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ABSTRACT

High frequency oscillations (HFOs) have become a predominant topic in neu-

rology research in recent years as they are considered markers of epileptic activity,

potential indicators of seizure onset zone (SOZ), and possibly hint at an oncoming

seizure in epileptic patients. These oscillatory signals are frequently seen in in-

tracranial electroencephalography (iEEG) but have proven difficult to record from

conventional scalp EEG electrodes. However, with the advent of tripolar concen-

tric ring electrodes (TCREs) it is becoming easier to record HFOs without the

need of a surgical procedure. While several different methods have been proposed

for detection of HFOs in iEEG signals, no single method has been identified as

a best detector and it is unknown how any of these methods will perform on the

activity recorded from TCREs (tEEG). In this study, a novel detection design is

derived and evaluated on real and simulated tEEG and compared to two of the

more popular HFO detection routines designed for iEEG. Subsequently, an esti-

mate of SOZ based strictly on HFO event occurrence is made on a few patients

and compared to the markings of a clinician.
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CHAPTER 1

Introduction

Epilepsy is a brain disorder characterized by recurrent seizures and affects an

estimated 1% of the world’s population [1]. Nerve cell communication in the brain

is made up of electrical activity balanced by excitatory and inhibitory signals—

diseased brain tissue can cause an imbalance of these neurotransmitter signals

leading to a higher likelihood of seizures [2, 3]. Antiepileptic drugs are often

prescribed to treat this imbalance but are only effective in controlling symptoms

for 70% of patients [1, 2]. Those suffering from partial seizures—epileptic activity

restricted to a certain area of the brain—can often be helped with a surgical

procedure that removes the part of the cortex responsible for seizure propagation

[2]. However, it can be difficult to find the location of such diseased brain tissue

[4, 5] and it is not possible to determine if a resection of the epileptic zone will be

successful in preventing future seizures before the operation has been performed

[4].

Electroencephalography (EEG) is a monitoring of the brain’s electrical activ-

ity from the scalp surface and is a routine practice for epileptic patients—it is often

the first step in epilepsy diagnosis [2, 3]. While routine surface EEG (recording

from electrodes placed directly on the scalp) is typically concerned with frequen-

cies below 70 Hz [3], modern EEG research commonly uses intracranial or depth

electrodes in order to record higher frequency signals that were previously difficult

or impossible to find [3, 6, 7]. A craniotomy, open brain surgery, is required to

place the intracranial electrodes. The advantage is better localization and less

environmental noise than scalp recordings, yet determining the SOZ is still a chal-

lenge [4]. In epileptic cases where a lesionectomy is chosen as a remedy, multiple
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surgical procedures consisting of iEEG recordings and functional brain mapping

with a cortical stimulator are often needed [3, 4]. iEEG is associated with a risk

to patients and only obtained when required [8]. Therefore, the ability to accu-

rately detect neurophysiological signals of interest and localize areas responsible

for seizure propagation without requiring additional complex procedures has the

potential to revolutionize how advanced neurological studies are performed.

TCREs are a newer technology capable of recording signals with better spa-

tial resolution than standard EEG by generating a Laplacian montage at a single

scalp recording site [9, 10]. The appeal is the ability to investigate highly localized

brain activity without requiring a surgical procedure. This technology applies to

the study at hand as tripolar electroencephalography (tEEG) recordings have been

used to find HFOs preceding seizure onset in epileptic patients [11, 12]. Pairing an

effective HFO detection routine with TCREs has the potential to reduce the num-

ber of open-brain procedures necessary when intervening with high-risk epileptic

patients.

The tradeoff is a higher background noise in tEEG than iEEG, making au-

tomatic signal detection more difficult. Therefore, using detectors that have been

tried with success on iEEG data may not be a fruitful endeavor as iEEG has

more physiological data contributing to the overall signal and less influence due

to environmental noise. This brings us to the purpose of the study: to develop a

detection method designed for the signal characteristics of tEEG and to compare

to detectors in the literature that have had success evaluating the HFO data type

in iEEG studies.

It should be noted that HFOs have been found in recordings from both healthy

and epileptic brains, yet they are more commonly seen in patients with epilepsy and

their frequency of occurrence appears to be correlated with ictal state [13, 14, 15, 5].
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Recent studies have used HFOs recorded from iEEG to try and determine the SOZ

[14, 15]. It is known that resection of brain areas with ripples correlates with a

good postsurgical outcome when compared to those areas that do not generate

oscillatory activity and several studies have shown the correlation between fast

ripples and SOZ, though it appears most likely it is the rate of occurrence or

channels with an abnormally high number of HFOs that indicate epileptic zones

and not the individual characteristics of the events themselves [15, 16, 8, 17].

Detecting HFOs when recording using standard scalp electrodes has proven difficult

but HFOs can occasionally be seen [5]. However, the typical amplitude of ripples

detected from the scalp is very low and only a small proportion of HFOs has a

broad enough spatial extent to be recorded from a standard cup electrode [8]. As

previously discussed, the advantage of tEEG is better source localization than EEG

and a less invasive routine than intracranial, making high-quality recordings of

neural activity, such as HFOs, easier to obtain. Therefore, it should be theoretically

possible to not only design an automated detector that can locate HFOs without

requiring a surgical procedure to do so, but to subsequently use an event detection

count and provide an initial estimate of which area of brain tissue contributes to

seizure propagation.

1.1 Neurophysiological Signal Analysis

Neurophysiological signal processing imposes new complexities over linear

time-invariant systems upon which the majority of signal processing techniques

have been designed. The signal recorded from any electrode designed to measure

electrical properties of the cortex is a summation of activity from many neurons,

each of which can be considered an independent random process [3]. Some research

suggests EEG can be treated as a nonlinear deterministic process by describing the

firing of individual neurons; however, the electrical signals from the brain are often
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considered stochastic in nature and it is generally understood that if the signals

recorded are the result of a deterministic system, then that system is so complex

that it is best modeled as a random process [2]. In order to accurately reconstruct

neurological signals we turn to a parametric approach.

There are two types of noise to consider when working with human data:

environmental and physiological. With surface electrode recording, standard cup

or TCRE, the environmental noise could be due to other equipment in the vicinity,

60 Hz line noise, sensor movement (gradually increasing electrode impedance), etc

[2, 3] for which most of the parameters cannot be known. This noise can vary

based on the type of electromagnetic coupling, the area of the pickup point, and

the patient’s proximity to the source [2, 18]; and it may exist for the duration of the

recording or appear intermittently, either gradually coming and going or appearing

in short irregular bursts. Physiological data, on the other hand, describes all the

data intentionally recorded by the electrodes that are not part of the signal being

observed at the time. As an example, a single study may consist of slow delta waves

during sleep patterns and broadband spiking activity corresponding to seizures

when the patient is awake. Depending on the nature of the study and what the

clinician intends to observe, one of these signal types could be considered data of

interest whereas the other would be physiological noise. Since the parameters of

this latter type of noise are generally known, digital filters are frequently used to

reject the physiological background not currently under observation when possible.

TCREs record further from the neuronal source and closer to obstacles in the

patient environment when compared with intracranial contacts for which the ma-

jority of HFO detectors are designed. Naturally, the HFO amplitude range is highly

dependent on the proximity to the HFO generators [8]. This complicates the design

of an HFO detection routine for tEEG as there is apt to be more environmental
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noise and a lesser magnitude of the physiological data under observation.

The EEG signal is nonstationary long-term due to its slowly time-varying

signal properties; abrupt state changes; and transient events, such as spikes, that

appear superimposed on the background signal [2, 19, 20]. Neurological data has

a 1/f , or pink, spectrum but due to the lack of stationarity, estimating the noise

covariance and applying a pre-whitening filter for the length of the recording is

not feasible [21]. Fortunately, as much as 90% of EEG less than 4 seconds in

duration can be modeled as a Gaussian wide-sense stationary (WSS) process [21].

It is important to ensure any signal processing techniques that rely on a stationary

signal, such as frequency spectrum analyses, must be adapted to consider short-

term stationarity.

It has been shown that short, locally stationary EEG signals can be described

with an autoregressive (AR) model as an all-pole filter is able to describe the spec-

tral parameters of several different EEG rhythms [2]. The AR model also has the

advantage of no spectral leakage offering a better frequency resolution when com-

pared to nonparametric methods [20]. Fourier analysis is limited for EEG since it

is designed for linear, stationary systems [16], and requires a tradeoff between short

record length and accuracy in the frequency domain [22]. The AR model on the

other hand, offers the advantage of relatively few samples for accurate frequency

analysis and computational efficiency [22] due to the analytically derived AR spec-

trum having an infinite frequency resolution with a less restrictive dependence on

the length of analyzed data [20]. It is also good for the analysis of signals with

sharp spectral features at the cost of poor spectral estimation when inappropriate

model orders are used [20].

It is easy to understand the suitability of an all pole model to neurological data

as the EEG signal is described by dominant frequencies, such as sharply defined
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peaks and rhythmic bands describing different brain states, opposed to spectral

notches (absence of power at certain frequency bands) which are better described

by a moving average (MA) model [22].

Typical, non-adaptive signal analysis models require that the signal is station-

ary which we know neurophysiological data is not. Performing a spectral analysis

on a data record exhibiting a non-stationarity will result in a severely biased es-

timate [23]. Thus, it is necessary to either use an adaptive model or divide the

signal into short data segments that can be assumed wide-sense stationary [22]. In

this study, non-stationarities will be found in the data records followed by signal

analysis on short windows located at the events of interest believed to exhibit an

anomaly.

1.1.1 High Frequency Oscillations

The HFO is a signal found in brain wave activity, typically described by

duration of less than 125 ms and frequency in the 80-500 Hz range [8, 5]; however,

some studies have found HFOs at frequencies well above 500 Hz [6, 24]. They can

be further categorized into ripples: frequencies between 80 and 200 Hz, and fast

ripples: frequencies greater than 200 Hz [25, 5]. HFOs have a minimum of four

oscillations and an interval of greater than 25 ms between events [14, 8]. Although

HFOs can be found by reviewing recorded patient data, performing a manual search

is time consuming and automated analyses are preferred when adequate [26].

It should be noted due to the pink noise spectrum of neurological data, the

amplitude of ripples is higher than that of fast ripples for the same signal-to-noise

(SNR) ratio [27]. Similarly, the overall duration is dependent on the frequency of

the signal. HFOs must have a minimum of four oscillations [8], and past studies

attempting to use strictly a signal duration to decide between HFOs or spikes

have failed since the duration of fast ripples will be shorter than that of ripples

6



[27, 28]. Therefore, it is important when using a duration threshold to base it on

the frequency of the event [27].

In setting thresholds for event detectors it is important to understand that

HFOs occur in an on-off intermittent pattern [16] and rates are not consistent

across channels or patients [29]. The pathological significance of HFOs is they

reflect fields of synchronized action potentials within small neuron clusters which

are responsible for seizure generation [16]. Therefore the electrodes contributing

the most HFOs in a study should be indicative of the SOZ.

1.1.2 Epileptic Spikes

Epileptic spikes are a non-oscillatory signal characterized by an abrupt change

in voltage polarity of less than 70 ms duration [3, 8] which can incidentally be

selected by HFO detection methods due to the spurious oscillations they exhibit

following the use of a digital filter [25, 30]. It is known that filtering spikes or

artifacts could produce sustained oscillations at high amplitudes due to Gibbs’

phenomenon [8, 27], and that sharp transients with high amplitudes will contribute

more to generating spurious oscillations [28]. However, oscillations resulting from

filtering will have a low correlation with the raw signal in the frequency band of

interest [8] and result in relatively few oscillations [28]. While epileptic spikes

and sharp waves are a highly specific marker of epilepsy, they do not carry the

same physiological significance as HFOs since they are not markers of the SOZ;

therefore, it is important to distinguish between the two when designing a detection

method [8, 5]. Fortunately, spikes are broadband in the frequency domain whereas

HFOs are sinusoidal and exhibit a narrow frequency band, making it theoretically

possible to classify the two with an automated method.
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1.2 HFO Detection

The short-term Fourier transform (STFT) has been used on TCRE data, visu-

alized with spectrograms, to find areas where high-frequency narrow-band activity

is present [12] as this may be a spectral indicator of HFOs. However, there is

need for examining other techniques for several reasons. First, there is no way to

determine from the spectrogram alone if the high-frequency, narrow-band activity

represents a HFO or is due to some other physiological or environmental noise.

Second, this is a manual technique for making follow-up review easier and not

a detection routine on its own. Knowing that the statistical properties of EEG

signals, and in the case of this problem the underlying noise, varies over time is

reason to believe a better estimator exists than the STFT.

It is important to design a detector based on valid assumptions about the

data. There is no shortage of ad hoc approaches in the literature, such as a basing

on the eyeballing of a frequency spectrum so that it looks similar to what other

events have shown [31, 28]. While some of these methods will work, the result

is likely to be a biased detector and performance demonstrated on limited data

subsets. A majority of the detectors available today are limited in clinical practice

due to their large number of false detections [27]. Additionally, many detectors

are strictly compared against the markings as done by a clinician, which does not

show how each algorithm works on different data types and can be a fairly sub-

jective analysis [27]. Similarly, many others are compared only during slow-wave

sleep when datasets are relatively clean and therefore is not a valid performance

evaluation of the detector [29]. It is important to evaluate each detection routine

on controlled computer simulated data, designed to be realistic to the actual en-

vironment, in order to verify the efficacy of the algorithm and gain a meaningful

performance metric [18].
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It is also unknown if the methods that work well for iEEG or EEG will have

similar results for tEEG. As previously discussed, while information conveyed is

similar, the signals being analyzed are not identical and statistical properties may

differ. Of the methods that have been previously evaluated for HFO detection

no single detector has been established as a best method [30, 26]; therefore a

comparison of detectors is worthwhile.

A majority of the successful approaches consist of a two-stage approach: sepa-

rate events of interest from the background and perform a subsequent test to decide

if the event of interest consists of an HFO. Two such methods will be compared

to the novel detection routine established here. The first, which will be called the

Staba approach, was developed by R. J. Staba et al. in [6] and is most often used

as a baseline method for comparison in the literature since it was one of the first

publications to offer automated HFO detection with good results. The second,

which will be called the Birot method, was developed by G. Birot et al. in [32]

and has gained traction recently for its great performance on capturing fast ripples

from iEEG.

The Staba routine is a filtering of the signal followed by a short-term energy

detector for marking events of interest (EOIs) and the setting of subsequent ampli-

tude and duration thresholds for HFO classification. The first stage of the detector

uses a band-pass filter for the HFO frequency range (80-500 Hz) and computes a

three ms sliding window of the RMS signal. Successive RMS values > 5 standard

deviation above the mean RMS signal with a minimum of six ms duration are

flagged as EOIs. The second stage uses the rectified signal and classifies an EOI

as an HFO if a minimum of six peaks > 3 standard deviation above the mean

amplitude are present.

The first stage of the Birot routine uses a Hanning window to find the local
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energy of the high-pass filtered signal which is compared to a threshold for stage

2 follow-up. The real contribution of this work is in the second stage which uses

a ratio of the power in the periodogram (for full-band data) for high and low-

frequency bands for each EOI. The intent is to reject spikes which are broadband

in nature and therefore will result in a lower test statistic than HFOs, which are

described by high frequencies only. Results are compared in [32] using both the

Fourier and wavelet transforms. Best results are achieved using a low-band of 32-

64 Hz and a high-band of 256-512 Hz, although the comparison between different

frequency band sets tested does not vary greatly.

Both methods use a different implementation of what is essentially an energy

detector as the first stage, for which there are known drawbacks with neurophys-

iological data. When detectors rely on thresholds calculated using a standard

deviation or percentile, the event count will be based on the distribution of actual

events; i.e., it will cause a high number of false alarms on inactive channels and

missed events on active ones [27]. The energy detector is known to fail for HFOs

in active channels [8].

Though the Staba method is generally accepted as the baseline detector to

which the majority of new routines are compared, it is designed for use with short,

relatively noiseless datasets and is prone to detecting artifacts as HFOs [29].

Each method the author believes to be a fair implementation and baseline

comparison.

1.3 Statistical Signal Processing

There are multiple statistical signal processing approaches used in this thesis.

A high level overview of some of them is provided here.
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1.3.1 Autoregressive Processes

It has been previously mentioned that neurological data can be well-described

by an AR process. This is because the data is defined by its strength of power

in certain frequency bands, opposed to its lack thereof which would be better

described by a MA process in order to capture spectral notches [22]. The AR

process is

w[n] = u[n]−
p∑
j=1

a[j]w[n− j] (1)

for model order p, where the data w[n] is modeled as the output of a causal

all-pole discrete filter excited at the input by white Gaussian noise (WGN). It

is a simple model in which the current value is generated by a weighted sum of

previous values plus a noise term [33]. The input to the filter, u[n], is termed the

excitation noise and is necessary to ensure the output describes a WSS random

process [34]. By using this model to describe EEG data, the pink noise assumption

becomes inherent to the filter design and passing generated WGN as input results

in simulated data characteristic of EEG.

A single sample of WGN with mean µ takes the form [34]

px(x) =
1

(2πσ2)1/2
exp

[
− 1

2σ2
(x− µ)2

]
(2)

Making the approximate probability density function (PDF) of an AR process

excited by WGN for record length N

px(x) =
1

(2πσ2)N/2
exp

[
− 1

2σ2

N−1∑
n=0

(x[n] +

p∑
j=1

a[j]x[n− j])2
]

(3)

A more intuitive way to think of the AR model is a coloring of the white noise

input to allow the modeling of a wide variety of power spectral densities (PSD).

The theoretical PSD for data which fits an AR model can be described by

P̂xx(f) =
σ̂2
u

|1 +
∑p

m=1 â[m] exp(−j2πfm)|2
(4)
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where the “hat” denotes the parameters as estimated from the data, or

PAR(f) =
σ2

|A(f)|2
(5)

In order to solve for the AR parameters from a data set, the following AR

term must be minimized

J(a) =
N−1∑
n=p

(
x[n] +

p∑
j=1

a[j]x[n− j]

)2

(6)

The partial derivative with respect to the kth AR parameter is

δJ(a)

δa[k]
= 2

N−1∑
n=p

(
x[n] +

p∑
j=1

â[j]x[n− j]

)
x[n− k] = 0; k = 1, 2, . . . , p (7)

Resulting in

p∑
j=1

â[j]
N−1∑
n=p

x[n− j]x[n− k] = −
N−1∑
n=p

x[n]x[n− k]; k = 1, 2, . . . , p (8)

Using matrix notation, the MLE of the set of AR parameters can be expressed

by


cxx[1, 1] cxx[1, 2] . . . cxx[1, p]
cxx[2, 1] cxx[2, 2] . . . cxx[2, p]

...
...

. . .
...

cxx[p, 1] cxx[p, 2] . . . cxx[p, p]



â[1]
â[2]

...
â[p]

 = −


cxx[1, 0]
cxx[2, 0]

...
cxx[p, 0]

 (9)

where

cxx[j, k] =
1

N − p

N−1∑
n=p

x[n− j]x[n− k] (10)

The AR parameters can now be solved with a Cholesky decomposition. This

result is an estimate of the optimal forward predictor, often termed the covariance

method [33].

12



It is possible to instead base the estimate on the optimal forward and backward

predictors of the AR process using

cxx[j, k] =
1

2(N − p)

(
N−1∑
n=p

x[n− j]x[n− k] +

N−1−p∑
n=0

x[n+ j]x[n+ k]

)
(11)

which is termed the modified covariance method [33].

The derivation above is one of multiple methods commonly used to estimate

AR parameters from a dataset. The entirety of AR parameter estimation in this

thesis utilizes the modified covariance method as it is a common choice in mixed-

spectrum problems and generally results in a lesser shifting of spectral estimate

peaks from their true frequency locations due to additive noise [35, 33].

1.3.2 Generalized Likelihood Ratio Test

The generalized likelihood ratio test (GLRT) is a statistical hypothesis test

considered best suited for problems where the signal PDF is not entirely known,

i.e., may be known with the exception of certain parameters. The GLRT replaces

the unknown parameters by their maximum likelihood estimates (MLEs). The

advantage of using the MLE is it produces an efficient parameter estimate if one

exists [34]. The neurological data being analyzed in this thesis consists of several

signal and noise parameters that are quite variable in practice; with the GLRT, no

prior knowledge of the unknown signal parameters is necessary. Additionally, the

GLRT can be shown to be the uniformly most powerful test asymptotically when

compared to other invariant detectors [36]. While no optimality can be claimed

with using the GLRT, it works well in practice.

The GLRT decides a signal is present based on the following test statistic

LG(x) =
p(x; θ̂1, H1)

p(x; θ̂0, H0)
> γ (12)

where H1 is the case when a signal is present, H0 is the null hypothesis, and θ̂i

represents the MLE of the unknown parameters. The benefit of using the GLRT
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for detection problems where information about the unknown parameters is desired

should be clear: the first step in calculating the test statistic is to find the maximum

likelihood estimate.

1.3.3 Canonical Autoregressive Decomposition

The canonical autoregressive decomposition (CARD) is a technique for esti-

mating unknown sinusoidal parameters when obscured by an unknown AR process.

The intent of utilizing this approach for HFO detection should now be clear: neu-

rophysiological data can be described by an AR background and we are searching

for an unknown brief sinusoidal burst. CARD offers a simplistic way of addressing

mixed spectral problems as a sum of an AR process and sinusoids so that both sig-

nal components can be estimated simultaneously. The intuitive, yet rudimentary,

explanation of the method is a prewhitening of data followed by a periodogram

peak search. A full derivation is outside the scope of this document but can be

found in [35] where it is shown to require a numerical maximization with respect

to only the sinusoidal frequencies.

For implementation here, the CARD method uses a fixed sinusoidal model

order of s = 1 and is run on full-band data to reject spurious oscillations due to

the filtering of spikes or sharp signal artifacts. It is believed this is an adequate

approach as CARD should accurately estimate a pink pre-whitener for the AR

background and find the sinusoidal burst representing an HFO.

A background has been provided on signals of interest and techniques that may

aid us in event detection from tEEG. The following chapters provide a description

and performance evaluation of a novel HFO detection routine and subsequent SOZ

estimator based on the assumptions provided above.
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CHAPTER 2

Methodology

This chapter starts with a high-level concept on the HFO detection routine

used and follows with an algorithm description for each of the two detector stages

derived as part of this routine. Then an overview on the tEEG simulator design

created for performance evaluation is discussed, how the detection algorithms are

to be compared, and how the SOZ is to be estimated based on the results.

2.1 Detector Overview

Similar to the majority of the detection routines in the literature, the detection

approach generated here starts by filtering out the unwanted background, locating

events of interest, and deciding based on signal parameters if an HFO is present.

Novel approaches based on the GLRT are used for locating the events of interest

and detecting the signal. The detection routine is run on each tEEG channel

individually.

The HFO signal can be thought of as containing a transient component and

a rhythmic component [1]. A two-stage detector is therefore designed to first

locate transients via an anomaly detector and second find oscillations via a sinusoid

detector.

The tEEG signal consisting of an HFO is modeled by a sinusoid embedded in

AR noise.

To locate the events of interest, an anomaly detector is derived using the

GLRT in order to find stationarity changes described by a change in AR filter

coefficients or excitation white noise variance. The derivation is based on finding

a stationarity change in a single window of tEEG data and is implemented by

a sliding window (recursively calculated for each sample shift) so that all non-

19



stationarities are located in the entire tEEG data record. The use of a sliding

window estimator in order to find a transition point is preferred when interested

in an abrupt change in data and not any gradual changes in the background [2].

The second stage decides if the events of interest found from stage 1 contain

HFOs. This is called the sinusoid detector and is again derived using the GLRT; the

result is essentially a normalized replica correlator using pre-whitened estimates.

A required input to this detector is an estimate of the sinusoidal frequency and

AR process filter and noise parameters. Two suggestions for estimating these

parameters are offered: CARD parameter estimates based on the full-band signal

and use of the AR spectrum as already estimated from stage 1, the latter of

which requires a subsequent period count to distinguish between HFO and filtered

artifact.

Corresponding block diagram for the overall detection routine is shown in

figure 1.

Before stepping into the algorithm descriptions, it is worth discussing why this

is believed to be a valid approach. In the introduction an overview was provided on

neurological signal analysis and the signals of interest. We have essentially built a

list of prior assumptions about our data, each of which needs to be tackled by the

designed detector. EEG signals are slowly time-varying and non-stationary long

term; the anomaly detection stage is designed to reject slowly time-varying signals

due to AR estimates being similar between consecutive windows. This same stage

will reject any gradual increases in noise throughout the recording due to the noise

estimates being slowly time-varying. Any abrupt changes in environmental noise or

signal artifacts will be detected by the anomaly detector, but subsequently rejected

by the sinusoid detector in stage 2. The data record can be assumed stationary in

small segments—this allows the use of a window size much less than a second and
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Figure 1. Detection Routine Block Diagram
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subsequent spectrum analysis to be performed since the window can be assumed

WSS. EEG has a 1/f , or pink, noise spectrum requiring any signal analysis to use

a pre-whitener—this is inherent to the AR filter that is estimated from the data.

Similar arguments can be made for the signals to be detected. The HFO is a

transient event occurring above 80 Hz and can be separated from the background;

therefore, an 80 Hz high pass filter is applied to the data first to isolate high

frequencies, the anomaly detection stage finds transient events, and the subsequent

stage is based on the frequency peak. The signal is also less than 125 ms in

duration, and the detector window can be adjusted based on the sample rate to

run on a quarter-second of data at a time (allowing for a max-duration HFO to

be captured in half of the window). Because the frequency of event occurrence

varies between channels, the test statistic threshold is constant for all channels

and there is not an influence due to, say, an energy detector threshold that is

based on the mean of the channel. In order to reject epileptic spikes, which are

broadband events and can resemble oscillations due to high-pass filtering, two

implementations of the sinusoid detector are employed. The first, to count the

number of detected oscillations from the high-pass band based on estimated signal

duration and frequency and use this as a subsequent test statistic as HFOs have

a minimum of 4 oscillations whereas filtered spikes show fewer [3, 4]. The second,

to instead perform sinusoid detection and AR estimation on the full-band signal

using the CARD method.

2.2 Anomaly Detector

2.2.1 Overview

The goal of the first stage is to detect a stationarity change in the PSD of

a locally wide sense stationary random process. The PSD is modeled as an AR
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process of model order p with

Pxx(f) =
σ2
u

|1 + a[1]e−j2πf + · · ·+ a[p]e−j2πfp|2
(13)

where a[j] represents the AR parameters and σ2
u represents the noise variance.

It is known that the signal of interest is a transient signal, separable from the

background, so it is desired to only detect significant changes in the AR filter

coefficients or driving white noise variance and reject slowly time-varying signals.

For the use of HFO detection, it is known that the signal of interest is above 80

Hz. Therefore, a digital 80 Hz high-pass filter is applied before anomaly detection

is performed.

2.2.2 Derivation

For a single window length M , the data is broken into x0, the full window

length; x1, the first half of the data; and x2, the second half of the data. Similarly,

the data is described by AR parameters a0, a1, and a2 each of model order p and

excitation white noise variances σ2
0, σ2

1, and σ2
2. This can be shown as

x0 : a0, σ
2
0 n = 0, 1, . . . ,M − 1

x1 : a1, σ
2
1 n = 0, 1, . . . ,

M

2
− 1

x2 : a2, σ
2
2 n =

M

2
,
M

2
+ 1, . . . ,M − 1

(14)

where the bold parameters represent column or row-vectors of data.

The hypothesis test is

H0 : a0 = a1 = a2 AND σ2
0 = σ2

1 = σ2
2

H1 : a0 6= a1 6= a2 OR σ2
0 6= σ2

1 6= σ2
2

(15)

The GLRT decides H1 if

LG(x) =
p(x1; â1, σ̂2

1, H1)p(x2; â2, σ̂2
2, H1)

p(x0; â0, σ̂2
0, H0)

> γ (16)
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The PDF of an AR process excited by WGN of length M can be written as

p(xi; âi, σ̂2
i , Hi) =

1

(2πσ2
i )
M/2

exp

[
− 1

2σ2
i

M−1∑
n=0

(x[n] + ai[1]x[n− 1] + · · ·+ ai[p]x[n− p])2
]
(17)

or equivalently

p(xi; âi, σ̂2
i , Hi) =

1

(2πσ2
i )
M/2

exp

− 1

2σ2
i

M−1∑
n=0

(
x[n] +

p∑
j=1

ai[j]x[n− j]

)2
 (18)

The test statistic can now be written as

1
(2πσ2

1)
M/4 exp

[
− 1

2σ2
1

∑M
2
−1

n=0 (x[n] +
∑p

j=1 a1[j]x[n− j])2
]

· 1
(2πσ2

2)
M/4 exp

[
− 1

2σ2
2

∑M−1
n=M

2
(x[n] +

∑p
j=1 a2[j]x[n− j])2

]
1

(2πσ2
0)

M/2 exp
[
− 1

2σ2
0

∑M−1
n=0 (x[n] +

∑p
j=1 a0[j]x[n− j])2

] (19)

To solve the MLE of σ2
1 we maximize

p(x1; â1, σ̂2
1, H1) =

1

(2πσ2
1)M/4

exp

− 1

2σ2
1

M
2
−1∑

n=0

(
x[n] +

p∑
j=1

a1[j]x[n− j]

)2

(20)

ln p(x1; â1, σ̂2
1, H1) = −M

4
ln 2πσ2

1 −
1

2σ2
1

M
2
−1∑

n=0

(
x[n] +

p∑
j=1

a1[j]x[n− j]

)2

(21)

δ ln p(x1; â1, σ̂2
1, H1)

δσ2
1

= − M

4σ2
1

+
1

2(σ2
1)2

M
2
−1∑

n=0

(
x[n] +

p∑
j=1

a1[j]x[n− j]

)2

(22)

Setting equal to zero and solving results in

σ̂2
1 =

2

M

M
2
−1∑

n=0

(
x[n] +

p∑
j=1

a1[j]x[n− j]

)2

(23)
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Equivalently,

σ̂2
2 =

2

M

M−1∑
n=M

2

(
x[n] +

p∑
j=1

a2[j]x[n− j]

)2

(24)

σ̂2
0 =

1

M

M−1∑
n=0

(
x[n] +

p∑
j=1

a0[j]x[n− j]

)2

(25)

To find the MLE of the AR parameter sets we must minimize

J(a) =

M
2
−1∑

n=0

(
x[n] +

p∑
j=1

a1[j]x[n− j]

)2

(26)

δJ(a)

δa1[k]
= 2

M
2
−1∑

n=0

(
x[n] +

p∑
j=1

a1[j]x[n− j]

)
x[n− j] = 0 (27)

This is solved using k=1 as an example

2

M
2
−1∑

n=0

a1[1]x[n− 1]x[n− 1] = −2

M
2
−1∑

n=0

(
x[n] +

p∑
j=2

a1[j]x[n− j]

)
x[n− 1] (28)

â1[1] =

∑M
2
−1

n=0 (x[n] +
∑p

j=2 a1[j]x[n− j])x[n− 1]∑M
2
−1

n=0 x2[n− 1]
(29)

It then becomes clear that the AR parameter estimates are

â1[k] =

∑M
2
−1

n=0 (x[n] +
∑p

j=1 a1[j]x[n− j])x[n− k]∑M
2
−1

n=0 x2[n− k]
for j 6= k (30)

â2[k] =

∑M−1
n=M

2
(x[n] +

∑p
j=1 a2[j]x[n− j])x[n− k]∑M−1

n=M
2
x2[n− k]

for j 6= k (31)

â0[k] =

∑M−1
n=0 (x[n] +

∑p
j=1 a0[j]x[n− j])x[n− k]∑M−1

n=0 x2[n− k]
for j 6= k (32)
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When implementing, we will use the modified covariance method to solve for

the AR parameters.

When plugging in the estimates for σ2 in the test statistic, the summations in

the exponent will cancel. This is shown below for the null hypothesis.

p(x0; â0, σ̂2
0, H0) =

1

(2πσ̂2
0)M/2

exp

[
−M

2

∑M−1
n=0 (x[n] +

∑p
j=1 â0[j]x[n− j])2∑M−1

n=0 (x[n] +
∑p

j=1 â0[j]x[n− j])2

]
(33)

The resulting test statistic is

LG(x) =

1

(2πσ̂2
1)

M/4
e−M/4 1

(2πσ̂2
2)

M/4
e−M/4

1

(2πσ̂2
0)

M/2
e−M/2

(34)

LG(x) =
(σ̂2

0)M/2

(σ̂2
1)M/4(σ̂2

2)M/4
(35)

Or equivalently

LG(x) =

(
(σ̂2

0)2

σ̂2
1σ̂

2
2

)M/4

> γ′ (36)

2.2.3 Explanation

Three sets of AR filter coefficients and σ2 values are estimated: for the full

window length, the first half of the window, and the second half of the window. The

σ2 values can be thought of as having the AR filter coefficient estimates and the

input data embedded in their estimates. The resulting value from the hypothesis

test then becomes a relationship between the estimated noise variance for the entire

window and the estimates for its two halves. The test statistic will only produce

positive values. Significant signal changes will result in a high valued test statistic

whereas a stationary signal will produce values closer to zero.

The white excitation noise can be thought of as a fitting order for an AR

process. The addition of a sinusoid increases the model order estimate; however it

should also cause the AR coefficient estimates to change when estimating assuming
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Figure 2. Anomaly Detector Block Diagram

27



a fixed model order. Therefore, the anomaly detector can detect transient events

when implemented with a fixed p for the duration of the signal.

By choosing the threshold correctly, the test statistic should identify tran-

sient signals but not those that may be described by a time-varying autoregressive

(TVAR) model or an environment with variant noise over time. It is expected that

the output of this stage, when run on tEEG data, will be a set of events consist-

ing of HFOs; epileptic spikes; and instances of sudden increases in environmental

noise, such as electromagnetic interference or a disconnected electrode.

2.2.4 Expected Performance

The asymptotic performance of the GLRT statistic is given by [5]

2 lnLG(x)
a∼


X2
r underH0

X ′2r (λ) underH1

(37)

Where X2
r and X ′2r are the central and non-central Chi-squared distributions, re-

spectively. In certain uses of the GLRT these can be computed to get an estimate

of the expected performance of the detector; however, the result under H1 can

take on a large variety of signals, so it is not feasible to compute the Chi-squared

non-centrality parameter for this problem. It is possible to compare H0 to the

expected asymptotic results by performing a Monte Carlo simulation of the detec-

tor on tEEG simulated data (computed in chapter 3). The issue of performance

estimation is further complicated in that the Chi-squared distribution assumes in-

dependent, identically distributed (IID) trials [5] of which the data for this problem

does not fit—the background noise is known to be slowly time-varying and trials

are highly correlated since the detector recursively computes the test statistic for

single-sample shifted windows. The probability of false alarm (PFA) for these cases

is plotted against the threshold in figure 3 with the central Chi-squared distribu-
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Figure 3. GLRT Theoretical Asymptotic Performance

tion with p degrees of freedom. The performance is clearly difficult to estimate

and a performance evaluation must be run on simulated tEEG data—this is shown

in figure 9 in the results section.

2.2.5 Implementation

The detector derived above is based on detecting a stationarity change in a

single window of M samples. M ideally should be chosen to be equal to two times

the length of a stationary segment so that the stationary signal is captured in half

the window length. To find stationarity changes in a data record of N samples, the

test statistic must be calculated for each sample delay n0, from 0 to N −M − 1.

This can be thought of as a sliding window of length M : recursively compute the

test statistic and shift window by one sample. When the test statistic exceeds the

threshold, sample location n0 +M/2 is considered a stationarity change.
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A window duration of 250 milliseconds is used for the detection of HFOs in

this study in order to ensure the full HFO signal can be captured in half the window

length.

In addition to M , only the AR model order (p) and the threshold (γ) need

to be defined for implementation. γ is based on a Monte Carlo simulation of data

and corresponds to a PFA of 0.05. It should be noted that the threshold will vary

based on window size and sample rate. EEG data has successfully been modeled

with an AR process of model order 6 previously [6]; however, filtering the data

at 80 Hz will remove the strongest contributing frequency components from the

signal. For implementation in this study, a model order of 4 is used for anomaly

detection on the filtered data.

Implementing this routine programmatically is straightforward. The modified

covariance method is used to obtain the estimates of the AR parameters. These

estimates are then plugged into equations (23) - (25) and (36) to get the excitation

white noise variance estimates and resulting test statistic.

It is established that a threshold crossing signifies the area of a stationar-

ity change. Since the detector is implemented by recursively computing the test

statistic for single-sample shifted windows, the results between windows will be

highly correlated. In other words, each transient event should be marked by sev-

eral threshold crossings. To avoid double-counting events, a local peak search

with a buffer of M/2 samples is performed on the test statistic results. The event

window is determined to be the location of the local peak ±M/2.

2.3 Sinusoid Detector

2.3.1 Overview

The input signals of the second stage are discrete data subsets of fixed du-

ration assumed to contain an HFO, epileptic spike, or noise characterized by an
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abrupt change in signal stationarity. The goal is to decide if an oscillatory signal

characteristic of an HFO is present: a sinusoid of frequency above 80 Hz with a

minimum of 4 cycles. The signal of interest may or may not take up the entire

duration of the window. Because HFOs are transient events separable from the

background activity, we model the signal to be detected as a sinusoid added to AR

noise of model order p, or

x[n] =


w[n] n = 0, 1, . . . , n0 − 1

A cos(2πf0(n− n0)) + w[n] n = n0, n0 + 1, . . . , n0 +M − 1

w[n] n = n0 +M,n0 +M + 1, . . . , N − 1

(38)

where f0 is the signal frequency, A is its amplitude, n0 the signal onset, M the

signal duration, and

w[n] = u[n]−
p∑
j=1

a[j]w[n− j] (39)

is the AR noise model of order p, all of which are unknown.

The previous detection stage uses the modified covariance method to estimate

the AR parameters and the MLE to find σ2. However, if the stationarity change

includes a sinusoidal signal, the estimates for the current window may be inaccurate

since the AR model order, p, should be greater than originally assumed. It is

also unknown if a frequency analysis of the window to find the peak is adequate

to estimate f0 due to the interference of the AR background on the frequency

spectrum. Therefore, other methods may need to be utilized to obtain estimates

of these parameters.

2.3.2 Derivation

To start, we will assume the sinusoidal frequency and parameters of the AR

filter are already known and derive the rest of the problem. The collection and

use of these parameters will be discussed in the Implementation section for this
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detector.

Our hypothesis test is

H0 : x[n] = w[n] n = 0, 1, . . . , N − 1

H1 : x[n] =


w[n] n = 0, 1, . . . , n0 − 1;

n0 +M,n0 +M + 1, . . . , N − 1

As[n− n0] + w[n] n = n0, n0 + 1, . . . , n0 +M − 1

(40)

where

s[n− n0] = cos(2πf0(n− n0)) (41)

The noise is the result of an autoregressive process excited by WGN with

excitation noise variance σ2. It is easily shown that the whitening filter for an AR

process of model order p is x[n] +
∑p

j=1 a[j]x[n− j]. By pre-whitening we get for

the noise only case

x[n] +

p∑
j=1

a[j]x[n− j] = w[n] +

p∑
j=1

a[j]w[n− j] (42)

x[n] = u[n]−
p∑
j=1

a[j]x[n− j] (43)

And when the signal is present under H1

x[n]+

p∑
j=1

a[j]x[n− j] =

A

(
s[n− n0] +

p∑
j=1

a[j]s[n− n0 − j]

)
+ w[n] +

p∑
j=1

a[j]w[n− j]
(44)

x[n] = As[n− n0] + A

p∑
j=1

a[j]s[n− n0 − j] + u[n]−
p∑
j=1

a[j]x[n− j] (45)

The GLRT decides H1 if

LG(x) =
p(x; Â, n̂0, M̂ ,H1)

p(x;H0)
> γ (46)
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The approximate distribution under the null hypothesis is

p(x;H0) =
1

(2πσ2)N/2

N−1∏
n=0

exp

− 1

2σ2

(
x[n] +

p∑
j=1

a[j]x[n− j]

)2
 (47)

And the approximate H1 distribution is

p(x; Â, n̂0, M̂ ,H1) =
1

(2πσ2)N/2

n0−1∏
n=0

exp

− 1

2σ2

(
x[n] +

p∑
j=1

a[j]x[n− j]

)2


·
n0+M−1∏
n=n0

exp

[
− 1

2σ2

(
x[n] +

p∑
j=1

a[j]x[n− j]− As[n− n0]

−A
p∑
j=1

a[j]s[n− n0 − j]

)2


·
N−1∏

n=n0+M

exp

− 1

2σ2

(
x[n] +

p∑
j=1

a[j]x[n− j]

)2


(48)

We can expand(
x[n] +

p∑
j=1

a[j]x[n− j]− As[n− n0]− A
p∑
j=1

a[j]s[n− n0 − j]

)2

=

(
x[n] +

p∑
j=1

a[j]x[n− j]

)2

− 2Ax[n]s[n− n0]− 2Ax[n]

p∑
j=1

a[j]s[n− n0 − j]

− 2As[n− n0]

p∑
j=1

a[j]x[n− j]− 2A

p∑
j=1

a2[j]x[n− j]s[n− n0 − j]

+ A2s2[n− n0] + 2A2s[n− n0]

p∑
j=1

a[j]s[n− n0 − j]

+ A2

p∑
j=1

a2[j]s2[n− n0 − j]

(49)
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so that

p(x; Â, n̂0, M̂ ,H1) =
1

(2πσ2)N/2

n0+M−1∏
n=n0

exp

[
− 1

2σ2
J(A)

]

·
N−1∏
n=0

exp

− 1

2σ2

(
x[n] +

p∑
j=1

a[j]x[n− j]

)2
 (50)

where

J(A) =A2s2[n− n0] + 2A2s[n− n0]

p∑
j=1

a[j]s[n− n0 − j]

+ A2

p∑
j=1

a2[j]s2[n− n0 − j]− 2Ax[n]s[n− n0]

− 2Ax[n]

p∑
j=1

a[j]s[n− n0 − j]− 2As[n− n0]

p∑
j=1

a[j]x[n− j]

− 2A

p∑
j=1

a2[j]x[n− j]s[n− n0 − j]

(51)

This allows the likelihood function to reduce to

LG(x) =

n0+M−1∏
n=n0

exp

[
− 1

2σ2
J(A)

]
> γ (52)

and taking the natural log results in

lnLG(x) = − 1

2σ2

n0+M−1∑
n=n0

J(A) > ln γ (53)

To find the MLE of A, we maximize J(A)

δJ(A)

δA
=

n0+M−1∑
n=n0

2As2[n− n0] +

n0+M−1∑
n=n0

4As[n− n0]

p∑
j=1

a[j]s[n− n0 − j]

+

n0+M−1∑
n=n0

2A

p∑
j=1

a2[j]s2[n− n0 − j]−
n0+M−1∑
n=n0

2x[n]s[n− n0]

−
n0+M−1∑
n=n0

2x[n]

p∑
j=1

a[j]s[n− n0 − j]−
n0+M−1∑
n=n0

2s[n− n0]

p∑
j=1

a[j]x[n− j]

−
n0+M−1∑
n=n0

2

p∑
j=1

a2[j]x[n− j]s[n− n0 − j] = 0

(54)
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Â =

∑n0+M−1
n=n0

(
x[n]s[n− n0] + x[n]

∑p
j=1 a[j]s[n− n0 − j]

+s[n− n0]
∑p

j=1 a[j]x[n− j] +
∑p

j=1 a
2[j]x[n− j]s[n− n0 − j]

)
∑n0+M−1

n=n0

(
s2[n− n0] + 2s[n− n0]

∑p
j=1 a[j]s[n− n0 − j]

+
∑p

j=1 a
2[j]s2[n− n0 − j]

)
(55)

Â =

∑n0+M−1
n=n0

(
s[n− n0] +

∑p
j=1 a[j]s[n− n0 − j]

)(
x[n] +

∑p
j=1 a[j]x[n− j]

)
∑n0+M−1

n=n0

(
s[n− n0] +

∑p
j=1 a[j]s[n− n0 − j]

)2
(56)

The test statistic can now be re-written as

− 1

2σ2

Â2

n0+M−1∑
n=n0

(
s[n− n0] +

p∑
j=1

a[j]s[n− n0 − j]

)2

− 2Â

n0+M−1∑
n=n0

(
s[n− n0] +

p∑
j=1

a[j]s[n− n0 − j]

)(
x[n] +

p∑
j=1

a[j]x[n− j]

)]

> ln γ

(57)

Which allows us to make a substitution to get

− 1

2σ2

[
Â

n0+M−1∑
n=n0

(
s[n− n0] +

p∑
j=1

a[j]s[n− n0 − j]

)(
x[n] +

p∑
j=1

a[j]x[n− j]

)

−2Â

n0+M−1∑
n=n0

(
s[n− n0] +

p∑
j=1

a[j]s[n− n0 − j]

)(
x[n] +

p∑
j=1

a[j]x[n− j]

)]
(58)

Or equivalently

Â

σ2

n0+M−1∑
n=n0

(
s[n− n0] +

p∑
j=1

a[j]s[n− n0 − j]

)(
x[n] +

p∑
j=1

a[j]x[n− j]

)
> 2 ln γ

(59)
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LG(x) =(∑n0+M−1
n=n0

(
s[n− n0] +

∑p
j=1 a[j]s[n− n0 − j]

)(
x[n] +

∑p
j=1 a[j]x[n− j]

))2
σ2
∑n0+M−1

n=n0

(
s[n− n0] +

∑p
j=1 a[j]s[n− n0 − j]

)2
> γ′

(60)

Which must be maximized with respect to the unknown onset time, n0, and dura-

tion, M . This can be done by computing the test statistic for each n0,M pair.

It should also be noted that summations should start at n0 + p to prevent

out-of-bounds limitations. The effect should be negligible for M >> p.

The test statistic is then

max
n0,M

(∑n0+M−1
n=n0+p

(
s[n− n0] +

∑p
j=1 a[j]s[n− n0 − j]

)(
x[n] +

∑p
j=1 a[j]x[n− j]

))2
σ2
∑n0+M−1

n=n0+p

(
s[n− n0] +

∑p
j=1 a[j]s[n− n0 − j]

)2
(61)

which is compared to γ′.

2.3.3 Explanation

The resulting detector is a signal pre-whitener followed by a normalized replica

correlator using the pre-whitened signal as the signal replica.

The test statistic is calculated for all possible n0 (between 0 and N − M)

and M (between pre-defined limits m1 and m2) combinations and the maximum

value is compared to a threshold. If the test statistic exceeds the threshold then it

is decided that a signal is present and the maxn0,M location represents the signal

onset and duration length in samples.

It is possible to include phase as an unknown parameter in the GLRT deriva-

tion with the assumption that the signal amplitude is positive. However, the

purpose of this application is to detect >80 Hz signals and the worst-case for an

incorrect phase estimate would cause the signal onset estimation to be off by a
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Figure 4. Sinusoid Detector Block Diagram

37



half-cycle at 80 Hz, or approximately 6 milliseconds. This is considered negligible

and therefore the phase is assumed equal to zero.

2.3.4 Expected Performance

The asymptotic performance discussion is similar to that of the anomaly de-

tector as this is another sample-shifting detector based on the GLRT. Again the

windows being compared are highly correlated, in this case for each (n0,M) pair,

so IID cannot be assumed. A PFA must be chosen, with threshold based on the

result from a Monte Carlo simulation. Performance of this detector can be found

in figures 11 and 12 in chapter 3.

2.3.5 Implementation

The derivation assumes the AR parameters and sinusoidal frequency are al-

ready known. Two suggestions are offered for the implementation of this second

stage. The first is based on CARD as it should allow the estimation of the AR

parameters and sinusoidal frequency of the full-band data so that the filtering

of spikes does not cause false alarms. The second is to use AR and frequency

estimates from the filtered data.

The CARD method is utilized to get an estimate of the AR model order, AR

filter coefficients, white excitation noise variance, and sinusoidal signal frequency.

In utilizing this method, it is assumed that a single sinusoid is present. CARD

estimates use the full-band data subset in order to avoid detecting spurious oscilla-

tions due the filtering of sharp transients. This approach should be able to resolve

the HFO frequency peak and AR background from the unfiltered data, and the

same unfiltered data must be passed to the sinusoid detector as the AR estimates

from CARD act as a pre-whitener for the full-band data. An added test for this

stage is to first confirm CARD returns a frequency >80 Hz; otherwise it can be
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assumed no HFO is present.

An alternate option is to base the AR pre-whitener on the previous window

of filtered background tEEG data. i.e., if the event of interest concerns samples on

the range [0 : M ], then the modified covariance method and noise estimates on the

range [−M : 0] are used. The assumption here is that the background is slowly

time-varying and therefore estimates less than half a second away are still useful as

a pre-whitener. Subsequently, the frequency peak from the event of interest is used

as the f0 value since for such a short window length, any HFO frequency should be

dominant in the high-pass band. The results from this study happen to show that

these are valid assumptions. Implementation of this approach does not require any

additional estimation since the AR and therefore frequency spectrum parameters

have already been calculated from the first detection stage. For this approach,

high-pass band data must be provided as input to the sinusoid detector. In order

to ensure the detected oscillations are from an HFO and not a spike, the number

of sinusoidal cycles are calculated using the sampling frequency (Fs), estimated

HFO frequency (f0), and now available MLE of signal duration (M), using

cycles =
f0 ·M
Fs

(62)

Both implementations have their own way of deciding if an event is an HFO or

a spike. The sinusoid detector in both implementations should limit false alarms

due to other noise as the test statistic will be low if no oscillations are present.

In computing the test statistic it can be seen that
∑n0+M−1

n=n0+p
(s[n − n0] +∑p

j=1 a[j]s[n−n0− j]) is dependent on the signal duration only and not the onset

location n0. For a quicker implementation this can be replaced by
∑M−1

n=p (s[n] +∑p
j=1 a[j]s[n− j]). The corresponding pseudo-code is shown in Algorithm 1.
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signal ← cos(2 · π · f0 · n);

foreach duration value M do
s ← signal(0 : M − 1);

denominator ← σ2
∑M−1

n=p

(
s[n] +

∑p
j=1 a[j]s[n− j]

)2
;

foreach onset value n0 do
x ← inputData(n0 : n0 +M − 1);
numerator ←(∑M−1

n=p

(
s[n] +

∑p
j=1 a[j]s[n− j]

)(
x[n] +

∑p
j=1 a[j]x[n− j]

))2
;

Tx(M,n0)← numerator/denominator;

end

end

if max(Tx) > γ then
signal present (H1);
n̂0 = maxTx(:, );

M̂ = maxTx(, :);

else
no signal present (H0);

end
Algorithm 1: Sinusoid Detector Pseudocode

2.4 tEEG Simulator

It is difficult to assess performance of a detector based on observed data alone.

For a stationary process it is often possible to use averaging should the underlying

process be ergodic [7, 2]. Clearly, this is not the case with neurophysiological

data. In order to avoid developing a biased detector based on a limited subset of

data, detector performance should be evaluated on realistic simulations [4, 2]. The

following describes the tEEG simulator design created for the evaluation of HFO

detection routines.

Multiple sets of AR parameters, and corresponding white noise variances,

have been extracted from real, full-band tEEG and saved to file using the modified

covariance method. Data subsets corresponding to different tEEG rhythms were

hand-selected in order to allow for a varying background, i.e., such that delta /

40



theta (<7 Hz), alpha / beta (8-30 Hz), gamma (>30 Hz) and seizure (broadband

spiking) frequency components contribute to the overall signal. The estimated

model order was used for each data subset resulting in model order ranges from

p = 10 to p = 15. The range in model orders is preferred for the simulator to ensure

detector performance is not biased by selecting a model order for the detector that

is identical to each set of filter coefficients used to generate the data. To simplify

implementation, each AR parameter set has additional filter coefficients added

with value equal to zero so that a fixed model order of p = 15 can be used. By

observing the AR model it should be clear that this does not affect the actual filter

model order but merely impacts array size programmatically.

In order to simulate tEEG data based on a single AR parameter set, WGN

is generated and filtered based on the AR process formula used in equation (1).

Unfortunately, once a set of AR parameters is chosen and used to generate data, the

output of the simulator is stationary which is not true to the nature of neurological

signals. The purpose of retaining multiple sets of AR parameters is to have the

ability to cycle through different types of tEEG background data before adding in

physiological events (HFOs and epileptic spikes). However, simulating from an AR

parameter set for a duration of time and immediately changing to a different filter

parameter set would be equivalent to a neuron cluster shutting down abruptly and

another one gaining full effect at the same time which is not a realistic scenario

[7]. In order to overcome these impracticalities, the simulator randomly selects

a subsequent AR parameter set and linearly spaces the filter coefficients over a

period of one to two seconds, such that each filtered sample is effectively described

by a slightly different AR filter. At no time does the simulator dwell on a single set

of AR parameters and the result is a truly time-varying background for realistic

performance estimation of the developed detection routines.
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An example of simulated TVAR tEEG is shown in figure 5.

HFOs and spike events can be described as appearing superimposed on back-

ground EEG. The simulator design first generates the background data and the

physiological events are subsequently added to the TVAR data. The simulator

is able to randomize (between set limits) onset times and types of events, which

are then outputted with the data so the accuracy of the simulator can be tested

without needing to manually find and mark events.

The HFO signal is simply a Gaussian-modulated sinusoidal pulse in which the

duration, frequency, and amplitude can be modified. Each parameter is random-

ized on a uniform distribution between defined limits representing the physiological

characteristics of an HFO to ensure the detectors are not biased for certain event

features.

The spike signal is designed as an exponential growth function concatenated

with a negated exponential decay function. The simulator uses a coin flip to

decide if the simulated waveform is positive or negative before adding to the tEEG

background since the polarity in practice is dependent on the electrode’s position

relative to the neural source and the type of polarization shift in the corresponding

neuron cluster [8]. Although spike polarity typically only varies on a channel-to-

channel basis, this allows the testing of detection routines without assuming a

certain type of deflection.

Example simulations of an HFO and a spike signal that get added to the

TVAR background are shown in figure 6.

It is important to have the ability to modify the SNR of the tEEG simulator

so that an evaluation of detection routines against different qualities of recordings

can be performed. In this case we consider the signal an HFO or a spike (as spikes

are expected to be detected in the first detection stage) and noise the TVAR tEEG
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Figure 5. 10 seconds of Simulated TVAR tEEG
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Figure 6. Simulated HFO and Spike Events

background. For this, we define a new measure termed the Event-to-Noise Ratio

(EvNR). EvNR is an event amplitude multiplier based on the most recent half-

second of tEEG data. With a unity EvNR, the spike max value will be equal to

the amplitude of the recent full-band signal; for an HFO, the peak-to-peak max of

the sinusoidal pulse is equal to the amplitude of the recent signal high-pass filtered

at 80 Hz. An EvNR equal to one appears realistic for these events as recorded

from TCREs, though this is a subjective measure. It is believed that as EvNR

approaches two the events are unrealistically large but may be closer to iEEG in

which more physiological data contributes than environmental noise. Naturally, as

EvNR approaches zero the signal becomes indistinguishable.

An example of simulations of different backgrounds with an HFO and spike

added are shown in figures 7 and 8. In both, an HFO is added at the half-second

mark and a spike at the 1.5-second mark, each with unity EvNR.

44



Figure 7. Simulated Alpha tEEG with Events

Figure 8. Simulated Gamma tEEG with Events
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2.5 Comparison Detectors

The Staba and Birot detection algorithms are discussed in the introduction.

Both routines have been implemented in MATLAB for comparison to the detection

routine derived above. The Staba routine remains unmodified from its original

publication in [9]. The Birot routine has been modified slightly from [10] to work

with HFOs in both the ripple and fast ripple band for use on tEEG data (where the

sample rate is not identical to that used in the original study). The frequency range

is therefore expanded for the Birot routine to ratio the power of frequencies above

and below 80 Hz. This should be considered a fair adaptation of the detection

routine as the original assumptions of the detector remain unmodified.

All detection routines are evaluated on simulated tEEG in order to obtain per-

formance metrics. Receiver operating characteristic (ROC) curves are provided for

the first and second stage of each detection routine to show detection performance

against a fixed EvNR. In order to show how the performance varies with SNR,

a first stage comparison of the probability of detection (PD) to EvNR is made.

Similarly, a stage two probability of error (Pe) vs. EvNR comparison is done to

see how each detector classifies simulated HFOs against simulated spikes.

An assessment of each routine is then made on a 10 minute subset of real

tEEG data, for which actual HFOs were manually identified, in order to get a

more realistic detection count; and a comparison of time to run each algorithm is

provided for discussion on clinical applications of each routine.

2.6 SOZ Estimation

It is believed that the count of HFO events on a channel and not the individual

HFO parameters can be an indicator of SOZ [11, 12, 13]. In [14] an epileptogenicity

index is created based on which channels a certain ratio of high-to-low frequency

activity shows up immediately preceding a seizure. Since we know the HFO is
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a higher frequency signal, basing an SOZ estimate on the count of HFO events

during the pre-ictal stage is reasonable.

The difficulty with SOZ estimation based on the count or frequency of detected

HFO events is there will always be a channel with the most events and one with

the least. This alone is not enough to quantify which channels are indicative of the

SOZ since HFOs will be detected in patients who do not suffer from seizures at all.

Therefore, it is important to select only those channels that contain a statistically

significant number of events as compared with the rest of the channels. Due to the

risk factor with making incorrect estimations, no decision should be made over a

wrong decision.

In [12] a measure was done to see if there was statistical significance of HFO

channels to the SOZ using a comparison of the difference between detections inside

and outside the SOZ to the sum of the same detection counts. This has been

adapted in an attempt to find channels contributing to the SOZ by the following

measure

φCH =
DCH −DAV G

DCH +DAV G

(63)

which is computed for each channel, where DCH is the number of detections on

the current channel and DAV G is the average of the number of detections on all

other channels. φCH is the result, between ±1. Values closer to +1 have a higher

count of detected HFOs and therefore should be more likely to be in the SOZ.

This is to be tested after the HFO detector has been run on 5 tEEG studies

for which a clinician has already identified the SOZ. Results will also be compared

with output of the first stage detector alone to see if a statistical significance is

available for all events of interest, opposed to only those that have been identified

as HFOs by the sinusoid detector
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CHAPTER 3

Findings

Performance metrics are provided based on the tEEG simulator design. The

detector and SOZ estimator are also evaluated based on real tEEG data subsets.

A discussion on the data shown here is provided in chapter 4.

3.1 Detector Performance

3.1.1 Simulated Data

What follows are Monte Carlo simulation results on generated tEEG to de-

termine performance metrics for the two detectors. All simulations are based on

sampling rate of 1600 Hz. For the evaluation of the detection method derived as

part of this thesis, a window size M equal to 400 samples (1/4-second) and AR

model order of 4 is used.

Figure 9 shows a ROC curve for the first detection stage as estimated from

a Monte Carlo simulation. In order to generate, 1000 one-second simulations of

TVAR tEEG data are generated under H0 and a simulated HFO is added to each

simulation with frequency and duration randomized using EvNR equal to one to

represent H1. The test statistic result for stage 1 of each detector is calculated

and the detection threshold is varied in order to get an estimate of PD versus

PFA at each point. The “Coin Flip” trace is intended to show the level at which

performance could be improved with a random selection. The Anomaly detector

based on the GLRT outperforms both comparison detectors for simulated tEEG

data.

Figure 10 is the estimated PD versus EvNR for a PFA of 0.05. The purpose is

to show how the performance is affected when the signal is outweighed by noise.

In order to generate, 10,000 seconds of TVAR tEEG data are generated as H0
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Figure 9. Detector Stage 1 Estimated ROC

Figure 10. Detector Stage 1 Estimated Probability of Detection
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and the test statistic is calculated for each detector. The corresponding detection

thresholds are then calculated based on a PFA of 0.05. HFOs are subsequently

added to 1000 of the 10,000 seconds of background with frequency and duration

randomized and the first detection stage of each routine re-evaluates the data. The

latter step is performed for all EvNRs from zero (no discernible signal) to two.

The results show that the GLRT anomaly detector is superior for simulated

tEEG data at all signal-to-noise ratios.

Two ROCs are shown for the second stage in order to estimate how each

detection method performs against different type of data. In both cases, 1000

one-second simulations of TVAR tEEG data are generated and under H1 HFOs

are added to each simulation with frequency and duration randomized and EvNR

equal to one. The null hypothesis in figure 11 is based on the background TVAR

tEEG noise only whereas in figure 12 it is based on the same background with a

simulated epileptic spike signal added with EvNR equal to one.

As described in chapter 2, the sinusoid detector is implemented in two different

ways: the first with estimation from the CARD method and the second via the

modified covariance method (MCM). The results of the MCM approach are also fed

to a Period Counter to determine if there are enough oscillations for the signal to

be considered an HFO. Therefore, both the MCM and Period Counter thresholds

must contribute to the performance evaluation for the latter implementation. As

can be seen from the results in figure 11, the sinusoid detector as implemented via

the CARD method is best at distinguishing HFOs from tEEG background. Ideally,

these results are less useful than those in figure 12 since the first detection stage

should reject cases of background noise.

When the null hypothesis is instead a simulated spike signal, the period

counter is clearly the best performer followed closely by the second Birot detec-
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tion stage [see figure 12]. The sinusoid detection based on MCM does poorly as

the magnitude of the test statistic for a spike signal resulting in spurious oscilla-

tions is greater than that of an HFO. However, figure 11 shows that the MCM

sinusoid detector does well against signals without oscillations and spikes are ulti-

mately rejected since it is paired with the period counter. The CARD and Staba

implementations are clearly inconsistent.

The intent of the final performance metric in figure 13 is to show how each

routine does at properly classifying an EOI, assumed to contain either an HFO

or a spike signal. Five-thousand seconds of TVAR tEEG background data are

generated. The first iteration adds a spike at each second and has the second-stage

of each routine decide if an HFO is present. Then, the same background data is

used but a simulated HFO is added at every second and again each routine decides

if an HFO is present. The resulting Pe is the number of incorrect classifications

over 10,000. This is done for each EvNR from zero to two with PFA fixed at 0.05.

For this example, the period counter and sine detector using MCM results

are combined since the two work in series. The results of the Pe curve shows

that the sine detector paired with a count of the number of periods is better

than the comparison methods at all SNRs. The sine detector based on CARD

implementation with full-band data is unable to adequately distinguish between

HFO and spike signals.

3.1.2 Real Data

A ten-minute subset of real tEEG data from a 1600 Hz study provided by

CRE Medical has been annotated for HFO events by a manual review in MATLAB.

This study consists of 23 tEEG channels and the ten-minute segment contains 1535

HFOs. Each detection routine has been run on the data subset with results of the

analysis is shown in table 1.
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Figure 11. Detector Stage 2 Estimated ROC against H0 background tEEG noise

Figure 12. Detector Stage 2 Estimated ROC against H0 simulated spike
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Figure 13. Detector Stage 2 Estimated Probability of Error

HFO Detector Correct Detections Missed Events False Alarms
GLRT(MCM) 1349 186 1233
GLRT(CARD) 1242 293 1650

Birot 661 874 77
Staba 3 1532 50

Table 1. Detection Count on Real Data

3.1.3 Timing Comparison

A timing comparison was performed for the three detection routines. Results

will vary based on computer hardware (processor speed, available RAM, etc.), the

parameters of the study, and algorithm implementation; however, the intent is to

show how the three routines compare for runtime. Timing test is based on running

each detection routine in MATLAB on one minute of tEEG at 1600 Hz with two

simulated HFOs and three spikes. Results are shown in table 2.

It is clear from these results that the improved performance of the GLRT
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HFO Detector Approximate Run Time (seconds)
GLRT(MCM) 307.984
GLRT(CARD) 317.878

Birot 1.462
Staba 0.659

Table 2. Algorithm Run Time

detection routine comes at the cost of processing speed.

3.2 SOZ Estimation

Five studies have been provided by CRE Medical for which a clinician has

already identified the SOZ based on seizure data, previously used in [1]. HFO

detection has been performed on all studies without any confirmation of accuracy

of events—the intent is to see if the results from the detection routine alone can

determine SOZ. Recordings were performed using TCREs connected to a Grass

AuraLTM64 amplifier with recording at 200, 400, or 1600 Hz. Data is exported

from Grass TWin software into MATLAB for applying the detection routine.

Previously described φCH values are calculated based on the results of HFO

detection for each channel. This is done twice: first based on the results of the first

stage of the detector only, then based on the results of the entire HFO detection

routine. This is noted in the results tables as Stage 1 and Stage 2, respectively.

The channels in bold font are those identified by the clinician. SOZ estimation

results are based on HFO detection of the pre-ictal state, or the data collected

leading up to the start of the first seizure in the study. The length of the tEEG

segment considered varies by patient, up to half an hour in length, due to the

availability of tEEG data preceding the first seizure.

Results are shown in tables 3 through 7 for the 5 studies. No threshold has

been set for deciding if a channel contributes to the SOZ. Instead, it is assumed

that the greater the φCH value, the more likely the channel is to contribute to the
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Channel Stage 1 Stage 2
F7 -0.0151 0.5660
F3 0.0389 0.4555
T3 -0.0078 0.4521
P4 0.0077 -0.0980
T6 0.0414 -0.1634
Fz 0.0211 -0.1750
C4 -0.0006 -0.1987
T4 0.0154 -0.2359
T5 0.0109 -0.2618
C3 0.0438 -0.4071
P3 0.1207 -0.5276
F8 0.1069 -0.5654
F4 -0.6350 -1.0000

Table 3. Patient 1 SOZ Results, 400 Hz study

SOZ. As can be seen from the data, results are varied and this technique alone

cannot determine the SOZ as identified by the clinician.
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Channel Stage 1 Stage 2
Fp1 0.0961 0.8136
P3 0.1331 0.4559
T3 0.0395 0.1713
P4 0.0074 0.0618
F4 -0.0658 -0.1567
O1 -0.0945 -0.2045
F7 -0.0379 -0.2335
C4 -0.0510 -0.2639
Pz 0.3282 -0.3287
F3 -0.0573 -0.3287

Fp2 -0.0539 -0.3373
T6 -0.0623 -0.3459
Cz -0.0718 -0.3907
Fz -0.0554 -0.4094
C3 -0.0206 -0.4383
T4 -0.0623 -0.4094
T5 -0.0437 -0.4684
F8 -0.0976 -0.5321
O2 -0.0398 -0.5892

Table 4. Patient 2 SOZ Results, 1600 Hz study

58



Channel Stage 1 Stage 2
O1 -0.0144 0.7002
C3 0.0831 0.3912
F8 -0.0067 0.3425
P4 0.0335 0.0168
T4 -0.0109 0.0025
P3 -0.0032 -0.0347
O2 -0.0050 -0.0746
F3 -0.0156 -0.0829
Cz -0.0073 -0.0913
F7 -0.0032 -0.1445
T3 -0.0174 -0.1925
T6 -0.0055 -0.2444
Fz -0.0168 -0.2663
F4 -0.0061 -0.2775

Fp2 -0.0044 -0.3243
C4 -0.0085 -0.3489
T5 -0.0132 -0.3615
Oz -0.0150 -0.3615
Pz 0.0565 -0.5642

Fp1 -0.0332 -0.5808

Table 5. Patient 3 SOZ Results, 200 Hz study
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Channel Stage 1 Stage 2
P3 0.0116 0.6898
O2 -0.0040 0.5934
Fp2 0.0047 0.5265
O1 -0.0538 0.5265
Pz 0.0379 0.2946
F4 0.0042 -0.2425
T4 -0.0017 -0.3286
T5 -0.0058 -0.3286
C3 0.0927 -0.4264
Fz -0.0070 -0.4264
Oz -0.0005 -0.4264
T6 -0.0005 -0.4264
Fp1 -0.0443 -0.5385
Cz 0.0007 -0.5385
P4 0.0498 -0.5385
C4 0.0053 -0.6681
T3 -0.0171 -0.8199
F3 -0.0512 -1.0000
F7 -0.0386 -1.0000
F8 -0.0028 -1.0000

Table 6. Patient 4 SOZ Results, 200 Hz study
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Channel Stage 1 Stage 2
Cz -0.1960 0.5827
O1 0.0055 0.2239
C4 -0.0125 0.2151
P4 0.0221 0.2061
F8 0.0328 0.1192
O2 0.0286 0.0617
Fp1 0.0058 0.0463
P3 0.0191 0.0140
C3 0.0118 -0.0029
T3 -0.0878 -0.0837
Fz 0.0304 -0.1202
T6 0.0164 -0.1546
F4 0.0293 -0.1909
F3 0.0266 -0.2196
F7 0.0225 -0.3025

Fp2 -0.0537 -0.3080
T4 0.0401 -0.4548
T5 0.0043 -0.5327
Pz 0.0092 -0.7327

Table 7. Patient 5 SOZ Results, 1600 Hz study
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CHAPTER 4

Conclusion

Finding a superior HFO detector is a popular topic in neurophysiological re-

search and determining a detector that works with the noise characteristics of

surface-recorded TCRE data is a mostly unexplored field. The current approach

that has been used for HFO detection in TCRE data, the spectrogram, is really

an “eyeball” indicator to find high-power narrow-band activity before attempting

a manual search. The detector presented here offers an automated approach to

HFO detection and demonstrates that it is still possible to find a detector that

performs well in less-than-ideal noise conditions.

With the Staba HFO detector, it is difficult to discern an HFO signal from an

epileptic spike. Other studies [1, 2] have used the length of the detected signal to

no avail since higher-frequency oscillations tend to be shorter signals. This is why

it is important to weigh the length of the signal against its frequency in order to

get an estimate of the number of oscillations. Spurious sinusoidal waveforms due to

the high pass filtering of spike signals results in a lower number of oscillations per

signal. The approach derived here combats the problem by defining two thresholds

in the second detection stage. A threshold on the GLRT test statistic properly

rejects signals with no discernible oscillations. A second threshold on the number

of sinusoidal periods rejects signals with spurious oscillations due to filtering of

epileptic spikes.

The voltage recorded at each contact site can vary based on a high number of

factors, including electrode impedance. Therefore, the threshold of energy detec-

tors are typically based on some average of the measured voltage for each channel.

The issue with using an energy detector for HFO detection is the threshold will be
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influenced by channels with a lot of events vs. those with none. A large number of

EOIs will drive up the mean and cause more events to be missed. A channel with

no such events will still cause detections. This effect worsens with surface record-

ings over iEEG due to the higher, and more frequently sporadic, environmental

noise. The GLRT implementation on the other hand, compares consecutive win-

dows to detect a change in the composition of a signal, regardless of event count.

As shown, the GLRT generally performs well in practice.

The difficulty with automatic HFO detection using TCREs is there is a higher

environmental noise when compared with intracranial recordings for which the

HFO detectors in the literature are designed. The Staba algorithm was used as a

baseline detector as it is compared to the most often and was the first automated

method to demonstrate some success. The Birot algorithm has gained traction

recently and is arguably the best method for detecting fast ripples from iEEG.

It has been shown that the implementation of the GLRT presented here outper-

forms both of these methods asymptotically for detection of HFOs from surface

recordings.

A significant finding from using the tEEG simulator at low EvNR values is that

the sinusoid GLRT detector is able to locate oscillations that are not as obviously

discernible from a manual review. This has the potential to pick up on more real

events that would otherwise be missed by most detectors and some clinicians.

It should be noted that the comparison detectors were developed for iEEG

whereas the detector presented here is derived with surface recordings in mind.

Since recording HFOs from surface potentials is a fairly new discovery, there are

not many routines in the literature to compare to. This is why the author selected

the detectors he thought would best adapt to tEEG data. As HFO recording from

scalp electrodes gains more traction, finding the best HFO detector will become a
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more popular pursuit. To level the playing field with the comparisons presented

here, a next step should be to use this same detector on real and simulated iEEG

to further evaluate performance and determine if the GLRT-based algorithms offer

any advantage over other detectors.

The tradeoff with the detector presented is run-time. Both stages operate by

comparing single-sample shifted windows which can take a long time to process.

Run time can be reduced in stage 1 by using less of an overlap between windows and

in stage 2 by defining upper and lower limits on the duration of the signal, both at

the cost of a lower probability of detection. However, even with these adaptations

the processing performance will not rival the detectors presented as comparisons.

In practice, EEG recordings can run anywhere from several hours to several days in

duration. For this detector to be clinically tractable, the clinician would not need

immediate results and its implementation would have to be clever enough to run a

post-study batch analysis on a server or several PCs operating on a single channel

at a time. Faster PCs are available today than the one used in this study and more

RAM and higher processing speeds continue to be offered. Implementation for the

comparison here is also performed in MATLAB; implementing in a language that

is able to take advantage of multiple threads and better memory allocation has the

potential to improve processing speeds. Although this detection routine is slow to

run today, the algorithms presented will only become more practical as technology

advances.

An argument could be made against the performance evaluation that the sim-

ulator design is based on a TVAR process which is an assumption of the derived

anomaly detector. However, this implementation is based on the nature of neuro-

physiological data and the simulator was designed to be as accurate as possible.

High accuracy is expected if the observed signal is in agreement with the model
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[3]. The MATLAB simulator is a good representation of time-varying tEEG sig-

nals that contain spontaneous epileptic spikes and HFOs. In practice, there will

be more types of neurophysiological and environmental noise that are difficult to

account for in a simulation. It should also be understood that detectors evaluated

on computer simulated data will almost always out-perform an equivalent in-field

study; however, simulation is necessary for an algorithm implementation to define

a meaningful performance metric and compare to competitor algorithms [4]. The

results show that the detection routine derived as part of this thesis have good

performance on both real and simulated tEEG data.

It was found that the CARD estimation is an unnecessary step in the ma-

jority of the simulations. High-pass filtering reduces, but does not eliminate, the

background EEG described by the AR model. When an HFO signal is present and

the window size is kept short the filtered signal window chosen by the anomaly

detector should be mostly dominated by the sinusoidal frequency. Therefore using

strictly a frequency peak estimate and basing the pre-whitener on the AR filter de-

scribed by preceding data works well when compared to the CARD method which

assumes the signal is overshadowed by AR noise. The conclusion here is that this

approach is the best detector to use when overall run-time is not a concern.

The GLRT-based detection routines performed well on the small subset of real

tEEG data at the cost of a high number of false alarms. In both implementations it

was found that the active HFO channels contributed more to the false alarm count

than those channels with no events. The Birot routine contributed a fewer number

of false alarms but consequently missed more than half of the actual HFOs. The

Staba method is clearly unfit for HFO detection using scalp recordings.

Unfortunately, the SOZ estimation method offered here did not work to pos-

itively identify electrode contacts corresponding to the brain regions responsible
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for propogating seizures in the patients studied. Clinician-identified SOZ chan-

nels can be fairly subjective making it a difficult item to test against; however it

is important that any SOZ estimation method be well validated since incorrectly

identifying the SOZ can have dire consequences in practice [5]. The latter goal of

determining SOZ from the anomaly detector only is now understood to be flawed—

epileptic spike signals appear at a higher rate than HFOs in all examined studies

and therefore the resulting phi estimate will always be low.

A typical 10-20 EEG montage has 21 electrodes whereas intracranial can often

use hundreds of patient contacts at a time [3]. Therefore, even if it is possible to

get a rough estimate of the SOZ from a tEEG surface recording it is not going to

be as accurate, nor as localized, as an intracranial recording. However, it can be a

first step to determining the SOZ and offer the clinician an idea of the general area

to look before an open-brain procedure is necessary to perform a functional brain

mapping or lesionectomy. The assumption that HFOs can be used to identify the

SOZ remains a common topic in neurology research and the efforts of doing so using

tEEG data should not be abandoned. It is likely that SOZ estimation from HFO

detection will only work for epileptic patients with well-localized epileptic zones

and not those suffering from generalized onset seizures. The study in [6] suggests

channels in which high frequency activity shows up earlier preceding seizure onset

are a positive indicator of SOZ. Therefore, next efforts should be made with TCRE

HFO detection to not only base the SOZ estimate on event occurrence in the pre-

ictal state, but to add a greater weight to positively-identified HFOs the sooner

they occur in an epileptic study.
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