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Abstract 

This research is concerned with the design of radial basis function neural networks 

to implement a controller for nonlinear systems. Nonlinear systems are of particular 

interest given the fact that most real life systems are nonlinear in nature and con­

trol schemes for such systems are not as developed as their linear counterparts and 

involves a lot of heuristics. We show the ability of radial basis function networks 

(RBF) to serve as a single unifying model incorporating both nonlinear and linear 

methodologies. 

We focus on the problem of the inverted pendulum on a cart system, which is a 

classic problem in a lot of control literatures. The problem is to swing the pendulum 

from a given initial state, which is typically the hanging down position, to the up 

position and then to keep it balanced in the up position. In swinging the pendulum, 

the cart to which the pendulum is attached is moved back and forth on a track until 

the pendulum is in the up position. This system is a very useful model in that 

it demonstrates a multi-variable highly nonlinear system that belongs to a class of 

nonlinear systems that cannot be controlled by traditional nonlinear techniques such 

as feedback linearization. 

In training the RBF network, we explore several different control schemes to 

produce the training data. These control schemes could also be easily extrapolated to 

work with other multi-variable nonlinear systems. We first design a neural controller 

for the second order system describing the pendulum dynamics only. The controller is 

able to drive the state variables from any permissible state of the system to zero, and 

to keep it stabilized in that equilibrium state. Secondly, we again show the network's 

ability to implement nonlinear control of the fourth order pendulum/ cart system. We 

.. 
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further demonstrate how the Kohonen self organizing feature map algorithm can be 

used to make the network more efficient and adaptive. 
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Chapter 1 

Introduction 

The work reported in this thesis represents a subset of a rapidly growing interest 

in the use of neural networks as a paradigm for the control of nonlinear systems or 

the representation of systems in system identification problems. Recent research [1], 

[2],[3],[4], [5], [6] has attempted to define the role of neural networks in control theory. 

A major focus of these research efforts has been to establish a mathematical formu­

lation of these network architectures through which a general control methodology 

could be developed. It is worth noting that neural networks are natural to use for 

nonlinear control and identification methods due to the fact that these networks lend 

themselves easily in performing nonlinear mappings in multidimensional space. As­

suming that there exists an input-output mapping that achieves the control objective, 

the network is trained in a supervised fashion by modifying the synaptic weights so 

as to minimize the difference between the desired response and the actual response 

produced by the input signal. In addition, neural networks are able to generalize; 

generalization refers to the networks producing reasonable outputs for inputs not en­

countered during training (learning). This implies that neural networks are robust 

and can be easily retrained to adapt their synaptic weights to compensate for minor 

changes in the environmental conditions under which they are operating. In this day 

and age of parallel and distributed computation, these networks lend themselves eas­

ily as practical tools both in hardware and software implementations. In the hardware 

form neural networks have the potential to be inherently fault tolerant in the sense 
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that its performance is gracefully degraded under adverse operating conditions. For 

example, if a neuron or its connecting links are damaged, recall of a stored pattern 

is impaired in quality. However, due to the distributed nature of information in the 

network, the damage has to be extensive before the overall performance of the network 

is degraded seriously. 

Consider a system described by the following equations; 

x = f(x) + g(x)u 

y = h(x) ( 1.1) 

where xis a vector-valued state vector, J(.), g(.) and h(.) are nonlinear functions 

and u and y are the input and output of the system, respectively. The objective of 

the control problem is to determine the input, u, so that the system behaves in a 

desired fashion. For example, there are two ways in which the system (plant) can be 

controlled: regulation and tracking. In the former, the main goal is to stabilize the 

plant around a fixed operating point, typically referred to as an equilibrium point. 

In the latter, the aim is to make the output, y, follow an input signal asymptotically. 

As stated above the goal of the control problem is to make the plant behave in 

a certain, deterministic way. But the nature of the plant itself provides the frame­

work for the control mechanism. Systems are generally characterized as being either 

linear or nonlinear. Linear control techniques have over the past few decades been 

well documented and successfully implemented [7] and [8]. There exists numerous 

linear controllers (eg. pole placement, PID, LQR, H 00 , etc.) available for linear sys­

tems. Nonlinear control, on the other hand, is not as developed and most designs 

of controllers still rely heavily on heuristic methods. Probably the most well-known 

nonlinear control scheme has been feedback linearization in which the system is made 

to be locally equivalent to a linear system, after which linear control techniques can 

be utilized. However, feedback linearization can be applied only to a limited class 

of systems ( eg. the Inverted Pendulum system does not fall in this class [9]). This 

presents a challenge to the controls engineer because most systems of interest ( eg. 

robotic arms, helicopters, etc.) are nonlinear in nature. It is against this backdrop 

that alternative methods such as neural networks have been explored. 
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An obvious disadvantage of neural networks is that they are highly nonlinear in 

their parameters. Learning must be based on nonlinear optimization techniques , and 

parameter estimates may become trapped at a local minimum of the chosen optim­

ization criterion during the learning procedure when a gradient descent algorithm is 

used. [10] demonstrates this disadvantage. Other optimization techniques, such as 

genetic algorithm, Newton's method and simulated annealing, although capable of 

achieving a global minimum, require extensive computation. 

A viable alternative to highly nonlinear-in-the-parameter neural networks is the 

radial basis function (RBF) network. An RBF network can be regarded as a special 

two-layer network which is linear in the parameters by fixing all RBF centers and 

nonlinearities in the hidden layer. Thus the hidden layer performs a fixed nonlinear 

transformation with no adjustable parameters and it maps the input space onto a 

new space. The output layer then implements a linear combiner on this new space 

and the only adjustable parameters are the weights of this linear combiner. These 

parameters can therefore be determined using the linear least square (LS) method , 

[11] [3]. An RBF network that performs the mapping fr : Rn --+ R is represented by 

the following; 
n 

fr(x) = Wo + L WitP(llx - Cill) (1.2) 
i=l 

where x E Rn is the input vector, <P( ·) is the nonlinear activation function, Wi are the 

weights, and Ci E Rn are the known RBF centers·. 

1.1 Problem Statement 

As stated previously, the objective of a controller is to produce an input signal, prefer­

ably an optimal one, that would move the states of the system in desired trajectories. 

The goal of this research is to design a neural controller for the inverted pendulum 

system that would swing the pendulum from any given state in its allowable state 

space to the equilibrium state of standing upright and drive all other state variables 

to zero. Furthermore, the controller should be self correcting given any perturbation. 

This goal exceeds that of [4] which is to get the pendulum from the equilibrium state 
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of hanging down to the target equilibrium state of standing erect. 

The mathematical model used for the inverted pendulum system is given by Vac­

caro, [7]. A schematic of this system is shown in Fig. 1.1. 

u xl 

x3 

Figure 1.1: The inverted pendulum on a cart system 

The nonlinear system model is represented by the following differential equations; 

where: 

f (x) 

x = J(x) + g(x)u 

y= h(x) 

g(x) 

X2 

-Asin(x1) + ~ cos(x1)Cx4 

X4 

h(x) 

0 

- ~ cos(x1)D 

0 

D 

4 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 



A =23.lrad/sec2 

C = 25.0 sec-1 

D = 2,633 rad/(volt - sec2 ) 

n = 495 rad/sec 

g =9.81m/s2 

where x1 is the angular position of the pendulum, X2 is the angular velocity of the 

pendulum, x 3 is the motor position, x 4 is the motor velocity and u is the control 

input. The standard orientation is that when the pendulum is hanging down, x1 = 0 

and when it is pointing up, x1 = 7r. 

The linearized state-space model of the inverted pendulum/ cart system is given 

by; 
0 1 0 0 0 

-A 0 0 AC AD 

x (t) ng x(t) +· ng u(t) (1.8) 
0 0 0 1 0 

0 0 0 - C D 

1.2 An Alternate Neural Network Approach to the 

Pendulum-cart Problem 

In the paper by Suykens et al [4], a control law is proposed using either a feed-forward 

or recurrent neural networks to switch a multi-variable nonlinear plant between equi­

librium points and to stabilize the plant at the target equilibrium point. This network 

design incorporates a linear controller to stabilize the plant at the target equilibrium 

point. As an illustration of this control strategy Suykens uses the inverted pendulum­

cart system in which the task is to swing the pendulum from down to up and to locally 

stabilize it in the up position. In this section we present only the feedfoward network 

design given in that paper, as well :findings of [10] in designing and implementing this 

network to control the pendulum-cart system. 
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In order to determine the weights, Suykens suggests an optimization scheme in 

which optimal weights are found such that a cost function is minimized using a 

steepest gradient descent algorithm ( e.g Constr in Matlab). This training scheme 

does not require that an input-output mapping is known beforehand, but instead 

determines the mapping during training. 

Given a nonlinear system, as in (1.1), the optimal control problem is to minimize 

a cost function over the weights of the network. The cost function is given by 

C = llx(T)ll + laT ((x(t))dt (1.9) 

where Tis the final time, ((x(t)) = x(t)Tx(t) (quadratic control) or ( = 0 (terminal 

control). 

The input-output relationship of the neural network is given by 

u = atanh(wT tanh(Vx)) (1.10) 

where a is the maximum amplitude of the control signal, wT is the weight vector for 

the output layer, V is the weight matrix for the input layer. In the linear region the 

tanh can be dropped because tanh x ~ x if x is small. Therefore (1.10) in the linear 

region can be written as 

(1.11) 

If we let wT be a function of V such that 

(1.12) 

then (1.11) simplifies to 

u = -Lx (1.13) 

where Lis a row vector of full state feedback regulator gains. Note that eqn.[1.13] is 

the standard expression for a full state feedback regulator. This gains vector can be 

calculated according to linear control theory such as pole placement (see appendix 

A), PID, LQR etc ... 
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The inverted pendulum mathematical model used by Suykens is given by; 

J(x) 

g(x) 

X2 

f mlx~ sin X3 - !!if sin 2x3 

tmc-m cos2 X3 

X4 

mcgsin x3 -'¥1x~ sin(2x3) 

l(tmc-m cos2 x3) 

0 
4 1 
3 tmc-m cos2 x 3 

0 
COS X 3 

l(tmc-m cos2 x 3 ) 

h(x) = [ :: ] 

(1.14) 

(1.15) 

(1.16) 

where x1 is motor position, x2 is motor velocity, x 3 is pendulum position, x 4 is 

pendulum velocity, mis the mass of pendulum and equals O.lkg, mt is the total mass 

of the pendulum and cart and equals l.lkg, l is the half pole length and equals 0.5m, 

and g is the acceleration due to gravity. 

Given this pendulum model Suykens and his colleagues were able to demonstrate 

the ability of the feedfoward neural network to swing the pendulum from down to 

up and to stabilize the pole at the up position using the linear quadratic regulator 

(LQR) from linear control theory. A diagram of this feedforward network is shown 

is Fig. 1.2. In [10] the authors highlight the difficulties with this optimization based 

controller. Their results indicate the weight matrix, V, is highly dependent on the 

system parameters l , mt , and m. For example, the authors were able to determine the 

optimal weights that balanced the pendulum cart model used by Suykens, but when 

the pendulum half length was changed from 0.5m to 0.55m or the total mass from 

l.lkg to l.25kg the controller could not achieved the control objective given the same 

weight matrix V. Further results showed that the authors were unable to find the 

optimal weights to swing up and balance the pendulum-cart model given by Vaccaro 

(see (1.5)). 
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u Inverted 
Pendulum 

Figure 1.2: Inverted pendulum controlled by a feed forward neural network. 

In concluding this section, let us review the pros and cons of this neural control 

law, 

Pros The incorporation of the linear controller into the neural network is seam­

less and is mathematically well-defined. In addition, the optimal control input 

is determined during training of the network which means that input-output 

mappings are not needed in training like it would be if backpropagation or a 

least square training method had been used. 

Cons There is no guarantee a priori that the linearized region will be entered. The 

network may become stuck at a local minimal depending on the initial weights 

matrix chosen or the step size of the gradient descent algorithm. Furthermore, 

there is no reliable way to pick this initial weight matrix. Suykens suggest using 

a random martix which is normally distributed with a variance between 0 and 

1. But as discussed in [10] this rule of thumb choice is not at all reliable. 

1.3 Organization of Chapters 

In chapter two, we present the mathematical model for radial basis neural networks 

and demonstrate their ability to generalize. Also, we show how these networks can 

be more efficient by using self-organizing neural networks to determine their centers. 
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In chapter three, we design a controller for the second order model for the pendu­

lum system. We explore the use of the dynamic programming algorithm along with 

techniques from linear control theory to produce the training data for the network 

and we investigate two schemes for placing the centers, fixed selection of the centers 

and self-organized selection of the centers. 

In chapter four, we present the controller for the fourth order model of the pendu­

lum system. We utilize a new method to generate the training data for the network 

using the energy information of the system. Results are given using the self-organizing 

placement of centers scheme discussed in the previous two chapters. 

Finally in chapter five, we summarize our work and propose ideas for future work. 
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Chapter 2 

Neural Network Implementation of 

Nonlinear Functions 

2.1 Introduction 

In this chapter we approach the design of a neural network as a curve-fitting or ap­

proximation problem to implement nonlinear functions in a high dimensional space. 

According to this design strategy, training the network is equivalent to finding a 

surface in multidimensional space that provides the best fit to the training data. Cor­

respondingly, generalization is equivalent to the use of this multidimensional surface 

to interpolate the test data. 

On a historical note, Broomhead and Lowe,[12], were the first to use radial basis 

functions in the design of neural networks . Other major contributi9ns to the theory, 

design, and application of radial basis function networks include works by Moody 

and Darken, [13], Poggio and Girosi, [14] and Chen, [11]. 

2.2 Radial Basis Function Networks 

The construction of a radial basis function network in its most basic form involves 

three different layers as shown in Fig. 2.1. The input layer is made up of source 

nodes. The second layer is a hidden layer of high enough dimension and constitutes 

10 



The problem is to find an approximation Y = F(x) of the mapping (2.1) value for 

any argument x E P· 
From numerical analysis we know that the most convenient way of representing an 

unknown nonlinear function is to present it as a linear expansion 

Na 

Y = F(x ) = L wi <P(llx - ci ll ) (2.3) 
i=l 

where {<P(llx- ci ll )li = 1,2, ... ,Na} is a set of Na radial basis functions , 11 -11 denotes 

the Euclidean norm, Wi are weights of the expansion, and Ci ERP, i = 1, 2, ... ,Na are 

the centers of the radial basis functions. 

Two commonly used radial basis functions are 

1. Inverse multiquadrics 
1 

<P( x) = ( 2 2) l x + c 2 

(2.4) 

2. Gaussian functions 
(x c) 2 

<P(x) = exp(- 2 ) 
217 

(2.5) 

Theoretical investigations and practical results suggest that the choice of radial basis 

functions is not crucial to the performance of the RBF network [11]. Our choice 

of radial basis functions in this thesis is that of the Gaussian functions, which is 

generally expressed as 

(2 .6) 

where :E- 1 is the inverse covariance matrix of the Gaussian distribution and can be 

expressed in terms of a norm weighting matrix C i, [1 6], [17] 

(2 .7) 

2.2.1 Exact RBF Network 

In the exact RBF network implementation of the mapping in (2.1), we set Na = N 

and we take the known data points xi, i = 1, 2, .. . , N to be the centers of the radial 
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· functions. We can therefore rewrite (2.3) as basis 
N 

}i = F(xj) = L w;¢(11xj - x;ll) i = 1, 2, ... N 
j=l 

Equation (2.8) <;:an be expressed in matrix notation as 

1>11 ¢12 </>1N W1 Y1 

1>21 ¢22 </>2N W2 Y2 

¢N1 </>N2 </>NN WN YN 

where 

</>ji = ¢( 11xj - x;ll), j,i = 1,2, ... ,N 

Let 

y =[Yi, Y;, ... , YNf 

8 = [w1 , W2, ... , WN]T 

<I> = { ¢j; lj, i = 1, 2, ... , N} 

Then we can expressed (2.9) in a more compact form 

y = <I>E> 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

The N-by-1 vectors Y and E> represent the desired response vector and linear weight 

vector respectively. The N-by-N matrix «I> is the interpolation matrix. 

lfx1,X2 , ... ,xN are distinct points in RP, then the interpolation matrix, <I> , is positive 

definite {18}. Provided that this statement is true, we can obtain the weight vector 

0 by 

(2.13) 

2.2.2 Generalized RBF Network 

In the generalized RBF network implementation of (2.1), we set Na :::; N and we 

consider that the centers of the network do not necessarily coincide with the training 

data points. The network expansion is depicted in (2.3). 
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Assuming the networks centers are known and fixed, let us fit the training set 

data in (2.2) using the network in eqn. [2.3]. Utilizing the same notations in (2.11) 

and (2.12) , we can represent the fitting problem in the regression form 

(2.14) 

where E = [ e i ... eN r is a residual error vector. Since <I> is not guaranteed to 

be well conditioned or even a full rank matrix, we will look for a regularized least 

squares solut ion to (2.14) that minimizes 

JJc: JJ} + aJJE>JJ}, 0 <a:::; 1 (2.15) 

where II· II is the Frobenius norm and a is a scalar regularizat ion parameter introduced 

to compensate for ill-conditioned problems. Solving eqns.[2.14] and [2.15] yields 

(2.16) 

2.3 Self Organizing Feature Map Networks 

The performance of an RBF network critically depends upon the chosen centers. The 

RBF centers should suitably sample the input domain of the network and reflect 

the data distribution. Furthermore, due to obvio\ls reasons in considering real time 

implementations of these networks, it is prefered to have as few basis functions (re­

duction of the dimensionality of the hidden layer space) as possible- hence reducing 

the computational time of the network. But the question arises as how to best select 

appropriate centers. 

In this section we propose using a self-organizing f eature-mapping (SOFM) al­

gorithm, developed by Kohonen [19] in which the topography of the input domain is 

learned in an unsupervised fashion and the centers of the RBF network are then taken 

to be the weights of the SOFM. The SOFM algorithm draws striking resemblance 

to the k-means clustering algorithm, which is well documented in a lot of pattern 

classification literature [5] . To begin the discussion of the SOFM algorithm let us 
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define an input matrix, X, representing the set of input vectors over time, denoted 

by 
(2.17) 

where 

[ X:1 l x · - . 
i- . ' 

Xip 

i = 1,2, ... ,N 

and synaptic weight matrix denoted by 

(2.18) 

where 

j = 1,2, ... ,Q 

Note that Q ~ N where Q is the number of neurons (centers) and N is the number 

of training input data vectors 

To find the best match of the input vector x with the weight vectors Wj, we define 

the best matching criterion to be the minimum Euclidean distance between vectors. 

i (Xi) = a r g min 11 Xi - w j 11 , 
J 

j=l,2, ... , Q, i=l,2, ... N (2.19) 

where i(x) is the index that identifies the neuron that best matches the input vec­

tor. This neuron is classified as the the winning neuron and is part of a topological 

neighborhood, denoted by Ai(x) ( n). An example of a neighborhood topology is illus­

trated in Fig. (2.2). Given this winning neuron, the idea is then to adjust it along 

with its neighboring neurons to move closer to the input vector in a Euclidean sense. 

Kohonen's SOFM algorithm is summarized by the following steps; 

1. Initialization. Choose random values for the initial weight vectors Wj(O). The 

only restriction here is that the Wj(O) be different for j = 1, 2, ... , Q, where Q 
is the number of neurons. 
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-------------------------------AL=3 
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Figure 2.2: Square topological neighborhood A, of varying size, around "win­
ning"neuron, identified as black circle 

2. Sampling. Draw a sample x from the input distribution with a certain probab­

ility. 

3. Similarity Matching. Find the best matching (winning) i(x) at time n, using 

i(x) = argmin llx - Wjll , j = 1,2, ... ,N 
J 

4. Updating. Adjust the weight vectors of all neurons, using the update formula 

( ) { 
Wj (n) + 17(n)[x(n) - Wj], j E Ai(x)(n) 

Wj n + 1 = 
w j ( n), otherwise 

where 17( n) is the learning rate parameter, and Ai(x) ( n) is the neighborhood 

function centered around the winning neuron. 

5. Continuation. Continue with step 2 until no noticeable changes are observed. 

2.4 A Nonlinear Function Implementation Example 

Let us consider a system of equations given by 

x 1 (t) = e-tt cos(t) 

x 2(t) = x1(t) = -~ett [cos(t) + sin(t)] 

16 
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where 
t = [ 0 0.1 ... 9.9 10 ] 

and let us also define another function u to be the linear combination of x1 and x2 

(2 .22) 

The task is to obtain a mapping x ---+ u. 

In order to achieve this mapping, we first utilize the SOFM network to determine 

the locations of the centers of a generalized RBF network. We batched the input 

vectors as in ( 2 .1 7) 

We trained the SOFM network using the 101 data points for 1000 epochs1 to produce 

15 center locations. Fig (2.3) shows the result of the training of the SOFM network. 

Note how the SOFM network places more centers in the area of greater transient 

activities and fewer centers when the transient activities are smaller and gradually 

decaying. 

Now that we have determined and fixed the centers, we obtain the weights of the 

generalized RBF network by solving (2.16). To get the interpolation matrix <I> , we 

fixed the covariance matrix from (2.6) and (2.7) to be :E = dl2 , where d = 0.8271. 

d is taken to be the average distance between the neighboring center nodes [3]. We 

set a= 0, because the interpolation matrix is well-conditioned. Figure 2.4 shows the 

RBF network 's approximation to (2.22). 

1An epoch is the presentation of the set of training (input and/or target) vectors to a network 
:~d t~e calculation of new weights and biases. Note that the training vectors may be presented one 

a time or all together in a batch. 
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Figure 2.3: Placement of centers by SOFM along the input trajectory where 'x' show 
the center locations 

Desired 

Actual 
0 .6 .-----~---......---~---.----~--~ 

0.4 

0.2 

0 

-0.2 

-0.4~--~---~--~---~--~--~ 

0 20 40 60 80 100 120 
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Chapter 3 

The Second Order Model 

3.1 Introduction 

Given the equations for the pendulum without regard to the dynamics of the cart 

Xz(t) 

- Asin(x 1(t) + 7r) - A cos(x1 + 7r )u(t)) 
g 

(3.1) 

and where u(t) is the equivalent to the acceleration of the cart , we would like in this 

chapter to design the RBF network such that it is optimal and balances the pendulum 

in the upright position given any init ial state. For ease of computation the orientation 

of the pendulum is changed from the hanging down posit ion x1 = 0 to x1 = 7r, and 

the upright position x1 = 7r to x1 = 0. The training data is generated by the dynamic 

programming algorithm developed by Richard Bellman [20]. 

3.2 Dynamic Programming 

The method of dynamic programming is a process by which the performance measure 

of a system is minimized by using a concept called the principle of optimality. This 

principle is described as, [21]; 

An optimal policy that has the property that whatever the initial state and 

initial decision are, the remaining decisions must constitute an optimal 
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policy with regard to the state resulting from the first decision. 

The dynamic programming algorithm is summarized as follows; 

1. Quantize the state space, considering the maximum possible ranges of state 

values. Each state variable, x, is quantized as follows; 

x Xmin + k6.x k = 0, 1, ... , M, M = Xmax - Xmin 

6.x 
(3.2) 

This requires an a priori knowledge of the state space. 

2. Quantize the control effort (input), considering the maximum allowable range. 

U E (Umin, Umax) 
A A 

u Umin+ k6.u k = 0, 1, ... , M, M = Umax - Umin 

6.u 
(3.3) 

This range of the input signal could represent hardware limitation(s) of the 

controller. 

3. Determine the value of the performance index (cost function) of all quantized 

states at the final time, N. 

(3.4) 

where W is a penalty matrix. 

4. Go back one time index, for each quantized state determine the optimal control 

input vis-a-vis the optimal cost for all quantized control inputs. The optimal 

cost at this point is the smallest sum of the cost of being in the present state plus 

the cost of the states arrived at given all possible inputs. If the state arrived at 

is not a quantized state then interpolating costs from adjacent quantized states 

are used to determined its cost. This is shown by the recurrence equation 

below; 

JN-k,N(x(N -k) = um~k)[Jk,N(x(N-k), u(N-k))+JN-(k-l),N(x(N -k+l))] (3.5) 

5. Repeat step 4 until the time index is zero. For each state at each time index, 

the optimal control input is stored in a table or matrix. 

20 



3 Results from Dynamic Programming and the 3. 
RBF Network 

For the pendulum system, the following parameters were used; Ximax = 5 rad, Xi min = 
0 5 d 5 rad 8 rad 6 0 5 rad ' 8 m Q rad, 6 X1 = . ra , X2max = -5- , X2min = - -5- , X2 = · -5-, Umax = 8 2, 

• . == -8~ and 6u = 0.5~ Umin s s 

The performance index is given by; 

N - 1 

J = xT(N)Wx(N) + °L: (xT(k)Qx(k) + u 2 (k)) (3.6) 
k= l 

where N = ;[T , T = 3 seconds (final time), 6T = 0.2 second (sampling interval). 

The penalty matrices W and Q were defined as 

3 [ 10 0 l w = 10 
0 1 

In this section we use the look-up table from dynamic programming, which con­

tains optimal traj ectories from all permissible states at any time index, along with 

a linear controller to train the RBF network. The insertion of the linear controller 

ensures that the system remains stabilized when face with small perturbations. The 

linear controller of choice is a vector of gains that places the closed loop poles of 

the system within the unit circle (see appendix A for details) The following steps 

illustrate the process; 

1. Select an initial state and then look up in the table for the corresponding input 

value. If the initial state is not a quantized state then interpolate inputs at 

neighboring quantized states for input. Use this input to determine the next 

state and then repeat the process until the state variables are within the linear 

region. 
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Once inside the linear region, switch to the linear controller. Let the system 2. 

3. 

run with the linear controller for a while so that the training data contain a few 

presentations in the linear region. 

Repeat the two steps above starting with different initial conditions 

to obtain different trajectories. The objective is to have these tra-

jectories span as much of the state space as possible. Figure 3.1 

show the simulation results for trajectories of six different initial states, 

{x i, x2 1(3, 0) , (1.5, -8) , (3.5, 4), (2.5, -5) , (0.4, -0.1) , (1.5, -2)}. 

4 

·-E' 2 
0 

~ 
E 0 -; 
~ 
er -2 

--4 

-6 

-6~~~~~~~~~~~~~~~~~ 

- 1 2 
Pendulum Position 

4 

Figure 3.1: Training trajectories for dif_ferent initial conditions . 

4. Use these optimal trajectories to train the network by setting up input and 

target matrices and solving for the weights in a least squares sense. 

5. Design and insert a linear controller for the linear region to guarantee that the 

states become stabilized once they enter the linear region (see appendix A for 

the design for the pole placement linear controller) . To better approximate the 

linear controller add more centers in the linear region as shown in Fig. 3.2. 

We also see from Fig. 3.3 that the pendulum remains stabilized in the upright 

position. 
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Figure 3.2: Plot of the trajectory of pendulum from hanging down to standing erect 
with additional linear region centers 
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Plot showing the stabilization of the system at the target equilibrium 

23 



3 1 Fixed Centers Selected on a Grid 3 . . 

Given equation (2.16) in Chapter two the RBF network was designed with a chosen 

to beg x 10- 7 . The training data for the network are the six trajectories shown in 

Fig. 3.1. The centers, c , are placed in fixed intervals on a rectangular grid with the 

covariance matrix, ~ equal to 0.2512. There are 297 basis functions that span the 

permissible state space. Given this setup each basis function operates pretty much 

independently and locally. Figures 3.4 and 3.5 show the dist ribution of the centers 

and the plot of the trajectory from the hanging down state, x1 = 1T , to the upright 

position, x1 = 0 and its corresponding weight surface, respectively. 
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-6 

x x x 
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x x x 
x x x 
x x 
x x x 
x x x 
x x 

x x x x x x 
x x x x x x 
x x x x x x 
x x x x x 
x x x x x 
x x x x 
x x x x 
x x x x 

x 
x 
x 
x 
x 

x x 
x x 
x x 
x 

x 

-6~~__,.,__ ___ ____,,,_~---------;.----A--7f~--J<----><---l< 
- 1 2 4 

Pendulum Position 

Figure 3.4: Plot of the trajectory of pendulum from hanging down to standing erect 

As discussed earlier, the dynamic programming algorithm exploits the principle 

of optimality which in concise terms goes something like this; if path abc is optimal 

from a to c then path be is optimal from b to c. This concept is demonstrated in Fig. 

3.6. Note that we inserted more basis functions about the linear region to ensure that 

the linear controller is better approximated. 

Figure 3. 7 shows the network's ability to achieve generalization. Even though 

the initial state, x 0 = [3.5, - 1 f and its corresponding trajectory were not used for 

training, the network is able to produce a mapping that achieved the control objective. 
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Figure 3.6: Plot showing the principle of optimality. One trajectory starts at x 0 

[2.5, - 5JT and the other at x 0 = [3.5, - 7JI' 
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Figure 3.7: Plot showing the network's ability to generalize with an untrained intial 
vector of X o = [3.5, -1 ]T. 

3.3.2 Self-Organized Selection of Centers 

In the previous section we placed the centers of the radial basis functions on a lattice 

of fixed interval grid points. This task was trivial given the dimensionality of the 

state space. However, in dimensions of three or higher, ones ability to visualize the 

state space of a system becomes impaired and placing centers on hyper-spheres is by 

no means trivial. We now use the SOFM algorithm discussed in the previous chapter 

and see how it compares with the results of fixed grid centers. 

The SOFM network was trained with the same six trajectories used to train the 

fixed grid RBF as shown in Fig. 3.1. We used a single layered network with 160 

neurons to produce the centers of the RBF network. The result of that training for a 

thousand epochs is displayed in Fig. 3.8. The covariance matrix used is; 

:E = df 2 (3. 7) 

where d = 2. 7 is the average distance between centers. 

Figures 3.9, 3.10 and 3.11 show the ability of the network to approximate an 

optimal trajectory and to implement the linear controller. 
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4 Control by Segmentation 3. 

In this section we briefly explore the possibility of using the results of the previous 

sections to implement a control law for the fourth order pendulum-cart system. Recall 

the equations for the cart dynamics from (1.5) 

Also recall from (3.1) that u is equivalent to the acceleration of the cart. Substi­

tuting it for X4 in yields 

where u is the input to the cart system. Solving for u produces 

nu+ Cx4 
U = 

D 

where x4 is obtained by numerical integration of u : 

(3.8) 

(3.9) 

(3.10) 

Observe that the cart dynamics are represented by linear equations whereas the 

pendulum dynamics are represented by nonlinear equations. Given that we have 

already determined the control inputs for the pendulum system using dynamic pro­

gramming, which was fairly easy to do given that the plant was second order, we 

can now compute the input to the cart system. Figure 3.12 show a block diagram 

of this control by segmentation. It would seem that we have solved the fourth order 

problem and can pack our bags and go home, but that may be foolhardy. There are 

two serious drawbacks to this control scheme. The first is that there does not seem 

to be a way to place a threshold limit on u , which becomes a considerable point in 

hardware implementation. The second drawback is when the acceleration of the cart 

goes to zero, the cart could still be moving at a constant velocity. Another drawback 

to this control law is the errors introduced in performing the integration in (3.10); 

more precisely in determining the constant of integration. 
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Chapter 4 

The Fourth Order Model 

4.1 Introduction 

In Chapter two dynamic programming was used to generate the training data for the 

network and lend itself as a powerful nonlinear control design tool, producing optimal 

control t rajectories . However, for higher dimensions of three or greater dynamic 

programming becomes almost impractical and suffers from what Bellman [20] called 

the curse of dimensionality. What this means is that the number of quantized state 

vectors, which is the product of each quantized state variable, becomes exceedingly 

large requiring a lot of memory for storage and tremendously increases computational 

time. It is given this drawback that we present in this chapter a new control law that 

will produce the training data for the fourth order system (see Chapter one). 

4.2 Energy Controller 

In this section we develop a control law to regulate the swinging energy of the pendu­

lum without regard to the cart dynamics. The resulting control system is such that 

the swinging energy will converge to the desired energy trajectory from almost all 

initial conditions. This controller design is based on a paper by Chung and Hauser , 

[9] , in which they proposed a control law that would regulate the swing energy of the 

pendulum-on-a-cart system by maintaining a desired periodic orbit . 
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Given the equations for the pendulum dynamics in (1.5) 

i2( t) 

x2( t) 

-Asin(x1 (t)) - ~ cos(x1 (t))(-Cx4(t) + Du(t)) 
ng 

( 4.1) 

We would like to design a feedback control u so that the swing energy of the pendulum, 

defined by the kinetic and potential energy of the rod, 

1 
H(B ,w) = 2(Zw) 2 + mgl(l - cos(B)) (4.2) 

is regulated to a desired swing energy fI. Note that B = x1 and w = x 2 . m and l 

are mass and length of the rod, respectively and g is acceleration due to gravity. H 

is a time-varying function that depends on the energy of the initial states, B(t0 ) and 

w(io), and on the energy at the final states, B(t1) = 7r and w(t1) = 0. fI is given by 

H(t) = ±H(B(t0 ),w(t0 )))e- f3t - mgl(l - cos(7r)) ( 4.3) 

where f3 is a design parameter. This function is used to drive the total energy, H , 

gradually from the initial energy determined by the initial state to a final energy when 

the pendulum is inverted in the linear region and from where linear control can then 

be employed. For example, if the initial energy is lower than at the final state, fI 
would increase the total swinging energy until it reaches the final energy level. On 

the other hand, if the initial energy is higher than at .the final state, fI would decrease 

the total swing energy until it reaches the final energy level. 

Next we define the error function 

E(B,w) = H(B,w) - fI 

and if we choose the feedback control law to be 

u = aw cos BE ( 4.4) 

then in the limit as t becomes large, E(t) goes to zero [9]. 
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2 1 Simulation Results of the Energy Controller 4 . . 

The energy control law by itself could not balance and stabilize the pendulum in the 

upright position (linear region); so we insert the pole placement linear controller (see 

appendix A) when the pendulum-cart system enters the linear region (see Chapter 

one) to stabilize and to compensate for minor perturbations in the system. Also , the 

energy controller has to be given a nonzero initial state or it will remain at rest with 

u == o. 
1 The energy controller was designed with m = 0.25kg, l = 0.16m, g = 9.81 ~, and 

{3 == 2. In the linear region, the control law is 

u = -Lx 

where 

L = [ 10. 7688 1.6143 -0.0125 -0.0160 ] 

• Simulation results for the controller are shown in Fig. 4.1 to Fig.4.6. Figures 4.1 

and 4.2 show the plots of the control input and state variables, respectively from the 

hanging down position, x 1 = ;0 , to up position, x1 = 1r. The controller is able to 

balance and stabilize the pendulum and cart even when the initial states that are far 

from the final states as illustrated in Fig. 4.3 to Fig. 4.6. 

4.3 RBF Network Training Simulation Results 

We trained the RBF network using two trajectories, one whose initial state vector 

Xo = [i""0 , 0, 0, Of is in the nonlinear region, and the other whose initial state vector 

Xo = [(7r-0 .4), 0, 0, of is in the linear region. The latter is to ensure that the network 

has enough presentations in the linear region so that it would learn to mimic the linear 

controller. 

We chose 100 radial basis functions whose centers are determined by the SOFM 

network, and a fixed inverse covariance matrix of these centers was selected to be 

:E-1 d. [( 2 2 2 2] = zag Cimax(!l l C2maxCT2, C3maxCT3, C4max (!4 
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Figure 4.1: Plot of the control input that moves the pendulum from hanging 
down,x1 = ; 0 , to the upright position, X 1 = 7r 
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Figure 4.3: Plot of the control input when the initial state is x 0 = [% , 0, 100, Of 
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Figure 4.6: Plot of the state variables with initial state x 0 = [ ~, 1, 10, 20]T 
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where Cimax is the maximum valued center for the ith state vector , and a} is the 

variance associated with that ith state vector. The result of the training is shown 

in Fig. 4. 7. The closed-loop simulation results of the network are displayed in 

Figures 4.8 and 4.9. Figures 4.10 and 4.11 show the networks ability to generalize 

given an untrained init ial state of X o = rn, 0, 0, OJI'. Though the network is able to 

achieve some generalization and obtained the designed objective, its overall ability 

to produce closed-loop results similar to that of the training set is relatively poor. 

This poor showing could be attributed to the choice of the fixed covariance matrix, 

:E, which probably does not accurately represent the variance distribution of the 

centers. The poor generalization is further manifested when we provided the network 

with four training trajectories; the four initial points for these trajectories were x 0 = 
{( ; 0 , 0, 0, O) ; (~, 1, 10, 20); (~, 0, 100, O) ; ( 7r - 0.4, 0, 0, O)}. The closed-loop simulation 

results are shown in Figures 4.12, 4.13 and 4.14. Note from Fig. 4.12 that the 

approximation to the training set is good, but when the network is placed in closed 

loop it is not able to achieve the design objective as depicted in Fig. 4.13 and Fig. 

4.14. 
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Figure 4. 7: The RBF network approximation to the input trajectories. 
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Figure 4.8: Closed-loop simulation of the RBF network showing the control input 
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Figure 4.13: Closed-loop simulation of the RBF network showing the control input 
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Figure 4.14: Closed-loop simulation of the RBF network showing the state variables 
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Chapter 5 

Conclusions 

5.1 Summary 

In this research we demonstrated the ability of radial basis function networks to 

implement control of nonlinear systems, given that there exists training data that 

achieves the design objectives. Furthermore, the RBF network controller was suc­

cessful in meshing together seamlessly controllers from nonlinear control theory and 

linear control theory. We also showed how a self-organizing feature map can be used 

to place the centers for the RBF network, thereby making the network more efficient 

and possibly adaptive. 

In both Chapters three and four, the control laws presented are able to balance and 

stabilize the pendulum-cart syste1? from all permissible initial states. The dynamic 

programming algorithm discussed in chapter three is a powerful control scheme that 

guarantees optimal results for any nonlinear control problem. Unlike gradient descent 

algorithms use in optimal control theory dynamic programming cannot get stuck in 

a region of local minimal, but instead produces global results. Furthermore, a nice 

feature of the algorithm is that we are able to put constraints on the control input 

as well as the state variables. The curse of dimensionality, which is the only major 

but considerable drawback of dynamic programming, limits the algorithm to lower 

dimensional problems because in higher dimensions computation become expensive 

in terms of a huge requirement for computer memory and processor time. On the 
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other hand, the energy control law presented in chapter four is fast to converge to a 

result , but the result is not optimal and is specific to the pendulum problem. 

In retrospect of this research to use RBF networks to implement nonlinear control 

systems, the author believes that the single most important thing to improve with 

these networks, is determining a strategy for selecting the spreads of the centers or 

inverse covariance matrix. An accurate determination of this parameter is crucial for 

the network's ability to generalize and achieve the design objectives. For dimensions 

in which visualization of the distribution of the network's centers is impossible, such 

a strategy is very much needed. However, if generalization and minimal network 

configuration are not issues of the application of interest, then exact RBF networks, 

which are not sensitive to this covariance parameter, can be used. 

5.2 Further Work 

As noted in the concluding remarks of the previous section, the single most important 

thing that needs improvement with the generalized RBF networks is determining the 

spread of the centers; hence, it is basis for further work. The author proposes the 

following strategies for obtaining the spread of the centers; 

1. Define an initial inverse covariance matrix for all centers 

where dis the average distance between centers, C is a norm weighting matrix 

that is diagonal and is used to normalize the input data in a unit hypersphere. 

Next, we minimize a cost function over the inverse covariance matrix 

min£= llY - Yll 
I;-1 

where Y is the desired output vector and Y is the approximated output vector. 

Using this scheme we can get an optimal inverse covariance matrix that gives a 

general representation of the spreads of all the centers. It should be noted that 

the position of the centers are fixed and determined by the SOFM network. 
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2. Another approach for the selection of the spreads of the centers is to find the 

inverse covariance matrix associated with each center. This parameter and all 

other free parameters of the network are determined using a gradient-descent 

learning procedure instead of a linear regression technique. The first step in the 

development of such a learning procedure is to define the instantaneous value 

of the cost function 

£ = ~ f: e2 
2 j=l J 

where N is the number of training examples used to undertake the learning 

process, and ej is the error signal, defined by 

N a 

e j = Yj - L wicl>(Jlxj - ci lli;~1) 
i=l ' 

The requirement is to find the free parameters Wi, Ci, and Ei1 so as to minimize 

[. The results of this minimization are summarized as follows; 

(a) Linear weights 

8£(n) 
wi(n + 1) = wi(n) -171 0wi(n) i = 1, 2, ... ,Na 

(b) Positions of centers 

o£(n) N . -1 

0 ·( ) = 2wi.(n) L ejcl>( ll xj - cilli;;-1)Ei [xj - ci(n)] 
Ci n j =l 

8£(n) 
ci(n + 1) = ci(n) - 172 oci(n) i = 1, 2, ... , Na 

(c) Spreads of centers 

o£(n) ~ -1 T 
0 _1() =-wi (n)L.,, ejcI>(llxj -ci ili;~1)Ei [xj-Ci(n)][xj - ci(n)] 

E · n . • 
i J = l 

-1( ) _1( ) 8£(n) 
E i n + 1 = Ei n - 173 8:Ei 1 ( n) i = 1, 2, ... ,Na 

Finally, the author would like to see some work done in further developing the 

control by segmentation methodology proposed in Chapter three. 
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Appendix A 

Summary of Pole Placement 

In this appendix we provide a summary of pole placement by digital state feedback. 

[7] and [8] give a more detailed development of this strategy from linear control theory. 

Given a continuous-time system represented by; 

x = Ax(t) + bu(t) (A.1) 

1. Choose appropriates-plane pole locations and sampling interval, T. 

2. Obtain the zero order hold, ZOH, of the plant 

x[k + 1] = <.t>x[k] + ru[k] (A.2) 

where (_l) = exp AT and r = foT eArbdT 

Then calculate the denominator ploynomial of the ZO H model. 

det(zl- <I>)= a(z ) =Zn+ a 1zn-l + ... +an (A.3) 

If the poles, Si, of the continuous-time plant are, then a( z) can be computed as 

follows 
n 

a( z ) = IJ (z - esiT) (A.4) 
i=l 

3. Map the s-plane pole locations chosen in Step 1 to the z-plane using the ZOH 

pole mapping formula Zi = esiT. Multiply out the z-plane pole locations to 

obtain p(z) 
n 

p( z ) = IJ( z - Zi ) = Zn + P1Zn-l + ... + Pn (A.5) 
i=l 
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4. Form the controllability matrix We of the plant (ZOH), and form the control­

lability matrix W c of the controllable canonical form. 

(A.6) 

(A.7) 

where <l> = T/PTc-i and f' = Tcf. Tc is a transformation matrix that takes the 

controllable system to controllable canonical form. 

5. Calculate the feedback vector 
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Appendix B 

Computer Code 

This appendix provides some of the Matlab codes used in the design and simulation 

of the neural cont roller. 

B.l The dynamic programming algorithm 

function [COST,UOPT]=dyprog(N,Ts) 

% *********************Initialization****************** 

global U 

[x,u,C,S]=getgrid; 

COST=zeros(N,S); 

UOPT=zeros(N,S); 

W=1e3*diag([10 1 10 1]); %defines the penalty matrix for the final state . 

%******************************************************************** 
for i=1 :S 

COST(N,i)=x(: ,i)'*W*x(: ,i); 

end 

for K=1: N-1 

for i=1 :S 

CDSMIN=1e6; 
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for j=1:C 

U=u(j); 

[T,Y]=ode23('odepen',(i-1)*Ts,i*Ts,x(: ,i)); 

[l, w] =size (Y) ; 

X=round(Y(l, :)'*1000) ./1000; 

JNN=inter(X,COST(N-K+1,:)); 

end 

Copt=cost(x(: ,i)) + JNN; 

if Copt <= COSMIN 

end 

COSMIN = Copt; 

UMIN=U; 

end 

COST(N-K,i)=COSMIN; 

UOPT(N-K,i)=UMIN; 

end 

function [x,u,C,S]=getgrid() 

%**********************Initializations*********************** 

Umax=8; Umin=-8; 

delx1=0.5; 

delx2=2; 

delx3=50; 

delx4=100; 

x1max=6;x1min=O; 

x2max=10;x2min=-10; 

x3max=200;x3min=-200; 

x4max=500;x4min=-500; 

s1=round((x1max-x1min)/delx1) +1; 

s2=round((x2max-x2min)/delx2) +1; 
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s3=round((x3max-x3min)/delx3) +1; 

s4=round((x4max-x4min)/delx4) +1; 

u=[Umin:-2 -1.5:0.5:1.5 2:Umax]; 

C=length(u); 

S=s1*s2*s3*s4; 

x=zeros(4,S); 

%************************************************************** 

x1=x1min:delx1:x1max; 

x2=x2min:delx2:x2max; 

x3=x3min:delx3:x3max; 

x4=x4min:delx4:x4max; 

count=O; 

for i=1:length(x1) 

for j=1:length(x2) 

for k=1 : length(x3) 

for 1=1:length(x4) 

count=count+1; 

x(: ,count)=[x1(i);x2(j);x3(k);x4(1)]; 

end 

end 

end 

end 

function Japprox=inter4(X,J) 

epsilon=0.01; 

x1=[floor(2*X(1))/2 ceil(2*X(1))/2]; 

x2=[floor(0 . 5*X(2))/0 . 5 ceil(0.5*X(2))/0.5]; 

x3=[floor(0 . 02*X(3))/0 . 02 ceil(0.02*X(3))/0.02]; 

x4=[floor(0.01*X(4))/0 . 01 ceil(0.01*X(4))/0.01]; 

%************************************************************ 
count=O;xi=zeros(4,16); 
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for i=1:length(x1) 

end 

for j=1:length(x2) 

end 

for k=1:length(x3) 

end 

for 1=1:length(x4) 

count=count+1; 

end 

xi( : ,count)=[x1(i);x2(j);x3(k);x4(1)]; 

dist(count)=norm(X-xi(: ,count)); 

%************************************************************ 

if X(1)<0 I X(1)>6 I X(2) <-15 I X(2)>15 I X(3)<-200 I X(3)>200 

+ X(4) <-500 I X(4)>500 % these constraints ensure that the state 

% vectors do not exceed their boundaries . 

Japprox=O; 

elseif min(dist) < epsilon 

tmp=xi( : ,find(dist==min(dist))) ; 

Japprox=J(getindex(tmp( : ,1))); 

else 

end 

s=1/sum(1./dist(1:length(xi))); 

Japprox=O; 

for i=1 : length(xi) 

end 

tmp=xi( : ,i); 

Japprox=(s/norm(X-tmp))*J(getindex(tmp)) + Japprox; 

B.2 The energy controller algorithm 

global U; 
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%**********************Declaration of Variables************************ 

L=getl4; % determines the state feedback gains vector 

M=.25; % mass in kilograms of pendulum rod 

l=0.16; 

g=9.81; 

Ts=0.01; 

B=2; 

% distance in meters from pivot to center of mass of pendulum 

% gravitational acceralation (m/s~2) 

% sampling time 

% a design parameter that gives the time constant of the target 

% swing trajectory 

ftime=6; % simulation time 

alpha=1; % design parameter 

% ******************************************************************** 

rn=round(ftime/Ts); 

t=[O:m]*Ts; 

x(: ,1)= input(' Enter the initial state vector ') 

C=(.5*(l*x(2,1))~2 + m*g*l*(1-cos(x(1,1)))) - 0.7652; 

if C>=0.7652 

C=-C; 

end 

H_hat=C*exp(-B*t)+0.7652; %target swing trajectory with max energy equals 

x=zeros(4,m); %to 0.7652 at pi 

for j=1 :m 

if abs(x(1,j)) > (pi-0.5) 

U=-L*[x(1,j)-pi;x(2:4,j)]; %insert linear controller when rod 

else %enters linear region 

E(j)=(0.5*M*(l*x(2,j))~2 + M*g*l*(1-cos(x(1,j)))) - H_hat(j); 

U=alpha*x(2,j)*cos(x(1,j))*E(j); 

end 

[T,Y]=ode23('odepend',(j-1)*Ts,Ts*j,x(: ,j)); 

[l, w] =size (Y) ; 

u1(j)=U; 

x(:,j+1)=Y(l,:)'; 
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end 

%********************************************************************* 

subplot(2,2,1), plot(t,x(1, :)); 

subplot(2,2,2), plot(t,x(2,:)); 

subplot(2,2,3), plot(t,x(3,:)); 

subplot(2,2,4), plot(t,x(4,:)); 

B.3 The training algorithm 

% *****************Training******************************** 

<load training data> 

<define input and output matrices, x and y respectfully.> 

Q=sofm(x); % function call to the self-organizing routine to place 

% the centers. This function simply makes a call to Matlab ' s 

% function for Kohonen ' s self- orgaining feature map. 

Q=Q,; 

n=length(y); 

m=length(Q); 

alpha=0 . 000000000009; %design parameter to compensate for ill conditions 

%*******Method I to determine the inverse ·varaince parameter***************~ 

% d=diag(Q'*Q); 

% [d1,i1]=max(d); 

% [d2,i2]=min(d); 

% C=2*m/(norm(Q(: ,i1)-Q(: ,i2)))~2; 

%*******Method II to determine the inverse varaince parameter**************~ 

C=inv(diag([max(abs(Q(1,:))) ~ 2*cov(Q(1, : )) max(abs(Q(2, :))) ~ 2*cov(Q(2,:)) 

+ max(abs(Q(3, : ))) ~ 2*cov(Q(3, : )) max(abs(Q(4, : )))~2*cov(Q(4,:))])); 

%**************************************************************************~ 
I=eye(m); 

for i=1:m 
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for j=1:n 

PHI(i,j)=exp(-0.5*((x(: ,j) - Q(: ,i))' *C* (x(: ,j) - Q(: ,i)))); 

end 

end 

theta=y*PHI'*inv(alpha*I + PHI*PHI'); 

Y_o=theta*PHI; 

delE=norm(y-Y_o) %measure of the ''goodness'' of the approximation. 

save <filename> theta Q C; 

B.4 Closed-loop simulation 

% This program assumes that the centers,Q, weights vector, theta, 

% and invariance, C, have already been determined. 

global U; 

< load Q,theta & C> 

m=length(Q); 

% ******************************Simulation****************************** 

Ts=O. 01; 

ftime=6; 

n=round(ftime/Ts); 

t=[O:n-1]*Ts; 

x=zeros(4,n); 

u=zeros(1,n); 

x(:,1)=input(' Enter the initial state vector') 

for i=1:m 

phi(i, :) = exp(-0.5*((x( : ,1) - Q(: ,i)) ' * C * (x(: ,1) - Q( : ,i)))); 

end 

u(1) = theta*phi; 

for j=1 :n-1 

U=u(j); 
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[T,Y]=ode23('odepend',(j-1)*Ts,Ts*j,x( : ,j)); 

[l, w] =size(Y); 

x(:,j+1)=Y(l,:)'; 

for k=1:m 

phi(k,:) = exp(-0.5*((x(:,j+1) - Q( : ,k))' * C * (x(:,j+1) - Q( :,k)))); 

end 

u(: ,j+1)=theta*phi; 

end 

subplot(2,2,1), plot(t,x(1, :)); 

subplot(2,2,2), plot(t,x(2, : )); 

subplot(2,2,3), plot(t,x(3, :)); 

subplot(2,2,4), plot(t,x(4, :)); 
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