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ABSTRACT 

Sedimentary porewater chemical and isotopic profiles contain complex records 

of past bottom water composition which are overprinted by in situ biotic and abiotic 

reactions. We developed a density-based method to determined relic deep water 

salinities and applied it to map global scale water mass properties and distributions in 

the deep northwest Atlantic at four previously unsampled sites. Paleosalinities 

determined by density have higher precision and accuracy than previously published 

results and confirm the northward expansion of southern deep water and a reversal in 

the Atlantic’s bottom water meridional salinity gradient during the Last Glacial 

Maximum (Chapters 1 & 2). 

Nitrogen isotopic composition profiles of deeply buried porewaters are a 

unique dataset used to distinguish between biotic and abiotic nitrogen reactions 

under conditions that approach the canonical temperature and pressure limits of life. 

We attribute observed variations in nitrogen concentrations and isotopic 

compositions of porewater and sediment to a variety of microbially mediated 

processes including assimilation, ammonification, sulfate reducing ammonia oxidation, 

accretion, dissolution, and illitization (Chapter 3). 
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PREFACE 

This dissertation is written in manuscript format. All three manuscripts are 

presented in full sequence, excepting references and appendices that can be found at 

the end. Tables and Figures are numbered sequentially by manuscript (e.g. figure 2.4 

is figure 4 in manuscript 2). 

The first manuscript, High Precision Paleosalinity Determined from Measured 

Porewater Density, has been submitted for publication in Marine Chemistry.  

The second manuscript, Deep North Atlantic Last Glacial Maximum Salinity 

Reconstruction, is prepared for publication in Paleoceanography.  

The third manuscript, Nitrogen Abundance and Isotopic Composition of 

Subducting Deep Subseafloor Sediment and Porewater, Site IODP-C0023, is prepared 

for publication in Geochemistry, Geophysics, Geosystems.  
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Abstract 

We have developed a density-based method for determining porewater 

salinity that can be performed shipboard on small volume samples with greater 

efficiency and precision than the currently available shore-based chloride titration 

technique. This approach is based on a recently developed water column method that 

determines salinity at the precision of a conductivity measurement through density 

measurements and the seawater thermodynamic equation of state. Diagenesis causes 

deviations in porewater composition from standard seawater values, affecting the 

density salinity relationship, that we correct for through precise measurements of 

each ion’s concentration before converting measured density to chloride 

concentration. We account for the diffusive change in porewater chloride that occurs 

over time independent of diagenesis by optimizing diffusion modeled, sea-level 

determined bottom water chloride as a function of time to measured modern 

porewater and converting the best fit to salinity. 

We applied our density method to porewater samples extracted from adjacent 

long cores collected from the deep western North Atlantic, determining Last Glacial 

Maximum (LGM) bottom water paleosalinity in a region critical to understanding deep 

water mass distribution. High uncertainty is associated with current LGM bottom 

water salinity characterizations and their implications for LGM overturning circulation 

and climate. Density was determined to a precision of 2.3x10-6 g/mL, which translates 

to a relative salinity uncertainty of 0.03% for LGM salinity. We compare the high 

precision chloride concentration profiles determined using our method to profiles 
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determined from chloride titrations of parallel samples. Salinity change at our site 

between the pre-industrial and LGM is 3.07 ± 0.03 % and 3.65 ± 0.06 % when 

determined from density and 2.96 ± 0.12 % and 1.96 ± 0.21 % when determined from 

titrated Cl-. This is consistent with nearby deep Atlantic paleosalinity data (Adkins, 

McIntyre, and Schrag 2002) and global sea-level-change determined salinity change 

(Clark and Mix 2002). By comparing uncertainties we demonstrate that porewater 

salinity can be determined to a higher precision and with increased reproducibility 

through our density protocol compared to titration-determined salinity. Application of 

our shipboard method at further locations will increase the resolution, precision, and 

accuracy of available LGM bottom water salinity reconstruction, improving the 

characterization of glacial deep water masses and overturning circulation.  
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Introduction and Background 

Salinity is used to resolve ocean density structure and the spreading of deep 

water masses (Munk 1950; Stommel and Arons 1959). Accurate and precise 

measurement of salinity is critical to evaluating meridional overturning circulation 

(MOC) and CO2 transfer between the atmosphere and deep ocean. Characterizing 

deep water masses in the present and past ocean is vital to constraining glacial-

interglacial climate change (Boyle and Keigwin 1982; Schmittner and Galbraith 2008; 

Toggweiler and Russell 2008). The dynamics and structure of MOC during the most 

recent glacial maximum (Siegenthaler, Stocker, and Monnin 2005), however, remain 

difficult to constrain fully with available techniques. During the Last Glacial Maximum 

(LGM), between 19-26 ka (Clark et al. 2009; Peltier and Fairbanks 2006; Yokoyama et 

al. 2000), atmospheric CO2 concentrations were approximately 30% lower than pre-

industrial levels (Mix, Bard, and Schneider 2001; Petit et al. 1999), global average sea 

level was 13 0 meters lower, and average seawater was approximately 3.6% saltier 

(Clark et al. 2009; Clark and Mix 2002; Peltier and Fairbanks 2006).  

Higher bottom water salinity from the LGM is identified directly as a chloride 

(Cl-) concentration peak in subseafloor porewaters (Adkins and Schrag 2001; McDuff 

1985) influenced by diffusion, advection, and diagenesis. Adkins et al.(2002) 

interpreted porewater Cl- and δ18O using one-dimensional diffusion modeling (e.g. 

Schrag et al.1992) at several sites in the Atlantic. They achieved average uncertainties 

for LGM salinity (±0.1 g/kg, 0.3 %) and temperature based on oxygen isotopes (± 0.53 

C) a few orders of magnitude larger than the precision with which we can resolve 
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these parameters in the modern deep ocean, identifying the largest source of error as 

the necessary storage of porewater samples between collection and analysis (Adkins 

and Schrag 2003). 

Increasing precision and accuracy in LGM bottom water salinity measurement 

at more locations will improve the resolution of glacial deep water mass distribution 

reconstructions, which can be applied to enhance understanding of glacial density-

dependent circulation. While high precision water column salinity is routinely 

determined by conductivity, current porewater salinity measurement techniques rely 

on Cl- titration with AgNO3, consuming the sample in the process. Titration precision is 

limited by how accurately we can measure the mass of solution titrated. Ships are too 

unsteady to precisely measure mass by weight so mass is quantified by volume 

onboard. Higher precisions can be achieved on shore by weighing titrated aliquots, 

but as mentioned above, minimal evaporation introduces artifacts in small samples 

stored post-expedition (Adkins and Schrag 2003).  

To solve this problem, we developed a shipboard porewater density-based 

measurement method that improves the precision of bottom water salinity 

reconstruction. Our approach builds upon that of Millero et al. (2009), who 

determined salinity by measuring seawater density through frequency analysis, 

achieving a relative precision of ± 0.0003 %  on small volume samples for density, and 

a relative precision of ± 0.012 % when converted to salinity with an equation of state 

that accounts for seawater composition.  
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Here, we test and apply this density-based method to determine bottom water 

paleosalinity from sedimentary porewater, explicitly correcting for diagenetic 

composition changes of major ion concentrations, and compare our density-

determined profile to titration determined Cl- profiles. We use this data to infer high 

precision LGM bottom water salinity at a previously unsampled North Atlantic site. 

Methods 

Overview  

Here, we discuss the design, evaluation, and application of a density-based 

method for determining in-situ chloride concentration prior to diagenesis, [Cl-]o, which 

can be used to estimate past bottom water salinity. High precision densities were 

measured by oscillating U-tube frequency analysis, similar to the approach Millero et 

al. (2008) developed for water column samples. We extend their technique to account 

for the effect of diagenetic addition and removal of solutes on density. These affect 

both the mass and volume of the solution. Based on these experiments, we developed 

an analytical protocol for porewater sample analysis. 

We convert measured density, ρmeas, to [Cl-]o based on the 2010 equation of 

state for standard seawater (which relates density, salinity and 

temperature)(Mcdougall et al. 2009), correcting for the density effects of diagenesis  

[𝐶𝑙−]𝑜 =
𝜌𝑚𝑒𝑎𝑠 − 𝜌𝐻2𝑂

𝑎 + ∑ ∆𝑅𝑖𝐴𝑟𝑖𝑖 − 𝜌𝑚𝑒𝑎𝑠 ∑ ∆𝑅𝑖𝑉𝑖𝑖
                       (1.1) 

(see Table 1.1 for symbol definitions). The index i refers to each non-conservative 

solute with a significant contribution to salinity whose ratio to Cl- may differ from that 
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in standard seawater on which the equation of state is based. Values for constants in 

equation 1.1 are provided in Table 1.2. 

Porewater Cl- concentration [Cl-]  will differ slightly from [Cl-]o if diagenesis has 

affected the volume of solution. Equation 1.2 shows the measured density to [Cl-] 

conversion relevant for direct comparison to titration determined [Cl-] and diffusion 

modeling. The denominator contains the density of pure water ρH2O, rather than the 

measured porewater density. 

[𝐶𝑙−](𝑧, 0) =
𝜌𝑚𝑒𝑎𝑠 − 𝜌𝐻2𝑂

𝑎 + ∑ ∆𝑅𝑖𝐴𝑟𝑖𝑖 − 𝜌𝐻2𝑂 ∑ ∆𝑅𝑖𝑉𝑖𝑖
                   (1.2) 

Throughout this manuscript, we denote [Cl-] in terms of depth below seafloor z and 

time t with the syntax [Cl-](z,t), where bottom water is [Cl-](0,t) and modern porewater 

is [Cl-](z,0). Modern porewater immediately below the seafloor is equivalent to 

modern bottom water [Cl-](0,0). 

 [Cl-](z,0) is calculated at each depth below the seafloor (bsf) for which 

porewater density and major ion concentrations were measured. To minimize the 

effect of procedural errors, relative solute ratio ∆Ri values at each depth are based on 

profiles smoothed by depth-weighted averaging. Uncertainty in the major ions and 

density-based [Cl-](z,0) is determined through a Monte Carlo analysis. Our approach 

yields a high precision profile that can be used to model the evolution of porewater 

chloride, following the methods of Adkins and Schrag (2003), from which past bottom 

water salinity can be inferred. 



8 

Density Measurement Evaluation and Experimental Design 

Instrumental Precision and Optimum Operating Temperature 

The Anton Paar DMA 5000 M Density Meter measures the frequency of 

oscillation (by optode) of a liquid or gas sample injected into a borosilicate glass U-

tube kept at a nearly constant temperature (measured to ± 0.001oC). Since oscillatory 

frequency depends on mass, the DMA 5000 determines density by comparing the 

frequency of the U-tube to an internal reference. Before sample analysis, the 

instrument is calibrated by measuring laboratory air and 18.2 MΩ Milli-QTM deionized 

water (DI), which has an advantage over seawater standards as its density is 

independent of evaporation and differs from seawater’s by only 2.5 %. A seawater 

reference produced by the International Association for Physical Sciences of the 

Ocean (IAPSO) is measured to assess calibration accuracy. 

The DMA 5000 is ideal for high precision porewater analysis as the U-tube 

volume is only 1.2 cm3, sample recovery is possible after the non-destructive 

measurement, and the density is measured to a precision of approximately 10-3 kg/m3. 

Additionally, the DMA 5000 is relatively insensitive to ship motion. This high precision 

is achieved by averaging internal replicate measurements of temperature and density 

in rapid sequence to a single value for each injection (see Figure A1 for measurement 

nomenclature).  

To determine an optimum operating temperature, instrument reproducibility 

was assessed at six different internal temperatures (5, 10, 15, 20, 25, and 30 C), 

where each experiment consisted of 30 injections from a single batch of air 
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equilibrated DI at lab temperature. DI was injected into the U-tube from a 12 cm3 

high-density polyethylene syringe (with no needle attachment) and 10 internal 

replicate measurements were performed in five minutes. The temperature variation 

between replicates was lowest when the instrument temperature was set close to lab 

air temperature (20 C). The standard deviation of the 30 measured DI injections was 

4.7 x10-4 C for temperature and 2.1 x10-3 kg/m3 for density at 20 oC.  

Minimizing Bubbles and Sample Volumes 

Feistel et al. (2010) noted in their density analyses of filtered Baltic Sea 

seawater that the largest source of error is the intermittent presence of bubbles in the 

measured solution. To overcome this problem they degassed each sample by drawing 

it into the injection syringe through a hypodermic needle. We developed a version of 

their protocol for degassing small samples and tested its efficacy in experiments 

where 6 replicates of both DI and filtered seawater were extracted into 12 cm3 

syringes through hypodermic needles. After removing the needle, 3 cm3 increments 

were injected into the U-tube without detaching the syringe, with 5 internal replicate 

density measurements performed on each injection. The standard deviation of the 6 

DI injections (internal replicate averages of second injections) was 4.1 x10-3 kg/m3, 

indicating that degassing before injection achieves similar reproducibility with smaller 

volumes and considerably less replicates than extracting without a needle. As the 

filtered seawater standard deviation (internal replicate averages of all injections) was 

5.9 x10-3 kg/m3 when 12 cm3 of sample is analyzed, we can further reduce the sample 

size (fewer injections per sample) and still achieve unprecedented precision.  
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We also evaluated reproducibility for small sample volumes (3 cm3) through six 

analysis sequences, each containing one DI standard followed by four identical 

seawater samples.  Sample or DI was extracted into a 12 cm3 syringe through a 

hypodermic needle and measured in two injection of 1.5 and 1.2 cm3, respectively. 

Since the first sample injection is only 0.3 cm3 greater in volume than the U-tube 

volume, very little rinsing occurs during injection and carry-over was observed 

between the DI standard and the first seawater sample. Following the identification of 

this problem we rinsed the U-tube with 12 cm3 of filtered seawater between any 

analysis of a DI standard and a seawater sample or standard. We continued to use a 

12 cm3 syringe for the DI extraction and to measure two injections of 6 and 3 cm3 

respectively, effectively rinsing the U-tube before analyzing the standard. Five internal 

replicates, measured over three minutes, were averaged to a single representative 

measured density of each injection.  

No drift correction was applied, as the slope of a linear regression fit to 

measured DI density as a function of time was statistically indistinguishable from zero. 

The standard deviations of the small volume DI and filtered seawater injections were 

4.1 x10-3 and 10 x10-3 kg/m3 respectively, where the higher error in seawater is likely 

due to carry-over between different solution types. Considering the low drift and high 

carry-over observed during the experiment, we recommend the following analysis 

sequence: 1 DI standard, U-tube rinsed with 60 cm3 of filtered seawater, 10 samples. 

To maximize sample processing efficiency, we reduced the number of internal 

replicates to five, as the standard deviation of 10 internal replicates was less than 10-3 
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kg/m3 in all experiments. See the diagram in Appendix 1.A for a detailed breakdown of 

our recommended porewater density analysis sequence. 

To further improve the reproducibility of sample replicates, we evaluated the 

use of Vacutainers™ as sample vials. Storing seawater in evacuated containers 

facilitated degassing prior to and minimizes the pressure decrease during extraction 

through a hypodermic needle into the syringe. While dissolved gases potentially affect 

the density of solution, de-gassing samples via this technique conveniently does not 

measurably affect density for N2, O2 and Ar since the density change due to loss of 

mass is almost exactly compensated by the loss of volume (see Appendix B for full 

calculation).  

Seawater test samples were extracted from Vacutainers™ and analyzed for 

density, interspersed with one DI standard every four samples. This analysis sequence 

was repeated five times. Instrument drift, observed during this experiment, was 

assessed by fitting a linear regression (measured density as a function of time) to all DI 

standards analyzed over the course of the experiment. Sample densities were drift 

corrected by normalizing to a DI standard density predicted from the linear fit. The 

standard deviation of the drift corrected densities of seawater test samples stored in 

Vacutainers™ was 8.9 x10-3 kg/m3, an 11 % improvement from needle-only degassed 

samples (10 x10-3 kg/m3). We applied this optimized protocol, with reduced bubbles 

and minimal drift, to porewater density analyses performed in this study, since it is 

expected that due to temperature dependence of solubility, these samples will have 

total dissolved gas pressures in excess of one atmosphere at laboratory temperature. 
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To identify error introduced by bubbles, we assessed their effect on the 

reproducibility of the internal replicate density measurements. During all method 

development experiments, the standard deviation of the internal replicates was noted 

for any injection where a bubble was visible in the instrument’s U-tube viewing 

window. These standard deviations were compared to those of injections with no 

visible bubbles to determine a standard deviation used to identify injected solutions 

likely to contain bubbles, even when bubbles are not visible through the viewing 

window, 9 x10-3 kg/m3. We call this the “bubble threshold”. Injections with standard 

deviations of the internal replicates greater than the bubble threshold are excluded 

from processing.  

Site Description and Sample Collection 

We collected the samples for this study on expedition KN223 (cruise doi: 

10.7284/900427) of R/V Knorr from co-located Sites 03 and 10 (14.4007 oN, 50.6228 

oW, 4453 m water depth, see Figure 1.1) using a rosette-mounted Niskin Bottle (CTD), 

multi-core (MC), and long piston core (LC) (Curry et al. 2008). Long core samples were 

recovered from the seafloor to 28.66 and 32.22 meters below sea floor (mbsf) at Sites 

03 and 10, respectively. Lithology is relatively uniform, alternating between 

nannofossil clay and clayey nannofossil ooze, with approximately 100 m of sediment 

(Divins et al. 2003) overlying 40 Ma crust (Müller et al. 2008). 

Bottom water gathered from CTD samples collected within 20 m of the 

seafloor and MCs that captured water overlying minimally disturbed surface sediment 

was filtered through 0.45 μm polysulfone disposable filters (Whatman Puradisc PES). 
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LC subsamples (10 cm long) were sliced from the core at approximately 60 cm 

intervals. Porewater was extracted with hydraulically driven titanium squeezers 

(modified after Manheim et al. (1974)) and filtered through 0.45 μm polysulfone 

disposable filters (Whatman Puradisc PES). Shipboard analyses include titration-

determined Cl- concentration, SO4
-2/Cl- ratio, alkalinity (ALK), pH, dissolved inorganic 

carbon (DIC), porewater and bulk sediment density, and formation factor (data doi: 

10.26022/IEDA/111472). Cation concentrations (Na+, Mg+2, Ca+2, K+) were determined 

after the expedition by ion chromatography (Figure 1.2) at the University of Rhode 

Island Graduate School of Oceanography. 

Analyses 

Density Analysis 

Porewater density was quantified shipboard with the DM 5000, calibrated with 

DI. IAPSO batch P156 standard seawater (Millero et al. 2008) was used as a quality 

check. Samples were first injected into and stored in 15 cm3 Vacutainers™.  They were 

then extracted into 3 cm3 hypodermic syringes to facilitate degassing before injection 

into the DM 5000. Each sample was extracted from its Vacutainer™ in triplicate (three 

separate syringes) to minimize degassing artifacts. Each individual triplicate was 

measured twice, two discrete injection replicates (1.5 and 1.4 cm3 each), with the 

density of each injection averaged from five replicate density measurements (see 

Appendix 1.A for a flow diagram).  A fourth extraction was performed when bubbles 

were detected in the U-tube during one of the initial triplicate injections. The final 

density value for each sample was calculated from the three highest precision 
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injection averages (determined based on the standard deviation of injections from the 

same syringe), excluding any bubble-biased values. The relative standard deviations of 

DI and IAPSO injection averages were 0.0002 % and 0.0006 % respectively for the 27 

DI and 7 IAPSO standards measured while analyzing Site 03 samples. IAPSO standard 

salinity determined by density measurement converted with the equation of state 

(34.971 g/kg) differs from the standard’s certified salinity of 34.994 g/kg by only 0.07 

% (see Table 1.2 for details). The pooled standard deviation represents overall error 

for the dataset including individual measurement error and the relation of neighboring 

measurements (Berlekamp 1997). The relative pooled standard deviation of the Site 

03 porewater density samples was 0.0006 %, identical to the precision of the seawater 

standard. 

Chloride Titrations 

We determined Cl- by AgNO3 titration of 1 cm3 of the pore fluid.  All titrations 

were performed in duplicate using a Metrohm 794 Basic Titrino autotitrator, Metrohm 

Ag Triode, and nominally 0.1 M AgNO3 titrant. Reagent standardization was based on 

replicate analysis of IAPSO batch P156. Equipment, standards, and replicate protocols 

were identical for both shipboard and post-cruise analyses, except post-cruise 

titration aliquots were weighed (Mettler Toledo AG 245, 0.02 mg repeatability) rather 

than pipetted (1 mL adjustable volume EppendorfTM with ep tips) to increase analytical 

precision. The relative standard deviation of the 55 IAPSO standards titrated shipboard 

was 0.15 %. The pooled percent standard deviation of Site 10 samples was 0.17 % 

when analyzed shipboard and 0.11 % when analyzed post-expedition, demonstrating 
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the higher precision possible when titrating weighed aliquots. Profiles from post-

expedition titration of weighed samples have consistently higher [Cl-] than profiles 

from shipboard titration of pipetted samples, indicating evaporation (Figure 1.3). 

Major Ion Chromatography 

Major ion concentrations or ratios were quantified based on peak areas 

measured with a Metrohm 861 Advanced Compact Ion Chromatograph (IC). The IC 

was comprised of a Metrohm 853 CO2 suppressor, a conductivity detector, and a 20 

μL injection sample loop with a Metrohm 837 IC Eluent/Sample Degasser coupled to 

the system with the column oven set to 32 °C. SO4
-2/Cl- ratios were quantified using a 

150 x 4.0 mm Metrosep A SUPP 5 150 column with 3.2 mM Na2CO3, and 1.0 mM 

NaHCO3 eluent, while cation (Na+, Mg+2, Ca+2, K+) concentrations were quantified using 

a Metrohm C6 250/4.0 column with a C4 guard column and 4 mM nitric acid, 0.4 mM 

dipicolinic acid eluent.  

All porewater samples and IAPSO quality controls were diluted 1:50 with DI. 

Prior to analysis, a working standard was created in a single large batch 1:50 dilution 

of IAPSO with DI and calibrated against individually pipetted dilutions of IAPSO. 

Samples were analyzed interspersed with working standards and quality controls in 

each analytical batch (a sequence of 36 chromatograms). In each batch five quality 

controls were included to quantify external reproducibility and test for systematic 

concentration offsets. All samples and IAPSO quality controls were diluted using the 

same pipettes as were used to calibrate the working standard (10 cm3 DispensetteTM 

and 200 fixed volume EppendorfTM with ep tips). Each analytical batch was drift-
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corrected based on a first or second order least square fit to the peak areas of the 

working standard versus time.   

Measured SO4
-2 and Cl- peak areas were ratioed before calibration to the 

working standard since their errors correlate (see Appendix 1.A).  The relative 

standard deviation of drift-corrected IAPSO SO4
-2/Cl- ratios was 5.2 x10-2 % for all 

KN223 analyses (n=79).  

Cation concentrations were calculated directly from measured peak areas of 

sample relative to the working standard for only the ion of interest, as the four cations 

evaluated had uncorrelated errors. The relative standard deviation of drift-corrected 

IAPSO cation concentrations were 0.31, 0.81, 2.2 and 1.2 % of the measured value for 

Na+, Mg+2, Ca+2, and K+ respectively (n=66). Measured quality controls are shown 

compared to their reference values in Table 1.2. The pooled standard deviations of 

measured porewater samples relative to reference values were 0.29 % for Na+, 0.51 % 

for Mg+2, 1.3 % for Ca+2, and 1.1 % for K+. These quantified precisions are consistent 

with those of measured seawater standards. 

Alkalinity and Dissolved Inorganic Carbon 

ALK was determined via Gran titration (Edmond 1970) using a Metrohm 809 

Titrando autotitrator and nominal 0.1N HCl, calibrated with Dickson CRM seawater 

standard (Marine Physical Laboratory, Scripps Institution of Oceanography, Batch 156, 

certified ALK 2232.58 ± 29 µmol/kg, DIC 2040.94 ± 0.41 μmol/kg). A drift standard was 

analyzed after every five samples. The standard deviation of the 92 drift standards 

analyzed during the expedition was 0.75 %. 
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DIC concentration was measured with a Marianda AIRICA™ system consisting 

of a syringe module, a sample stripping manifold, and a LICOR LI-7000 CO2/H2O 

infrared analyzer.  Porewater sample or standard was acidified in the stripper with 

three 50 μL strokes of 10 % phosphoric acid.  The CO2 was stripped from the sample 

with N2 and dried using a series of two Permapure Nafion tubes and a cooling 

chamber before measurement of infrared absorption due to CO2. The CO2 absorption 

was integrated to determine the total CO2 stripped from the sample, applying the 

Beer-Lambert law (Swinehart 1962). A single determination consisted of three 

separate 1 cm3 injections of sample or standard where each injection was preceded by 

two 1.1 cm3 rinses of the stripper.  Due to carryover, the first injection was discarded, 

and the remaining two averaged to calculate DIC concentration from the integrated 

absorption of the sample relative to the standard. DIC concentration uncertainty was 

0.32 % of the measured value, calculated as the standard deviation of the Dickson 

standards (n=125). 

Porewater bicarbonate concentration [HCO3
-] was calculated according to 

carbonate equilibrium from the ALK and DIC measured shipboard immediately after 

squeezing (Edmond and Gieskes 1970; Pilson 2015).  

Formation Factor and Porosity 

Accurate time dependent modeling of pore water chemical profiles requires inclusion 

of accurate and precise tortuosity profiles. Diffusive tortuosity 𝜃2 can be evaluated as 

a function of depth by measuring porosity 𝜙 and formation factor f shown in equation 

1.3 (McDuff, Gieskes, and Lawrence 1978).  
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𝑓 =
𝜃2

𝜙
                                                (1.3) 

Porosity was calculated from bulk and porewater densities measured 

shipboard and sediment densities obtained from literature.  Bulk density was 

measured by gamma ray attenuation on the multi-sensor track, where whole rounds 

not used for shipboard analyses were scanned upon recovery. Porewater densities 

measured as described above were averaged and converted to an in-situ density at 

subseafloor temperature and pressure (1029.6 kg/m3). KN223 Site 03 and 10 

sediments are predominantly nannofossil clay, with a dry density of 2656 kg/m3 

(measured at nearest International Ocean Drilling Site, Erbacher et al. 2004; Pälike et 

al. 2013). As lithologies are consistent, using a constant literature value for sediment 

density does not have a significant impact on precision. 

Formation factor was measured by conductivity shipboard using a 

Metrohm/Brinkman Conductometer with a custom-built probe containing two 

electrodes 1 cm apart. After core sections had been split lengthwise and equilibrated 

to room temperature, conductivity was measured at 20 cm intervals by inserting the 

Conductometer’s two electrodes into the sediment of the exposed core interior. The 

probe was rinsed with DI water between measurements and a standard consisting of 

0.2 µm-filtered bottom water was analyzed every five measurements to allow for 

instrument drift corrections. Temperature measurements accompanied each sample 

interval and final conductivity values were normalized to 25 °C.  The formation factor 
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was calculated as the ratio of the bottom water conductivity to that of the bulk 

sediment. Physical property plots are included in Appendix 1.C. 

Profile Smoothing and Error Evaluation 

Density, major ion concentration, and physical property profiles are smoothed 

using a second order robust-weighted local regression (rLoess) with a span of 60 % 

depth (Cleveland and Devlin 1988). The difference between the measured and rLoess 

fit values at each depth is used to determine the profile standard deviation (error due 

to both sample collection and analysis for an individual sample) of each measured 

parameter. Outliers, defined as greater than twice the standard deviation from the 

rLoess calculated value at a given depth, are replaced with the rLoess value to produce 

an outlier filtered profile (denoted with the subscript meas). The same rLoess technique 

is applied to this filtered profile (excepting replaced outliers) to produce a smooth fit, 

shown in Figure 1.2.  

We applied a Monte Carlo technique to assess uncertainty of the density and 

major ion concentration profiles (known to be smoothed in-situ by diffusion) as a 

function of depth. At each depth, a normally distributed random number was 

generated with a standard deviation of twice the filtered profile standard deviations 

and centered on the filtered rLoess smoothed value. This process was repeated 100 

times for each measured value, producing 100 Monte Carlo profiles that are 

collectively representative of the expected uncertainty in the original profile (Figure 

A2). Each Monte Carlo profile was smoothed with an rLoess fit and these values were 

averaged at each depth. Uncertainty was assessed as the standard deviation of the 
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Monte Carlo smoothed values at that depth, centered on their average (shown as 

error bars on Figure 1.2).  

Chloride from Porewater Density 

Diagenetic changes to porewater density are quantified using relative solute 

ratios ∆Ri and equation 1.4 to determine porewater chloride concentration from 

density. 

∆𝑅𝑖 = 𝑅𝑖 − 𝑅𝑖
𝑜 =

[𝑖]

[𝐶𝑙−]
− (

[𝑖]

[𝐶𝑙−]
)

𝑜

                           (1.4) 

As we expect the in-situ porewater solute profiles to have been smoothed by 

diffusion, the rLoess smoothed values are used to calculate the relative solute ratios at 

each depth where density was measured (see Appendix 1.B).  

Solutes which contribute at least 0.01 % to porewater salinity were measured 

as described above and evaluated with equation 1.4, while those solutes present at 

concentrations lower than this threshold are not evaluated as their effect on density is 

not statistically significant within the measurement uncertainty. Silica, for example, is 

low (less than 0.0001 mol/kg) in deep ocean sediment porewaters of similar lithology 

and temperature to Sites 03 and 10 (Andrews and Hargrave 1984; Schink, Fanning, 

and Pilson 1974) and is not measured directly in our study. At other locations, 

including continental shelves or estuaries, silica reaches concentrations in sediment 

porewater of up to 0.001 mol/kg (DeMaster 2002; Gehlen and Van Raaphorst 2002; 

Willey and Spivack 1997). Silica’s contribution to salinity at Sites 03 and 10 is less than 

0.008 %, well below the uncertainty of our density measurement, and at locations 



21 

with high porewater silica increases to 0.08 % of salinity and silica can be measured 

for inclusion in the density technique.  

Porewater chloride concentration [Cl-](z,0) is used to determine ∆Ri for solutes 

not measured as a ratio to chloride (everything except SO4
-2). To avoid introducing 

uncertainty associated with titration measured [Cl-], initial porewater [Cl-](z,0) is 

determined from smooth measured densities using the equation of state (Mcdougall 

et al. 2009) without accounting for diagenesis (porewater treated as standard 

seawater composition). This initial porewater [Cl-](z,0) is used for the first 

determination of ∆Ri and replaced with the density determined value of [Cl-](z,0) after 

each subsequent iteration of the density to [Cl-](z,0) conversion (equations 1.2, 1.4; 

see Appendix 1.B for full derivation). 

Adjusting density for the ∆Ri of solutes that experience limited diagenesis 

(effectively conservative) introduces error through the uncertainty associated with 

that solute’s concentration measurement. To distinguish solutes effected by 

diagenesis from conservative ions, we examine the charge balance anomaly B for each 

sample and the IAPSO quality control standard using equation 1.5. 

𝐵 = [𝑁𝑎+] + [𝐾+] + 2[𝑀𝑔+2] + 2[𝐶𝑎+2]                           (1.5) 

−[𝐶𝑙−] − 2[𝑆𝑂4
−2] − [𝐻𝐶𝑂3

−]                                                   

Solute i is considered conservative if the average of B across all depths decreases upon 

replacing solute i’s smooth measured concentrations with concentrations determined 

from [Cl-](z,0) and Ri. At Site 03, the charge balance anomaly averaged over all depths 

is 3.2 mM for all solutes and -1.2 mM when Na+ is treated as conservative. All solutes 
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with potential for diagenesis were evaluated, and only Na+ does not experience 

significant diagenesis and is subsequently considered conservative and excluded from 

the density to chloride conversion for Sites 03 and 10. 

[Cl-](z,0) is calculated from the filtered, unsmoothed measured density and the 

iterated smoothed ∆Ri profiles of non-conservative solutes (Eq. 1.2, 1.4; full derivation 

Appendix 1.B). Between salinities 34.8 and 35.8 g/kg, density is a linear function of [Cl-

] (Mcdougall et al. 2009). Equation 1.2 is based on this linear relationship, while also 

including the effects of diagenetic changes on volume of solution and mass of non-

conservative solutes. This linear fit of density as a function of [Cl-], using the full 

thermodynamic equation of state at 20 oC and 1 atm, has a slope a of 4.6519 x10-2 

kg/mol and an intercept ρH2O  of 998.75 ± 0.01 kg/m3 where uncertainty is determined 

as the 95 % confidence limit. [Cl-](z,0) is calculated with equation 1.2, then used as the 

input to equation 1.4 on each subsequent iteration, until [Cl-](z,0) no longer varies 

between input and output from equation 1.2. [Cl-](z,0) from the final iteration is 

shown in Figure 1.3 with its uncertainty evaluated through the same Monte Carlo 

technique applied to titration determined [Cl-](z,0) (described above). 

Modern Porewater Chloride 

To relate our measured porewater [Cl-](z,0) to past bottom water chloride 

concentration [Cl-](0,t) we account for the diffusive smoothing of [Cl-](z,t) that occurs 

over time through one-dimensional numerical diffusion modeling as pioneered by 

Adkins and Schrag (2003). [Cl-](z,t) over depth and time is modeled using equation 1.6, 
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where 𝜙(z) is the porosity, D(z) is the seawater Cl- diffusion coefficient, and f(z) is the 

formation factor at depth z below seafloor. 

𝜙(𝑧)
𝜕[𝐶𝑙−](𝑧, 𝑡)

𝜕𝑡
=
𝜕

𝜕𝑧
(
𝐷(𝑧)

𝑓(𝑧)

𝜕[𝐶𝑙−](𝑧, 𝑡)

𝜕𝑧
)                      (1.6) 

Advection and in-situ reaction terms are not included in equation 1.6 as the low 

sedimentation rate and ash-free lithologies of our sites render them negligible.  

Measured formation factors and porosities are rLoess smoothed across 

measured depths and extrapolated to basement, as the entire sediment column was 

not sampled at our site (see Appendix 1.C). D(z) is calculated from the free solution Cl- 

diffusion coefficient (9.60 x 10-10 m2/s); seawater viscosity at 0 oC; the slope of D as a 

function of temperature (0.438 x 10-10 m2/soC)(Boudreau 1997); and the near-seafloor 

temperature gradient at Sites 03 and 10 of 0.05 oC/mbsf (Erbacher et al. 2004).  

Diffusion modeled porewater chloride concentrations from present day are 

optimized to each density or titration measured [Cl-](z,0) profile by optimizing the 

boundary condition, ;bottom water chloride concentration over time [Cl-](0,t). Global 

sea level over the past 70 ka from Siddall et al. (2008) is normalized and scaled to 

represent bottom water [Cl-](0,t). Siddall et al. find the greatest sea level change 

relative to modern occurring at 21.7 ± 0.17 ka, identified as the LGM. A family of 

boundary conditions is produced by varying [Cl-](0,0) across its measured uncertainty 

and scaling [Cl-](0,t) to encompass the potential range of salinity changes between 

modern and LGM (Figure 1.4). The initial condition [Cl-](z,-70ka) is assessed as the 

average of [Cl-](0,t) from the modern to LGM. Each boundary condition [Cl-](0,t) is 
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used to predict a modern porewater [Cl-](z,0) using equation 1.6 with depth resolution 

of 0.5 m (∆z). Modern [Cl-](z,0) determined from each diffusion modeled boundary 

condition is compared to each of the 100 measurement-based Monte Carlo [Cl-](z,0) 

profiles through the sum of their squared differences at each depth, generating a 

family of modern [Cl-](z,0) modeled best fits for each distinct measured [Cl-](z,0). 

Diffusion modeled [Cl-](z,0) and its uncertainty are determined as the average and 

standard deviation of the 100 modeled best fits (Figure 1.3, Figure 1.4). The 

uncertainty associated with the density determined [Cl-](z,0) includes errors 

introduced during sampling, porewater extraction, storage, and analysis. 

Bottom Water Paleosalinity 

Bottom water chloride concentration and its uncertainty is determined as the 

average and standard deviation of the 100 boundary conditions, [Cl-](0,t), associated 

with the porewater chloride best fits for the measured profile of interest. The LGM is 

identified in porewater profiles as the peak in [Cl-](z,0), varying in depth below 

seafloor as a function of porosity and initial condition. 

To evaluate bottom water paleosalinity we convert [Cl-](z,t) to salinity , with 

equation 1.7 (Lewis and Perkin 1978; Mcdougall et al. 2009; Millero et al. 2008).   

𝑆(𝑧, 𝑡) = 1.80655[𝐶𝑙−](𝑧, 𝑡)
𝐴𝑟𝐶𝑙−

𝜌𝐵𝑊
                              (1.7) 

Here, ArCl is the atomic weight of Cl- and ρBW is the measured bottom water density at 

laboratory pressure and temperature (20 oC). Bottom water salinity change between 

the modern and LGM is determined for each measured porewater chloride profile 
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(Sites 03 and 10, density and titration determined) as maximum modeled bottom 

water salinity minus the modern measured bottom water salinity, S(zLGM,-21.7ka) - 

S(0,0), reported in Table 1.3 as an absolute value and a relative change. 

Results & Discussion 

Seawater Quality Controls 

IAPSO seawater quality controls measured for SO4
-2/Cl-, [Na+], [Mg+2], [Ca+2], 

and [K+] have averages within 0.5 % of their reference values, and average measured 

density was only 0.01 % (three times the analytical uncertainty) lower than expected 

from the thermodynamic equation of state. Measured densities of Site 03 bottom 

water collected by CTD and MC were within 0.02 kg/m3 of each other, within 0.05 

kg/m3 of the density calculated from the nearest World Ocean Circulation Experiment 

(WOCE) measured salinity (14.1 oN, 52.3 oW, 5050 m, 34.841 g/kg) and the 

thermodynamic equation of state, and within 0.02 kg/m3 of the shallowest measured 

porewater density. These measured and reference values are included in Table 1.2 for 

quality controls and sample types. 

Seafloor porewater solute ratios measured in the shallowest LC sample differ 

slightly from standard seawater solute molarities (Millero et al. 2008) at the average 

measured bottom water salinity (density determined from CTD and MC), shown in 

Figure 1.2 and listed in Table 1.2. This difference is likely due to Ca+2 increase in the 

porewater from carbonate dissolution and systematic artifacts introduced during 

squeezing (Manheim 1974).. 
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Chloride Determination Techniques 

Porewater chloride concentration profiles determined from shipboard density, 

shipboard titration, and post-expedition titration from two adjacent cores (Sites 03 

and 10) are compared in Figure 1.3. Porewater chloride profiles determined by density 

have higher precision and reproducibility than those determined by titration, either 

shipboard or post-expedition. The rLoess smoothed, shallowest measured porewater 

values S(0,0) differ between Sites 03 and 10 by 0.12 % when measured by density and 

0.23 % when measured by shipboard titration, with respective uncertainties of 0.009 

and 0.027 g/kg (Table 1.3). S(0,0) differs between Site 10 samples measured by 

titration shipboard and post-expedition by 0.4 %, demonstrating the evaporative 

artifacts associated with stored samples (Figure 1.3).  

The Monte-Carlo determined errors for the concentration datasets were 0.12 

% of the measured value for titration determined Cl-, 0.08 % for SO4
-2, 0.29 % for Na+, 

0.51 % for Mg+2, 1.3 % for Ca+2, 1.1 % for K+, and 2.75 % for HCO3
-. We achieved a 

relative pooled standard deviation of 0.007 % for density. Measuring density on board 

ship during the expedition minimizes error due to sample storage that accounts for 

much of the uncertainty in weighed titration determined Cl-.  Cation concentration 

analyses, however, were performed after the expedition and not measured directly as 

ratios to sodium. Future work could reduce error introduced into the cation 
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concentration data from storage-related artifacts by measuring all solute ratios 

shipboard on separate cation and anion ICs. 

Small systematic offsets are present between [Cl-] determined by shipboard 

pipetted titration, shipboard density, and weighed titration after the expedition for 

both adjacent cores (Figure 1.3). The consistent offset present between Sites 03 & 10 

for the measured profiles determined by titration is absent in the density determined 

profiles, demonstrating the density technique can be more closely replicated across 

cores.  

Paleosalinity Change 

Modeled, optimized salinity change from the pre-industrial to LGM is 3.07 ± 

0.03 % and 3.65 ± 0.06 % when determined from density and 2.96 ± 0.12 % and 1.96 ± 

0.21 % when determined from titration at Sites 03 and 10 respectively (Table 1.3). 

Titration determined salinity changes differ between adjacent cores by nearly twice 

their magnitude and have uncertainties up to four times those determined by density.  

LCs collected from KN223 adjacent Sites 03 (28.66 mbsf) and 10 (33.90 mbsf) 

did not penetrate to the depth of the LGM chloride peak identified through diffusion 

modeling (35.5 – 38.5 mbsf). Measured profiles that capture the full sediment column 

are ideal for diffusion modeling, as LGM chloride peak depth can be identified in the 

porewater data independent of the diffusion model, providing a further constraint on 

boundary and initial conditions. As shown in Figure 1.3, the shape of the modeled fit 

and the depth of its porewater chloride maximum, a function of porosity and 

boundary and initial conditions, differs from the rLoess smoothed measured data. This 
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is especially apparent for Site 10’s titration determined solution, with 1.0 % lower 

relative salinity change and the LGM chloride peak located 3 mbsf deeper than in the 

Site 03 solution. When determined by density, Site 10 has a salinity 0.58 % higher and 

an LGM chloride peak only 1 mbsf deeper than Site 03’s solution.  

At the modern seafloor, porewater and bottom water are equivalent in terms 

of salinity. As modern bottom water salinity differs by less than 0.1% between 

modeled and measured values, we demonstrate that the diffusion model approach is 

reproducible despite the limitations associated with depth-limited sample recovery 

and optimizing an independently-controlled profile shape to measured data. We 

demonstrate this density-based technique’s advantages over the currently available 

titration technique as the smaller uncertainties and more consistent replicates in 

density determined chloride concentration profiles are maintained in model 

determined salinity changes between the modern and LGM. 

Global mean salinity determined from eustatic sea level change decreases 3.5 

% between the modern and LGM (Clark and Mix 2002). Prior to this study, the most 

precise technique available in the literature for determining location-specific LGM 

deep ocean salinity was combining porewater titration Cl- measurements with 

diffusion modeling. All published LGM values from this technique for sites in the 

Pacific and Atlantic Oceans total only 9 locations (Adkins et al. 2002; Adkins and 

Schrag 2003; Insua et al. 2014), and variations between sites are difficult to explain 

without accounting for methodological uncertainties. Adkins et al.(2002) found a 2.7 – 

6.9 ± 0.03 – 0.17 % salinity increase from the pre-industrial to the LGM. They find a 
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modern bottom water salinity of 34.884 ± 0.005 g/kg at their nearest site to ours, 

located 16 o farther north, with a change of 0.954 g/kg from pre-industrial to LGM. 

Their relative salinity change of 2.7 ± 0.1 % is the smallest of any change they observe 

and is consistent in both magnitude and uncertainty with Site 03 titration results. Our 

density technique, however, yielded higher precision relative salinity changes from 

both adjacent cores, with values closer to the global average determined sea level 

change. While both density and titration techniques are sensitive to limitations of the 

diffusion modeling approach (Adkins and Schrag 2003), increasing the precision of the 

measured porewater [Cl-] profile improves bottom water paleosalinity determination. 

Conclusions 

We demonstrate that a density-based method can determine porewater 

chloride concentration with to greater precision and reproducibility than the currently 

available titration technique. This newly developed shipboard technique is unique in 

its application of density measurements to porewater and is the first technique that 

accounts for diagenesis-based composition changes to relate porewater and seawater 

density through the thermodynamic equation of state. Applying both density and 

titration techniques to two adjacent cores (KN223 Sites 03 and 10) in the North 

Atlantic, we model the time-dependent diffusive smoothing of porewater Cl- to 

examine the bottom water salinity of the LGM for each of the four measured profiles. 

Bottom water salinity change between the modern and LGM was 3.07 ± 0.03 % and 

3.65 ± 0.06 % when determined from density and 2.96 ± 0.12 % and 1.96 ± 0.21 % 

when determined from titration at co-located Sites 03 and 10, respectively. 
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Discrepancies between adjacent cores can be attributed to sampling disturbance and 

penetration to depths shallower than the porewater peak representative of higher 

salinity LGM bottom water (Adkins and Schrag 2003). Density determined bottom 

water salinity increase from the modern to the LGM is consistent with published 

values determined from chloride titration and global sea level change (Adkins et al. 

2002; Clark and Mix 2002). Measuring density shipboard minimizes error introduced 

through sample storage that accounts for much of the scatter in the titration 

determined Cl-. Applying our method at additional sites has clear potential to enhance 

understanding of LGM deep ocean salinity. 
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Tables 

Table 1.1. Index of variables, superscripts, and subscripts used in this paper. 

Type Symbol Description Unit 
V

ar
ia

b
le

s 
ρmeas Density, measured kg/m3 

m Mass kg 

v Volume m3 

Ar Molecular Mass kg/mol 

V Partial Molar Volume m3/mol 

[ ] Concentration mol/L 

R Ratio of bottom water concentration to [Cl-] - 

ρH2O Density of pure water kg/m3 

a Slope of [Cl-] vs. density for standard seawater mol/kg 

S Salinity g/kg 

𝜙 porosity % 

f formation factor - 

D free solution Cl- diffusion coefficient m2/sec 

z depth mbsf 

t time sec 

ε Propagated Error varies 

σ Measurement Error varies 

∆, δ Difference varies 

𝜕 Partial Derivative varies 

Su
b

sc
ri

p
ts

 &
 

Su
p

er
sc

ri
p

ts
 i

 solute index  

j depth index  

meas measured  

BW, PW
 bottom water, porewater  

o initial  
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Table 1.2. Properties for seawater and porewater, including measured values (boldface), 
values calculated from the equation of state or equations 1.2 and 1.7 (italicized), and values 
calculated from standard seawater molarities (underlined) at 1 atm and the salinity S shown 
(Millero et al. 2008). The top five rows show values for standard seawater (IAPSO certified 
standard reference, cert, and measured, meas, values at 20oC); bottom water from the nearest 
WOCE site (2.3oC); and measured values for CTD, MC, and the shallowest LC samples collected 
at KN223 Site 03 (20.001oC). Bottom three rows provide the difference between measured 
bottom water (average of CTD and MC) and porewater; partial molar volume, V, of seawater 
at 25oC from Millero and Huang (2013); and molecular mass, Ar, from Millero et al. (2008).  

Type 
S ρ [Cl-]ρ Cl- SO4

-2 HCO3
- Na+ Mg+ Ca+2 K+ 

g/kg kg/m3 kg/m3 [i] (mol/m3) 

IAPSOcert 34.994 1024.64 559.39 559.26 28.92 2.11 480.41 54.12 10.54 10.46 

IAPSOmeas 34.971 
1024.779 
± 0.006 

559.55 
± 0.14 

- 
28.86 
± 0.08 

- 
479.07 
± 1.74 

54.39 
± 0.72 

10.51 
± 0.25 

10.49 
± 1.7 

BWWOCE 34.84 1027.75 NA 555.05 28.70 2.09 476.80 53.71 10.46 10.38 

BWCTD 
34.807 
± 0.008 

1024.645 
± 0.006 

556.86 
± 0.13 

556.27 28.76 2.10 477.85 53.83 10.48 10.40 

BWMC 
34.832 
± 0.006 

1024.673 
± 0.005 

557.26 
± 0.10 

556.67 28.78 2.10 478.19 53.87 10.49 10.41 

PWLC(0,0) 
34.765 
± 0.017 

1024.638 
± 0.006 

555.44 
± 0.27 

555.46 
± 0.46 

28.06 
± 0.07 

2.54  
± 0.04 

481.94 
± 1.29 

51.45 
± 0.29 

10.49 
± 0.06 

12.78 
± 0.11 

BW - PW 0.05 0.021 0.88 1.01 0.72 -0.45 -3.92 2.39 -0.01 -2.38 

        V (m3/mol) or Ar (kg/mol) 

V 35 NA NA 
1.94 
x10-5 

2.18 
x10-5 

2.75 
x10-5 

-8.40 
x10-7 

-1.96 
x10-5 

-1.61 
x10-5 

9.50 
x10-6 

Ar NA NA NA 
3.55 
x10-2 

9.61 
x10-2 

6.10 
x10-2 

1.40 
x10-2 

2.43 
x10-2 

4.01 
x10-2 

3.91 
x10-2 
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Table 1.3. Salinity, S(z,t), of bottom water (BW) and porewater for the modern (0 ka) and LGM 
(-21.7 ka) from shipboard titration and density determined chloride profiles (meas) and their 
diffusion model best fits (mod). Relative change (%) between modern and LGM bottom water 
salinity is given in the second from right column. Depth of the LGM porewater signature, 
identified as the modeled porewater salinity peak, is given in the far right column. 

Analysis Site 
S(0,0)meas

 S(0,LGM)mod
 S(zLGM,LGM)mod

 ∆Sbw zLGM 

g/kg g/kg g/kg % mbsf 

Titration 
3 34.765 ± 0.017 35.769 ± 0.044 35.211 ± 0.013 2.96 ± 0.12 35.5 

10 34.634 ± 0.027 35.338 ± 0.075 34.966 ± 0.023 1.96 ± 0.21 38.5 

Density 
3 34.920 ± 0.005 35.957 ± 0.012 35.384 ± 0.004 3.07 ± 0.03 35.5 

10 34.870 ± 0.009 36.116 ± 0.021 35.421 ± 0.006 3.65 ± 0.06 36.5 
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Figures 

 

Figure 1.1. Co-located KN223 Sites 03 and 10 (yellow star) where samples were collected.  
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Figure 1.2. Measured profiles from KN223 Site 03, filtered of outliers. Porewater 
measurements are shown as solid circles with their smoothed (and interpolated where 
necessary) rLoess fit shown as open squares. Measurement error bars are plotted in gray, 
centered around Monte Carlo averages. Bottom water values are shown as triangles (average 
of Site 03 CTD and MC).  
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Figure 1.3. Porewater density and chloride from KN223 Sites 03 (blue x’s) and 10 (red circles 
and green diamonds). Chloride is determined from density (center panel) measured 
shipboard; and titration (right panel) measured shipboard (red x’s and blue circles) and post-
expedition (green diamonds). Bottom water values (CTD and MC measurement average with 
standard deviations as error bars) are shown at the seafloor as black squares. Error bars are 
shown for all discrete values. Gray lines are diffusion model best fits for each profile measured 
shipboard.  
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Figure 1.4. Diffusion model optimized to Site 03 density determined chloride. Bottom water 
salinity over time (top panel), determined from normalized sea level, is input to the diffusion 
equation with different optimization parameters (gray lines). Modern porewater chloride as a 
function of depth (right panel) is output from the model (gray lines) and compared to 
smoothed measured data (white circles). The best model fit is shown over time and depth 
(center panel), and as a green line in top and right (black error bars) panels.  
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Abstract 

We reconstruct deep water mass salinities and distributions in the western 

North Atlantic during the Last Glacial Maximum (LGM, 19-26 ka), a period when 

atmospheric CO2 was significantly lower than it is today. A reversal in the LGM Atlantic 

meridional bottom water salinity gradient is observed in several LGM water mass 

reconstructions and has the potential to increase the thermal energy and carbon 

storage capacity of the deep ocean, influencing climate, ocean circulation, and 

atmospheric CO2.  

We reconstruct LGM bottom water salinity based on sedimentary pore water 

chloride profiles in a north-south transect of piston cores collected from the deep 

western North Atlantic. We used two methods to determine porewater chloride: one 

based on density and the other on AgNO3 titration. The density-based method yields 

up to four times higher precision paleosalinities than the titration-based method. 

Reconstructed LGM bottom water salinity, determined from the density-based 

method was 3.07 – 3.65 ± 0.05 % higher than modern values at these sites. This 

inferred increase: i. is consistent with the 3.5 % global average salinity change 

expected from eustatic sea level rise, ii. confirms a northward expansion of southern 

deep water, iii. is consistent with shoaling of northern deep water, and iv. supports 

the argument that there was a reversal of the Atlantic’s north-south deep water 

salinity gradient during the LGM.  
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Introduction and Background 

Meridional overturning circulation (MOC) is an important climate feedback due 

to its associated heat flux and influence on atmospheric CO2. Salinity is central to 

understanding the MOC and is used along with nutrients, dissolved oxygen, and Δ14C 

to characterize water mass distributions. MOC is influenced by basin-scale density 

gradients, with separate northern and southern cells in the Atlantic Ocean (Talley et 

al. 2015). Presently, Northern Hemisphere deep water formation only occurs in the 

Atlantic, where warm surface waters flow northward along the western boundary, 

tilting the east-west density surfaces across the basin (Talley 2011). The thermal wind 

relationship specifies that on a rotating planet, this zonal density gradient is balanced 

by a vertical shear in meridional flow, expressed in the North Atlantic as southward 

return flow of deep water (deeper than    1km). As north-flowing surface waters release 

energy to the atmosphere, they increase in density, lose buoyancy, and subduct to 

form the cold, southward flowing deep waters (e.g. Stewart & Thompson, 2015; 

Srokosz et al., 2012). This northern cell of Atlantic MOC (AMOC) is vigorous enough to 

extend south of the equator, entraining southern component deep and intermediate 

waters and transporting heat northwards across the equator from the Southern 

Hemisphere (Robinson and Stommel 1959).  

Carbon enters the deep ocean through subduction of inorganic carbon-rich 

cold surface waters, referred to as the solubility pump, and export of organic carbon 

from the surface ocean, referred to as the biological pump (Volk and Hoffert 1985). 

MOC upwelling returns carbon to the surface ocean, where it can be subsequently 
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released to the atmosphere. Present day North Atlantic surface waters in the region of 

deep water formation have initial nutrient and dissolved inorganic carbon (DIC) 

concentrations lower than those of Southern Ocean deep water sources, where low 

air temperatures drive subduction of denser deep waters fresher than 34.9 g/kg 

(Worthington and Wright 1970; W. S. Broecker, Takahashi, and Takahashi 1985; 

Woosley, Huang, and Millero 2014). The properties of subducting southern cell waters 

vary with Southern Ocean surface conditions including: wind distribution and strength, 

sea ice extent, temperature, light, and biological activity (Ferrari et al. 2014).  Carbon 

sequestration in the southern cell increases with elevated biological uptake, enhanced 

air-sea disequilibrium conditions that inhibit carbon release to the atmosphere, or 

expansion of its carbon-rich deep waters (Clark and Mix 2002; Watson and Garabato 

2006). The relative sizes of the deep water masses, or standing volume effect, drives 

changes in the efficiencies of both the biological and solubility pumps independent of 

changes in overturning or carbon export rates (Skinner 2009). Carbon partitioning 

between the atmosphere and deep ocean is regulated by these biological and physical 

mechanisms, both of which are interconnected with the MOC (Boyle and Keigwin 

1982; Sarmiento and Gruber 2002; Toggweiler and Russell 2008).  

Global climate has cycled between major glacial and interglacial modes over at 

least the past 730 ka, with changes in atmospheric CO2 concentrations highly 

correlated to climate variations (Petit et al. 1999; Siegenthaler et al. 2005). CO2 

transfer between the atmosphere and deep ocean is an important positive feedback 

of glacial-interglacial climate change (Schmittner and Galbraith 2008; Sigman and 
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Boyle 2000). The deep ocean contains more than 50 times the carbon of the 

atmosphere, so small ocean carbon inventory changes have large relative effects on 

the atmosphere (Boyle and Keigwin 1985; Broecker, Clark, and Barker 2008). Changes 

in the distribution and composition of Atlantic northern and southern deep water 

masses influence the global carbon inventory and can be constrained through 

historical reconstructions of water mass geometry. The Last Glacial Maximum (LGM) 

occurred between 19 – 26 ka and is a critical analog for present day anthropogenic 

atmospheric CO2 change, with atmospheric CO2 concentrations 30% lower than pre-

industrial levels (Clark et al. 2009; Mix et al. 2001; Peltier and Fairbanks 2006).  

LGM deep water mass distributions, properties, and ages have been examined 

through measurements of benthic foraminiferal δ13C and δ18O (Graham et al. 1981;  

W. B. Curry and Oppo 2005; Lynch-Stieglitz et al. 2007; Govin et al. 2009; Keigwin and 

Swift 2017), paleosalinity (Adkins et al. 2002; Adkins and Schrag 2003; Insua et al. 

2014; Sijinkumar et al. 2016), and ∆14C of benthic foraminifera and uranium-thorium 

dated coral (Burke et al. 2015; Keigwin 2004). Measured results have been 

contextualized through numerous modeling studies (Cutler et al. 2003; Lund, Adkins, 

and Ferrari 2011; Clark et al. 2012; Miller et al. 2012; Ferrari et al. 2014; Nadeau, 

Ferrari, and Jansen 2019), including a comprehensive approach by Galbraith and 

Lavergne (2019) that found density differences between northern and southern deep 

water formation regions can be used to predict changes in deep water mass volumes.  

Matsumoto et al. (2015) identify the potential boundary between LGM northern and 

southern cells from the transition of enriched (northern) to depleted (southern) δ13C 



 

43 

of LGM benthic foraminifera (Curry & Oppo, 2005).  Shown in Figure 2.1, the southern 

cell expanded farther north and the northern cell shoaled, relative to present day, 

increasing the volume of carbon rich water in the deep ocean (Skinner 2009). 

Southern component standing volume increase has the potential to account for two 

thirds of observed atmospheric CO2 decrease during the LGM (Brovkin et al. 2007; 

Kobayashi, Abe-Ouchi, and Oka 2015) when combined with enhancement of the 

Southern Ocean biological pump and increased ice cover amplifying the air-sea 

disequilibrium (Ito and Follows 2013).  

As the global ocean salt content has been relatively constant over the past 3.2 

Ma (Pilson 2015), eustatic sea level 130 m lower during the LGM would result in 3.6 ± 

0.3 % average salinity increase relative to pre-industrial (Clark et al. 2009). 

Sedimentary pore fluid chloride, determined by AgNO3 titration, combined with 

diffusion modeling, has been used to measure LGM bottom water paleosalinity at 

several sites in the Atlantic and Pacific (Adkins et al. 2002; Insua et al. 2014). Adkins, 

McIntyre, and Schrag (2002) find a 3.5 ± 0.5 % average and 4.2 ± 0.5 % range for 

salinity increase from the modern to LGM between their three Atlantic sites (Figure 

2.2), with a north-south reversal in salinity gradient relative to the modern. This 

salinity reversal, where southern sourced deep waters are saltier than deep water 

formed in the North Atlantic, is consistent with water distributions inferred from other 

proxy measurements and models. Low atmospheric CO2 and low temperatures result 

in decreased precipitation and increased sea ice formation, export, and brine rejection 

(Boyle 2002; Jansen 2017). The LGM Southern Ocean is net salinifying, rather than net 



 

44 

freshening as in the modern (Galbraith and Lavergne 2019). Expanded LGM ice sheets 

increase the salinity and volume of southern deep water and the overturning rate of 

colder, fresher water in the North Atlantic (Galbraith and Lavergne 2019; Holloway et 

al. 2016; Jansen and Nadeau 2016; Kwon et al. 2012; Negre et al. 2010). Salinity 

stratifying the deep ocean increases its thermal energy and carbon storage capacity, 

likely contributing to many observed climate variations including lower glacial 

atmospheric CO2 and Dansgaard-Oeschger events (Adkins, Ingersoll, and Pasquero 

2005; Bouttes, Roche, and Paillard 2009; Schmittner and Galbraith 2008). Accurate 

values of deep water salinities during the LGM are thus critical to constraining MOC. 

Keigwin and Swift (2017), using foraminiferal δ13C and ∆14C, find evidence of a 

northern sourced, low-nutrient abyssal water mass sinking below primary northern 

deep water (Figure 2.1), that could contribute to increased convection and carbon 

sequestration. While Adkins, McIntyre, and Schrag (2002) measure LGM salinity at 55 

oN and 50 oS, their values are significantly higher than model results (Galbraith and 

Lavergne 2019) and represent an unconfirmed (Wunsch 2016)upper bound (Adkins et 

al. 2002). Because the complex interface between the northern and southern 

overturning cells during the LGM remains unconstrained in the literature (Sigman, 

Hain, and Haug 2010), resolving this critical bottom water salinity gradient will require 

higher resolution data than currently available, both in terms of precision and number 

of sites. We determine paleosalinity at four sites along a north-south transect in the 

western North Atlantic (Figure 2.2) using our newly developed high precision density-

based method (Homola Dissertation 2019, Chapter 1) to assess whether our sites’ 
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paleosalinities are consistent with a northward expansion of southern deep water, a 

shoaling of northern deep water, and/or a north-south reversal of the Atlantic 

meridional deep water salinity gradient during the LGM.  

Methods 

We apply our density-based method for determining in-situ chloride 

concentration [Cl-] to four sites in the western North Atlantic. Chloride is measured by 

titration for comparison at these and two additional sites that could not be assessed 

through the density-based method due to their high organic content. We generate a 

diffusion model for bottom water salinity over time and select the best fit to each 

chloride profile to determine LGM bottom water salinity. 

Site Description and Sample Collection  

Samples used for this study were collected from R/V Knorr during expedition 

KN223 (cruise doi: 10.7284/900427)(see Figure 2.2 and Table 2.1) using a Niskin Bottle 

(CTD) and multi-core (MC) for bottom water, and a long piston core (LC) for sediment 

and porewater (Curry et al. 2008). Porewater was extracted from core subsamples at 

60 cm intervals with hydraulically driven titanium squeezers (modified after Manheim 

et al. (1974)).  

Cores used for paleosalinity analysis were collected from 5 sites in the western 

North Atlantic (Figure 2.2) spanning 20 o latitude (14.4 to 35.7 oN), 7 o longitude (50.6 

to 57.6 o W), and 4453 to 5557 m water depth (Table 2.1). Including both abyssal 

plane and continental rise, these sites were selected to be advection free and span the 

likely LGM interface between northern and southern deep water cells. Sediment 
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thickness ranged from 98 to 1012 m (Divins 2003) overlaying 40 – 102 Ma basement 

(Müller et al. 2008). Sediment is nannofossil clay with pelagic red clay, containing up 

to 50 % foraminifera, 30 % siliceous ooze, 25 % silt turbidites, and 5 % radiolarian 

chert or diatom nannofossil ooze. Core penetration ranged from 26.8 to 40.2 meters 

below sea floor (mbsf).  

Analyses 

Porewater and bulk sediment densities, titration-determined [Cl-], SO4
-2/Cl- 

ratio, alkalinity (ALK), pH, dissolved inorganic carbon (DIC), and formation factor were 

measured onboard (data doi: 10.26022/IEDA/111472). Analyses performed after the 

expedition include cation concentrations (Mg+2, Ca+2, K+), and titration-determined [Cl-

] from Site 15 & 16. 

Porewater Geochemistry 

Porewater density was measured with the Anton Paar DM 5000 M using Milli-

Q deionized water (DI) for calibration and International Association for the Physical 

Sciences of the Oceans (IAPSO) P156 seawater standard (Millero et al. 2008) as a 

quality check. We determined Cl- by AgNO3 titration of 1 cm3 of the pore fluid, 

weighed for increased precision on titrations performed post-expedition, using a 

Metrohm 794 Basic Titrino autotitrator and Metrohm Ag Triode calibrated against 

IAPSO batch P156. Major ions were measured by ion chromatography as peak areas 

using a Metrohm 861 Advanced Compact Ion Chromatograph (IC). A large batch of 

diluted IAPSO was used as a working standard, while samples and quality check IAPSO 

standards were individually pipetted. Drift corrections were applied where necessary, 
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and sulfate was reported directly as a ratio of its peak area to that of chloride (SO4
-

2/Cl-) while cation concentrations were calculated from their individual peak areas 

ratioed to the standard. ALK was determined by HCl Gran titration (Edmond 1970) 

using a Metrohm 809 Titrando autotitrator, calibrated against Dickson CRM seawater 

standard (Marine Physical Laboratory, Scripps Institution of Oceanography, Batch 156, 

certified ALK 2232.58 ± 29 µmol/kg, DIC 2040.94± 0.41μmolkg). Porewater was 

stripped of CO2 and acidified to extract DIC, measured as CO2 with a Marianda 

AIRICA™ and LICOR LI-7000 CO2/H2O infra-red analyzer. Carbonate equilibrium was 

used to calculate porewater bicarbonate concentration, [HCO3
-], from ALK and DIC 

after Edmond and Gieskes (1970).  

Physical Properties 

Diffusion along a complex path is assessed with porosity, φ, and tortuosity, θ2, 

evaluated in our sediment cores using the formation factor, f, and densities of 

porewater and sediment. We measured f by Metrohm/Brinkman Conductometer with 

a home-built double electrode inserted into the center of freshly recovered, wet cores 

(McDuff et al. 1978) . Formation factor f  the ratio of measured conductivities of 

reference bottom water to wet sediment, is used to calculated tortuosity (θ2= fφ),. 

Uncertainty  

Porewater geochemical profiles are expected to be smooth as a result of 

diffusion and the deviation from smoothness can be used to estimate total method 

error, sampling plus analytical. To account for error introduced by sampling and 

analysis, measured data was smoothed with a robust weighted local regression 
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(rLoess, (Cleveland and Devlin 1988)). Individual measurements differing from their 

smoothed values by greater than twice the profile’s standard deviation are excluded. 

Uncertainty was determined for each measured property with a Monte Carlo 

technique by generating 100 random values at each measured depth (normal 

distribution, centered on smoothed value with a 90% range of twice the profile’s 

standard deviation determined above). Averages and standard deviations of the 

Monte Carlo values at each depth are used for subsequent calculations and included 

as error bars (Figure 2.3).  

Major ion concentrations of non-conservative solutes are ratioed to smoothed 

[Cl-] (R) and referenced to standard seawater composition at each site’s bottom water 

salinity (∆Ri) to account for diagenetic change. 

Chloride from Porewater Density 

In the approach of Homola et al. (Dissertation Chapter 1 2019), [Cl-] is 

calculated from the unsmoothed measured density and the smoothed relative solute 

ratios, ∆Ri, with equation 2.1 (see Table 2.2 for symbol definitions), based on the 

equation of state for standard seawater (Millero et al. 2008) and accounting for the 

effects of diagenesis.     

[𝐶𝑙−] =
𝜌𝑚𝑒𝑎𝑠 − 𝜌𝐻2𝑂

𝑎 + ∑ ∆𝑅𝑖𝐴𝑟𝑖𝑖 − 𝜌𝐻2𝑂 ∑ ∆𝑅𝑖𝑉𝑖𝑖
                         (2.1) 

Density determined [Cl-] is calculated at each depth (below the seafloor, bsf) for which 

porewater density and major ion concentrations (for each solute i) were measured. 

Smoothed measured densities are converted to [Cl-] using the equation of state for 
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standard seawater, without diagenetic corrections, to determine initial porewater [Cl-] 

independent of higher uncertainty titration determined [Cl-]. This initial porewater [Cl-

] is used to calculate relative solute ratios used in equation 2.1 to determined [Cl-] 

from density. Equation 2.1 is then iterated with density determined chloride and ∆Ri 

used to calculate each other until neither varies upon iteration. Please see Homola et 

al. (Dissertation Chapter 1 2019) for details of this method. 

LGM Bottom Water Salinity Reconstruction 

To determine past bottom water chloride, we quantify the diffusive smoothing 

porewater [Cl-] has experienced over time t through one-dimensional modeling of [Cl-] 

diffusion in z (Eq. 2.2, see Table 2.2 for symbol definitions)(Adkins et al. 2002; Insua et 

al. 2014).  

𝜙
𝜕[𝐶𝑙−]

𝜕𝑡
=
𝜕

𝜕𝑧
(
𝐷

𝑓

𝜕[𝐶𝑙−]

𝜕𝑧
)                                     (2.2) 

The Siddall et al. (2008) sea level curve, extending from the modern (pre-

industrial) to 70 ka, is scaled to represent bottom water [Cl-]. This boundary condition 

(salinity as a function of time) is optimized until modeled porewater [Cl-] (Eq. 2.3) best 

fits measured [Cl-] (minimum of the summed squared differences). [Cl-] is converted to 

salinity, S, with equation 3 (see Table 2.2 for symbol definitions) using the measured 

bottom water density at each site  (Lewis and Perkin 1978; Mcdougall et al. 2009; 

Millero et al. 2008).  

𝑆 = 1.80655[𝐶𝑙−]
𝐴𝑟𝐶𝑙−

𝜌𝐵𝑊
                                          (2.3) 
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LGM bottom water at each site is identified as the maximum in the best fit modeled 

porewater [Cl-]. LGM bottom water salinity is determined as the corresponding 

maximum in optimized boundary condition salinity.  

Results  

The [Cl-] profiles measured by density or titration for each site are shown in 

Figure 2.3 with modeled best fits included. Salinity values for modern and LGM 

bottom water are listed in Table 2.1. Bottom water salinities associated with the peaks 

of these best fits, corresponding to the LGM, are shown along with modern Sbw as a 

function of latitude in Figure 2.4. Shallowest porewater salinities, from smoothed 

measured values, were within 0.3 % of the nearest WOCE bottom water salinities 

(Koltermann, Gouretski, and Jancke 2011) and differ between methods (titration vs. 

density) by less than 0.1 %.  

Bottom water salinity change ∆Sbw between the modern and LGM ranges from 

1.072 to 1.272 ±  0.005 g/kg when determined by density, a 3.07 to 3.65 ± 0.05 % 

change relative to LGM salinity. ∆Sbw ranges from 0.678 to 1.725 ± 0.02 g/kg when 

determined by titration, a 1.96 to 5.03 ± 0.09 % change relative to LGM salinity. While 

∆Sbw
 is near constant for all sites, the absolute value of Sbw increases by 1 ± 0.2 %  g/kg 

at sites 15 & 16 relative to the four southern sites, though both were measured post-

expedition and have a higher uncertainty relative to sites where the density method 

(Eq. 1) could be applied. Chloride titration performed post-expedition represents an 

upper bound for porewater [Cl-] because evaporation during storage imparts a 

consistent offset towards slightly higher [Cl-] (Adkins and Schrag 2003; Homola 
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Dissertation 2019, Chapter 1). All six model fits have LGM peaks located deeper than 

collected samples (Table 2.1), adding uncertainty to LGM paleosalinity results, 

especially for titrated profiles where error associated with sample storage or pipetting 

increases uncertainty.  

Discussion 

We more than double the number of Atlantic sites where LGM bottom water 

salinity has been inferred from measured subseafloor data, with four sites quantified 

using our higher precision porewater density method. Density determined bottom 

water salinity for the modern and LGM is consistent across sites with an average value 

of 3.39 % salinity change between the modern and LGM very similar to the global 

average expected from sea level change (3.6 ± 0.3 %). Paleosalinities determined from 

30 m density profiles collected during expedition KN223 have similar precision to 

Adkins, McIntyre, and Schrag’s (2002) paleosalinities determined from 100 m chloride 

profiles by titration that capture the porewater chloride maximum associated with 

increased LGM salinity. High variation in titration determined salinity results can be 

reduced in profiles with low sample resolution or high analytical uncertainty if the 

LGM porewater chloride peak is sampled. Applying our density technique to samples 

collected through the LGM porewater chloride peak has the potential to yield bottom 

water paleosalinities with unprecedented precision. 

Salinity change determined using our density method is consistent with water 

mass distribution changes  based on published paleosalinity and benthic foraminiferal 

δ13C, ∆14C,and δ18O data (Figure 2.1): during the LGM, northern deep water shoaled 
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during the LGM, while the southern circulation cell expanded northward. Sites 11 & 12 

have oxygen present to basement and were analyzed for paleo-preformed nitrate 

(PFN) by Homola et al. (Homola et al. 2015), increasing by 6 and 4 μM respectively 

between the modern and LGM. Supported by the PFN and salinity change observed at 

KN223 sites, expansion of southern deep water during the LGM can account for two 

thirds of observed atmospheric CO2 decrease during the LGM .  

Adkins, McIntyre, and Schrag (2002) inferred a 2.7 – 6.9 ± 0.03 - 0.17 % salinity 

increase from the pre-industrial to the LGM, using chloride measured by titration and 

a similar model. Their three Atlantic paleosalinity sites, supported by subsequent 

studies, have been used to describe a deep Atlantic meridional salinity gradient 

reversal during the LGM. Our higher accuracy density-determined North Atlantic 

salinity results are consistent with this reversal, but differ in absolute value (Figure 

2.4). All our western North Atlantic sites have an average salinity of 36.00 ± 0.09 g/kg, 

consistent with Galbraith and Lavergne (2019) and a full g/kg lower than Adkins, 

McIntyre, and Schrag (2002) determine by titration at 50 oS. We determine the 

relative average global salinity change from the modern to LGM in three different 

ways: i. 3.6 ± 0.3 % using sea level change; ii. 4.7 ± 0.1 % from chloride-determined 

paleosalinity measurements of Adkins, McIntyre, and Schrag (2002);and iii. 3.9 ± 0.1 % 

from Galbraith and Lavergne (2019) model results which are validated by our density-

determined paleosalinity measurements. These percent changes in global salinity are 

rough estimates calculated from paleosalinity measurements and literature water 

mass distributions. We use a constant seawater density, a volume for the deep Pacific 
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twice the volume of the deep Atlantic, Pacific deep water composed of 10 % southern 

sourced water, and Atlantic deep water composed of 80 % southern sourced water. 

Paleosalinities measured in the north and south Atlantic and Pacific oceans are used 

as the LGM salinities of their respective MOC cells (e.g. the southern Atlantic MOC 

cell’s LGM salinity is set to paleosalinity measured at 60 oS). 

The four sites examined in this study constrain LGM Atlantic deep water 

salinities for a region of mixing between northern and southern cells. Improved 

latitude and depth resolution of paleosalinity data, especially in regions of deep water 

formation and mixing between northern and southern sourced deep waters, remains 

necessary to confirm the potential presence of northern abyssal water(Keigwin and 

Swift 2017) and to further constrain the northward extent of the southern cell and the 

depth to which the northern cell shoaled during the LGM. Porewater samples 

collected from paleosalinity-relevant sites can be analyzed shipboard with the density-

based method, yielding higher precision than previously available techniques even 

from lower-resolution sample profiles.  

Conclusions 

We determine bottom water salinity during the LGM at six sites in the western 

North Atlantic, quantifying four using our high-precision density method. Porewater 

[Cl-] is measured by chloride titration and determined from measured density and 

major ion concentrations. Measured porewater profiles are fit with a diffusion model 

of bottom water salinity over time (scaled from sea level change) to determine LGM 

bottom water salinities similar to those of nearby published sites. Bottom water 
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salinity change between the modern and LGM, relative to LGM salinity, ranges from 

3.07 – 3.65 ± 0.05 % when determined by density, and from 1.96 – 5.03 ± 0.09 % 

when determined by titration, consistent with global sea level informed salinity 

change. We demonstrate the northward expansion of southern deep water and the 

shoaling of northern deep water during the LGM based on salinities at previously 

unsampled western North Atlantic sites measured using our high-precision density-

based method. Although the LGM paleosalinities we determined by density 

measurement are lower than published paleosalinities determined by titration, our 

results still support that there was a reversal of the Atlantic’s north-south deep water 

salinity gradient during the LGM.   
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Tables 

Table 2.1. Atlantic Ocean sites where LGM bottom water salinity has been measured, in this 
study (KN223) or by Adkins, McIntyre, and Schrag (2002) (ODP). Salinities for present day, 
S(0,0), from smoothed measured [Cl-]; LGM, S(0,-21.7ka), from the diffusion model boundary 
condition; and their relative difference ∆Sbw are shown from the density and titration 
methods. Depth below seafloor of the porewater [Cl-] maximum from the model best fit, 
corresponding to the LGM bottom water salinity maximum, is shown for each profile. 

Study KN223 ODP 

Site 3 10 11 12 15 16 1063 981 1093 

Latitude  
(oN) 

14.401 22.785 29.677 33.484 35.710 33.686 55.477 -49.976 

Longitude  
(oE) 

-50.623 -56.518 -58.328 -54.166 -57.615 -57.615 -14.651 5.866 

Water Depth 
(m) 

4453 5557 5367 5515 4575 4584 2184 3626 

D
en

si
ty

 

S(0,0)  
(g/kg) 

34.886 
± 0.019 

34.844  
± 0.019 

34.77  
± 0.023 

34.794  
± 0.026 

          

S(0,-21.7ka) 
(g/kg) 

35.957 
± 0.012 

36.116  
± 0.021 

35.909  
± 0.027 

36.038  
± 0.013 

      

∆Sbw  
(%) 

3.07  
± 0.03 

3.65  
± 0.06 

3.28  
± 0.08 

3.58  
± 0.04 

      

z(max [Cl-]) 
(mbsf) 

35.5 36.5 34.5 35.5       

Ti
tr

at
io

n
 

S(0,0)  
(g/kg) 

34.74 ± 
0.03 

34.66 ± 
0.06 

34.44 ± 
0.04 

34.26 ± 
0.08 

35.79 ± 
0.11 

35.93 ± 
0.05 

34.885 
± 0.005 

34.945 ± 
0.008 

34.685 
± 0.003 

S(0,-21.7ka) 
(g/kg) 

35.77 ± 
35.77 

35.34 ± 
35.34 

35.49 ± 
35.49 

35.99 ± 
35.99 

37.18 ± 
37.18 

37.17 ± 
37.17 

35.83 ± 
35.83 

36.1 ± 
36.1 

37.08 ± 
37.08 

∆Sbw  
 (%) 

2.96 ± 
0.1 

1.96 ± 
0.21 

3.04 ± 
0.23 

5.03 ± 
0.19 

3.89 ± 
0.39 

3.44 ± 
0.14 

2.7 ± 0.1 3.3 ± 0.3 6.9 ± 0.5 

z(max [Cl-]) 
(mbsf) 

35.5 38.5 35.0 34.5 35.5 36.5 38 25 57 

Sediment 
Thickness (m) 

100 100 98 331 1012       

Sediment 
Density (kg/m3) 

2656 2659 2661 2664 2667    

Core 
Penetration 

(mbsf) 
28.7 33.9 28.2 28.8 26.8 40.2       

Site 3 10 11 12 15 16 1063 981 1093 



 

56 

 

Table 2.2. Index of variables, superscripts, and subscripts used in this paper. 

Type Symbol Description Unit 
V

ar
ia

b
le

s 
ρmeas Density, Measured kg/m3 

m Mass kg 

v Volume m3 

Ar Molecular Mass kg/mol 

V Partial Molar Volume m3/mol 

[ ] Concentration mol/L 

R Ratio of Bottom Water Concentration to [Cl-] - 

ρH2O Density of Pure Water kg/m3 

a Slope of [Cl-] vs. Density for Standard Seawater mol/kg 

S Salinity g/kg 

𝜙 Porosity % 

f Formation Factor - 

D Free Solution Cl- Diffusion Coefficient m2/sec 

z Depth mbsf 

t Time sec 

ε Propagated Error varies 

σ Measurement Error varies 

∆, δ Difference varies 

𝜕 Partial Derivative varies 

Su
b

sc
ri

p
ts

 &
 

Su
p

er
sc

ri
p

ts
 i

 Solute Index  

j Depth Index  

meas Measured  

BW, PW Bottom Water, Porewater  

o Initial  
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Figures 

 

Figure 2.1. MOC schematic from Matsumoto (2017), showing a latitudinal cross section of the 
Atlantic Ocean during the modern (panel A) and LGM (panel B). Northern (NADW, AAIW; 
GNAIW) and southern (AABW, GSSW) cells are distinguished with blue and purple arrows 
respectively. Orange arrows show Keigwin and Swift’s (2017) LGM northern abyssal water. 
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Figure 2.2. Locations of paleosalinity data from this study (KN223, yellow dots) and published 
Atlantic sites (Ocean Drilling Project, red dots) from Adkins, McIntyre, and Schrag (2002). Sites 
included in both studies are indicated in orange. 
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Figure 2.3. KN223 porewater salinity profiles measured by density (red) or titration (blue) from 
each site (number on panel). Measured profiles (x’s) and their smoothed error (error bars) are 
shown with their diffusion model best fits (gray lines). All x-axes span 1.25 g/kg salinity, 
though bottom panels begin 1 g/kg saltier than those above.  
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Figure 2.4. Atlantic water mass distribution (top) and bottom water salinity (bottom) of the 
modern (blue) and reconstructed LGM (orange). Representative boundaries between 
northern and southern deep water masses for the LGM (solid orange) and modern (dashed 
blue) determined from published LGM reconstructions (Adkins et al. 2005; Burke et al. 2015; 
Curry and Oppo 2005; Galbraith and Lavergne 2019; Insua et al. 2014; Lund et al. 2011; Lynch-
Stieglitz et al. 2007). Atlantic paleosalinity sites are included on the top panel in black, 
distinguishing KN223 (diamonds) from published (circles) sites. Bottom water salinity values 
for the modern (open blue) and LGM (solid orange) are shown in the bottom panel: including 
results from the KN223 expedition (diamonds); Galbraith and Lavergne (2019)(triangles); and 
Adkins, McIntyre, and Schrag (2002)(circles). Bottom waters are distinguished from surface 
waters at 2 km water depth: above 2 km (gray shading top panel), salinities differ from bottom 
water values at all latitudes without deep water formation.   
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Abstract 

We investigate nitrogen concentrations and isotopes in the solid and dissolved 

phases of subducting seafloor under conditions that approach the canonical 

temperature limit of life. Nitrogen isotopic composition profiles of deeply buried 

porewater dissolved reduced nitrogen (ammonium, amino acids, etc.) are a first-of-

their-kind dataset that we combine with a broad range of measured physicochemical 

properties to distinguish between biotic and abiotic nitrogen reactions. Porewater 

NH4
+ ranges from 10 mol/kg at 200 mbsf to 0.1 mol/kg near basement, and the 

difference in nitrogen isotopic composition between porewater dissolved reduced 

nitrogen and sediment total nitrogen ranges from 0 to 4.7 ‰ with minimum sediment 

δ15N of 1.3 ‰ and porewater δ15N of 2.56 ‰. We assign these large isotopic 

variations to a variety of microbially mediated diagenetic processes including 

assimilation, ammonification, sulfate reducing ammonia oxidation, accretion, 

dissolution, and illitization.  
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Introduction & Background 

Nitrogen is a highly reactive element that cycles through Earth’s atmosphere, 

lithosphere, biosphere, and ocean. Essential to life, N plays a critical role in microbial 

metabolism as an electron donor and acceptor (e.g., D’Hondt et al. 2019; Holm and 

Neubeck 2009; Stüeken et al. 2016). Surface ocean primary producers convert 

dissolved inorganic N (N2, N2O, NH4
+,NO3

-, NO2
-) to organic N (including amino acids, 

proteins, and nucleic acids), a fraction of which is vertically transported and collects as 

sediment on the underlying oceanic basement rock (for review see, Holloway and 

Dahlgren 2002). A link between surface and deep Earth reservoirs, subducting oceanic 

lithosphere transfers N into Earth’s mantle, potentially impacting the abundance and 

isotopic composition of N returned to the atmosphere through melting and degassing 

at subduction zones and mid-ocean ridges (Halama et al. 2014) and altering Earth’s 

atmospheric chemistry on geologic timescales (Berner 2006). The abundance and 

isotopic composition of subseafloor N species provide key insights into sediment 

diagenesis, past and present redox regimes, microbial metabolism, and sedimentary 

rock metamorphism (Jørgensen and Marshall 2016; Mallik, Li, and Wiedenbeck 2018; 

Zerkle and Mikhail 2017). 

Home to as many microbial cells as the global ocean, the subseafloor 

accommodates a significant fraction of Earth’s total living biomass (Kallmeyer et al. 

2012; Parkes et al. 2014). Understanding the transformations that N undergoes in this 

complex environment requires examining the dissolved and mineral-bound, inorganic 

and organic N reservoirs deep below the seafloor. Here, dissolved N is present in the 
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forms of N2, N2O, NH4
+, and dissolved organic N (DON, e.g. amino acids). Aqueous 

phase NH4
+ and DON are collectively referred to as dissolved reduced N (DRN) in this 

study. Solid phase, sediment N (TN) includes organic material (TON) and NH4
+ bound 

to minerals.  

Nitrogen reactions in the deep subseafloor (Figure 3.1) include those 

potentially occurring in the chemically and thermally diverse, anoxic environment 

from 100 meters below seafloor (mbsf) to basement. Reduced N in sedimentary 

porewaters occurs as a results of metabolic processes; abiotic reactions, including 

dissolution of organic matter (OM) and desorption (Hoch et al. 1996; Williams et al. 

1995); or transport, diffusion and advection (Holloway and Dahlgren 2002; Li, Bebout, 

and Idleman 2007). Enrichment or depletion of DRN in porewater can be microbially 

mediated through several pathways. NH4
+ specifically may be involved in both 

anabolic and catabolic microbial reactions, such as the assimilation of NH4
+ into cells 

or the oxidation of NH4
+ by sulfate (known as sulfate reducing ammonium oxidation 

(SRAO)(Schrum et al. 2009). Abiotic removal of NH4
+ occurs during illitization through 

the incorporation of NH4
+ into illite’s sheet structure, observed under the microbial, 

temperature, and pressure regimes of the deep subseafloor (Schroeder and McLain 

1998; Williams et al. 1995; Yang et al. 2016). Remineralization of TON and the release 

of NH4
+ over geologic timescales can promote N sorption by minerals that in turn 

metamorphose under high pressure and temperature. Subduction of N-enriched 

sediment increases the primary input of surface N into the deep Earth (Busigny, 

Cartigny, and Philippot 2011; Mallik et al. 2018) and influences its isotopic 
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composition upon return to the atmosphere (e.g. Haendel et al. 1986; Labidi et al. 

2020).  

Vertical isotopic profiles in sediment provide further insight into which 

mechanisms control porewater NH4
+ distributions because changes in the isotopic 

signature of each compound can reflect fractionations associated with different 

transfer pathways (Stüeken et al. 2016). Known fractionations for potential reaction 

pathways are included in Table 3.1. NH4
+ assimilation is thought to preferentially 

remove 14N from the porewater (Hoch, Fogel, and Kirchman 1992; Lehmann et al. 

2002; Prokopenko et al. 2004).  Abiotic uptake through cation exchange and/or 

illitization (Charlesworth 1986; Koo et al. 2014; Schroeder and McLain 1998; Williams 

et al. 1995) negligibly fractionates or preferentially removes heavier 15N (Sadofsky and 

Bebout 2000). We examine N distribution, speciation, and isotopic composition in 

subducting deep subseafloor porewater and sediment to identify likely diagenetic 

reactions involving dissolved, sedimentary, and biological N (Figure 3.1, Table 3.1). 

Materials and Methods 

Site Description & Sample Acquisition 

International Ocean Discovery Program (IODP) Expedition 370 (doi: 

10.14379/iodp.proc.370.2017) was designed to comprehensively study the biomass, 

activity, metabolism, and diversity of microbial communities in a subseafloor 

environment selected to encompass the likely biotic-abiotic transition zone (Heuer et 

al. 2017). Site C0023 (32°22.00′N, 134°57.98′E) was drilled within the Shikoku Basin of 

the Nankai Trough protothrust zone (Figure 3.2) in 4776 m of water. Downhole, 



 

66 

temperatures increase through the accretionary prism and subducting formation from 

~2°C at the seafloor to ~120°C at the sediment/basement interface 1180 mbsf (Heuer 

et al. 2017; Hinrichs et al. 2016). Porewater was extracted by hydraulic press 

(Manheim 1974) from 5 to 10 cm whole round core samples scraped of any potential 

drill fluid contaminated material  in a near-anoxic glove bag. Porewater samples 

collected for post-expedition N analysis were frozen at -80°C. The topmost 189 mbsf 

of sandy-turbidite dominated sediment was not collected at Site C0023. Instead, data 

from nearby Site 1174 (32°20.5′N, 134°57.4′E) is used to inform lithology and 

dissolved NH4
+ in the upper 200 mbsf (Moore et al. 2001). Dissolved NO3

- or NO2
- and 

their reactions, including annamox, are not considered because the sediment column 

is anoxic; porewater oxygen is depleted within a meter of the seafloor (Inagaki et al. 

2019).   

Lithology 

At Site C0023 turbidite and ash-rich trench-dominated facies (Upper Shikoku) 

overlie volcaniclastic basin and terrestrial-dominated organic matter hemipelagic 

sediments (Lower Shikoku) (Hinrichs et al. 2016). The Upper/Lower Shikoku basin 

transition reflects a change in sedimentation rate from very rapid deposition, with 635 

m of sediment deposited in 0.4 Ma, to slower accumulation, 485 m deposited from 

12.5 to 0.4 Ma at depth (Wen, 2018). Samples from 189 – 494 mbsf, reflecting a 

temperature range of 30 – 60 oC, were from sandy turbidites with 40-65 wt.% clay 

minerals. Samples from 494 – 635 mbsf, 60 – 72 oC, are clays (65-75 wt.%) composed 

of 80% smectite with minimal detrital illite (Kim et al. 2019). Samples from the Lower 
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Shikoku, 635 – 796 mbsf, are volcaniclastic mud with up to 10 wt.% illite. The sampling 

transitions through the highly-fractured décollement zone (758-796 mbsf). Below the 

décollement, 796 - 1180 mbsf and 86 - 120 oC, samples are volcaniclastic mudstone 

and over 75 wt.% clay. The transitions in lithology, sedimentation rate, and the 

complex hydrothermal and geotectonic setting indicate a non-steady-state diffusion 

environment. 

Nitrogen Isotope Analyses 

Post-expedition, we measured the N isotopic composition of porewater DRN 

and sedimentary TN. N isotopic composition (δ15N) is reported in per mil (‰) and 

referenced to air (equation 3.1).  

𝛿15𝑁 = (( 𝑁/ 𝑁1415 )
𝑠𝑎𝑚𝑝𝑙𝑒

/( 𝑁/ 𝑁1415 )
𝑠𝑎𝑚𝑝𝑙𝑒

− 1) 1000  (3.1) 

We adapted the persulfate oxidation denitrifier method for DRN analysis of 

deep porewater samples (Knapp, Sigman, and Lipschultz 2005). Persulfate oxidizing 

reagent, POR, was mixed daily from 6 g of thrice-recrystallized potassium persulfate 

(K2S2O8), 6 g of NaOH, and 100 mL of deionized water (DI). Two standards similar in 

concentration to porewater DRN were used to confirm full oxidation of DRN to NO3
-: 

International Atomic Energy Agency (IAEA N2) ammonium sulfate ((NH4)2SO4) and 

Aminocaprioic Acid (ACA) 6-aminocaprioic acid, used as in-house standards. Samples 

and standards were brought to room temperature, well mixed, and aliquoted to 

achieve a target concentration of 20 – 60 μM NO3
- in the final 3 mL of POR. A 

concentration series of 20, 40, 60, and 100 µM was generated for each of the 
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standards (IAEA N2 and ACA), again in 3 mL POR. After POR reagent addition vials 

were sealed, well mixed, and heated under pressure for 30 minutes. 

The concentration of DRN in each vial was determined by measuring the NO3
-  

present after oxidation by chemiluminescent detection after conversion to NO with 

vanadyl sulfate using a NOx Box (Teledyne Chemiluminescence NO/NOx Analyzer 

200E)(Braman and Hendrix 1989). Complete oxidation of DRN was confirmed for 

batches of blanks and standards before any samples were oxidized. Between POR 

oxidation and IRMS analysis, samples were stored frozen at -4 oC. 

The stable N isotopic composition of the DRN oxidized to NO3
- using the 

persulfate oxidation method was measured with the denitrifier method by gas 

chromatograph and Thermo Delta V Advantage Isotope Ratio Mass Spectrometer (GC-

IRMS) with a custom build purge and trap system at URI (Knapp et al. 2005; Sigman et 

al. 2001). High pH POR samples and standards were acidified to a pH of 3 ± 1 with 

approximately 500 µL of 6 M HCl- per vial. All δ15N values were standardized using 

IAEA N3 (δ15N = 4.7 ‰) and United States Geologic Survey (USGS) 34 (δ15N = -1.8 ‰). 

Replicates from all batches are averaged to determine δ15N of individual samples and 

uncertainty is calculated as the standard deviation of all replicates (error bars in Figure 

3.3). 

We also evaluated the hypobromite method (Zhang et al. 2007) for measuring 

dissolved N isotopes, which uses a hypobromite (BrO-) reagent to convert all DRN to 

NO2
- before reduction to N2O gas with a 1:1 sodium azide and acetic acid buffer 

solution. Conversion of DRN to nitrite was evaluated from the difference between 
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[NH4
+] measured shipboard and [NO2

-] present after hypobromite oxidation. Despite 

oxidizing samples with more hypobromite reagent relative to sample than Zhang et al. 

(2007) used in seawater, full hypobromite oxidation of NH4
+ was inhibited in 

porewater samples. This finding is consistent with other attempted application of the 

hypobromite method to methane seep and hydrothermal vent porewater samples, 

and conversion by hypobromite of several dissolved organics (Zhang et al. 2007 

supplemental material). The high organic content of deep subseafloor porewaters 

(Heuer et al. 2017) likely inhibits quantifiable conversion of DRN by hypobromite 

reagent. We recommend N isotopes of complex, non-standard seawater samples be 

measured through the persulfate-denitrifier method. 

Nitrogen isotopes of bulk solids, δ15NTN, were measured following the 

approach of Sepúlveda et al. (2009), capturing both inorganic and organic δ15N of the 

sediment. Prior to analysis samples were treated with HCl to remove inorganic carbon 

and oven-dried. Analysis was performed with a ThermoFinnigan Trace GC Ultra 

coupled to a MAT Delta Plus mass spectrometer via a GC Combustion III. Isotope 

values were corrected for air N2 using IAEA ammonium salt (Werner and Brand 2001) 

and checked against internal lab standards.  

Organic Nitrogen Abundance 

[DON] is calculated by subtracting shipboard fluorescence-determined [NH4
+]aq 

from persulfate-determined [DRN]. [TON] is estimated from [TOC] measured 

shipboard and a constant C:N ratio of 15:1, appropriate for anoxic organic matter 

(Schmidt et al. 2011). We calculate the fraction of organic N for porewater and 
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sediment, reported in percent (%), as [DON]/[DRN] and [TON]/[TN] using shipboard 

measurements of DRN and TN (Heuer et al. 2017; Morono et al. 2017). 

Because the sums of inorganic and organic N are measured as bulk N of 

porewater and sediment, it is important to note that we did not directly measure 

differences in isotopic composition between inorganic and organic N or the 

abundance of organic N. 

Results  

Nitrogen Abundance and Distribution 

At C0023, porewater DRN is predominantly NH4
+  (65-100%), with measurable 

DON present deeper than 450 mbsf (Figure 3.3). TN including TON and mineral-

associated NH4
+ is approximately 1000 times as abundant per kg sediment as DRN. 

δ15NTN is consistently lighter than δ15NDRN, converging at only two regions in the 

formation. 

TON fractional abundance decreases linearly from 189 to 796 mbsf from 59 ± 6 

to 32 ± 2 %, shifts to a constant value of 30 ± 3 % from 796 to 1000 mbsf, and 

experiences a stepwise increase to 37 ± 1 % at 1000 mbsf before decreasing 

approximately linearly to 16 ± 4 % at basement (Figure 3.3). As shown by Heuer et al. 

(2017), TN decreases approximately linearly from the shallowest collected sample to 

the base of the décollement (189 to 796 mbsf) from 9.5 ± 0.2 to 5.4 ± 0.3 molN/kgsed. 

TN then shifts to a near constant value of 7.9 ± 0.6 mol/kg from 796 to 1102 mbsf 

before decreasing to 4.8 ± 0.2 mol/kg above basement (1180 mbsf).  
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DRN is composed of 100 ± 1 % NH4
+ from 189 to 428 mbsf, where DON begins 

to increase from 0 ± 1 % at 428 mbsf to 26 ± 6 % below the décollement, with high 

variation in DON % from 600 to 796 mbsf (Figure 3.3). DON remains relatively constant 

at approximately 29 ± 8 % from 796 to 1000 mbsf with a single measurement at 1075 

mbsf of 73 %. DON error is dominated by uncertainty introduced during the oxidation 

of DRN by POR, as shipboard [NH4
+] was measured to a precision of 0.001 mmol/kg 

(Heuer et al. 2017). 

[NH4
+] increases from below detection at the seafloor (Moore et al. 2001) to a 

maximum of 10.3 mmol/kg at 200 mbsf (Heuer et al., 2017, excluded from Figure 3.3 

to better display lower concentration trends), consistent with the [NH4
+] porewater 

maximum of over 12 mmol/kg at 175 mbsf at Site 1174 (Moore et al. 2001). C0023 

[NH4
+] decreases from 10.31 to 2.22 ± 0.07 mM with generally concave-up curvature 

from 200 to 494 mbsf (Unit II), then shifts to 1.41 ± 0.01 mM before decreasing 

monotonically to 0.38 ± 0.02 mM at the base of the décollement (796 mbsf). [NH4
+] is 

approximately constant at 0.32 ± 0.04 mM from 796 to 1032 mbsf before decreasing 

to 0.20 ± 0.04 near basement. Two local maximums of 1.3 ± 0.2 mM and 1.1 ± 0.2 mM 

occur at the Unit II/III boundary (637 mbsf) and above the décollement (739 mbsf) 

respectively (Figure 3.3). 

Nitrogen Isotopes 

δ15NTN increases from 1.7 ± 0.2 to 2.9 ± 0.1 ‰ through Unit II (189 to 494 

mbsf) except for a small decrease to 2.1 ± 0.3 ‰ in Unit IIC (459 mbsf)(Figure 3.3). 

δ15NTN remains constant at 3.0 ± 0.3 ‰ through Unit III (494 to 637 mbsf) and 
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gradually shifts through the profile’s minimum of 1.3 ± 0.1 ‰ at 688 mbsf to a 

constant value of 2.1 ± 0.3 ‰ through Unit IV above the décollement (637 to 796 

mbsf). Returning abruptly to 3.2 ± 0.1 ‰, δ15NTN remains constant from 796 to 1000 

mbsf before decreasing to a local minimum of 2.2 ± 0.1 ‰ near basement (1124 

mbsf). 

δ15NDRN is nearly constant at 5.6 ± 0.1 ‰ from the shallowest measured 

sample (304 mbsf) to 450 mbsf, 3.2 - 2.2 ± 0.1 ‰ higher than δ15NTN (Figure 3.3). 

δ15NDRN then decreases monotonically to 3.2 ± 0.2 ‰, converging with δ15NTN, by 535 

mbsf and remains relatively constant until the Unit III/IV transition at 637 mbsf. An 

abrupt shift occurs in δ15NDRN to the formation maximum of 6.5 ± 0.5 ‰ at 661 mbsf, 

4.7 ‰ higher than δ15NTN at this depth (Figure 3.3, Figure 3.4). δ15NDRN decreases from 

this maximum to 4.7 ± 0.1 ‰, where it remains constant from 703 to 796 mbsf, 

consistently 2.6 ‰ higher than δ15NTN. A single low value of 3.1 ± 0.2 ‰ at 825 mbsf, 

approximately equal to the δ15NTN value, occurs below the décollement. Below this 

point, δ15NDRN values are higher and decreasing from 5.4 ± 0.5 ‰ at 855 mbsf to 

converge on 3.1 ± 0.4 ‰, again equal to the δ15NTN values, from 1015 to 1075 mbfs. 

Discussion 

To identify processes occurring at different depths in the C0023 formation, we 

consider the addition or loss of N from measured pools (Figure 3.1) and any known 

isotopic fractionations associated with these transformations. Differences in isotopic 

composition between N reservoirs across specific pathways can be described in terms 

of isotope enrichment effect ε, approximated for N in equation 3.2. 
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𝜀𝑁 = 𝛿
15𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡 − 𝛿

15𝑁𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡   (3.2) 

Isotope enrichment effects associated with pathways that have been assessed 

through culture experiments, in-situ measurements, and modeling are included in 

Table 3.1 and used to help identify likely C0023 N pathways.   

While measured N concentration and isotopic profiles at C0023 are a first-of 

their kind dataset and remain to be rigorously evaluated, a transition from biotic-

dominated reactions above 637 mbsf (Upper Shikoku) to thermogenic-dominated 

reactions below the décollement (796 mbsf, 86oC) can explain the observed trends. 

This shift in reaction regime with depth, temperature, and lithology is independently 

identified by Heuer et al. (2020, in press) through cell count, spore abundance, carbon 

composition, profiles of additional substrates, and isotopic tracer experiments. They 

conclude that microbial activity varies as a function of both geological and 

physiological factors but is still detectable in 120 oC sediments overlying ~16 ma 

oceanic crust, supporting microbially-mediated uptake of DRN as the predominant 

cause of observed δ15NDRN and δ15NTN differences. 

NH4
+ production from microbial organic matter remineralization 

(ammonification) is likely occurring in the upper 200 mbsf and is likely the primary 

source of porewater NH4
+ (Arndt et al. 2013; Brandes and Devol 1997; Wehrmann et 

al. 2011). Porewater NH4
+ produced through ammonification is expected to have a 

similar or slightly lower δ15N value relative to its source organic matter (Macko et al. 

1987; Prokopenko et al. 2004; Robinson et al. 2012). Through most of the C0023 
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profile, however, δ15NDRN is greater than δ15NTN. Uptake and assimilation of NH4
+, 

degradation of TON, or another process must be causing an increase in δ15NDRN. 

At nearby Site 1174, maximum porewater NH4
+

 (10 mM) occurs at 200 mbsf. 

This depth corresponds to the shallowest samples collected at C0023, with elevated 

δ15NDRN values relative to δ15NTN and the lowest δ13C of TOC values measured at C0023 

(Schubotz et al., unpublished data). Partial NH4
+ assimilation by subseafloor microbes 

(ε = -4 to -27 ‰ Hoch et al. 1992) could explain the elevated δ15NDRN if the 10 mM 

peak we observe in NH4
+ represents a net rather than a gross maximum in NH4

+ 

production. DRN from 200 to 637 mbsf decreases in concentration as δ15NDRN 

decreases to converge with δ15NTN (Figure 3.4), consistent with preferential uptake of 

heavy DRN by microbes through assimilation, SRAO, or bio-mediated illitization.  

Methane in this interval has a biogenic source, identified from a ratio of 

CH4/(C2H6+C3H8) greater than 1000 (Bernard, Brooks, and Sackett 1976; Heuer et al. 

2017), where values less than 100 indicate a thermogenic CH4 source. Harris (2020) 

calculated free energy yields for anaerobic oxidation of methane (AOM) reactions 

coupled to SO4
-2, NO2

-, NO3
-2, H+, Mn(Iv), and Fe(III), finding that NO2

- dependent AOM 

is the most energetically favorable reaction modeled. While anoxic sediments are not 

expected to maintain detectable concentrations of oxidized N, rapid production and 

subsequent consumption of oxic intermediates (e.g. NO2
-) has been observed in anoxic 

water column and subseafloor environments (Buchwald et al. 2018; Casciotti 2016). 

The isotopic impact of such rapid turnover is generally assumed to be negligible.  
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Decreasing cells and spores through the region of low sulfate and abundant 

CH4 (Heuer et al. 2017) are consistent with decreased microbial production and a 

corresponding decrease in uptake of porewater NH4. The observed decrease in 

δ15NDRN with depth could occur if porewater δ15NNH4+ is heavier than δ15NDON and/or 

heavier DRN is preferentially removed from porewater by a fractionating uptake 

reaction. In shallow anoxic sediments Prokopenko et al. (2006) explain similar isotopic 

offsets between porewater NH4
+ and sediment TN through preferential decomposition 

of isotopically heavier, more labile marine organic matter over isotopically lighter, 

refractory terrestrial organic N (Prokopenko et al. 2004; Sweeney and Kaplan 1980).  

SRAO to NO2
-, a reaction energetically favorable in shallow anoxic sediments when 

coupled to NO2
- reducing ammonium oxidation (Schrum et al. 2009), could also be 

occurring at C0023 from 200 to 637 mbsf coupled to NO2
- AOM, consistent with 

observed decreases in SO4
-2 and DRN concentrations. 

The isotopic difference between dissolved and sediment N decreases from 494 

to 550 mbsf, where δ15NDRN converges with δ15NTN and remains constant until the 

Upper/Lower Shikoku Basin transition (637 mbsf). Coincident δ15NDRN and δ15NTN could 

represent a region where dissolved NH4
+ is produced through ammonification without 

fractionation or subsequent alteration/uptake. The overall loss of dissolved NH4
+ 

observed through this interval could be due to weaker DRN production or subsequent 

consumption of DRN through non-fractionating microbially mediated accretion of 

DON to TON. 
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The porewater NH4
+ concentration and δ15NDRN decrease observed between 

the Upper/Lower Shikoku Basin boundary (637 mbsf) and the base of the décollement 

(796 mbsf) is likely due to illitization, which consumes porewater NH4
+ through its 

increase in available cation bonding sites and preference for the higher ionic radius of 

NH4
+ over K+ (Meunier, Lanson, and Beaufort 2000; Wilson 2002). Through this 

interval, sediment composition shifts from 65 % clay composed of 80 % smectite with 

minimal detrital illite to 75 % clay with up to 10 % bio-mediated illite, where microbial 

uptake of smectite-bound-Fe(III) as an electron acceptor could promote illite 

formation (Kim et al. 2019). The shallowest thermogenically-derived methane at 

C0023 is observed at the Unit III/IV boundary (635 mbsf), supporting bio-dominated 

pathways transitioning to include abiotic processes from 637 to the base of the 

décollement. δ15NTN and δ15NDRN remain constant at 2.0 and 4.1 ± 0.1 ‰ from 650 

mbsf to the base of the décollement, supporting a decrease in microbial activity 

and/or predominantly non-fractionating reactions.  [DRN], [TN], and δ15NTN remain 

constant from the 796 to 1000 mbsf while δ15NDRN decreases by 2.3 ‰ to converge 

with δ15NTN at 3.2 ‰. TN increases abruptly by 5 mol/kg below the décollement, TON 

makes up only 30 % of TN, sediment changes to a more clay-dominated lithology, and 

hydrothermal alteration increases with depth (Heuer et al. 2017). Diagenetic illite is 

produced thermogenically throughout this interval, experiencing a number of 

structural transitions with depth that consume increasing dissolved NH4
+ relative to 

overall clay mineral composition  (Schroeder and McLain 1998). Schroeder and McLain 

(1998) found that fixed nitrogen content in shales roughly doubled as the illite to 
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smectite ratio doubled. At C0023, illitization converts 20 % of the smectite present 

(Kim et al. 2019) and DON makes up 25 % of DRN, consistent with illitization coupled 

to thermogenic-driven dissolution of TON. Decreasing δ15NDRN (4.7 ‰ below-

décollement to 3.2 ‰ above-basement, coincident with δ15NTN)  is consistent with 

uptake of porewater NH4
+ into clay minerals if heavy N is preferentially incorporated 

or if porewater δ15NNH4+ is heavier than δ15NDON. 

Conclusions 

We present the first coupled N porewater concentration and isotope dataset 

from deep subseafloor sediments, collected from 200 mbsf to basement at IODP Site 

C0023. Potential N processes occurring over the observed range of temperatures and 

lithologies are identified by coupling our data with clay mineral abundance; inorganic 

and organic C; and sulfur of solid and dissolved phase samples. Dissolved NH4
+ ranges 

from 10mmol/kg at 200 mbsf to 0.1 mmol/kg near basement, and the difference in 

δ15N between porewater and sediment ranges from 0 to 4.7 ‰. Likely biogeochemical 

regimes transition from highly microbially mediated above 637 mbsf, through 

production of dissolved NH4
+ by ammonification and subsequent microbial uptake, 

transitioning to thermogenically dominated below the décollement at 796 mbsf, 

through illitization of a different organic matter source. Insights on the 

biogeochemical cycling of NH4
+ and DRN from the Nankai subduction zone may be 

extended to similar temperature, lithology, and chemical regimes in large regions of 

the global subseafloor.  
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Tables 

Table 3.1. Potential pathways involved in anoxic subseafloor nitrogen cycling, color-coded by 
association: bio-mediated in green, thermogenic in orange, either in blue. Abbreviations are 
provided where appropriate. Representative net reactions from Stüeken et al. (2016) are 
listed. Pathways resulting in the addition (+) or loss (-) of inorganic (NH4

+) or organic (DON) 
nitrogen to porewater or sediment nitrogen reservoirs are indicated where applicable. The 
nitrogen isotope fractionation, εN, associated with each pathway is included if available 
(referenced in the far-right column). 

Pathway Reaction (net) 

Porewater 
∆ 

Sediment 
∆ 

εN 

(‰) 
Reference 

NH4
+ DON NH4

+ TON 

N2 Fixation 
  𝑁2 + 6𝑒

− + 8𝐻+ → 2𝑁𝐻4
+ → 

(𝑜𝑟𝑔 ∙ 𝑁𝐻2)𝑎𝑞    
+ 
− 

 
+ 

  
-8 :  
+1 

Zhang  
et al. 2014 

Ammonification (𝑜𝑟𝑔 ∙ 𝑁𝐻2)𝑎𝑞 + 2𝐻
+ → 𝑁𝐻4

+ + −   0 
Prokopenko 
et al. 2004 

Ammonium Assimilation 𝑁𝐻4
+ → (𝑜𝑟𝑔 ∙ 𝑁𝐻2)𝑎𝑞 + 2𝐻

+ − +   
-4 :  
-27 

Hoch 
et al. 1992 

Sulfate Reducing 
Ammonium Oxidation 

(SRAO) 

  8NH4
+ + 3SO4

−2   → 
4N2 + 3HS

− + 12H2O + 5H
+   

−      

  4NH4
+ + 4SO4

−2 + 5CH2O  → 
5CO2 + 2N2 + 11H2O + 4HS

−   
−      

Bio-Mediated Accretion (𝑜𝑟𝑔 ∙ 𝑁𝐻2)𝑎𝑞 → (𝑜𝑟𝑔 ∙ 𝑁𝐻2)𝑠  −  +  
 

Bio-Mediated Dissolution (𝑜𝑟𝑔 ∙ 𝑁𝐻2)𝑠 → (𝑜𝑟𝑔 ∙ 𝑁𝐻2)𝑎𝑞  +  −  

Cation Release (𝑐𝑙𝑎𝑦 ∙ 𝑁𝐻4) → 𝑐𝑙𝑎𝑦 + (𝑁𝐻4
+)𝑎𝑞 +  −   

 
Cation Sorption 𝑐𝑙𝑎𝑦 + (𝑁𝐻4

+)𝑎𝑞 → (𝑐𝑙𝑎𝑦 ∙ 𝑁𝐻4) −  +   

Illitization 
  𝑠𝑚𝑒𝑐𝑡𝑖𝑡𝑒 + (𝑁𝐻4

+)𝑎𝑞 → 

(𝑖𝑙𝑙𝑖𝑡𝑒 ∙ 𝑁𝐻4)   
−  +   

Abiotic Dissolution (𝑜𝑟𝑔 − 𝑁𝐻2)𝑠 → (𝑁𝐻4
+)𝑎𝑞 +   -   

Metamorphism (𝑐𝑙𝑎𝑦 − 𝑁𝐻4) → (𝑁2, 𝑁2𝑂)𝑎𝑞   -    

Gas Exchange (𝑁2, 𝑁2𝑂)𝑎𝑞 ↔ (𝑁2, 𝑁2𝑂)𝑔       
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Figures 

 

Figure 3.1. Anoxic subseafloor nitrogen transformations likely (solid arrows) and potentially 
(dashed arrows) occurring under the lithological and temperature regimes of IODP Site C0023. 
Dissolved nitrogen reservoirs are shown in blue (DON, NH4

+, NO3
-, NO2

-, N2, N2O), solid 
reservoirs are shown in red (TON, NH4

+), and nitrogen gas is shown in gray (N2, N2O). SRAO is 
Sulfate Reducing Ammonium Oxidation, Annamox is anaerobic ammonium oxidation, and 
DNRA is Dissimilatory Nitrate Reduction to Ammonium. Details of likely pathways can be 
found in Table 3.1.   
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Figure 3.2. Site C0023 map and heat flow regime (Harris et al. 2013). 
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Figure 3.3. Site C0023 nitrogen measured from porewater (blue circles) and sediment (orange 
diamonds) as a function of depth and modeled in-situ temperature. Lithological units are 
shown at left with Upper (yellow, Units IIA-III) and Lower (purple, Unit IV) Shikoku Basin 
sediments distinguished, where D is décollement and B is basement (Heuer et al. 2017). 
Concentrations of [NH4

+] and [TN] are shown in the left panel (Heuer et al. 2017). Fractional 
abundance of organic to total nitrogen is shown in the center panel. Isotopic compositions 
(δ15NDRN, δ15NTN) are shown in the right panel will error bars of two standard deviations 
included in respective colors.  
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Figure 3.4. Nitrogen isotopes of DRN as a function of [NH4
+]aq. The Unit III/IV transition is 

distinguished with samples above 637 mbsf plotted in blue and those below in white. 
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APPENDICES 

Appendix 1.A: Porewater Data 

Depth Below Seafloor 

Sample depths below seafloor were adjusted from the measured distance 

below the core top by aligning geochemical, physical property, and dissolved oxygen 

measurements from KN223 long piston core (28.66m), gravity core (2.81m), and 

multicore data with bottom water data from the nearest WOCE site (A20 at 14.07N, 

52.33W, 4932m water depth, temperature 1.5C, salinity 34.84ppt, see Table 1.2 for 

details). 

Sulfate Analysis 

Sulfate data collected on the KN223 cruise is reported as sulfate anomaly (☺), 

determined by ion chromatography. Reporting values as sulfate anomaly is more 

accurate as we ratio the peak areas determined by the IC directly to the chloride peak 

area, effectively circumventing much of the analytical error. The peak areas of 

seawater standard IAPSO, run in series with the samples, is used to calculate sulfate 

anomaly directly. 

Conversion from sulfate anomaly (☺) to [SO4
-2]: 

☺ =

(

 
 
(
[𝑆𝑂4

−2]
[𝐶𝑙−]

)
𝑠𝑎𝑚𝑝𝑙𝑒

(
[𝑆𝑂4

−2]
[𝐶𝑙−]

)
𝐼𝐴𝑃𝑆𝑂

− 1

)

 
 
100 

[𝑆𝑂4
−2]𝑠𝑎𝑚𝑝𝑙𝑒 = ([𝐶𝑙

−]𝑠𝑎𝑚𝑝𝑙𝑒) (
☺

100
+ 1) (

[𝑆𝑂4
−2]

[𝐶𝑙−]
)
𝐼𝐴𝑃𝑆𝑂
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It is important to note that difficulties in pipetting during this cruise resulted in 

noisy IC chloride data so the chloride peak areas were used only to determine sulfate 

anomaly and were never converted to concentration.  

To convert from sulfate anomaly to sulfate concentration where desired an 

independent chloride concentration is required. For KN223 long core samples, 

chloride concentrations were determined by titration. However, for the multicore & 

gravity core samples, no independent chloride concentrations were measured. Where 

titration-determined chloride concentrations were unavailable, sulfate concentration 

was determined using [Cl-] of bottom water (from the closest WOCE stations) or the 

averages of the closest titrated chloride samples. Please see Table A1 for a breakdown 

of the chloride data used, and keep in mind that sulfate concentration data reported 

from a core without titrated chloride data has additional uncertainty. 

Table A1. Chloride concentration data source 

Core 

Type 

Site 3 Site 10 

Long 

Core 

Titration Titration 

(PC) 
Gravity 

Core 

LC Avg N/A 

Multicore LC Avg N/A 

Titration: aliquot of same sample run on the IC for sulfate anomaly was titrated for 
chloride 

 Some chloride samples were titrated post-expedition, notated with (PC) 
LC Avg: shallowest titrated values from the long core were averaged to determine 

~[Cl-] 
N/A: no core collected 
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Density Measurement Terminology 

 

Figure A1. Measurements within a final value, repeated for each component of the 
sequence.  
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Appendix 1.B: Chloride from Porewater Density 

Derivation 

Starting with the definition of measured density ρmeas,  

𝜌𝑚𝑒𝑎𝑠 =
𝑚

𝑣
        (1) 

where m is mass and v is volume, we separate mass and volume into two 

contributions: prior to diagenesis (mo, vo) and post-diagenesis (mi, vi) where i refers to 

a diagenetically varying chemical species. 

𝜌𝑚𝑒𝑎𝑠 =
𝑚𝑜+∑ ∆𝑚𝑖𝑖

𝑣𝑜+∑ ∆𝑣𝑖𝑖
       (2) 

The mass and volume change associated with each solute i is given by 

∆𝑚𝑖 = (𝑛𝑖 − 𝑛𝑖
𝑜)𝐴𝑟𝑖       (3a) 

∆𝑣𝑖 = (𝑛𝑖 − 𝑛𝑖
𝑜)𝑉𝑖       (3b) 

where ni is the number of moles of solute i, Ari is the atomic (or molecular) weight, 

and Vi is the partial molar volume of solute.  

We assume chloride is conservative, 

𝑛𝐶𝑙− = 𝑛𝐶𝑙−
𝑜         (4) 

so that the post diagenesis and pre-diagenesis ratios, Ri and Ri
o, of a non-conservative 

solute to chloride are 

𝑅𝑖 =
𝑛𝑖

𝑛𝐶𝑙−
𝑜            𝑅𝑖

𝑜 =
𝑛𝑖
𝑜

𝑛𝐶𝑙−
𝑜           (5) 

with the change in the ratio due to diagenesis ∆Ri given by equation A6. 

 ∆𝑅𝑖 = 𝑅𝑖 − 𝑅𝑖
𝑜 =

𝑛𝑖

𝑛𝐶𝑙−
𝑜 −

𝑛𝑖
𝑜

𝑛𝐶𝑙−
𝑜 =

𝑛𝑖−𝑛𝑖
𝑜

𝑛𝐶𝑙−
𝑜       (6) 
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We solve equation 6 for the difference in the number of moles for a non-

conservative solute. 

𝑛𝑖 − 𝑛𝑖
𝑜 = 𝑛𝐶𝑙−

𝑜 ∆𝑅𝑖       (7) 

Substituting (7) into 3a,b 

∆𝑚𝑖 = 𝑛𝐶𝑙−
𝑜 ∆𝑅𝑖𝐴𝑟𝑖       (8a) 

∆𝑣𝑖 = 𝑛𝐶𝑙−
𝑜 ∆𝑅𝑖𝑉𝑖      (8b) 

And then substituting 8a,b into (2). 

𝜌𝑚𝑒𝑎𝑠 =
𝑚𝑜+𝑛𝐶𝑙−

𝑜 ∑ ∆𝑅𝑖𝐴𝑟𝑖𝑖

𝑣𝑜+𝑛𝐶𝑙−
𝑜 ∑ ∆𝑅𝑖𝑉𝑖𝑖

     (9) 

We divide the numerator and denominator of the right-hand-side of (9) by pre-

diagenesis volume vo.  

𝜌𝑚𝑒𝑎𝑠 =
𝜌𝑜+

𝑛𝐶𝑙−
𝑜

𝑣𝑜
∑ ∆𝑅𝑖𝐴𝑟𝑖𝑖

1+
𝑛𝐶𝑙−
𝑜

𝑣𝑜
∑ ∆𝑅𝑖𝑉𝑖𝑖

      (10) 

We substitute equation 11 into equation 10 to determine equation 12. 

[𝐶𝑙−]𝑜 =
𝑛𝐶𝑙−
𝑜

𝑣𝑜
       (11) 

𝜌𝑚𝑒𝑎𝑠 =
𝜌𝑜+[𝐶𝑙−]𝑜 ∑ ∆𝑅𝑖𝐴𝑟𝑖𝑖

1+[𝐶𝑙−]𝑜∑ ∆𝑅𝑖𝑉𝑖𝑖
      (12) 

Equation 12 can be solved for [Cl-]o since ρo is related to [Cl-]o by the equation 

of state for standard seawater. Over a small range in density and [Cl-]o, at constant 

temperature and pressure, the relationship is linear, 

𝜌𝑜 = 𝑎[𝐶𝑙−]𝑜 + 𝜌𝐻2𝑂      (13) 

and can be substituted into (12) to give 

𝜌𝑚𝑒𝑎𝑠 =
𝑎[𝐶𝑙−]𝑜+𝜌𝐻2𝑂+[𝐶𝑙

−]𝑜∑ ∆𝑅𝑖𝐴𝑟𝑖𝑖

1+[𝐶𝑙−]𝑜∑ ∆𝑅𝑖𝑉𝑖𝑖
     (14) 
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which, on rearrangement, gives equation 14.,   

[𝐶𝑙−]𝑜 =
𝜌𝑚𝑒𝑎𝑠−𝜌𝐻2𝑂

𝑎+∑ ∆𝑅𝑖𝐴𝑟𝑖𝑖 −𝜌𝑚𝑒𝑎𝑠 ∑ ∆𝑅𝑖𝑉𝑖𝑖
     (14) 

 

Effect of degassing samples on density 

Note: when 𝐴𝑟 = 𝜌𝑉, no solute-dependent density change occurs. 

Specific Cases (degassing during sample analysis): 

Solute Ar 

(kg/mol) 

ρV 

(kg/mol) 

∆RBW(Ar-ρφ) 

(kg/m3) 
Oxygen 1.59 E-02 3.18 E-02 -4.51 E-04 

Nitrogen 1.40 E-02 3.38 E-02 -7.82 E-03 
Argon 3.99 E-02 3.28 E-02  8.07 E-03 

 

Effect of Diagenesis on Chloride Concentration 

Since diagenesis changes the volume of the system due to the partial molar 

volumes of non-conservative solutes, the post-diagenesis chloride concentration [Cl-]  

will be different than the pre-diagenesis chloride,  [Cl-]0. The change in [Cl-], Δ[Cl-], is 

given below. 

Δ[Cl-]= [Cl-]- [Cl-]o      (15) 

Δ[Cl−] = 𝑛𝑜𝐶𝑙− (
1

𝑣
−

1

𝑣𝑜
)      (16) 

Δ[Cl−] = 𝑛𝑜 (
1

(𝑣𝑜+𝑛𝑜𝐶𝑙− ∑ 𝑅𝑖𝑖 𝑉𝑖)
−

1

𝑣𝑜
)    (17) 

Δ[Cl−] = [𝐶𝑙−]𝑜 (
1

(1+[𝐶𝑙−]𝑜∑ 𝑅𝑖𝑖 𝑉𝑖)
− 1)   (18) 

Δ[Cl−] = [𝐶𝑙−]𝑜 (
−[𝐶𝑙−]𝑜 ∑ 𝑅𝑖𝑖 𝑉𝑖

(1+[𝐶𝑙−]𝑜∑ 𝑅𝑖𝑖 𝑉𝑖)
)    (19) 

Δ[𝐶𝑙−]

[𝐶𝑙−]𝑜
= (

−[𝐶𝑙−]𝑜 ∑ 𝑅𝑖𝑖 𝑉𝑖

(1+[𝐶𝑙−]𝑜∑ 𝑅𝑖𝑖 𝑉𝑖)
)      (20) 
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[𝐶𝑙−] =
𝜌𝑚𝑒𝑎𝑠−𝜌𝐻2𝑂

𝑎+∑ ∆𝑅𝑖𝐴𝑟𝑖𝑖 −𝜌𝐻2𝑂∑ ∆𝑅𝑖𝑉𝑖𝑖
   (21) 

Iterating Initial Chloride 

∆Ri depends on chloride concentration. To avoid introducing uncertainty from 

low precision titration determined chloride concentrations, chloride concentrations 

used to calculate ∆Ri for density determined chloride are calculated as follows. 

Chloride concentration from density, [Cl-](z,t,k), is calculated as shown in equation 22 

in terms of depth z, time t, and iteration k, where time equal to zero is modern 

porewater.  

[𝐶𝑙−](𝑧, 0, 𝑘) =
𝜌𝑚𝑒𝑎𝑠 − 𝜌𝐻2𝑂

𝑎 + ∑ (∆𝑅𝑖)
𝑘−1𝐴𝑟𝑖𝑖 − 𝜌𝐻2𝑂 ∑ (∆𝑅𝑖)

𝑘−1𝑉𝑖𝑖
          (22) 

On each iteration ∆Ri(z,k) is calculated using [Cl-]o(z,0,k) while [Cl-]o(z,0,1) for the first 

iteration is calculated using equation 13, which relates measured porewater density to 

chloride concentration using the equation of state for seawater assuming no 

diagenesis. On subsequent iterations (k > 1), [Cl-]o(z,0,k) is set to density determined 

chloride (eq 22) from the previous iteration, [Cl-](z,0,k-1). Iteration continues until the 

difference between density determined chloride between one iteration and the next 

is indistinguishable within the uncertainty of [Cl-](z,0,k).  
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Solute Ratio and Error Terms 

Sulfate 

𝑅𝑆𝑂4−2,𝑚𝑒𝑎𝑠 = 𝑟𝑙𝑜𝑒𝑠𝑠(𝑅𝑆𝑂4−2) ,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑦 𝑖𝑜𝑛 𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦 

𝜀𝑅
𝑆𝑂4
−2

2 = 𝜎𝑅
𝑆𝑂4
−2

2  

Bicarbonate 

𝑅𝐻𝐶𝑂3−,𝑚𝑒𝑎𝑠 = 𝑟𝑙𝑜𝑒𝑠𝑠 (
[𝐻𝐶𝑂3

−]

𝑟𝑙𝑜𝑒𝑠𝑠([𝐶𝑙−])
)  ,

𝐶𝑂2 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑜𝑙𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑚𝑒𝑎𝑠 𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑡𝑦 𝑎𝑛𝑑 𝐷𝐼𝐶

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑦 𝑠ℎ𝑖𝑝𝑏𝑜𝑎𝑟𝑑 𝑡𝑖𝑡𝑟𝑎𝑡𝑖𝑜𝑛
 

𝜀𝑅𝐻𝐶𝑂3−
2 = (

𝜎𝐻𝐶𝑂3−

𝑅𝐻𝐶𝑂3−
)

2

+ (
𝜎𝑟𝑙𝑜𝑒𝑠𝑠[𝐶𝑙−]

𝑟𝑙𝑜𝑒𝑠𝑠([𝐶𝑙−])
)
2

 

Cations 

𝑅𝑖,𝑚𝑒𝑎𝑠 = 𝑟𝑙𝑜𝑒𝑠𝑠 (
[𝑖]

𝑟𝑙𝑜𝑒𝑠𝑠[𝐶𝑙−]
)  ,

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑦 𝑖𝑜𝑛 𝑐ℎ𝑟𝑜𝑚𝑎𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑦

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑦 𝑠ℎ𝑖𝑝𝑏𝑜𝑎𝑟𝑑 𝑡𝑖𝑡𝑟𝑎𝑡𝑖𝑜𝑛
 

𝜀[𝑖]
2 = (

𝜎𝑅[𝑖]
𝑅[𝑖]

)

2

+ (
𝜎𝑟𝑙𝑜𝑒𝑠𝑠[𝐶𝑙−]

𝑟𝑙𝑜𝑒𝑠𝑠([𝐶𝑙−])
)
2

 

  



 

91 

Monte Carlo Determination of Measurement Errors 

 

Figure A2. Measured and Monte Carlo porewater profiles from KN223 Site 03. 
Measured data is shown as solid circles, smoothed (and interpolated where necessary) 
rLoess fit to the measured data is shown as solid squares. Gray x’s show Monte Carlo 
simulation normally distributed, randomly generated individual values at each depth, 
while colored lines show each Monte Carlo iteration’s rLoess “smoothed” profile. The 
average and standard deviation of the colored lines interpolated at each 
measurement depth are used to evaluate the measurement error.  
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Appendix 1.C: Physical Properties 

 

Figure A3. KN223 Site 03 physical properties for through modeled sediment, where 
measured data (black x’s) is shown with its rloess fit (yellow line) for formation factor 
(left panel) measured by electric resistivity and bulk density (center panel) measured 
by gamma ray attenuation. Porosity calculated from measured and literature values in 
shown in the right panel. 
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Appendix 2.A: Oxidation of Dissolved Reduced Nitrogen 

[NO3
-] in each oxidized vial is determined by injecting 100 µL of sample or 

standard or 200 µL of blank into the reaction chamber. The linear fit of blanks and 

standards plotted with their known concentrations (0 µM for blanks; 20, 40, 60, and 

100 µM for samples) of N against the peak area of their measured chemiluminescence 

chromatograms is used to confirm complete oxidation by POR and to convert peak 

areas of samples to NO3
- concentrations.  

 
Figure A4. Expected and NOx-box measured [NO2] of IAEA N2 (orange circles) and ACA 
(blue diamonds) standards and procedural blanks (gray squares) from two weeks of 
POR batches. Linear fits to IAEA N2 (orange) and ACA (blue) are included with their 
equations and R2 values.
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