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ABSTRACT 

The modeling and compensation of hysteresis in piezoelectrically driven sys

tems is very important for positioning and vibration compensation applications. 

A vacuum clamping system for a stationary wood machining center is integrated 

with a piezoelectric actuator for the purpose of vibration control. This actuator 

is used to reduce workpiece vibrations through an X-filtered LMS algorithm. The 

clamping system has an inherent hysteresis effect between input voltage and the 

output position of the vacuum plate. This hysteresis effect is modeled with two 

main techniques: the Bouc-Wen and the Classical Preisach models. 

The parameters for the Bouc-Wen model were identified using the Optimiza

tion Toolbox in Matlab. The parameters were identified from hysteresis curves 

from the unloaded actuator as well as the loaded actuator. The unloaded actua

tor parameters were more suitable for feed-forward compensation. Compensation 

based on these parameters was implemented experimentally, and an average outer 

loop hysteresis reduction of 30% was observed for input rates of 10, 100, 500, 1000 

and 1500 V /s. 

The Classical Preisach technique was used to model descending hysteresis 

curves in the 0 to 10 V input range. The compensation of this model was split 

into parallel and series inverse implementations. The parallel inverse could reduce 

outer loop hysteresis by 66% and the series inverse could reduce by 80%. The 

Classical Preisach model was used to model hysteresis in the offset 4 to 8 V range. 

The series inverse control used for this case could achieve a reduction in outer loop 

hysteresis of 77%. 

The offset inverse series compensation was used in conjunction with the X

filtered LMS algorithm to test its effectiveness. The hysteresis compensated sys

tem could reduce acceleration output amplitude to 10% its original value twice as 



quickly as the uncompensated system. However, the compensated system could 

not reduce the amplitude any further, while the uncompensated system could re

duce the amplitude down to 3% of its original value. 
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CHAPTER 1 

Introduction 

1.1 Background 

The demand for high performance positioning and vibration control systems 

has driven research and engineering efforts in the development of new actuator 

concepts. The idea for applying smart materials to actuator design has become 

more commonplace over the past two decades. Recent interest in this field can 

be attributed to developments in the design of actuators made from smart ma

terials, the introduction of inexpensive, yet powerful digital signal processors and 

further advancements in control system theory and their application to these smart 

actuators. 

Smart materials, also known as adaptronics [5], form the basis for active sens

ing and actuation in conventionally inactive structures. Adaptronics can take on 

many different forms, including shape memory alloys, magnetostrictive materi

als and electrorheological (ER) and magnetorheological (MR) fluids. However, 

piezoelectric (or piezoceramic) materials have ~een most often used for precision 

positioning vibration suppression in the micro and nanometer ranges. Piezoelectric 

materials have the property of generating an electric potential in response to an 

applied mechanical stress. This process is also reversible, where a voltage applied 

to the material causes mechanical stress within the material. This stress can be 

used to impart a force and / or a displacement when integrated with an inactive 

structure. 

Piezoelectric materials require very high voltages (up to 1000 V) using high 

voltage amplifiers (lOOx) in order to achieve displacements in the micrometer range. 

However, certain piezoelectric materials achieve open loop step input settling times 

in the millisecond range, or even faster when in closed loop. The piezoelectric 
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t r 's high stiffness, fast settling times, excellent frequency response and fine 
actua o 

resolution make it ideal for precise positioning and vibration control applications. 

The primary disadvantages of piezoelectric actuators are that they exhibit position 

drift over time and hysteresis nonlinearity when comparing system input voltage to 

position output. When left uncompensated, these nonlinearities negatively affect 

the performance of piezoelectric actuators and thereby limit their application. 

Hysteresis is a nonlinear phenomenon encountered in many areas of science 

and engineering. It generally refers to a condition where the system's output is not 

only dependent on the current system input, but also on the system's input history 

(hysteresis with nonlocal memory). Figure 1.1 illustrates the typical hysteresis 

effect in an input-output diagram, where the loading and subsequent unloading of 

a system leads to differing output signal paths. 
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Figure 1.1. Hysteresis Due to Differing Loading and Unloading Paths 

Hysteresis is sometimes seen as a positive effect in engineered systems. For 

example, a thermostat uses the principle of hysteresis for room temperature control. 

Hysteresis however is typically interpreted as having a negative effect on the control 
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·t· n and vibration. When this effect is not properly modeled, the system 
of pOSl 10 

under open-loop control exhibits unpredictable output to a varying input. Systems 

with rate-independent hysteresis properties behave as though they have a phase lag 

which is dependent on the input signal's amplitude rather than input frequency. 

When the system is under closed-loop control, the system may become unstable 

when phase margins are insufficient. For these reasons, it is important to apply 

hysteresis modeling and compensation techniques to controller design in order to 

achieve the desired dynamic system response. 

There exists many methods for the compensation of systems exhibiting hys

teresis in piezoelectric actuators. For example, [6) details the use of charge am

plifiers instead of voltage amplifiers to drive piezoelectric actuators for vibration 

control. A significant reduction in output hysteresis may be observed when a piezo-

electric actuator is driven in this manner. Since the system under consideration 

(see Section 2.1) is driven by a voltage amplifier and does not include a sensor for 

position feedback , this thesis will concentrate on feed-forward hysteresis compen

sation methods using voltage as a control signal. These methods generally either 

invert or subtract out the hysteresis model for. the determination of a suitable 

control signal which linearizes the system response. 

1.2 Literature Review of Hysteresis Modeling and Feed-Forward Com
pensation 

Many papers have been written over the past two decades regarding the mod

eling and feed-forward compensation of piezoelectric actuators. This literature 

review only covers key techniques and provides some application examples. 

The application of the Preisach modeling techniques has been documented in 

[2], [7], [1) and [8]. This method is based on the summation of hysteretic relay 

operators with gain outputs. The values of the on and off switching values and 
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. ould need to be identified to describe system hysteresis. However, in the 
the gam w 

ntioned implementations, this identification step has been circumvented 
above me 

and the resulting Preisach model is based directly on experimentally measured 

data _ i.e. the model's output value for any given input is directly extrapolated 

from experimentally measured hysteresis loop values. 

The Prandtl-Ishlinskii model was likewise used in [9], [10] and [11] for piezo

electric hysteresis modeling and control. This model is very similar to the Preisach 

model, in that it is a summation of hysteresis play and stop operators instead of 

relay operators. This model has in fact been recognized as a particular subclass 

of the Preisach operator [10], and therefore is expected to behave similarly to the 

Preisach model. 

Hysteresis modeling has also been achieved by curve fitting ascending and 

descending hysteresis curves such as in [12] and [13]. In the first paper, curve fitting 

was applied only to the experimentally determined major ascending and descending 

hysteresis loops. The authors then used a general formula to estimate hysteresis 

for a given inner loop based on data from the major loop and the voltage input 

direction switching value. In the second paper,. the authors applied curve fitting 

to several hysteresis loops with given minimum and maximum voltage direction 

switching values. 

The model proposed in [14] and [15] is completely based on physical prin

ciples. This model describes the static and dynamic behavior of the actuator 

with a "lumped-parameter energy-based representation." This electromechanical 

model utilizes the generalized Maxwell resistive capacitor for representing hys

teresis. Mechanically, this can be interpreted as a parallel connection of massless 

linear springs with unique stiffnesses, representing pure energy-storage, coupled 

with blocks subject to unique Coulomb breakaway friction forces, which repre-
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· dependent dissipation. This model is similar to both the Preisach and 
sent rate-m 

Prandtl-Ishlinskii models in it represents hysteresis in discrete elements. 

Rate-independent hysteresis can also be described through the use of a first 

order differential equation. The Bouc-Wen hysteresis model was utilized in [16], 

[l7], [l8], [19], [20] and [21]. The Duhem model was utilized by Adriaens et al. 

in [22] and [23] to describe and compensate for hysteresis. Both these techniques 

provide for a relatively simple description of hysteresis without needing a large 

amount of data in a lookup table as in Preisach. They also allow for the direct 

determination of analytical response when including the calculated hysteresis into 

the total system's force balance equation. However, they are generally only ap

plicable in the case of symmetric hysteresis, where the ascending and descending 

curves have roughly the same shape. Both these models use hysteresis loop shape 

parameters which are identified from experimental data. 

1.3 Thesis Objectives 

The primary goal of this thesis is to develop feed-forward hysteresis compen-

sation for a piezoelectrically driven active clamping assembly. This system will be 

introduced later in Section 2.1. Hysteresis compensation would eventually be used 

to improve the vibration canceling performance of an filtered-X LMS algorithm 

which has been developed by another researcher. 

A suitable hysteresis model must be developed which corresponds to exper

imentally measured data. This hysteresis model would then be adapted to pro

vide an open-loop control voltage which would cancel out the hysteresis, thereby 

effectively linearizing the system response. The effectiveness of this hysteresis 

compensation is experimentally verified on two identical active clamps. After the 

assembly's hysteresis reduction has been proven, the compensation will be cou

pled with the filtered-X LMS algorithm to validate performance improvements in 
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. t. cancellation using one assembly. vibra ion 
The frequency of the vibration disturbance originating from the wood machine 

1 . bout 300 Hz. This frequency is the primary modal frequency which needs 
too is a 

to be canceled by the LMS algorithm. For this thesis, the operating bandwidth of 

the feed-forward control system has been limited to 300 Hz. This suggests that rate 

dependency could potentially play a role in modeling system hysteresis. Although 

such a rate-dependent hysteresis model can potentially yield better modeling over 

a wider range of input signal frequencies , the author assumes for this thesis that 

hysteresis rate-dependency plays a minor role in the overall modeling of the system. 

Instead, the assumption is made that the overall nonlinear system response to a 

given input is dependent on a certain combination of linear dynamic and rate

independent hysteretic responses. 

For this thesis, Bouc-Wen and the Classical Preisach models have been se-

lected for the modeling and compensation of hysteresis. The author has the im-

pression that Bouc-Wen is one of the most commonly published analytical models 

and Preisach is one of the most commonly published discrete numerical models 

applied to a given system's hysteresis behavior, The author believes that these 

very different models are versatile in their application to hysteretic systems. The 

author wishes to contrast the modeling and control results from the relatively un

complicated, but not very exact Bouc-Wen model to those from the elaborate, but 

very accurate Preisach model. 

There is no specified level of assembly output hysteresis reduction that the 

hysteresis compensator needs to attain. It is desired that the rate-independent 

hysteresis is reduced as much as possible across the operating bandwidth of the 

system. It is also desired that the hysteresis compensator improves, rather than 

degrades the vibration canceling performance of the filtered-X LMS algorithm with 
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the active clamp assembly. 

Bouc-Wen Background t.3.1 
The so-called Bouc- Wen Hysteresis Model was first developed by Bouc [24) 

and then later modified by Wen [25], [26) for the development of a different ially 

smooth hysteretic model for inelastic structures. The model has been successfully 

applied to other systems which also exhibit hysteretic properties. One of the 

first applications used for the modeling and control of hysteresis in piezoelectric . 

actuators could be found in [16) and shortly thereafter in [17). The author will 

utilize a simple identification method to determine this model's parameters based 

on the experimentally obtained major hysteresis loop. 

1.3.2 Preisach Background 

The Preisach model was originally developed by Ferenc Preisach for the math

ematical description of hysteresis in ferromagnetic materials [27]. The Preisach 

model was originally interpret ed as a physical model of hysteresis. In reality, it 

is a phenomenological model, meaning the hysteresis is modeled mathematically 

based on observed phenomena, but not directly derived from physical theory. This 

model was initially applied for use in piezoelectric actuator modeling and control 

in [2], [7) and [1]. Variants have since been developed, which include the modifi

cation of the Preisach hysteresis model for input signal rate dependency [28), [29), 

[30] and [31). 

The author found an article [32) applying the rate dependent P reisach hys

teresis model concepts from above to control piezoelectric hysteresis in a frequency 

bandwidth of up to 400 Hz. However, it appears that this method requires prepro

cessing of the entire reference position signal (calculating reference input sequence, 

full memory sequence and reduced memory sequence - see [32] for description) be-
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1 · g feed-forward control to the system. There is, however, no prior 
fore app ym 

1 d concerning the reference signal for the given system in this thesis. This 
know e ge 

. t for prior reference signal knowledge thereby significantly limits the 
requiremen 

t . 1 application of this method, and therefore will not be pursued any further prac ica 

in this thesis. 

The author will focus on the Classical Preisach implementation of the hys-

teresis model, as well as a so-called offset version of the Classical model, where the 

hysteresis effect is modeled only over a set input voltage range. This model relaxes 

the requirement for the input signal to be always cycled between a maximum and 

zero volts. Both models require experimental identification data in the form of 

first order descending hysteresis curves. 

1.4 Thesis Outline 

This thesis is made up of five separate chapters. Chapter 1 has introduced 

hysteresis modeling and feed-forward compensation including a literature review. 

Chapter 2 will explore the characterization of the active clamp assembly under 

various conditions. Chapter 3 will introduce the Bouc-Wen hysteresis modeling 

concept and provide modeling results. Chapter 3 also explores hysteresis compen

sation based on the Bouc-Wen model, including experimental results. Chapter 4 

introduces the Classical Preisach technique for modeling hysteresis and provides 

modeling results for performance validation. This chapter also introduces the 

concept of an offset Classical Preisach model, where the model's outer hysteresis 

loop lies between a given input voltage minimum and maximum. Like in Chap

ter 3, Chapter 4 explores hysteresis compensation methods based on the Classical 

Preisach model and includes experimental results for performance validation. In 

chapter 5, concluding remarks will be made regarding the experimental results, 

and suggestions for further research and plant design changes will be made. 
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2.1 

CHAPTER 2 

Characterization of the Plant 

Design of the Active Clamping System 

The Institut for Werkzeugmaschinen und Fertigungstechnik (Institute for Ma

chine Tools and Production Technology) at the Technische Universitat Braun-

schweig (TU-Braunschweig) has developed a novel system for workpiece clamping 

and workpiece vibration control on a wood machining tool. The complete sys

tem comprises of four identical vacuum clamping assemblies (assemblies A, B, C 

and D) used for the fixation of wooden plate shaped workpieces during machin

ing. However, this clamping action promotes work piece vibration, and since flat, 

plate shaped workpieces have a high tendency for acoustic radiation, this may lead 

to quality problems and elevated levels of noise during machining. Each vacuum 

clamping system has therefore been modified to include a piezoelectric actuator 

which is used to raise and lower the clamping surface. A Filtered-X LMS (Least 

Mean Square) control algorithm has been developed to counteract workpiece vi

bration by means of superposition [33], [3]. A picture of the stationary wood 

machining tool and the four active clamps is shown in Figure 2.1. 

All of the active clamps are outfitted with piezoelectric actuators and ampli

fiers from Physik Instrumente GmbH & Co. KG. They are outfitted with actuator 

model P-216.80 with a nominal, unloaded maximum displacement of 120 µm. None 

of these actuators are outfitted with a strain gage sensor nor do the actuator ampli

fiers have a position controller for hysteresis compensation. This means that each 

~embly's position output / voltage input relation exhibits hysteretic properties. 

Each actuator is driven by amplifier model E-481.00 which has an output/input 

gain of lOOx. Web links to PDF's of data sheets for P-216 and E-481 may be found 

in [34] and [35] respectively. 
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Figure 2.1. Stationary Wood Machining Tool with Active Clamp Assembly 

The amplifiers are, in turn, driven by a real-time digital signal processmg 

system from dSPACE GmbH. On the hardware side, this system is made up of the 

DS1006 processor board [36], the DS2004 A/D board [37] and the DS2102 D/ A 

board [38]. On the software side, the experiment is designed using The Mathworks' 

Simulink package with automatic C-code generation and hardware linking managed 

by TargetLink [39]. Direct experiment interface and instrumentation is managed 

through ControlDesk [40]. 

IMPORTANT: All future references to voltage inputs in this thesis will be 

with respect to the dSPACE system's D/A output (0-10 V) and not to the output 

of the piezoelectric amplifier. 

As seen in the Solid Works generated cutaway side view of the assembly in Fig

ure 2.2, the active clamp assembly is made up of several components. This graphic 

illustrates the function of each component. The piezoelectric actuator generates a 

force, which is transferred through the horizontal wedge. With increasing voltage, 
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. t 1 wedge moves to the right. This wedge has sliding frictional contact 
this horizon a 

h rtical wedge and pushes this part upward. While the vertical wedge 
with t eve 

ard the washer attached to this wedge also moves upward. This motion 
moves upw ' 

S the spring which is located between the wedge and housing, creating compresse 

8 downward force onto the vertical wedge. The suction plate is actuated through 

the direct connection with the vertical wedge. 

Cons0Ie 

Figure 2.2. SolidWorks Generated Side Cutaway View Assembly 

The active clamp assembly is mounted to the wood machining center's console 

by two screw connections. The tightening torqlJe on each of these screws affects 

the relationship between input voltage and suction plate output position. These 

screw connections must be "tuned" properly before testing to ensure correct system 

behavior. This tuning process involves inputting a 300 Hz sinusoid signal to the 

actuator and observing the acceleration output of the plate using an accelerometer. 

A change in output is observed when the each screw is tightened or loosened. The 

torques are tuned properly when the accelerometer output has a pure sinusoidal 

shape with sufficient amplitude. It is generally assumed that the experimental 

results in this thesis have been obtained on a properly tuned system. 
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Test Setup and Voltage Input Profile 

test procedure and test setup are needed to properly characterize the A proper 

f the active clamp assembly. For this investigation, first order descending 
response o 

. curves are generated by inputting a set of triangular voltage profiles 
hysteresis 

with decreasing peak amplitudes and constant voltage slope rates. Figure 2.3 

illustrates an input voltage profile for descending hysteresis. The max amplitude 

of the triangle wave is 10 V and after repeating the 10 V wave for a second time, 

decreases by 1 V for every successive wave. The voltage input rate is 1 V /s. 
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Figure 2.3. Input Voltage Profile to Generate Descending Hysteresis Curves (1 
V/s) 

Three different experimental setups were used to measure the system dynamic 

response to the given input profiles. Figure 2.4 details one of the setups used for 

the measurement of hysteresis. A LVDT (linear variable differential transducer) 

contact measurement pencil probe from Marposs S.p.A. is used for the measure

ment of hysteresis resulting from slow (ca. 1 - 10 V / s) voltage profiles. Above this 

12 



ured data is too noisy, even when filtered. Therefore the range of 
ra.te the meas 

. . ts that can be used for system output measurement is limited. dynamic mpu 

Figure 2.4. Test Setup with Marposs Contact Displacement Sensor Probe 

Another setup used for this thesis is shown in Figure 2.5. This setup uses 

a scanning head vibrometer model OFV 056 from Polytec GmbH. Out of the 

three setups, this can measure ·the fastest dynamic responses with the least noise. 

However, it is also the most complicated setup to prepare for experimental testing, 

and therefore has been used sparingly. 

The third setup used for system response analysis is shown in Figure 2.6. This 

setup uses the the laser triangulation positioning sensor model optoNCDT 1607 

[41] from Micro-Epsilon Messtechnik GmbH & Co. KG. This sensor is able to 

measure faster dynamic responses than that of the Marposs sensor. However this 

sensor is also sensitive to noise (noise amplitude about 5 µm) requiring this output 

to be post-filtered using the Matlab function "smooth". Nevertheless, this became 

the most regularly used sensor for this research due to its easy setup and large 
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Figure 2.5. Test Setup with Laser Vibrometer Positioning Sensor 

measurement bandwidth. 

2.3 Hysteresis Response Characterization of the Active Clamp Assem
bly to Varying Conditions 

The system's hysteresis output can be influenced by many factors. These 

include its assembly condition, the stiffness of the retraction spring, or the voltage 

signal input rate. In the following, these varying conditions will be compared to 

each other by observing the resulting displacement at 10 V input and the area 

(computed using Matlab function "trapz") within the major (0-10 V) hysteresis 

loop in µm · V. This hysteresis area may be interpreted as being proportional to 

work losses incurred by traveling along the major loop. Mechanical work is defined 

as: W = F · x, where F represents force and xis the corresponding displacement. 

The force imparted by a piezoelectric actuator may be determined through the 

following equation: F = u. d. keff> where u is the input voltage, dis the position 

output to voltage strain input and ketf is the effective stiffness of the piezoelectric 

actuator. Combining these two equations yields work losses in terms of system 
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Figure 2.6. Test Setup with Laser Triangulation Positioning Sensor 

input voltage and output displacement. Furthermore, when there is no hysteresis 

effect present (i.e. the area under the u-x curve is the same for increasing as for 

decreasing voltage), there is no hysteretic work loss. The major hysteresis loops in 

the following were recorded by taking the output data resulting from the second 

0- 10 input triangle shown in· Figure 2.3, and normalizing the data such that the 

displacement at the beginning of the ascending triangle (i.e. at 0 V) is equal to 0 

µm. 

2.3.1 Hysteresis Response Characterization of the Actuator and Active 
Clamp Assembly 

The maximum displacement and the hysteresis are highly affected by the 

system's assembly condition. Variations may be observed when the actuator's 

dis 1 P acement and hysteresis are compared to that of the assembly and the assembly 

without the suction block plate. These effects are compared to each other in Figure 
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. h Marposs sensor for a 1 V /s input voltage triangle and the standard 
2.7 using t e 

DF-2440 spring. 
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Figure 2.7. Various Assembly Conditions at lV /s 

10 

Both the complete assembly and the assembly without the suction plate yield 

very similar looking hysteresis loops and displacements at 10 V, while the hysteresis 

loop appears thinner and the displacement is greater for the actuator alone. The 

actuator has a displacement of 98.46 µmat 10 Vanda loop area of 237.39 µm · V. 

The assembly without suction plate has a displacement of 80. 70 µm at 10 V and 

a loop area of 279.68 µm. V. The full assembly has a displacement of 80.08 µmat 

10 Vanda loop area of 347.04 µm. V. This effect suggests that the weight of the 

plate likely does not play a major role in shaping the output of the hysteresis loop. 

But, the assembly of the other system components to the actuator does appear to 

make a significant impact on system output performance when compared to the 

actuator's output. 

In particular, there appears to be an extension of the "fl.at" section at the ends 
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·s curve which occurs immediately following a sign change in input 
of the hysteres1 , 

t The plate velocity is roughly zero during this voltage direction change 
voltage ra e. 

b oltage rate only 1 V /s). The author believes that the fiat sections 
(remem er, v 

h assembly output is mostly due to static friction. The assembly requires 
from t e 
an additional one to two volt change in equivalent actuator force to overcome the 

. frictional breakaway force before the suction plate starts to move again. 
opposmg 

The flat section seen on the actuator output is likely due to friction originating 

from the Marposs displacement probe rather than from the actuator itself. 

2.3.2 Hysteresis Response Due to Differing Spring Stiffnesses 

The effect of varying spring stiffnesses on the hysteresis loop were also com-

pared using the Marposs sensor for an assembly at 1 V / s. The standard spring used 

throughout this thesis is model DF-2440 with a spring constant of 58.3 N/mm. 

This response was compared to the assembly with spring model VD-263V-10 with 

a spring constant of 25.2 N /mm and spring model VD-207 J-01 with a spring con

stant of 3.8 N /mm. The results of this study are shown in Figure 2.8. 

It appears that using a spring with a lower stiffness simultaneously reduces the 

hysteresis loop area as well as increases the displacement at 10 V input voltage. The 

differences in loop shape between VD-263V-10 and VD-207J-Ol appear marginal 

when compared to that from DF-2440. As stated above, the assembly with spring 

DF-2440 has a displacement of 80.08 µmat 10 Vanda loop area of 347.04 µm · V . 

The assembly with VD-263V-10 has a displacement of 102.3 µm at 10 V and a 

loop area of 160.15 µm · V. The assembly with VD-207J-Ol has a displacement 

of 112.5 µm at 10 V and a loop area of 216.86 µm · V. When using less stiff 

springs, there is less downward force being exerted onto the horizontal wedge by 

the vertical wed h · . . ge overt e entire range of motion. This leads to a lower normal 

force between the wedges (i.e. less friction) and therefore less external force being 
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Figure 2.8. Hysteresis Output Using Various Springs at 1 V /s 

imparted onto the actuator. Since this external force is less, the hysteretic output 

over the entire motion range is therefore different. 

This effect can partially be explained by the loss in generated displacement 

equation (Equation 2.1) due to a piezoelectric actuator acting against an elastic 

load found in [42] . 

kr 
6.L ~ 6.Lo · ---

kr +ks 
(2.1) 

In this equation, 6.£0 is the original, unloaded maximum displacement of 

the piezoelectric actuator, kr is the stiffness of the actuator, ks is the stiffness of 

the elastic element and 6.L is the resulting maximum displacement of the loaded 

actuator. 

The author could not apply this equation directly to relate the stiffness of a 

given spring to the output of the assembly. The actuator has a significantly larger 

stiffness than the springs, resulting in very little change in output position accord

ing to the above equation. However, Equation 2.1 does validate that the spring 
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h inverse effect on the position output of the assembly. Static friction 
stiffness as an 

1 significant role in the output displacement of the assembly. The level 
likely p ays a 

. f · tion in the assembly dependent on the stiffness and compression of the 
of static nc 

. A tiffer spring increases the normal force that the vertical wedge exerts 
spnng. 8 

th horizontal wedge, which leads to elevated static frictional forces. 
onto e 

In Figure 2.9, the position output for 10 V input is plotted against the three 

retraction spring stiffnesses. In this case, an inverse linear relationship could be de

rived from this data. This relationship suggests that the position output behavior 

of the assembly can be characterized for any given spring . stiffness. 

Output Position for 10 V Input Voltage vs. 
Retraction Spring Stiffness from Specification 

* Experimental Points 
-Linear Fit 

20 

oo~~~-'-~~~-'-~~~-'-~~~'--~~--'~~~_, 

10 20 30 40 50 60 
Spring Stiffness (N/mm) 

Figure 2.9. Position Output for 10 V Input vs. Spring Stiffness 

2.3.3 Hysteresis Response Due to Differing Voltage Input Rates 

The system's hysteresis loop is also influenced by t he input voltage rate. The 

laser vibrometer was used to measure assembly B's response to voltage rates of 

IO, lOO, 500, 1000 and 1500 V /s, while using the DF-2440 spring. The input 

voltage--output .t. pos1 ion response for each case is plotted in Figure 2.10. 
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Figure 2.10. Assembly B Spring DF-2440 8cNm with Varying Input Rates 

Table 2.1. Maximum Output Positions and Major Loop Areas for Various Voltage 
Input Rates 

Volt. In. Rate V / s Max. Out. Pos. µm Loop Area µm · V 
10 96.5 207.94 
100 96.59 185.87 
500 93.17 199.52 
1000 99.14 126.38 
1500 99.33 113.67 

The resulting maximum output position and loop area for each input voltage 

rate is tabulated in Table 2.1. The maximum output position of the assembly does 

not appear to be affected by the input voltage rate. However, the loop area and 

particularly the shape of the hysteresis loop has been clearly changed by the input 

voltage rate. In particular, voltage rates of 1000 and 1500 V /s seem to have some 

sort of vibrational response. Later in this chapter, the author will use this data to 

relate the system's hysteretic displacement to its linear dynamic characteristics. 
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. Dynamic Characteristics of the Active Clamp Assembly 
2.4 Linear 

The author assumes that the system exhibits both nonlinear hysteretic as well 

hly linear dynamic qualities. Although the relationship between linear and 
as roug 

1. r are not immediately obvious, one needs to extract the linear dynamic 
non mea 

information from the system, so that the combined nonlinear system response 

characteristics are better understood. The author further proposes that this lin

ear behavior can be sufficiently approximated by a second-order linear dynamic 

equation. The parameters of such a system (such as undamped natural frequency 

and damping factors) may be identified by observing the transient position output 

of assembly's plate to actuator step or impulse voltage inputs. Actuator B's step 

response behavior will be analyzed in the following. 

The 1 volt step response of assembly Bis shown in Figure 2.11. This response 

has a steady state value of 6.40µm, meaning a DC gain factor of 6.4 µm/V for 

this response. The system's peak value is 10.09 µm at 0.00117 seconds, meaning 

59.66% overshoot. The displacement of the second peak is 8.83 µm at 0.00351 

seconds. Using this information, and assuming 2nd order response characteristics, 

one can determine the system's undamped natural frequency as well as its damping 

factor [43]. 

The system's damped natural frequency can be determined by analyzing the 

time between the first two peaks: 

2·7f 
Wd = -----

tpeak2 - lpeakl 

2·7f 
0 00351 = 2685rad/ sec = 427.3H z 

. - 0.00117 
(2.2) 

The system's damping factor may be determined in one of either two ways: by 

determining percent overshoot (POS) or comparing amplitude differences between 

pea.kg (PK). The damping factor determination by percent overshoot is as follows: 
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Step Response for Assembly B for 1 V Amplitude Input 
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Figure 2.11. Assembly B Step Response 

ln(POS/100) ln(59.66/l00) = 0_1726 
J7f2 + ln2 (59.66/100) (pas= - J7f2 + ln2 (POS/100) 

(2.3) 

The damping factor determination by peak-to-peak amplitude, where Pk is 

the amplitude at a peak and Pk+N is the amplitude at N peak periods later is as 

follows: 

(pp 
J 4 · 7r 2 · N 2 + ln2 (Pk+N /Pk) 

ln(S.83/10.09) = 0_0212 
J 4. 7f2 • 12 + ln2 (8.83/10.09) 

(2.4) 

Neither of these damping factors appear to accurately represent the damping 

- 0.1726 gives too much damping and 0.0212 gives too little damping. As a com-

promise, these two damping factors are averaged. This yields a damping factor 

of ( = 0.0969. This damping factor may then be used with the damped natural 

frequency to determine the system's undamped natural frequency: 
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Wd 
Wn = --;:===:;: Vi - (2 

2685 
------;:::==== = 2698rad/sec = 429.4Hz 
Jl - 0.09692 

(2.5) 

Combining the values gathered for undamped natural frequency, damping 

factOr and DC-Gain, the assembly B 's 2nd order linear transfer function has the 

following form: 

DC·w2 
n 

G(s) - 2 - s2 + 2 · ( · Wn · S + W n 

6.4. 26982 

(2.6) 
s2 + 2 · 0.0969 · 2698 · s + 26982 

The system's step response and the simulated step response from Equation 2.6 

are shown in Figure 2.12. Due to modeling errors and nonlinearities (mostly due 

to hysteresis effects) , this model does not yield a perfect fit, it is however sufficient 

for the purposes of this study. 

Assembly B 1 Volt Step Response Comparison 
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p., 
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Figure 2.12. Assembly B Experimental and Simulated Linear Step Response 

It is also appropriate to determine the system's effective actuated mass me/ f, 

effective viscou d . s ampmg constant Ceff and effective stiffness keff· This data can 
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Table 2.2. Mass of Moving Components from Active Clamp 
Top Plate with Two Screws 426. 7 g 
Horizontal Wedge with Nut 59.1 g 

Vertical Wedge 104.0 g 
Equivalent Mass of Spring DF-2440 (m/3) 3.9 g 

Spring Screw and Washer 5.6 g 
Equivalent Mass of Actuator 123.3 g 

[ Total Mass I 723 g or 0. 72 kg I 

then be used to determine the system's force balance equation. The mass of each 

moving component in the active clamp is listed in Table 2.2. The effective mass 

of the piezoelectric actuator is given by taking one-third of the total mass of the 

actuator [44] . 

The effective actuated mass of the system has been determined to be 0.72 kg. 

Using this data and data concerning natural frequency and damping factors, the 

effective viscous damping and stiffness may be derived: 

w~ · meff = 26982 · 0.72 = 5.24 · 106 N/m (2.7) 

Ceff 2. (. Jkeff. ffieff 

2 · 0.0969)5.24 · 106 · 0.72 = 376.4N · s/m (2.8) 

The step response test was conducted again for assembly A to validate the 

results obtained from assembly B. This assembly's response characteristics were 

also very similar to those depicted above. This suggests that the linear response 

characteristics of all assemblies may be sufficiently modeled using a simple second

order system description. 

2•5 Relationship Between Linear and Nonlinear Hysteretic System Be
havior 

The author assumes that the total nonlinear response characteristics of a 

l>iezoelectrically actuated system may be split into linear dynamic and nonlinear, 
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. dent hysteretic responses. Systems with hysteresis can be defined as 
rate-indepen 

. llel or feedback connection of a hysteresis operator and a dynami-
a "series, para 

,, [45] This thesis models the active clamp assembly's hysteresis as a 
cal system · 

·n series or in parallel with the system's (mostly) linear dynamic be
phenomenon I 

. Th e two linear-hysteretic system variants are depicted in block diagram 
havior. es 

fonn in Figure 2.13. 

u(t) 

(a) 

u(t) 

(b) 

~u(~t)'--~~·~~~~~x.(t) 

Total Plant 

Hysteresis Part 
I 

P(s) 1 

1----------------~ 

I 1~ 1~ I 

I . p I 
1 Hysteresis art Linear Part 1 

' - - - - - - - - - - - - - - _P£.s L' 

x(t) 

x(t) 
I 

Figure 2.13. Block Diagram Depicting Hysteresis in Series (a) and in Parallel (b) 
with Linear System Behavior 

Accurate modeling of the. total nonlinear plant P(s) across all input signal 

frequency ranges requires models of the system's hysteresis (H(s)) and the linear 

dynamic component (G(s)) . The Bouc-Wen modeling procedure tries to explicitly 

model the hysteresis component H(s) as a phenomenon in parallel with a linear 

dynamic system, while the Preisach technique models the total nonlinear response 

P(s) for signal input rates where the linear part acts like a static system (i .e. the 

'Velocity and acceleration terms are close to zero). By using each feed-forward 

model-based hysteresis compensation strategy outlined in the forthcoming chap

ters, the rate-independent hysteretic response is essentially canceled out leaving 

111 exclusively linear dynamic system output response. 
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·ng that the system's nonlinear hysteresis (H(s)) is purely rate
By assum1 

d t the loop shape variations observed in Figure 2.10 should originate 
jndepen en, 

th linear part (G(s)) of system response. It should therefore be possi-
onlY from e . 

th identified linear model G(s) and filter the output shown in the figure. 
ble to use e 

This would then yield the purely hysteretic component of the response H(s). A 

f ·gnal input to H(s) output for each input signal rate would yield a set of 
plot 0 Sl 

matching loops. 

Using the model found in [16], hysteresis effects which are in parallel with a 

linear dynamic system 2nd order system may be described through the following 

force balance equation: 

ffieJJ · x(t) + Ceff · i;(t) + keff · x(t) = keff · (d · u(t) - h(u(t))) (2.9) 

Here x(t) represents the total response of the system, d is the voltage to 

displacement constant, u is the input voltage and h( u) represents the hysteresis 

displacement, which is a function of u. The rate-independent hysteresis function 

h(u) may be determined by rearranging Equation 2.9. The resulting Equation 2.10 

may be implemented by the block diagram shown in Figure 2.14. 

h(u(t)) = d · u(t) - ffieff · x(t) - Ceff · i;(t) - x(t) 
keff kef f 

(2.10) 

One can determine the shape of the rate-independent hysteresis loop function 

h(u(t)) from experimental data using this conversion function with the voltage 

input signal and the measured output position. This function for assembly B, 

spring DF-2440 and voltage rates 10 100 500 1000 and 1500 V/s is shown in 
' ' ' 

Figure 2.15. 

This plot looks different from previous plots of hysteresis, since its output 

only represents the change from linear output due to hysteresis, instead of the 
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u(t) 

x(t) 

Discrete 
Derivative 

Figure 2.14. Block Diagram for Determining Rate-Independent Hysteresis Func
tion From Voltage Input and Displacement Output Data 

Rate-Independent Hysteresis for Various Input Voltage Rates for Assembly B 
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1. ear output of the system. If the system had a purely linear response, 
total non m 

t f this plot would be a straight line along Oµm. The rate independent 
the outpu o 

. f nction appears to hold very well for 10, 100 and 500 V /s input voltage 
hysteresis u 

Th e seems to be some discrepancy as well as noise in the loop for 1000 and 
rates. er 

1500 V /s input rates. The discrepancies are likely due to linear system modeling 

Unmodeled non-hysteresis related nonlinearities, measurement errors and errors, 
perhaps a certain degree of rate-dependence in the system. The noise present 

results from the differentiation of the experimental displacement data x(t). Any 

noise that may have been present in x(t) would be amplified by a factor of CeJJ/ keff 

for the first differentiation and by m e! f / kef f for the second differentiation. Despite 

the rate-independence discrepancies for 1000 and 1500 V /s , this thesis will assume 

that the system's hysteresis is primarily a rate-independent phenomenon, and that 

the linear part of the response can be described as a 2nd order system. 

It is assumed that the system's output for a 10 V /s input is fully rate

independent and the linear dynamics do not play a role (i(t) ~ x(t) ~ 

0). Using the rate-independent hysteresis function h( u) from the 10 V / s 

test, the output of the system should fulfill the following static position equa-

tion: XLinearFilteredlOV/ s(t) = . d . u(t) - h(u). When XLinearFilter edlOV/ s(t) -

XNoFilterlOV/s(t) = 0, then XNaFilterlOV/s may be used in general to derive the rate

independent hysteresis function without worrying that the linear rate-dependent 

effects need to be filtered . Figure 2.16 plots the function XLinearFilteredlOV/ s(t) -

XNoFilterlOV/s(t) for the major hysteresis loop of assembly B with spring DF-2440 

and 8 cNm set screw torque. 

This figure shows that the position error between the calculated static hys

teresis loop and that derived for 10 V /s is almost non-existent. For this reason, it 

is safe to model system hysteresis with up to 10 V / s hysteresis loop data. 
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Position Error for ~inearFilteredlOV//t)-~oFilterlOV/s(t) 
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Figure 2.16. Difference Between. Hysteresis Curves for Static Major Loop Hystere
sis and Hysteresis for 10 V / s for Assembly B 
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CHAPTER 3 

Bone-Wen Hysteresis Modeling and Compensation 

Bone-Wen Model Formulation 
3.1 

Using the formulation developed by Bouc and Wen, the hysteresis dependency 

between a state variable z and an excitation y is described by the following relation: 

(3.1) 

The parameter A controls the restoring force amplitude, and parameters f3 and 

'Y control the shape of the hysteresis loop. The parameter n controls the transition 

between elastic and plastic responses . Since the piezoelectric actuator is assumed 

to operate as a fully elastic structure, the parameter n can be assumed to be equal 

to one. Therefore Equation 3.1 can be simplified into the following form: 

z = A · iJ - f3 · liJI · z - 1 · iJ · jzj (3.2) 

It is convenient to further modify Equation 3.2 to describe the relationship 

between an input voltage u(t) ap.d an hysteretic component of output position h(t) . 

This equation has the form: 

h = o: · d · u - f3 · iul · h - 1 · u · Jhl (3.3) 

The effective linear relationship between input voltage and system output 

position x is described by d. The value of d may be determined using identification 

algorithm described below. 

The hysteretic state h(t) could then be used for the calculation of output 

J>Osition x(t) based on the input voltage u(t). The Bouc-Wen model assumes that 

hyster · · 
esis Is a phenomena occurring in parallel with linear effects. For example, 
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. h t the piezoelectrically actuated system has a linear component that 
assunung t a 

lik 2nd order mass-spring-damper system, the force balance equation 
behaves ea 

. t m would then have the following form: for this sys e 

m. x + c · ± + k · x = k · (d · u - h) (3.4) 

Here m represents the system's effective mass, c represents effective linear 

visOOUS system damping and k represents effective linear system stiffness. The 

parameter m can be estimated as the sum of all moving part masses plus the 

effective mass of the piezoelectric actuator. The parameters c and k can then be 

estimated using the value of m and the damped natural frequency and damping 

factor observed through step or impulse response tests. 

3.2 Identification Procedure for Bouc-Wen Hysteresis Parameters 

There are several methods available for the identification of parameters o:, {3, 

'Y and d. The input to the system is first cycled so that the system hysteretic 

output position behavior is recorded experimentally. An input profile like the one 

found in Figure 2.3 in Chapter 2 may be used for this purpose. After this step, 

one may try tuning the model parameters by hand until the simulated response 

roughly fits that of the experimental data. The second option is to develop a 

formal identification algorithm for the determination of each parameter. 

There are several formal identification algorithms available for the determina

tion of Bouc-Wen parameters. In [16) , a optimizing parameter estimator was de

veloped based on the theory of invariant imbedding. The publication [18) used an 

efficient adaptive on-line identification method, [19) employed modified quadratic 

programming while [21] utilized a real-coded genetic algorithm for parameter iden

tification. 

Most of these identification methods share the common characteristic that 
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. parameters which minimize a given cost function J. In most cases, 
they determme 

. based cost function was used for identification. Such a cost function 
a quadrat1c-

takes the form: 

or: 

J= 
2=~=0 (xk - xk)2 

N 

(3.5) 

(3.6) 

In these cost functions, x(t) and xk represent measured output data at time 

tor sample k. x(t) or Xk represent the estimated output for a certain a , (3, I and 

d. N represents the total number of sampled data points. Equation 3.6 is used in 

this thesis for the identification of Bouc-Wen parameters. 

The Matlab function "fmincon" is used to identify the Bouc-Wen parameters 

from experimental data. The function "attempts to find the constrained minimum 

of a scalar function of several variables starting at an initial estimate." [46]. It tries 

to locate variables (a, (3, I and d) which minimize the cost function in Equation 

3.6. The function to be minimized and the constraints on the variables must be 

continuous. This function relies on user-provided lower and upper bounds as well 

as initial values for each of the variables. 

In this case, xk is the position output for a given time index k and Xk is the 

estimated value of xk for index k based on the output resulting from Equations 

3.3 and 3.4. 

Using the assumption of linear rate independence for input voltage rates less 

than or equal to 10 V /s (meaning i; ~ x ~ O - see Figure 2.16 from Chapter 2), 

&iuation 3.4 may be simplified into Equation 3. 7 to accelerate the identification 

Process. 
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m. O + c · 0 + k · x = k · (d · u - h) 

x=d·u-h (3.7) 

This form allows the proper identification of parameters a, {3, "( and d with-

ding to separately identify the linear parameters m, c and k. To further 
out nee 

accelerate the process, the experimental outer loop measurement data is used for 

identification. 

The differential equations governing the complete Bouc-Wen hysteresis model 

may be set up in a form which is solvable using the ordinary differential equation 

solver in Matlab. Since the hysteresis compensation algorithm would later need to 

be built in Simulink, the author instead set up the differential equations in block 

diagram form and implemented the differentiation and integration operations using 

the Discrete Derivative and Discrete Time-Integration Simulink blocks. 

The selection of proper lower and upper bounds is very important for the 

correct determination of minimizing Bouc-Wen parameters. Improper selection 

of lower and upper bounds cause the function's search mechanism to find a local 

rather than the global function minimum. The resulting hysteresis loop may not 

sufficiently fit to the experimentally measured loop. For this reason, the user may 

need to repeat the process with varying the lower and upper bound combinations 

until the proper parameters are located. 

3.2.1 Identification of Hysteresis Parameters in Actuators A and B 

The Bouc-Wen model of hysteresis was determined for actuators A and B 

using e · xpenmental data from 1 V / s outer loop hysteresis curves sampled at 1 kHz 

and the identification procedure described above. The selected initial values and 

lower and upper bounds for each Bouc-Wen parameter is listed in Table 3.1. 
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I ·t· 1 Values and Bounds for Identification of Bouc-Wen Parameters 
le 3.1. m ia 

Actuators A and B Initial Value Lower Bound Upper Bound 

1.0 0 5 

(3 0.5 0 5 
0.5 -2 5 

d (µm/V) 12 10 14 

The comparison of experimental output and identified Bouc-Wen model for 

actuator A are shown in the input voltage to output position plot in Figure 3.1. 

Likewise, the time to output position plot for actuator B is shown in the input 

wltage to output position plot in Figure 3.2. The identified parameters and cost 

functions are tabulated in Table 3.2. 
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Hysteresis Actuator A Major Hysteresis Loop I Vis, 
d=13.4195 µm/V, a.=0.3833, ~=0.35542, y=-0.023206 

2 3 4 5 6 7 8 
Voltage Input (V) 

9 IO 

Figure 3.1. Input Voltage to Output Position Plot Comparing Experimental and 
Identified Bouc-Wen Loops for Actuator A 

Both "d . 1 ent1fied model output appear to fit the shape of the experimental hys-

teresis curves well. However, the parameters determined from these models cannot 

be dir 
ectly used for the compensation of hysteresis in the assemblies. Referring 

back to Figure 2 7 . Ch · m apter 2, the assembly condition specifically affects hystere-
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Hysteresis Actuator B Outer Loop 1 V /s, 
d=12.4604 µrn/V, a.=0.77038, 13=1.0767, y=-0.29746 

Figure 3.2. Input Voltage to Output Position Plot Comparing Experimental and 
Identified Bouc-Wen Loops for Actuator B 

Table 3.2. Identified Bouc-Wen Parameters for Actuators A and B 
Actuator A B 

a 0.38 0.77 
(3 0.36 1.08 

' -0.02 -0.30 
d (µm) 13.42 12.46 

J (RMS) 0.485 0.451 

sis shape and output position at 10 V. One option for applying these parameters 

to the assembly is to maintain the values of a, (3 and r from the actuator and 

then re-identify the parameter d using the major hysteresis loop data from the 

assembly. 

The comparison of experimental output and identified Bouc-Wen model for 

assembly A using the parameters from actuator A are shown in the input voltage to 

output position plot in Figure 3.3. Likewise, the input voltage to output position 

plot for assembly B using the parameters from actuator B is shown in Figure 3.4. 

The identified values for the voltage to displacement constant d for assemblies 
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Hysteresis Actuator A Sp. DF-2440 Inner Loop 1 V/s, 
d== l 0.8719 m/V, a.==0.38, ~==0.36, y==-0.02 
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Figure 3.3. Input Voltage to Output Position Plot Comparing Experimental and 
Identified Bouc-Wen Loops for Assembly A Using Actuator A Parameters 

Hysteresis Actuator B Sp. DF-2440, Outer Loop 1 V/s, 
d==l 0.9086 m/V, a.==O. 77, ~==1.08, y==-0.3 

.... : ........... ... : . . 

2 3 4 5 6 7 8 
Voltage Input (V) 

9 10 

r· 
ldJgur~ 3.4. Input Voltage to Output Position Plot Comparing Experimental and 

entified Bo n r 1 . uc-vven oops for Assembly B Usmg Actuator B Parameters 
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I 3 3 Identified Bouc-Wen Parameters for Assemblies A and B 
Tabe · · Assembly A B 

a 1.79 1.34 
(3 1.29 1.29 

' 
-0.21 -0.16 

d (µm) 10.51 10.84 
J (RMS) 0.336 0.320 

A and Bare 10.87 V/µm and 10.91 V/µm with the cost function values of 0.705 

RMS and 0.414 RMS respectfully. These models do not fully describe the respec

tive assembly hysteresis behaviors. This is a particular problem with assembly A, 

88 evidenced by its significantly larger RMS value compared to actuator A. Figure 

3.3 also shows that experimental hysteresis curve is much wider than the model's 

hysteresis. However, a compensation algorithm using the identified parameters 

may still be effective in at least reducing the hysteresis effect in the assemblies. 

This will be investigated later in this chapter. 

3.2.2 Identification of Hysteresis Parameters in Assemblies A and B 

The identification procedure may also be used to determine all four Bouc-

Wen parameters from the assembly data directly. The comparison of experimental 

output and identified Bouc-Wen model for assembly A are shown in the input 

voltage to output position plot in Figure 3.5. Likewise, the input voltage to output 

position plot for assembly B is shown in Figure 3.6. The identified parameters and 

cost functions are tabulated in Table 3.3. 

The identified hysteresis loops initially appears to fit fairly well to the mea

sured data. The RMS cost function value is also quite low for both models . How

ever, the Bouc-Wen model fails to model the ends of the hysteresis curve. As 

explained in Chapter 2, these "flat" parts of the experimental hysteresis curves are 

likely due to static frictional forces. The Bouc-Wen model does not have parame

ters related to static friction and for this reason it is not particularly suitable for 
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Hysteresis Actuator A Sp. DF-2440, Outer Loop 1 Vis, 
d=l0.5135 µm/V, a,=1.7899, P=l.2927, y=0.21444 

2 3 4 5 6 7 8 
Voltage Input (V) 

9 10 

Figure 3.5. Input Voltage to Output Position Plot Comparing Experimental and 
Identified Bouc-Wen Loops for Assembly A 

Hysteresis Actuator B Sp. DF-2440, Outer Loop 1 V/s, 
d=l0.8373 µm/V, a=l.3427, p=l.2916, y=-0.16127 

2 3 4 5 6 7 8 
Voltage Input (V) 

9 10 

F' ~~ 3.6. Input Voltage to Output Position Plot Comparing Experimental and 
n ed Bouc-Wen Loops for Assembly B 
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deling systems exhibiting such dominant behavior. 
accurately mo 

.d t"fication routine tries to determine Bouc-Wen parameters which 
The 1 en i 

b t fit to the given dataset. The resulting models have a hysteresis curve 
1113kea es 

rs to curve upward between 10 to 8 or 7 volt input. This curved shape 
which appea 

ex>uld later lead to control signal saturation issues. The desired (before saturation) 

feed-forward control signal output may be greater than 10 V when the reference 

input voltage decreases from 10 V. This will be examined in more detail later in 

The identified model also appears to exhibit unusual behavior near 0 and near 

lO y input just before the curving begins at either end of the hysteresis loop. At 

these points, it appears that the simulation enters a short region of linearity. This 

is most likely a numerical integration solver error resulting from the discontinuous 

voltage signal where the input voltage profile immediately switches from a positive 

to a negative slope. 

3.3 Hysteresis Compensation Method and Simulation Using Bouc
Wen Model 

3.3.1 Bouc-Wen Compensation Method 

Once the Bouc-Wen mode.ling parameters a, /] and I have been determined, 

these parameters may be used directly for the compensation of hysteresis. Since the 

Bouc-Wen model assumes that the total hysteretic nonlinear system response has 

a rate-independent hysteresis component which runs in parallel with linear system 

dynamics, a Bouc-Wen hysteresis observer may be implemented to predict this 

behavior based on the identified modeling parameters. This predicted hysteresis 

may be used directly to calculate a compensating control voltage. 

The feed-forward Bouc-Wen parallel hysteresis observer compensation has the 

block diagram form shown in Figure 3. 7. The term Uref refers to the reference 
10ltag . 

e mput term corresponding to a reference position Xref = Uref · d that is to 
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h~ ( ) refers to the Bouc-Wen calculated hysteresis output, 1/ d is the 
tracked, Ure! 

h "dentified input voltage to output position constant. The term u11 
iowrse of t e i 

h '-"erence feed-forward input voltage needed to track Xref · 
ii then t e re11 

Bouc-Wen 
Hyst. Observer 

Figure 3.7. Feed-Forward Bouc-Wen Parallel Hysteresis Observer Compensation 

Block Diagram 

Based on Equation 3.3, this feed-forward compensator may also be imple

mented digitally with the following set of equations using t:.t as the sampling rate: 

h[k] h[k - 1] + f:.t ·(a· d · UreJ[k - 1] - /3 · lureJ[k - l]I · h[k - 1] 

- 1 · UreJ[k - 1] · lh[k - l]I) 
h[k] 

UJJ = Uref + d 

Substituting UJJ for u in Equation 3.4 gives: 

m · X + C • X + k · X = k · (d · Uref - h + h) 

(3.8) 

(3.9) 

(3.10) 

Assuming that h ~ h, the hysteresis terms should cancel each other out , and 

then the system should behave like a linear second order system. 

3.3.2 Simulated Parallel Bouc-Wen Hysteresis Compensation 

The Bouc-Wen parameters determined in Chapter 3 have been used for the 

compensation of parallel hysteresis. Two different types of parameter sets were 

Pl'OPOSed for the assembly: one where the parameters a, f3 and 'Y where identified 
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I ded actuator hysteresis response and d was based on the assem
the un oa 

h ther where the parameters a, {J, r and d were identified from the 
and t e o 

bly's hysteresis curves directly. 

The simulations are based on sending a feed-forward signal into a Bouc-Wen 

el whose parameters a, fJ, r and d match that of the feed-forward control 

rithm. The resulting simulation output represents an idealized case which 

cloes not necessarily directly reflect the actual hysteresis reduction when the feed-

ulations is useful in understanding the reference to feed-forward input voltage 

ie)ationship as well as for comparing the system output with parameters based on 

the actuator with those from the assembly. 

Based on Figure 3.3, the parameters for assembly A based on the unloaded 

ICtuator are a = 0.38, fJ = 0.36, r = -0.02 and d = 10.87 µm. Figure 3.8 

illustrates the reference voltage input ( Uref), and the feed-forward voltages before 

(u11 no sat.) and after 0 to 10 V saturation ( u ff sat. 0-10 V) for the given reference 

input signal. The corresponding simulated reference input voltage and position 

output are shown in Figure 3.9. The major loop area for the uncompensated system 

is 205.11 µm · V. On the other hand, the major loop area for the compensated 

system is 13.79 µm · V. This suggests a 93.28% reduction in major hysteresis loop 

area. The displacement output for both cases for 10 V input is 93.52 µm. 

The output of the Bouc-Wen controller is diminished by the saturation. All 

computed feed-forward inputs which fall below O volts are held at 0 V. All feed

forward inputs above 10 volts are held at 10 V. The computed voltage before 

saturation does not appear to go above 11 V or below -1 V. This seems to have 

no effect on the calculated maximum output of the actuator, however the output 

P<lsition does t no return to zero when the reference output falls below 1 volt refer-
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( lower left corner of Figure 3.9) . This control algorithm is therefore 
ce input see 

. . the o to 1 V reference voltage input range. The controller could 
JJOt effective m 

. ·ficantly reduce hysteresis. )loWever s1glll 

Assembly A Simulation Comparison ofReference lOV/s Input Voltage to Parallel 
Bouc-Wen Feed-Foiward Input Voltage, d=l 0.87 µ m/V, a.=0.38, ~=0. 36, y=-0.02 

~ 

12 
11 
IO 
9 .... 

8 ····· 

2 3 4 5 14 

Figure 3.8. Assembly A Simulated 10 V /s Reference Input Voltage and Bouc
Wen Hysteresis Compensated Voltage for a = 0.38, (3 = 0.36, 'Y = -0.02 and 
d= 10.87µm 

Based on Figure 3.4, the parameters for assembly B based on the unloaded 

actuator are a = 0.77, (3 = 1..08, 'Y = -0.3 and d = 10.91 µm. Figure 3.10, 

illustrates the reference voltage input ( Ure f), and the feed-forward voltages before 

(u11 no sat.) and after 0 to 10 V saturation (uJJ sat. 0-10 V) . The corresponding 

simulated reference input voltage and position output are shown in Figure 3.11. 

The major loop area for the uncompensated system is 181.23 µm · V, while the 

displacement output at 10 Vis 100.9 µm. On the other hand, the major loop area 

for the compensated system is 13. 73 µm . V , while the displacement output at 10 

Vis 98.33 µm. The control could reduce hysteresis by 92.423 

Like with actuator A, the output of the Bouc-Wen controller is diminished 

by the saturat · Th . ion. e voltage agam does not appear to go beyond 1 V above or 
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bly A Simulation Comparison of 1 OV/s Uncompensated Experimental 
Assem C dP . . In Position and Parallel Bouc-Wen ompensate os1tion to put 

Reference Voltage, d=l 0.87 µ m/V, a.=0.38, 13=0.36, y=-0.02 

3 4 5 6 7 
Input Reference Voltage (V) 

10 

Figure 3.9. Assembly A Simulated 10 V /s. Reference Voltage Input to Position 
Output Comparison for Bouc-Wen Hysteresis Compensated Voltage for a = 0.38, 
{J = 0.36, I = -0.02 and d = 10.87 µm 

below saturation. The position output also does not return to 0 µm. The controller 

could however significantly reduce hysteresis. 

Referring to Figure 3.5, the parameters for assembly A based on identifying 

the ~mbly directly are a = 1. 79, f3 = 1.29, I = -0.21 and d = 10.51 µm. 

Figure 3.12, illustrates the reference voltage input (ureJ), and the feed-forward 

10ltages before (uff no sat.) and after 0 to 10 V saturation (u!f sat. 0-10 V). The 

corresponding simulated reference input voltage and position output are shown in 

Figure 3.13. The major loop area for the uncompensated system is 205.11 µm · V, 

while the displacement for 10 V input is 93.52 µm. On the other hand, the major 

loop area for the compensated system is 34.30 µm . V, while the displacement for 

lO V input is 87.68 µm. The compensated system achieves an 83.28% reduction 

s· ·1 
um ar to the cases where the Bouc-Wen parameters are based on the actu-

, the computed feed-forward signal is also restricted by saturation. However, 
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Time (sec) 

Figure 3.10. Assembly B Simulated 10 V /s Reference Input Voltage and Bouc
Wen Hysteresis Compensated Voltage for a = 0.77, /3 = 1.08, 'Y = -0.3 and 

d= 10.91µm 
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Assembly B Simulation Comparison of 1 OV /s Uncompensated Experimental 
Position and Parallel Bouc-Wen Compensated Position to Input 

Reference Voltage, 10.91 µ m/V, a.=0.77, p=l.08, y=-0.3 
120 

100 

-20 
0 2 

••••••• J •••••• J •••.• I• ••••l• 
3 4 5 6 7 
Input Reference Voltage (V) 

8 9 10 

,. 
OulgUre 3.11. Assembly B Simulated 10 V /s Reference Voltage Input to Position 

tput Co · /J == mpanson for Bouc-Wen Hysteresis Compensated Voltage for a = 0. 77, 
1.0S, I = -0.3 and d = 10.9lµm 
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. the voltage level goes almost 2 volts beyond the saturation limits . 
ill tbi.S case, 
This leads to some unusual behavior observed in the voltage input to position out-

1 The controlled output does not reach its maximum output at 10 volt 
put pot. 

·nput Rather the hysteresis loops suddenly curves upward soon after 
reference 1 · ' 

decr~ing from the loop maximum voltage input. The position output also never 

goes back down to zero. Instead, the position output is at almost 20 µm for zero 

. t When the voltage input increases again, the position loops back downward 
mpu. 

before increasing again. This behavior can also be partially explained by Figure 

,3.5. The Bouc-Wen model does not match the hysteresis behavior well at either 

end of the hysteresis loop, and instead has a curved shape. The curved shape in the 

controlled output is roughly analogous to the curved shape found in the controlled 

Assembly A Simulation Comparison of Reference 1 OV/s Input Voltage to Parallel 
Bouc-Wen Feed-Forward Input Voltage, d=l 0.51 µ m/V, a.=l. 79, j3=1.29, y=-0.21 
14 ,---.----,~,----,~--.----,~--.----,~--.----,,-;===========;i 

13 
12 
11 
10 

> 9 
';;' 8 
~ 7 . 
~ 6 
> 5 

} j 
2 
1 
0 

-1 
-~:---:----1~~3~~4~~5~~6~~7-----~8~~9~~10-----~1 Ll ~l L2~1L3__Jl4 

Time (sec) 

p· 
igure 3.12. Assembly A Simulated 10 V /s Reference Input Voltage and Bouc-Wen 

Hysteresis Compensated Voltage for a= 1.79, (3 = 1.29, I= -0.21 and d = 10.51 
µm 

In Figure 3.6, the parameters for assembly B based on identifying the assembly 

directly are a = 1.34, (3 = 1.29, I = -0.16 and d = 10.84 µm. Figure 3.14, 

illustrates th £ . ere erence voltage mput (ureJ), and the feed-forward voltages before 
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bl A Simulation Comparison of 1 OV /s Uncompensated Experimental Position 
Assem y and Parallel Bouc-Wen Compensated Position to Input 

Reference Voltage, d=l 0.51 µ m/V, a.=1.79, ~=1.29, y=-0.21 

---Uref 

100 _uff 

~ 80 

2 10 

e 3.13. Assembly A Simulated 10 V /s Reference Voltage Input to Position 
tput Comparison for Bouc-Wen Hysteresis Compensated Voltage for a= 1.79, 

= 1.29, 'Y = -0.21 and d = 10.51 µm 

Ulf no sat.) and after 0 to 10 V saturation (uff sat. 0-10 V) . The corresponding 

limulated reference input voltage and position output are shown in Figure 3.15. 

The major loop area for the uncompensated system is 181.23 µm · V, while the 

displacement output at 10 Vis 100.9 µm. On the other hand, the major loop area 

i>r the compensated system is 18.99 µm · V, while the displacement output at 10 

Vis 95.55 µm. The reduction in major hysteresis. loop area is 89.523. 

As with the directly identified assembly A, the computed control signal also 

exceeds the saturation limits by almost two volts. This, coupled with the rounded 

hysteresis shape at either end of 3.6, leads to the looped shapes in the controlled 

Although the feed-forward simulation of both model types appear to be able 

$o . 'fi 
Slgm cantly reduce the level of assembly hysteresis, the author prefers the re-

_.ts from the actuator model-based parameters. The actuator-based controlled 

output appears to reach roughly maximum output at 10 volts. Furthermore, the 

Qotput · · 
position for this case at zero volts appears to be closer to zero than that 
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Assembly B Simulation Comparison of Reference 1 OV/s Input Voltage to Parallel 
Bouc-Wen Feed-Forward Input Voltage, d=l 0.84 µ m/V, a.=l .34, ~=1.29, y=-0.16 
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e 3.14. Assembly B Simulated 10 V /s Reference Input Voltage and Bouc-Wen 
ysteresis Compensated Voltage for a= 1.34, /3 = 1.29, 'Y = -0.16 and d = 10.84 

Assembly B Simulation Comparison of 1 OV /s Uncompensated Experimental 
Position and Parallel Bouc-Wen Compensated Position to Input 

Reference Voltage, d=I0.84 µ m/V, a.=1.34, p=l.29, y=-0.16 

3 4 5 6 7 8 9 
Input Reference Voltage (V) 

10 

e 3.15. Assembly B Simulated 10 V /s Reference Voltage Input to Position 
_Put Comparison for Bouc-Wen Hysteresis Compensated Voltage for a = 1.34, 
-1.29, 'Y = -0.16 and d = 10.84 µm 
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bl -based controlled output. For these reasons, the following exper
the assem Y 

ied out only using the feed-forward controller based on actuator 
ts were carr 

·mental Parallel Bouc-Wen Hysteresis Compensation for 0 Exper1 
to 10 V Range 

The actuator parameter-based hysteresis compensator was tested on the ex-

. ental setup using profiles similar to that shown in Figure 2.3 in Chapter 2, 

with slopes of 10, 100, 500, 1000 and 1500 V /s . The resulting plots of reference 

t voltage to output position for the uncompensated and compensated systems 

shown correspondingly in Figures 3.16, 3.17, 3.18, 3.19, 3.20. The output dis

ent at 10 V reference input and the area of the major hysteresis loop for 

uncompensated and compensated systems are detailed in Table 3.4. 

The experimental feed-forward control results using the Bouc-Wen compen

·on model based on the model of actuator A appear to reduce the assembly's 

of hysteresis between voltage input to position output. The resulting input 

erally appear to have reductions in hysteretic area. This relationship seems to 

disappear at 1000 and 1500 V /s ; where the controlled system's hysteretic area at 

000 V /s approaches that of the uncompensated system and at 1500 V / s it ap

to be slightly larger. The average reduction for all input voltages is 29.26%. 

controller does not completely eliminate hysteretic effects since the Bouc-Wen 

DIOdel itself does not completely encompass the entire hysteresis loop (Figure 3.3). 

er, there appears to be a general improvement in linearizing the system's 

The next chapter will investigate the Classical Preisach modeling and feed

d hysteresis compensation technique. 
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bly A Comparison of 1 OV/s Uncompensated Experimental Position and 
:a::~~l Bouc-Wen Feed-Forward Compensated Position to Input Reference Voltage, 

d=1087 µ m/V, a =0.38, f:l=0.36, y=-0.02 

---uref 

80 _uff sat. 0-10 V 

! 60 . ........... • ... ...... .... • ..... . 

10 

Figure 3.16. Assembly A 10 V /s Experiment~ Reference Voltage Input to Position 
Output Comparison for Bouc-Wen Hysteresis Compensated Voltage for a = 1. 79, 
fJ = 1.29, I = 0.21 and d = 10.51 µm 
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Assembly A Comparison ofl OOV/s Uncompensated Experimental Position and 
Parallel Bouc-Wen Feed-Forward Compensated Position to Input Reference Voltage, 

d=l 0.87 µ m/V, a =0.38, f:l =0.36, y=-0.02 

---uref 

-uff sat. 0-10 V ·· 
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~ 3.17. Assembly A 100 V /s Experimental Reference Voltage Input to Po
- Output Comparison for Bouc-Wen Hysteresis Compensated Voltage for 
-1.79, /3 = 1.29, "f = 0.21 and d = 10.51 µm 
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Assembly A Comparison of SOOV/s Uncompensat_ed Experimental Position and 
Para11el Bouc-Wen Feed-Forward Compensated Pos1tJon to Input Reference Voltage, 

d=l 0 .87 µ m/V, a.=0.38, j3=0.36, y=-0.02 

Figure 3.18. Assembly A 500 V /s Experimental Reference Voltage Input to Po
sition Output Comparison for Bouc-Wen Hysteresis Compensated Voltage for 
a= 1.79, {J = 1.29, 'Y = 0.21 and d = 10.51 µm 

Assembly A Comparison of I OOOV/s Uncompensated Experimental Position and 
Para11el Bouc-Wen Feed-Forward Compensated Position to Input Reference Voltage, 

d=l 0 .87 µ m/V, a.=0 .38, j3=0.36, y=-0.02 

2 3 4 5 6 7 8 9 10 
Input Reference Position (V) 

p· 
P, ~e 3.19. Assembly A 1000 V /s Experimental Reference Voltage Input to 

osition Output Comparison for Bouc-Wen Hysteresis Compensated Voltage for 
Q == 1.79, f3 = 1.29, 'Y = 0.21 and d = 10.51 µm 
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bly A Comparison of J 500V /s Uncompensated Experimental Position and 
:s::l~I Bouc-Wen Feed-Forward Compensated Position to Input Reference Voltage, 

d=l 0.87 µ m/V, a.=0.38, ~=0.36, y=-0.02 

---Uref 

100 _uff sat. 0-JOV 

j 80 

10 

Figure 3.20. Assembly A 1500 V /s Experimental Reference Voltage Input to Posi
tion Output Comparison Bouc-Wen Hysteresis Compensated Voltage for a= 1.79, 
JJ = 1.29, / = 0.21 and d = 10.51 µm 

'Thble 3.4. Assembly A Experimental Displacement at 10 V Reference Input 
Ind Major Loop Area for Uncompensated (Unc.) and Bouc-Wen Compensated 
(Comp.) Systems 

[ Input Rate (V/s) I 10 I 100 I 500 I 1000 I 1500 I 
Unc. Pos. at 10 V (µm) 93.52 97.14 96.76 97.22 99.25 
Unc. Loop Area (µm . V) 205.11 174.11 185.68 178.92 139.07 

Comp. Pos. at 10 V (µm) 93.53 95.85 95.61 95.68 100.10 
Comp. Loop Area (µm . V) 96.97 83.54 101.34 135.06 178.53 
0 Red. in Maj. Loop Area 52. 72 52.02 45.42 24.51 -28.37 
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CHAPTER 4 

Classical Preisach Hysteresis Modeling and Compensation 

Th Preisach Hysteresis Model 
'-1 ;omparison of Classical and Generalized Preisach Methods 
4.1.1 

This chapter concentrates on the Classical Preisach method for modeling 

and feed-forward compensation of hysteresis. The author recognizes two types 

of Preisach-based methods for the rate-independent modeling of hysteresis: Clas

sical and Generalized Preisach modeling techniques. Both methods differ in their 

complexity, their assumptions concerning hysteretic system behavior and the types 

of input that may be used. The Classical Preisach technique however assumes that 

the hysteresis loops fulfill the congruency property. Figure 4.1 illustrates piezo

tric hysteresis effect with gradually decreasing voltage input maximum values. 

The changes in displacement output ~1 (for the major outer ascending curve) and 

~2 (for the minor inner ascending curve) are compared for the a given voltage 

dnput increase from u1 to u2 . When assuming congruent hysteresis loops, ~1 and 

In practice, this is not the case for piezoelectric actuator 

The primary objective in using the Classical Preisach method is to avoid 

using inputs which would cause displacement output along a minor inner ascending 

curve. This means that the input should be cycled in such a way that a decreasing 

'Oltage profile should always "go back down to zero" before increasing again. The 

Generalized Preisach model does not require this condition and can be used for any 

arbitrary input profile. The Classical Preisach method uses measured input/output 

data. from the major ascending loop and a set of first order descending curves. 

The Generalized Preisach method uses this data, and also measured data from 

nd order curves ascending curves attached to the first order descending curves. 
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Figure 4.1. Hysteresis Curves Illustrating Congruency Property (graphic modified 

from [1]) 

Figure 4.2 illustrates the concepts of major and minor loops as well as first order 

descending curves and second order ascending curves. 

Classical Preisach Model General Form for Piezoelectric Actua
tors 

The Preisach model has the following form for the voltage-displacement char

acteristics of piezoelectric actuators: 

x(t) = f" r µ(a, f3haf3 [u(t)] dad{3 
Ja'?_/3 

(4.1) 

The term x(t) describes the output response of the piezoelectric actuator; a 

and f3 correspond accordingly to up and down voltage input threshold switching 

value parameters; µ(a , {3) is a weighting function for a given a and {3; "fa/3 [u(t)] 

represents a hysteresis operator whose value is dependent on input u(t). 
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First Order 
Major 

Hysteresis 
Loop 

Ascending Curve 

w y «' 
input voltage u(t) 

Figure 4.2. Hysteresis Curves Illustrating Various Loop Properties (graphic mod
ified from [2]) 

The block diagram equivalent of the Preisach model can be interpreted as a 

wltage signal inputted into a set of parallel connected two-position relays (repre-

aenting 'Ya13[u(t)]) in series with gain factors (representing µ(a,{3)). The output 

of these gain factors are recombined into a summer, whose output represents the 

piezoelectric actuator position output x(t). A relay is activated (up position) when 

the input voltage is greater than or equal to its given a voltage parameter. The 

relay is then deactivated (down position) when the input voltage is less than or 

equal to its given {3 voltage parameter. A block diagram of this concept is depicted 

in Figure 4.3. 

Since piezoelectric materials are polarized, only an input voltage in the di

rection of polarization will cause an expansion of the material. This property 

elfectivel r . Y im1ts the input voltage to the 0 to Umax range and the output to the 0 

to Zmoz range. When applying this characteristic to the Preisach block diagram, 
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Figure 4.3. Preisach Model as Block Diagram 

the relay's state can be mathematically interpreted as having a gain factor of 1 in 

the up position and a gain factor of 0 in the down position. 

The state of each relay may also be described by a so-called Preisach triangle 

(see Figure 4.4). This is an a/ f3 plot with triangle T0 representing all relays. When 

the voltage is increased from 0 to u(t) = a' (Figure 4.4, left), the shaded region 

s+ represents the relays which are activated and the area s- represents the relays 

i:which remain deactivated. The. region T1 (Figure 4.4, right) represents the relays 

which are deactivated by switching the input voltage direction from a' down to (3'. 

Using this understanding of Preisach modeling, the output x(t) is dependent 

the sum of the gain factors found in region s+. Going back to Equation 4.1, 

integral can be rearranged to cover the output over s+. In other words, the 

ation only covers those weighting factors where the output of the /a.f3 [u(t)] 

~ equal one. The other weighting factors are ignored, since they are then 

iplied by zero. Equation 4.1 can then be rewritten into Equation 4.2. 
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a 

s-
a'== u(t) a=~ 

a' 

~·= u(t) 

F. 4 4 Preisach Triangle for Voltage Input Increase from 0 to cl (left) and lgUl'e .. 
Voltage Input Decrease from ci to /3' 

x(t) = !~ r µ(a, /3)dad/3 
J s+(t) 

( 4.2) 

4.1.3 Weighting Function Determination and the Classical Preisach 
Model 

The next step in applying this model is the identification of weighting functions 

µ(a, fl) for given values of a and {3. When applying the Classical Preisach modeling 

technique, these weighting functions are dependent on position data from the major 

increasing hysteresis loop for increasing voltage input and from a set first order 

reversal curves attached to the major hysteresis loop for decreasing voltage input. 

An example of an input profile for obtaining the major ascending loop and the set 

of first order reversal curves is found in Figure 2.3. Since the Classical Preisach 

model assumes that the input voltage is always cycled between zero and a given 

voltage maximum, the weighting function for increasing voltage is determined from 

the major ascending loop displacement where f3 = 0, i.e. µ(a = u(t), 0). On the 

other hand, the weighting function for decreasing voltage is attained from a first 

order reversal curve starting at u(t) = ULocalMax back down to u(t) = 0, i.e. 
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f3 = u(t)). The function X(a', {3') is derived in Equation 4.3 in 
p(a::::: ULocalMaxi 

d t mine the proper weighting function from experimental data. This 
order to e er 

. . lid for a given a' and /3' and when the input voltage is decreasing. 
{unction is va 

X(a', /3') = Xo:' - Xo:'/3' (4.3) 

X(a',/3') represents the change in position as the input u(t) decreases from a' 

to {J'. Xa' is the position output at the top of the first order reversal curve branch 

(maximum position output for given reversal curve), and Xa' /3' is the output at 

wltage /3' along the same reversal curve. This process is essentially equivalent to 

what one sees in Figure 4.4. Here (left side), voltage u(t) first increased to a' , 

which leads to an output Xo:'. The voltage input subsequently decreases (right 

side) to u(t) = {3', giving a positional output of Xo:'/3'. The function X (a' , {3') is 

therefore equivalent to the total output which was turned off by decreasing voltage 

from a' to {3', or the sum of weighting function outputs found in T1 (a' , /3'). Using 

this fact, X(a' , {3') may be redefined using Equation 4.2 as: 

X(a', f3') =Jr { µ(a·, f3)dadf3 
. J T1 (a' ,/3') 

(4.4) 

The weighting function for a given a' and /3' within s+ (therefore reciprocal 

of above) could then be determined through double partial differentiation: 

(o/ /3') = _ 82 X(a', /3') 
µ ' 8a' 8{3' 

(4.5) 

This calculation, however, is unnecessary. Instead, the actual output of 

X(<i, !3') may be used directly for determining the position output x( t) for de

ICending voltage input. Equation 4.2 may be modified to account for discrete 

10ltage direction changes for software implementation [2]. For increasing voltage 

put u(t), the output of the modified Preisach model has the general form: 
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N 

x(t) = L: [X(a~ , /3~_ 1 ) - X(a~, /3~)] + X(u(t), /3~) (4.6) 

k=l 
And for decreasing voltage input u(t), the output of the Preisach model has 

N-l 

x(t) =I: [X(a~ , /]~_ 1 ) - X(a~, /3~)] + [X(a~, /3~_ 1 ) - X(a~, u(t))] (4.7) 
k=l 

For a given number of voltage change directions k, X(a~, /3~_ 1 ) represents the 

'tion change for a voltage increase from f3k-l to ak, X(a~, /3~) represents the 

'tion change from a~ down to /3~, X( u(t), /3~) is the position output change for 

current u(t) after increasing voltage from /3~ and X(a~, u(t)) represents the 

'tion output change for the current u(t) after decreasing from/)~ . 

1.4 Preisach Data Point Mesh and Interpolation 

The practical implementation of the Preisach Model comprises a discrete mesh 

in the form of a lookup table) of a and /3 values with corresponding X (a' , /3'). A 

~of this mesh on the Preisach Triangle can be found in Figure 4.5 for discrete 

a values of 6 = 1 V, and discrete . f3 values for each a of 6 = 1 V. 

A given u(t) usually will not be found in the defined a//3 mesh. For example, 

the given voltage input may be represented by a 1 , /31 or a 2 , /32 . In these cases, 

811 interpolation is necessary to determine the given output from the neighboring 

lllesh points. As seen in Figure 4.6, the mesh points are denoted as a 0 , /30 , a 1 , /31 , 

fl2,fJ.J and 0::3, /J3 for a square and a 0 , /30 , a 2 , /32 and a 3 , /33 for a triangle. 

The output X (a', /3') when located within a rectangular-shaped mesh can be 

calculated by: 
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Preisach Triangle of CJ. IP Meshpoints for dCJ.=1 V and dp=l V 

Figure 4.5. Discretization of the Preisach Triangle 

a a 
«z,ll2 «3 JJ3 «i,ll2 «3,Jl3 , • • • • , 

, a 
a 

• • • 
«o,llo «1,ll1 «o,llo 

Interpolated Output for Location Within Square or Triangle Mesh 
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X(low) 

X(hi) 

X(a', (3') (4.8) 

The output X (a', {3') when located within a triangular-shaped mesh can be 

X(left) 

X(right) 

(3( left) 

fJ(right) 

X(a', {31) 

X(ao, f3o) _ (X(a0, {30 ) - X(a2 , f32)) · (ao - a') 
ao - a2 

) (X(ao , f3o) - X(a3,,83)) · (ao - a') 
X(ao,,Bo - -'------------

ao - a3 
(a' - ao) · (,82 - ,Bo) +,Bo 

a2 - ao 
(a' - ao) · (,83 - ,Bo) +,Bo 

a3 - ao 
. ) ( X (right) - X (left)) · (,B (right) - {3') 

X (right - ,B (right) - f3 (left) ( 4.9) 

4.2 Classical Preisach Model of Hysteresis for the Active Clamping 
Systems 

Two separate meshes have ·been used for the modeling of rate-independent 

hysteresis in the 0 to 10 volt range. The first mesh assumes a values ranging from 

0 to 10 volts in 1 volt increments ( da = 1). The ,B values then range from each 

Q to 0 volts in 1 volt decrements ( d,B = 1). The second mesh is similar to the 

first except that the f3 values range from each a to O volts in 0.1 volt decrements 

Figure 4.7 shows the Preisach triangle for input voltages of 0 to 10 V with da = 

1 and d{J = 1 and each point representing a discrete a/ ,B pair. The corresponding 

displacement points for each a/ {3 location for actuator B with 10 V /s input voltage 

rate is shown in Figure 4.8. 
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Preisach Triangle of ex. and P Switching Voltages for dcx.=l V and dp=l V 
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Figure 4. 7. Preisach Triangle for da = 1 V and d(J = 1 V 
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~e 4.8. Assembly B 10 V /s Preisach Output Points for da = 1 V and d(J = 1 

61 



9 hows the Preisach triangle for input voltages of 0 to 10 V with 
Figure 4. s 

::::: 1 and d{J = 0.1 and each point representing a discrete a/ (3 pair. The 

d. d'splacement points for each a/ (3 location for actuator B with 10 
pon mg 1 

. ltage rate is shown in Figure 4.10. 
/s 1Dput vo 

Preisach Triangle of a and ~ Switching Voltages for da.=l V and d~=O. l V 
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11 

................. 

~ M.. __ .._...._,._,.._,._,._.._,_._ 
tS 4•+.-------
3,~----2'..,_ __ 

0 2 3 4 5 6 7 8 9 10 11 12 
~ (V) 

Figure 4.9. Preisach Triangle for da = 1 V and d(J = 0.1 V 

In order to prove the viability of these models, it is helpful to compare their 

· ulated properties to the original modeled experimental data. Figure 4.11 shows 

do: = 1 V and d(J = 1 V an. input voltage / output position plot to compare 

· ulated and experimental hysteresis loops. The root mean square for the error 

n simulation and experiment has also been calculated using the cost function 

d in Equation 3.6 found in Chapter 3. The result of this calculation is 1.0827 

The same analysis has been undertaken for da = 1 V and d(J = 0.1 V . 

e 4.12 shows this same data on a input voltage / output position plot to 

pare simulated and experimental hysteresis loops. The RMS error between 

experimental data and the simulation is 1.0162 RMS. 

For consistency, assembly A has also been modeled with da 1 V and 
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Figure4.10. Assembly B 10 V /s Preisach Output Points for da = 1 V and d/3 = 0.1 
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Plot of Experimental and Simulated Results for 
Assembly B, 10 V/s dcx.=l V dp=l V 
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. ut 4.ll. Hysteresis Loop Output for Assembly B lOV /s Experimental and 
ated Data with da = 1 V and d/3 = 1 V 
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Plot of Experimental and Simulated Results 
for Assembly B, 10 V/s da.=l V d~=O.l V 

---Experimental 
-simulated da.=l d~=0.1 

2 3 4 5 6 7 8 
Input Voltage (V) 

9 10 

e 4.12. Hysteresis Loop Output for Assembly B lOV /s Experimental and 
ulated Data with da = 1 V and d/3 = 0.1 V 

= 0.1 V. Figure 4.13 shows an input voltage / output position plot to com

simulated and experimental hysteresis loops. The RMS error between the 

·mental data and the simulation is 3.2762 RMS. 

Comparing the modeling results for assemblies A and B, it appears that the 

el for B conforms better with its experimental ·output. The Preisach modeling 

ure used in this thesis is defined so that the output position at zero volts on 

zeroth order ascending curve is the defined minimum position output, even for 

first order descending curves. The assembly A's experimental output, as shown 

Figure 4.13, tends to shift downward more dramatically for each consecutive 

ing amplitude triangular voltage input. However, the model keeps a floor 

the zeroth order output at O volts. Any experimental first order descending 

ut which falls below the zero mark is automatically recorded as zero output 

the Preisach model. This also explains the relatively large RMS value when 

Pared to the Bouc-Wen model RMS values in Chapter 3. The Bouc-Wen 
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Plot of Experimental and Simulated Results for 
Assembly A, 10 V/s da.=l V dp=O.l V 
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Figure 4.13. Hysteresis Loop Output for Assembly A lOV /s Experimental and 
Simulated Data with da = 1 V and d/3 = 0.1 V 

technique focused on modeling the outer loop hysteresis, and the error was based 

on this result. On the other hand, the Preisach model is based on not only the 

outer loop, but a set of first order descending curves off of the ascending branch. 

This larger amount of data left more room for "error" . However, by looking at both 

input/output plots, it appears that the Preisach .model is sufficient in modeling 

4.3 Classical Preisach Model of Hysteresis for Sinusoidal Input Signals 
with Offset 

The X-Filtered LMS algorithm used for workpiece noise and vibration control 

~ically sends a sinusoidal controlling signal with an amplitude of roughly 1 to 3 

Its a frequency of 300 Hz and a voltage offset from 0 V D /A output of positive 5 

6 volts. For example, an input sinusoid with an offset of 6V and an amplitude of 

V has an input range of 4 to 8 V. As stated earlier in this chapter, the Classical 

h model requires that the descending loop input voltage to return to zero 
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· Since the above stated example always " returns" to 4 volts re jncrea.sing agam. 

Its the author proposes the concept of an offset Classical Preisach 
of 0 VO ' 

h t esis where the modeled major hysteresis loop ranges in the 4 to 8 el of ys er ' 

The input voltage profile for this model can be found in Figure 4.14. tolt range. 

Input Voltage Profile for Descending Offset Hysteresis from 4 and 8 Vat 10 V/s 

9 

0.25 0.5 0.75 1 1.25 1.5 1.75 
Time (sec) 

Figure 4.14. Input Voltage Profile for Descending Offset Hysteresis from 4 to 8 V 

at 10 V/s 

This input profile was used to determine the rate independent hysteretic sys-

tem output in the 4 to 8 volt range. The Classical Preisach model for assembly A 

was identified in this range with da = 1 V and d(3 = 0.1 V . The system output 

and corresponding model output can be found in the input voltage and output 

position plot is shown in Figure 4.15. The RMS error between the experimental 

data and the simulation is 0.5380 RMS. 

At first look, there appears to be a high level of oscillation in both plots 

in Figure 4.15. This oscillation is present due to noise measurements from the 

.laser triangulation sensor. Furthermore, the displacement axis scale is less than 

a quarter of that from previous plots. So any signal noise present appears to be 

uch larger in this figure than when the scale ranges from 0 to 100 µm or 0 to 

µm. Nevertheless, the low RMS error between the experimental measurement 
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. 1 t · n seem to prove that Offset Classical Preisach model is viable for 
the s1mu a IO 

t esl·s between a lower bound and an upper bound. This model will 
·ng hys er 

useful when developing a feed-forward control algorithm to prevent system 

e.sis for sinusoid control signal loops which do not cycle between zero and 

Plot of Experimental and Simulated Results for 
Assembly A, 10 V/s, 4-8 V, da.=l, d~=O.l 

70r:=====================i--,~~.-~----.-~~,-----~, 

---Experimental 
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e 4.15. Input Voltage to Output Position Plot of Experimental and Classical 
isach Offset Hysteresis Model for Assembly A for 4 to 8 V at 10 V / s with 
= 1 V and d/3 = 0.1 V 

4 Hysteresis Compensation Methods Using Preisach Model 
4.1 Parallel Hysteresis Compensation Method 

The parallel Preisach hysteresis compensation model has a very similar struc

to the Bouc-Wen hysteresis compensation setup. The Preisach hysteresis 

ction, used to determine system response for a given input voltage, is used as 

system observer for calculating total system output. A Preisach system model 

USed which gives essentially rate-independent output (no rate dependency from 

system) for very low voltage rate inputs (i.e. 10 V /s). The output of this 

el is then used to determine the pure hysteresis output hPreisach from the ref-
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. . input and the output of the Preisach block. The hPreisach term is 
ce position 

t the h function from Bouc-Wen. In a similar sense to Equation 3. 7 in 
·vaJent o 

3 th·s hA . h term can be calculated through the following equation: pter , I Preisac 

h(u) = d · Uref - XPreisach (4.10) 

The term d is calculated by determining the change in displacement over the 

Jllinimum to maximum input voltage range, and dividing this value by the length 

The block diagram implementation of Preisach parallel feed-forward hysteresis 

eompensation can be found in Figure 4.16. 

-------. /\ 
Preisach XPreisach 

Hyst. Observer 

X,.er uref 

1/d =------- d 

+ 

I\ 

hPreisach 

Figure 4.16. Feed-Forward Preisach Parallel Hysteresis Observer Compensation 
Block Diagram 

Series Hysteresis Compensation Method 

One can also compensate for hysteresis by implementing a Preisach inverse 

hysteresis model. This model is the same as the Classical Preisach model derived 

in Chapter 4, except that it runs in reverse - it accepts a desired position input, 

and using the Classical Preisach model, calculates the corresponding input voltage. 

This concept is illustrated in the block diagram in Figure 4.17. 
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Xref 

Preisach Series 
Inverse 

Compensator 

e 4.17. Feed-Forward Preisach Series Inverse Hysteresis Compensation Block 

a.Ill 

5 Hysteresis Compensation Simulation Using Preisach Model 

As with the simulations of feed-forward control using Bouc-Wen, the following 

. ulations are based on sending a model based feed-forward signal into a hysteretic 

model of the system. Both the feed-forward controller and the system model are 

on the same Preisach model. The resulting simulation output represents 

idealized case which does not necessarily directly reflect the actual hysteresis 

uction when the feed-forward algorithm is implemented experimentally. But 

the output from these simulations is useful for understanding the reference to 

-forward input voltage relationship as well as for comparing the system output 

with parameters based on the actuator with those from the assembly. 

Simulated Parallel Hysteresis Compensation in 0 to 10 V Range 

The Classical Preisach model for assembly A taken at 10 V / s with a discrete 

grid of a of 1 V and f3 of 0 .1 V has been used for the simulation of parallel hysteresis 

.compensation in this system. Applying the block diagram scheme shown in Figure 

4.16, a feed-forward compensating input voltage is generated, which is shown in 

the time to voltage plot in Figure 4.18. The corresponding reference input voltage 

llld position output are shown in Figure 4.19. Unlike with Bouc-Wen based feed

d hysteresis control, parallel Preisach based feed-forward hysteresis control 

not appear to have any issues with saturation. Instead, the control signal 

to remain within the 0 to 10 volt range. Comparing the successive peak 

ltages of the reference ( Uref) to the feed-forward voltages ( u ff), the ascending 
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ak of UJJ appears to be higher amplitude than that of Ure/, while 
of the pe 

d. g side of the feed-forward voltage is lower than the reference. The 
descen m 

. 1 tries to drive the system up to the linear on the ascending path 
trol s1gna 
iIIUDediately downward to overcome static friction when the voltage direction 

The major loop area for the uncompensated system is 205.11 µm · V, 
es . 

. e the displacement for 10 V input is 93.52 µm. On the other hand, the major 

p area for the compensated system is 46.80 µm · V, while the displacement for 

0 V input is 93.03 µm. The reduction in outer loop hysteresis area is 77.18%. 

Assembly A Comparison ofReference lOV/s Input Voltage 
to Parallel Classical Preisach Feed-Forward Input Voltage 

2 3 4 5 6 7 8 9 10 11 12 
Time (sec) 

e 4.18. Assembly A 10 V /s· Reference Input Voltage and Simulated Parallel 
Preisach Hysteresis Compensated Voltage for da. = 1 V and d{3 = 0.1 V 

The same simulation was conducted with assembly B. The time to voltage plot 

shown in Figure 4.20. The corresponding reference input voltage and position 

put are shown in Figure 4.21. The major loop area for the uncompensated 

mis 181.23 µm · V, while the displacement for 10 V input is 100.90 µm. The 

Jor loop area for the compensated system is 38.10 µm · V, and the displacement 

lO V input is 96.50 /Lm. The hysteresis compensation could reduce the outer 

area by 78.98%. 
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Assembly A Comparison of 1 OV /s Uncompensated 
Experimental Position and Simulated Classical Preisach 

Parallel Compensated Position to Input Reference Voltage 

••• uref 
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4.19. Assembly A 10 V /s Reference Voltage Input to Position Output 
parison for Simulated Parallel Preisach Hysteresis Compensated Voltage with 

= 1 V and d{3 = 0.1 V 

Assembly B Comparison of Reference 10 V/s Input Voltage to 
Parallel Classical Preisach Feed-Fotward Input Voltage 

3 4 5 6 7 8 9 10 11 
Time (sec) 

12 

e 4:20. Assembly B 10 V /s Reference Input Voltage and Parallel Preisach 
esIS Compensated Voltage for da = 1 V and d/3 = 0.1 V 
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bl B Comparison of 1 OV/s Uncompensated Experimental Position and As;;11:i Classical Preisach Compensated Position to Input Reference Voltage 

120 
---Uref 

100 -uff da.=1 V df3=0-1 V ·· 

'[ 80 · ··· ·· ·•··· ······· ·· ·· ···· ··· · 

~ a 60 ............ : .... ....... ... ; .. ......... ·. 
:~ 
~ p.. 40 ...... ....... · ... .......... . 

~ 
g. 8 20 ······ ·· ·· 

2 10 

e 4.21. Assembly B 10 V /s Reference Voltage Input to Position Output 
parison for Parallel Preisach Hysteresis Compensated Voltage with da = 1 V 

d{J = 0.1 v 

The simulation of the Preisach parallel hysteresis compensation scheme ap-

to be suitable for compensating for hysteresis. In both cases, the hysteresis 

could be reduced by at least 753. There is also no significant change in dis-

placement amplitude. The peak input voltage from each triangular-shaped input 

file is higher with the feed-forward input than the reference input. The result 

is not perfectly linear, rather it curves around the 

Simulated Series Inverse Hysteresis Compensation in 0 to 10 V 
Range 

The Classical Preisach model for Assembly A taken at 10 V /s with a discrete 

grid of o: of 1 V and {3 of 0 .1 V has been also used to simulate of series inverse 

hysteresis compensation in Assembly A. Using the block diagram scheme shown 

in Figure 4.17, a feed-forward compensating input voltage is generated, which is 

in the time to voltage plot in Figure 4.22. The corresponding reference input 

tage and position output are shown in Figure 4.23. Unlike with Bouc-Wen 
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feed-forward hysteresis control, series inverse Preisach based feed-forward 

. ntrol does not appear to have any issues with saturation. Instead, 
res1s co 

control signal appears to remain within the 0 to 10 volt range. Comparing 

essl·ve peak voltages of the reference ( Uref) to the feed-forward voltages 
succ 

) the ascending side of the peak of UJJ appears to be higher amplitude than 
U//' 

f .,_ while the descending side of the feed-forward voltage is lower than 
0 ..... ef' 

reference. The control signal tries to drive the system up to the linear on the 

ascending path and immediately downward to overcome static friction when the 

yoltage direction changes. The major loop area for the uncompensated system is 

.S.llµm. V, while the displacement for 10 V input is 93.52 µm. On the other 

hand, the major loop area for the compensated system is 0.93 µm · V, while the 

· lacement for 10 V input is 93.03 µm. The outer loop hysteresis area reduction 

Assembly A Comparison of Reference lOV/s Input Voltage to 
Simulation Classical Preisach Series Inverse Feed-Foiward Input Voltage 

10.-------.-~-.-~---,~---.~---,-~-.----~,------;=============== 

2 3 4 5 6 7 8 9 10 11 12 
Time (sec) 

l'igure 4.22. Assembly A 10 V /s Reference Input Voltage and Preisach Series 
rse Hysteresis Compensated Voltage for da = 1 V and df3 = 0.1 V 

The same simulation was conducted with assembly B. The time to voltage plot 
sh<>wn. 

m Figure 4.24. The corresponding reference input voltage and position 

ut are sho . F" wn m igure 4.25. The major loop area for the uncompensated 
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Assembly A Comparison of 1 OV/s Uncompensated Experimental 
Position and Series Classical Preisach 

Compensated Position to Input Reference Voltage 

Figure 4.23. Assembly A ~O V /s Reference ~oltage Input to Position_ Output 
Comparison for Preisach Senes Inverse Hysteresis Compensated Voltage with da = 

1 V and d/1=0.1 V 

system is 181.23µm · V, while the displacement for 10 V input is 100.90µm. On 

the other hand, the major loop area for the compensated system is 0.96µm · V, 

while the displacement for 10 V input is 96.50µm. The reduction in outer loop 

The simulated result for inverse hysteresis control appears to generally de

crease the size of the hysteresis region in the input voltage to output position plot 

(Figure 4.25). This is especially the case for the major loop along the zero to ten 

and back down to zero voltage input. According to the major loop area of the 

controlled system, the output has been essentially linearized. The displacement 

b 10 V input is also essentially the same. There appears to be a discrepancy from 

the linear for the following descending triangular inputs. The author believes that 

~behavior is a numerical issue in the simulation between the generated input 

~e and the modeled plant. This behavior originates from higher feed-forward 

ltages on the ascending branch of the input profile followed by an immediate 

pin feed-forward voltage when the profile decreases, leading the plant model's 
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Assembly B Comparison of Reference lOV/s Input Voltage to 
Series Classical Preisach Feed-Forward Input Voltage 
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e 4.24. Assembly B 10 V /s Reference Input Voltage and Series Preisach 
rse Hysteresis Compensated Voltage for da = 1 V and d{3 = 0.1 V 

Assembly B 1 OV/s Comparison of Uncompensated Experimental Position and Series 
Classical Preisach Compensated Position to Input Reference Voltage 
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~.25. Assembly B 10 V /s Reference Voltage Input to Position Output 

V Panson for Series Preisach Inverse Hysteresis Compensated Voltage with da = 
and d,B = 0.1 v 
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d · te from a linear response. The author believes that this behavior 
ut to ev1a 

during experimental testing . 
. not occur 

1).3 Simulated Series Inverse Preisach Hysteresis Compensation in 4 

to 8 V Range 

The Classical Preisach model for assembly A taken at 10 V / s with an offset 

e range of 4 to 8 V, and a discrete grid of a of 1 V and (3 of 0.1 V has been 

used to simulate of series inverse hysteresis compensation in assembly A. The 

to voltage plot is depicted in Figure 4.26. The corresponding reference input 

e and position output are shown in Figure 4.27. Comparing the successive 

voltages of the reference ( Uref) to the feed-forward voltages ( UJJ ), the as-

ding side of the peak of UJJ appears to be higher amplitude than that of Uref, 

· e the descending side of the feed-forward voltage is lower than the reference. 

control signal tries to drive the system up to the linear on the ascending path 

immediately downward to overcome static friction when the voltage direction 

es. The major loop area for the uncompensated system is 28.20µm · V, while 

change in displacement for 4 to 8 V input is 20.0Sµm. On the other hand, the 

Jor loop area for the compensated system is exactly Oµm · V, but the change in 

· lacement for 4 to 8 V input ·is 20.04µm. 

Just as with the normal ( 0-10 V) Classical Preisach inverse compensation 

hod, the compensation of the offset hysteresis model appears to be also effec

, Particularly along the major hysteresis loop. Just as with the 0 to 10 V loop 

, the input to output plot likewise suggests a numerical issue in the simulation 

n the generated input voltage and the modeled plant. This behavior likewise 

tes from higher feed-forward voltages on the ascending branch of the input 

e followed by an immediate drop in feed-forward voltage when the profile 

' leading the plant model's output to deviate from a linear response. The 
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Assembly A Comparison of Reference 10 V/s 4-8 V Input Voltage to 
Series Classical Preisach Feed-Forward Input Voltage 
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1.5 2 

e 4.26. Assembly A 10 V /s Offset 4 to 8 V Reference Input Voltage and Series 
h Inverse Hysteresis Compensated Voltage for da = 1 V and df3 = 0.1 V 

Assembly A Comparison of I 0 Vis 4-8 V Uncompensated Experimental Position 
and Series Classical Preisach Compensated Position to Input Reference Volage 
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e 4.27. Assembly A 10 V / s Offset 4 to 8 V Reference Voltage Input to Position 
. tput Comparison for Series Preisach Inverse Hysteresis Compensated Voltage 

do == 1 V and df3 = 0.1 V 

77 



li S that this behavior will also not occur during experimental testing. 
or be eve 

imental Parallel Hysteresis Compensation for 0 to 10 V 
6 E:xper 

Range for Assembly A 

The Classical Preisach parallel hysteresis compensation model was tested on 

mbly A using profiles similar to that shown in Figure 2.3 in Chapter 2, but with 

of 10, 100, 500, 1000 and 1500 V /s. The resulting plots of reference input 

tage to output position for the uncompensated and compensated systems are 

correspondingly in Figures 4.28, 4.29, 4.30, 4.31, 4.32. A table detailing the 

put displacement at 10 V reference input and the area of the major hysteresis 

p for both uncompensated and compensated systems are shown in Table 4.1. 

e average reduction in major hysteresis loop area was 66.43%. 

Assembly A Comparison of 1 OV/s Uncompensated Experimental Position and 
Parallel Classical Preisach Compensated Position to Input Reference Voltage 

120r;:=============,----.--~---.--~---,---~-----,~----.~----,~---, 

---uref 
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Input Reference Voltage (V) 

e 4.28. Assembly A 10 V /s Experimental Reference Voltage Input to Position 
tput Comparison for Parallel Preisach Hysteresis Compensated Voltage with 
=IV and d{3 = O.lV 

There is at least a 50% reduction in major loop area for all input rates. There 

also no significant change in displcaement at 10 V input. Similar to the sim

data, the hysteresis loop appears to curve around the linear and therefore 

reduction in hy t · · d b · 'fi Th d d' s eres1s area is goo ut not very s1gm cant. e ecen mg 
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Assembly A Comparison of I OOV /s Uncompensated Experimental Position and 
Parallel Classical Preisach Compensated Pos1t.J.on to Input Reference Voltage 

100 

10 

e 4.29. Assembly A 100 V /s Experimental Reference Voltage Input to Po
·on Output Comparison for Parallel Preisach Hysteresis Compensated Voltage 

0 th da = lV and d/3 = O.lV 

Assembly A Comparison of SOOV/s Uncompensated Experimental Position and 
Parallel Classical Preisach Compensated Position to Input Reference Voltage 
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e 4.30. Assembly A 500 V /s Experimental Reference Voltage Input to Po
.th n,1~utput Comparison for Parallel Preisach Hysteresis Compensated Voltage 

l£U = lV and d/3 = O.lV 
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Assembly A Comparisor,i of 1 OOOV /s Uncompens_ated Experimental Position and 
Parallel Classical Preisach Compensated Pos11:!on to Input Reference Voltage 
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4.31. Assembly A 1000 V /s Experimental Reference Voltage Input to Po
'on Output Comparison for Parallel Preisach Hysteresis Compensated Voltage 

'th do:= IV and d/3 = 0.IV 
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Assembly A Comparison of J SOOV /s Uncompensated Experimental Position and 
Parallel Classical Preisach Compensated Position to Input Reference Voltage 

120r;==============;-~,----~--,--~---,~-----,~~-,-~,-~-. 

---uref 
100 

80 

60 

40 

2 3 4 5 6 7 8 9 10 
Input Reference Position (V) 

e 4.32. Assembly A I500 V /s Experimental Reference Voltage Input to Po
th nd Output Comparison for Parallel Preisach Hysteresis Compensated Voltage 

ll ==IV and df3 = O.IV 
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Assembly A Experimental Displacement at 10 V Reference Input and 
e 4.1. Area for Uncompensated (Unc.) and Classical Preisach Parallel Com

. r Loop 
ted (Comp.) Systems 

10 100 500 1000 1500 Input Rate (V / s) 
93.52 97.14 96.76 97.22 99.25 

174.11 185.68 178.92 139.07 
Unc. Pos. at 10 V (µm) 
Unc. Loop Area (µm · V) 205.11 

96.96 96.35 93.49 92.90 ComP· Pos. at 10 V (µm) 101.90 
Comp. Loop Area (µm · V) 71.17 81.50 64.39 49.75 58.79 

Red. in Maj. Loop Area 65.30 53.19 65.32 72.19 76.13 

le 4.2. Assembly A Experimental Displacement at 10 V Reference Input and 
jor Loop Area for Uncompensated (Unc.) and Classical Preisach Series Com

ted (Comp.) Systems 
Input Rate (V / s) 10 100 500 1000 1500 

Unc. Pos. at 10 V (µm) 93.52 97.14 96.76 97.22 99.25 
Unc. Loop Area (µm · V) 205.11 17 4.11 185.68 178.92 139.07 

Comp. Pos. at 10 V (µm) 79.75 69.44 73.99 78.51 67.50 
Comp. Loop Area (µm · V) 54.84 31.32 15.00 34.68 63.14 

73.26 82.01 91.92 80.62 54.60 

resis loop curving appears to be worse as the input rate increases. 

Experimental Series Inverse Hysteresis Compensation for 0 to 10 
V Range 

7.1 Assembly A 

In a similar manner to the previous section, the Classical Preisach series in

hysteresis compensation model was tested on assembly A using profiles simi

to that shown in Figure 2.3 in Chapter 2, but with slopes of 10, 100, 500, 1000 

1500 V /s. The resulting plots of reference input voltage to output position for 

uncompensated and compensated systems are shown correspondingly in Fig-

4.33, 4.34, 4.35, 4.36, 4.37. A table detailing the output displacement at 10 V 

nee input and the area of the major hysteresis loop for both uncompensated 

compensated systems are shown in Table 4.2. The average reduction in outer 

resis loop area is 76.483. 
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Assembly A Comparison of 1 OV/s Uncompensated Experimental Position and Series 
Classical Inverse Preisach Compensated Pos1tJon to Input Reference Voltage 
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e 4.33. Assembly A 10 V /s Experimental Reference Voltage Input to Position 
tput Comparison for Series Inverse Preisach Hysteresis Compensated Voltage 

'thda = 1 V and d(3 = 0.1 V 

Assembly A Comparison of 1 OOV/s Uncompensated Experimental Position and Series 
Classical Inverse Preisach Compensated Position to Input Reference Voltage 
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e 4.34. Assembly A 100 V /s Experimental Reference Voltage Input to Posi
n ~utput Comparison for Preisach Series Inverse Hysteresis Compensated Volt

With do: = 1 V and d(3 = 0.1 V 

82 



bly A Comparison of 500V/s Uncompensated Experimental Position and Series 
Asse~assical Inverse Preisach Compensated Position to Input Reference Voltage 
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e 4.35. Assembly A 500 V /s Experimental Reference Voltage Input to Posi
n Output Comparison for Preisach Series Inverse Hysteresis Compensated Volt

with da = 1 V and d/3 = 0 .1 V 

Assembly A Comparison of 1 OOOV /s Uncompensated Experimental Position and Series 
Classical Inverse Preisach Compensated Position to Input Reference Voltage 
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4.36. Assembly A 1000 V /s Experimental Reference Voltage Input to Posi
~utput Comparison for Preisach Series Inverse Hysteresis Compensated Volt
With da = 1 V and d/3 = 0.1 V 
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bl A Comparison of 1500V/s Uncompensated Experimental Position and Series 
AssemCl~sical Inverse Preisach Compensated Position to Input Reference Voltage 
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e 4.37. Assembly A 1500 V /s Experimental Reference Voltage Input to Posi-
0 Output Comparison for Preisach Series Inverse Hysteresis Compensated Volt

with da = 1 V and d/3 = 0 .1 V 

The hysteresis area for the series inverse feed-forward controlled system ap

to be significantly reduced when compared to the parallel hysteresis com

tion results. The curving effect found in the parallel Preisach compensated 

em does not appear to show up to any significant degree in the series inverse 

a. However, there appears to be a significant issue with the displacement am

. udes at 10 V voltage input. This is likely due t~ problem encountered in the 

bly (for example, clamping to console went "out of tune" during testing) 

her than an issue specific to the controller. This will be verified in the next 

·on, when assembly B is tested with the series inverse controller. 

Assembly B 

Just as with assembly A, the Classical Preisach series inverse hysteresis com

tor was tested using 10, 100, 500, 1000 and 1500 V /s descending triangle 

ut profiles. The resulting plots of reference input voltage to output position for 

uncompensated and compensated systems are shown correspondingly in Fig-
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Assembly B Experimental Displacement at 10 V Reference Input and 
_Ie 4L·3· Area for Uncompensated (Unc.) and Preisach Series Compensated 
JOT oop c:) ::;~:""Rate (V/s) 10 I 100 I 500 I 1000 I 1500 I 

Unc. p 08• at 10 V (µm) 97.90 97.55 87.20 93.91 94.47 
Unc. Loop Area (µm · V) 181.23 173.47 252.90 159.70 201.96 

Comp. p 08• at 10 V (µm) 96.03 92.47 88.59 91.61 82.97 
Comp. Loop Area (µm · V) 8. 75 26.52 19.55 32.07 57.62 

0 Red. in Maj. Loop Area 95.17 84.71 92.27 79.92 71.47 

4.38, 4.39, 4.40, 4.41, 4.42. Table 4.3 details the output displacement at 10 V 

nee input and the area of the major hysteresis loop for both uncompensated 

d compensated systems. The average reduction in major hysteresis loop area is 

Assembly B Comparison of 1 OV /s Uncompensated Experimental Position and Series 
Classical Inverse Preisach Compensated Position to Input Reference Voltage 
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e 4.38. Assembly B 10 V /s Experimental Reference Voltage Input to Position 
. tput Comparison for Series Inverse Preisach Hysteresis Compensated Voltage 
th da = 1 V and d{J = 0.1 V 

The series inverse controller was able to significantly reduce the hysteresis 

for assembly B. It could also do this without any significant reduction in 

la.cement at 10 V. This validates the author's hypothesis that the apparent 

ction in hyst · . £ eres1s m ound for assembly A is due to factors other than the 
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bly B Comparison of 1 OOV/s Uncompensated Experimental Position and Series 
Asse~lassical Inverse Preisach Compensated Position to Input Reference Voltage 

100 
---Uref 

80 -uff dcx.=1 V df3=0.l V · 

2 10 

e 4.39. Assembly B 100 V /s Experimental Reference Voltage Input to Posi
• 0 Output Comparison for Preisach Series Inverse Hysteresis Compensated Volt

with da = 1 V and df3 = 0.1 V 

Assembly B Comparison of 500V /s Uncompensated Experimental Position and Series 
Classical Inverse Preisach Compensated Position to Input Reference Voltage 
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e 4.40. Assembly B 500 V /s Experimental Reference Voltage Input to Posi
Output Comparison for Preisach Series Inverse Hysteresis Compensated Volt
with do:= 1 V and df3 = 0.1 V 
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As bly B Comparison of 1 OOOV/s Uncompensated Experimental Position and Series 
semClassical Inverse Preisach Compensated Position to Input Reference Voltage 

JOO 
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80 -uff dcx.= 1 V d~=0.1 V 
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Figure 4.41. Assembly B 1000 V /s Experimental Reference Voltage Input to Posi
tion Output Comparison for Preisach Series Inverse Hysteresis Compensated Volt
age with da = 1 V and df3 = 0.1 V 

Assembly B Comparison of 1 SOOV/s Uncompensated Experimental Position and Series 
Classical Inverse Preisach Compensated Position to Input Reference Voltage 
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~ 4.42. Assembly B 1500 V /s Experimental Reference Voltage Input to Posi
~utput Comparison for Preisach Series Inverse Hysteresis Compensated Volt
With da = 1 V and df3 = O .1 V 

87 



4 Assembly A Experimental Displacement from 4 to 8 V Reference Input 
le 4·. · Loop Area for Uncompensated (Unc.) and 4 to 8 V Offset Classical 
MaJor ) 

. h Series Inverse Compensated (Comp. Systems 
[ Input Rate (V/ s) I 10 I 100 I 500 I 1000 I 

Unc. Disp. 4 - 8 V (µm) 20.20 21.49 21.77 16.96 
Unc. Loop Area (µm · V) 28.22 24.80 39.12 39.67 

Comp. Disp. 4 - 8 V (µm) 20.98 22.27 22.07 17.99 
Comp. Loop Area (µm · V) 3.45 8.41 7.13 13.68 

[%Red. in Maj. Loop Area I 95.17 I 66.09 I 81.77 I 65.52 I 

The looping behavior appears to get significantly worse at 1000 and 1500 V /s , 

particularly for the lower amplitude triangular input profiles. However this does 

t appear to be any worse than the uncompensated hysteresis curve in this region. 

e author decides that the series inverse implementation of Preisach hysteresis 

'-Cl>mpensation is more viable, and will be pursured further. 

.t.8 Experimental Series Inverse Hysteresis Compensation of Assembly 
A for 4 to 8 V Range 

Similar to the previous section the Offset 4 to 8 volt Classical Preisach series 

inverse hysteresis compensation model was tested .on assembly A using 10, 100, 

500 and 1000 V /s profiles. The ·assembly was also tested at 1500 V /s, but the 

results were not usable for this analysis. The input signal was too fast to produce 

The resulting plots of reference input voltage to output position for the un

a>mpensated and compensated systems are shown correspondingly in Figures 4.43, 

4.44, 4.45 and 4.46. Table 4.4 details the output displacement at 10 V reference 

t and the area of the major hysteresis loop for both uncompensated and com

ted systems. The average major loop hysteresis reduction for this range (from 

to 8 back to 4 volts) is 77.14% 
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bl A Comparison of 4-8 V 1 OV/s Uncompensated Experimental Position and Series 
As~asJcal Inverse Preisach Compensated Position to Input Reference Voltage 
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e 4.43. Assembly A 10 V /s between 4 and 8 V Experimental Reference 
tage Input to Position Output Comparison for Series Inverse Preisach Hysteresis 

pensated Voltage with da = 1 V and d/3 = 0.1 V 

Assembly A Comparison of 4-8 V I OOV /s Uncompensated Experimental Position and Series 
Classical Inverse Preisach Compensated Position to Input Reference Voltage 
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~e 4.44. Assem.bly A 100 V / s between 4 and 8 V Experimental Reference 
~ tage Input to Position Output Comparison for Preisach Series Inverse Hysteresis 

mpensated Voltage with da = 1 V and d/3 = 0.1 V 
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bly A Comparison of 4-8 V 500V/s Uncompensated Experimental Position and Series 
Assem Classical Inverse Preisach Compensated Position to Input Reference Voltage 
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e 4.45. Assembly A 500 V /s between 4 and 8 V Experimental Reference 
oltage Input to Position Output Comparison for Preisach Series Inverse Hysteresis 
mpensated Voltage with da = 1 V and d/3 = 0.1 V 

Assembly A Comparison of 4-8 V 1 OOOV/s Uncompensated Experimental Position and Series 
Classical Inverse Preisach Compensated Position to Input Reference Voltage 
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e 4.46. Assembly A 1000 V /s between 4 and 8 V Experimental Reference 
tage Input to Position Output Comparison for Preisach Series Inverse Hysteresis 
})ensated Voltage with da = 1 V and d/3 = 0.1 V 
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· s inverse Preisach offset hysteresis compensation algorithm is able 
The sene 

th hysteresis area fairly significantly up to 500 V /s, although not as 
reduce e 

. 1 as in the O to 10 V range. At 1000 V /s, the hysteresis compensation 
t1ve Y 

t have reached its limit in effectiveness, and a curved hysteresis shape 
pears o 

·n the controlled data. The algorithm still is able to reduce the area ..,pears I 

by two thirds, but the displacement amplitude at between 4 and 8 V is reduced 

when compared to lower input rates. This effect however also appears on the 

uncompensated data, and involve a linear phase delay due to its rounded shape. 

Nevertheless , the offset series inverse Preisach compensator appears to be 

effective in the 4-8 input voltage range over a wide input rate. This compensator 

will be tested in the next section in conjunction with the filtered-X LMS algorithm 

to see if it can improve vibration canceling performance. 

4.9 Offset Series Inverse Classical Preisach Hysteresis Compensation 
with Filtered-X LMS Algorithm 

4.9.1 Filtered-X LMS Algorithm for Vibration and Noise Control 

The Filtered-X LMS algorithm is an adaptive filter algorithm used to cancel 

disturbance vibration on a wood by means of superposition [33], [3] . In this case, 

the disturbance would originate from the machine tool. The algorithm takes the 

The primary path (P(z)) illustrates the transfer function between the distur

bance (machine tool) to the sensor (accelerometer). The cancellation path ( C ( z)) 

represents the transfer function from the actuator to the accelerometer. These 

transfer functions are important for understanding the system. The filtered-X 

LMS algorithm requires first an identified estimate of the cancellation path C(z). 

Once this transfer function is determined, and if the disturbing reference signal 

is known, an adaptive FIR filter (W(z)) may be used to generate a signal along 

the cancellation path to counteract the output disturbance signal coming from the 
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Figure 4.47. Schematic Detailing ?peration of Vib~ation Canceling System and 
ustrating Primary and Cancellation Paths (Graphic Taken from [3]) 

primary path. The mean square of the error signal between the output disturbance 

and the cancellation signal is then used by the LMS algorithm to actively adapt 

the coefficients of the FIR filter with the goal of minimizing this error. The block 

.diagram for the entire algorithm is shown in Figure 4.48. 

x[k] d[k] + e[k] 
-....---__..,. P(z) 1----... 1 

C(z) s[k] 

t(z) 

f[k] 

Figure 4.48. Block Diagram of Filtered-X LMS Algorithm 

In this research, the cancellation path C(z) includes hysteresis from the active 

P assembly. The hysteresis compensation algorithm would be integrated into 

system so that the transfer function C ( z) is then linearized. Further detailed 

nnation regarding the theory and operation of the X-filtered LMS algorithm 

be found in [33], [3]. 
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Experimental Setup 
9.2 

A schematic of the experimental setup used for this experiment is shown in 

e 4.49. Three non-active and one active (assembly A) vacuum clamping 

IDS are assembled to the wood machining center console. A wooden plate is 

pJaced on top of the clamps, and the vacuum is turned on. The wooden plate 

Js also connected to an electrodynamic shaker at one corner of the wood plate. 

This shaker is used to simulate a disturbance input that would originate from the 

machine tool. An accelerometer is placed on another corner of the wooden plate. 

Shake( 

Primary 
Error.Sensor 1 

Figure 4.49. Schematic of X-Filtered LMS Experiment (Graphic Taken from [3]) 

The first step in implementing the feed-forward algorithm is the identification 

of the canceling path C(z). This operation is conducted while the offset Preisach 

aeries inverse hysteresis compensator is turned off. The identified constant param

eters used for FIR weighting factor determination,µ and A., have the values 1.10-4 

and 1 · 10-7 respectfully. 

4•9.3 Experimental Results 

The test setup was experimentally evaluated with the offset Preisach com

)ensation off and then with it turned on. The system was given a sinusoidal 

urbance from the shaker with a frequency of 300 Hz. The LMS then tries 

to reduce th e output amplitude measured by the accelerometer. The disturbance 
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easured amplitude output at the accelerometer of roughly 0.3m/ s2 . 
ut bas am 

e 4_50 shows a plot of the calculated sinusoidal input voltage signal sent to 

. lamp assembly to counteract the disturbance. This plot has both the active c 

ted (u f which is represented bys [k] in the block diagram) and hys-mpensa re , 

. compensated (uf! , which is the resulting output of s [k] filtered by the 4-8 V 

·es inverse Classical Preisach block) results. Figure 4.51 shows the acceleration 

Filtered-X LMS Voltage Inputs 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Time (sec) 

Figure4.50. Assembly A Input Voltage from Filtered-X LMS both Uncompensated 
and Offset Preisach Series Inverse Compensated 

The input voltage figure shows that the amplitude from the offset series inverse 

Preisach is less than that of the system without hysteresis compensation. From 

Figure 4.50, it appears that the steady-state voltage amplitude (around 1 second) 

by the uncompensated system is about 1 V, and the compensated amplitude is 

about 0.85 V. However, it appears that the hysteresis compensated system is able 

io reduce the acceleration amplitude to one tenth of the original value faster than 

the uncompensated system. The compensated system achieves an output ampli

e of about 0.03m/ s2 in about 0.24 seconds while the uncompensated system 

about 0.47 seconds. On the other hand, the compensated system does not 
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Filtered-X LMS Acceleration Outputs 
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Figure 4.51. Assembly A Accelerometer Output from Filtered-X LMS both Un
compensated and Offset Preisach Series Inverse Compensated 

appear to reduce the acceleration amplitude by much more than this value, but the 

micompensated system is able to further reduce the amplitude into the 0.008m/ s2 

nnge. The author believes that since the hysteresis compensating output is based 

m the zeroth order ascending curve and the first order descending curve, the feed-

Jorward output voltage does not converge to a steady state value. Instead, the 

output jumps around the 6 V equivalent linear output line, switching between the 

equivalent voltage output for the ·zeroth order ascending curve (when s [k] is as

cending) and the first order descending curve (whens [k] is descending). This issue 

may be resolved by expanding upon the feed-forward controller to include second 

order a&:ending curve branches (Generalized Preisach) as well. 
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CHAPTER 5 

Conclusion 

1 SununarY of Results 

The assemblies' were first characterized in Chapter 2. The linear 2nd order 

eters were estimated using a step response test. The hysteresis behavior was 

examined for various assembly conditions as well as input signal conditions. 

icularly noteworthy was the dependence of the hysteretic loop shape on the 

The assemblies' hysteresis curves were modeled using both the Bouc-Wen and 

ical Preisach techniques. The Bouc-Wen hysteresis modeling was broken up 

hysteresis modeling based on the unloaded actuator's parameters and param

ascertained directly from the assembly. The actuator-based model appeared 

to be more suitable for feed-forward control since the level of input saturation was 

lower. The parameters from this model were therefore used for test. Although this 

control scheme appeared to work well in simulation, it was able to only partially 

reduce hysteretic area on descending hysteretic curves in the 0 to 10 V range for 

input voltage rates of 10, 100 and 500 V /s. There was no benefit for using this 

controller in the 1000 and 1500 V /s range. This compensation could, on average 

across the five input rates, reduce outer loop hysteresis by only about 303. For 

this reason, the Bouc-Wen controller was deemed not suitable enough for the given 

application. 

The Classical Preisach technique was also used for hysteresis modeling and 

compensation. The system was modeled in the 0 to 10 V range as well as in the 

offset 4 to 8 V range. This offset model would later be used for compensating the 

linUSoidal output from the filtered-X LMS algorithm. Compensation methods were 

exatnined which assume hysteresis effects which are in-parallel as well as in-series 

96 



. aects. It was shown that the in-series inverse Preisach compensation 
"th bnear eu 

ave superior results. The parallel hysteresis compensation could reduce 
technique g 

l hysteresis on average by 663, while the inverse series compensation outer oop 

could reduce hysteresis by roughly 803 in the 0 to 10 volt range. For this reason, 

. inverse compensation was further investigated for application to the offset 
diesenes 

Preisach hysteresis model. The offset Preisach compensator was tested with input 

rates of 10, 100, 500 and 1000 V /s. The hysteresis control could also reduce the 

level of hysteresis in the 4 to 8 volt range by 773. 

The filtered-X LMS algorithm was tested in conjunction with the offset Classi

cal Preisach compensator. The hysteresis compensated system was found to reduce 

acceleration disturbance amplitude to 103 of its original value twice as quickly as 

with the uncompensated system. However, the compensated system could not re-

duce the amplitude any further, while the uncompensated system could reduce the 

amplitude to less than 33 of the original disturbance value. 

5.2 Recommendations for Further Research 

The Classical Preisach inverse feed-forward control algorithm could reduce 

the level of hysteresis present in the active clamp assembly. The author believes, 

however, that there are several areas related to this research which could warrant 

further study and investigation. Some of these areas are specifically for improving 

the hysteresis reduction performance even further while others are more broadly 

based on improving the general performance and robustness of the system. These 

can he categorized as either control system development or hardware design related 

measures. 
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R Ommendations for System Control 
.2.1 ec 

. erse feed-forward controller based on the 4 to 8 volt offset Classical 
An inv 

1Pre:IS3l=·h model was developed for compensating hysteresis on a 2 volt amplitude 

'd with a 6 volt offset originating from the filtered-X LMS algorithm. This 
liJlUSol 

JD(>(lel assumes that the input voltage always cycles between 4 and some input 

'fO}tage maximum. However, the amplitude from the LMS algorithm is always 

changing. When the input amplitude cycles back up before going down to the 

JDinimum, the output from the compensator becomes distorted. This may also 

help explain why the accelerometer amplitude does not reduce any further than 

lo%. If the offset inverse series Preisach compensation is to be used in practice, 

the ramifications of this distortion should be investigated in further detail. 

Alternately, inverse control based on the Generalized Preisach model [1] should 

be investigated for this application, since theoretically it can operate along a mi

nor hysteresis loop without any problems. However, the modeling procedure and 

inverse control based on the Generalized model is significantly more complex than 

that of the Classical Preisach model. The viability of the controller working in 

conjunction with the LMS algorithm would therefore need to investigated when 

operating in real-time (10 kHz sampling rate). 

The Bouc-Wen modeling procedure was shown to effectively model the hys

teresis in an unloaded actuator (Figures 3.1 and 3.2), however the modeling was 

less effective when applied to the assembly (Figures 3.5 and 3.6). The Bouc-Wen 

model is not suitable for characterizing static friction forces occurring between the 

horizontal and vertical wedges in the assembly. Due to the relative simplicity of 

identifying Bouc-Wen parameters using Matlab's Optimization Toolbox, it may be 

advantageous to investigate extensions of the Bouc-Wen model or other analytical 

lllodels which parameterize static friction. 
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mmendations for Hardware Design 
•2 Reco 

e many design options available for improving the active clamping 
There ar 

£ormance The simplest option for reducing the active's clamp hys-'s per · 

is is to further investigate the use of different springs. Figure 2.8 showed 

. gs with lower stiffnesses can significantly reduce the level of hysteresis. 
sprm 

LMS algorithm should be tested with the VD-207 J-01 spring with a stiffness 

3.8 N /mm to see if the system still works as expected and is able to improve 

Another option is to install a piezoelectric actuator with an integrated strain 

sensor. The output of this sensor can be sent to a controller integrated into the 

plifier to automatically reduce hysteresis. Alternatively position sensors could 

integrated into the assembly itself, and a hysteresis compensation algorithm 

d be developed which uses sensor feedback. Feedback control has the further 

efit of automatically compensating for modeling errors and other disturbances. 

The author also suggests a complete redesign of the active clamp in order to 

rove system performance. The assembly's nonlinear frictional characteristics 

nt a challenge which makes hysteresis modeling difficult. An active clamp 

'gn based on a flexure stage (see Figures 5.1 and 5.2) has "negligible friction, 

'gible backlash, and no need for lubrication" [47]. An expansion of the actu

leads to vertical displacement of the table. While expanding, an opposing 

is exerted onto the actuator which is roughly linearly dependent the stage's 

lacement. This assembly's hysteresis may be easier to model using Bouc-Wen 

que compared to the assembly modeling results from Chapter 3. 

As mentioned in Chapter 2, the active clamp is held to the wood machining 

r console by a screw at either end of the assembly. The assembly's displace

behavior is very dependent on both of these screw's tightening torques. Each 
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Figure 5.1. Example of Flexure Stage [4) 

Weight Reduction Holes 

LeVel' 

Piezo ·Actuator 
Cables 

Figure 5.2. Schematic of Flexure Stage [4) 

100 



lnrrip is assembled to the console, the tightening torques needs to be prop-
e tbe c ai•· 

tuned for optimal displacement behavior. This tightening torque is not robust 

can change during testing. For this reason, it needs to be regularly inspected 

n experiments. 

The author believes that the screws' clamping forces likely exert undesirable 

al forces directly to either end of the actuator. The degree of these forces 

bsequently affect the assembly's displacement for a given voltage input. The 

ive clamp assembly should be held differently to the console to avoid exerting 

lateral forces on the actuator. 

A design possibility is to develop a bracket which clamps the bottom of the 

bly housing in a similar manner to the vice shown in Figure 2.4. The bracket 

d then be assembled directly to the console. This bracket would not exert 

lateral forces onto the actuator. However, the bracket should simultaneously 

p the actuator side and the suction plate side of the housing so that no lateral 

ces are exerted onto the actuator due to one side of the assembly hanging off of 
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APPENDIX 

Matlab Scripts and Simulink Block Diagrams 

1 Bouc-Wen Identification Code 
A. 'd A.l.l runboucwem .m 

This is the main program used to identify Bouc-Wen parameters using Mat-

)ab's Optimization Toolbox. In this script, the parameter search bounds as well as 

initial search values are supplied by the user. This function then calls the function 

to be minimized boucoptm.m using the function "f mine on" . 

ct=cputime; 

of global variables 

ID C k 

x_exp Lexp y _t U_O F _sp_O x_num_state 

a b g d xO Xl X2 H Xldot X2dot Hdot Tsamp t_num 

x_num x_num_sp 

initialize experimental result data . 

Lexp=tb_lOv; 

x_exp=xb 10v*le6 · - ' 

3U=assy_a_desc_lvs.Y(l ,4).Data; % D/A (0-10 V) 

3 x_exp=assy_a_desc_lvs .Y(l ,3) . Data; % real data ( m) 

% Lexp=assy _a_desc_l vs .X. Data; % time ( s) 

%3 zero measurement position to first value 

% x_exp=x_exp-x_exp ( 1); 

%3· 
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Pling time for test %% sam 

% Tsamp=Lexp (2)- Lexp ( 1); 

TJ;::Ulax( t _exp ) ; 

TJ;:=round (TL* 10000) / 10000; 

constants to be optimized for best fit to data 

vO(l)=l; % alpha 

v0(2)=0.5; % beta 

v0(3)=0.5; % gamma 

v0(4)=10; % voltage-displacement constant ( m/V) 

vlb(l)=O; 

vlb (2)=0; 

vlb(3)=-2; 

lower and upper bounds for data 

%alpha 

% beta 

% gamma 

vlb(4)=9; % voltage-displacement constant ( m/V) 

3 

% alpha 

% beta 

% gamma 

vub(4)=14; % voltage-displacement constant ( m/V) 

3 

optimization with upper and lower bounds 
3M·· · 

lllim1zes difference between numerical and experimental 

3 data · 
usmg least squares best fit method 
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fmincon 

. s-optimset (options , 'Display ' , 'it er '); 
pt1on -

ptions==optimset (options , 'LargeScale ' , 'off '); 

ptions==optimset (options,' Display',' final '); 

ptions==optimset (options , 'MaxFunEvals' , 3 O O O); 

fmincon finds minimum of constrained 

nonlinear multivariable function 

solution array 

is value of objective function at solution x 

link to objective function 

array of initial values 

x_ub are lower bounds and 

bounds of x solution 

(v,Jv]=fmincon(@bouc_optm,vO, [] [] [] [] 
' ' ' 1 

.. v 1 b , vu b , [ [ ] , [ ] ] , options ) ; · 

fit bouc-wen parameters 

to compute 

et=::cputime-ct 
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,A.1.2 boucoptm.m 

This is continuously called by runboucwenid.m, until a minimum of the cost 

. is found. This function calls the Simulink block diagram simphystID
funct10n 

digsiID4 to simulate the response for a given parameter set . The function uses the 

RMS cost function J between the identified simulation and the experimental data. 

This function also plots both the time and input/output hysteresis curve. 

The block diagram depiction of simphystIDdigsim4 is shown in Figure A.1 . 

Figure A. l. Simulink Model of Digitized Bouc-Wen Model for Identification Rou
tine 

function [ J]= bouc_optm ( v) 

of global variables 

global m c k 

global U Udot x_exp Lexp t_num x_num x_num_sp U_O 

global F _sp_O x_n um_state 

global a b g d xO Xl X2 H Xldot X2dot Hdot Tsamp y _t 

initialize variables every time optimization is run 

% alpha 

% beta 

% gamma 

% voltage-strain constant 
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at. 'nitialization vector for y 
"10 1 

xO::::[x-exp ( 1) ; 0 ; 0] ; 

solve nonlinear state equations using ODE 

% [ t_num, x_num_state ]=ode 113 ( 'bouc_state ' , Lexp , xO); 

% x..num=x_num_state (: , 1); 

nonlinear system using Simulink 

sim( 'simp_hysLID_dig_sim4 '); 

LDUm=y _ t . s i g n a 1 s . v a 1 u es ( : , 2 ) ; 

t..num=y _t. time; 

U..num=y_t. signals. values (:, 1) ; 

x_sim_exp=y _t. signals. values (: , 3); 

function to minimize (RJ\18) 

J=norm( x_sim_exp-x_num, 2) /sqrt (length ( x_num)); 

3 

figure (1) 

elf; 

timeseries response and hysteresis plots 

Plot ( t -exp , x_exp , Lnum, x_num) 

xlabel ( 'Test time (sec) ') 

110 



b 1 ( 'Displacement Output ( m) ') 
yla e 

d ( 'Exp. Data ' , ' Bouc-Wen Sim ') }egen 

title ( ['Hyst e resis Actuator A Sp. DF-2440 8 cNm 

Inner Loop lV/s , d= ' 

•'I 
num2str(d) ,' \mu m/V, \alpha=' ,num2str(a), ', 

.. \beta=',num2str(b) ,' , \gamma=',num2str(g)]) 

figure (2) 

elf; 

plot (U, x_exp , D_.num , x_num) 

xlabel('Voltage Input (V) ' ) 

ylabel ('Displacement Output ( m) ' ) 

legend ( 'Exp. Data ' , ' Bouc-Wen Sim ') 

title ( [ ' Hy s t e r esis Actuator A Sp. DF-2440 8 cNm Inner 

.. Loop lV/s , d= ' 

.. ,num2str(d) ,' \mu m/V, \alpha= ' ,num2str(a),', \beta= ', 

.. num2str (b) , ' \gamma= ' , num2str ( g)]) 

return; 

A.2 Classical Preisach Code 
A.2.1 clpreisid.m 

This script is used to determine and save the data points for the Classical 

Preisach model. In this script, one can set the range of a and f3 as well as da and 

d{J. The data points will then be saved in the Matlab array cl_pr_lu_tb. 

3 Script for classical Preisach identification 

3 from descending hysteresis tests. Uses data from 

3 first order reversal curves to build lookup table 
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d data as workspace variables 
Joa 

cl pr _l u _ t b U_n U _n2 x_exp_n x_exp_n2 U x_exp Lexp; clear -

% lJ:=:assy_a_desc_lvs .Y(l ,4).Data; 3 D/A (0-10 V) 

%x-exp=assy_a_desc_lvs.Y(l,3).Data; 3 real data (m) 

% t_exp=assy _a_desc_l vs .X . Data; 3 time ( s) 

%U=actc_8cnm_dn_lO_O_stLsll_0_001.Y(l ,4).Data; 

% x_exp=actc_Scnm_dn_lO_O_stLsll_O_OOl .Y(l ,3).Data; 

% t_exp=actc_Scnm_dn_lO_O_stLslLO_OOl .X.Data; 

3 D/A (0-10 V) 

x_exp=x_las_n2*1e6 ; 3 experimental data ( m) 

t_exp=Ldsp_n; 3 time ( s) 

x_exp data over 50 data points 

time for test 

T~t_exp (2)- Lexp ( 1); 

% input minimum sample location for analysis 

% (preferably after first major 

% loop ( try >> figure , plot (U) to find this location) 

'1samp_min=l.887e4; 

'1samp_min=20006· 
' 

data 

X-exp-x ( - -exp-x_exp samp_min); 
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t data at sample data location % cu 

U..D:=U( samp_min: length (U)); 

x_exp_n=x_exp ( samp_min: length ( x_exp)); 

% x_exp_n=xs_exp ( samp_min: length ( xs_exp)); 

for determining Preisach 

% triangle density for lookup table 

% This data should be determined from the plot of U_n 

voltage 

voltage 

step voltage 

voltage 

voltage 

% beta step voltage 

be_s =0.1; 

header rn cLpr_lu_tb with alpha and 

% beta max, min and step sizes 

cLpr_lu_tb=[aLmax be_max -1 -1 -1 -1; 

aLmin be_min -1 -1 -1 -1; 
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a Ls be_s -1 -1 -1 -1; 

-1 -1 -1 -1 -1 -1]; 

initialize lookup table position 

i :=4; 

% % zero data 

% [trash, aLloc_s]=min(abs(U_n-aLmin)); 

% U _n=U _n ( a L 1 o c _ s : 1 en gt h ( U _n ) ) ; 

% x_exp_n=x_exp _n - x_exp_n ( aLloc _s); 

% x_exp_n=x_exp_n ( aLloc _s: length ( x_exp_n)); 

[trash, samp_maxl]=min (abs (U_n-aLmax)); 

U_nl=U_n ( 1: samp_maxl); 

x_exp_nl=x_exp_n ( 1: samp_maxl); 

% insert zeroth order ascending h yste r esis curve data 

for aLloc = [ aLmin: a Ls: aLmax ] 

i=i +1; 

% find data point lo cation and cut data h ere 

[trash, aLloc_s]=min(abs(U_nl-aLloc )); 

samp_min=aLloc_s; 

U_nl=U_nl ( samp_min: l ength ( U _nl)); 

x_exp_nl= x_exp_nl ( samp_min: length (x_exp_nl)); 

% 

% alpha and beta a r e same on zeroth order 

% ascending hysteresis 

be _loc=aLloc; 
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% determine Xalpha 

Xalpha=x_exp_n 1 ( 1); 

% determine Xbeta=Xalpha 

Xbeta=Xalpha ; 

% determine change rn displacement from alpha 

% to beta 

dXalphabeta=Xalpha-Xbeta; 

dBeta=aLloc-be_loc; 

cLpr_lu_tb(i ,: )=[aLloc be_loc Xalpha Xbeta 

.. dXalphabeta dBeta] 

minXalpha=cLpr_lu_tb (5 ,3); 

for j=5:length(cLpr_lu_tb) 

end 

if cLpr_lu_tb (j ,3) <minXalpha 

cLpr _l u _ t b (j ,3) =minXalpha; 

end 

maxXal pha= c L pr_ 1 u _ t b ( 1 en gt h ( c L pr _ l u _ t b ) , 3 ) ; 

3 

3 insert -1' s for zeroth order / 

3 first order hysteresis separation 

i==i + 1 · 
' 

cLpr_lu_tb (i ,:)=[-1 -1 -1 -1 -1 -1]; 

3 

U..n-U ( - -n samp_maxl: length (U_n)); 
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dUdt==(U-n(l)- u_n ( 2)) I Ts; 

n==x-exp_n (samp_maxl: length ( x_exp_n)); 
x_exP-
% loop for creating lookup table from 

% lst order reversal curves 

for aLloc =[aLmax:- a Ls: aLmin] 

% find peak of alpha in data 

[trash, aLloc_s]=min(abs(U_n-aLloc )); 

% enter into lookup table first point on reversal curve 

% for alpha=beta 

be_max=aLloc; 

be_stop=round ( ( be_max-be_min) / ( dUdt*Ts)) + 1; 

% 

samp_min=round ( al_ lo c _ s ) ; 

U_n=U_n ( samp_min: length ( U_n)); 

U_n2=U_n ( 1 : be_stop); 

x_exp_n=x_exp_n ( samp_min: length ( x_exp_n)); 

x_exp_n2=x_exp_n ( 1: be_stop); 

3 data table organized as follows: 

% [alpha(i) beta(i) Xalpha(i) 

3 .. Xalphabeta ( i) dXalphabeta ( i ) ] 

for be_loc=[be_max:- be_s: be_min] 

% lookup table location 

i=i + 1 · 
' 

[trash, be_loc_s]=min(abs(U_n2-be_loc )); 

% determine Xalpha 

Xalpha=x_exp_n2 ( 1); 
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end 

% correct data 

if Xalpha<minXalpha 

Xalpha=minXalpha; 

end 

if Xalpha>maxXalpha 

Xalpha=maxXalpha; 

end 

% determine Xbeta 

Xbeta=x_exp_n2 ( be_loc_s); 

% correct data 

if Xbeta<minXalpha 

Xbeta=minXalpha; 

end 

if Xbeta>Xalpha 

Xbeta=Xalpha; 

end 

% determine change in displacement 

% from alpha to beta 

dXalphabeta=Xalpha-Xbeta; 

dBeta=aLloc -be_loc; 

% enter data into lookup table 

cLpr_lu_tb (i ,:)=[ aLloc be_loc Xalpha 

.. Xbeta dXalphabeta dBeta]; 

3 make X( beta=be_min)=xmin ( alpha=aLmin) 

if Xbeta-=cLpr_lu_tb (5 ,3) 
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end 

end 

Xbeta=cLpr_lu_tb (5 ,3); 

dXalphabeta=Xalpha-Xbeta; 

cLpr_lu_tb(i ,:)=[aLloc be_loc Xalpha 

.. Xbeta dXalphabeta dBeta] ; 

% after looping through all beta values for particular 

% alpha , cut data at last beta 

samp_min= be _lo c _s ; 

U_n=U_n(samp_min: length (U_n)); 

x_exp_n=x_exp_n ( samp_min: length ( x_exp_n)); 

A.2.2 clpreissim.m 

This script may be used independently from clpreisid.m. One must only 

have the array cl_pr_lu_tb in the Matlab workspace with the Classical Preisach 

data points. The block diagram of this set up is shown in Figure 

% Simulation of system hysteresis using 

Preisach method 

3 extract data from combined lookup table array variable 

3 determined from cLpreis_id .m script 

range and density cons tan ts 

aLmax=cLpr_l u _ t b ( 1 , 1); 

be_max=cLpr_lu_tb (1,2); 

aLmin=cLpr_lu_tb (2 ,1); 
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be-min=cLpr_l u _ t b ( 2, 2); 

aLs=cLpr_lu_tb (3 , 1); 

be-s=cLpr_lu_tb (3 ,2); 

% calculate max # beta for g1 ven alpha 

% durnrnY beta and dX based on max # beta for given alpha 

beta_in=ones ( 1, length ( be_min: be_s: be_max) )* -1 e6; 

dX_in=ones ( 1 , length ( be_min : be _s: be_max) )* -1 e6; 

% 
% zeroth order hysteresis 

zeroth= fl i p u d ( c L p r_ 1 u - t b ( 5 : ( 5 + ( aLm ax - a L min ) / a Ls ) , : ) ) ; 

% 

% first order hysteresis (order flipped with flipud) 

first=cLpr _lu_tb ((7+(aLmax-aLmin)/ aLs): 

.. length(cLpr_lu_tb) ,:); 

% 

zeroth_XO=z erot h (length (zeroth (: , 1)) , 3); 

% 

zeroth_XM=zeroth ( 1 , 3); 

% min volt age 

zeroth_UO=zeroth (length (zeroth (: , 1)) , 1); 

% max voltage 

zeroth_UM=zeroth ( 1 , 1) ; 

3 strain constant 

d==(zeroth (1 ,3) - zeroth (length (zeroth (: , 1)) , 3)) / (zeroth ( 1, 1) 

··-zeroth(length(zeroth ( : ,1)) ,l))*le-6; 
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2 3 preisachsim.mdl 
}... . 

This block diagram simulates the rate-independent hysteretic output of the 

t Ill from the zeroth order descending curve and first order ascending curves sys e 

given by the script clpreissim.m. The block diagram for this Simulink model is 

shown in Figure A. 2. 

Figure A.2. Simulink Model for Classical Preisach Hysteresis 

The Embedded Matlab source code for the Preisach Hysteresis Estimator 

block is shown below: 

function [y, sum_y, al , y _al·, be, y _be, sign_chk] 

·. preisach ( be_in , dX_in, lk_up_O , lk_up_l , u, sign_udot , 

· · sign_udot_last , y _last , sum_y _last , aLlast , y _aLlast , 

·· be_last , y _be_last , sign_chk_last) 

3 This block supports the Embedded MATLAB subset . 

3 See the help menu for details. 

3 

3 determine the voltage input case 

if 
sign_udot==l && ( sign_udoLlast==O 11 sign_udoLlast==l) 

in_case =1 · 
' 
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· f sign udot==l && sign_udoLlast==-1 
else1 -

in-case =2; 

· f sign u dot ==-1 && ( sign - u do LI as t ==0 11 else1 -

.. sign_ udoLl as t ==-1) 

in_case =3; 

else if sign_udot==-1 && sign_ udoLl as t==l 

in_case =4; 

else % sign_udot==O 

in_case =5; 

end 

switch in_case 

% 

case 1 

% sign_udot==l && ( lasLsign_udot==O 11 

% .. lasLsign _ udot==l) 

% case positive voltage rate - ·use increasing 

3 hysteresis curve data "zeroth" 

3 

al=u; 

be=be_last; 

3 if u in index of alpha , set f (index )=1 

f=lk_up_O (: ,l)==u; 

3 

Y-U=-le6; 

3 loop through elements 
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for q=l:numel ( lk_up_O (: , 1)) 

end 

% if f (element )==1, then current 

% u found in alpha 

if f ( q)==l 

end 

% y ( u , bet a_ ( k ) ' ) = Xab ( a 1 p ha ) 

y _u=lk_up_O ( q, 3) ; 

% check if y_u is dummy output 

% (u not in lookup table) 

if y _u=-le6 

end 

% lo c ate lower bound index of alpha 

[ trash , m] =max ( 1 k _up _ 0 ( : , 1 ) < = u ) ; 

o/an=m-1 ; 

% locate upper bound index of alph a 

[ tr a sh , n J =min ( 1 k _up _ 0 ( : , 1 ) > u ) ; 

n=n-1 ; 

y_u=interpolate_ln_aLbe (al , lk_up_O (m, 1) , 

.. 1 k -up_ o ( m, 3 ) ' 1 k _up_ o ( n ' 1 ) ' 

.. lk_up_O(n , 3)); 

% sum_y stays same since no change in 

% voltage rate direction 

if sign_chk_last==l 11 sign_chk_last==O 

sum_y=sum_y _last; 

else 3 sign_chk_last=-1 
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sum_y=y _last ; 

end 

sign_chk =1; 

% add new position to sum_y 

y=sum_y+(y_u-y _be_last); 

% y=sum_y+y _u ; 

% lower, beta position from path stays constant 

y _be=y _be _last ; 

% alpha position gets updated for current position 

y_al=y; 

case 2 

% sign_udot==l && sign_udoLlast=-1 

% case positive voltage rate - use increasing 

% hysteresis curve data "zeroth" 

% 

al=u; 

be=be_last; 

% if u in index of alpha, set f(index)=l 

f2=lk_up_Q (: ,l)==U; 

% 

y_u=-le6; 

% loop through elements 

for q=l:numel(lk_up_O (: ,1)) 

% if f (element )==1, then current 

% u found in alpha 
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end 

if f2 ( q)==l 

end 

% y(u, beta_(k) ') = Xab(alpha) 

y_u=lk_up_O (q,3); 

% check if y_u is dummy output 

% (u not in lookup table) 

if y _u==-le6 

end 

% locate lower bound index of alpha 

[ trash , m) =max ( 1 k _up _ 0 ( : , 1 ) < = u ) ; 

o/m=m-1; 

% locate upper bound index of alpha 

[trash ,n)=min( lk_up_O (: ,1) >u); 

n n-1; 

y_u=interpolate_ln_aLbe (al, lk_up_O (m, 1) 

. . , 1 k _up_ o ( m, 3 ) , 1 k _up_ o ( n , 1 ) , 

.. lk_up_O(n,3)); 

% sum_y adds first order reversal curve 

% between alpha and beta for change in 

% voltage rate direction 

sum_y=y _last ; 

sign_chk=l; 

% add new position to sum_y 

y=sum_y+(y_u-y _be_last); 

3 lower, beta position from path stays constant 
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y _be= y _last ; 

% alpha position gets updated for current position 

y _al=y; 

case 3 

% sign_udot==-1 && 

% .. ( s i g n _ u d o L 1 as t ==0 11 s i g n _ u d o L 1 as t ==-1) 

% case positive voltage rate - use decreasing 

% hysteresis curve data "first" 

% 

al=aLlast; 

be-u; 

% if last alpha in lookup table , set f ( index)=l 

f3=lk_up_l (: ,1)== aLlast; 

% 

% initialize beta_temp and dX_temp for coming loop 

% since EML doesnot support dynamically sized 

% arrays. Either can not have morethan 11 elements 

3 (beta range 10->0 V) 

beta_temp=be_in; 

dX_temp=dX_in; 

y _u=-le6; 

3 loop through elements 

k=O· 
' 

for q=l:numel(lk_up_l (: ,1)) 

3 if f (element)==l, then last 
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end 

3 

3 alpha in lookup table 

if f3 ( q)==l 

k=k+l; 

end 

beta_temp (k)=lk_up_l ( q, 2); 

dX_temp(k)=lk_up_l (q,5); 

3 now look up u in beta column of lk_up_Ltemp 

if beta_temp(lr=-le6 

end 

f3 _ l=beta_temp (: )==u; 

for p=l:numel (beta_ temp) 

end 

3 if f(element)==l, then 

3 current u found in alpha 

if f3_1 (p)==l 

end 

3 y ( u , bet a_ ( k ) ' ) = Xab ( a 1 p ha ) 

y _u=dX_temp ( p); 

3 check if y_u produced no output 

if y _u=-le6 

[ alO , beO , dXO, all , bel , dXl, al2 , be2 , 

. . dX2 , a 13 , be3 , dX3] = fi n d v e r t i c i e s ( u , a L 1 as t , 

. . lk_up_O , lk_up_l , beta_temp , dX_temp); 
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if dX1=-le6 && al3=al0 

y _u=in terpola t e _ln _al_ be 

.. ( be , beO , dXO, be3 , dX3) ; 

elseif dX1=-le6 && al3-=al0 

y _u=i n t er po 1 ate_ tr_ a Lb e (al , be , 

.. alO, beO ,dXO, al2, be2 ,dX2, al3, be3 ,dX3); 

elseif dXi-=-le6 && al3=al0 

y_u=interpolate_ln_al_be(be,beO, 

.. dXO , be3 , dX3 ) ; 

else 

y_u=interpolate_sq_aLbe (al, be, alO, beO , 

. . dXO, al 1 , bel , dXl, al2 , be2 , dX2, al3 , be3 , dX3); 

end 

end 

3 

3 sum_y adds first order 

3 between alpha and beta 

3 voltage rate direction 

if sign _chk _las t==-1 II 
sum_y=sum_y _last ; 

else 3 sign_chk_last==l 

reversal curve 

for change in 

sign _ch k _las t==O 

sum_y=sum_y _last+(y _aLlast-y _be_last); 

end 

sign_chk=-1; 

3 add new position to sum_y 

y=sum_y-y _u; 
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% 

% lower, beta position from path stays constant 

y_al=y_aLlast; 

% alpha position gets updated for current position 

y_be=y; 

case 4 

% sign_udot==-1 && sign_udoLlast==l 

% ca se positive volt a ge rate - use decreasing 

% hysteresis curve data "first" 

% 

al= a Llast; 

be u; 

% if last alpha in lookup table , set f ( index)=l 

f4=lk_up_l (: ,1)== aLlast; 

% 

% initialize beta_temp and dX_temp for commg loop 

% since EML does not support dynamically sized 

% arrays. Either can not have more than 11 

% elements (beta range 10-> 0 V) 

beta_temp=be_in; 

dX_temp=dX_in; 

3 loop through elements 

k=O; 

y_u=-le6; 

for q=l:numel ( lk_up_l (: , 1)) 

3 if f (element)==l, then last 
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end 

% 

% alpha in lookup table 

if f4(q)==l 

k=k+l; 

end 

beta_temp (k)=lk_up_l ( q, 2); 

dX_temp (k)=lk_up_l ( q, 5); 

% now look up u in beta column of lk_up_Ltemp 

if beta_temp(lr=-le6 

end 

%% resize beta_temp and dX_temp to right size 

f 4 _ l=beta_temp (: )==u; 

for p=l:numel(beta_temp (: ,1)) 

% if f(element)==l, then 

end 

% current u found in alpha 

if f4_1 (p)==l 

end 

% y ( u , bet a_ ( k) ' ) = Xab ( a 1 p ha ) 

y _u=dX_temp ( p); 

% check if y_u produced no output 

if y _u--le6 

[ alO , beO , dXO, all , bel , dXl, al2 , be2 , 

.. dX2, al3, be3 ,dX3]=findverticies (u, aLlast , lk_up_O, 

.. lk_up_l , beta_temp, dX_temp); 
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if dX1=-le6 && al3=al0 

y_u=interpolate_ln_aLbe (be, beO, 

.. dXO , be3 , dX3 ) ; 

elseif dX1=-le6 && al3-=al0 

y_u=interpolate_tr_aLbe (al, be, alO, 

.. beO , dXO , al 2 , 

.. be2 , dX2, al3 , be3 , dX3) ; 

elseif dXi-=-le6 && al3=al0 

y_u=interpolate_ln_al_be(be,beO, 

.. dXO , be3 , dX3) ; 

else 

y_u=interpolate_sq_aLbe (al , be, alO, 

.. beO , dXO, all , bel, dXl, al2 , be2, dX2 , al3 , be3, dX3); 

end 

end 

3 

3 sum_y adds first order reversal curve between 

3 alpha and beta for change in 

3 voltage rate direction 

sum_y=sum_y _last+(y _aLlast -y _be_last); 

sign_chk=-1; 

3 add new position to sum_y 

y=sum_y-y _u; 

3 lower, beta position from path stays constant 

y _al=y _al_last; 

3 alpha position gets updated for current position 
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% 

y _be y; 

otherwise 

% case zero voltage rate - keep output same 

sum_y=sum_y _last; 

y _al=y _aLlast; 

y_be=y_be_last; 

y=y _last; 

al=aLlast; 

be=be_last; 

sign_chk=sign_chk_last; 

end 

% 

% 

function [ alO , beO, dXO, all , bel , dXl, al2 , be2, dX2 , al3 , be3, dX3]= 

.. f i n d v e r t i c i e s ( u , a _last , 1 k _up_ O , 1 k _up_ l , b t , dX t ) 

% determination of vertex locations for first order curves 

% determines if alpha/beta in square or triangle 

% 

aLlo=-le6 · 
' 

%aLhi=-le6 · 
' 

f==lk_up_O (: ,1)== a_last; 

3 loop through elements 

for q=l:numel( lk_up_O (:, 1)) 

3 if f(element)==l, then last alpha rn lookup table 
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end 

% 

if f ( q)==l 

aLlo=lk_up_O ( q, 1); 

end 

if aLlo--le6 

else 

end 

3 

% find lower bound of alpha corresponding to last alpha 

[ trash , m] =max ( 1 k _up _ 0 ( : , 1 ) < a _ l as t ) ; 

o/an=m-1; 

aLlo=lk_up_O (m, 1); 

% find upper bound of alpha corresponding to last alpha 

[trash ,n]=min( lk_up_O (: ,1) > a_last); 

n=n-1; 

aLhi=lk_up_O (n, 1); 

aLhi=aLlo; 

LaLlo=lk_up_l (: ,1)== aLlo; 

LaLhi=lk_up_l (: ,1)== aLhi; 

3 loop through elements 

k==O; 

3lk_up_l_al_lo=ones(l ,ll)*le-6; 

be_aLlo_ temp=bt; 

dX_aLlo_temp=dXt; 

for q=l:numel(lk_up_l (: ,1)) 
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end 

% if f(element)==l, then last alpha rn lookup table 

if LaLlo (q)==l 

k=k+l; 

end 

%lk_up_l_aLlo (k,:)=lk_up_l (q,:); 

be_aLlo_temp (k)=lk_up_l ( q, 2); 

dX_aLlo_temp (k)=lk_up_l ( q, 5); 

% resize 

%1Lup_LaLlo=lk_up_l_aLlo (l:k); 

k=O; 

%1 k_ up_ La L hi =ones ( 1 , 11 ) * 1 e - 6; 

be_al_hi_temp=bt; 

dX_aLhi_temp=dXt; 

for q=l:numel( lk_up_l (:, 1)) 

end 

3 if f( element)==l, then last alpha 'in lookup table 

if LaLhi ( q)==l 

k=k+l; 

end 

%1 k _up _ 1 _a L hi ( k , : ) = 1 k _up_ l ( q , : ) ; 

be_al_hi_temp (k)=lk_up_l ( q, 2); 

dX_al_hi_temp (k)=lk_up_l ( q, 5); 

%lk_up _ LaLhi=lk _up_ l _aLhi ( 1: k); 

% 
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% find ( alpha_low, beta_low) corresponding to last alpha 

% and current input 

[trash ,m]=max( be_aLlo_temp <=u); 

%n==m-l; 

be_lo_aLlo=be_aLlo_temp (m); 

dX-be_lo_aLlo=dX_aLlo_temp (m); 

% 
% find ( alpha_hi , beta_low) corresponding to last alpha 

% and current input 

[trash ,ml]=max( be_aLhi_temp < u); 

o/dlll=ml - 1 ; 

be_lo _aLh i=be_aLhi_temp (ml); 

dX_be_lo_aLhi=dX_aLhi_temp (ml); 

% find ( alpha_hi , beta_hi) corresponding to last alpha 

% and current input 

[trash , nl ]=min ( be_aLhi_temp >u); 

nl=nl-1 ; 

be_hi_aLhi=be_aLhLtemp (nl); 

dX_be_hi_aLhi=dX_aLhi_temp (nl); 

% 

3 before finding ( alpha_lo , beta_hi) need to determine 

3 if in square or triangle grid 

if be_lo_al_lo==max( be_aLlo_temp) 

% IN A TRIANGLE! ! ! 

% within triangle grid! 

% grid location 0 
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else 

alO=aLlo; 

beO=be_lo_aLlo; 

dXO=dX_be _lo_aLlo; 

% grid location 2 

al2=aLhi; 

be2=be_lo_aLhi; 

dX2=dX_be_lo_aLhi; 

% grid location 3 

al3=aLhi ; 

be3=be_hi_aLhi; 

dX3=dX_be_hi_aLhi; 

% grid location 2 - nonexistent!! 

all=-le6; 

bel=-le6; 

dX1=-le6; 

% IN A SQUARE!!! 

% find ( alpha_lo, beta_hi) corresponding to last 

% alpha and current input 

[trash , n]=min ( be_aLlo_temp >u); 

n=n-1; 

be_hi_al_lo=be_aLlo_temp (n); 

dX_be_hi_aLlo=dX_aLlo_temp (n); 

3 

3 grid location 0 

alO=aLlo; 
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end 

% 

beO=be_lo_aLlo; 

dXO=dX _be _lo_aLlo; 

% grid location 1 

all=aLlo; 

bel=be_hi_aLlo ; 

dXl=dX_be_hi_aLlo; 

% grid location 2 

al2=aLhi; 

be2=be_lo_aLhi; 

dX2=dX_be_lo_aLhi; 

% grid location 3 

al3=aLhi; 

be3=be _hi_aLhi ; 

dX3=dX_be_hi_aLhi; 

function xab=interpolate_s·q_aLbe (alp, bep, alO, beO ,dXO, 

.. all, bel ,dXl, al2, be2 ,dX2, al3, be3 , dX3) 

3 function to calculate X value for square verticies 

3 xab=dXO / ( ( al3-al0) * ( be3-be0)) * ( al3-alp) * ( be3-bep) . . . 

3 +<lXl / ( ( al3-al0) * ( be3-be0)) * ( alp-al2) * ( be2-bep) .. . 

3 +<lX2 / ( ( al3-a10) * ( be3-be0)) * (all-alp)* ( bep-bel) . . . 

3 +<lX3 / ( ( al3-al0) * ( be3-be0)) * ( alp-alO) * ( bep-beO); 

dX_lo=(bel-bep) / ( bel-beO) *dXO+(bep-beO) / ( bel-beO) *dXl; 

dX_hi=(be3-bep) / ( be3-be2) *dX2+(bep-be2) / ( be3-be2) *dX3; 
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xab=( al3-alp) / ( al3-al0) * dX_lo+( alp-alO) / ( al3-al0) * dX_hi; 

% 
function xab=interpolate_tr_aLbe (alp, bep, alO, beO ,dXO, 

.. al2, be2 ,dX2, al3, be3 ,dX3) 

% function to calculate X value for triangle verticies 

% xab=dXO / ( aLbe_para ( 3) * aLbe_para ( 6)) * ( ( be3* al2-be2* al3) 

% .. +( al3-al2) * bep+(be2-be3) *alp ) ... 

% +dX2 / ( a Lb e _ p a r a ( 3 ) * a Lb e _ p a r a ( 6 ) ) * ( ( be 2 * a 10 - be 3 * a 10 ) 

% .. +( al0-al3) * bep+(be3-be0) *alp ) ... 

% +dX3 / ( a Lb e _par a ( 3 ) * a Lb e _ p a r a ( 6 ) ) * ( ( be 2 * a 13 - be 0 * a 12 ) 

% .. +( al2-al0) * bep+(be0-be2) *alp); 

dX_le=dXO-( ( dXO-dX2) * ( alO-alp) / ( al0-al2 ) ) ; 

dX_ri=dXO-( ( dXO-dX3) * ( alO-alp) / ( a10-al3 ) ) ; 

be_le =( alp-alO) * ( be2-be0) / ( al2-al0 )+ beO; 

be _ri =( alp-alO) * ( be3-be0) / ( al3-al0 )+ beO; 

xab=dX_ri -(( dX_ri-dX_le) * ( be_ri-bep) / ( be_ri-be_le)); 

3 

3 

function xab=interpolate_ln_aLbe (alp, alO ,dXO, al3 ,dX3) 

3 function to calculate X value for triangle verticies 

xab=l/ ( al3-al0) * ( ( al3-alp) *dXO+( alp-alO) *dX3); 

This code was directly used for the estimation of parallel hysteresis for com

pensation. The block diagram showing this parallel hysteresis estimation being 

used for controlling another classical Preisach model is shown in Figure A.3. 
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Figure A.3. Simulink Model for Classical Preisach Hysteresis Parallel Feed-forward 
Estimation 

A.2.4 preisachinvfeedforward.mdl 

The model for simulating Classical Preisach series inverse hysteresis feedfor-

ward control is shown in Figure A.4. 

.....-

Figure A.4. Simulink Model for Classical Preisach Series Inverse Hysteresis Feed
forward Estimation 

On the left hand side of this model, the Preisach Inverse Hysteresis Estimator 

determines the inverse model of the Classical Preisach Hysteresis . The code for 

this block is shown below: 

function [ u, sum_u, al , y _al , be, y _be , sign_chk] 

invpreisach ( be_in, dX_in, lk_up_O , lk_up_l ,y, 

138 



.. sign-ydot , sign_ydoLlast 

.. , u_last , sum_u_last, aLlast , y _aLlast , be_last 

· .. , y_be_last , sign_chk_last) 

% This block supports the Embedded MA'ILAB subset. 

% See the help menu for details . 

% 
% determine the voltage input case 

if sign_ydot==l && ( sign_ydoLlast==O 11 sign_ydoLlast==l) 

in_case =1; 

e lsei f sign_ydot==l && sign _y doLl as t--1 

in_c ase =2; 

else if sign_ydot==-1 && ( sign_ydoLlast==O 11 

.. sign _ydoLlas t==-1) 

in_case =3; 

else if sign_ydot==-1 && sign _ydoLlas t==l 

in_case =4; 

else 3 sign_ydot==O 

in_case =5; 

end 

switch in_case 

% 

case 1 

3 sign_ydot==l && ( lasLsign_ydot==O 11 

.. lasLsign _ydot ==1) 

3 case positive voltage rate - use increasing 
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% hysteresis curve data "zeroth" 

% 

y_al y; 

y _be=y _be_last; 

% if u in index of alpha, set f (index)=l 

f=lk_up_O (: ,3)==y; 

% 

u_y=-le6; 

u_lin=-le6; 

u_sq=-le6; 

u_tr=-le6; 

% loop through elements 

for q=l:numel(lk_up_O (: ,3)) 

% if f(element)==l, then current 

% u found in alpha 

end 

if f ( q)==l 

end 

% y(u, beta_(k) ' ) 

u_y=lk_up_O(q,1); 

u_lin=O; 

u_sq =0; 

u_tr=O; 

Xab( alpha) 

% check if y_u is dummy output 

% (u not in lookup table) 

if u_y=-le6 
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end 

3 locate lower bound index of alpha 

[ trash , m) =max ( 1 k _up _ 0 ( : , 3) < = y ) ; 

o/an=m-1; 

3 locate upper bound index of alpha 

[ trash , n] =min ( 1 k _up _ 0 ( : , 3 ) > y ) ; 

n n-1; 

u_y=interpolate_ln_aLbe (y_al, lk_up_O (m,3) , 

.. lk_up_O (m, 1) , lk_up_O (n, 3) , lk_up_O (n, 1)); 

u_lin=u_y; 

u_sq =0; 

u_tr=O; 

3 sum_y stays same since no change in voltage 

3 rate direction 

if sign_chk_last==l 11 sign_chk_last==O 

sum_u=sum_u_last; 

e 1 s e 3 s i g n _ c h k _ l as t ==-1 

sum_u=u_last; · 

end 

sign_chk =1; 

3 add new position to sum_y 

u=Sum_u+(u_y-be_last); 

3 lower, beta position from path stays constant 

be=be _last ; 

3 alpha position gets updated for current position 

al u; 
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% 

y _alO =0; 

beO=O; 

dXO=O; 

y _al 1 =0; 

bel=O; 

dXl=O; 

y_al2=0; 

be2=0; 

dX2=0; 

y _al3 =0; 

be3=0 ; 

dX3=0; 

case 2 

3 sign_ydot==l && sign_ydoLlast=-1 

3 case positive position rate - use increasing 

3 hysteresis curve data "zeroth" 

y _al=y; 

y _be= y _be_ last ; 

3 if u in index of alpha, set f ( index)=l 

f2=lk_up_O (: ,3 )==y; 

3 

u_y=-le6; 

u_lin=-le6 ; 

u_sq=-le6; 

u_tr=-le6; 
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% loop through elements 

for q=l:numel(lk_up_O (: ,3)) 

end 

% if f (element )==1, then current 

% u found in alpha 

if f2 ( q)==l 

end 

% y(u, beta_(k) ' ) = Xab(alpha) 

u_y=lk_up_O ( q, 1); 

u_lin=O; 

u_sq =0; 

u_tr=O; 

% check if y_u is dummy output 

% (u not in lookup table) 

if u_y=-le6 

% locate lower bound index of alpha 

[trash ,m]=max( lk_up_O (: ,3) <=y); 

o/m=m-1; 

% locate upper bound index of alpha 

[trash ,n]=min( lk_up_O (: ,3) >y); 

n n-1; 

u_y=interpolate_ln_al_be (y_al, lk_up_O (m,3) , 

.. 1 k _up_ o ( m, 1 ) , 1 k _up_ o ( n , 3) , 1 k _up_ o ( n , 1 ) ) ; 

u_lin=u_y; 

u_sq=O; 

u_tr =0; 
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end 

% sum_u adds first order reversal curve between 

% alpha and beta for change in 

% position rate direction 

% sum_y=y _be_last; 

sum_u=u_last; 

sign_chk =1; 

% sum_y=sum_y_last+y_be_last; 

% add new position to sum_y 

u=sum_u+(u_y-be_last); 

% lower, beta position from path stays constant 

be=u_last; 

% alpha position gets updated for current position 

al=u; 

y _alO =0; 

beO=O ; 

dXO=O; 

y _all =0; 

bel=O; 

dXl=O; 

y _al2 =0; 

be2=0; 

dX2=0; 

y _al3 =0; 

be3=0; 

dX3=0; 
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% 

case 3 

3 sign_ydot==-1 && ( sign_ydoLlast==O 

3 11 s i g n -Y d o L 1 as t ==-1) 

3 case negative position rate - use decreasing 

3 hysteresis curve data "first" 

3 

y _al=y _aLlast; 

y_be-y; 

3 if last alpha in lookup table, set f (index)=l 

f3=lk_up_l (: ,3)== y _aLlast; 

3 

3 initialize beta_temp and dX_temp for coming loop 

3 since EML does not support dynamically sized 

3 arrays. Either can not have more 

3 than 11 elements (beta range 10->0 V) 

beta_temp=be_in; 

dX_temp=dX_in; 

u_y=-le6; 

u_lin=-le6; 

u_sq=-le6; 

u_tr=-le6; 

y _alO=O; 

beO=O; 

dXO=O; 

y _all =0; 
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bel=O; 

dXl=O; 

y _al2 =0; 

be2=0; 

dX2=0; 

y _al3 =0; 

be3=0; 

dX3=0; 

% loop through elements 

k=O; 

for q=l:numel(lk_up_l (: ,3)) 

end 

% 

% if f(element)==l, then last 

% alpha in lookup table 

if f3 ( q)==l 

k=k+l; 

end 

beta_temp (k)=lk_up_l ( q, 6); 

dX_temp (k)=lk_up_l ( q, 4); 

% now look up u in beta column of lk_up_Ltemp 

if dX_temp(lr=-le6 

f3 _ l=dX_temp(: )==y; 

for p=l:numel(dX_temp) 

% if f (element )==1, then current 
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end 

end 

% u found in alpha 

if f3_1 (p)==l 

end 

% y(u, beta_(k) ') - Xab(alpha) 

u_y=beta_temp ( p); 

u_lin=O; 

u_sq =0; 

u_tr=O; 

% check if y_u produced no output 

if u_y==-le6 

[ y _alO , beO, dXO, y _all , bel , dXl, 

.. y_al2, be2 ,dX2, y_al3, be3 ,dX3] 

. . =findverticies(y,y_aLlast , lk_up_O , 

.. lk_up_l , beta_temp, dX_temp); 

if bel=-le6 && y _al3=y _al0 

u_y=interpolate_ln_aLbe (y_be ,dXO, 

. . beO , dX3 , be3 ) ; 

u_lin=u_y; 

u_sq =0; 

u_tr=O; 

e 1 s e if bel=-le6 && y _al3-=y _alO 

u _ y= i n t e r p o 1 at e _ t r _a Lb e ( y _a 1 , y _be , y _a 10 , 

.. beO ,dXO, y_al2, be2 ,dX2, y_al3, be3 , dX3); 

u_lin=O; 
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end 

3 

u_sq =0; 

u_tr=u_y; 

elseif bel-=-le6 &k y_al3=y_al0 

u_y=interpolate_ln_al_be(y_be,dXO, 

.. beO , dX3, be3 ) ; 

else 

end 

u_lin=u_y; 

u_sq =0; 

u_tr=O; 

u_y=interpolate_sq_aLbe (y_al, y_be, y_alO, 

.. beO ,dXO, y_all, bel ,dXl, y_al2, be2 ,dX2, 

.. y _al3 , be3, dX3); 

u_lin=O; 

u_sq=u_y; 

u_tr =0; 

3 sum_y adds first order reversal curve between 

3 alpha and beta for change 

3 in voltage rate direction 

if sign_chk_last==-1 11 sign_chk_last==O 

sum_u=sum_u_last; 

else 3 sign_chk_last==l 

sum_u=sum_u_last+( aLlas t -be _last ) ; 

end 

148 



3 

sign_chk=-1; 

% add new position to sum_y 

u=sum_u-u_y; 

% lower , beta position from path stays constant 

al=aLlast; 

% alpha position gets updated for current position 

be u; 

case 4 

% sign_ydot==-1 &k sign_ydot_last==l 

% case positive position rate - use decreasing 

% hysteresis curve data "first" 

% 

y_al=y_aLlast; 

y_be=y; 

% if last alpha in lookup table , set f ( index)=l 

f4=lk_up_l (: ,3)== y _aLlast; 

% 

% initialize beta_temp and dX_temp for coming loop 

% since Erv1L does not support dynamically sized 

% arrays. Either can not have more 

% than 11 elements # (beta range 10->0 V) 

beta_temp=be_in; 

dX_temp=dX_in ; 

% loop through elements 

k=O; 
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u_y=-le6; 

u _lin=-le6; 

u_sq=-le6; 

u_tr=-le6; 

y_alO=O; 

beO=O; 

dXO=O; 

y _al 1 =0; 

bel =0; 

dXl=O; 

y _al2 =0; 

be2=0; 

dX2=0; 

y _al3 =0; 

be3=0; 

dX3=0; 

for q=l:numel ( lk_up_l (: , 3)) 

end 

% 

% if f(element)==l, then last 

% alpha in lookup table 

if f 4 ( q)==l 

k=k+l; 

beta_temp (k)=lk_up_l ( q, 6); 

dX_temp (k)=lk_up_l ( q, 4) ; 

end 
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% now look up u in beta column of lk_up_l _temp 

if dX_temp(lt=-le6 

end 

%% resize beta_temp and dX_temp to right size 

f4_l=dX_temp(:)==y; 

for p=l:numel(dX_temp(: ,1)) 

end 

% if f (element )==1, then current 

% u found in alpha 

if f4_1 (p)==l 

end 

% y(u, beta_(k) ') 

u_y=beta_temp ( p); 

u_lin=O; 

u_sq =0; 

u_tr=O; 

Xab(alpha) 

% check if u_y produced no output 

if u_y=-le6 

[y_alO, beO ,dXO, y_all, bel ,dXl, y_al2, be2 ,dX2, 

.. y _al3 , be3, dX3)= 

.. findverticies(y,y_al_last ,lk_up_O ,lk_up_l, 

.. beta_temp , dX_temp); 

if bel=-le6 &,& y _al3=y _alO 

u_y=interpolate_ln_al_be(y_be,dXO, 

.. beO , dX3, be3 ) ; 

u_lin=u_y; 
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end 

3 

u_sq =0; 

u_tr=O; 

elseif bel=-le6 && y _al3-=y _al0 

u_y=interpolate_tr _aLbe (y_al, y_be, y_alO , 

.. beO ,dXO, y_al2, be2 ,dX2, y_al3, be3 ,dX3); 

u_lin=O; 

u_sq =0; 

u_tr=u_y; 

elseif bei-=- le6 && y_al3=y_al0 

u_y=interpolate_ln_al_be(y_be,dXO , 

.. beO , dX3, be3 ) ; 

else 

end 

u_lin=u_y; 

u_sq =0; 

u_tr=O; 

u_y=interpolate_sq_aLbe (y_al, y_be, y_alO , 

. . beO ,dXO, y_all, bel ,dXl, y_al2, be2 ,dX2, 

.. y_al3 , be3 ,dX3); 

u_lin=O; 

u_sq=u_y; 

u_tr=O; 

3 sum_y adds first order reversal curve between 

3 alpha and beta for change in 
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% 

3 voltage rate direction 

sum_u=sum_u_last+(aLlast-be_last); 

sign_chk=-1; 

3 add new position to sum_y 

u=sum_u-u_y; 

3 lower , beta position from path stays constant 

al=aLlast; 

3 alpha position gets updated for current position 

be=u; 

otherwise 

3 case zero voltage rate - keep output same 

sum_u=sum_u_last; 

y _al=y _aLlast; 

y _be=y _be_last; 

u=u_last; 

al=aLlast; 

be=be _last ; 

sign_chk=sign_chk_last; 

u_y=O; 

u_lin=O; 

u_sq =0; 

u_tr=O; 

y _alO =0; 

beO=O; 

dXO=O; 
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end 

% 

% 

y _all =0; 

bel=O; 

dXl=O; 

y _al2 =0; 

be2=0; 

dX2=0; 

y _al3 =0; 

be3=0; 

dX3=0; 

function [ y _alO , beO, dXO , y _al 1 , bel, dXl, 

.. y_al2, be2 ,dX2, y_al3, be3 ,dX3] 

.. = f i n d v e r t i c i e s ( y , y _a_ l as t , 1 k _up_ O , 1 k _up_ l , b t , dX t ) 

% determination of vertex locations for first order curves 

% determines if alpha/be'ta in square or triangle 

% 

y _aLlo=-le3; 

%aLhi=-le6; 

f=lk_up_l (: ,3)== y _a_last; 

% loop through elements 

for q=l:numel(lk_up_l (: ,3)) 

% if f (element )==1, then last alpha rn lookup table 

if f ( q)==l 
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y _aLlo=lk_up_l ( q, 3); 

end 

end 

% 

if y _aLlo=-le3 

else 

end 

% 

% find lower bound of alpha corresponding to last alpha 

[trash ,m)=max( lk_up_l (: ,3) < y _a_last); 

o/m=m-1; 

y _aLlo=lk_up_l (m, 3); 

% find upper bound of alpha corresponding to last alpha 

[trash, n]=min( lk_up_l (: ,3) > y _a_last); 

n n-1; 

y_al_hi=lk_up_l(n,3); 

y _aLhi=y _aLlo; 

LaLlo=lk_up_l (: ,3)== y _aLlo; 

LaLhi=lk_up_l (: ,3)== y _aLhi; 

% loop through elements 

k=O; 

be_aLlo_temp=bt; 

aLaLlo_temp=bt; 

dX_aLlo_temp=dXt; 

for q=l:numel(lk_up_l (: ,3)) 

% if f (element )==1, then 1 as t alpha rn lookup table 
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end 

if LaLlo (q)==l 

k=k+l; 

end 

% get alpha for later check that not multiple 

% values of alpha in table 

aLaLlo_temp (k)=lk_up_l ( q , 1); 

% dX_aLlo_temp (k)=lk _up_l ( q, 5); 

% get last (lowest value of alpha rn aLaLlo_temp) 

aLlotemp=aLaLlo_temp (k); 

LaLaLlo=lk_up_l ( : ,1)== aLlotemp; 

% 

k=O; 

for q=l:numel(lk_up_l (: ,3)) 

% if f (element )==1 , then 1 as t alpha in lookup table 

if LaLaLlo (q)==l 

k=k+l; 

be_aLlo_temp (k)'=lk_up_l ( q, 6); 

dX_aLlo_temp (k)=lk_up_l ( q, 4); 

end 

end 

% resize 

k=O; 

be_al_hi_temp=bt; 

dX_aLhLtemp=dXt; 
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for q=l:numel(lk_up_l (: ,3)) 

end 

% 

% if f (element )==l, then 1 as t alpha rn lookup table 

if LaLhi ( q)==l 

k=k+l; 

end 

be_al_hi_temp (k)=lk_up_l ( q, 6); 

dX_aLhi_temp (k)=lk_up_l ( q, 4); 

% find ( alpha_low, beta_low) corresponding to last alpha 

% and current input 

%[trash ,m]=max( dX_aLhi_temp< y); 

[trash ,m]=max( dX_aLlo_temp< y); 

o/m=m-1; 

be_lo_aLlo=be_aLlo_temp (m); 

dX_be_lo_aLlo=dX_aLlo_temp (m); 

% 

% find ( alpha_hi , beta_low) corresponding to last alpha 

% and current input 

%[trash ,ml]=max( dX_aLhi_temp<--y); 

[trash ,ml]=max( dX_aLhi_temp< y); 

%nl=ml-l 

be_lo_aLhi=be_aLhi_temp (ml); 

dX_be_lo_aLhi=dX_aLhi_temp (ml); 

% find ( alpha_hi, beta_hi) corresponding to last alpha 
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% and current input 

[trash , nl]=min ( dX_aLhi_temp>y); 

nl=nl-1; 

be_hi_aLhi=be_aLhi_temp (nl); 

dX_be_hi_aLhi=dX_aLhi_temp (nl); 

% 

% before finding ( alpha_lo, beta_hi) need to determine 

% if in square or triangle grid 

if dX_be_lo_aLlo==max( dX_aLlo_temp) 

% IN A TRIANGLE! ! ! 

% within triangle grid! 

% grid location 0 

y _alO=y _aLlo; 

beO= be_ lo_ a L 1 o ; 

dXO=dX_be_lo_aLlo; 

% grid location 2 

y _al2=y _aLhi; 

be2=be_lo_aLhi; 

dX2=dX_be_lo_al_hi; 

% grid location 3 

y _al3=y _aLhi; 

be3=be_hi_aLhi; 

dX3=dX_be_hi_aLhi; 

% grid location 2 - nonexistent!! 

y _all=-le6; 

bel=-le6; 
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else 

dX1=-le6; 

3 IN A SQUARE!!! 

3 find ( alpha_lo, beta_hi) corresponding to last alpha 

3 and current input 

[trash , n]=min ( dX_aLlo_temp>y); 

n n-1; 

be_hi_aLlo=be_aLlo_temp (n); 

dX_be_hi_aLlo=dX_aLlo_temp (n); 

3 

3 grid location 0 

y _alO=y _aLlo; 

beO=be_lo_aLlo; 

dXO=dX_ be_lo_aLlo; 

3 grid location 1 

y _all=y _aLlo; 

bel=be_hi_aLlo; 

dXl=dX_be_hi_aLlo; 

3 grid location 2 

y _al2=y _aLhi ; 

be2=be_lo_aLhi; 

dX2=dX_be_lo_aLhi; 

3 grid location 3 

y _al3=y _aLhi; 

be3=be_hi_aLhi; 

dX3=dX_be_hi_aLhi; 
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end 

% 

function uab=interpolate_sq_aLbe (y_alp, y_bep, y_alO, 

.. beO ,dXO, y_all, bel ,dXl, y_al2, be2 ,dX2, y_al3 , be3 ,dX3) 

be _al _lo =(dXl-y _bep) / ( dXl-dXO) * beO+ 

.. ( y _bep-dXO) / ( dXl-dXO) * bel; 

be_al_hi=(dX3-y_bep)/(dX3-dX2)*be2+ 

.. ( y _bep-dX2) / ( dX3-dX2) * be3 ; 

uab=(y _al3-y _alp)/ ( y _al3-y _al0 )* be_aLlo+ 

.. ( y _alp-y _al 0) / ( y _al3-y _al 0) *be _al_h i ; 

% 

function uab=interpolate_tr _aLbe (y_alp, y_bep, y_alO, beO ,dXO 

.. , y_al2 , be2 ,dX2, y_al3, be3 ,dX3) 

be_le=be0-((be0-be2)*(y_al0-y_alp )/(y_al0-y_al2)); 

be _r i=beO -( ( be0-be3) * ( y _al 0-y _alp)/ ( y _alO-y _al 3 ) ) ; 

dX_le=(y _alp-y _alO) * ( dX2-dXO) / ( y _al2-y _alO )+dXO; 

dX_ri=(y _alp-y _alO) * ( dX3-dXO) / ( y _al3-y _al0 )+dXO; 

uab=be_ri -((be_ri-be_le )*( dX_ri-y_bep )/( dX_ri-dX_le)); 

% 

function uab=interpolate_ln_aLbe (y_alp, y_alO, beO, 

.. y _al3 , be3) 

% function to calculate X value for triangle verticies 

uab=l/ ( y _al3-y _alO) * ( ( y _al3-y _alp)* beO+(y _alp-y _alO) * be3); 
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