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ABSTRACT

The shortest path problem, or the Steiner problem, is an interesting problem

with numerous real-world applications. Historically the Steiner problem has been

studied for the Euclidean plane and for rectilinear distances. Both problems have

been proven to be NP-hard. In this research, we look into the Steiner problem

on a triangular grid and show that the problem is NP-hard. We explore exact

algorithms for constructing a shortest network that optimally interconnects a set

of terminal points on a grid. Moreover, we look at a heuristic algorithm to solve the

problem and provide a conjecture on the bound of the approximation it produces.
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CHAPTER 1

Introduction

The shortest connection network problem studied here originates from the

board game TransAmerica (Figure 1). In the game, each player attempts to con-

nect five cities in different regions of the country with as few train tracks as possible.

The map where the players build their railroads is a triangular grid. Since each

player can place only two tracks per round, it is advantageous to know the shortest

path connecting one’s five cities to increase the chances of winning.

Figure 1: The game board for TransAmerica

We describe the shortest connection problem as follows. Given a set of points

on a triangular grid, find a path that connects these points with the smallest

total length. The points to be connected are referred to as terminal points. The

paths lie along the grid lines and additional junction points may be introduced

into the network. These junction points are called Steiner points and the resulting

connected network is called a Steiner tree. A minimum Steiner tree (SMT) has the
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Figure 2: A Steiner minimum tree for five terminal points (black). The red points
are Steiner points.

shortest length among all Steiner trees (Figure 2). A vertex in a Steiner tree can

be either a terminal point or a Steiner point.

Steiner trees and Steiner points are named after Jakob Steiner, a 19th-century

Swiss mathematician who studied the problem of using a single junction point to

optimally interconnect a set of terminal points [1]. In the 17th century the mini-

mum path problem for three terminals was studied by mathematicians including

Fermat, Cavalieri and Torricelli. The Steiner point for the three-point case is also

called the Fermat point or Torricelli point. All angles at this junction are 120◦.

When Richard Courant and Herbert Robins included Steiner’s problem in their

book, What Is Mathematics [2], they formalized the general form of the Steiner

tree problem as finding a shortest possible network for a set of points with extra

vertices as junctions. The Steiner tree problem has become popular since then,

and it has been studied for different geometries, metrics and cost functions.

On the Euclidean plane, Melzak (1961) [3] first proposed an algorithm to solve

the Euclidean Steiner problem. The algorithm constructs Steiner trees for all pos-

sible topologies and selects the shortest one to be the SMT. Melzak’s algorithm is a

brute-force approach and takes exponential time in that the number of topologies

2



is large. In fact the Euclidean Steiner problem was proven to be NP-hard by Garey

et al. (1977) [4] and Rubinstein et al. (1997) [5].

Another geometry where the Steiner problem has been widely studied is the

rectilinear grid. This version is important because of its application to integrated

circuit routing design. The problem is also known as the Manhattan distance

Steiner problem. In 1966 Hanan [6] showed that the Steiner points can be chosen

from a predetermined set of points, and a rectilinear SMT can therefore be com-

puted by an exhaustive search. The rectilinear Steiner problem (RST) was shown

to be NP-hard by Garey and Johnson in 1977 [7]. They demonstrated that the

RST problem can be reduced from the vertex cover problem, which is known to

be NP-complete.

To the best of our knowledge, there has been far less research on the Steiner

tree problem on a triangular grid or a hexagonal grid, a similar geometry. There

are interesting differences between locating Steiner points on a triangular grid and

the other geometries mentioned. For example, when connecting three terminal

vertices on a triangular grid, there may be multiple choices for the Steiner point,

whereas there is only one choice for the Euclidean and rectangular problems. In

this research, we provide a comprehensive study of the triangular Steiner problem’s

computational complexity and several algorithms to solve it.

The main body of the thesis is divided as follows. Chapter 2 introduces the

metric system and looks into the simplest non-trivial case of the Steiner problem on

a triangular grid. Chapter 3 focuses on constructing exact solutions to the Steiner

problem. Chapter 4 studies the computational complexity and gives a proof that

the triangular Steiner problem is NP-hard. Chapter 5 discusses an approximation

solution to the problem and bounds on the goodness of the approximation. Chapter

6 provides a summary of this research.
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CHAPTER 2

The Coordinate System

2.1 The triangular grid coordinate system

A coordinate system based on triangular grid lines is used as the reference

system in this research.

Let O be the origin. The axes, x1, x2, x3, are the three directions along

the triangular grid lines at O. x1, x2, x3 are 120◦ apart. Each axis separates

the plane into a positive half and a negative half. A counterclockwise rotation is

defined to be the positive direction. The half plane initially scanned by rotating an

axis counterclockwise is the positive half; the other half is the negative half plane

(Figure 3).

Figure 3: The triangular coordinate system and half planes.
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Figure 4: The coordinates of a point.

Parallel grid lines are one unit length apart in all three directions. For any

point P , let p1, p2, p3 be the distances to the axes. Depending on whether P sits on

the positive or the negative half plane of x1, its x1 coordinate is either +p1 or −p1.

The same applies to the other two coordinates of P . For example, in Figure 4, the

coordinates of P are (+p1,−p2,+p3) = (+3,−5,+2). Note that the coordinates

of the points and distances discussed throughout this research are constrained to

be integers. Though only discretized problems are considered here, almost all the

definitions and theorems also apply to continuous coordinates due to the linearity

of the metric system.

We next list some of the basic properties of the triangular coordinate system,

providing proofs for those that are not obvious.

Lemma 2.1. The three coordinates of any point add to 0 (constant).
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Proof. Consider a point P (p1, p2, p3) in the triangular coordinate system. Let the

polar coordinates of P be (r, θ).

Then

p1 = r sin θ, p2 = r sin(θ − 2π

3
), p3 = r sin(θ − 4π

3
)

p1 + p2 + p3 = r sin θ + r sin(θ − 2π

3
) + r sin(θ − 4π

3
) = 0

The distance between two points

Definition (Distance). Consider two points, A(a1, a2, a3) and B(b1, b2, b3). The

distance from A to B is the fewest number of steps taken walking from A to B

along grid lines.

The axis lines passing through A and B enclose three parallelograms having

A and B as diagonally opposite vertices. In one of these parallelograms, the angles

at both A and B are 60◦. This is the distance parallelogram of A and B. The

distance between A and B is the sum of the lengths of any two adjacent edges of

their distance parallelogram (Figure 5).

Figure 5: Three parallelograms enclosed by the axes lines passing through A and
B. The one in the red frame is the distance parallelogram of A and B.

6



Lemma 2.2. Let d1 = |a1 − b1|, d2 = |a2 − b2| and d3 = |a3 − b3|. The distance

between A and B is min{d1 + d2, d1 + d3, d2 + d3}. It is also max{d1, d2, d3},

and equal to
1

2
(d1 + d2 + d3).

Proof. Without loss of generality, suppose d3 = max{d1, d2, d3} and b3 > a3.

Because a1+a2+a3 = b1+b2+b3, (a1−b1)+(a2−b2) = b3−a3 = d3, we must have

a1− b1 > 0 (otherwise d2 > a2− b2 = d3 + (b1− a1) > d3, which contradicts to our

assumption). Similarly a2−b2 > 0. Thus we have d1+d2 = d3 and d1+d2+d3 = 2d3.

Therefore, min{d1 + d2, d1 + d3, d2 + d3} = d1 + d2 = d3 =
1

2
(d1 + d2 + d3) is the

smallest sum of any two di.

Lemma 2.3. All walks from A to B within the distance parallelogram (DP), with

directions restricted to being parallel to two edges of the DP, moving only in the

“forward” directions (never doubling-back in any coordinate), yield the same total

length.

This is an obvious result from Figure 5.

Circle and sectors

Definition (Circle). Given a point P and length l, the set of all points at distance

l from P forms a regular hexagon. We call these points the circle with center P

and radius l on the triangular grid (Figure 6).

Consider a point P (p1, p2, p3). Draw lines through P that are parallel to the

three axis lines. These lines divide the plane to three sectors around P . Call sector

I the infinite region between directions x2 and x3, sector II the region between x1

and x3, and sector III the region between x1 and x2 (Figure 7a).

Let us revisit the distance between two points using the notion of sectors.

Consider another point Q(q1, q2, q3) on the grid. If Q is in sector I of P , the

7



Figure 6: A circle on a triangular grid. P is the center; the radius is 3.

(a) (b)

Figure 7: (a) Sectors of a vertex P on a triangular grid. (b) Distance between two
points based on sectors. Q is in sector III of P . |PQ| is the distance between lines
x3 = p3 and x3 = q3. The gray shaded parallelogram is the distance parallelogram
of P and Q.

distance |PQ| is the difference of their first coordinates, i.e., |PQ| = |p1 − q1|. A

similar result holds for points in sectors II and III. To understand this definition

visually on the grid, depending on which sector of P the point Q is located, draw

a line parallel to that axis through Q. |PQ| is the distance between these parallel

lines (Figure 7b).
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2.2 Properties

Three terminal vertices are the simplest nontrivial case for the Steiner problem

on triangular grids. In the previous section we described how to construct the

triangular coordinate system and provided some basic concepts and definitions.

Based on these foundations, we discuss in this section properties related to three

points on triangular grids as well as properties of triangular Steiner trees.

2.2.1 Equilateral triangles aligned to the grid

Consider three vertices that form an equilateral triangle with edges along grid

lines. Let the vertices be A(0, 0, 0), B(0,−a, a), and C(a,−a, 0). a is the side

length of the triangle (Figure 8).

Lemma 2.4. For any point in or on the equilateral triangle, the sum of the dis-

tances to each of the three edges adds to a.

Proof. Let P (p1, p2, p3) be a point in or on4ABC. The line equations of the three

sides are x1 = 0, x2 = −a and x3 = 0. This implies that 0 6 p1 6 a, −a 6 p2 6 0,

0 6 p3 6 a. The distance to edge AB (x1 = 0) is p1; the distance to edge BC

(x2 = −a) is p2 − (−a) = p2 + a; the distance to edge AC (x3 = 0) is p3. So the

sum of the distances is p1 + p2 + a+ p3 = a (Figure 8).

Lemma 2.5. The sum of the distances from any point P in or on the equilateral

triangle to the three vertices is 2a (constant).

Proof.

|PA| = 1

2
(|p1|+ |p2|+ |p3|) =

1

2
(p1 − p2 + p3)

|PB| = 1

2
(|p1|+ |p2 + a|+ |p3 − a|) =

1

2
(p1 + (p2 + a) + (a− p3))

|PC| = 1

2
(|p1 − a|+ |p2 + a|+ |p3|) =

1

2
((a− p1) + (p2 + a) + p3)

|PA|+ |PB|+ |PC| = 2a

9



Figure 8: Equilateral triangle aligned with grids. P is an internal point.

Lemmas 2.4 and 2.5 are useful in finding solutions to the triangular Steiner

problem for three terminal vertices. A detailed characterization is provided in

Theorem 2.1.

2.2.2 Steiner trees on triangular grids

The optimal solution to finding a shortest connection network for a set of ter-

minal points is a Steiner tree. Additional junction points that might be introduced

in a Steiner tree are called Steiner points. A terminal point serving as a junction

point (degree of two or more) is not, in general, considered a Steiner point. In this

situation, the terminal point is considered to coincide with one or more Steiner

points and it can be regarded as a terminal point of degree 1, Steiner point(s), and

some zero-length edge(s). In this section, we provide some important properties

of Steiner trees and Steiner minimum trees (SMT) on triangular grids.

10



Lemma 2.6. For n terminal vertices on a triangular grid, there are at most n− 2

Steiner points in the Steiner minimum tree.

Proof. Let s be the total number of Steiner points and d1, d2, · · · , ds be the degrees

for every Steiner point in the Steiner tree.

The degree of any Steiner point must be greater than two, i.e., di > 3 for any

di ∈ {d1, d2, · · · , ds}. Otherwise, if a Steiner point had degree 2, it could simply be

eliminated. So there is no need to consider cases where a Steiner point connects

only two vertices.

Let e be the number of edges in the SMT. Because the sum of the degrees

of all vertices in any graph is twice the number of edges and that the sum of the

degrees of all terminal points is larger than the number of terminals,

2e > d1 + d2 + · · ·+ ds + n =
s∑
i

di + n,

and for a tree

e = s+ n− 1

=⇒ 2e = 2(s+ n− 1) >
s∑
i

di + n > 3s+ n

Thus

n− 2 > s.

Lemma 2.6 describes a common property shared by the Euclidean SMT and

the rectilinear SMT. A Steiner tree that has n − 2 Steiner points is called a full

Steiner tree. In a full Steiner tree, the terminals and Steiner points as well as the

Steiner points themselves are distinguished from each other; and a terminal point

has degree 1.

Lemma 2.7. The degree of any Steiner point in a Steiner minimum tree is at most

4.

11



Proof. We prove this by contradiction.

Suppose a Steiner point S in some Steiner minimum tree T of terminal set X

has degree 6. Let A, B, C, D, E, F be all immediate neighbors of S. Note that

A · · ·F are not necessarily vertices of T . Remove all edges from S to A · · ·F and

connect AB, BC, CD, DE, EF to transform T to a new tree T ′. The connectivity

of X does not change, however, the length of T ′ is shorter than T . Thus the original

tree is not an SMT (Figure 9a).

Next suppose a Steiner point S in some SMT T of terminal set X has degree

5. Let A, B, C, D, E be the immediate neighbors of S. Transform T to T ′ as

above and we have a new Steiner tree that is shorter than the original one (Figure

9b).

A Steiner point is either of degree 3 or 4 in a Steiner tree. We can comfortably

regard a Steiner point of degree 4 as two Steiner points of degree 3 joining by an

imaginary zero-length edge.

Definition (Median triangle). Consider three terminal vertices A(a1, a2, a3),

B(b1, b2, b3) and C(c1, c2, c3) on a triangular grid. Let the median values in

each direction be m1 = median{a1, b1, c1}, m2 = median{a2, b2, c2}, m3 =

median{a3, b3, c3}. The region enclosed by lines x1 = m1, x2 = m2, and x3 = m3

is an equilateral triangle. This follows naturally because the lines are 120◦ apart.

This equilateral triangle is the median triangle for the terminal set {A,B,C}.

Lines x1 = m1, x2 = m2 and x3 = m3 are the median lines in each direction

(Figure 10).

In some cases, the median triangle may degenerate to a single point. These

cases will be considered later in Lemma 2.8.

Based on the definition of the median triangle for three terminal vertices, we

are able to provide a theorem that solves the Steiner problem for three terminal

12



(a)

(b)

Figure 9: (a) Tree transformation for a Steiner point of degree 6. (b) Tree trans-
formation for a Steiner point of degree 5.

vertices.

Theorem 2.1. To optimally interconnect three terminal points on a triangular

grid, there is one Steiner point and the possible location of this Steiner point may

not be unique.

1. If the terminal points are collinear (all lie on the same grid line), there is only

one possible choice for the Steiner point and it is the terminal point that lies

between the other two (Figure 11a).

2. If the terminal points are noncollinear, every point in or on the median tri-

angle is a possible choice for the Steiner point and all yield Steiner minimum

13



Figure 10: The gray shaded equilateral triangle is the median triangle for terminal
set {A,B,C}. The median lines are x1 = m1 = b1, x2 = m2 = c2 and x3 = m3 =
a3.

trees of the same shortest length. The region for the Steiner points is called

the Steiner region (Figure 11b).

(a) (b)

Figure 11: (a) Three collinear terminal points. Terminal B serves as the Steiner
point. (b) Three noncollinear terminal points (black). Each blue point can serve
as a Steiner point and the median triangle forms the Steiner region.

14



Proof. Let X(x1, x2, x3) be an arbitrary point on the triangular grid. The total

distance from X to the three terminal vertices is

S = |XA|+ |XB|+ |XC|

=
1

2
(|x1 − a1|+ |x2 − a2|+ |x3 − a3|) +

1

2
(|x1 − b1|+ |x2 − b2|+ |x3 − b3|)

+
1

2
(|x1 − c1|+ |x2 − c2|+ |x3 − c3|)

2S =
∑
a,b,c

3∑
i=1

|xi − ai|

=
3∑

i=1

(|xi − ai|+ |xi − bi|+ |xi − ci|)

Let mi = median{ai, bi, ci}, di = max{ai, bi, ci} −min{ai, bi, ci}, i ∈ {1, 2, 3}.

On triangular grids, the median lines x1 = m1, x2 = m2 and x3 = m3 enclose the

median triangle. In order to minimize S, in each direction, we prefer to choose xi

as the median among ai, bi, ci, i ∈ {1, 2, 3}.

ai bi ci

ideal xi

When the median lines intersect at a single point, i.e., m1 + m2 + m3 = 0,

clearly the intersection (m1,m2,m3) is the only point that minimizes S. Because

|xi − ai| + |xi − bi| + |xi − ci| = di for i ∈ 1, 2, 3, is minimized for all directions,

S =
1

2
(d1 + d2 + d3).

When the median lines do not intersect at one point within the median trian-

gle,

|xi − ai|+ |xi − bi|+ |xi − ci| = |xi −mi|+ di,

2S =
3∑

i=1

(|xi −mi|+ di) =
3∑

i=1

|xi −mi|+
3∑

i=1

di.
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Note that
3∑

i=1

|xi −mi| is the total distance from point X to the three edges

of the median triangle, which is a constant for all points in the triangle according

to Lemma 2.5.

Lemma 2.8. Special cases: (a) For three terminal points that form an equilateral

triangle along the grid lines, the Steiner region is coincident with the equilateral

triangle itself (Figure 12a). (b) For three terminal points, if their median lines

meet at the same point, the Steiner region degenerates to a single point. There

is a unique Steiner minimum tree for this terminal set. Call this terminal set the

spinner set and this unique Steiner minimum tree the spinner tree (Figure 12b).

(a) (b)

Figure 12: (a): The Steiner region is the entire equilateral triangle determined by
the terminal points. (b): The spinner set has a unique Steiner minimum tree, the
spinner tree. Black denotes terminal points; blue denotes Steiner points.
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CHAPTER 3

Exact Algorithms

3.1 Four terminal vertices on a triangular grid

Introducing a fourth terminal vertex to the three-point Steiner problem brings

uncertainties when we consider the topology of Steiner trees. For three terminal

vertices, there is only one Steiner point and we simply connect it to each terminal

to obtain the Steiner tree. The position of the Steiner point and the length of the

Steiner tree can be calculated from Theorem 2.1 without much effort. For four

terminal vertices, there are two Steiner points and a Steiner tree is constructed

so that one Steiner point connects two terminal points, the other connects the

remaining two terminals, and the two Steiner points are connected to each other.

The complexity arises since we need to consider all possible pairings among the

terminal vertices, resulting different Steiner tree topologies, in order to find the

minimum Steiner tree. The solution to a four-point Steiner problem will provide

the foundation for finding a general solution to an n-point triangular Steiner prob-

lem.

Consider four terminal points, A(a1, a2, a3), B(b1, b2, b3), C(c1, c2, c3) and

D(d1, d2, d3). There will be two Steiner points in a Steiner tree. Steiner point

S1 connects A and B. Steiner point S2 connects C and D. S1 is connected with

S2 (Figure 13).

Lemma 3.1. S1 is the Steiner point for {A,B, S2} and S2 is the Steiner point for

{C,D, S1}.

Proof. We prove this by contradiction.

The total length of the tree is |AS1|+|BS1|+|S1S2|+|CS2|+|DS2|. Suppose S1

is not a Steiner point for {A,B, S2}. Then we can find another Steiner point S ′ for
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{A,B, S2} such that |AS ′|+|BS ′|+|S ′S2| < |AS1|+|BS1|+|S1S2|, a contradiction.

Therefore, the satisfying point S1 must be a Steiner point for {A,B, S2}. The same

is true for S2.

Figure 13: SMT for four terminal vertices.

The following lemma determines whether a point is inside the boundary of

three terminal vertices. In the implementation of Algorithm 3.1, it is used to

check if S1 is inside the median triangle of 4ABS2 and S2 is inside the median

triangle of 4CDS1.

Lemma 3.2. Consider a terminal set {A,B,C} and an arbitrary point P on

the triangular grid. The coordinates of the points are A(a1, a2, a3), B(b1, b2, b3),

C(c1, c2, c3), and P (p1, p2, p3). To find P = αA+ βB + γC, we solve the system

αa1 + βb1 + γc1 = p1

αa2 + βb2 + γc2 = p2

α + β + γ = 1

for α, β and γ. Then P is inside 4ABC ⇐⇒ α > 0, β > 0, and γ > 0.
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Lemma 3.1 is a necessary condition for the Steiner point pairs. From its proof

we also see that by satisfying this condition we will find the Steiner minimum tree

for a particular topology. However, when searching for the Steiner pairs, we need

to narrow our choices based on some criteria rather than brute-forcing all pairs of

points on the grid. Therefore we introduce the concept of candidate points for a

Steiner point.

Definition (Candidate Points/Set). Consider two points A and B on the grid. If

A and B are noncollinear, the candidate points for A and B are the four vertices

of their distance parallelogram. Otherwise if A and B are collinear, the candidate

points are A and B themselves. The set of candidate points we shall call the

candidate set.

The construction of a Steiner tree can also be considered from the viewpoint

of the distance parallelograms (DP). A and B are connected by some route within

their DP, DP1. C and D are also connected by some route within their DP, DP2.

These two components are then connected by the shortest path between DP1 and

DP2, yielding a locally minimum tree. The two ends of the path touching DP1 and

DP2 are Steiner points S1 and S2. As a result, S1 and S2 are on the outer edges

of the distance parallelograms. This observation leads to the following lemma.

Lemma 3.3. Consider the shortest path between two parallelograms that do not

overlap. There must exist a shortest path that includes a vertex of either parallel-

ogram.

Corollary 3.4. At least one of S1 and S2 belongs to the vertices of its correspond-

ing distance parallelogram, i.e., the candidate set.

Corollary 3.4 is an immediate result of Lemma 3.3 and here we illustrate the

correctness of Lemma 3.3 with figures.
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Figure 14: Three orientations of a parallelogram on a grid.

A parallelogram on the grid can be in any of the three orientations shown

in Figure 14. For two parallelograms on the grid, there are two relative positions

between them according to how many pairs of parallel edges these two parallelo-

gram share. In Figure 15a, where there are two pairs of parallel edges, we find the

closest pair that do not cut through the parallelograms and the shortest path that

ends at a vertex. In Figure 15b, where there is only one pair of parallel edges, the

closest vertex from one parallelogram to the other will be included in the shortest

path.

Lemma 3.5. Let S1 be the candidate set of A and B, S2 be the candidate set of

C and D. The Steiner point pair (S1, S2) for this particular Steiner tree topology

satisfies either (1) S1 ∈ S1, S2 ∈ S2, or (2) S1 = S2, S1 ∈ S1
⋃
S2.

Corollary 3.6. It is sufficient to search for Steiner pairs within {(P,Q)|P,Q ∈

S1
⋃
S2} to obtain a Steiner tree.

Proof. Without loss of generality, assume A and B are as shown in Figure 16.

Draw three grid lines through A and B respectively. The grid plane is divided

into 16 regions surrounding the distance parallelogram of A and B. Label eight of
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(a)

(b)

Figure 15: Relative positions and a shortest path between two parallelograms.

Figure 16: Regions surrounding the distance parallelogram of A and B.

21



these regions i through viii, with the others being their symmetric halves.

The candidate set S1 for A and B is {A,B, Sa, Sb}. We want to show that, no

matter where the other Steiner point S2 is, Steiner point S1 can always be found in

S1
⋃
{S2}, i.e., there exists S1 ∈ S1

⋃
{S2} such that S1 is in the median triangle

of 4ABS2.

We do a case analysis by assuming S2 to be in regions i through viii (Figure

17).

1. S2 in region i. A provides two median lines and B provides the third median

line. Choose S1 ∈ {A, Sb}.

2. S2 in region ii. A provides two median lines and S2 provides the third median

line. Choose S1 ∈ {A}.

3. S2 in region iii. All three median lines pass through A and it is the only choice

for S1. Choose S1 ∈ {A}.

4. S2 in region iv. A provides two median lines and S2 provides the third median

line. Choose S1 ∈ {A}.

5. S2 in region v. A provides two median lines and B provides the third median

line. Choose S1 ∈ {A, Sa}.

6. S2 in region vi. A,B, S1 each provide a median line. Choose S1 ∈ {Sa}.

7. S2 in region vii. S2 provides two median lines and B provides the third median

line. Choose S1 ∈ {S2}.

8. S2 in region viii. S2 provides two median lines and B provides the third median

line. Choose S1 ∈ {S2}.

In cases 7 and 8, S1 coincides with S2. By Corollary 3.4, if S1 is not in S1, then

S2 must be a vertex in S2.
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Figure 17: S2 in different regions. The gray shaded triangle is the median triangle of 4ABS2.
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With Lemma 3.5 and Corollary 3.6 in hand, it is easy to compute the local

minimum Steiner tree for a given topology. All topologies should be considered

in order to find the global Steiner minimum tree. In Algorithm 3.1 we provide a

procedure for finding the SMT for four terminal points.

Algorithm 3.1 (Steiner Minimum Tree for 4 points)

Input: A set of terminal points X = {A,B,C,D}

Output: Length of the Steiner minimum tree.

Let P be all possible 2-2 partitions of X ,

P = {{(A,B), (C,D)}, {(A,C), (B,D)}, {(A,D), (B,C)}}

for each partition {(p1, p2), (p3, p4)} in P :

for each candidate s1 of (p1, p2): // 4 choices

for each candidate s2 of (p3, p4): // 4 choices

Check if s1 is inside the median triangle of {s2, p1, p2}

Check if s2 is inside the median triangle of {s1, p3, p4}

// s1 connecting p1, p2; s2 connecting p3, p4

local1 = |s1p1|+ |s1p2|+ |s2p3|+ |s2p4|+ |s1s2|

// special case: degenerate Steiner points at s1

local2 = |s1p1|+ |s1p2|+ |s1p3|+ |s1p4|

// special case: degenerate Steiner points at s2

local3 = |s2p1|+ |s2p2|+ |s2p3|+ |s2p4|

global min = min(global min, local1, local2, local3)

return global min.

3.2 The recursive algorithm

The five-point Steiner problem is considered before we tackle the general case

with n terminal vertices. Suppose T is a Steiner minimum tree for a five-terminal

set X = {A,B,C,D,E}. If vertices A and B are connected to Steiner point S1,

24



then T −S1A−S1B must be the SMT for four-terminal set {S1, C,D,E}. Clearly

S1A + S1B is the shortest distance connecting A and B. We can choose S1 to be

in the candidate set of these two terminal vertices and we say A and B are merged

to their candidate point S1. The following lemma shows that a Steiner point can

be obtained by merging two vertices to their candidate set when we construct a

Steiner minimum tree.

Lemma 3.7. A Steiner point can be found in the candidate set of some vertex

pair in a Steiner minimum tree.

Proof. Suppose in a Steiner minimum tree, vertices A and B are joined to Steiner

point S and S is not in the candidate set of (A,B), denoted by Candidate(A,B).

We show by case analysis that we can choose S from the candidate set of some

vertex pair to obtain an SMT with the same length.

1. S is a terminal point. Merging terminal vertex pair (S,A) to their candidate

set then merging (S,B) shall we find this topology.

2. S is not a terminal and it has degree 3. Let S connect to A, B and X. S

must be the Steiner point for set {A,B,X}. From the proof of Corollary 3.6,

we can choose S from Candidate(A,B)
⋃
{X}.

3. S is not a terminal and it has degree 4. Let S connect to

A, B, X and Y . From Lemma 3.5, S can be chosen from

Candidate(A,B)
⋃
Candidate(X, Y ). Since S /∈ Candidate(A,B), it can

be chosen from Candidate(X, Y ).

Since the degree of a Steiner point can only be 3 or 4 (see Lemma 2.7), this

concludes our proof.
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Now the idea for a recursive algorithm to solve an n-point Steiner problem

becomes straightforward. In each round we choose two terminal points P and Q

and merge them into their candidate set C. For every member C in C, we compute

the Steiner tree for the n − 1 terminal set, comprised of the original terminal set

with P and Q replaced by C.

Algorithm 3.2 (Steiner Minimum Tree for n points)

Input: A set of terminal points X

Output: Length of Steiner minimum tree.

function SMT(X ):

n = number of elements in X

if n 6 3:

return SMT3(X ) // one-step SMT calculation for 3 points

for each pair (p1, p2) in X × X , p1 6= p2: //

(
n

2

)
pairs

for each candidate s of (p1, p2):

let X ′ = (X − {p1, p2})
⋃
{s}

local tree length = |sp1|+ |sp2|+ SMT(X ′)

global min =min(global min, local tree length)

return global min

Runtime analysis

We did a rough estimate of the runtime of the basic recursive algorithm. In

each terminal reducing step, each pair of two points is selected to be merged to

its candidate set (maximum size of 4). So the runtime is governed by a recurrence

relation of the form t(n) = 4 ·
(
n

2

)
· t(n− 1), whose solution is O(2n(n!)2), where

n is the number of terminal vertices to be connected.

The recursive algorithm was implemented in Maple. Though effective in find-

26



ing the shortest route, the program is inefficient and can be used to find the SMT

for only up to 6 points within a reasonable amount of time. The results are pre-

sented in Table 1.

Table 1: Runtimes of recursive algorithm implemented in Maple

No. terminals 3 4 5 6 7
Runtime 0.6 ms 0.14 s 5.5 s 360 s 58875 s (16 h)

3.3 The binary tree model

The principal redundancy of the basic recursive algorithm comes mainly from

reconsidering terminal pairs. An example of a Steiner tree for a five-point set

{1, 2, 3, 4, 5} is shown in Figure 18. In the basic recursive program, this topology

will be considered at least twice: (1) merge terminal 1 and 2 to S1 → set reduced

to {S1, 3, 4, 5} → merge terminal 3 and 4 to S2 → set reduced to {S1, S2, 5}; (2)

merge terminal 3 and 4 to S2 → set reduced to {1, 2, S2, 5} → merge terminal 1

and 2 to S1 → set reduced to {S1, S2, 5}.

Figure 18: Diagram of a Steiner tree for 5 terminal vertices. 1. . . 5 are the terminals;
S1, S2 and S3 are Steiner points.

To eliminate counting a tree topology multiple times, we use a binary tree

model to represent a Steiner tree topology and consider pairing terminals1 at the

1 In our recursive program, terminals not only include those in the original terminal set, but
also refer to merged points that are treated as new terminal points in the next recursive step.
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beginning of the program. Figure 19 shows the binary tree representation of the

example in Figure 18. In a binary tree, the leaves correspond to terminal points

and all internal vertices excluding the root correspond to Steiner points. Note

that the root does not represent any vertex in the Steiner tree and its children are

simply the two components it connects.

Figure 19: A Steiner tree and its binary tree representation.

Lemma 3.8. For n terminal points, there are (2n− 3)!! binary trees.

Proof. Consider how many ways we can add a terminal point to a given topology.

The additional point can be merged to either the leaf nodes or the internal vertices

including the root (Figure 20). So the recurrence relation for the number of binary

trees is:

T (n) = ( n− 1︸ ︷︷ ︸
leaves

+ n− 2︸ ︷︷ ︸
internal vertices

) · T (n− 1)

=⇒ T (n) = (2n− 3) · (2n− 5) · · · 5 · T3

= (2n− 3)!! since T3 = 3
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(a) Additional vertex merged to leaf nodes/terminals

(b) Additional vertex merged to internal nodes/Steiner points

(c) Additional vertex merged to root

Figure 20: Adding an additional terminal vertex to a binary tree.

Implementation and runtime analysis

Similar to the original recursive program, the binary tree model has the run-

time recurrence relation t(n) = 4 · (2n− 3) · t(n− 1), and

t(n) = 4n−3 · (2n− 3)!! = 4n−3 · (2n− 2)!

2n−1 (n− 1)!
= 2n−5 · (2n− 2)!

(n− 1)!
.

So asymptotically the runtime is O(2n (2n)!

n!
), where n is the size of the initial

terminal set. Compared to the basic recursive program, the improvement brought

about by the binary tree model is huge as one can see simply from the two recur-

rence relations. The basic algorithm is quadratically dependent on the previous
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term while the binary tree algorithm is linearly dependent on the previous term.

However, there still remains some redundancy with the binary tree model.

Take the simplest Steiner tree consisting of three terminal points as an example.

There are three binary tree representations while only one topology exists for this

terminal set (Figure 21). This three-body redundancy exists for all Steiner points

connecting three components. So, in order to efficiently implement the recursive

binary tree algorithm, we used a global hash table to store all previously computed

SMTs to avoid any recalculation, at the expense of requiring additional space. This

procedure is given in Algorithm 3.3.

Figure 21: Binary trees for three terminal points.

Algorithm 3.3 (Steiner Minimum Tree for n points, improved implementation)

Input: A set of terminal points X

Output: Length of Steiner minimum tree.

global H = Hashtable(point set→ SMT length)

function SMT(X ):

n = number of elements in X

if n 6 3:

if H has no entry X :

H[X ] = SMT3(X ) // one-step SMT calculation for 3 points

return H[X ]

for each pair (p1, p2) in X × X , p1 6= p2: //

(
n

2

)
pairs
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for each candidate s of (p1, p2):

let X ′ = (X − {p1, p2})
⋃
{s}

if H has entry X ′:

local tree length = |sp1|+ |sp2|+H[X ′]

else

H[X ′] = SMT(X ′)

local tree length = |sp1|+ |sp2|+H[X ′]

global min =min(global min, local tree length)

return global min

The results of the improved implementation for computing Steiner trees are

shown in Table 2, including a comparison with the original basic program. The

speedup is significant and the limits of its feasibity has been pushed to 8 terminal

points from 6. However, this performance improvement involves a tradeoff between

space and time. Part of the factorial cost growth is transferred to space usage of

the hash table, and how efficiently Maple implements a hash table may also be a

limit of computing power.

Table 2: Runtimes of binary tree (BT) vs basic recursive program in Maple

No. terminals 4 5 6 7 8
BT runtime 0.13 s 3.2 s 36 s 389 s 5083 s

Basic runtime/BT runtime 1.1 1.7 10 151 -

3.4 Pruning trees

The following lemma provides a pruning criteria to cut down the number of

terminal pairs considered when computing an SMT.

Lemma 3.9. In a Steiner minimum tree, a terminal point is not necessarily inside

the distance parallelogram of any grouped pair of terminal vertices.
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Proof. Consider a Steiner minimum tree T of terminal set X . Suppose terminals

A and B are grouped and merged to Steiner point S. S connects to the remaining

component of T with edge SO. Terminal C is inside the distance parallelogram of

A and B.

Remove edges SA, SB and SO in T . Connect edges CA and CB. We obtain

a new Steiner tree T ′ of X . The length of T ′ is |T ′| = |T | − |SA| − |SB| − |SO|+

|CA|+ |CB| = |T | − |SO| 6 |T |.

Thus, there is no need to consider grouping two terminals (A and B) if any

other terminal point (C) is found to be inside their DP. In any event, the optimum

Steiner tree will be considered by grouping either (A,C) or (B,C) (Figure 22).

Figure 22: Discard grouping of terminals A and B when terminal C is found inside
the DP of A and B.

The pruning method has been implemented for both the basic recursive pro-

gram and the binary tree version. Before each exponential SMT calculation step,

we check each terminal pair to see if another terminal point is inside their DP. This

condition can easily be checked in linear time. There are large speedups on the

basic program (Table 3) but no obvious improvement on the binary tree recursive

program (not shown).
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We conclude our discussion on exact algorithms for computing Steiner mini-

mum trees with a performance comparison of the three algorithms implemented in

Maple (Table 3). As this research focuses on the development of algorithms, and

Maple is not the most efficient language for computing purposes, we are satisfied

with the data presented and leave more in-depth analyses for future work.

Table 3: Performance comparison of the three SMT programs in Maple.

No. terminals 4 5 6 7 8
Basic runtime 0.14 s 5.5 s 360 s 58875 s -

Basic with pruning (BP) - 2.7 s 143 s 6905 s -
Binary tree runtime (BT) 0.13 s 3.2 s 36 s 389 s 5083 s
Basic runtime/BP runtime - 2.0 2.5 8.5 -
Basic runtime/BT runtime 1.1 1.7 10 151 -
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CHAPTER 4

Computational Complexity

The Steiner problem on the Euclidean plane [4] and on the rectilinear plane

[7] have both been proven to be NP-hard. It is intuitive to imagine that on the

triangular plane, the triangular Steiner problem (TRISMT) is also NP-hard. To

show the NP-hardness of the TRISMT problem it is sufficient to find a special

class of triangular SMTs so that the computation of such trees is NP-hard. On

the Euclidean plane, such a class of Euclidean SMTs was found by Rubinstein et

al [5]. In this construction, terminals are constrained to be on two parallel lines.

Based on this configuration, Weng [8] shows that the Euclidean Steiner minimal

tree (ESMT) problem is NP-hard by transforming the SUBSET SUM problem into

the ESMT problem. Using a construction similar to Rubinstein’s and Weng’s, we

are able to find a special class of terminal sets on the triangular grid that can be

polynomially transformed from the SUBSET SUM problem.

An instance of the SUBSET SUM problem is described as follows. Given a set

of positive integers S = {d1, d2, · · · , dn} and an integer s (0 6 s 6 D =
∑
16i6n

di),

is there a subset J ⊂ {1, 2, · · · , n} such that
∑
i∈J

di = s?

Our proof develops in these steps:

1. We describe the TRISMT problem as a decision problem. Given a set of

terminals X on a triangular grid and some integer l, is there a Steiner tree

T spanning X such that |T | 6 l?

2. Construct an instance of the TRISMT problem from an instance of SUBSET

SUM.

3. Show that if the SUBSET SUM instance has a “yes” solution, then we can
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find an SMT of length l for the terminal set in the TRISMT instance within

polynomial time.

4. Show that if we can find an SMT of length l for the TRISMT instance, then

we can find the solution to the SUBSET SUM instance within polynomial

time.

First we give lemmas to describe some properties of SMTs for terminals that

sit on two parallel lines. Note that we choose the two auxiliary lines to be vertically

parallel to each other and the grid points on these lines are 2 unit lengths apart.

Lemma 4.1. Consider 2n terminal vertices on a triangular grid lying on two

vertical lines, with n points on each line, such that every point and its neighboring

point on the other vertical line are collinear along axis-aligned lines. Connect all

the collinear pairs. The resulting zigzag path aligned to the grid is the SMT for

this 2n terminal set (Figure 23a).

Corollary 4.2. Suppose each terminal point in Lemma 4.1 is replaced by an “is-

land” of terminal points, where the diameter of the island (the furthest distance

between any two points) is much smaller than the distance between the two vertical

lines. The topology of the SMT for the new set is such that the islands are con-

nected by a zigzag path and within each island, the terminal points are connected

with local SMTs (Figure 23b).

Next we construct an instance of TRISMT (Figure 24). Let L2 � L1 � D.

1. Draw two vertical lines l1 and l2 at a distance L2. Let ui (i = 0, 1, · · ·n)

be grid points on l2 and xi (i = 0, 1, · · ·n) be grid points on l1 such that

{ui, xi (i = 0 · · ·n)} forms a terminal set as described in Lemma 4.1. Connect

these points with a zigzag path.
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(a) A zigzag path spanning a set of terminal
points lying on two vertical lines.

(b) A zigzag path with turning points that
connect to local SMTs. Each blue balloon
suggests a local SMT for the terminals in-
side. L is much greater than the diameter
of any disk (Dpi and Dqi).

Figure 23: Zigzag path as an SMT and its “island” derivative.

2. Draw a third vertical line l0 to the left of l1, where the distance between

l0 and l1 is L1. Extend unx0 to intersect l0 at v. Place triples of vertices,

{vi, v′i, v′′i (i = 1 · · ·n)}, on l0 such that: (1) vi is 2di below xi, (2) v′i is 2di

above xi, (3) v′′i is 4di above v′i.

Consider the terminal set X = {v, u0, ui, vi, v′i, v′′i (i = 1 · · ·n)}. By Corollary

4.2, the SMT of X , TX , is the zigzag path u0x1u1x2 · · ·unx0v, plus local SMTs

connecting vi, v
′
i, v
′′
i , xi (i = 1 · · ·n). Let the length of TX be M .

3. Let v0 be a grid point on l0 that is 8s below v in the x1 direction. The

instance terminal set is X ′ = {v0, u0, ui, vi, v′i, v′′i (i = 1 · · ·n)}, i.e. X ′ =

(X − {v})
⋃
{v0}.

Let the SMT of X ′ be TX ′ . Similar to TX , TX ′ is composed of a zigzag path
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Figure 24: Terminal set X = {v, u0, ui, vi, v′i, v′′i (i = 1 · · ·n)} and its SMT. xi (i =
0 · · ·n) are Steiner points. Terminal set X ′ = (X − {v})

⋃
{v0}.

joining local SMTs of the triple set terminals {vi, v′i, v′′i (i = 1 · · ·n)}. Next we

show that the SUBSETSUM instance has a “yes” solution ⇐⇒ |TX ′| = M − 6s.

For a given subset J ⊂ {1, 2, · · · , n}, construct TX ′ as follows (Figure 25):

1. Join every island terminal set {vi, v′i, v′′i (i = 1 · · ·n)} with path viv
′
iv
′′
i be-

tween lines l0 and l1. Let wi be the vertex of the distance parallelogram of

vi and v′i, and w′i be the vertex of the DP of v′i and v′′i .

2. For i ∈ J , the island set joins the zigzag path with w′i; for i /∈ J , the island

set joins the zigzag path with wi.

3. Starting from terminal u0, use a zigzag path to join ui, islands of {vi, v′i, v′′i }
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(i = 1 · · ·n) and v0. The new turning points in this zigzag path are x′i and

u′i (i = 1 · · ·n). Note that for the last segment u′nv0, the two end points are

simply connected and we do not know if they are collinear.

Figure 25: Terminal set X ′ and TX ′ . 1 ∈ J and n /∈ J in this example.

We now consider the length of TX ′ .

Lemma 4.3. For 1 6 m 6 n, let Jm = J
⋂
{1, 2, · · · ,m}. Horizontally, x′m lies to

the left of xm by 2
∑
i∈Jm

di. u
′
m lies to the left of um by 4

∑
i∈Jm

di.

Proof. Figure 26 shows a partial view of TX and TX ′ . Let the left shift amount

from xi to x′i be δxi, and from ui to u′i be δui for i = 1, 2, · · · , n.

For i ∈ J :

δxi = δui−1 + 2di, δui = δxi + 2di

For i /∈ J :

δxi = δui−1, δui = δui−1
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The initial conditions are

δu0 = 0

and

δx1 = 0(1 /∈ J) or δx1 = 2di(1 ∈ J).

The lemma follows naturally by solving the recurrences.

(a) i ∈ J (b) i /∈ J

Figure 26: Partial view of TX ′ (red route) and TX (black route).

Claim 1.
∑
i∈J

di = s =⇒ |TX ′ | = M − 6s.

Proof. To compute |TX ′ |, we first consider the difference between the lengths of

TX ′ and TX from stage i− 1 to i (Figure 27). Let ∆i be this difference.

For i ∈ J :

∆i = (|u′i−1x′i|+ |x′iw′i|+ |x′iu′i|+ |u′iui|)− (|ui−1xi|+ |xiwi|+ |xiui|) = 2di

For i /∈ J :

∆i = (|u′i−1x′i|+ |x′iwi|+ |x′iu′i|+ |u′iui|)− (|ui−1xi|+ |xiwi|+ |xiui|) = 0
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The initial condition is ∆0 = 0.

n∑
i=0

∆i =
∑
i∈J

2di = 2s

|TX ′| − |TX | =
n∑

i=0

∆i + (|u′nv0| − |unv|) (?)

From Lemma 4.3 we know that |u′nun| = δun = 4
∑
i∈J

di = 4s. Because |vv0| is

8s, the last segment u′nv0 must be aligned to the grid in the x2 direction (Figure

28). Thus, |unv| − |u′nv0| = 8s and |TX ′| = M − 6s.

(a) i ∈ J (b) i /∈ J

Figure 27: Difference in length of TX ′ (green route) and TX (blue route) from stage
i− 1 to i.

Claim 2. The SMT of X ′ is of length M − 6s =⇒ There exists J ⊂ {1, · · · , n},

such that
∑
i∈J

di = s.

Proof. Let TX ′ be the SMT of X ′. By Corollary 4.2, T has a zigzag topology plus

locally minimal Steiner trees connecting {vi, v′i, v′′i }. According to Lemma 3.9 (the

tree pruning criteria), it is not necessary to join terminal vi and v′′i . So the locally
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Figure 28: Last segments of TX (black route) and TX ′ (red route).

minimal Steiner trees can only be like the one in either Figure 29a or Figure 29b to

join the zigzag path. And T must be as in Figure 25, with some i ∈ J connecting

the upper part of the island and some i /∈ J connecting the lower part.

(a) upper (b) lower

Figure 29: Local SMTs joining the zigzag path.

Consider the last segment u′nv0.

1. If it is aligned with the grid line in the x2 direction, then |TX ′ | = M−6
∑
i∈J

di.

From our assumption that TX ′ = M − 6s,
∑
i∈J

di = s.

2. If u′nv0 is not aligned with the grid line, let the ray from u′n in the x2 direction
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intersect the line l0 at v′0. When v0 is above v′0, edge u′nv0 in TX ′ has length

|u′nv′0|+ |v′0v0| (Figure 30a),

Equation (?) then becomes

|TX ′ | − |TX | =
n∑

i=0

∆i + (|u′nv0| − |unv|)

= 2
∑
i∈J

di + |u′nv′0|+ |v′0v0| − |unv|

= 2
∑
i∈J

di − 8s

M − 6s−M = 2
∑
i∈J

di − 8s

=⇒
∑
i∈J

di = s

3. If u′nv0 is not aligned with the grid line and v0 is below v′0, edge u′nv0 in TX ′

is a bow leg in Figure 30b.

Equation (?) then becomes

|TX ′ | − |TX | =
n∑

i=0

∆i + (|u′nv0| − |unv|)

= 2
∑
i∈J

di + |tv0| − 8s

= 2
∑
i∈J

di + (4s− |u′nun|)− 8s

M − 6s−M = −2
∑
i∈J

di − 4s

=⇒
∑
i∈J

di = s

From the above case analysis on segment u′nv0 in TX ′ , we see the claim is

correct. It also implies that v0 and v′0 are the same point.

Theorem 4.1. From Claim 1 and Claim 2, it follows that the solution to our

instance of SUBSETSUM is “yes” ⇐⇒ SMT of X ′ has length M − 6s. So the

TRISMT problem is NP-hard.
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The theorem concludes our discussion for this chapter.

(a)

(b)

Figure 30: The situations for u′nv0, the last segment of TX ′ .

43



CHAPTER 5

The Steiner Ratio

5.1 The Steiner ratio conjecture

Given a terminal point set X , a minimum spanning tree (MST) is the shortest

connection network for X where all vertices belong to X . A spanning tree differs

from a Steiner tree in that no additional vertices are introduced in a spanning tree.

An example is illustrated in Figure 31. Since there are no known polynomial time

algorithms for computing a Steiner minimum tree (SMT), an MST can conveniently

be used to approximate an SMT because there exist fast algorithms (Prim’s and

Kruskal’s [9]) to compute an MST. Given a terminal set X on a triangular grid,

we can find the distance between every pair of vertices in X , and then apply either

Prim’s or Kruskal’s algorithm to this complete graph. Since both Prim’s and

Kruskal’s algorithms run in polynomial time, it is possible to find an MST on a

triangular grid in a time that is polynomial in the number of terminal points.

(a) (b)

Figure 31: Terminal set X = {A,B,C,D,E}. (a) MST for X with length 14.
V (MST ) = X . (b) SMT for X with length 12. V (SMT ) = X

⋃
{S1, S2}.

The Steiner ratio has been studied for both the Euclidean and the rectilinear

Steiner problems. Although this ratio has been defined in different ways, it is
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meant to quantify how well we can estimate an SMT with an MST. In this chapter

our discussion of the Steiner ratio will be based on the following definition.

Definition (Steiner ratio). Let ρ = lMST/lSMT denote the ratio between the length

of a minimum spanning tree and that of a Steiner minimum tree for a particular

graph. The upper bound of ρ over all graphs is the Steiner ratio.

Lemma 5.1. ρ > 1 because spanning trees form a subset of Steiner trees.

In the Euclidean plane, the Steiner ratio is conjectured to be 2/
√

3 and this is

achieved when three terminal points form an equilateral triangle (Figure 32a). This

Steiner ratio conjecture on the Euclidean plane was proposed in 1968 by Gilbert

and Pollak [10] and allegedly proven in 1990 by Du and Hwang [11]. Their claim

was disproved by Ivanov and Tuzhilin in 2012 and the conjecture remains an open

problem [12]. On a rectilinear grid, the Steiner ratio is 3/2 when four terminals are

aligned in a cross shape (Figure 32b). The Steiner ratio for the rectilinear Steiner

problem was proposed and proved by Hwang in 1976 [13].

(a) Euclidean plane (b) Rectilinear plane

Figure 32: Steiner ratio achieved for the Euclidean and rectilinear Steiner problems.
Black vertices denote terminal points; red denote Steiner points. The red route
gives the Steiner minimum tree; the blue route is the minimum spanning tree.

Conjecture 5.1 (Steiner ratio conjecture). The Steiner ratio for the triangular

Steiner problem is 4/3, i.e. ρ 6
4

3
. The ratio is achieved when three terminals
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form a spinner set (defined in Lemma 2.8) and the three arms of the spinner tree

are of equal length (Figure 33).

Figure 33: A spinner set (black points) that has a Steiner minimum tree with equal
length arms.

In the remaining sections of this chapter, we will prove our conjecture for three

and four point terminal sets.

5.2 Proof of the three point case

We describe two techniques, one graphic and the other algebraic, to prove the

Steiner ratio conjecture for three terminal points.

Lemma 5.2. When one or more terminal points can serve as a Steiner point, there

exists a Steiner minimum tree that is identical to the minimum spanning tree and

lSMT = lMST for the terminal set.

This is called a degenerate Steiner minimum tree (Figure 34). The terminal

point that serves as a Steiner point provides at least two median lines for the

median triangle.

Lemma 5.3. Given a spinner set of three terminals on a triangular grid, ρ 6 3/4.
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(a) (b)

(c) (d)

Figure 34: Different situations where an SMT degenerates. Terminal points are
shown in black. The gray shaded triangles are median triangles. In (a), (b) and
(c), at least two terminal points are collinear. In (d), all vertices are non-collinear.

Figure 35: Spinner set X = {A,B,C} and the spinner tree.

47



Proof. Suppose the spinner set is X = {A,B,C}. According to Lemma 2.8, there

is a unique Steiner minimum tree and Steiner point S for X (Figure 35).

Let |SA| = a, |SB| = b, |SC| = c. Without loss of generality, suppose

a > b > c. The total length of the SMT is lSMT = a + b + c. In a metric system,

|AB| 6 |SA|+ |SB| = a+ b. Similarly, |AC| 6 a+ c and |BC| 6 b+ c.

The total length of the minimum spanning tree (MST) is

lMST = min{|AC|+ |BC|, |AB|+ |AC|, |AB|+ |BC|}

6 min{a+ b+ 2c, 2a+ b+ c, a+ 2b+ c} = a+ b+ 2c

Therefore, ρ = lMST/lSMT 6
a+ b+ 2c

a+ b+ c
= 1 +

c

a+ b+ c
6 1 +

c

c+ c+ c
=

4

3
.

Lemma 5.4. Any non-spinner terminal set can be transformed to a spinner set

without changing the total length of the Steiner minimum tree.

Proof. Consider a non-spinner terminal set {A,B,C} on a grid. Choose one vertex

of the median triangle, S, to construct a Steiner minimum tree (Figure 36). S is at

the intersection of two median lines, one passing through A and the other through

C in this example. Terminal B and S are non-collinear and will be transformed.

To construct the new set,

1. Draw a circle with center S and radius |SB|. The blue dashed line in Figure

36 shows a portion of this circle.

2. Draw the remaining axis line passing through S (green dashed line, a ray

that does not run through the distance parallelogram of terminals A and C).

The intersection of this line with the circle is terminal B′. {A,B′, C} is the

transformed set.

Terminal set {A,B′, C} is a spinner set because all median lines intersect at

the same point S. lSMT for {A,B′, C} is the same as lSMT for {A,B,C} because

|SB| = |SB′|.
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Figure 36: Terminal set {A,B,C} transforms to spinner set {A,B′, C} on Steiner
point S. S is the unique Steiner point for the new set.

Figure 37: A degenerate non-spinner SMT transforms to a spinner tree. {A,B,C}
is the original terminal set and {A,B,C ′} is the spinner set after transformation.

The transformation can also be done on degenerate SMTs when one terminal

point serves as the Steiner point. Take the case shown in Figure 34d as an example.

In Figure 37, terminal B is the Steiner point for {A,B,C} and B provides two

median lines along axes x2 and x3. The intersection of axis x1 passing through B

and circle B with radius |BC| is C ′. {A,B,C} can be transformed to spinner set

{A,B,C ′} and their SMTs are of the same length.

Lemma 5.5. lMST for the transformed terminal set (the spinner set) from Lemma

5.4 is greater than or equal to lMST for the terminal set before transformation.
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Proof. Suppose a non-spinner set X transforms to a spinner set X ′. lMST (X )

denotes the length of the minimum spanning tree of X and lSMT (X ) denotes the

length of the Steiner minimum tree of X . We would like to show lMST (X ′) >

lMST (X ).

First consider the case when X has a degenerate SMT. Terminal point P can

serve as the Steiner point for X and lMST (X ) = lSMT (X ). Transform X to X ′

on P . Because P ∈ X ′ and P is the unique Steiner point for X ′, lMST (X ′) =

lSMT (X ′). From the transformation we know lSMT (X ) = lSMT (X ′), and therefore

lMST (X ′) = lMST (X ).

Next we consider cases when X does not have a degenerate SMT. This suggests

that each terminal provides a median line to form the median triangle. We use the

example in the proof of Lemma 5.4 to continue our discussion. It shows a general

situation under this assumption (Figure 38). Median line a2 passes through A.

C is in the positive half plane so B must lie in the negative half. Median line c3

passes through C. A is in the negative half plane so B must lie on the positive

half. B provides the median line in the remaining direction (x1 in the example

shown), separating A and C into each half plane. Therefore, B should lie between

lines a1 and c1. Because of symmetry, B is further restricted to be between lines

s1 and c1. The resulting region, the golden area shown in Figure 38, is where B

can be located.

In the transformation, as B moves along the circumference of circle S to B′

in direction x3, B is in sector III of S and is also in the same sector of A. This

suggests B is also moving along the circumference of circle A, with |AB| being its

radius. Thus, |AB′| = |AB|. Meanwhile, B is in sector II of C, moving away from

C to increase ∠CSB to 120◦ so |B′C| > |BC|. |AC| remains the same after the

transformation. Therefore, lMST (X ′) > lMST (X ).
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(a) (b)

Figure 38: (a) Terminal set {A,B,C} transforms to spinner set {A,B′, C} on
Steiner point S. A, B, and C each provide a median line. The golden shaded area
is where B can be located under this assumption. (b) Layout view of sectors of S.

The following theorem is a natural consequence of Lemmas 5.3 to 5.5. We

also present below an alternative method to prove the ratio.

Theorem 5.1. The Steiner ratio for three arbitrary points on a triangular grid is

4/3.

Proof. Suppose the terminal vertices are A(a1, b1, c1), B(a2, b2, c2), and

C(a3, b3, c3). Consider a Steiner tree for {A,B,C} where the Steiner point is

X(x1, x2, x3). Let Mi = max{ai, bi, ci}, mi = min{ai, bi, ci}, di = Mi−mi, mdi =

median{ai, bi, ci} for i ∈ {1, 2, 3}.

From previous results (see proof of Theorem 2.1), the total length of a tree is

l = |XA|+ |XB|+ |XC| = 1

2

3∑
i=1

(|xi −mdi|+ di) =
1

2
(

3∑
i=1

|xi −mdi|+
3∑

i=1

di).

So

lSMT >
1

2

3∑
i=1

di
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Now consider the minimum spanning tree.

lMST 6 twice the average of |AB|, |BC|, |AC| = 2

3
(|AB|+ |BC|+ |AC|)

=
2

3
· (1

2

3∑
i=1

|ai − bi|+
1

2

3∑
i=1

|bi − ci|+
1

2

3∑
i=1

|ai − ci|)

=
1

3

3∑
i=1

(|ai − bi|+ |bi − ci|+ |ai − ci|)

=
1

3

3∑
i=1

2(Mi −mi) =
2

3

3∑
i=1

di

∴
lMST

lSMT

6
4

3
.

5.3 Proof of the four point case

Consider the full Steiner tree for a four-terminal set X = {A,B,C,D} in

Figure 39a. S1 and S2 are two Steiner points. From the Steiner tree construction

described in Algorithm 3.1, assume edges S1A, S1B, S2C and S2D all align with

grid lines. Edge S1S2 may not align with the grid, in which case {A,B, S2} and

{C,D, S1} are not spinner sets. Using the transformation described in Lemma

5.4, transform S2 to S ′2. Consequently, terminals C and D are transformed to C ′

and D′ (Figure 39b). The resulting terminal set X ′ = {A,B,C ′, D′} has the same

Steiner tree length as X and lMST (X ′) > lMST (X ). Therefore, ρ(X ) 6 ρ(X ′). It

would be sufficient to prove ρ(X ′) 6 4/3 for X ′, which has a double spinner Steiner

tree. For the remainder of this section, a Steiner tree for four terminal points refers

to a double spinner Steiner tree for four terminals.

Spanning trees

Spanning trees consist only of edges between terminal pairs. Given the topol-

ogy of a double spinner Steiner tree for a terminal set P = {A,B,C,D}, the edges

joining a pair of terminal vertices can be categorized as one of the three types:
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(a) (b)

Figure 39: Terminal set {A,B,C,D} transforms to {A,B,C ′, D′} of the same
Steiner tree length. The Steiner tree for {A,B,C ′, D′} is a double spinner tree.

(a) neighbor (b) bridge (c) cross

Figure 40: Types of edges joining two terminal points.

neighbors, bridges and crosses (Figure 40). A neighbor edge joins two terminals

that are joined to the same Steiner point in a Steiner tree. A bridge edge joins two

terminals that are directly connected to different Steiner points, and the bridge

edge does not intersect the Steiner tree. A cross edge joins two terminals that

are directly connected to different Steiner points and the cross edge intersects the

Steiner tree. Examples of these types of spanning tree edges are given in Figure 40

in blue dashed lines and they reflect only the ways of joining the terminal pairs.

Based on the edge types in a spanning tree, there exist a total of seven different

shaped spanning trees for P . We name and describe three that will be useful in

our discussion: U -shaped, C-shaped and N -shaped spanning trees (Figure 41).

53



(a) U -shaped (b) C-shaped (c) N -shaped

Figure 41: Different shaped spanning trees.

A U -shaped spanning tree contains two neighbor edges and a bridge edge; a C-

shaped spanning tree contains two bridge edges and a neighbor edge; an N -shaped

spanning tree contains two neighbor edges and a cross edge.

Steiner ratio

Lemma 5.6. Given a double spinner tree for four terminal points, lMST/lSMT 6

4/3.

Proof. The proof is by contradiction.

Assume lMST > 4/3 lSMT . This implies the length of any spanning tree must

be greater than 4/3 lSMT . It is sufficient to show any contradiction by choosing

any spanning tree(s).

Suppose {A,B,C,D} is a four-point terminal set and it has a double spinner

Steiner tree with Steiner points S1 and S2. Let the lengths of the edges be |AS1| =

a, |BS1| = b, |S1S2| = s, |CS2| = c and |DS2| = d. So lSMT = a + b + c + d + s.

Without loss of generality, assume a = max{a, b, c, d}. In order to express the

length of the possible components of the spanning tree, we divide the proof into

two cases.

1. Case b 6 d (Figure 42).

The distances between the terminal points are

|AB| = a+ b, |BD| = s+ d, |CD| = c+ d, |BC| = s+ b+ c, |AC| = s+ a
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Figure 42: A double spinner tree for four terminal points. Case b 6 d.

Suppose

• for a U -shape, (|AB|+ |BD|+ |CD|) > 4

3
lSMT

=⇒ 3(a+ b+ s+ d+ c+ d) > 4(a+ b+ c+ d+ s)

=⇒ 2d > a+ b+ c+ s (1)

• for a C-shape, (|AC|+ |CD|+ |BD|) > 4

3
lSMT

=⇒ 3(s+ a+ c+ d+ s+ d) > 4(a+ b+ c+ d+ s)

=⇒ 2s+ 2d > a+ 4b+ c (2)

• for an N -shape, (|AB|+ |BC|+ |CD|) > 4

3
lSMT

=⇒ 3(a+ b+ s+ b+ c+ c+ d) > 4(a+ b+ c+ d+ s)

=⇒ 2b+ 2c > a+ d+ s (3)

(1) + (2) + (3) =⇒ d > a+ b, which contradicts a > d.

2. Case b > d (Figure 43).

The distances between the terminal points are

|AB| = a+ b, |BD| = s+ b, |CD| = c+ d, |AC| = s+ a

Suppose
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Figure 43: A double spinner tree for four terminal points. Case b > d.

• for a U -shape, (|AB|+ |BD|+ |CD|) > 4

3
lSMT

=⇒ 3(a+ b+ s+ b+ c+ d) > 4(a+ b+ c+ d+ s)

=⇒ 2b > a+ c+ d+ s (1)

• for a C-shape, (|AC|+ |CD|+ |BD|) > 4

3
lSMT

=⇒ 3(s+ a+ c+ d+ s+ b) > 4(a+ b+ c+ d+ s)

=⇒ 2s > a+ b+ c+ d (2)

(1)× 2 + (2) =⇒ b > a+ c+ d, which contradicts a > b.

Theorem 5.2. The Steiner ratio for four points on a triangular grid is 4/3.

Proof. Lemma 5.6 shows that lMST/lSMT 6 4/3. We need only prove that 4/3 is

a tight upper bound.

Construct the Steiner tree in Figure 42 with a = b = s = m, c = d = 1. Then

lSMT = a+ b+ c+ d+ s = 3m+ 2, lMST = |AB|+ |BD|+ |CD| = 4m+ 2

The Steiner ratio is lMST/lSMT =
4m+ 2

3m+ 2
→ 4

3
as m→∞.
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Note that the bound of 4
3

can be extended to any number of points. For

example, in Figure 44, from the spinner set {1, 2, 3} with an equal-arm spinner

tree, add points one unit length apart along ray S3 to grow the set. m is the arm

length of the spinner tree; n is the total number of terminal points. Let m � n,

then lMST/lSMT = 4m+(n−3)
3m+(n−3) →

4
3
.

Our future work on the Steiner ratio includes generalizing the proof of the

conjecture for four-terminal sets to n points using induction. Hwang [13] proved

the Steiner ratio on a rectilinear grid by first showing all Steiner trees can be

transformed to a fur Steiner tree shape (Figure 45a) and then conducting his proof

on the fur tree through induction. Intuitively, we hope to prove Conjecture 5.1 for

n points in a similar fashion: constrain the topology of a Steiner tree to a zigzag

tree (Figure 45b) and prove the Steiner ratio by induction.

Figure 44: A Steiner tree (the red route) of n > 4 terminal points with ρ→ 4
3
. The

black and green points denote terminals. The red point S is the only Steiner point
in the Steiner tree. The blue route denotes the minimum spanning tree. m� n.
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(a) A fur Steiner tree on a rectilinear grid. (b) A zigzag Steiner tree on a triangular grid.

Figure 45: Steiner trees on different geometric planes. Both consists of a backbone
(green) and branches sticking out of both sides . Red denotes Steiner points; black
denotes terminal points.
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CHAPTER 6

Summary

In this thesis we investigated the shortest connection network problem on a

triangular grid. The problem originates from the board game TransAmerica, where

players build a railroad network linking five cities on a map that is a triangular

grid. Previously the shortest path problem had been studied for the Euclidean

plane and for a rectilinear grid. In both these cases, the problem was shown to be

NP-hard.

Chapter 2 provides a foundation for this research. We introduced the triangu-

lar grid coordinate system and presented some key concepts and results which were

drawn upon in later discussions. The solution to the three-point case was given.

This important result, which is specific to the triangular metrics, was used in find-

ing a general solution for any number of points, and in studying the computational

complexity of the problem and approximation solutions.

In Chapter 3 we proposed several exact algorithms to solve the Steiner prob-

lem. Our first approach was an elementary recursive algorithm based on merging

two terminal points to their candidate points to reduce the problem size. Groups

of terminal points are enumerated multiple times in the basic algorithm. In order

to reduce this redundancy, we introduced a binary tree model to represent the

topology of a Steiner tree. In the actual implementation, we used a hash table

to store all computed results to further improve efficiency. With these efforts,

we were able to increase the limit of computation from 6 to 8 terminal points in

Maple programs. A tree pruning technique was also developed and it significantly

reduced the number of terminal pairs that need to be considered.

In Chapter 4 we showed that the triangular Steiner (TRISMT) problem is
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NP-hard. Inspired by Rubinstein and Weng who proved the NP-hardness of the

Euclidean Steiner problem by reducing it from the SUBSET SUM problem, we

constructed a similar transformation for the triangular grid problem. To do this,

we used a special class of triangular Steiner trees whose construction can be done

from an instance of SUBSET SUM in polynomial time.

Since it is unlikely to find an efficient solution to the TRISMT problem, we

considered approximating a Steiner minimum tree (SMT) with a minimum span-

ning tree (MST). An MST differs from an SMT in that it does not introduce

additional vertices into the network. The goodness of this approximation, called

the Steiner ratio, is an upper bound of the length of an MST to an SMT. We

conjectured the Steiner ratio to be 4/3 and provided proofs for the three and four

terminal points. The proof for four points shows promise of being generalized to

n terminal points. This will be investigated in the future.
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