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ABSTRACT  
 
In the healthy human brain, the protein tau serves the essential function of stabilizing 

microtubules. However, in a diseased state, tau becomes destabilized and aggregates 

into a pathogenic form that ultimately creates one of the two major hallmarks of 

Alzheimer’s disease (AD), amyloid-beta (Aβ) plaques and tau tangles. Multiple 

neurodegenerative diseases, termed tauopathies, such as Pick’s disease, and 

progressive supranuclear palsy (PSP), are also linked to mutations in tau. While AD 

does include a second hallmark in the form of Aβ plaques, to date all therapeutics 

aimed at this hallmark have failed. However, the nonsteroidal anti-inflammatory drug 

(NSAID) tolfenamic acid (TA) has been shown to reduce the levels of multiple 

neurodegenerative endpoints, and improve cognitive function, in various murine 

models. Of the murine models tested with TA, all contained some form of the tau gene 

and the amyloid precursor protein (APP) gene, the precursor of Aβ. The experimental 

model utilized in this paper, unlike others, tested whether the same positive effects of 

TA can take place after removal of endogenous murine tau. The impacts of TA, both 

molecular and behavioral, were no longer significant in the absence of tau. Mice 

treated with TA, and lacking the tau gene performed no better than their counterparts 

that were untreated. Additionally, mice treated with TA exhibited no change in levels 

of neurodegenerative endpoints over those mice that were untreated. Only those mice 

that were treated with TA while concurrently possessing the tau gene exhibited 

improved cognitive function and lower pathological burden. This project better 

identifies links between tau and known neurodegenerative endpoints, and proposes 

that tau is essential for the action of TA. 
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1. INTRODUCTION  

 Neurodegenerative diseases as a whole are defined as disorders with a selective 

loss of neurons and distinct involvement of functional systems defining a clinical 

presentation (Moodley and Chan, 2014). Research has demonstrated that proteins with 

altered physicochemical properties may tend to deposit in definitive regions of the brain, 

such as the frontal cortex (Irvine et al., 2008). Among various neurodegenerative 

disorders, Alzheimer’s disease (AD) is perhaps the most widely studied. The deposition 

of proteins such as hyperphosphorylated tau and plaques of amyloid are the two major 

biological hallmarks of AD, and the official markers of postmortem diagnosis of AD 

(Reitz and Mayeux, 2014). Tau belongs to a family of microtubule-associated proteins 

(MAPs) that undergoes hyperphosphorylation in the AD state, and ultimately forms 

neurofibrillary tangles (NFTs). This improper phosphorylation of tau may alter its 

conformation, allowing it to detach from microtubules, abnormally aggregate, and form 

the diagnostic insoluble NFTs (Fischer et al., 2009; Ishihara et al., 2001; Jho et al., 2010). 

 In spite of years of research on a wide spectrum of neurodegenerative disorders, 

the primary and decisive pathway under dysregulation in AD is unresolved. Previously 

established research has found that in AD, both amyloid and tau become insoluble and 

form plaques and NFTs, respectively (Bloom, 2014). Though normal phosphorylation 

occurs through kinase and phosphatase mechanisms at a large variety of sites, NFT’s 

hyperphosphorylation is site-specific (Duka et al., 2013). These specific sites have been 

identified as serine or threonine residues, acting as substrates for kinase activity (Larson 

et al., 2012). The most notable family of kinases capable of tau phosphorylation are those 

of the mitogen-activated protein kinase (MAPK) family, specifically cyclin-dependent 
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kinase-5 (CDK5) (Wagner et al., 1996). CDK5’s activation is supported largely by 

p35/25, a complex of regulatory subunits abundantly found in post mitotic neurons 

(Patrick et al., 1999; Tomizawa et al., 2002). Hyperphosphorylation of tau has shown to 

be responsible for the neurofibrillary lesions and thus any interference in this pathway 

would be expected to provide therapeutic benefits (Iqbal et al., 2010).  

 Specificity protein 1 (Sp1) is a zinc-finger transcription factor essential for the 

regulation of tau and CDK5 genes, among others (Valin et al., 2009). CDK5 is 

responsible for the phosphorylation of tau on sites that are unusually 

hyperphosphorylated in tauopathies (Bu et al., 2002).  Sp1 also regulates the expression 

of tau, thus, mutations on the Sp1 binding regions on the tau promoter may affect tau 

expression (Santpere et al., 2006). Previous reports from our lab have provided 

convincing evidence that either silencing of the Sp1 gene using small interfering RNA 

(Basha et al. 2005), or treatment of animals with Tolfenamic acid (TA) lowers the 

expression of Sp1 target genes (Adwan et al. 2011). Sp1 binding motifs were also found 

on the promoter regions of p35 and p39 (Ohshima et al., 1996, 1995; Ross et al., 2002; 

Valin et al., 2009). Therefore, targeting Sp1 is an ideal approach to reduce tau levels, and 

such reduction is likely to impact any post-translational modifications of tau, thereby 

providing a mechanistic approach to reduce the pathological features of 

neurodegenerative diseases while providing cognitive improvement. 

TA, known as (Clotam® Rapid), possesses the ability to reduce Sp1, and has been 

used as a migraine medication for decades in Europe due to its anti-inflammatory 

properties associated with COX inhibition (Sidhu et al., 2006). However, TA is not 

approved for any human indication in the United States. The European Medicine Agency 
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and the US Food and Drug Administration (FDA) have designated TA as a potential 

treatment for frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). 

The present study was conducted to assess two specific aims which would aid in 

determining the ability of TA to modulate the overexpression of tau-related biomarkers 

and the severity of cognitive deficits and tauopathy in animal models. These two aims are 

stated as follows: 1) to determine the relevance of the tau pathway to the efficacy of TA 

as it may effect and improve memory retention and learning; 2) to determine the ability 

of TA  to downregulate tau-related biomarkers in both the presence and absence of the 

tau pathway. These aims will be evaluated through the usage of: 1) mice that are non-

carriers for tau (NC); 2) mice that are carriers for human tau and knockout for murine tau 

(hTau +/-) gene (C). Furthermore, a cellular model of SH-SY5Y neuroblastoma cells 

exposed to a series of concentrations of TA was used to provide further confirmation of 

treatment efficacy in conjunction with animal models. Studies aim to build a better 

understanding of the mechanisms at play when tau is present, and perhaps more 

illuminating, when it has been removed. 
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2. MATERIAL AND METHODS  

2.1. Animal exposure  

Transgenic (Tg) mice hemizygous for hTau, strain B6.Cg-Mapttm1(EGFP)Klt 

Tg(MAPT)8cPdav/J, were obtained from Jackson Laboratory; Stock No: 005491 (Bar 

Harbor, ME). These Tg mice are knock-in for hTau, and express all six isoforms of the 

human tau (3R and 4R), and are homozygous knockouts for murine tau. As these mice 

are carriers of the hTau gene, they will be known as carriers (C, +/-). Included in the 

transgene are the coding sequences, intronic regions, and regulatory elements of the 

endogenous human promoter region. Mice that are homozygous knockouts for murine tau 

will be referred to as non-carriers (NC, -/-). The control group received only vehicle (corn 

oil), while treatment group received TA (dissolved in corn oil) daily for 34 days at a dose 

of 5 mg/kg via oral gavage. All mice were bred and genotyped in house, on a 12:12 light-

dark cycle at the University of Rhode Island (URI). Food and water were made available 

for all mice ad-libitum, and room temperature was maintained at 22+/-2°C. All animal 

procedures and protocols were approved by the University of Rhode Island Institutional 

Animal Care and Use Committee (IACUC), and all animals were under the constant 

supervision of a URI veterinarian for the duration of the study. 

2.2. Behavioral Studies 

 

 Mice were tested for learning and memory using the Morris Water Maze (MWM) 

task, following the method of Morris et al. (Morris et al., 1982).The maze apparatus 

consisted of a white pool (48" diameter, 30" height) filled with water to a depth of 14". 
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In order to make the water opaque, white, non-toxic paint (Crayola, New York City, 

NY, USA) was used. The pool was virtually divided into four quadrants (NW, NE, SW, 

and SE), and distinct visual cues were placed along the sides of the pool. A clear 

Plexiglas escape platform (10cm2) was submerged in one of the quadrants, 0.5 cm below 

the surface of the water. This quadrant was then known as the platform zone (PFZ). 

Water temperature was maintained at 25+/-2°C during all procedures.  

 Mice were allowed to acclimate to the experiment on day 0, in what is known as a 

habituation trial, by swimming freely for 60 s. Over the following 7 days, mice received 

3 daily training sessions with a 20-minute inter-trial interval. The starting position was 

randomly assigned between four possible positions while the platform, and associated 

platform zone (PFZ), remained fixed for all trials. Mice were given a maximum of 60 s 

of swimming to find the platform. For the first 3 days of the trial, any mouse that failed 

to locate the platform in time was gently guided towards the platform by the 

experimenter and allowed to remain on the platform for 30 s. For the remaining 4 days 

of the trial, mice were removed from the maze if they failed to locate the platform within 

60 s. Following the 7th day of training, probe trials were performed on days 8 and 18 in 

order to assess memory retention. In probe trials, the platform was removed and mice 

were allowed to swim for 60 s. A predilection for the platform location would be an 

indication that the mice had developed memory of the correct quadrant (the quadrant 

that contained the hidden platform during the previous training sessions). The swim 

paths and latencies were videotaped and analyzed with a computerized video-tracking 

system (ObjectScan, Clever Sys. Inc., Reston, VA, USA).  
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2.3. Cell Culture: 
 
 
 Human neuroblastoma (SH-SY5Y) cells were procured from American Type 

Culture Collection (ATCC, Manassas, VA), and were cultured in 6 well plates (CellTreat, 

Pepperell, MA) at a density of 0.3 x 106 cells/well containing Dulbecco’s Modified Eagle 

Medium(DMEM)/F12 medium (Sigma-Aldrich, MO) with 10% fetal bovine serum (FBS) 

(Sigma-Aldrich, MO), 100 μg/mL penicillin, and 100 μg/mL streptomycin in a carbon 

dioxide (CO2) incubator maintained at 5% CO2 and37°C. In order to differentiate,  SH-

SY5Y cells were stimulated with 10 μM all-trans retinoic acid (Sigma-Aldrich, MO), as 

described previously (Bihaqi et al., 2017).  The cells were then examined for neurite 

outgrowth for 48 h, 72 h, and 6 days, with media changes occurring every 3 days. A 20X 

objective lens on a Nikon ECLIPSE camera (TE2000-E), adapted to the microscope, was 

used to examine the morphology of cultured cells. Differentiated neuroblastoma cells 

were exposed to TA according to conditions previously established by our lab (Adwan et 

al., 2014). Cells were incubated with 0, 5, or 25 μM of TA for 72 hours at 37°C.   

 

2.4. Protein extraction and Western blotting: 
 
 
 Euthanization of mice was performed by CO2   inhalation 24 h after the final dose 

of TA was administered. Brains were dissected and stored at -80°C, awaiting analysis. 

Brain cortices and cells collected following exposure were homogenized or lysed in 

radio-immunoprecipitation assay (RIPA) lysis buffer (Sigma Aldrich, MO) supplemented 

with 0.1% protease inhibitor cocktail, and 5µl phosphatase inhibitor per 1mL lysis buffer 

(Sigma-Aldrich, MO).  The samples were incubated on ice for 30 min in order to allow 
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efficient lysis of the samples. The samples were sonicated and vortexed for 5 min before 

centrifugation at 10,000 × g for 20 min at 4oC and supernatants were collected and stored 

at −80°C until further use. Protein concentration was determined by Pierce bicinchoninic 

assay (BCA) kit (Thermo Scientific, Waltham, MA). For the determination of protein 

expression of various biomarkers 40µg of the total protein samples were loaded onto an 

SDS-Page gel and run for 2 h at 100 mV, and then transferred to Polyvinylidene Fluoride 

(PVDF) membranes (GE, Piscataway, NJ). Non-specific binding was blocked by 

incubation with 5% BSA in Tris buffer saline + 0.1% Tween 20 (TBST) at room 

temperature for 1h. Membranes were incubated overnight at 4°C with following primary 

antibodies at a dilution of 1:1000 [Mouse Anti-APP, Rabbit Anti-CDK5, Rabbit Anti-

COX2, Rabbit Anti-GAPDH, Rabbit Anti-p35/25, Mouse Anti-SP1] (Cell Signaling 

Technology, Danvers, MA). On the following day, membranes were washed and exposed 

for 1 h to IRDye®800LT Infrared Dye (LI-COR Biotechnology, NE), goat anti-

mouse/goat anti-rabbit diluted at 1:10000. The images were developed using Odyssey 

infrared imaging system (LI-COR Biotechnology, NE). As a control for equal protein 

loading, membranes were stripped and re-probed with rabbit GAPDH antibody (diluted at 

1:2500, Cell Signaling Tech, MA) and exposed to anti rabbit IRDye® 680LT Infrared 

Dye. After transferring to a PVDF membrane, the gel was stained with Bio-safe 

Coomassie blue stain (Bio-Rad, CA) to assess the loading of the samples. 

 

2.5. Statistical treatment: 
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 Data for molecular tests was analyzed by students t-test followed by Bonferonni’s 

post-hoc test to compare the effects among various treatments. GraphPad Prism 3.0 

computer software (La Jolla, CA, USA) was used for analysis, P<0.05 was considered 

significant. Behavioral data was analyzed by two-way analysis of variance (ANOVA) 

followed by Duncan’s post-hoc test to compare the effects among various treatments. 

GraphPad Prism 3.0 computer software (La Jolla, CA, USA) was used for analysis. 

P<0.05 is considered significant.  Table 1 displays the power produced by each 

comparison in both the molecular and behavioral end points of this paper. In behavioral 

studies, an “n” of 5 was used, and in molecular studies, an “n” of 4 was utilized. These 

numbers are adequate to predict differences between groups with statistical power while 

also considering the inter-individual variation presented among animals.  
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3. RESULTS   

3.1. Treatment with TA improves memory retention only in the presence of the tau gene 

 Distance travelled reaching the platform allows for assessment of memory 

retention, as those mice that remember the location of the platform will cover less 

distance in reaching it. Results indicated that only those mice treated with TA and 

possessing the tau gene swam a significantly lower distance than their untreated 

counterparts (Fig. 1 A, B). Differences in cognitive function between NC’s treated with 5 

mg/kg of TA and their respective controls were assessed utilizing two probe trials 

spanning 10 days. Probe trials measured the amount of time spent inside of or outside of 

the correct PFZ after a latency period, which can allow for assessment of reference and 

working memory. Statistical analysis revealed no significant difference between the 

treatment group and aged matched control group, demonstrating the drug as ineffective in 

this experimental paradigm (Fig. 1C). However, this finding should be compared against 

the results of the same trial reported in a previous study by Chang et. al. in which hTau 

carriers treated with TA performed significantly better compared to their untreated, 

control counterparts (Chang et al., 2018).  

There were no significant differences between swim speeds in both groups during probe 

trials. 

3.2. TA alters the protein levels of APP only in the presence of the tau gene 
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 Antibodies directed against APP were used to study the protein expression via 

western blot in differentiated SHSY-5Y cells treated with TA at 5 µM and 25 µM for 72 

consecutive hours. Our results indicated a significant decrease in the normalized protein 

levels of APP in cells treated with 5 µM of TA (p=0.007) and 25 µM of TA (p=0.05) 

compared to control (Fig.2A).  

In aged 18-month-old NC mice, TA loses its ability to alter APP levels. NC-C 

showed no significant difference in levels of APP protein expression, relative to GAPDH, 

when compared to NC-TA (Fig. 2B). 

3.3. TA impacts CDK5 and p25/35 only in the presence of the tau gene  

 Quantification of protein expression relative to GAPDH by western blotting 

across the four groups of mice revealed that only those murine models which possessed 

hTau and were treated with TA saw significant decreases in levels of CDK5 (p=0.03) 

(Fig.3A) and p25 (p=0.05) (Fig.3C). On the other hand, those NC-TA mice did not 

demonstrate the same downregulation of CDK5 and p25, even though they had received 

identical treatment with TA. No significant difference between controls and respective 

treatment groups (C and NC) was seen for p35 (Fig.3B). 

3.4. TA alters COX2 levels regardless of the presence or absence of tau  

 To confirm that TA still retains its COX related anti-inflammatory activity, COX2 

protein levels were measured across all four groups relative to GAPDH. Results indicated 

a significant decrease in the protein levels of COX2 in both the C (p=0.03) and NC 

(p=0.003) treated groups (Fig. 4). 
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4. DISCUSSION  

By the year 2050, the prevalence of AD is expected to quadruple, leaving 

approximately 1 in 85 people afflicted with the disease (Rocca et al., 2011). Considering 

that the nature of the disease carries with it extreme phenotypic changes in the form of 

varying and progressive cognitive deficits, these numbers are particularly alarming. Trials 

of approved prescriptions for AD such as donepezil (Aricept) and rivastigmine (Exelon) 

showed a positive impact on cognitive functions after usage of these drugs and others in 

their class (Farlow, 2002). These drugs, among others, work to alleviate the symptomatic 

aspects of AD, rather than obstruct the progressive cellular death that underlies the 

phenotype. Consequently, there is no disease modifying drug available for AD. 

 Going forward, an ideal drug candidate for AD should also possess the ability to 

attenuate this widespread cell death, and the ability to halt or restore cognitive decline. As 

a drug candidate, TA shows the promise of halting neuronal loss in addition to improving 

cognitive functions in murine models in which it is applied. In addition, TA, unlike other 

failed therapeutics, possesses the ability to target an upstream factor (Sp1) of APP, 

CDK5, and p25, all of which are found upregulated in AD patients. TA has demonstrated 

its capability in attenuating the cognitive deficits in a transgenic mouse model of AD, 

R1.40, through a study published by Subaiea and colleagues (Subaiea et al., 2013). 

Mnemonic improvements in cognitive tasks occurred in parallel to reductions in APP 

expression, and soluble and insoluble Aβ40-42 levels, which correlated with reductions in 

Sp1 protein expression. Seminal work by Adwan and coworkers used the identical R1.40 

model, and after treatment with TA, the model showed a reduction in total murine tau 
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protein levels by 46%, concordant with a 50% reduction in the levels of CDK5 (Adwan et 

al., 2015). Together, these results suggest that TA is capable of concurrent action on both 

the amyloid and tau pathways as both were present in these experimental models.   

Recently, Chang and colleagues reported that TA treated hTau knockin mice 

displayed a significant improvement in cognitive function and long-term memory 

compared to their non-treated counterparts (Chang et al., 2018). In addition, TA was 

shown to reduce site specific hyperphosphorylation of tau at threonine-181 (THR181) 

and serine-396 (SER396), known sites of hyperphosphorylation in AD (Gong and Iqbal, 

2008; Chang et al., 2018).  

All of these studies have explored the effect of TA on both wild type and 

transgenic mice, both of which possessed the MAPT and the APP gene. The findings of 

the above studies as a collective, however, did not make it clear whether TA had 

simultaneous effects on the amyloid and tau pathways, or whether it selectively targeted 

one of these pathways in a way which impacted the other. The present study has built on 

these findings to demonstrate that the cognitive improvements and reduction in AD-

associated biomarkers after TA treatment is contingent on the presence of tau (Fig. 1). 

The calpain driven transformation of p35 to p25 is responsible for the activation 

of CDK5, thus any aberrations to CDK5 are subsequent to aberrations in p25 (Patrick et 

al., 1999). Studies have found accumulations of p25 in the neurons of post mortem brains 

of AD patients, directly correlated with an increase in CDK5 activity (Patrick et al., 

1999). Thus, there is need for a therapeutic agent with an ability to degrade p25, which 

would eventually slow the phosphorylative activity of CDK5 and demand it contribute 
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less to overall phosphorylation. The ability of TA to attenuate hyperphosphorylation via 

degradation of CDK5 and p25 is lost in concordance with the loss of the tau gene (Fig.3 

A &C). 

The success of TA binding to Sp1 would initiate a cascade of events that would 

lower levels of proteins transcribed from genes rich in GC regions, of which would 

include APP, CDK5, and p35/25. Previous published work by our lab has shown that 

administration of TA to wildtype mice or human APP knock-in mice results in a 

significant reduction in Sp1 levels (Adwan et al., 2014; Subaiea et al., 2013). This 

suggests that Sp1might act as a target of TA, and any alterations in its levels would have 

an impact on its ability to drive its target genes. The presence of tau may be necessary for 

this action to be productive, particularly when it relates to TA-induced downregulation of 

the amyloid pathway. As seen in Figure 2, only in an experimental model in which the 

tau pathway is present (Fig. 2A), is TA able to work on the amyloid pathway and 

downregulate levels of APP protein. When the tau pathway has been removed, (Fig. 2B), 

TA is no longer able to degrade the protein. 

TA presents itself as promising in other modes, as neurodegenerative diseases are 

highly inflammatory in nature.  In AD alone, increases in levels of neuronal COX2, 

microglial COX1, mPGES1, and parenchymal PGE2 have been observed (Yagami et al., 

2016). All of the aforementioned are markers of inflammation, and as such, an effective 

therapeutic for AD should possess some anti-inflammatory properties, which TA 

possesses (Fig.4). This study clearly shows that the anti-inflammatory activity of TA was 
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independent of the neurodegenerative process, as the absence of tau seemed to impact the 

tau and amyloid pathways, but not the inflammatory process. 

TA exhibits itself as a drug with a broad spectrum of activity, as it is capable of lowering 

several AD associated proteins and inflammation associated pathways. Central nervous 

system (CNS) drugs are rarely successful, no matter if their application is 

neurodegenerative in nature. Though around 98% of all small molecules are incapable of 

transport across the blood-brain barrier (BBB), TA crosses the BBB, and the validity of 

such was established in previous literature utilizing multiple methodologies. In 2011, 

Subaiea et al. studied the extent of TA to reach the brain via in silico, in vitro, and in vivo 

methodologies (Subaiea et al., 2011). All three methodologies supported the conclusion 

that TA is able to reach the CNS in concentrations that would allow it to exert 

pharmacological effects.  
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5. CONCLUSIONS 

In summary, the ability of TA to decrease AD-related biomarkers is only present 

in models which contain either the endogenous or human form of the tau gene. This 

ability is strongly attenuated when the gene in question has been removed. Increases in 

APP, SP1, CDK5, and p25 are seen in AD patients. Increases in the aforementioned are 

associated with neuronal death, and as such an effective treatment may aim to inhibit 

their overproduction. Previous studies have shown decreases in these proteins and others 

in models in which both human and murine tau and APP are present (Adwan et al., 2014, 

2011; Subaiea et al., 2013).  However, this study aims to elucidate the mechanisms by 

which this effective treatment may work, and as the results show, treatment with TA is 

unsupported when tau has been removed. Altogether, these results suggest that tau is a 

requirement for the action of TA in an AD paradigm.   
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FIGURES: 
 
 
Figure 1: Memory retention in 18 mo. knock out (NC) and hTau carrier (C) mice 

after treatment with TA.  

 

(A,B) Average distance swam in centimeters before reaching platform during 7 days of 

acquisition period. Each data point represents average distance per day. Values are 

expressed as mean ± standard error of the mean. P<0.05 considered significant by 

ANOVA, noted by “*”  (C-CTRL v. C-TA). (C) Memory retention was assessed by a 60-

second probe trial on day 8 (Probe trial 1), following the last day of acquisition testing 

and repeated after day 18 (Probe trial 2). Each data point in the bar diagram represents 

the average total time in seconds spent by mice in the PFZ.Values are expressed as mean 

± standard error of the mean. No significance was observed. 
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Figure 2: APP protein expression after exposure to TA: 

 

(A) SHSY-5Y neuroblastoma cells after 72 h exposure to 0, 5, or 25 µM of TA. 

Quantification of APP normalized against GAPDH, n = 3. P<0.05 considered significant 

by students t-test, noted by “*”.   For 5 µM, p=0.007, for 25 µM, p=0.05. (B) Aged 17-18 

month old mice, homozygous knockouts for tau, mice were administered with vehicle 

(corn oil), or 5 mg/kg TA (dissolved in corn oil) for 34 consecutive days. Quantification 

of APP in the frontal cortex was normalized against GAPDH, n=4, no significance 

observed. All values (Fig. 3A, B) are expressed as mean ± standard error of the mean. 	
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Figure 3: (A) CDK5, (B) p35, and (C) p25 protein expression in frontal cortex after 

exposure to TA: 

 

(A-C) Quantification of protein in the frontal cortex of mice aged 17-18 months 

normalized against GAPDH. Mean + SEM. P<0.05 is considered significant via students 

t-test, noted by “*”.   Mice were administered with vehicle (corn oil), or 5 mg/kg TA 

dissolved in corn oil for 34 consecutive days. (A) Quantification of CDK5normalized 

against GAPDH, n = 4. (NC-CTRL, NC-TA) P>0.05, (C-CTRL, C-TA) P=0.03.  (B) 

Quantification of p35 normalized against GAPDH. Mean + SEM, n = 3, P>0.05 for all 

groups. (C) Quantification of p25 normalized against GAPDH. Mean + SEM, n = 3. (NC-

CTRL, NC-TA) P>0.05, (C-CTRL, C-TA) P=0.05. 
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Figure 4: COX2 protein expression in frontal cortex after exposure to TA:  

 

Quantification of COX2 in the frontal cortex normalized against GAPDH. Mean + SEM, 

n = 3. P<0.05 is considered significant via students t-test, noted by “*”.(NC-CTRL, NC-

TA) P=0.003, (C-CTRL, C-TA) P=0.006. 
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Table 1: Power Analysis  

BIOMARKER POWER: TA 5uM POWER: TA 25uM 

APP 0.9 0.9 

BIOMARKER POWER: NON 

CARRIERS 

POWER: CARRIERS 

APP 0.12 N/A 

CDK5 0.65 0.9 

 P35 0.05 0.5 

P25 0.2 0.9 

COX2 1 0.9 

 

Analysis of power across all comparisons. For molecular tests, n=4. For behavioral tests, 

n=4. An alpha error probability of 0.05 was used, and effect size for each comparison was 

calculated based on mean and standard deviation utilizing formulas from 

http://www.socstatistics.com. 
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