Table 4.1: Summary of simulations, for a AR(2) processes with no added noise

The next simulations added noise to the AR(p) process using the procedure in

Figure 3.3. Table 4.2 and Figure 4.15 summarize the results.
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RPLF vs Itakura-Saito with additive noise

figure f0 f1 radius realizations ≈dB ≈ DPCC ≈ DPCC
crossover low SNR high SNR

4.15a 0.15 0.20 0.45 20000 12 -.05 .02

4.15b 0.28 0.30 0.85 20000 12 -.15 .05

4.15c 0.25 0.30 0.75 20000 8 -.1 .025

4.15d 0.25 0.30 0.75 100000 8 -.1 .025

Table 4.2: Summary of results for simulations

In Table 4.2 the Difference in Probability of Correct Classification (DPCC) is the

Itakura-Saito probability of correct classification minus the RPLF probability

of correct classification, pccIS − pccRPLF . This was calculated for the beginning

and end of each plot. The first column refers to the plots in Figure 4.15.
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(a) (b)

(c) (d)

Figure 4.15: Probability of correct classification vs SNR

The Itakura-Saito performed slightly better in environments with a high SNR.

The RPLF was more robust in low SNR environments.

The last set of simulations followed the procedure in Figure 3.4, adding multi-

path to the AR(2) processes. Pole-zero plots and plots of the PSD for one of

the ARMA(2) processes was checked to validate the algorithms.
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(a) PSD for zero radius = 0.0 (b) Pole zero plot for zero radius = 0.0

(c) PSD for zero radius = 0.4 (d) Pole zero plot for zero radius = 0.4

(e) PSD for zero radius = 0.75 (f) Pole zero plot for zero radius = 0.75

Figure 4.16: PSD and pole zero plots for AR(2) ‘True AR PSD’ and and the
ARMA(2) ‘Averaged ARMA PSD’s’ processes, frequency = 0.3, 10000 realiza-
tions

Upon analyzing the periodograms in Figure 4.16, and the effects of the added
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zeros, the algorithm appeared to be correct. Once the algorithm was verified,

the simulation was performed, results are presented in Figure 4.17.

Figure 4.17: Probability of Correct Classification for an AR(2) process with
added multipath.

As expected, when the zeros are near the origin and have little effect on the

periodogram the Itakura-Saito outperformed the RPLF. As the “multipath”

worsened the RPLF performed better. The simulation gave the expected result

of pcc = 0.5 with a pole-zero cancellation.

4.3 Data Results

The results of the simulations point toward the RPLF having greater robustness

to certain spectral deformations than the Itakura-Saito. The next step was to

perform the analysis with the ISOLET database to see if real data yielded the
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same results.

A baseline analysis was completed with the raw data, as described in chapter

3. Results for this baseline analysis are presented in Tables 4.3 and 4.4.

Classified RPLF, pcc(L) = .8
XXXXXXXXXXXXTrue Letter

Classified as
A E I O U

A 40 2 0 3 15

E 2 42 0 0 16

I 3 0 54 3 0

O 2 0 8 49 1

U 4 1 0 0 55

Table 4.3: Confusion matrix for the RPLF test statistic. AR(p) , p = 12

Classified Itakura-Saito, pcc(L) = .74
XXXXXXXXXXXXTrue Letter

Classified as
A E I O U

A 30 12 0 2 16

E 7 45 0 0 8

I 4 0 52 4 0

O 1 0 8 50 1

U 10 0 0 5 45

Table 4.4: Confusion matrix for the Itakura-Saito test statistic. AR(p) , p = 12

The probability of correct classification in Tables 4.3 and 4.4 is,

pcc(L) =

∑
number of results where i = j∑

number of results

There are the five vowels being classified in this analysis, resulting in the tem-

plate letters (Li) and observed letters (Lj) where 0 ≤ i, j ≤ 5.

Even in this baseline analysis the RPLF has a better probability of classification
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than the Itakura-Saito. It should be noted, however that several factors could

be responsible for this difference. Without a test of significance, it is not clear

whether the observed difference between classifiers is due to individual sample

variation versus a true difference in performance between the RPLF and the

Itakura-Saito. The letter names for “I” and “U” are diphthongs and therefore

are non-stationary. The exact location of the transition is unknown, but it is

possible it is in sampled window. The RPLF outperformed the Ikaura-Saito

classifying both of these letters. This may be an indication of the RPLF being

a robust classifier to non-stationary data, further research needs to be done to

test this hypothesis.

Other reasons for superior classification performance are, pole location, zero

placement or noise. The SNR is high, 31.5dB, which means it is unlikely that

noise is causing the difference. The letter “A” performed the worst of all the

letters. There may be some zeros that are not accounted for in the model: a

pole-zero plot of the AR parameters was completed to investigate this further

and is presented in Figure 4.18.
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Figure 4.18: Pole Zero plot for the letter “A”.

There are two poles very close to the unit circle at around f ≈ 0.025; however,

the next pole did not occur until f ≈ 0.15. Was the model trying to account

for a zero in between these two zeros? Upon examination of the other pole-zero

plots, the letter “E” appeared to display the same attribute but did not suffer

the same decrease in performance. The reason for the observed decrease in per-

formance of the Itakura-Saito is unknown. Future work, beyond the scope of

this thesis, would be required to fully investigate this.

The next analysis repeated the procedure but added independent white Gaus-

sian noise. With the results presented in Tables 4.5 and 4.5.
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Classified RPLF, pcc(L) = .77
XXXXXXXXXXXXTrue Letter

Classified as
A E I O U

A 41 5 0 1 13

E 3 44 0 0 13

I 3 0 54 3 0

O 4 0 11 44 1

U 8 2 0 0 50

Table 4.5: Confusion matrix for the RPLF test statistic with added noise. AR(p)
, p=12, SNR =9dB

Classified Itakura-Saito, pcc(L) = .5
XXXXXXXXXXXXTrue Letter

Classified as
A E I O U

A 26 28 0 0 6

E 4 56 0 0 0

I 13 1 43 1 2

O 47 1 0 4 8

U 13 25 0 0 22

Table 4.6: Confusion matrix for the Itakura-Saito test statistic with added noise.
AR(p) , p=12, SNR =9dB

The RPLF does a much better job of classifying when the signal is embed-

ded in white Gaussian noise. The difference between the probability of cor-

rect classification for no noise vs noise is represented as, pcc(L) − pcc−n(n). In

our data, the difference between the RPLF with noise and without noise was

0.03 (0.80−0.77). For the Itakura-Saito it was 0.24 (0.74−0.50). Performance

with added noise decreased only slightly for the RPLF, approximately 3%, but

diminished by approximately 30% for the Itakura-Saito. This analysis was for

only a single SNR, a later analysis would include a range of SNR.
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The next analysis simulated multipath by adding a set of zeros at a fixed fre-

quency and radius. With the results presented in Tables 4.7 and 4.7.

Classified RPLF, pcc(L) = .76
XXXXXXXXXXXXTrue Letter

Classified as
A E I O U

A 5 2 0 4 19

E 3 35 0 0 22

I 3 0 53 4 0

O 3 0 5 51 1

U 4 1 0 0 55

Table 4.7: Confusion matrix for the RPLF test statistic. AR(p) , p=12, with
zero.

Classified Itakura-Saito, pcc(L) = .57
XXXXXXXXXXXXTrue Letter

Classified as
A E I O U

A 8 30 0 1 21

E 0 56 0 0 4

I 2 1 33 11 13

O 1 3 0 31 25

U 1 13 0 3 43

Table 4.8: Confusion matrix for the AG test statistic. AR(p) , p=12, with zero.

The Itakura-Saito performance decreased by approximately 23% in this analysis,

slightly better than in the last analysis. However it was vastly outperformed by

the RPLF, for which diminished performance was nearly the same, decreasing

only about 5%. The difference (pcc(L)−pcc−z(n)) for the RPLF was 0.04 (0.8−

0.76) and for the Itakura-Saito was, 0.17 (0.74− 0.57)

Figure 4.19 shows the results of the next analysis, the cepstrum classifier was

added and included a range of SNR levels.
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Figure 4.19: Probability of correct classification for RPLF, Itakura-Saito and
Cepstrum classifiers, with a range of added noise.

It was expected that the cepstrum classifier would have a better probability

of correct classification then the Itakura-Saito with speech data. With other

types of data the Itakura-Saito may perform better. The performance of the

RPLF exceeded both the Itakura-Saito and the cepstrum. The simulation looks

to have run correctly, since the lowest probability of correct classification is

0.2. The 0.2 is the lowest probability of correct classification because there are

five different letters and they each have an equal probability of being selected,
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therefore 0.2.

The next couple of analyses added zeros, and varied either the radius or the

frequency. The results of the simulation with the change in radius are presented

first in Figure 4.20.

Figure 4.20: Probability of correct classification for RPLF, Itakura-Saito and
Cepstrum classifiers, versus the added zero radius.

Figure 4.21 presents the results for the analysis were the frequency of the

zeros was changed.
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Figure 4.21: Probability of correct classification for RPLF, Itakura-Saito and
Cepstrum classifiers versus the added zero frequency.

In Figure 4.20 the RPLF and the cepstrum classifiers performed about equally,

however, they both outperform the Itakura-Saito. In Figure 4.21 the RPLF

performed as well or better then the cepstrum, except at frequencies around

0.25 and 0.5. Again, they both outperform the Itakura-Saito.

4.4 Template modifications

In order to increase the probability of correct classification additional templates

were examined. The conditional PDF of x[n] for large data records is shown in
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[14], for an AR(p) process

x[n] = u[n]−
p∑

k=1

x[k]u[n− k]

is,

p(x) =
1

(2πσ2
u)

(N−p)/2 e
− 1

2σ2

N−1∑
n=p

(
x[n]+

p∑
j=1

a[j]x[n−j]
)2

It was also shown in [14] the maximum likelihood estimate MLE for the a[k]

coefficients are found using the covariance method. If it is assumed that we

have M independent AR(p) process data, each with the same number of AR(p)

parameters, the likelihood function is the product of the individual likelihood

functions.

p(x) =
1

(2πσ2
u)
M(N−p)/2 e

− 1
2σ2

M−1∑
m=0

N−1∑
n=p

(
x[m,n]+

p∑
j=1

a[m,j]x[m,n−j]
)2

where n is the number of samples for each utterance, m is the number of utter-

ances, and p is the number of a[k] coefficients. The MLE for the a[k] coefficients

of many AR(p) processes is found using the covariance method, which averages

the M covariance matrices and covariance vectors. Then from the averaged co-

variance matrices and covariance vectors the a[k] coefficients can be found. The

result of this analysis utilizing these templates is presented is in Figure 4.22.
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Figure 4.22: Probability of correct classification for RPLF, Itakura-Saito and
Cepstrum classifiers with added noise, solving a[k] using covariance method, M
= 240.

There was a minimal increase in probability of correct classification when

using the covriance method, Figures 4.19 and 4.22.

Next the template data was divided into logical subgroups. Since the gender

data is available, this is a natural way to subdivide the groups. Sub-grouping

this way resulted in ten calculations for each classifier. The classifier took the

maximum value from the ten calculations. For example for the RPLF, when
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PTmale(f) is the normalized PSD male template for the letters.

lR(j) = −
∫ 1

2

− 1
2

Ī(f) ln

(
Ī(f)

PTmale(f)

)
df

and when PTfemale(f) is the normalized power spectral density female template

for the letters and 1 ≤ j ≤ 10.

lR(j) = −
∫ 1

2

− 1
2

Ī(f) ln

(
Ī(f)

PTfemale(f)

)
df

and Ī(f) is the normalized periodogram of the observed data. The goal is that,

for the AR(p) coefficients, the means will converge to the true value for each

gender and the variances will decrease. Tables 4.9 and 4.10 present the means

and variances for the original estimates, and the tables with the gender specified

AR(p) coefficients follow in Tables 4.11 - 4.14.

Estimated mean for letter I, p = 12

AR(p)− 1 AR(p)− 2 AR(p)− 3 AR(p)− 4 AR(p)− 5 AR(p)− 6

-1.3615 0.5923 0.0320 0.0105 0.00086 0.0508

AR(p)− 7 AR(p)− 8 AR(p)− 9 AR(p)−10 AR(p)−11 AR(p)−12

0.0134 0.0427 -0.0087 0.0378 -0.0756 0.1191

Table 4.9: Estimated means of AR(12) coefficients for the letter I

Estimated variance for letter I, p = 12

AR(p)− 1 AR(p)− 2 AR(p)− 3 AR(p)− 4 AR(p)− 5 AR(p)− 6

0.0763 0.2658 0.1417 0.0975 0.0541 0.0610

AR(p)− 7 AR(p)− 8 AR(p)− 9 AR(p)−10 AR(p)−11 AR(p)−12

0.0400 0.0282 0.0226 0.0257 0.0308 0.0124

Table 4.10: Estimated variances of AR(12) coefficients for the letter I
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Estimated mean for letter I, female voice, p = 12

AR(12)−1 AR(p)− 2 AR(p)− 3 AR(p)− 4 AR(p)− 5 AR(p)− 6

-1.3100 0.5750 0.0072 0.0613 0.0208 0.00017

AR(p)− 7 AR(p)− 8 AR(p)− 9 AR(p)−10 AR(p)−11 AR(p)−12

0.0054 0.0820 -0.0223 0.0303 -0.0208 0.0962

Table 4.11: estimated means of AR(12) coefficients for the letter I, spoken by
a female

Estimated variance for letter I, female voice, p = 12

AR(p)− 1 AR(p)− 2 AR(p)− 3 AR(p)− 4 AR(p)− 5 AR(p)− 6

0.0631 0.2282 0.1149 0.0530 0.0356 0.0391

AR(p)− 7 AR(p)− 8 AR(p)− 9 AR(p)−10 AR(p)−11 AR(p)−12

0.0284 0.0206 0.0176 0.0207 0.0218 0.0133

Table 4.12: Estimated variances of AR(12) coefficients for the letter I, spoken
by a female

Estimated mean for letter I, male voice, p = 12

AR(p)− 1 AR(p)− 2 AR(p)− 3 AR(p)− 4 AR(p)− 5 AR(p)− 6

-1.4086 0.5972 0.0794 -0.0465 -0.0211 0.0934

AR(p)− 7 AR(p)− 8 AR(p)− 9 AR(p)−10 AR(p)−11 AR(p)−12

0.0296 0.0030 0.0059 0.0420 -0.1262 0.1407

Table 4.13: Estimated means of AR(12) coefficients for the letter I, spoken by
a male

Estimated variance for letter I, male voice, p = 12

AR(p)− 1 AR(p)− 2 AR(p)− 3 AR(p)− 4 AR(p)− 5 AR(p)− 6

0.0710 0.2435 0.1065 0.0966 0.0471 0.0606

AR(p)− 7 AR(p)− 8 AR(p)− 9 AR(p)−10 AR(p)−11 AR(p)−12

0.0345 0.0253 0.0187 0.0220 0.0257 0.0078

Table 4.14: Estimated Variances of AR(12) coefficients for the letter I, spoken
by a male

Figure 4.23 presents the results with Table 4.15 summarizing the results
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for all classifiers. The probability of correct classification in Table 4.15 is the

probability of correct classification with an SNR of 20dB.

Figure 4.23: Probability of correct classification for RPLF, with and without
sub-grouped templates.

Probability of correct classification

classifier pcc

Itakura-Saito 0.7460

Cepstrum 0.7690

RPLF 0.8050

RPLF w/gender 0.8290

Table 4.15: Probability of correct classification for RPLF, RPLF with gender
sub-group, Itakura-Saito and Cepstrum classifiers at a SNR of 20dB

As expected, the division of the template into sub-groups resulted in an
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increase in the probability of correct classification. The RPLF with gender

outperformed the RPLF by approximately 3%.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Table (5.1) summarizes the results of all simulations and analyses with a ranking

of the performance of each classifier, determined by the probability of correct

classification. The classifier with the higher probability of correct classification

got a lower number. If no classifier had a higher probability of correct classi-

fication for the entire range, as in the analysis with a zero, then the one that

appeared to be the most robust over the majority of range was selected as su-

perior. The cepstrum classifier was only used in the data analysis with noise

and with channel distortion, so it is only ranked for those two classifications.

Summary of Results with Performance Ranking

RPLF Itakura-Saito Cepstrum

Simulations 2 1 N/A

Simulations w/noise 1 2 N/A

Simulations w/zero 1 2 N/A

Data analyses 1 2 N/A

Data analyses w/noise 1 3 2

Data analysis w/zero 1 3 2

Table 5.1: Table summary of results, with ranking of results.

The RPLF outperformed the Itakura-Saito and was a more robust classifier

overall. The only time the Itakura-Saito performed better was with the simu-

lated perfect AR(p) model. In every other simulation and data analysis test,

the RPLF outperformed the Itakura-Saito.
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5.2 Future work

The RPLF exhibited superior performance, but this analysis was limited

because it was only tested with simulations and with speech data. Further

analyses of both the RPLF and the Itakura-Saito classifiers are needed to

determine if the RPLF is truly more robust across a variety of data types,

including but not limited to medical, economic or environmental data. In order

to show the RPLFs full potential the selected data should be both stationary

and non-stationary.

The results gathered through out this analysis of speech data is encour-

aging to the field of development and refinement of signal processing classifiers.

As this analysis demonstrated, the more commonly use Itakura-Saito classifier

was outperformed by the RPLF classifier on nearly all simulations and all data

tests. If it is found that the RPLF classifier is a superior classifier across all

data types, this could have far reaching implications for all applications of

signal processing classification technology.
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APPENDIX A

DISTANCE BETWEEN EXACT GAUSSIAN AND THE
ASYMPTOTIC GAUSSIAN LIKELIHOOD FUNCTION

A.1 Difference

The exact Gaussian takes the form of,

ln(pE(xxx)) = −N
2

ln(2π)− 1

2
ln(det(CCC))− 1

2
xxxTCCC−1xxx

Because the random variable is a zero mean random variable, it takes the form

of,

= −N
2

ln(2π)− 1

2
ln(det(RRR))− 1

2
xxxTRRR−1xxx (A.1)

The derivation for the inverse autocorrelation matrix and its determinate can

be found in [14].

det(RRR) =
(σ2)N

(1− a2[1])
(A.2)

RRR−1 =
1

σ2



1 a[1] 0 0 · · · 0

a[1] 1 + a2[1] a[1] 0 · · · 0

0 a[1] 1 + a2[1] a[1] · · · 0

...
...

. . . . . . . . .
...

0 0 · · · a[1] 1 + a2[1] a[1]

0 0 · · · 0 a[1] 1


Looking at the last term in the exact gaussian (A.1), 1

2
xxxTRRR−1xxx, where xxx is

an N-dimensional vector of zero mean WSS Gaussian random variables, from
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1 ≤ n ≤ N and RRR−1 is an N x N matrix.

=
1

2σ2

[
x[0] x[1] · · · x[N − 1]

]


1 a[1] 0 0 · · · 0

a[1] 1 + a2[1] a[1] 0 · · · 0

0 a[1] 1 + a2[1] a[1] · · · 0

...
...

. . . . . . . . .
...

0 0 · · · a[1] 1 + a2[1] a[1]

0 0 · · · 0 a[1] 1





x[0]

x[1]

x[2]

...

x[N − 2]

x[N − 1]



=
1

2σ2

[
x[0] x[1] · · · x[N − 1]

]


x[0] + a[1]x[1]

a[1]x[0] + x[1] + a2[1]x[1] + a[1]x[2]

a[1]x[1] + x[2] + a2[1]x[2] + a[1]x[3]

...

a[1]x[N − 3] + x[N − 2] + a2[1]x[N − 2] + a[1]x[N − 1]

a[1]x[N − 2] + x[N − 1]
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=
1

2σ2

[
x[0](x[0] + a[1]x[1])

+ x[1](a[1]x[0] + x[1] + a2[1]x[1] + a[1]x[2])

+ x[2](a[1]x[1] + x[2] + a2[1]x[2] + a[1]x[3])

+ · · ·

+ x[N − 2](a[1]x[N − 3] + x[N − 2] + a2[1]x[N − 2] + a[1]x[N − 1])

+ x[N − 1](a[1]x[N − 2] + x[N − 1]
]

=
1

2σ2

[
x2[0] + a[1]x[0]x[1]

+ a[1]x[0]x[1] + x2[1] + a2[1]x2[1] + a[1]x[1]x[2]

+ a[1]x[1]x[2] + x2[2] + a2[1]x2[2] + a[1]x[2]x[3]

+ · · ·

+ a[1]x[N − 3]x[N − 2] + x2[N − 2]

+ a2[1]x2[N − 2] + a[1]x[N − 2]x[N − 1]

+ a[1]x[N − 2]x[N ] + x2[N − 1]
]
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If we regroup the above equations we can form the following,

=
1

2σ2

[
x2[0] + a[1]x[0]x[1] + a[1]x[0]x[1] + x2[1]

+ a2[1]x2[1] + a[1]x[1]x[2] + a[1]x[1]x[2] + x2[2]

+ a2[1]x2[2] + a[1]x[2]x[3] + a[1]x[2]x[3] + x2[3]

+ · · ·

+ a2[1]x2[N − 3] + a[1]x[N − 3]x[N − 2]

+ a[1]x[N − 3]x[N − 2] + x2[N − 2]

+ a2[1]x2[N − 2] + a[1]x[N − 2]x[N − 1]

+ a[1]x[N − 2]x[N − 1] + x2[N − 1]
]

=
1

2σ2

[
x2[0] + 2a[1]x[0]x[1] + x2[1]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2
] (A.3)

If we set the initial condition of x[−1] = 0, this can be rewritten,

=
1

2σ2

[N−1∑
n=0

[
(x[n] + a[1]x[n− 1])2

]
− |a2[1]x2[0]

]
(A.4)

Now substituting (A.2) and (A.3) into (A.1) will give the form of the exact log

Gaussian pdf relative to the pole placement (a) and the length of the process
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(N),

ln(pE(xxx)) =− N

2
ln(2π)− N

2
ln

(
σ2

(1− a2[1])

)
− 1

2σ2

[N−1∑
n=0

[
(x[n] + a[1]x[n− 1])2

]
− a2[1]x2[0]

] (A.5)

The asymptotic equivalent of the log of the exact Gaussian is derived in ap-

pendix 3D of [12]. We use that process in reverse as a guide through the

derivation here. The asymptotic Gaussian takes the form of,

ln(pA(xxx)) = −N
2

ln(2π)− N

2

1
2∫

− 1
2

(
ln(P (f)) +

I(f)

P (f)

)
df

set

J =

1
2∫

− 1
2

(
ln(P (f)) +

I(f)

P (f)

)
df

Starting with the first term,

1
2∫

− 1
2

(ln(P (f))) df (A.6)

and,

P (f) =
σ2
u

|A(f)|2
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substituting back into (A.6)

=

1
2∫

− 1
2

(
ln(

σ2
u

|A(f)|2
)

)
df

=

1
2∫

− 1
2

(
ln(σ2

u)
)
df −

1
2∫

− 1
2

(
ln(|A(f)|2)

)
df

since the integral goes from −1
2

to 1
2

and σ2
u does not depend on f ,

= lnσ2
u −

1
2∫

− 1
2

(
ln(|A(f)|2)

)
df

looking at the second part.

1
2∫

− 1
2

(
ln(|A(f)|2)

)
df

=

1
2∫

− 1
2

(lnA(f) + lnA∗(f)) df

=2Re

1
2∫

− 1
2

(lnA(f)) df

Since the linear filter is an AR(1) filter with a < 1 it is a stable causal filter

it will have its poles inside the unit circle with a region of convergence going

outward. Therefore the unit circle will be in the region of convergence. Then

going from an integral in frequency to an integral in the z-plane results in a
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contour integral around the unit circle.

= 2Re

∮
C

lnA(z)
dz

2πjz

the definition of the inverse z-transform is

g[n] =
1

2πj

∮
C

G(z)zn−1dz

So with n = 0

= 2Re
[
Z−1{lnA(z)|n=0}

]
Since we now the sequence is causal and stable we will look at the limit of the

sequence as it goes to ∞

lim
x→∞

X(z) = lim
x→∞

∞∑
n=0

x[n]z−n = lim
x→∞

∞∑
n=0

x[n]
1

zn

so as z →∞ the only term left is when n = 0, this is the initial value theorem.

Then,

Z−1{lnH(z)}|n=0

= lim
x→∞

lnH(z)

= ln lim
x→∞

H(z)

= ln(h[0])

= ln(1) = 0
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resulting in,
1
2∫

− 1
2

(ln(P (f))) df = ln(σ2
u)

and

J = ln(σ2
u) +

1
2∫

− 1
2

(
I(f)

P (f)

)
df

where

P (f) =
σ2
u

|A(f)|2

Therefore,

= lnσ2
u +

1

Nσ2
u

1
2∫

− 1
2

|A(f)|2|X(f)|2df

= lnσ2
u +

1

Nσ2
u

1
2∫

− 1
2

|A(f)X(f)|2df

setting,

Y (f) = A(f)X(f)

J = lnσ2
u +

1

Nσ2
u

1
2∫

− 1
2

|Y (f)|2df

Using parsevals theorem,

lnσ2
u +

1

Nσ2
u

∞∑
n=−∞

y2[n] (A.7)
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Because multiplication in the frequency domain is convolution in the time do-

main.

y[n] = a[n] ∗ x[n]

Remember, a[n] is a single zero FIR filter with a tap weight of a[1]. For n < 0

and n > (N − 1), x[n] = 0

y[0] = x[0]

y[1] = x[1] + a[1]x[0]

y[2] = x[2] + a[1]x[1]

...

y[N − 1] = x[N − 1] + a[1]xN − 2

y[N ] = a[1]x[N − 1]

Then,

y2[0] = x2[0]

y2[1] = (x[1] + a[1]x[0])2

y2[2] = (x[2] + a[1]x[1])2

...

y2[N − 1] = (x[N − 1] + a[1]x[N − 2])2

y2[N ] = a2[1]x2[N − 1]
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now recalling the summation in (A.7), and since y2[n] is zero for n ≤ 0 and

n ≥ N

N∑
n=0

y2[n] = x2[0] +
N−1∑
n=1

(x[n] + a[1]x[n− 1])2

a2[1]x2[N − 1]

From the derivation of the exact form(A.3)

1

2
xxxTRRR−1xxx =

1

2σ2

[
x2[0] + 2a[1]x[0]x[1] + x2[1]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2
]

following this same format for y[n], by pulling out the n = 1 term

N∑
n=0

y2[n] = x2[0] + x2[1] + 2a[1]x[0]x[1] + a2[1]x2[0]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2

+ a2[1]x2[N − 1]

Now substituting everything back in.

ln(p(xxx)) =− N

2
ln(2π)− N

2

(
lnσ2

u +
1

Nσ2
u

(
+ x2[0] + x2[1] + 2a[1]x[0]x[1] + a2[1]x2[0]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2

+ a2[1]x2[N − 1]
))
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=− N

2
ln(2π)− N

2
lnσ2

u

− 1

2σ2
u

[
x2[0] + x2[1] + 2a[1]x[0]x[1] + a2[1]x2[0]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2

+ a2[1]x2[N − 1]
]

the final form of the asymptotic Gaussian is

ln(pA(xxx)) =− N

2
ln(2π)− N

2
ln

(
σ2

(1− a2[1])

)
− 1

2σ2

[
x2[0] + 2a[1]x[0]x[1] + x2[1] +

N−1∑
n=2

(x[n] + a[1]x[n− 1])2
]

= −N
2

ln(2π)− N

2

(
lnσ2 − ln(1− a2[1])

)
− 1

2σ2

[
x2[0] + 2a[1]x[0]x[1] + x2[1] +

N−1∑
n=2

(x[n] + a[1]x[n− 1])2
]

= −N
2

ln(2π)− N

2
lnσ2 +

N

2
ln(1− a2[1])

− 1

2σ2

[
x2[0] + 2a[1]x[0]x[1] + x2[1] +

N−1∑
n=2

(x[n] + a[1]x[n− 1])2
]

The difference between the exact Gaussian and the asymptotic Gaussian

= ln(p
′
(xxx))− ln(p(xxx))

=
N

2
ln(1− a2[1]) +

1

2σ2

[
a2[1]x2[0] + a2[1]x2[N − 1]

]

The difference between the likelihood functions is due to two things. The first

reason is the effect of the filtering in the asymptotic Gaussian. It creates extra

terms at the beginning and the end of the convolution of the input and the

impulse response of the filter. The second is the inability of the asymptotic
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Gaussian to correctly calculate the determinate of the auto-correlation matrix.

Notice if |a[1]| = 0 this difference will be equal to 0. However if a[1] is very

close to 1 the first term would get large and cause significant errors in the result.

A.2 Distance

Starting with the derived forms of the log of the exact Gaussian pE(xxx) and the

log of the asymptotic Gaussian pA(xxx).

ln(pE(xxx)) = −N
2

ln(2π)− N

2
lnσ2 +

N

2
ln(1− a2[1])

− 1

2σ2

[
x2[0] + 2a[1]x[0]x[1] + x2[1]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2
]

and

ln(pA(xxx)) =− N

2
ln(2π)− N

2
lnσ2

u

− 1

2σ2
u

[
x2[0] + x2[1] + 2a[1]x[0]x[1] + a2[1]x2[0]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2

+ a2[1]x2[N − 1]
]
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Leading to the pdf’s

pE(xxx) =

(
(1− a2[1])

2πσ2

)N
2

exp
(
− 1

2σ2

[
x2[0] + 2a[1]x[0]x[1] + x2[1]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2
]) (A.8)

and

pA(xxx) =

(
1

2πσ2

)N
2

exp
(
− 1

2σ2
u

[
x2[0] + x2[1] + 2a[1]x[0]x[1] + |a[1]|2x2[0]

+
N−1∑
n=2

(x[n] + a[1]x[n− 1])2

+ |a[1]|2x2[N − 1]
])

Therefore

pE(xxx)

pA(xxx)
= (1− a2[1])

N
2 exp

( 1

2σ2
u

[
a2[1]x2[0] + a2[1]x2[N − 1]

])

leading to

ln

(
pE(xxx)

pA(xxx)

)
=
N

2
ln(1− a2[1]) +

1

2σ2
u

[
a2[1]x2[0] + a2[1]x2[N − 1]

]
(A.9)

Now it is easy to combine (A.8) and (A.9) to form the distance measurement,

∞∫
−∞

(
pE(xxx) ln

(
pE(xxx)

pA(xxx)

))
dxxx (A.10)
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Substituting into (A.10)

∞∫
−∞

(
pE(xxx)

(
N

2
ln(1− a2[1]) +

1

2σ2
u

[
a2[1]x2[0] + a2[1]x2[N − 1]

]))
dxxx

now to split up the integrals,

=

∞∫
−∞

pE(xxx)

(
N

2
ln(1− a2[1])

)
dxxx

+

∞∫
−∞

pE(xxx)

(
1

2σ2
u

a2[1]x2[0]

)
dxxx

+

∞∫
−∞

pE(xxx)

(
1

2σ2
u

a2[1]x2[N − 1]

)
dxxx

Now pulling the terms out that don’t rely on x and since the pdf will integrate

to one this can be simplified to,

=
N

2
ln(1− a2[1])

+
a2[1]

2σ2
u

∞∫
−∞

pE(xxx)
(
x2[0]

)
dxxx

+
a2[1]

2σ2
u

∞∫
−∞

pE(xxx)
(
x2[N − 1]

)
dxxx

Then realizing the E (x[n]x[n]) is just the autocorrelation function at zero lag,

and that pE(xxx) is the pdf of the AR(1) process where r[0] is defined as [14],

rxx[0] =
σ2

(1− a2[1])
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Substuting in and simplifing,

=
N

2
ln(1− a2[1]) +

a2[1]

(1− a2[1])
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APPENDIX B

ISOLET INFORMATION

Introduction
CSLU: ISOLET Spoken Letter Database Version 1.3, Linguistic Data Consor-
tium (LDC) catalog number LDC2008S07 and isbn 1-58563-488-3, was created
by the Center for Spoken Language Understanding (CSLU) at OGI School of
Science and Engineering, Oregon Health and Science University, Beaverton,
Oregon.

CSLU: ISOLET Spoken Letter Database Version 1.3 is a database of let-
ters of the English alphabet spoken in isolation under quiet laboratory
conditions and associated transcripts. The data was collected in 1990 and
consists of two productions of each letter by 150 speakers (7800 spoken letters)
for approximately 1.25 hours of speech. The subjects were recruited through
advertising and consisted of 75 male speakers and 75 female speakers. Each
subject received a free dessert at a local restaurant in exchange for his or her
participation in the data collection. All speakers reported English as their
native language. Their ages varied from 14 to 72 years; the speakers’ average
age was 35 years.

Data

Speech was recorded in the OGI speech recognition laboratory. The room
measured 15’ by 15’ with a tile floor, standard office wall board and drop
ceiling and contained two Sun workstations and three disk drives.

The recording equipment was selected to mimic the equipment used to collect
the TIMIT database as closely as possible. The speech was recorded with a
Sennheiser HMD 224 noise-canceling microphone, low pass filtered at 7.6 kHz.
Data capture was performed using the AT∧T DSP32 board installed in a Sun
4/110. The data were sampled at 16 kHz and converted to RIFF(.WAV) format.

The subjects were seated in front of a Sun workstation and prompted
with letters in random order. After each prompt, the subject would strike
the return key and say the letter. Two seconds of speech were recorded and
immediately played back for verification. If the subject spoke too soon or
too late and missed the two-second buffer, or if the experimenter or subject
decided that the letter was misspoken, the recording was repeated. There was
no attempt to elicit ideal speech. A letter was judged to be misspoken only if
there was a significant departure from normal pronunciation.
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After the recording session, each utterance was verified by a human ex-
aminer for two determinations. First, the examiner viewed a waveform of the
utterance to determine that the speech was padded with silence. The examiner
then listened to the speech and noted any ambiguous or misspoken utterances.
All utterances noted by the examiner were examined by two additional human
examiners. If a majority of the examiners perceived that an utterance was
abnormal, that utterance, and the rest of the utterances from that speaker,
were removed from the corpus.

The transcriptions of the recorded speech are time-aligned phonetic tran-
scriptions conforming to the CSLU Labeling standards. Time-aligned word
transcriptions are represented in a standard orthography or romanization.
Speech and non-speech phenomena are distinguished. The transcriptions
are aligned to a waveform by placing boundaries to mark the beginning and
ending of words. In addition to the specification of boundaries, this level of
transcription includes additional commentary on salient speech and non-speech
characteristics, such as glottalization, inhalation, and exhalation.
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