
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

1996

Neural Network Implementation of Non Linear Control Using Neural Network Implementation of Non Linear Control Using

Radial Basis Functions Radial Basis Functions

Francis Andersson
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Andersson, Francis, "Neural Network Implementation of Non Linear Control Using Radial Basis Functions"
(1996). Open Access Master's Theses. Paper 1173.
https://digitalcommons.uri.edu/theses/1173

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1173?utm_source=digitalcommons.uri.edu%2Ftheses%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

NEURAL NETWORK IMPLEMENTATION OF NON LINEAR CONTROL

USING RADIAL BASIS FUNCTIONS

BY

FRANCIS ANDERSSON

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

1996

APPROVED:

MASTER OF SCIENCE THESIS

OF

FRANCIS ANDERSSON

Thesis Committee

Major Professor

~,tf?~
DEANOFiHEGRADUATESCHOOL

UNIVERSITY OF RHODE ISLAND

1996

Abstract

This research is concerned with the design of radial basis function neural networks

to implement a controller for nonlinear systems. Nonlinear systems are of particular

interest given the fact that most real life systems are nonlinear in nature and con­

trol schemes for such systems are not as developed as their linear counterparts and

involves a lot of heuristics. We show the ability of radial basis function networks

(RBF) to serve as a single unifying model incorporating both nonlinear and linear

methodologies.

We focus on the problem of the inverted pendulum on a cart system, which is a

classic problem in a lot of control literatures. The problem is to swing the pendulum

from a given initial state, which is typically the hanging down position, to the up

position and then to keep it balanced in the up position. In swinging the pendulum,

the cart to which the pendulum is attached is moved back and forth on a track until

the pendulum is in the up position. This system is a very useful model in that

it demonstrates a multi-variable highly nonlinear system that belongs to a class of

nonlinear systems that cannot be controlled by traditional nonlinear techniques such

as feedback linearization.

In training the RBF network, we explore several different control schemes to

produce the training data. These control schemes could also be easily extrapolated to

work with other multi-variable nonlinear systems. We first design a neural controller

for the second order system describing the pendulum dynamics only. The controller is

able to drive the state variables from any permissible state of the system to zero, and

to keep it stabilized in that equilibrium state. Secondly, we again show the network's

ability to implement nonlinear control of the fourth order pendulum/ cart system. We

..
11

further demonstrate how the Kohonen self organizing feature map algorithm can be

used to make the network more efficient and adaptive.

111

Acknowledgments

Firstly, I would like to thank God for His many blessings and uplifting me in those

times when the problems seemed insurmountable. Secondly, many thanks to my

advisor, Dr. Richard Vaccaro, for his advice and optimism throughout this project.

Also, I would like to express my gratitude to Dr. Allen Lingren and Dr. James

Kowalski for their valuable inputs in this research and for serving on my thesis

committee. Finally, special thanks to my family for their encouragement and moral

support during this project.

IV

Contents

Abstract 11

Acknowledgments iv

Table of Contents v

List of Figures vu

1 Introduction 1

1.1 Problem Statement . 3

1.2 An Alternate Neural Network Approach to the Pendulum-cart Problem 5

1.3 Organization of Chapters . 8

2 Neural Network Implementation of Nonlinear Functions 10

2.1 Introduction 10

2.2 Radial Basis Function Networks

2.2.1 Exact RBF Network ..

2.2.2 Generalized RBF Network

2.3 Self Organizing Feature Map Networks

2.4 A Nonlinear Function Implementation Example

3 The Second Order Model

3.1 Introduction

3.2 Dynamic Programming

3.3 Results from Dynamic Programming and the RBF Network .

v

10

12

13

14

16

19

19

19

21

3.3.1 Fixed Centers Selected on a Grid .

3.3.2 Self-Organized Selection of Centers

3.4 Control by Segmentation

4 The Fourth Order Model

4.1 Introduction ...

4.2 Energy Controller

4.2.1 Simulation Results of the Energy Controller

4.3 RBF Network Training Simulation Results

5 Conclusions

5.1 Summary

5.2 Further Work

A Summary of Pole Placement

B Computer Code

B.l The dynamic programming algorithm

B.2 The energy controller algorithm

B.3 The training algorithm

B.4 Closed-loop simulation

References

Bibliography

Vl

24

26

29

31

31

31

33

33

42

42

43

45

47

47

50

52

53

55

58

List of Figures

1.1 The inverted pendulum on a cart system 4

1.2 Inverted pendulum controlled by a feed forward neural network. 8

2.1 Radial basis function network 11

2.2 Square topological neighborhood A, of varying size , around "win-

ning"neuron, identified as black circle 16

2.3 Placement of centers by SOFM along the input trajectory where 'x'

show the center locations . 18

2.4 Illustration of the approximating ability of the RBF network with cen-

ters determined by the SOFM network 18

3.1 Training trajectories for different initial conditions . 22

3.2 Plot of the trajectory of pendulum from hanging down to standing

erect with additional linear region centers 23

3.3 Plot showing the stabilization of the system at the target equilibrium

point. · . 23

3.4 Plot of the trajectory of pendulum from hanging down to standing erect 24

3.5 Weight surface of the state space 25

3.6 Plot showing the principle of optimality. One trajectory starts at x 0 =

[2.5, -5f and the other at x 0 = [3 .5, - 7f 25

3. 7 Plot showing the network's ability to generalize with an untrained intial

vector of x 0 = [3.5, -lf. 26

3.8 Placement of centers to match input trajectories

3.9 Plot of the trajectory from hanging to the upright position

3 10 Pl t .c • ·1·b 1 · o 101 a non-eqm I rmm m1tia state

Vll

27

27

28

3.11 Approximation of the linear controller 28

3.12 Block diagram showing the segmentation modules 30

4.1 Plot of the control input that moves the pendulum from hanging

down,x 1 = ;0 , to the upright position, X1 = 7r 34

4.2 Plot of the state variables with initial state x 0 = [;0 , 0, 0, Of 34

4.3 Plot of the control input when the initial state is x 0 = [%, 0, 100, Of 35

4.4 Plot of the state variables with initial state x 0 = [%, 0, 100, Of 35

4.5 Plot of the control input when the initial state is X o = rn, 1, 10, 20JT 36

4.6 Plot of the state variables with initial state x 0 = [~ , 1, 10, 20f 36

4. 7 The RBF network approximation to the input trajectories. 37

4.8 Closed-loop simulation of the RBF network showing the control input 38

4.9 Closed-loop simulation of the RBF network showing the state variables 38

4.10 Illustration of the RBF network ability to generalize, showing the state

variables with initial state x 0 = [~, 0, 0, Of 39

4.11 Illustration of the RBF network ability to generalize , showing the

control input 39

4.12 The RBF network approximation to the four training trajectories. 40

4.13 Closed-loop simulation of the RBF network showing the control input 40

4.14 Closed-loop simulation of the RBF network showing the state variables 41

Vlll

Chapter 1

Introduction

The work reported in this thesis represents a subset of a rapidly growing interest

in the use of neural networks as a paradigm for the control of nonlinear systems or

the representation of systems in system identification problems. Recent research [1],

[2],[3],[4], [5], [6] has attempted to define the role of neural networks in control theory.

A major focus of these research efforts has been to establish a mathematical formu­

lation of these network architectures through which a general control methodology

could be developed. It is worth noting that neural networks are natural to use for

nonlinear control and identification methods due to the fact that these networks lend

themselves easily in performing nonlinear mappings in multidimensional space. As­

suming that there exists an input-output mapping that achieves the control objective,

the network is trained in a supervised fashion by modifying the synaptic weights so

as to minimize the difference between the desired response and the actual response

produced by the input signal. In addition, neural networks are able to generalize;

generalization refers to the networks producing reasonable outputs for inputs not en­

countered during training (learning). This implies that neural networks are robust

and can be easily retrained to adapt their synaptic weights to compensate for minor

changes in the environmental conditions under which they are operating. In this day

and age of parallel and distributed computation, these networks lend themselves eas­

ily as practical tools both in hardware and software implementations. In the hardware

form neural networks have the potential to be inherently fault tolerant in the sense

1

that its performance is gracefully degraded under adverse operating conditions. For

example, if a neuron or its connecting links are damaged, recall of a stored pattern

is impaired in quality. However, due to the distributed nature of information in the

network, the damage has to be extensive before the overall performance of the network

is degraded seriously.

Consider a system described by the following equations;

x = f(x) + g(x)u

y = h(x) (1.1)

where xis a vector-valued state vector, J(.), g(.) and h(.) are nonlinear functions

and u and y are the input and output of the system, respectively. The objective of

the control problem is to determine the input, u, so that the system behaves in a

desired fashion. For example, there are two ways in which the system (plant) can be

controlled: regulation and tracking. In the former, the main goal is to stabilize the

plant around a fixed operating point, typically referred to as an equilibrium point.

In the latter, the aim is to make the output, y, follow an input signal asymptotically.

As stated above the goal of the control problem is to make the plant behave in

a certain, deterministic way. But the nature of the plant itself provides the frame­

work for the control mechanism. Systems are generally characterized as being either

linear or nonlinear. Linear control techniques have over the past few decades been

well documented and successfully implemented [7] and [8]. There exists numerous

linear controllers (eg. pole placement, PID, LQR, H 00 , etc.) available for linear sys­

tems. Nonlinear control, on the other hand, is not as developed and most designs

of controllers still rely heavily on heuristic methods. Probably the most well-known

nonlinear control scheme has been feedback linearization in which the system is made

to be locally equivalent to a linear system, after which linear control techniques can

be utilized. However, feedback linearization can be applied only to a limited class

of systems (eg. the Inverted Pendulum system does not fall in this class [9]). This

presents a challenge to the controls engineer because most systems of interest (eg.

robotic arms, helicopters, etc.) are nonlinear in nature. It is against this backdrop

that alternative methods such as neural networks have been explored.

2

An obvious disadvantage of neural networks is that they are highly nonlinear in

their parameters. Learning must be based on nonlinear optimization techniques , and

parameter estimates may become trapped at a local minimum of the chosen optim­

ization criterion during the learning procedure when a gradient descent algorithm is

used. [10] demonstrates this disadvantage. Other optimization techniques, such as

genetic algorithm, Newton's method and simulated annealing, although capable of

achieving a global minimum, require extensive computation.

A viable alternative to highly nonlinear-in-the-parameter neural networks is the

radial basis function (RBF) network. An RBF network can be regarded as a special

two-layer network which is linear in the parameters by fixing all RBF centers and

nonlinearities in the hidden layer. Thus the hidden layer performs a fixed nonlinear

transformation with no adjustable parameters and it maps the input space onto a

new space. The output layer then implements a linear combiner on this new space

and the only adjustable parameters are the weights of this linear combiner. These

parameters can therefore be determined using the linear least square (LS) method ,

[11] [3]. An RBF network that performs the mapping fr : Rn --+ R is represented by

the following;
n

fr(x) = Wo + L WitP(llx - Cill) (1.2)
i=l

where x E Rn is the input vector, <P(·) is the nonlinear activation function, Wi are the

weights, and Ci E Rn are the known RBF centers·.

1.1 Problem Statement

As stated previously, the objective of a controller is to produce an input signal, prefer­

ably an optimal one, that would move the states of the system in desired trajectories.

The goal of this research is to design a neural controller for the inverted pendulum

system that would swing the pendulum from any given state in its allowable state

space to the equilibrium state of standing upright and drive all other state variables

to zero. Furthermore, the controller should be self correcting given any perturbation.

This goal exceeds that of [4] which is to get the pendulum from the equilibrium state

3

of hanging down to the target equilibrium state of standing erect.

The mathematical model used for the inverted pendulum system is given by Vac­

caro, [7]. A schematic of this system is shown in Fig. 1.1.

u xl

x3

Figure 1.1: The inverted pendulum on a cart system

The nonlinear system model is represented by the following differential equations;

where:

f (x)

x = J(x) + g(x)u

y= h(x)

g(x)

X2

-Asin(x1) + ~ cos(x1)Cx4

X4

h(x)

0

- ~ cos(x1)D

0

D

4

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

A =23.lrad/sec2

C = 25.0 sec-1

D = 2,633 rad/(volt - sec2)

n = 495 rad/sec

g =9.81m/s2

where x1 is the angular position of the pendulum, X2 is the angular velocity of the

pendulum, x 3 is the motor position, x 4 is the motor velocity and u is the control

input. The standard orientation is that when the pendulum is hanging down, x1 = 0

and when it is pointing up, x1 = 7r.

The linearized state-space model of the inverted pendulum/ cart system is given

by;
0 1 0 0 0

-A 0 0 AC AD

x (t) ng x(t) +· ng u(t) (1.8)
0 0 0 1 0

0 0 0 - C D

1.2 An Alternate Neural Network Approach to the

Pendulum-cart Problem

In the paper by Suykens et al [4], a control law is proposed using either a feed-forward

or recurrent neural networks to switch a multi-variable nonlinear plant between equi­

librium points and to stabilize the plant at the target equilibrium point. This network

design incorporates a linear controller to stabilize the plant at the target equilibrium

point. As an illustration of this control strategy Suykens uses the inverted pendulum­

cart system in which the task is to swing the pendulum from down to up and to locally

stabilize it in the up position. In this section we present only the feedfoward network

design given in that paper, as well :findings of [10] in designing and implementing this

network to control the pendulum-cart system.

5

In order to determine the weights, Suykens suggests an optimization scheme in

which optimal weights are found such that a cost function is minimized using a

steepest gradient descent algorithm (e.g Constr in Matlab). This training scheme

does not require that an input-output mapping is known beforehand, but instead

determines the mapping during training.

Given a nonlinear system, as in (1.1), the optimal control problem is to minimize

a cost function over the weights of the network. The cost function is given by

C = llx(T)ll + laT ((x(t))dt (1.9)

where Tis the final time, ((x(t)) = x(t)Tx(t) (quadratic control) or (= 0 (terminal

control).

The input-output relationship of the neural network is given by

u = atanh(wT tanh(Vx)) (1.10)

where a is the maximum amplitude of the control signal, wT is the weight vector for

the output layer, V is the weight matrix for the input layer. In the linear region the

tanh can be dropped because tanh x ~ x if x is small. Therefore (1.10) in the linear

region can be written as

(1.11)

If we let wT be a function of V such that

(1.12)

then (1.11) simplifies to

u = -Lx (1.13)

where Lis a row vector of full state feedback regulator gains. Note that eqn.[1.13] is

the standard expression for a full state feedback regulator. This gains vector can be

calculated according to linear control theory such as pole placement (see appendix

A), PID, LQR etc ...

6

The inverted pendulum mathematical model used by Suykens is given by;

J(x)

g(x)

X2

f mlx~ sin X3 - !!if sin 2x3

tmc-m cos2 X3

X4

mcgsin x3 -'¥1x~ sin(2x3)

l(tmc-m cos2 x3)

0
4 1
3 tmc-m cos2 x 3

0
COS X 3

l(tmc-m cos2 x 3)

h(x) = [::]

(1.14)

(1.15)

(1.16)

where x1 is motor position, x2 is motor velocity, x 3 is pendulum position, x 4 is

pendulum velocity, mis the mass of pendulum and equals O.lkg, mt is the total mass

of the pendulum and cart and equals l.lkg, l is the half pole length and equals 0.5m,

and g is the acceleration due to gravity.

Given this pendulum model Suykens and his colleagues were able to demonstrate

the ability of the feedfoward neural network to swing the pendulum from down to

up and to stabilize the pole at the up position using the linear quadratic regulator

(LQR) from linear control theory. A diagram of this feedforward network is shown

is Fig. 1.2. In [10] the authors highlight the difficulties with this optimization based

controller. Their results indicate the weight matrix, V, is highly dependent on the

system parameters l , mt , and m. For example, the authors were able to determine the

optimal weights that balanced the pendulum cart model used by Suykens, but when

the pendulum half length was changed from 0.5m to 0.55m or the total mass from

l.lkg to l.25kg the controller could not achieved the control objective given the same

weight matrix V. Further results showed that the authors were unable to find the

optimal weights to swing up and balance the pendulum-cart model given by Vaccaro

(see (1.5)).

7

u Inverted
Pendulum

Figure 1.2: Inverted pendulum controlled by a feed forward neural network.

In concluding this section, let us review the pros and cons of this neural control

law,

Pros The incorporation of the linear controller into the neural network is seam­

less and is mathematically well-defined. In addition, the optimal control input

is determined during training of the network which means that input-output

mappings are not needed in training like it would be if backpropagation or a

least square training method had been used.

Cons There is no guarantee a priori that the linearized region will be entered. The

network may become stuck at a local minimal depending on the initial weights

matrix chosen or the step size of the gradient descent algorithm. Furthermore,

there is no reliable way to pick this initial weight matrix. Suykens suggest using

a random martix which is normally distributed with a variance between 0 and

1. But as discussed in [10] this rule of thumb choice is not at all reliable.

1.3 Organization of Chapters

In chapter two, we present the mathematical model for radial basis neural networks

and demonstrate their ability to generalize. Also, we show how these networks can

be more efficient by using self-organizing neural networks to determine their centers.

8

In chapter three, we design a controller for the second order model for the pendu­

lum system. We explore the use of the dynamic programming algorithm along with

techniques from linear control theory to produce the training data for the network

and we investigate two schemes for placing the centers, fixed selection of the centers

and self-organized selection of the centers.

In chapter four, we present the controller for the fourth order model of the pendu­

lum system. We utilize a new method to generate the training data for the network

using the energy information of the system. Results are given using the self-organizing

placement of centers scheme discussed in the previous two chapters.

Finally in chapter five, we summarize our work and propose ideas for future work.

9

Chapter 2

Neural Network Implementation of

Nonlinear Functions

2.1 Introduction

In this chapter we approach the design of a neural network as a curve-fitting or ap­

proximation problem to implement nonlinear functions in a high dimensional space.

According to this design strategy, training the network is equivalent to finding a

surface in multidimensional space that provides the best fit to the training data. Cor­

respondingly, generalization is equivalent to the use of this multidimensional surface

to interpolate the test data.

On a historical note, Broomhead and Lowe,[12], were the first to use radial basis

functions in the design of neural networks . Other major contributi9ns to the theory,

design, and application of radial basis function networks include works by Moody

and Darken, [13], Poggio and Girosi, [14] and Chen, [11].

2.2 Radial Basis Function Networks

The construction of a radial basis function network in its most basic form involves

three different layers as shown in Fig. 2.1. The input layer is made up of source

nodes. The second layer is a hidden layer of high enough dimension and constitutes

10

The problem is to find an approximation Y = F(x) of the mapping (2.1) value for

any argument x E P·
From numerical analysis we know that the most convenient way of representing an

unknown nonlinear function is to present it as a linear expansion

Na

Y = F(x) = L wi <P(llx - ci ll) (2.3)
i=l

where {<P(llx- ci ll)li = 1,2, ... ,Na} is a set of Na radial basis functions , 11 -11 denotes

the Euclidean norm, Wi are weights of the expansion, and Ci ERP, i = 1, 2, ... ,Na are

the centers of the radial basis functions.

Two commonly used radial basis functions are

1. Inverse multiquadrics
1

<P(x) = (2 2) l x + c 2

(2.4)

2. Gaussian functions
(x c) 2

<P(x) = exp(- 2)
217

(2.5)

Theoretical investigations and practical results suggest that the choice of radial basis

functions is not crucial to the performance of the RBF network [11]. Our choice

of radial basis functions in this thesis is that of the Gaussian functions, which is

generally expressed as

(2 .6)

where :E- 1 is the inverse covariance matrix of the Gaussian distribution and can be

expressed in terms of a norm weighting matrix C i, [1 6], [17]

(2 .7)

2.2.1 Exact RBF Network

In the exact RBF network implementation of the mapping in (2.1), we set Na = N

and we take the known data points xi, i = 1, 2, .. . , N to be the centers of the radial

12

· functions. We can therefore rewrite (2.3) as basis
N

}i = F(xj) = L w;¢(11xj - x;ll) i = 1, 2, ... N
j=l

Equation (2.8) <;:an be expressed in matrix notation as

1>11 ¢12 </>1N W1 Y1

1>21 ¢22 </>2N W2 Y2

¢N1 </>N2 </>NN WN YN

where

</>ji = ¢(11xj - x;ll), j,i = 1,2, ... ,N

Let

y =[Yi, Y;, ... , YNf

8 = [w1 , W2, ... , WN]T

<I> = { ¢j; lj, i = 1, 2, ... , N}

Then we can expressed (2.9) in a more compact form

y = <I>E>

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

The N-by-1 vectors Y and E> represent the desired response vector and linear weight

vector respectively. The N-by-N matrix «I> is the interpolation matrix.

lfx1,X2 , ... ,xN are distinct points in RP, then the interpolation matrix, <I> , is positive

definite {18}. Provided that this statement is true, we can obtain the weight vector

0 by

(2.13)

2.2.2 Generalized RBF Network

In the generalized RBF network implementation of (2.1), we set Na :::; N and we

consider that the centers of the network do not necessarily coincide with the training

data points. The network expansion is depicted in (2.3).

13

Assuming the networks centers are known and fixed, let us fit the training set

data in (2.2) using the network in eqn. [2.3]. Utilizing the same notations in (2.11)

and (2.12) , we can represent the fitting problem in the regression form

(2.14)

where E = [e i ... eN r is a residual error vector. Since <I> is not guaranteed to

be well conditioned or even a full rank matrix, we will look for a regularized least

squares solut ion to (2.14) that minimizes

JJc: JJ} + aJJE>JJ}, 0 <a:::; 1 (2.15)

where II· II is the Frobenius norm and a is a scalar regularizat ion parameter introduced

to compensate for ill-conditioned problems. Solving eqns.[2.14] and [2.15] yields

(2.16)

2.3 Self Organizing Feature Map Networks

The performance of an RBF network critically depends upon the chosen centers. The

RBF centers should suitably sample the input domain of the network and reflect

the data distribution. Furthermore, due to obvio\ls reasons in considering real time

implementations of these networks, it is prefered to have as few basis functions (re­

duction of the dimensionality of the hidden layer space) as possible- hence reducing

the computational time of the network. But the question arises as how to best select

appropriate centers.

In this section we propose using a self-organizing f eature-mapping (SOFM) al­

gorithm, developed by Kohonen [19] in which the topography of the input domain is

learned in an unsupervised fashion and the centers of the RBF network are then taken

to be the weights of the SOFM. The SOFM algorithm draws striking resemblance

to the k-means clustering algorithm, which is well documented in a lot of pattern

classification literature [5] . To begin the discussion of the SOFM algorithm let us

14

define an input matrix, X, representing the set of input vectors over time, denoted

by
(2.17)

where

[X:1 l x · - .
i- . '

Xip

i = 1,2, ... ,N

and synaptic weight matrix denoted by

(2.18)

where

j = 1,2, ... ,Q

Note that Q ~ N where Q is the number of neurons (centers) and N is the number

of training input data vectors

To find the best match of the input vector x with the weight vectors Wj, we define

the best matching criterion to be the minimum Euclidean distance between vectors.

i (Xi) = a r g min 11 Xi - w j 11 ,
J

j=l,2, ... , Q, i=l,2, ... N (2.19)

where i(x) is the index that identifies the neuron that best matches the input vec­

tor. This neuron is classified as the the winning neuron and is part of a topological

neighborhood, denoted by Ai(x) (n). An example of a neighborhood topology is illus­

trated in Fig. (2.2). Given this winning neuron, the idea is then to adjust it along

with its neighboring neurons to move closer to the input vector in a Euclidean sense.

Kohonen's SOFM algorithm is summarized by the following steps;

1. Initialization. Choose random values for the initial weight vectors Wj(O). The

only restriction here is that the Wj(O) be different for j = 1, 2, ... , Q, where Q
is the number of neurons.

15

-------------------------------AL=3

0 0 0 0 0 0 o:
,--------------------------A-2: o:o o o o o:C3:
: ,---------------·A=l: : o:o:o o o:C5:o:

o: o: o :-e-! b=f>o: o:
I I I o I I I . ' ----- ' ' ' o:o:o 0 o:o:o:

0: 0 ·-0--0--0-· 0: 0:
'•••••••••••••••••••••••••' I

0 0 0 0 0 0 o:

Figure 2.2: Square topological neighborhood A, of varying size, around "win­
ning"neuron, identified as black circle

2. Sampling. Draw a sample x from the input distribution with a certain probab­

ility.

3. Similarity Matching. Find the best matching (winning) i(x) at time n, using

i(x) = argmin llx - Wjll , j = 1,2, ... ,N
J

4. Updating. Adjust the weight vectors of all neurons, using the update formula

() {
Wj (n) + 17(n)[x(n) - Wj], j E Ai(x)(n)

Wj n + 1 =
w j (n), otherwise

where 17(n) is the learning rate parameter, and Ai(x) (n) is the neighborhood

function centered around the winning neuron.

5. Continuation. Continue with step 2 until no noticeable changes are observed.

2.4 A Nonlinear Function Implementation Example

Let us consider a system of equations given by

x 1 (t) = e-tt cos(t)

x 2(t) = x1(t) = -~ett [cos(t) + sin(t)]

16

(2.20)

(2.21)

where
t = [0 0.1 ... 9.9 10]

and let us also define another function u to be the linear combination of x1 and x2

(2 .22)

The task is to obtain a mapping x ---+ u.

In order to achieve this mapping, we first utilize the SOFM network to determine

the locations of the centers of a generalized RBF network. We batched the input

vectors as in (2 .1 7)

We trained the SOFM network using the 101 data points for 1000 epochs1 to produce

15 center locations. Fig (2.3) shows the result of the training of the SOFM network.

Note how the SOFM network places more centers in the area of greater transient

activities and fewer centers when the transient activities are smaller and gradually

decaying.

Now that we have determined and fixed the centers, we obtain the weights of the

generalized RBF network by solving (2.16). To get the interpolation matrix <I> , we

fixed the covariance matrix from (2.6) and (2.7) to be :E = dl2 , where d = 0.8271.

d is taken to be the average distance between the neighboring center nodes [3]. We

set a= 0, because the interpolation matrix is well-conditioned. Figure 2.4 shows the

RBF network 's approximation to (2.22).

1An epoch is the presentation of the set of training (input and/or target) vectors to a network
:~d t~e calculation of new weights and biases. Note that the training vectors may be presented one

a time or all together in a batch.

17

0 .2~--.---.---......---.----.----~-~

0.1

0

-0.1

~ -0.2

-0.3

-0.4

-0.5 x x

-0.6~--~--~--~--~--~--~-~

-0.4 -0.2 0 0.2 0.4 0.6 0.8
x1

Figure 2.3: Placement of centers by SOFM along the input trajectory where 'x' show
the center locations

Desired

Actual
0 .6 .-----~---......---~---.----~--~

0.4

0.2

0

-0.2

-0.4~--~---~--~---~--~--~

0 20 40 60 80 100 120

Figure 2.4: Illustration of the approximating ability of the RBF network with centers
determined by the SOFM network

18

Chapter 3

The Second Order Model

3.1 Introduction

Given the equations for the pendulum without regard to the dynamics of the cart

Xz(t)

- Asin(x 1(t) + 7r) - A cos(x1 + 7r)u(t))
g

(3.1)

and where u(t) is the equivalent to the acceleration of the cart , we would like in this

chapter to design the RBF network such that it is optimal and balances the pendulum

in the upright position given any init ial state. For ease of computation the orientation

of the pendulum is changed from the hanging down posit ion x1 = 0 to x1 = 7r, and

the upright position x1 = 7r to x1 = 0. The training data is generated by the dynamic

programming algorithm developed by Richard Bellman [20].

3.2 Dynamic Programming

The method of dynamic programming is a process by which the performance measure

of a system is minimized by using a concept called the principle of optimality. This

principle is described as, [21];

An optimal policy that has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal

19

policy with regard to the state resulting from the first decision.

The dynamic programming algorithm is summarized as follows;

1. Quantize the state space, considering the maximum possible ranges of state

values. Each state variable, x, is quantized as follows;

x Xmin + k6.x k = 0, 1, ... , M, M = Xmax - Xmin

6.x
(3.2)

This requires an a priori knowledge of the state space.

2. Quantize the control effort (input), considering the maximum allowable range.

U E (Umin, Umax)
A A

u Umin+ k6.u k = 0, 1, ... , M, M = Umax - Umin

6.u
(3.3)

This range of the input signal could represent hardware limitation(s) of the

controller.

3. Determine the value of the performance index (cost function) of all quantized

states at the final time, N.

(3.4)

where W is a penalty matrix.

4. Go back one time index, for each quantized state determine the optimal control

input vis-a-vis the optimal cost for all quantized control inputs. The optimal

cost at this point is the smallest sum of the cost of being in the present state plus

the cost of the states arrived at given all possible inputs. If the state arrived at

is not a quantized state then interpolating costs from adjacent quantized states

are used to determined its cost. This is shown by the recurrence equation

below;

JN-k,N(x(N -k) = um~k)[Jk,N(x(N-k), u(N-k))+JN-(k-l),N(x(N -k+l))] (3.5)

5. Repeat step 4 until the time index is zero. For each state at each time index,

the optimal control input is stored in a table or matrix.

20

3 Results from Dynamic Programming and the 3.
RBF Network

For the pendulum system, the following parameters were used; Ximax = 5 rad, Xi min =
0 5 d 5 rad 8 rad 6 0 5 rad ' 8 m Q rad, 6 X1 = . ra , X2max = -5- , X2min = - -5- , X2 = · -5-, Umax = 8 2,

• . == -8~ and 6u = 0.5~ Umin s s

The performance index is given by;

N - 1

J = xT(N)Wx(N) + °L: (xT(k)Qx(k) + u 2 (k)) (3.6)
k= l

where N = ;[T , T = 3 seconds (final time), 6T = 0.2 second (sampling interval).

The penalty matrices W and Q were defined as

3 [10 0 l w = 10
0 1

In this section we use the look-up table from dynamic programming, which con­

tains optimal traj ectories from all permissible states at any time index, along with

a linear controller to train the RBF network. The insertion of the linear controller

ensures that the system remains stabilized when face with small perturbations. The

linear controller of choice is a vector of gains that places the closed loop poles of

the system within the unit circle (see appendix A for details) The following steps

illustrate the process;

1. Select an initial state and then look up in the table for the corresponding input

value. If the initial state is not a quantized state then interpolate inputs at

neighboring quantized states for input. Use this input to determine the next

state and then repeat the process until the state variables are within the linear

region.

21

Once inside the linear region, switch to the linear controller. Let the system 2.

3.

run with the linear controller for a while so that the training data contain a few

presentations in the linear region.

Repeat the two steps above starting with different initial conditions

to obtain different trajectories. The objective is to have these tra-

jectories span as much of the state space as possible. Figure 3.1

show the simulation results for trajectories of six different initial states,

{x i, x2 1(3, 0) , (1.5, -8) , (3.5, 4), (2.5, -5) , (0.4, -0.1) , (1.5, -2)}.

4

·-E' 2
0

~
E 0 -;
~
er -2

--4

-6

-6~~~~~~~~~~~~~~~~~

- 1 2
Pendulum Position

4

Figure 3.1: Training trajectories for dif_ferent initial conditions .

4. Use these optimal trajectories to train the network by setting up input and

target matrices and solving for the weights in a least squares sense.

5. Design and insert a linear controller for the linear region to guarantee that the

states become stabilized once they enter the linear region (see appendix A for

the design for the pole placement linear controller) . To better approximate the

linear controller add more centers in the linear region as shown in Fig. 3.2.

We also see from Fig. 3.3 that the pendulum remains stabilized in the upright

position.

22

x x x x x x x x x x
x x x x x x x x x

4 x x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x

x x x x x x
x

.?:-
·o
.Q x x
m
> x x

] x

~
x

-g -2
~

a_

-4 x
x x x

x x x x
x

-6
x
x

-8 _, 0 2 4
Pendulum Position

Figure 3.2: Plot of the trajectory of pendulum from hanging down to standing erect
with additional linear region centers

Figure 3.3:
point.

Pendulum Positiion

l i+~• i
0 0.5 1.5 2 2.5 3.5 4 4.5

Pendulum Velocity

]~·~~· :~··········· · ··· ·· ···~················ ·····~· ··· ··· · 0 0.5 , , .5 2 2.5 3 3 .5 4 4 .5 5

Control input
20

It~·.-~.' ..• j ' . . .

_::~··JJ~····· ··•• t••···· · · t~······· · ··· · ·········~·· ····· · · · ·· · · ······ :~·· ·· · · · ··:· ······~ 0 0.5 , , .5 2 2.5 3 3.5 4 4.5 5

Plot showing the stabilization of the system at the target equilibrium

23

3 1 Fixed Centers Selected on a Grid 3 . .

Given equation (2.16) in Chapter two the RBF network was designed with a chosen

to beg x 10- 7 . The training data for the network are the six trajectories shown in

Fig. 3.1. The centers, c , are placed in fixed intervals on a rectangular grid with the

covariance matrix, ~ equal to 0.2512. There are 297 basis functions that span the

permissible state space. Given this setup each basis function operates pretty much

independently and locally. Figures 3.4 and 3.5 show the dist ribution of the centers

and the plot of the trajectory from the hanging down state, x1 = 1T , to the upright

position, x1 = 0 and its corresponding weight surface, respectively.

J.>:­·o

6

4

~ 0

E

~ -g -2

" a_

-4

-6

x x x
x x x
x x x
x x x
x x
x x x
x x x
x x

x x x x x x
x x x x x x
x x x x x x
x x x x x
x x x x x
x x x x
x x x x
x x x x

x
x
x
x
x

x x
x x
x x
x

x

-6~~__,.,__ ___ ____,,,_~---------;.----A--7f~--J<----><---l<
- 1 2 4

Pendulum Position

Figure 3.4: Plot of the trajectory of pendulum from hanging down to standing erect

As discussed earlier, the dynamic programming algorithm exploits the principle

of optimality which in concise terms goes something like this; if path abc is optimal

from a to c then path be is optimal from b to c. This concept is demonstrated in Fig.

3.6. Note that we inserted more basis functions about the linear region to ensure that

the linear controller is better approximated.

Figure 3. 7 shows the network's ability to achieve generalization. Even though

the initial state, x 0 = [3.5, - 1 f and its corresponding trajectory were not used for

training, the network is able to produce a mapping that achieved the control objective.

24

30

20

10

.!!I
,5

-10

-20

-30
5

5

Pendulum Velocity -10
Pendulum Position

Figure 3.5: Weight surface of the state space

x x x x x x x x x x
x x x x x x x x

4 x x x x x x x x x x
x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x x

x. x x x
;,;- x x x x
·o x x x x
.Q x x x m
> x x x
E x x
~ x x
~ -g - 2
m

0..

x
-4 x

x x
x x

-6
x

x x

-6
- 1 0 4

Pendulum Position

Figure 3.6: Plot showing the principle of optimality. One trajectory starts at x 0

[2.5, - 5JT and the other at x 0 = [3.5, - 7JI'

25

x x x x x x x x x x
x x x x x x x x x

4 x x x x x x x x x
x x x x x x x x x
x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x

x x x x x x
x x x x

x x x
x x x
x x
x x

x
x

-4 x
x
x

-6

-S ~~------;--__,._______,._~,.___,.____,<--__,.______,.~_,,______,.______,_

-1 0 2
Pendulum Position

4

Figure 3.7: Plot showing the network's ability to generalize with an untrained intial
vector of X o = [3.5, -1]T.

3.3.2 Self-Organized Selection of Centers

In the previous section we placed the centers of the radial basis functions on a lattice

of fixed interval grid points. This task was trivial given the dimensionality of the

state space. However, in dimensions of three or higher, ones ability to visualize the

state space of a system becomes impaired and placing centers on hyper-spheres is by

no means trivial. We now use the SOFM algorithm discussed in the previous chapter

and see how it compares with the results of fixed grid centers.

The SOFM network was trained with the same six trajectories used to train the

fixed grid RBF as shown in Fig. 3.1. We used a single layered network with 160

neurons to produce the centers of the RBF network. The result of that training for a

thousand epochs is displayed in Fig. 3.8. The covariance matrix used is;

:E = df 2 (3. 7)

where d = 2. 7 is the average distance between centers.

Figures 3.9, 3.10 and 3.11 show the ability of the network to approximate an

optimal trajectory and to implement the linear controller.

26

6

-4

-6

-a~~~~~~~~~~~~~~~~~~~~~~~~~~~

-1 4
Pendulum Position

Figure 3.8: Placement of centers to match input trajectories

6

4

x x
Xx x x

* x /-
x xx x x x

x x
x x

x x x x
x

x Xx x

-4

x x >?!Xx x 0 x
x ~

x x x Xxx Xxx
x

xx x xx x
x><'

x
-6 x

-a~~~~~~~~~~~~~~~~~~~~~~~~~~~

-1 0 2 4 5
Pendulum Position

Figure 3.9: Plot of the trajectory from hanging to the upright position

27

4

XX X Xx X

x x x

x
x x

-4

-6

x

x

x xx

xx

x xx

x

x "'

x)I<

x x

:?ixx x xx
x x xx x

x

x
* x £ x x x

x x

x x
x

x
x x
x

x
x

-8~~~~~~~~~~~~~~~~~~~~~~~~~~~

-0.5 0 0.5 1.5 2.5 3.5 4 4.5
Pendulum Position

Figure 3.10: Plot for a non-equilibrium initial state

Pendulum Position

Control input

0.5 1.5 2.5 3.5 4 4 .5

Figure 3.11: Approximation of the linear controller

28

4 Control by Segmentation 3.

In this section we briefly explore the possibility of using the results of the previous

sections to implement a control law for the fourth order pendulum-cart system. Recall

the equations for the cart dynamics from (1.5)

Also recall from (3.1) that u is equivalent to the acceleration of the cart. Substi­

tuting it for X4 in yields

where u is the input to the cart system. Solving for u produces

nu+ Cx4
U =

D

where x4 is obtained by numerical integration of u :

(3.8)

(3.9)

(3.10)

Observe that the cart dynamics are represented by linear equations whereas the

pendulum dynamics are represented by nonlinear equations. Given that we have

already determined the control inputs for the pendulum system using dynamic pro­

gramming, which was fairly easy to do given that the plant was second order, we

can now compute the input to the cart system. Figure 3.12 show a block diagram

of this control by segmentation. It would seem that we have solved the fourth order

problem and can pack our bags and go home, but that may be foolhardy. There are

two serious drawbacks to this control scheme. The first is that there does not seem

to be a way to place a threshold limit on u , which becomes a considerable point in

hardware implementation. The second drawback is when the acceleration of the cart

goes to zero, the cart could still be moving at a constant velocity. Another drawback

to this control law is the errors introduced in performing the integration in (3.10);

more precisely in determining the constant of integration.

29

u U(u) x
Nonlinear Module ~ Linear Module ~

Figure 3.12: Block diagram showing the segmentation modules

30

Chapter 4

The Fourth Order Model

4.1 Introduction

In Chapter two dynamic programming was used to generate the training data for the

network and lend itself as a powerful nonlinear control design tool, producing optimal

control t rajectories . However, for higher dimensions of three or greater dynamic

programming becomes almost impractical and suffers from what Bellman [20] called

the curse of dimensionality. What this means is that the number of quantized state

vectors, which is the product of each quantized state variable, becomes exceedingly

large requiring a lot of memory for storage and tremendously increases computational

time. It is given this drawback that we present in this chapter a new control law that

will produce the training data for the fourth order system (see Chapter one).

4.2 Energy Controller

In this section we develop a control law to regulate the swinging energy of the pendu­

lum without regard to the cart dynamics. The resulting control system is such that

the swinging energy will converge to the desired energy trajectory from almost all

initial conditions. This controller design is based on a paper by Chung and Hauser ,

[9] , in which they proposed a control law that would regulate the swing energy of the

pendulum-on-a-cart system by maintaining a desired periodic orbit .

31

Given the equations for the pendulum dynamics in (1.5)

i2(t)

x2(t)

-Asin(x1 (t)) - ~ cos(x1 (t))(-Cx4(t) + Du(t))
ng

(4.1)

We would like to design a feedback control u so that the swing energy of the pendulum,

defined by the kinetic and potential energy of the rod,

1
H(B ,w) = 2(Zw) 2 + mgl(l - cos(B)) (4.2)

is regulated to a desired swing energy fI. Note that B = x1 and w = x 2 . m and l

are mass and length of the rod, respectively and g is acceleration due to gravity. H

is a time-varying function that depends on the energy of the initial states, B(t0) and

w(io), and on the energy at the final states, B(t1) = 7r and w(t1) = 0. fI is given by

H(t) = ±H(B(t0),w(t0)))e- f3t - mgl(l - cos(7r)) (4.3)

where f3 is a design parameter. This function is used to drive the total energy, H ,

gradually from the initial energy determined by the initial state to a final energy when

the pendulum is inverted in the linear region and from where linear control can then

be employed. For example, if the initial energy is lower than at the final state, fI
would increase the total swinging energy until it reaches the final energy level. On

the other hand, if the initial energy is higher than at .the final state, fI would decrease

the total swing energy until it reaches the final energy level.

Next we define the error function

E(B,w) = H(B,w) - fI

and if we choose the feedback control law to be

u = aw cos BE (4.4)

then in the limit as t becomes large, E(t) goes to zero [9].

32

2 1 Simulation Results of the Energy Controller 4 . .

The energy control law by itself could not balance and stabilize the pendulum in the

upright position (linear region); so we insert the pole placement linear controller (see

appendix A) when the pendulum-cart system enters the linear region (see Chapter

one) to stabilize and to compensate for minor perturbations in the system. Also , the

energy controller has to be given a nonzero initial state or it will remain at rest with

u == o.
1 The energy controller was designed with m = 0.25kg, l = 0.16m, g = 9.81 ~, and

{3 == 2. In the linear region, the control law is

u = -Lx

where

L = [10. 7688 1.6143 -0.0125 -0.0160]

• Simulation results for the controller are shown in Fig. 4.1 to Fig.4.6. Figures 4.1

and 4.2 show the plots of the control input and state variables, respectively from the

hanging down position, x 1 = ;0 , to up position, x1 = 1r. The controller is able to

balance and stabilize the pendulum and cart even when the initial states that are far

from the final states as illustrated in Fig. 4.3 to Fig. 4.6.

4.3 RBF Network Training Simulation Results

We trained the RBF network using two trajectories, one whose initial state vector

Xo = [i""0 , 0, 0, Of is in the nonlinear region, and the other whose initial state vector

Xo = [(7r-0 .4), 0, 0, of is in the linear region. The latter is to ensure that the network

has enough presentations in the linear region so that it would learn to mimic the linear

controller.

We chose 100 radial basis functions whose centers are determined by the SOFM

network, and a fixed inverse covariance matrix of these centers was selected to be

:E-1 d. [(2 2 2 2] = zag Cimax(!l l C2maxCT2, C3maxCT3, C4max (!4

33

4

3

2

j 0

-1

-2

-3

-4

-5~--~--~---~--~--~--~

0 3
time(sec)

4

Figure 4.1: Plot of the control input that moves the pendulum from hanging
down,x1 = ; 0 , to the upright position, X 1 = 7r

Pendulum Position Pendulum Velocity
20 - -------

-4~-~--~-~ -20~-~--~-~

0 2 4 0 4

Motor Position Motor Velocity
100--------

2 4 6 2 4 6

Figure 4.2: Plot of the state variables with initial state x 0 [;o, 0, 0, av

34

2

-1

- 2

-3~-~~--~---~--~--~--~
0 3

time(sec)
4

Figure 4.3: Plot of the control input when the initial state is x 0 = [% , 0, 100, Of

Pendulum Position Pendulum Velocity
20

10

-10

-20
0 4

Motor Position Motor Velocity
400

50

-50~-~--~-~

0 4 6
-400~-~--~-~

0 4

Figure 4.4: P lot of the state variables with init ial state X o = [%, 0, 100, o]T

35

Control Input

4

-4

Figure 4.5: Plot of the control input when the initial state is x 0 = [~ , 1, 10, 20f

Pendulum Position Pendulum Velocity
20~-------~

- 2

-4 -20
0 4 6 0 2 4 6

Motor Position Motor Velocity
150 1000

100
500

50

- 50
0 2 4 4

Figure 4.6: Plot of the state variables with initial state x 0 = [~, 1, 10, 20]T

36

where Cimax is the maximum valued center for the ith state vector , and a} is the

variance associated with that ith state vector. The result of the training is shown

in Fig. 4. 7. The closed-loop simulation results of the network are displayed in

Figures 4.8 and 4.9. Figures 4.10 and 4.11 show the networks ability to generalize

given an untrained init ial state of X o = rn, 0, 0, OJI'. Though the network is able to

achieve some generalization and obtained the designed objective, its overall ability

to produce closed-loop results similar to that of the training set is relatively poor.

This poor showing could be attributed to the choice of the fixed covariance matrix,

:E, which probably does not accurately represent the variance distribution of the

centers. The poor generalization is further manifested when we provided the network

with four training trajectories; the four initial points for these trajectories were x 0 =
{(; 0 , 0, 0, O) ; (~, 1, 10, 20); (~, 0, 100, O) ; (7r - 0.4, 0, 0, O)}. The closed-loop simulation

results are shown in Figures 4.12, 4.13 and 4.14. Note from Fig. 4.12 that the

approximation to the training set is good, but when the network is placed in closed

loop it is not able to achieve the design objective as depicted in Fig. 4.13 and Fig.

4.14.

4

2

-4

-6~-~--~--~-~--~-~

0 200 400 600 BOO 1000 1200
number of training data points

Figure 4. 7: The RBF network approximation to the input trajectories.

37

Control Input
30

20

10

%!
0 0
>

-10

-20

-30
0 100 200 300 400 500 600

Figure 4.8: Closed-loop simulation of the RBF network showing the control input

Pendulum Position Pendulum Velocity

2

-2~------~ -~~------~
0 2 4 6 0 2 4

Motor Position Motor Velocity
200--~-------, 2000--~----~

-2000

4 2 4

Figure 4.9: Closed-loop simulation of the RBF network showing the state variables

38

Control Input

10

0

-5

-10~--~--~--~--~---~-~

0 100 200 300 400 500 600

Figure 4.10: Illustration of the RBF network ability to generalize, showing the state
variables with initial state X 0 = [~, 0, 0, Of

Pendulum Position Pendulum Velocity
4r------------, 15r------------,

3

2 4 4 6

Motor Position Motor Velocity
100 1500

1000

-100

- 200
0 2 4 4

Figure 4.11: Illustration of the RBF network ability to generalize , showing the control
input

39

6

4

-2

-4

-s~~~~~~~~~~~~~~~~~~

0 500 1000 1500 2000 2500

Figure 4.12: The RBF network approximation to the four training trajectories.

4

2

0

-1

-2

-3

-4

_5~~~~~~~~~~~~~~~~~~

0 100 200 300 400 500 600

Figure 4.13: Closed-loop simulation of the RBF network showing the control input

40

Pendulum Position Pendulum Velocity
10

0

-5

-1 0
0 4

Motor Position Motor Velocity
400

50 200

- 50 -200

-1 00~-~--~--~ ~oo~-~--~--~

0 2 4 6 0 4

Figure 4.14: Closed-loop simulation of the RBF network showing the state variables

41

Chapter 5

Conclusions

5.1 Summary

In this research we demonstrated the ability of radial basis function networks to

implement control of nonlinear systems, given that there exists training data that

achieves the design objectives. Furthermore, the RBF network controller was suc­

cessful in meshing together seamlessly controllers from nonlinear control theory and

linear control theory. We also showed how a self-organizing feature map can be used

to place the centers for the RBF network, thereby making the network more efficient

and possibly adaptive.

In both Chapters three and four, the control laws presented are able to balance and

stabilize the pendulum-cart syste1? from all permissible initial states. The dynamic

programming algorithm discussed in chapter three is a powerful control scheme that

guarantees optimal results for any nonlinear control problem. Unlike gradient descent

algorithms use in optimal control theory dynamic programming cannot get stuck in

a region of local minimal, but instead produces global results. Furthermore, a nice

feature of the algorithm is that we are able to put constraints on the control input

as well as the state variables. The curse of dimensionality, which is the only major

but considerable drawback of dynamic programming, limits the algorithm to lower

dimensional problems because in higher dimensions computation become expensive

in terms of a huge requirement for computer memory and processor time. On the

42

other hand, the energy control law presented in chapter four is fast to converge to a

result , but the result is not optimal and is specific to the pendulum problem.

In retrospect of this research to use RBF networks to implement nonlinear control

systems, the author believes that the single most important thing to improve with

these networks, is determining a strategy for selecting the spreads of the centers or

inverse covariance matrix. An accurate determination of this parameter is crucial for

the network's ability to generalize and achieve the design objectives. For dimensions

in which visualization of the distribution of the network's centers is impossible, such

a strategy is very much needed. However, if generalization and minimal network

configuration are not issues of the application of interest, then exact RBF networks,

which are not sensitive to this covariance parameter, can be used.

5.2 Further Work

As noted in the concluding remarks of the previous section, the single most important

thing that needs improvement with the generalized RBF networks is determining the

spread of the centers; hence, it is basis for further work. The author proposes the

following strategies for obtaining the spread of the centers;

1. Define an initial inverse covariance matrix for all centers

where dis the average distance between centers, C is a norm weighting matrix

that is diagonal and is used to normalize the input data in a unit hypersphere.

Next, we minimize a cost function over the inverse covariance matrix

min£= llY - Yll
I;-1

where Y is the desired output vector and Y is the approximated output vector.

Using this scheme we can get an optimal inverse covariance matrix that gives a

general representation of the spreads of all the centers. It should be noted that

the position of the centers are fixed and determined by the SOFM network.

43

2. Another approach for the selection of the spreads of the centers is to find the

inverse covariance matrix associated with each center. This parameter and all

other free parameters of the network are determined using a gradient-descent

learning procedure instead of a linear regression technique. The first step in the

development of such a learning procedure is to define the instantaneous value

of the cost function

£ = ~ f: e2
2 j=l J

where N is the number of training examples used to undertake the learning

process, and ej is the error signal, defined by

N a

e j = Yj - L wicl>(Jlxj - ci lli;~1)
i=l '

The requirement is to find the free parameters Wi, Ci, and Ei1 so as to minimize

[. The results of this minimization are summarized as follows;

(a) Linear weights

8£(n)
wi(n + 1) = wi(n) -171 0wi(n) i = 1, 2, ... ,Na

(b) Positions of centers

o£(n) N . -1

0 ·() = 2wi.(n) L ejcl>(ll xj - cilli;;-1)Ei [xj - ci(n)]
Ci n j =l

8£(n)
ci(n + 1) = ci(n) - 172 oci(n) i = 1, 2, ... , Na

(c) Spreads of centers

o£(n) ~ -1 T
0 _1() =-wi (n)L.,, ejcI>(llxj -ci ili;~1)Ei [xj-Ci(n)][xj - ci(n)]

E · n . •
i J = l

-1() _1() 8£(n)
E i n + 1 = Ei n - 173 8:Ei 1 (n) i = 1, 2, ... ,Na

Finally, the author would like to see some work done in further developing the

control by segmentation methodology proposed in Chapter three.

44

Appendix A

Summary of Pole Placement

In this appendix we provide a summary of pole placement by digital state feedback.

[7] and [8] give a more detailed development of this strategy from linear control theory.

Given a continuous-time system represented by;

x = Ax(t) + bu(t) (A.1)

1. Choose appropriates-plane pole locations and sampling interval, T.

2. Obtain the zero order hold, ZOH, of the plant

x[k + 1] = <.t>x[k] + ru[k] (A.2)

where (_l) = exp AT and r = foT eArbdT

Then calculate the denominator ploynomial of the ZO H model.

det(zl- <I>)= a(z) =Zn+ a 1zn-l + ... +an (A.3)

If the poles, Si, of the continuous-time plant are, then a(z) can be computed as

follows
n

a(z) = IJ (z - esiT) (A.4)
i=l

3. Map the s-plane pole locations chosen in Step 1 to the z-plane using the ZOH

pole mapping formula Zi = esiT. Multiply out the z-plane pole locations to

obtain p(z)
n

p(z) = IJ(z - Zi) = Zn + P1Zn-l + ... + Pn (A.5)
i=l

45

4. Form the controllability matrix We of the plant (ZOH), and form the control­

lability matrix W c of the controllable canonical form.

(A.6)

(A.7)

where <l> = T/PTc-i and f' = Tcf. Tc is a transformation matrix that takes the

controllable system to controllable canonical form.

5. Calculate the feedback vector

46

Appendix B

Computer Code

This appendix provides some of the Matlab codes used in the design and simulation

of the neural cont roller.

B.l The dynamic programming algorithm

function [COST,UOPT]=dyprog(N,Ts)

% *********************Initialization******************

global U

[x,u,C,S]=getgrid;

COST=zeros(N,S);

UOPT=zeros(N,S);

W=1e3*diag([10 1 10 1]); %defines the penalty matrix for the final state .

%**
for i=1 :S

COST(N,i)=x(: ,i)'*W*x(: ,i);

end

for K=1: N-1

for i=1 :S

CDSMIN=1e6;

47

for j=1:C

U=u(j);

[T,Y]=ode23('odepen',(i-1)*Ts,i*Ts,x(: ,i));

[l, w] =size (Y) ;

X=round(Y(l, :)'*1000) ./1000;

JNN=inter(X,COST(N-K+1,:));

end

Copt=cost(x(: ,i)) + JNN;

if Copt <= COSMIN

end

COSMIN = Copt;

UMIN=U;

end

COST(N-K,i)=COSMIN;

UOPT(N-K,i)=UMIN;

end

function [x,u,C,S]=getgrid()

%**********************Initializations***********************

Umax=8; Umin=-8;

delx1=0.5;

delx2=2;

delx3=50;

delx4=100;

x1max=6;x1min=O;

x2max=10;x2min=-10;

x3max=200;x3min=-200;

x4max=500;x4min=-500;

s1=round((x1max-x1min)/delx1) +1;

s2=round((x2max-x2min)/delx2) +1;

48

s3=round((x3max-x3min)/delx3) +1;

s4=round((x4max-x4min)/delx4) +1;

u=[Umin:-2 -1.5:0.5:1.5 2:Umax];

C=length(u);

S=s1*s2*s3*s4;

x=zeros(4,S);

%**

x1=x1min:delx1:x1max;

x2=x2min:delx2:x2max;

x3=x3min:delx3:x3max;

x4=x4min:delx4:x4max;

count=O;

for i=1:length(x1)

for j=1:length(x2)

for k=1 : length(x3)

for 1=1:length(x4)

count=count+1;

x(: ,count)=[x1(i);x2(j);x3(k);x4(1)];

end

end

end

end

function Japprox=inter4(X,J)

epsilon=0.01;

x1=[floor(2*X(1))/2 ceil(2*X(1))/2];

x2=[floor(0 . 5*X(2))/0 . 5 ceil(0.5*X(2))/0.5];

x3=[floor(0 . 02*X(3))/0 . 02 ceil(0.02*X(3))/0.02];

x4=[floor(0.01*X(4))/0 . 01 ceil(0.01*X(4))/0.01];

%**
count=O;xi=zeros(4,16);

49

for i=1:length(x1)

end

for j=1:length(x2)

end

for k=1:length(x3)

end

for 1=1:length(x4)

count=count+1;

end

xi(: ,count)=[x1(i);x2(j);x3(k);x4(1)];

dist(count)=norm(X-xi(: ,count));

%**

if X(1)<0 I X(1)>6 I X(2) <-15 I X(2)>15 I X(3)<-200 I X(3)>200

+ X(4) <-500 I X(4)>500 % these constraints ensure that the state

% vectors do not exceed their boundaries .

Japprox=O;

elseif min(dist) < epsilon

tmp=xi(: ,find(dist==min(dist))) ;

Japprox=J(getindex(tmp(: ,1)));

else

end

s=1/sum(1./dist(1:length(xi)));

Japprox=O;

for i=1 : length(xi)

end

tmp=xi(: ,i);

Japprox=(s/norm(X-tmp))*J(getindex(tmp)) + Japprox;

B.2 The energy controller algorithm

global U;

50

%**********************Declaration of Variables************************

L=getl4; % determines the state feedback gains vector

M=.25; % mass in kilograms of pendulum rod

l=0.16;

g=9.81;

Ts=0.01;

B=2;

% distance in meters from pivot to center of mass of pendulum

% gravitational acceralation (m/s~2)

% sampling time

% a design parameter that gives the time constant of the target

% swing trajectory

ftime=6; % simulation time

alpha=1; % design parameter

% **

rn=round(ftime/Ts);

t=[O:m]*Ts;

x(: ,1)= input(' Enter the initial state vector ')

C=(.5*(l*x(2,1))~2 + m*g*l*(1-cos(x(1,1)))) - 0.7652;

if C>=0.7652

C=-C;

end

H_hat=C*exp(-B*t)+0.7652; %target swing trajectory with max energy equals

x=zeros(4,m); %to 0.7652 at pi

for j=1 :m

if abs(x(1,j)) > (pi-0.5)

U=-L*[x(1,j)-pi;x(2:4,j)]; %insert linear controller when rod

else %enters linear region

E(j)=(0.5*M*(l*x(2,j))~2 + M*g*l*(1-cos(x(1,j)))) - H_hat(j);

U=alpha*x(2,j)*cos(x(1,j))*E(j);

end

[T,Y]=ode23('odepend',(j-1)*Ts,Ts*j,x(: ,j));

[l, w] =size (Y) ;

u1(j)=U;

x(:,j+1)=Y(l,:)';

51

end

%***

subplot(2,2,1), plot(t,x(1, :));

subplot(2,2,2), plot(t,x(2,:));

subplot(2,2,3), plot(t,x(3,:));

subplot(2,2,4), plot(t,x(4,:));

B.3 The training algorithm

% *****************Training********************************

<load training data>

<define input and output matrices, x and y respectfully.>

Q=sofm(x); % function call to the self-organizing routine to place

% the centers. This function simply makes a call to Matlab ' s

% function for Kohonen ' s self- orgaining feature map.

Q=Q,;

n=length(y);

m=length(Q);

alpha=0 . 000000000009; %design parameter to compensate for ill conditions

%*******Method I to determine the inverse ·varaince parameter***************~

% d=diag(Q'*Q);

% [d1,i1]=max(d);

% [d2,i2]=min(d);

% C=2*m/(norm(Q(: ,i1)-Q(: ,i2)))~2;

%*******Method II to determine the inverse varaince parameter**************~

C=inv(diag([max(abs(Q(1,:))) ~ 2*cov(Q(1, :)) max(abs(Q(2, :))) ~ 2*cov(Q(2,:))

+ max(abs(Q(3, :))) ~ 2*cov(Q(3, :)) max(abs(Q(4, :)))~2*cov(Q(4,:))]));

%**~
I=eye(m);

for i=1:m

52

for j=1:n

PHI(i,j)=exp(-0.5*((x(: ,j) - Q(: ,i))' *C* (x(: ,j) - Q(: ,i))));

end

end

theta=y*PHI'*inv(alpha*I + PHI*PHI');

Y_o=theta*PHI;

delE=norm(y-Y_o) %measure of the ''goodness'' of the approximation.

save <filename> theta Q C;

B.4 Closed-loop simulation

% This program assumes that the centers,Q, weights vector, theta,

% and invariance, C, have already been determined.

global U;

< load Q,theta & C>

m=length(Q);

% ******************************Simulation******************************

Ts=O. 01;

ftime=6;

n=round(ftime/Ts);

t=[O:n-1]*Ts;

x=zeros(4,n);

u=zeros(1,n);

x(:,1)=input(' Enter the initial state vector')

for i=1:m

phi(i, :) = exp(-0.5*((x(: ,1) - Q(: ,i)) ' * C * (x(: ,1) - Q(: ,i))));

end

u(1) = theta*phi;

for j=1 :n-1

U=u(j);

53

[T,Y]=ode23('odepend',(j-1)*Ts,Ts*j,x(: ,j));

[l, w] =size(Y);

x(:,j+1)=Y(l,:)';

for k=1:m

phi(k,:) = exp(-0.5*((x(:,j+1) - Q(: ,k))' * C * (x(:,j+1) - Q(:,k))));

end

u(: ,j+1)=theta*phi;

end

subplot(2,2,1), plot(t,x(1, :));

subplot(2,2,2), plot(t,x(2, :));

subplot(2,2,3), plot(t,x(3, :));

subplot(2,2,4), plot(t,x(4, :));

54

References

[1] A. U. Levin and K. S. Narendra, "Control of nonlinear dynamical systems us­

ing neural networks: Controllability and stabilization," IEEE Transactions on

Neural Networks, vol. 4, pp. 192- 206, March 1993.

[2] K. S. Narendra, J. Balakrishnan, and M. K. Ciliz, "Adaptation and learning

using mult iple models, switching, and tuning," IEEE Control Systems f\.1aga zine,

vol. 15, pp. 37-51, June 1995.

[3] D. Gorinevsky, "On the persistency of excitation in radial basis function network

identification," IEEE Transactions on Neural Network, vol. 6, pp. 1237- 1244,

September 1995.

[4] J . A. K . Suykens, B. L. D. Moor, and J. Vandewalle, "Static and dynamic sta­

bilizing neural controllers, applicable to transition between equilibrium points ,"

Neural Network, vol. 7, no. 5, pp. 819-831, 19'94.

[5] S. Chen, S. A. Billings, and P. M. Grant, "Recursive hybrid algorithm for non­

linear system identification using radial basis function networks," International

Journal of Control, vol. 55, no. 5, pp. 1051- 1070, 1992.

[6] E . Tzirkel-Hancock and F . Fallside, "Stable Control of Nonlinear Systems Using

Neural Networks," tech. rep., Cambridge University, Cambridge, England, July

1991.

[7] R. J. Vaccaro, Digital Control: A State Space Approach. McGraw-Hill Book

Company, 1995.

55

[8] F. L. Lewis , Applied Optimal Control and Estimation. Digital Design and Im­

plementation. Prentice Hall, 1992.

[9] C. C. Chung and J. Hauser, "Nonlinear control of a swinging pendulum," IEEE

Transactions on Automatic Control, vol. AC-35, pp. 851- 862, 1993.

[10] M. Kutter and F. Andersson, "Balancing the Inverted Pendulum Using a Feed

Forward Neural Network," tech. rep. , University of Rhode Island, Department

of Electrical Engineering, Kingston, Rhode Island, May 1995.

[11] S. Chen, C. F. Cowen, and P. M. Grant, "Orthogonal least squares learning

algorithm for radial basis function networks ," IEEE Transactions on N eural

Networks, vol. 6, no. 5, pp. 1237- 1244, 1995.

[12] D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and ad­

aptive networks," Complex Systems, vol. 2, pp. 321- 355, 1988.

[13] J. E. Moody and C. J. Darken, "Fast learning in networks of locally-tuned

processing units ," Neural Computation, vol. 1, pp. 281- 294, 1989.

[14] T. Poggio and F.Girosi, "Networks for approximating and learning," Proceedings

of the IEEE, vol. 78, pp. 1481- 1497, 1990.

[15] T. M. Cover, "Geometrical and statistical properties of systems of linear inequal­

ities with applications in pattern recognition ," IEEE Transactions on Electronic

Computers, vol. EC-14, pp. 326- 334, 1965.

[16] S. Haykin, Neural Networks) A Comprehensive Foundation. Macmillan College

Publishing Company, Inc, 1994.

[17] S. M. Botros and C. G. Atkeson, "Generalization properties of radial basis

basis functions ," in Advances in Neural Information Processing Systems (R. P.

Lippmann, J.E. Moody, and D. S. Touretzky, eds.), pp. 707- 713, IEEE, 3 ed. ,

1993.

56

[18] W. A. Light, "Some aspects of radial basis function approximation," in Approx­

imation Theory, Spline Functions and Applications (S. P. Singh, ed.), vol. 256

of NATO AS! Series, pp. 163- 190, Kluwer Academic Publishers, 1992.

[19] T. Kohonen, "Self-organized formation of topological correct feature maps," Bio­

logical Cybernetics, vol. 43, pp. 58- 69, 1982.

[20] R. Bellman, ed., Modern Analytic and Computation Methods in Science and

Mathematics, pp. 2- 192. Elsevier Publishing Company, 1970.

[21] D. E. Kirk , Optimal Control Theory. Electrical Engineering Series, Prentice­

Hall, 1970.

57

Bibliography

Bellman, R., ed., Modern Analytic and Computation Methods in Science and Math­

ematics, pp. 2- 192. Elsevier Publishing Company, 1970.

Botros, S. M. and Atkeson, C. G., "Generalization properties of radial basis basis

functions," in Advances in Neural Information Processing Systems, (Lippmann, R. P. ,

Moody, J. E., and Touretzky, D. S., eds.), pp. 707-713: IEEE, 1993.

Broomhead, D. S. and Lowe, D., "Multivariable functional interpolation and adaptive

networks," Complex Systems, vol. 2, pp. 321-355, 1988.

Chen, S., Billings , S. A., and Grant, P. M., "Recursive hybrid algorithm for nonlinear

system identification using radial basis function networks," International Journal of

Control, vol. 55, pp. 1051- 1070, 1992.

Chen, S., Cowen, C. F., and Grant, P. M., "Orthogonal least squares learning al­

gorithm for radial basis function networks," IEEE Transactions on Neural Networks,

vol. 6, pp. 1237-1244, 1995.

Chung, C. C. and Hauser, J., "Nonlinear control of a swinging pendulum," IEEE

Transactions on Automatic Control, vol. AC-35, pp. 851- 862, 1993.

Cover, T. M., "Geometrical and statistical properties of systems of linear inequalities

with applications in pattern recognition," IEEE Transactions on Electronic Com­

puters, vol. EC-14, pp. 326-334, 1965.

Gorinevsky, D., "On the persistency of excitation in radial basis function net­

work identification," IEEE Transactions on Neural Network, vol. 6, pp. 1237- 1244,

September 1995.

58

Haykin, S., Neural Networks, A Comprehensive Foundation. Macmillan College Pub­

lishing Company, Inc, 1994.

Kirk, D. E., Optimal Control Theory. Prentice-Hall, 1970.

Kohonen, T., "Self-organized formation of topological correct feature maps," Biolo­

gical Cybernetics, vol. 43, pp. 58- 69, 1982.

Kutter, M. and Andersson, F., "Balancing the Inverted Pendulum Using a Feed

Forward Neural Network," Technical report, University of Rhode Island, Department

of Electrical Engineering, Kingston, Rhode Island, May 1995.

Levin, A. U. and Narendra, K. S., "Control of nonlinear dynamical systems using

neural networks: Controllability and stabilization," IEEE Transactions on N eural

Networks, vol. 4, pp. 192- 206, March 1993.

Lewis, F. L. , Applied Optimal Control and Estimation. Digital Design and Imple­

m entation. Prentice Hall, 1992.

Light , W. A., "Some aspects of radial basis function approximation," in Approxim­

ation Theory, Spline Functions and Applications, (Singh, S. P. , ed.) , pp. 163- 190:

Kluwer Academic Publishers , 1992.

Moody, J.E. and Darken, C. J., "Fast learning in networks of locally-tuned processing

units," Neural Computation, vol. 1, pp. 281- 294, 1989.

Narendra, K. S. , Balakrishnan, J ., and Ciliz, M. K, "Adaptation and learning using

multiple models, switching, and tuning," IEEE Control Systems Magazine, vol. 15,

pp. 37- 51 , June 1995.

Poggio, T. and F .Girosi, "Networks for approximating and learning," Proceedings of

the IEEE, vol. 78, pp. 1481- 1497, 1990.

Suykens, J. A. K. , Moor, B. L. D., and Vandewalle, J ., "Stat ic and dynamic stabil­

izing neural controllers, applicable to transition between equilibrium points," Neural

Network, vol. 7, pp. 819- 831, 1994.

59

Tzirkel-Hancock, E. and Fallside, F., "Stable Control of Nonlinear Systems Using

Neural Networks," Technical report, Cambridge University, Cambridge, England ,

July 1991.

Vaccaro, R. J. , Digital Control: A State Space Approach. McGraw-Hill Book Com­

pany, 1995.

60

	Neural Network Implementation of Non Linear Control Using Radial Basis Functions
	Terms of Use
	Recommended Citation

	thesis_anderson_1996_001
	thesis_anderson_1996_002
	thesis_anderson_1996_003
	thesis_anderson_1996_004
	thesis_anderson_1996_005
	thesis_anderson_1996_006
	thesis_anderson_1996_007
	thesis_anderson_1996_008
	thesis_anderson_1996_009
	thesis_anderson_1996_010
	thesis_anderson_1996_011
	thesis_anderson_1996_012
	thesis_anderson_1996_013
	thesis_anderson_1996_014
	thesis_anderson_1996_015
	thesis_anderson_1996_016
	thesis_anderson_1996_017
	thesis_anderson_1996_018
	thesis_anderson_1996_019
	thesis_anderson_1996_020
	thesis_anderson_1996_021
	thesis_anderson_1996_022
	thesis_anderson_1996_023
	thesis_anderson_1996_024
	thesis_anderson_1996_025
	thesis_anderson_1996_026
	thesis_anderson_1996_027
	thesis_anderson_1996_028
	thesis_anderson_1996_029
	thesis_anderson_1996_030
	thesis_anderson_1996_031
	thesis_anderson_1996_032
	thesis_anderson_1996_033
	thesis_anderson_1996_034
	thesis_anderson_1996_035
	thesis_anderson_1996_036
	thesis_anderson_1996_037
	thesis_anderson_1996_038
	thesis_anderson_1996_039
	thesis_anderson_1996_040
	thesis_anderson_1996_041
	thesis_anderson_1996_042
	thesis_anderson_1996_043
	thesis_anderson_1996_044
	thesis_anderson_1996_045
	thesis_anderson_1996_046
	thesis_anderson_1996_047
	thesis_anderson_1996_048
	thesis_anderson_1996_049
	thesis_anderson_1996_050
	thesis_anderson_1996_051
	thesis_anderson_1996_052
	thesis_anderson_1996_053
	thesis_anderson_1996_054
	thesis_anderson_1996_055
	thesis_anderson_1996_056
	thesis_anderson_1996_057
	thesis_anderson_1996_058
	thesis_anderson_1996_059
	thesis_anderson_1996_060
	thesis_anderson_1996_061
	thesis_anderson_1996_062
	thesis_anderson_1996_063
	thesis_anderson_1996_064
	thesis_anderson_1996_065
	thesis_anderson_1996_066
	thesis_anderson_1996_067
	thesis_anderson_1996_068

