
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

1981 

Systematic Analysis of Algorithms Systematic Analysis of Algorithms 

Lyle A. Anderson III 
University of Rhode Island 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Anderson, Lyle A. III, "Systematic Analysis of Algorithms" (1981). Open Access Master's Theses. Paper 
1167. 
https://digitalcommons.uri.edu/theses/1167 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1167?utm_source=digitalcommons.uri.edu%2Ftheses%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


SYSTEMATIC ANALYSIS 

OF 

ALGORITHMS 

BY 

LYLE A. ANDERSON, III 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

COMPUTER SCIENCE 

UNIVERSITY OF RHODE ISLAND 

1981 



MASTER OF SCIENCE THESIS 

OF 

LYLE ALLEN ANDERSON, III 

Approved: 

Thesis Committee 

Major Professor u~ a . L~c 

z::::tti:::zf~ 
d!lz:2d__ 

Dean of the Graduate School 

UNIVERSITY OF RHODE ISLAND 

1981 



ABSTRACT 

SYSTEMATIC ANALYSIS 

OF 

ALGORITHMS 

The limits and methods involved in the systematic analysis 

of algorithms are explored. A review of the existing work 

in this field is presented. A specific method of systematic 

analysis is developed. The method consists of (1) the 

translation of algorithm loop structures into recursive 

subroutines and recursive subroutine references, and (2) the 

semantic manipulation of expressions representing the joint 

probability distribution function of the program variables. 

A new delta function is introduced to describe the effects 

of conditional statements on the joint probability density 

function of the program variables. The method is applied to 

several simple algorithms, sorting and searching algorithms, 

and a tree insertion/deletion algorithm. 
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CHAPTER 1 

INTRODUCTION 

This chapter is divided into two parts. In the first 

part we will state and discuss the problem in computer 

science that will be addressed in the rest of the thesis. 

In the second part we will give an overview of the remaining 

chapters of the thesis. 

Statement of the Problem 

This thesis is concerned with the systematic analysis 

of algorithms. In order to understand what it is about, we 

must answer these three questions: 

1. What are algorithms? 

2. What is the analysis of algorithms? 

3. What is the systematic analysis of algorithms? 

We will also be discussing a fourth question: 

4. What are the limits of systematic analysis? 

This will involve a short discussion of: 
n 

a. Godel's Theorem 

b. The Halting Problem 

c. Characteristics of the Completeness Problem 

1 
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What are Algorithms? 

Horowitz and Sahni [7] give this definition of an 

algorithm: "Algorithm has come to refer to a precise method 

b a computer for the solution of a problem." In useable Y 

order to be considered an algorithm the method must have the 

following characteristics: 

1. A finite number of steps of one or more operations 

2. Each operation must be definite, i.e. unambigously 

defined as to what must be done 

3. Each operation must be effective, i.e. a person with 

pencil and paper or a Turing Machine must be able to 

perform each operation in a finite amount of time 

4. Produce at least one output 

5. Accept zero or more inputs 

6. Terminate after a finite number of operations 

What is the Analysis of Algorithms? 

Webster's New Collegiate Dictionary defines analysis as 

"an examination of a complex, its elements, and their rela-

tions n. In the analysis of an algorithm we are interested 

in the relationship between characteristics of the inputs 

and the performance characteristics of the algorithm. Fore-

most among these characteristics is the execution time of 

the algorithm; that is, the relationship between some sizing 

parameter of the input data and the amount of time it takes 

for the algorithm to get an answer. Other performance 
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parameters of interest include: 

1. Number of comparisons in sorting/searching 

algorithms 

2. Number of scalar multiplications/divisions in 

algebraic algorithms, such as matrix-matrix product 

3. Number of input/output operations required for 

problems dealing with database access 

4. Size of the computer memory required to solve a 

problem 

All of these performance parameters have one thing in 

common. They all can be transformed into the cost of com-

puting the answer. This is the reason that the analysis of 

algorithms is so important. Aside from its intellectual and 

recreational aspects, the economic aspects of the analysis 

of algorithms are important to the users of computer sys­

tems. Especially in the computer-based industries, time is 

money. An algorithm which takes twice as long to run may 

not only cost twice as much to run, but may not even get 

done in time to be useful. In other applications, accurate 

predictions of probable running times are needed before a 

system is actually built. These predictions can help make 

overall cost and feasibility estimates for a proposed system 

more accurate. In these kinds of applications the analysis 

of algorithms is a software engineering tool. Other poten-

tial uses are in automatic program synthesizers or in 

compiler systems for very high-level languages. [l] 
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In most cases the analysis of an algorithm consists of 

determining the time behavior of the algorithm. This is not 

the only measure of a program for which an analysis can be 

performed. An algorithm can be analyzed by "instrumenting" 

it, meaning that the values of the parameter of interest are 

recorded in a counter variable which is added to the algo-

ri thm. We often do this when analyzing for the time 

behavior of an algorithm. For this reason the analysis of 

different measures have a great deal in common with the ana-

lysis of time behavior. When we talk about the analysis of 

an algorithm, we will only be concerned with its time 

behavior unless otherwise stated. 

What is the Systematic Analysis of Algorithms? 

There are two basic ways to approach the analysis of 

algorithms. The first way is to approach each alogrithm as 

a separate new problem and to find the solution by appealing 

to previous experience with similar problems. The second 

way is to make up general rules which apply to "all" 

algorithms and to apply these rules step by step to the 

algorithm being studied. 

The first way is very suitable to humans who come 

equipped with a great deal of problem-solving and pattern-

recognition ability. It is not so well suited to the 

digital computers of today because they are not so equipped. 

The more systematic approach of the second way to analyze 

algorithms is better suited to implementation by digital 
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co11puters. we shall say that the human approach involves ad 

dures and the computer approach involves boC proce ' 

systematic procedures. 

What are the limits of Systematic Analysis? 

The gross limits of systematic or automatic algorithm 

analysis are known. 

1. We know that systems can be built which will analyze 

simple programs. (1,3,4] 

2. We know that no completely automatic system or com-

plete formal system can be constructed which can 

analyze all algorithms. This fact is firmly estab-

lished by computability theory. (15] 

In between the simple programs and all possible programs 

there is a lot of ground which can be covered. 

What We Can Do 

Wegbreit [l] has built a system which can analyze 

simple LISP programs automatically. Cohen and Zuckerman [3] 

have built a system which greatly aids in the analysis of 

algorithms written in an ALGOL-like programming language. 

Their system helps the analyst with the details of the 

analysis while requiring the analyst to provide the branch-

ing probabilities. Wegbrei t [2] developed a formal system 

for the verification of program performance. His technique 

can also be used to provide the branching probabilities 

which are needed. Recently, Ramshaw [5] has shown that 
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there are problems with Wegbrei t' s 

and has developed a formal system 

probabilistic approach 

which he calls the 

Frequency System. There are problems with the Frequency 

system, which Ramshaw points out in his thesis [5]. We will 

show that some of the problems in the Frequency System can 

be overcome. 

What We Cannot Do 

Douglas R. Hofstadter [15] gives a beautiful exposition 

of the nature of the • whole question of computability and 

decidability and the wide-ranging and unexpected topics upon 

which it touches. The formal study of this subject springs 

" from Godel's Theorem which Hofstadter paraphrases: 

"All consistent axiomatic formulations of number 
theory include undecidable propositions." 

The undecidability of the Halting Problem is an example 

of one such "undecidable proposition." Stated in terms of a 

Turing Machine, the Halting Problem is this: 

Can one construct . a Turing Machine which can decide 
whether any other Turing Machine will halt for any 
input, when given an input tape containing a 
description of the other Turing Machine and its 
input? 

A negative answer to this question was given in 1937 by 

Alan Turing. The argument which he used is called a diagonal . 

method. This method was discovered by Georg Cantor, the 

founder of set theory. It involves feeding a hypothetical 

Turing Machine, which could decide whether any other Turing 

Machine would halt for any input, a description of itse l f 

Which has been modified in a particularly diabolica l manner. 
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Hofstadter's book [15] devotes much of its 740 pages to the 

Of topics to which this method may be applied. 
variety 

It appears to us that undecidability and incompleteness 

creep into formal systems when statements which can be 

interpreted as being about the system itself are allowed. 

In our discussions we will try to avoid these kinds of 

questions, and thereby the completeness problem. 

Overview of the Thesis 

We have chosen to organize this thesis along the lines 

which were taken in the development of the research upon 

which it is based. We feel that the road taken is interest-

ing in and of itself. For this reason we will point out the 

•aead-ends" which periodically blocked our path. 

The first step which we took was a survey of the work 

which had been done in this field. In Chapter 2, we will 

discuss the current state of the art of algorithm analysis. 

We will point out t h e areas where results are firmly estab­

lished and the benefi .ts of particular procedures that are 

known. We will examine some of the recent advances both to 

see how they work and to d i scover the kinds of problems 

which they cannot solve. 

When this survey was completed we formulated a plan. 

The approach which we used was to start from the program 

statements themselves. We attempted to determine just how 

much could be l earned from manipulations of the programs 

using various translation schema. We restricted ourselves 
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to programs written in a "structured" 

developed by Horowitz and Sahni [ 7, 9] , 

language. SPARKS, 

was chosen as the 

language for representing algorithms for the same reasons 

they used it in their books. 

our initial work revealed a transformation which proved 

ff Ctl·ve i·n analyzing several deterministic algo­to be e e 

rithrns in a straight-forward manner. Chapter 3 describes 

this technique which involves the transformation of all 

looping structures of a program into a series of recursive 

subroutines and recursive subroutine calls. Because this 

process is designed to follow the syntax of the algorithm, 

we refer to this as a "syntax-directed translation." The 

program characteristic to be analyzed is selected, and the 

recursive program statements are transformed into recurrence 

equations. The analysis is done by solving the recurrence 

equations. This is not always easy [8]. For this reason we 

concerned ourselves with solving as well as setting up the 

recursions. 

In Chapter 3, we ·will examine some very simple, deter-

ministic algorithms (i.e. ones for which we know the inputs 

exactly), then some very simple probabilistic algorithms 

(i.e. ones where we only know some characteristics of the 

inputs). While looking at these· examples we will discover 

the "problem of the conditional statement." We started with 

the FINDMAX algorithm which was analyzed both by Knuth [6] 

and by Ramshaw [ 5] • We soon discovered that when the 

statistical behavior of algorithms is being analyzed, the 
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distribution from which the input data is drawn is an 

rtant factor in the running time. While we could solve 
impo 

the problems relating to distributions in algorithms such as 

FINDMAX, we often found ourselves using information from 

•outside the system". 

Chapter 4 presents our formal approach for handling the 

conditional ~a tement. This approach is to use statements 

about the distrioutions of program variables directly in the 

analysis of the algorithms. We found that we had to study 

the propagation of the distributions of the program vari-

ables through the program. As a result, we developed a 

•calculus" for the behavior of the distributions themselves. 

we will use this · method to analyze the probabilistic 

algorithms from Chapter 3. 

We will then move on and apply the techniques to some 

sorting and searching algorithms in Chapter 5, and to a 

miscellaneous problem in Chapter 6. Chapter 7 is a summary 

of the work and an outline of poss i ·ble future efforts. 

Appendix A contains some details of the work discussed 

in Chapter 5. 



CHAPTER 2 

CURRENT STATE OF THE ART 

In this chapter, we will discuss what is currently 

known about the analysis of algorithms. The chapter is 

divided into two sections. The first discusses what we call 

ad hoc procedures, and the second discusses current syste­

matic approaches. 

Ad Hoc Procedures 

We are going 

hoc" if we 

to characterize an analysis technique as 

cannot see a way to easily remove the 

•intuition" required to get the answers. The analysis proce-

dures which a re so categorized are mo re suited 

humans than for the programming of a computer. 

for use by 

They take 

advantage of the rich background of experience which forms 

the context of a human's ability to perform such analysis. 

We will present the techniques of three sets of researchers 

in order of increasing mathematical elegance of the tech­

niques. A method with a high degree of elegance is very 

hard for the uninitiated to understand, but facilitates 

quick and meaningful communication between the initiated. 

10 
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de Freitas and Lavelle 

The most straight-forward, and hence the least elegant, 

t o analyze an algorithm is to write down how long each 
way 

statement takes and to add up the result. s. L. de Freitas 

and P. J. Lavelle describe "A Method for the Time Analysis 

of Programs" [4] which does the first part of this proce­

Their method consists of superimposing timing data 

about the assembly/machine code produced by a FORTRAN 

program on the program source listing. The programmer may 

then use the timing information to identify inefficient 

portions of the program. The method does not calculate the 

repetition counts for loops, but presents the time required 

to perform one iteration of a loop. It therefore requires 

the application of all the ad hoc analysis techniques we 

will describe, but allows the analyst to come up with exact 

answers to time performance questions. Even though it uses 

a computer program, it can sti 11 be considered an ad hoc 

technique. 

Aho, Hopcroft and Ullman 

Horowitz and Sahni 

Aho, Hopcroft and Ullman [10] and Horowitz and Sahni 

[7] describe a level of analysis which is one step removed 

from the machine dependent technique described above. This 

level deals with the statements of the algorithm as pr imi­

tive ent1·t1·es and l argely ignores the variation in execution 

time between them. This type of analysis seeks order-of-
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"Big O" performance data. 

text [ 7] I Horowitz and 

interested in this kind of analysis. 

In their excellent 

Sahni are primarily 

They introduce a 

methodology which is very close to the high level "code" of 

the algorithm to be analyzed. Aho, Hopcroft and Ullman [10] 

give an excellent presentation of the various computer and 

computability models which have been used. 

Knuth's Analysis Techniques 

It would be unfair to imply that Knuth's techniques are 

all ad hoc. Nothing can be further from the truth. Donald 

E. Knuth, perhaps more than anyone else, has established the 

definitions and directions of algorithmic analysis [6]. 

Jonassen and Knuth present an ad hoc tour de force in "A 

Trivial Algorithm Whose Analysis Isn't" [8]. In the begin-

ning of his book [6], Knuth sets down the tools and techni­

ques which may be brought to bear during the analysis of an 

algorithm. It is this grouping o~ techniques which we refer 

1. Mathematical Induction 

2. Sums and Products 

3. Eleme_ntary Number Theory and Integer Functions 

4. Permutations and Factorials 

5. Binomial Coefficients 

6. Harmonic Numbers 

7. Generating Functions 

8. Euler's Summation Formula 

9. Combinatorics 
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The application of these techniques requires a consid-

erable amount of intuition and experience in the analysis of 

algorithms. The analyses which result are characterized by 

a high degree of abstraction. 

Systematic Approaches 

we now begin a discussion of systematic approaches to 

the analysis of algorithms. These methods are characterized 

by the exposition of a "theory" which is applied consis­

tently in the analysis of algorithms. We will discuss three 

manual approaches in order of increasing effectiveness, and 

then discuss two automatic analyzers. The manual approaches 

which we will discuss are: 

l. Electrical Network Analysis 

2. Wegbreit's Probability System 

3. Ramshaw's Frequentistic System 

For each one we will cover the theoretical basis of the 

system, describe how it works, give · an example, and discuss 

the inherent weaknesses and their causes. 

Electrical Network Analysis 

Knuth mentions the applicability of Kirchhoff's Current 

Law to the analysis of algorithms and applies it quite often 

[6] • He also mentions that Kirchhoff's Voltage Law is not 

applicable to the analysis of algorithms. An attempt to 

introduce Kirchhoff's Voltage Law into the analysis of algo­

r · h 1 t ms was proposed by Kod res [ 13] and extended by Davi es. 
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following section closely follows Davies [ 14] • A 

generalization 

applied to the 

of Kirchhoff's Voltage and Current Laws is 

analysis of program or algorithm flowcharts 

in the following way: 

1. the number of executions of a statement corresponds 

to the current in an electrical circuit 

2. the execution time of a statement corresponds to the 

resistance of a circuit element 

3. the total time spent executing the statement 

corresponds to the voltage across an electrical 

circuit element 

Kirchhoff's Current Law states the the sum of all 

currents at any circuit node is zero. By assigning a "sign" 

to the direction of flow in the flowchart, it is easy to 

show that this is true for the number of executions in a 

flowchart. The number of times into any node in the flow-

chart is equal to the number of times out of that node. 

Kirchhoff's voltage law states that the sum of all voltage 

drops and emf 's around any circuit loop is zero. The 

analogy for the voltage law breaks down in the case of 

parallel connected sections in a flowchart. Here Kodres in­

troduced the idea of placing "current" sources in each 

closed loop in the flowchart. The value of the current 

source is equivalent to the number of times the loop is 

executed. 
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In the examples which follow, this notation applies: 

pt is the fractional execution count for the true (t) 

branch of an if statement 

T is a prefix that indicates that the quantity is an 

execution time for a program block or element 

(Examples are TA, TCf) 

n is the number of executions of a loop body 

The expressions which are given with each program 

construct represent the equivalent "voltage" or total 
# 

execution time of the block in question. 

The structured programming constructs involving closed 

flowchart loops are translated as follows: 

• if-then-else is equivalent 

to a single statement 

block with a value of 

Pt(TCt+TA) + (1-Pt) (TCf+TB) 

t 

f 

B A 

TA TB 



•do-while is equivalent to 

a single statement block 

with a value of 

n(TCt + TA) + TCf 

t 

A 
I f 
t 

• do-until is equivalent to 

a single statement block 

with a value of 

+ TA + TCt 

t 

f 

16 

nf 
TCt 

. TCf 

TA 

TA 
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The limit of this approach is clear and has been 

t by all who have written about the technique. 
pointed ou 

The di ff icul t pa rt of the analysis of algorithms is the 

determination of the number of times a loop is executed or 

in this analog, the value of the current source. However, 

if one could solve this problem, then this technique 

guarantees that one can get the solution to any structured 

flowchart. 

Wegbreit's Probability System 

wegbreit's systematic approach to the analysis of 

algorithms was introduced in an article on "Verifying 

Program Performance" [2]. The analysis of the algorithm is a 

natural by-product of proving that the program/algorithm is 

correct, and a refinement of the use of well-ordered sets, 

first suggested by Floyd. The algorithm is instrumented to 

record the desired performance parameter. Then the appro-

priate probabilistic input assertions are made about vari­

able probability distributions and inductive assertions are 

shown to hold at intermediate stages in the algorithm. When 

one of the inductive assertions can be shown to be a loop 

invariant it can be manipulated into a statement about the 

algorithm's performance. The important advance of 

Wegbreit's probability system is that it sets out to 

calculate the branching probabilities in order to determine 

average computation time. 
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Ramshaw [ 5] states that this method is based on the 

O f Floyd and Hoa re. 
ideas 

It uses formal reasoning about 

d ·cates of the form Pr(P) = e, O<e<l. Which means that 
pre 1 

Probability that the predicate P is true is equal to the 
the 
real-valued expression e. Ramshaw has shown [5] that systems 

of this form have p~oblems with a very simple program which 

be calls the Leapfrog Problem: 

Leapfrog: if K = 0 then K ~- K + 2 endif 

we assume that K can take on the values of 1 and O with 

equal probability, i.e., 

1 1 
[Pr(K=0)=2l /\ [Pr(K=l)=2l 

The output assertion which one would expect to get is: 

1 1 [Pr (K=l) =2l /\ [Pr (K=2) =2J 

However, all that can be asserted using a Floyd-Hoare system 

is: 

Pr([K=l] \/ [K=2]) = 1 

This is not particularly informative or of much use in 

subsequent portions of the program since all of the 

information about the distribution of the input has been 

lost. 

Ramshaw's Frequentistic System 

In his Ph.D. dissertation, Ramshaw [5] reformulates the 

ideas about probabilistic assertions into what he calls 

•frequentistic" assertions. In this way he "avoids the 

rescalings that are associated with taking conditional 

Probabilities." Ramshaw's frequency "is like probability in 
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way except that it doesn't always have to add up to 
everY 

on•·" 
He defines a frequentistic state as a collection of 

·nistic states with their associated frequencies. 
determ1 

l·c assertions are statements of the form Fr(P)=e, where 
Atoll 

p is a predicate and e is a real-valued expression. 

Ramshaw applies his frequency system successfully to 

the Leapfrog problem. 

Leapfrog: if K = O then K ~- K + 2 endif 

Bis input assertion is: 
1 1 

[Fr(K=O)=~] /\ [Fr(K=l)=~] 

This means that the frequency associated with the state K=O 

is ~ and the frequency associated with the state K=l is also 

1 
2· The total frequency associated with the variable K is 

1 1 -tt2 - 1. 

So far we have followed Ramshaw' s thesis closely. The 

following is a slightly different interpretation of the 

application of his method which arrives at the same answer. 

We present it here in this way because it seems a little 

•ore formal than his presentation. 

The i £-test on the predicate { K=O } conjoins the 

branch atomic assertion Fr(K~O) = 0 to the TRUE 

out-branch. This is derived by setting the frequency of the 

negation of the if-test predicate equal to zero. For the 

PAI.SE out-branch, the branch atomic assertion is [Fr(K=O) = 

O] • This simply states that the frequency with which the 

if-test predicate is true in the FALSE out-branch is zero! 
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Each atomic assertion in the input assertion is 

. ·dually resolved with the branch atomic assertion, in 
indlVl 

the manner of theorem proving systems. If there is a 

· then that conJ·unct of the input assertion is contradiction, 

dropped. In the TRUE branch we have: 

[Fr (K=O) =~] /\ [Fr (K;CO) =O] 

which is logically consistent, but 
1 

[Fr(K=l)=~] /\ [Fr(K;CO)=O] 

is a contradiction and is dropped. In the FALSE branch we 

have: 
1 [Fr(K=0)=2] /\ [Fr(K=O)=O] 

which is a contradiction, and 

[Fr(K=l)=~] /\ [Fr(K=O)=O] = [Fr(K=l)=~] /\ [Fr(K;Cl)=O] 

which is a valid assertion. 

In the TRUE branch, the assignment statement changes 

the deterministic states of K to have the value K+2. 

1 
[Fr(K=2)=~] /\ [Fr(K;C2)=0] 

The assignment statement maps all of the frequencies of 

the states of K in this branch into the frequency of the 

state K+2. 

At the final join, the output assertion is the 

conjunction of the two branch assertions, namely: 

[Fr (K=2) =~] /\ [Fr (K;C2) =O] /\ ' [Fr (K=l) =~] /\ [Fr (K;Cl) =O] 

This statement contains the logical contradiction: 

[Fr (K;Cl) =0] /\ [Fr (K;C2) =O] 

Unlike the case with the restriction at the if-test, a 

contradiction at the join (which must be between atomic 
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. 5 from separate 
assertion 

out-branches) is resolved by 

conjoining each branch's contribution to· a given 

frequentistic state within a single predicate. In this 

case: 
.[Fr(K11)=0] /\ [Fr(K12)=0] ==> [Fr(KFl /\ K12)=0]. 

we arrive at Ramshaw's output assertion: 
1 1 

[Fr(K=l)=~] /\ [Fr(K=2)=~] /\ [Fr(KFl /\ K12)=0]. 

This result is a little more useful! It says that K is 

either 1 or 2 and that it takes on either value with equal 

probability· 

Now, one would think that all this would lead to a very 

powerful method. It does. Ramshaw shows how to apply this 

straight forward approach to the COINFLIP algorithm in 

Chapter 5 of his thesis [5]. His analysis is very similar 

to the one that we will give in Chapter 4. But, instead of 

continuing to use the more straight-forward approach, 

Ramshaw follows Kozen's semantics for probabilisitic 

programs, applies measure theory, ~nd shifts to a "theorem-

proving" approach. He uses the following rule of 

consequence to prove theorems about the conditional 

statement: 

1-[AIP]S[B], 1-[Al..,P]T[C] 
1-[A]if P then S else T fi[B+C] 

This rule of consequence means that, if the truth of 

Predicate A given that p is true implies that B is true 

after the execution of program section S, and if the truth 

of Predicate A given that p is false implies the truth of 

Predicate C after the execution of program section T, then 
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i s true before the if statement involving P, s, and T, 
if A 

it follows that either B or C is true afterward. 
then 

Ramshaw's frequency system can handle some of the 

which Wegbreit's can't, because Ramshaw avoids pro­
programs 

blems of renormalizing probabilities. But because Ramshaw 

to use this rule of consequence for the if statement, 
chose 

bis system still can't handle the "useless test": 

if R then nothing else nothing endif. 

Ramshaw must include a special rule of consequence for 

the •useless test" (one that says that nothing happens). 

This seems to be symptomatic of those formal systems of 

algorithm analysis which have grown from the work in program 

verification based on theorem proving. 

we have just given a taste of Ramshaw's frequency 

system. Readers who are interested in learning more about 

it should see Ramshaw's dissertation [5]. 

Automatic Ar alVzers 

We now turn our attention to the current state of 

automatic analysis. We will look at two systems which have 

been reported in the literature. 

Wegbreit's METRIC 

METRIC [l] is a system, written in Interlisp, which is 

able to analyze_ · simple LISP programs and produce closed-form 

expressions for the parameter of interest in terms of the 

Size (in some sense) of input. the The analysis of a 
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takes place in three distinct phases: 
program 

1 • Assign a cost to each primitive operation. This 

process continues as long as the procedure is not 

recursive. Blocks of primitive operations are 

assigned the cost of the sum of their individual 

costs. 

2. Analyze the recursive procedures. This phase ana-

lyzes how the recursion variables change from one 

iteration to the next. A series of difference equa-

tions is generated by projecting this recursive 

structure onto the set of integers. 

3. Solve the difference equations. This phase finds a 

closed-form expression for the difference equations. 

Wegbrei t has implemented solutions to these equa-

tions based on: direct summation, pattern matching, 

elimination of variables, best-case/worst-case anal-

ysis, and differentiation of generating functions. 

In Wegbreit's processing of coriditional statements, he 

assumes that all tests are independent. This is perhaps the 

most serious flaw in the approach. Again the problem stems 

from the difficulty in handling conditional probabilities. 

Cohen and Zuckerman's EL/PL 

Evaluation Language/Programming Language [3] is a 

system that consists of an ALGOL-like language for express-

ing algo r i· thms ( · h PL) and a language for analyzing t e result-

ing algorithms (EL). The PL statements are compiled by the 
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PL compiler 
into a symbolic formula representing the time 

executing the program. This "object deck" is present to 
for 

the EL processor. The EL processor, in turn, provides a 

buman operator with the means to manipulate the symbolic 

formula into answers. EL runs in an interactive mode. It 

allows the operator to bind formal or numerical values to 

the execution counts of loops and to assign formal or numer­

ical values to the probabilities of boolean expressions. 

Here, as with METRIC, the operator has to provide the 

critical data on the branching probabilities. The branching 

probabilities of different conditional statements are 

assumed to be independent of each other. This seems to be 

the most serious defect in the automatic analyzers to date. 



CHAPTER 3 

SYNTAX DIRECTED TRANSLATION APPROACH 

In this chapter, we will discuss our approach to the 

systematic analysis of algorithms. The presentation follows 

the order in which the work actually progressed. our 

research was sparked by the arrival of Ramshaw's thesis [5]. 

It seemed to us, at the time, that the theorem-proving 

approach was overly mathematical. There must be, we said, a 

way to look at this which is more closely related to the 

code and more understandable by programmers. Wegbreit's 

article on METRIC [ 1] got us thinking about the uti 1 i ty of 

translating program loops into recursive subroutines. 

Loops make the analysis of algorithms interesting. 

Without loops it's once th rough and done. Straight line 

code is easy to analyze. When you add some branching state­

ments it gets a little harder; but it's the loops which make 

an analysis really interesting. The first observation is 

that there has been a lot of work done on solving recurrence 

relations. If we can convert all of the different loop 

structures to recursive subroutine calls, then we can apply 

the same techniques to attempt to analyze all kinds of 

loops. In fact, one can do exactly that, as Wegbre it [ 1] 

25 
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points out. He ...also points no if that there out are 

1 branches in the loops, then there is an exact 
conditiona 

to the recurrence relations. 
solution 

basically quite simple: 

Our procedure is 

Convert all loops into recursive subroutine calls 1. 

2. convert the recursive subroutine calls into 

recurrence relations 

3 0 Solve the recurrence relations 

Solving Recurrence Relations 

There are three basic methods for solving recurrence 

relations: 

1. Inspect the relation to see if you have seen it 

before in another problem, or recognize a general 

form 

2. Try a few iterations to get the feel of the recur-

rence relationships and · the way the relations 

behave, then guess a closed-form answer, and prove 

its correctness by induction 

3. Apply one of the standard techniques to solve the 

recurrence relation 

Within these simple steps are contained a lot of art 

and experience. G. s. Lueker in a recent tutorial "Some 

Techniques for Sol:ving Recurrences" [ 16] gives an excellent 

introduction to these methods. Advanced techniques can be 

founa i K . n nuth [6], and especially Jonassen and Knuth [8]. 
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shall we 
Lueker [ 16] • 

list some of the techniques mentioned by 

1. summing factors -- where one tries to manipulate the 

recurrence relations by addition of expressions for 

adjacent terms in the hope that the sum will 

•telescope" into a few terms, one of which is the 

nth term. 

2. Characteristic 

mapped into 

equations where the 

that of finding the 

problem 

roots of 

is 

a 

characteristic system of polynomial equations. This 

approach works for linear recurrences with constant 

coefficients. 

3. Range transformation -- where the unknown coeff ic­

ents in the recurrence relations are transformed by 

some function which turns an unknown problem into a 

known problem, or one that can be solved by another 

technique. 

4. Domain transformation -- where the index value is 

transformed to make the progression of values 

additive instead of some other function. Once this 

is done, summing factors can often be used. 

S. Generating functions where the problem is 

transformed into another domain in a way similar to 

the transformation of a time-domain function into a 

frequency-domain function by a Fourier transform. 

This method is pa rt i cular 1 y powerful for handling 

probabilistic aspects of solutions. 

Our work in this thesis, involved some very familiar 

recurrences for which the answers were easily guessed. 
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Translating Loops into Recursive Subroutines -
we will limit our discussion to algorithms expressed 

structured programming constructs only. This is not a 
usin9 
particularly restrictive limitation since the structured 

· g constructs are all that is theoretically needed programm1n 

to describe any a log r i thm. For this reason and the fact 

that such programs are easier to maintain, most new 

programming is being done using structured programming 

aethods. 

we will adopt SPARKS as the language for expressing 

algorithms. SPARKS was developed by Horowitz and Sahni in 

1976 [9] and sight! y modified in 1978 [ 7] • 

we have developed a formal syntax-directed translation 

schema for converting structured loop constructs into 

recursive subroutines. 

First we consider the FOR loop. 

Given the input syntax: 
<label>: 

<statements with live variables> 
repeat 

we get the recursive syntax: 

start ~- <exp1 >; stop ~- <exp2>; incr ~- <exp3> 

<var> ~- start 

call <label>(<var>,incr,stop,{ live variables } 

procedure <label>(var,incr,stop,{ live variables }) 

if SGN(incr) * ( stop - var ) ~ O then 

<statements with live variables> 

var ~- var + inc 

call <label>(var,incr,stop,{ live variables } ) 
end if 

ena <label> 
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The live variables from <statements> are those 

which are used or created in <statements> and have 
9ariables 

Pe that extends outside of <statements>. 
a sco 

The procedure for converting DO WHILE loops to 

recursive subroutine calls is quite similar. 

<label>: while < relational expression > do 
< statements with live variables > 

repeat 
The recursive syntax is: 

call <label>( {live variables, relational variables} ) 

procedure <label> ({live variables, relational variables}) 

if < relational expression > then 
< statements with live variables > 

call <label> ( { live variables, 

end if 

end <label> 

relational variables } ) 

Simple Examples 

n do while example (Algorithm for n ) 

The following algorithm is a · modification of one by 

Horowitz and Sahni [10]. 

procedure N to the N 

read Rl 

R2 ~- l; R3 ~- Rl 
Tl: while R3 > o do 

R2 ~- R2 * Rl; R3 ~- R3 - 1 
repeat 

Print R2 
•nd N to the N - - -
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This procedure contains a single while loop which we 

viSh to analyze. The time behavior of this algorithm is 

i ted by the number of times that the body of the while 
do• na 

iooP is executed. We first translate the while loop into a 

recursive subroutine. The algorithm becomes: 

procedure N_to_the_N 

read Rl 
R2 ~- l; R3 ~- Rl 

call Tl( Rl, R2, R3 

print R2 

end N_to_the_N 
procedure Tl ( Rl, R2, R3 ) 

if R3 > 0 then 

R2 ~- R2 * Rl; R3 ~- R3 - 1 

call Tl( Rl, R2, R3 ) 

end if 

end Tl 

Only program variable R3 has any effect on the course 

of the recursion. Let i be the mathematical variable which 

corresponds to R3, and T be the number of calls on the 

subroutine. Then: 

T( i) = T 
I 

1, if i < 0 

l 1 + T(i-1), if i > 0 

The subroutine Tl is called from the main program with 

i • Rl. Therefore, the recursion is solved by: 

0 

Tl(Rl) = /- 1 = 
j=Rl 

Rl + 1 

The subrout1· ne Tl i· s called one time more than the value of 

Rl, Which we expected. 
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ODD/EVEN Print Example 

This example is a little more difficult. It involves 

an if statement, but one which is completely determined by 

the starting number. ODD(I) is a built-in function which 

returns True if its argument 

argument is even. 

procedure ODD_EVEN ( N ) 

I ~- N 
while I ~ 1 do 

Ta: print 'AAA' 
if ODD ( I then 

I ~- I - 3 

else 

I ~- I + 1 

end if 

repeat 

end ODD EVEN 

is odd, 

The recursive form of the program is: 

procedure ODD EVEN ( N ) -
I ~- N 

call Ta(I) 
end ODD EVEN 

procedure Ta I ) 

if I > 1 then 

print 'AAA' 

if ODD( I then 

I ~- I - 3 
else 

I ~- I + 1 

end if 

call Ta(I) 
end if 

•nd Ta 

and False if the 
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wegbreit [l] points out the idea for the next step and 

into it in greater detail than we shall here. He 
goes 

tes "The essential idea is to map a recursive procedure sta , 

p into a new recursive procedure whose value is the 

p •• we are interested in the number of times that 

printed· The recurrence relation for it is given by: 

T o, if i < 1 

T ( i) I 1 + Ta( i -= I a 
l 1 + Ta ( i + 

starting with the case where 

Ta(io) = 1 + T (i -3) a o 

Now, i -3 is even so we have 
0 

Ta(io) = 1 + 1 + T (i -a o 

Note that i -
0 

2 is also odd. 

we now examine the case when 

Ta(ie) = 1 + Ta(ie+ 1) 

Now, ie +l is odd, so we have 

3 ) I if i is odd 

1 ) I if i is even 

i is odd, we have: 

(assuming i 0 - 3 ~ 1) 

3 + 1) = 2 + Ta (i 0 - 2) 

i 0 is even: 

Ta(ie) = 1+1 + Ta(ie+ 1 - 3) = 2 + Ta(ie- 2) 

cost of 

AAA is 

Since the recursions for the odd and even cases have been 

transformed to eliminate the dependence on parity, we have 

the new recurrence relations: 

Ta (i) = 2 + Ta (i-2), if i>2 

T (1) = 1 a 

Ta(O) = O 

Whose solution is easily shown to be Ta(i) = i. 
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COINFLIP 

coINFLIP is an algorithm which Ramshaw [5] uses. Here 

.,. translate it into SPARKS. The built-in function RANDOMht 

lue of Heads or Tails with equal probability. 
returns a va 

procedure COINFLIP 

I ~- 0 
while RANDOMht = T do 

Tc: print 'ok, so far!'; I~- I+ 1 

repeat 

print I, ' times!! ' 

end COINFLIP 

The recursive version is: 

procedure COINFLIP 

I ~- 0 

call Tc(I) 

print I,' times!! ' 

end COINFLIP 

procedure Tc( I ) 

if RANDOMht = T then 

print 'ok, so far!'; I~- I+ 1 

call Tc ( I 

end if 

end Tc 

The question "how many times will tails turn up in 

sion?• is equivalent to asking how many times will 

fart' be printed out. We see that: 

T o, if RANDOMht = H 
I 
l 1 + Tc(i+l), if RANDOMht = T 

succes-

'ok, so 

Where T i's th c e number of times that the statement labeled 
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the original program is executed. If RANDOMht returns 

first time that it is called, then the statement is 
I the 

executed. never 
If RANDOMht 

d s not terminate. program oe 

al ways returns T, then 

The in-between cases are 

interesting ones. What is the expected value of i, i.e. 

expected number of times that 'ok, so far' is printed? . 

the 

the 

the 

To 

answer this question requires an investigation of the part 

that probability plays in the conditional statement. We 

will come back to this question later. 

FIND MAX 

This algorithm has been used as an example by several 

authors [S, 6, and 7]. It is the usual algorithm for 

finding the maximum value of a set of numbers. This is the 

first example which we have given in which the recursive 

form of the algorithm is not obvious. 

will give the translation explicitly. 

procedure FINDMAX( A, N, XMAX ) 

For this reason we 

I* set XMAX to the maximum value in A(l:N), N>O. */ 

XMAX ~- A(l) 

Ll: for I ~- 2 to N do 

if A(I) > XMAX then XMAX ~- A(I); end if 
repeat 

end FINDMAX 
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· version of this program is: recursive tbe 
edure FINDMAX( A, N, XMAX ) 

proc . 
t XMAX to the maximum value in A(l:N), N>O. */ 

/* se 
XMAX ~- A(l); I~- 2 

call Ll( A, N, I, XMAX 

end !'INDMAX 
edure Ll( A, N, I, XMAX) proc 

Tl: 

if I < N then 
if .A(I) > XMAX then 

XMAX ~- A(I); end if 

I ~- I + 1 

call Ll( A, N, I, XMAX) 

end if 

end Ll 

The next step is to convert the recursive algorithm 

into a recurrence relation for the number of times that 

control passes Tl. In this case we are interested, in the 

number of times that a new maximum is found. 

T( A, n, i, xmax) = 
T 1 + T(A,n,i+l,A(i)) if A(i)>xmax 
I 
1 0 + T(A,n,i+l,xmax) if A(i)~ xmax 

'ith the boundary condition T( A, n, _k, xmax) = 0 for k>n. 

Given a known input array, A(l:n), this recurrence 

relation completely determines the value of T. If this were 

all that could be learned, then it would not be very useful. 

The answer could just as well be determined by instrumenting 

the original algorithm with a test counter in the true 

branch. In this case we observe that the true branch is 

taken if the i-th element is the largest of the first i 

elements. If pi is the probability that A ( i) is the largest 
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i elements we have: 

T(A,i) =pi + T(A,i+l) 

a description of the average behavior of the algorithm • 

•• 
At this point we have dropped the arguments of T which 

return the 

behavior. 

"answer" so that we can concentrate on the time 

If the elements A(i) are drawn from a uniform 

distribution, then Pi = f and 

T(A,i) = f + T(A,i+l) 

T(A,i) = O, for i>n 

Since the initial value of i is 2, the solution to this 

recursion is easily shown to be T(A,2) = Hn - 1, where Hn is 

the nth harmonic number: 

H = ! + ! + ! + + 1 n 1 2 3 •••• n 
While we were able to get the correct solution, this 

way of analyzing the algorithm is not suited for automation. 

The insight into the di str 5.bution of the data and its effect 

on the probabi 1 i ty that the branch would be taken requires 

human-like understanding·. 

The Problem of the Conditional Statement 

At this point, our approach has the same problem that 

Plagues the Electrical Network approach--i t works fine if 

one knows the branching probabilities. It was at this point 

ln our research that we went back and studied the work of 

Wegbrei t and Ramshaw more closely. We noted the strengths 

Ind weaknesses which we described in Chapter 2. Knuth [5] 
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ides an analysis of FINDMAX which relies on some subtle 
prov 

. ng about left-to-right maxima among random permuta­
reason1 

dons· 
since we plan to teach a computer how to do this 

analysis, we wanted to keep any real "thinking" out of it 

until absolutely necessary. In Wegbreit's and Ramshaw's ap­

proaches, the fact that the program variables of interest 

are random variables and have distributions is recognized. 

aowever, most of their analyses are performed by making 

assertions about the frequencies or probabilities of these 

distributions, and then proving theorems about the 

assertions. The problem of the "useless test" led us to 

think that it might be useful to see what happened when one 

followed the distributions themselves around the program. 

At this point we had been concentrating so much on 

understanding the true meaning of "differentially disjoint 

vanilla assertions", the measure theory, and theorem proving 

aspects of Ramshaw's frequency system [5], we had forgotten 

that his treatment of COINFLIP dealt with the distributions 

themselves. It was 6nly after we had devised a major 

portion of our approach that we realized the great similar­

ity between our' s and Ramshaw' s frequency system (as it 

stood in Chapter 5 of his thesis [5]). We then recognized 

that we had continued down the path of following the dis-

tributions , while Ramshaw had turned . to follow the path of 

Proving theorems about frequentistic assertions. 



CHAPTER 4 

DEALING WITH CONDITIONAL STATEMENTS 

In this chapter we introduce the central idea which, we 

feel, is either a new idea or one which has been inadequate­

ly expressed in the past. The problem with the conditional 

statement stems from the normalizations required when taking 

probabilities, so why not, we reasoned, put off taking the 

probabilities as long as possible? Ramshaw's thesis [5] was 

a key to this. We observed his abandoning of his raw 

frequencies in favor of asserting predicates about frequen­

cies. Another key factor in our choosing this direction was 

Jonassen and Knuth's paper on "A Trivial Algorithm Whose 

Analysis Isn't" [8]. Here were these nice joint probability 

distribution functions ·(p.d.f.) which appeared from "direct­

ly translating the algorithm into mathematical formalism." 

We set out to find the rules that had to have been used to 

get to these simple recurrence relations. Because we took 

IO many wrong turns on our way to our final ideas, we will 

abandon our historical presentation in favor of a more 

•xpository one. We also have to abandon our initial assess­

•ent that Ramshaw' s approach was "too mathematical". There 

leems to be no way to avoid mathematics if one desires more 

38 
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the analysis of the simplest algorithms. 
tban 

Algorithms and Probability Distributions 

Each execution of an algorithm can be thought of as a 

random experimental sample from the universe of possible 

input data. we wi 11 be concerned with the behavior of the 

probability distributions associated with the program vari-

ables during execution of the algorithm. These probability 

distributions can be thought of as the repository of all the 

information about possible execution histories for an algo-

rithm. We perform the analysis of an algorithm's behavior 

by manipulating these distributions to find probabili tes for 

various conditions. We can then use this information in any 

of the analysis techniques (e.g., those given in Chapters 2 

and 3), which work for known branching probabilities. 

We begin by associating a random variable with each 

algorithm or program variable. We wi 11 follow Ramshaw [ 5] 

and differentiate between the two by continuing to represent 

algorithm variables by upper-case character strings and 

representing the corresponding random variable by the same 

characters in lower-case letters. For example, the random 

variable xmax is associated with the program variable XMAX. 

The value of the random variable x at any time in the 

execution of the algorithm is the value of the corresponding 

algorithm variable at that time. Unlike Ramshaw, we have no 

Proh · b. · 1 lt1on about mixing program and mathematical variables 

in th 
e same expression. In fact this will be how we get 
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of our answers. 

we define the probability set function, PX (A), to be 

probability that the program variable X is contained in 

set 0 f poss i b 1 e v a 1 u es A , i • e • , PX (A) = Pr ( X € A) • I f 

set A is countable, we obtain the discrete probabi 1 i ty 

,density function (p.d.f.), fx{x): -
f (x) = Pr(X €A) I A= { some finite set of x's } (4-la) 
x 

we let the set A be the set of all values of {Xlx~X~x+dx} 

have the continuous probability density function, fx(x): 

fx(X) = Pr(X €A) A = { x ~ X < x+dx } (4-lb) 

we will deal with the discrete type of random variable 

our formalism because of the fact that all values within 

a computer can be mapped onto a finite set of integers. By 

discrete representations, we avoid the need for 

the concept of "differential equality" which Ramshaw [5] 

introduced to bridge the gap between continuous variables 

and program equality expressions. · We wi 11 develop a nota­

tion which is very close to the calculus of finite differ-

ences. Some of the rules which we will use will be derived 

from analogous rules in continuous probability theory and 

the calculus of continuous variables. 

Equations (4-1) can be generalized to any finite number 

of Program variables by thinking of the X as a vector of the 

n ordered program variables and x as an n dimensional random 

The random variables form a vector space in ~n and 

a functional over that space. 
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The joint p.d.f. of the program variables describes the 

f the program up to a point in the execution of the 
state o 

program. 
If we have a loop translated into a recursive 

subroutine call, and if we can describe the joint p.d~f. 

before the next recursive call in terms of the joint p.d.f. 

entering the body of the subroutine, then we have a recur-

rence relation that we may be able to solve to get the joint 

p.d.f. as a function of the number of calls on the subrou­

tine. This knowledge will allow us to calculate the branch­

ing probabilities at any step in the process and hence 

complete the analysis of the algorithms begun in Chapter 3. 

Let us now examine the behavior of the joint p.d.f. 

with various programming constructs. We begin with the 

conditional statement. 

Theorem 1: 

If R is a deterministic logical relation of the program 

variables then, the conditional statement 

if R then { st } else { sf } endif 

a. Divides the joint p.d.f. entering the if statement 

. into two parts by: 

1. setting to zero all terms of the joint p.d.f. 

entering the then clause { St } for which R is 

FALSE, and 

2. setting to zero all terms of the joint p.d.f. 

entering the else clause { Sf } for which R is 

TRUE. 

b. Forms the joint p.d.f. leaving the endif from the 

algebraic sum of the joint p.d.f.s leaving the two 

clauses. 

We will not present a formal proof, but will use 

Theorem 1 as a rule and see how it handles situations for 
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have answers by other means. 

The effect of the conditional statement on the joint 

entering each clause can be represented in a compact 

using a new type of delta function which we will 

refer to as the Anderson delta. This new delta function is 

closely related to the Kronecker and Dirac delta functions, 

except that its domain is a Boolean space with possible 

values True and False. The Anderson delta maps the Boolean 

space into the numbers 0 and 1. 

Definition -Let R be a deterministic logical relation of program vari-

ables, then the Anderson delta function 

6 (R) = 
T 1 if R is TRUE 
I 
l 0 if R is FALSE. 

It is easy to see that the following properties hold: 

6(R) • 6 (-.R) = 0 

6 (R) + 6 ( -.R) = 1 

6 (R) = 1 - 6 ( -.R) 

6(R /\ S) = 6 (R) • 6 ( s) 

6(R \/ S) = 6 (R) + 6(S) - 6 .(R) • 6 ( s) 

With these properties one can find the Anderson delta 

any Boolean expression. We can now state a theorem about 

~e effects of the "useless test" on the joint p.d.f. 

be the joint p.d.f. of the n program variables 
1 l'X2,·••1X at a point in an algorithm just prior to the 
• n 
useless test", 

if R then nothing else nothing endif 

Where R is a deterministic logical relation on the program 

variables X, and let gx(x) be the joint p.d.f. of the 

Program variables after the join at the endif, then gX(x) = 
fx (x) • 
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~ 
h rem 1 and the Anderson delta 6 (R) we have the 

usin9 T eo 

auCJlllented algorithm: 

if R 

then 

else 

end if 

{ fx(x) } 

{ fx(x) • 6 (R) } 

nothing 

{ fX(X) • 6 ( -.R) } 

nothing 

{ gx(x) = fx(x)6(R) + fx(x)6(-.R) } 

{ gx(x) = fx(x) • ( 6(R) + 6(-.R) )} 

{ gx(x) = fx(x) } 

Q.E.D. 

So far, this discussion of the joint p.d.f. of the 

program variables is very close to Ramshaw' s [5] frequen­

tistic states. In fact, we can show that Ramshaw's frequen-

tistic assertions can be derived from marginal or · joint 

p.d.f.s. As we have said before; where we de pa rt from 

Ramshaw is that we wi lf stay with the rules for the trans­

formation of the joint p.d.f. by the algorithms instead of 

llOving to the next higher level of abstraction, i.e. rules 

for the transformation of assertions about the marginal or 

joint p.d.f.s. It was this abstraction which destroyed the 

ability of Ramshaw's system to handle the "useless test". 
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LEAPFROG Revisited 

In order to get some understanding of the effects of 

assignment statements, let us look again at LEAPFROG. 

Leapfrog: if K=O then K~-K+2 endif 

joint p.d.f. to Leapfrog is 

fK (k) 
1 6Ck=O) + 1 6ck=1) = 2 2 

that Pr{k=O) 1 and Pr{k=l) means = 2' 
augmented program would be: 

if K=O then { 6 {k=O) (~6 (k=0)+~6 {k=l)} 

{ 16 ( k=O) } 
2 

K ~- K+2 { ~6 ( (k-2) =0) } 

{ ~6 (k=2) } 

[ e 1 s e ] { 6 ( k ;i! O ) ( ~ 6 ( k = O ) +~ 6 ( k = 1 ) ) } 

{ 16 {k=l) } 
2 

endif { ~6 {k=2) + ~6 (k=l) } 

what we should get. 

1 
= 2· 

In handling the assignment statement, K ~- K+2, we 

that it maps k as follows: 

k before k after 

-2 0 
-1 1 

0 2 
1 3 
2 4 
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In general, if we wish to keep the equations in terms 

the original variables, we have: 

X • ~- x. + c ] : 
[ 1 1 

<x1 ,x 2 , •. ,xi, •• ,xn> -~ <x 1 ,x 2 , ••• ,xi-c, ••• ,xn>. 

Next we will look again at the COINFLIP algorithm. To 

that we need some rules about the effects of a 

conditional statement which contains a non-deterministic 

we can easily transform a non-deterministic relation 

a non-deterministic assignment followed by a 

deterministic conditional statement. For example: 

if x = RANDOMht then { st } else { sf } endif 

y ~- RANDO Mh t 

if X=Y then { st } else { sf } endif. 

3 

be the joint p.d.f. of then program variables 

X1,x2, ••• ,Xn in the algorithm just prior to the conditional 
ltatement 

if R then { st } else { Sf} endif 

Where Risa logical rela,tion containing a finite number, m, 

Of random (possibly pseudo-random) functions RANDOMfj. Let 

R' be derived from R by replacing each instance of RANDOMfj 

With a reference to a new program variable y., then the fol-
J 

lowing sequence of statements are equivalent to the original 
statement: 

'I 1 = RANDOMf l 

Y2 = RANDOMf 2 . . . . 
. . . . 
ym = RANDO Mf m 

if R' then { st } else { sf } endif 
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Tbeorel'!!_ 4 
_. f (x) be the joint p.d.f. of program variables 
i.et x x which have been defined, and let Y be a "new" 
X1,X2' • •., n 
variable defined by the statement Y ~- RANDOMg' where 

RANDOM generates a statistically independent random number 

from dgistribution g(y), then the joint p.d.f. after this 

statement, hz(z), is 
hz (z) = fx (x) •g (y) 

wbere, 
z = <x1 ,x2 , ••• ,xn,y> 

z = <X1 ,x2 , ••• ,Xn,Y>. 

It is now time to examine the general assignment state-

aent between two program variables. We will use a memory­

~o-register, register-to-memory model for the assignment 

statement. This will allow us to have the statement X ~- X 

be a NOOP in the formalism without any special rules. We 

introduce the notation 

f x. 
1 

to mean the summation over all values of random variable xi. 

This is the discrete equivalent of the definite integral. 

When it is applied to a function of xi' the result does not 

depend on x .• . If this summation is done symbolically, all 
1 

occurences of are removed from the equation of the 

result. Here are some properties of this summation which we 

•hall use later: 

f -x. 
1 

f(x.) = 1 1 , when f (xi) is a p.d.f. 
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F ( x.) 
J 

= Pr ( x e A ) I A= { X < x. } is the cumulative 
- J 

density function (c.p.d.f.) for f. Note that in 

case of discrete random variables we usually have to 

whether or not the c.p.d.f. is defined to 

x. or whether it is just 
J 

"up to" x .• 
J 

In the con-

representation we would not have to worry about this 

the two are equivalent. 

Theorem 5 
Let fx(x) be the joint p.d.f. of the n program variables 

11,x2 , ••• ,Xn just before the program statement 

x. ~- x. 
1 J 

joint p.d.f. after this assignment statement is 

( Lx. fx(x) 6cx.=r) ) 6cr=x.) 
1 1 J 

The application of 6cx . =r) within the summation takes 
1 

of the case when x. is the same variable as x .• In the 
1 J 

cases where x. and x. are different variables, the rule 
1 J 

to: 

( Lx. fx(x) ) 6cxi=xj) 
1 

For an example we will look at a simple program which 

.interchanges the contents of two variables x 1 and x2 using a 

third variable x 3 as temporary storage. The augmented 

Program goes like this: 
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{ fx(x1,x2,x3) = gx(x 1 ,x2)6(x 3=0) } 

~- Xl { fx(xl'x 2 ,x 3) = gx(x 1 ,x 2)6(x 3=x 1) } 
X3 

~- X2 { fx(xl,x2,x3) = gx(x 3 ,x2)6(x1=x 2 ) } 
X1 

X2 ~- X3 { fx(xl'x 2 ,x 3) = gx(X3,X1)6(x2=X3) } 

{ fx(xl,x2,x3) = gx(x 2 ,x1 )6(x3=x2 ) } 

Mote that we need not have assumed that x3 initially 

contained o. We could have started with the general 

p.d.f.: 

fx(x1,x2,x3> = gx(x1,x2,x3> 

Tben the first assignment would have resulted in 

where g X ( x 1 , x 2) 

The remainder of the 

= > x gx(x1,x2,x3> 
3 

example would be as 

COINFLIP Revisited 

before. 

joint 

We now have all the tools to handl·e COINFLIP and get the 

real answer in a systematic way. The annotated main program 

is: 

procedure COIN FLIP 

I ~- 0 { f I ( i) = 6 (i =O) } 

call TC(I) { f I ( i) = g ( i) } 

print i , I times.' { f I ( i) = g ( i) } 

The problem is to determine what the function g(i) 

looks like. This is, of course, determined by the sub­

routine TC. We now proceed to the analysis of TC. Assume 

that the p.d.f. entering TC is fr (i). 
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TC(!) 

RANDOMht { f I ( i) . ( ~6(y=H) + ~6(y=T)) } 
y ~-

= T then { f I ( i) 
. ~Q (y=T) } if y 

print 'OK, so far!' 

I + 1 { f I (i-1) . !6 (y=T) } I ~- 2 

call TC(!) { g i ( i) } 

end if 

{ gI (i) + f 1 (i) • ~6 (y=H) } 

represents the value of I returned by the recur­

TC. Now, the distribution { f 1 (i-1) ~6 (y=T) } 

to the next cal 1 of TC (I) , so we must have in 

f 1 (i) = f 1 (i-l) • ~6(y=T> 

variable Y is local to TC(!), it must be 

from the joint p.d.f. that is returned. We will 

refer to this process as "killing" a variable. This is done 

the marginal p.d.f. of I with respect to y: 

!f (i-1) 
2 I 

that if Y were to be treated as a global variable, this 

would take place as part of the RANDOMht assignment 

The initial condition from the main program is 

so the distribution for the first recursive 

fl(i) = !6(i-l = 0) = !6(i=l) 
2 2 
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j is the number of times that 'OK, so far!' has been 

out. This distribution represents the part of the 

which is "caught in the loop". Each time some 

distribution "escapes". This corresponds to the 

chance that Heads will turn up at any time. For each value 

of j, the joint p.d.f. that "escapes" is (~)j6(i=j)~6(y=H), 

joins the rest at the end if to give the final answer: 

g(i) = ~ fj (~)jb(i=j), j e { o, 1, 2, •••• } 

note that this is in fact a normalized p.d.f. What is 

expected value of I? 

i,j €{ o, 1, 2, ••• } 

= !c 0·1 + l·! + 2· c.!) 2 + 
2 2 2 . . . . . . . . . 

by distributing and regrouping each fraction we get: 

= !c 1 + 2 + 3 + 4 + 2 2 4 8 16 . . . . . . . . . . 
= !c 1 + 1 + 1 + 1 1 1 

2 2 4 + 4 8 + . . . + 8 + I6 + . . . 
= !c 1 + 1 

+ 
1 

2 2 4 + ........ 
= !c 2 = 1 2 

If we had performed this analysis on Ramshaw's 

of COINFLIP, 

C ~- O; 

loop X ~- RANDOMht; C ~- C + l; while X=T repeat 

1fe Would have gotten the final joint p.d.f.: 

[5] 



51 

fbiS contains all of the information that is in Ramshaw' s 

t assertion for the same problem [5, p.78] 
out PU 

[Fr(C<l)=O]/\[Fr(X=T)=O]/\ /\ [Fr(C=c,X=H) = 
I \ 
c > 1 

FINDMAX Revisited 

we will again follow Ramshaw [5, p.81] and use a 

slightly different form of the FINDMAX program than was 

presented in Chapter 3. We will replace the input array 

A(I) of random variables by repeated calls to a random 

number generator. This simplifies the notation somewhat 

without sacrificing generality. We will return to the array 

notation when we deal with the sorting algorithms. The 

program is instrumented to record the number of times a new 

is selected. The modified and annotated program in 

recursive form is: 

FIND MAX ( N, M ) 

O; I ~- 2 

M ~- RANDOMf 

call LOOP! ( N,M,c,r· ) 

Ind FINDMAX 

procedure LOOP! (N,M,C,I) 

if I ~ N then 

T ~- RANDOMf 

if T>M then 

c ~- c + 1 

M ~- T 

{ b (m=t) (> 

{ 6(c=O) 6(i=2) } 

{ 6cc=O) · 6ci=2) f(m) } 

{ g(n,m,c,i) } 

{ h(n,m,c,i) } 

{ h(n,m,c,i) 6(i~n) } 

{ h(n,m,c,i) 6(i<n) f(t) } 

{ h(n,m,c,i) 6ci~n) f (t) b(t>m) } 

{ h(n,m,c-l,i)b(i~n)f(t)6(t>m) } 

h(n,m,c-l,i)b(t>m))6(i~n)f(t) } 
m 

[else] { h(n,m,c,i) 6(i~n) f(t) 6(t~m) } 
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end if 

{ b(m=t) (l_ h(n,m,c-1,i)b(t>m)) b(i~n)f(t) 
m 

+ h(n,m,c,i) 6(i~n) f(t) 6(t~m) } 

I ~- I + 1 

{6(i-l~n) (6(m=t) (L h(n,m,c-l,i-1)6(t>m))f(t) 
m 

+ h(n,m,c,i-1) f(t) 6(t~m) ) } 

call LOOPl ( N,M,C,I ) 

{ g(m,n,c,i) } 

end if 

{ h(n,m,c,i)6(i~n) + g(m,n,c,i) } 

Note that all of the joint p.d.f. is caught in the loop 

or recursive calls until I is incremented past N. The 

recursion which we must solve is: 

b(n,m,c,i) = {b(i-l~n) (6(m=t) (L h(n,m,c-1,i-l)b(t>m))f(t>' 
m 

+ h(n,m,c,i-1) f(t) 6(t~m) ) } 

T is a local variable to LOOPl and not sent outside that 

subroutine so we must "kill" it. 

b(n,m,c,i) = L {6(i-l~n) .(6(m=t)(L h(n,m,c-l,i-1)6(t>m))f(t) 
t m 

+ h(n,m,c,i-1) f(t) 6(t~m) ) } 

At first glance, this recursion doesn't look very useful. 

To get a handle on what is going on, we will follow the 

first few iterations of the program. 

drop the termination delta function. 

•ade with 

In doing so we will 

The initial call is 

h(n,m,c,i) = 6(c=O) ·f(m) ·6(i=2) 
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th rules we find that 
Applying e 

h(n,m,c-l,i-1) = 6(c=l) ·f(m) ·6(i=3) 

and 
h(n,m,c,i-1) = 6(c=O) •f(m) ·6(i=3) 

10 we have 

b(n,m,c, i) = 

6(i=3) Lt { 6(c=l)·6(m=t)•(/m f(m)·6(t>m))·f(t) 

+ 6(c=O) ·f(m) ·f(t) ·6(t~m) } 

b(n,m,c,i) = 6(i=3) }t { 6(c=l) ·6(m=t) ·(F(t)) ·f(t) 

+ 6(c=O) ·f(m) .f(t) .6(t~m) } 

h(n,m,c,i) = 6(i=3) { 6(c=l) ·F(m) ·f(m) + 6(c=O) ·f(m) ·F(m) } 

we can rewrite this into an equivalent form 

h(n,m,c,i) = 6(i=3) { 2·F(m) •f(m) ( ~6(c=l) + ~6(c=O) ) } 

If we crank through another iteration we get: 

b(n,m,c,i) = 

6(i=4) { 3•F2 (m).f(m)·c~6(c=2) + ~6(c=l) + ~6(c=O))} 

The third time a round we get: 

h(n,m,c,i) = 

6ci=S){4F3 (m)f(m) (~46cc=3>+i6cc=2)+~i6cc=l)+i6cc=O) 
Each time that we cycle through the equations we find that 

the joint p.d.f. is a product of the marginal p.d.f .s of the 

individual variables. We have factored the coefficients to 

normalize the marginal p.d.f.s with respect to m and c. 

When the joint p.d.f. of a set of random variables can be 
w . 
ritten as the product of their respective marginal p.d.f .s, 
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the variables are said to be stochastically indepen­
then 

This is a very important thing for us to confirm in 

It tells us that we have not affected the 

of the maximum value by instrumenting the 

program. The stochastic independence also simplifies the 

solution of the recurrence relations. Because of it we can 

set up a recursion for each variable separately by following 

the marginal p.d. f. for each variable. We change the 

induction variable from i to j = i - 1 so that the formulas 

will look more familiar. 

and 

fM(m)j = j~l F(m) fM(m)j-l 

recursion for f M(m) gives the final distribution of 

fM(m)n = n"Fn-l(m) "f(m) 

which is the answer given by Hogg [12]. The recursion for 

fc(c) is the same as Knuth's [6] and Ramshaw's [5]. 



CHAPTER 5 

APPLICATION TO SORTING AND SEARCHING 

we now turn our attention to the further application of 

our approach to sorting and searching algorithms. We will 

look at three such algorithms: The "oblivious" Insertion 

(Bubble) Sort, the "improved" Insertion Sort, and Binary 

Search. 

"Oblivious" Insertion Sort 

Insertion Sort was used by Wegbreit [2] as the example 

for verifying program performance. He used the "improved" 

version which has an exit in the inner loop after each 

candidate element is properly positioned. The "oblivious" 

version of this program does not have this exit. It con-

tinues to compare the element being inserted to all of the 

elements in the sorted sublist. While it is an inefficient 

software algorithm, this version of the algorithm is of 

interest because it can be realized using a network of com­

parators (i.e. using hardware logic circuits). 

55 
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procedure INSERTION SORT ( B ' N ) 

real B(l:N) 

OUTER: 

for J ~- 1 to N-1 do 

INNER: 
for I ~- J to 1 by -1 do 

if B(I) > B(I+l) then 

EXCHANGE ( B(I), B(I+l) ) 

endif 

8 repeat 

9 repeat 

10 end INSERTION SORT 

The first step is to convert the loops to recursive 

subroutine calls. We will number the statements so that 

they may be related back to the original program. We will 

also insert a counter variable, Y, to keep track of the 

number of times an EXCHANGE takes place. 

1 procedure INSERTION SORT ( B ' 
N ) 

2 real B(l:N) 

global integer y 

3a J ~- l; y ~- 0 

3b call OUTER( J, N-1, B ) 
10 end INSERTION SORT. 

3c procedure OUTER( J, LIM, B ) 
3d if LIM - J > 0 then 
4a I ~- J 
4b call INNER( I' B ) 
9a J ~- J + 1 
9b call OUTER( J, LIM, B ) 
9c endif 
9d end OUTER 
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procedure INNER( I, B ) 

if I > 1 then 

end if 

end INNER 

if B(I) > B(I+l) then 

EXCHANGE 

y ~- y + 1 

end if 

I ~- I - 1 

call INNER ( I, B ) 

B(I), B(I+l) ) 

Appendix A contains a detailed, line-by-line tracing of 

the joint p.d.f. which is used in an "average case" 

analysis. From it we can develop the form which the distri­

bution of a "sorted" list takes. Specifically, we have: 

6 ( bN~ bN-1 ) ••• 6 ( b 2~ b 1 ) • f I ( b 1 ' b 2 ' ••• , bN ) I 

where f'(b 1 ,b 2 , ••• ,bN) is some transformation of the initial 

joint p.d.f. The leading product of Anderson deltas con-

tains the information that the list is sorted. This may 

Hem like a simple thing, but remember that having started 

with an algorithm and the assertion that it "sorts a list", 

Ve have arrived at a form of joint p.d.f. which means "the 

list is sorted n. If we were to give an automatic analyzer 

an algorithm, and if it came up with a final joint p.d.f. 

that had this form, the automatic analyzer could say, "this 

algorithm sorts a list." Converse! y, if the analysis does 

not result in a joint p.d.f. of this form then the analyzer 

can say, "this algorithm does not sort a list." 

When analyzing sorting algorithms, three different 

types of input distributions are usually used. These 
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esent the initally sorted list, the initially reverse 
re pr 

t ed list, and the initially "random" list. These three 
sor 

sometimes cover the best, worst, and average case execution 

although not necessarily in that order. In some more times, 

exotic algorithms, there is a more complicated input distri-

bution which leads to the best or worst case behavior. Our 

approach can be used to determine the best and worst case 

distributions, although we will not dwell on this. The best 

case performance for Insertion Sort comes when the EXCHANGE 

never takes place, and the worst case performance comes when 

the exchange always takes place. 

The work shown in Appendix A, for the average case 

analysis, suggests the induction hypothesis that if you give 

INNER, at its call from OUTER, the distribution 

6 {i=j) ·6 (j<n) ·6 (j=k) • 

k• ·6cb >b ) ···6cb >b ) ·fcb ) ·fcb ) ···fcb ) . k- k-1 2- 1 1 2 N ' 

INNER returns the distribution 

6 (i=O) ·6 (j<n) ·6 (j=k) • 

Ck+l) ! ·6cbk+l~bk) ···6cb2~b1 ) ·fcb1 ) ·fcb2 ) ···fcbN). 

In other words, INNER inserts the k+l th element into the 

sorted list of the first k elements. We are therefore 

justified in picking as the general form for a joint p.d. f. 

going into INNER 

6 (i=m) • 6 (m.~j) • 6 ( j <n) • 

6 ( b j~ b j- l ) • • • 6 ( b 2~ bl ) • f ' ( y, bl , b 2 , ••• , b j , ••• , bN) • 

Rather than doing that, let us s~art with a completely 

9eneral · · · · b b b Joint p.d.f. g(J,1,n,y, 1 , 2 , ••• , N) after 4c. 
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After 4d, in the true branch: 

6 ( i ~ 1 ) • g ( j , i , n , y , bl , b 2 , • • • , bN ) 

sent to Sc, is the false branch: 

6ci=O) "g(j,i,n,y,b1 ,b2 , ••• ,bN) 

After 5, in the true branch: 

6 ( i ~ 1 ) • 6 ( bi > bi+ l ) • g ( j , i , n , y , bl , b 2 , ••• , bN ) 

sent to 7, in the false branch is: 

6 (i ~ 1) • 6 (bi+ l~ bi) • g ( j , i , n, y, bl , ~2 , ••• , bN) 

After 6' 

6 ( i ~ 1 ) • 6 ( bi+ l >bi ) • g ( j , i , n , y , bl , b 2 , •• , bi+ l , b i , •• , bN ) 

After 6a, 

6 ( i ~ 1) • 6 (bi+ l >bi ) • g ( j , i , n, y-1 , bl , b 2 , •• , bi+ l , bi , •• , bN) 

After 7, 

6 ( i ~ 1) • 6 (bi+ l~ bi) • ( g ( j , i , n, y-1, bl, b 2 , •• , bi+ l, bi , •• , bN) 

+ g(j,i,n,y,b1 ,b2 , •• ,bi'bi+l'""'bN) ) 

After 8a, 

6 ( i + 1~1) • 6 (bi+ 2~ bi+ 1) • 

g(j,i+l,n,y-l,b1 ,b2 , •• ,bi~2 ,bi+l'""'bN) 

+ g(j,i+l,n,y,b1 ,b2 , •• ,bi+l'bi+2 ' •• 'bN) 

We have arrived at the recursive calling of INNER, so 

we must have: 

g(j,i,n,y,b1 ,b2 , ••• ,bN) = 

6 ( i + 1~1 ) • 6 ( b i + 2~ b i + 1 ) • 

g(j,i+l,n,y-l,bl,b2 , •• ,bi+2 'bi+l'""'bN) 

+ g(j,i+l,n,y,b1 ,b2 , •• ,bi+l'bi+2 ' •• 'bN) 

i 1 
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From the other parts of the algorithm, we get the 

dary conditions 
boun 

d the initial condition 
an 

g(j,i,n,y,b1 ,b2 , ••• ,bN) = 

6(i=j> ·6cn=N> "h(y) ·6cbj.?.bj_1 > ···6cb2,?.b1 > "fCb1 ,b2 , ••• ,bN>, 

assuming that f is symmetric with respect to interchange of 

variables. 

Note that this is a "backward" recursion, i.e. we start 

with i=j and move backward to the desired answer for i=O. 

once we have solved the recursive relationship for INNER 

(based on i), we can use that to solve the recursive rel a-

tion for OUTER (based on j), which gives the final answer 

for the joint p.d.f. Doing this in the general case cannot 

result in a closed form answer in the usual sense. It is 

~ssible to "write down" the general solution for any given 

N, but the equation would be equivalent to the one that we 

would get if we were to "unwind" the loops into straight 

line code. In order to· get really useful results, we need 

to s e 1 e ct the f o rm of the j o i n t p • d • f • f o r the u n so rte d 

list. 

Once one has selected an initial joint p.d.f., and 

Solved the recursion relations, one has a joint p.d.f. which 

represents the distributions of the variables at the termin­

ation of the algorithm. The distribution of the counter 

variable is then isolated by summation (integration) over 

all the other variables. This marginal p.d.f. is then used 
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f ind the expected value, variance, and other statistics 
to 

in the usual manner. 

"Improved" Insertion Sort 

There is an easy way to improve the relative perfor­

mance of the "oblivious" insertion sort, although the order 

of its running time remains the same. We note from the 

analysis that the portion of the joint p.d.f. that fails the 

test at statement 5, is already in sorted order. This 

suggests that we could exit from the INNER loop at this 

point without affecting the algorithm's ability to sort. 

Even such "obvious" improvements often have hidden side 

effects. Luckily our method will let us not only calculate 

the improvement in perf.ormance from this change, but also 

prove that the modified algorithm still sorts! It also 

turns out that the distribution of I will give a direct 

indication of the algorithm's performance. For this reason, 

we will delete the counter variable Y. 

1 

2 

3 

4 

5 

6 

6a 

7 

8 

9 

10 

procedure INSERTION SORT ( B , N ) 

real B(l:N) 

OUTER: 

for J ~- 1 to N-1 do 

INNER: 

for I ~- J to 1 by -1 do 

if B(I) > B(I+l) then 

EXCHANGE ( B (I) , B ( I+l) ) 

else exit /* This is the change */ 

end if 

repeat 

repeat 

end INSERTION SORT 
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recursive equivalent is: 

procedure INSERTION SORT ( B ' N ) 

real B(l:N) 

J ~- 1 

call OUTER( J, N-1, B ) 

end INSERTION SORT 

procedure OUTER( J, LIM, B ) 

if LIM - J > 0 then 

I ~- J 

call INNER( I, B ) 

J ~- J + 1 

call OUTER( J, LIM, B ) 

9c end if 

9d end OUTER 

4c procedure INNER ( I, B ) 

4d i f I > 1 then 

5 if B (I) > B (I+ 1) then 

6 EXCHANGE ( B(I), B(I+l) ) 

6a else return 

7 end if 

Sa I ~- I - 1 

Sb call INNER ( I, B ) 

Sc end if 

Sd end INNER 

The return in the recursive program i s equivalent to 

the exit in the loop version. Everything works the same as 

before up to statement Ga. At this point, the joint p.d.f. 

from the false branch "escapes" from INNER. We will pick up 

the analysis at that point on the J = l iteration. 

5 This is the first test involving the data itself. This 

statement splits the joint p.d.f. on the basis of the 

Values of B(I) and B(I+l). 
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In the true branch: 

6Ci~l) ·6(i=j) ·6(j<n) ·6(j=l) ·6(b1 >b 2 ) • 

f(b) "f(b ) 000 f(b ) 1 2 N 

In the false branch: 

6 (i ~ 1) • 6 (i = j ) • 6 ( j < n) • 6 ( j = 1 ) • 6 ( b 2~ b 1 ) • 

f(b) "f(b) •••t(b ) 
1 2 N 

This EXCHANGES the values of b 2 and b1 

6 (i~l) ·6 (i=j) ·6 (j<n) ·6 (j=l) ·6 (b2 >b1 ) • 

f(b) "f(b) ••• f(b ) 
2 1 N 

This sends the false branch joint p.d.f. back to OUTER. 

6 (i ~ 1 ) • 6 (i = j ) • 6 ( j < n) • 6 ( j = 1 ) • 6 ( b 2~ b 1 ) • 

f(b ) "f(b ) •••t(b ) 
1 2 N 

It is accumulated there as we shall see. 

At the join for the if statement we have only the true 

branch left 

6Ci~l) ·6(i=j) ·6(j<n) ·6(j=l) ·6(b2 >b1 ) • 

f(b) .f(b ) """f(b ) 1 2 N 

This adjusts I for the next it~ration 

6Ci+l~l) ·6(i+l=j) ·6(j<n) ·6(j=l) ·6(b2>b1 ) 

•t(b ) "f(b ) •••t(b ) 1 2 N 

We know from step 4d above, that this joint p.d.f. will 

be returned with the additional (superfluous) 

restriction 6(i<l). Simplifying we have 

6(i=O) ·6(j<n) 0 6(j=l) ·6(b >b ) "f(b ) "f(b ) """f(b ) 
2 1 1 2 N 

This joint p.d.f. is returned at 4b. It joins with 

joint p.d.f. that "escaped". 
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The result is: 

{ 6 (i = 1) + 6 (i = O ) } • 6 ( j < n) • 6 ( j = 1 ) • 6 ( b 2~ b 1 ) • 

f(b) "f(b ) 000 f(b) 1 2 N 

This statement adjusts J for the next iteration, and 

{ 6 (i = 1) +6 (i = 0 ) } • 6 ( j-1 < n) • 6 ( j-1=1) • 6 ( b 2~ b 1 ) • 

f(b) "f(b) """f(b) 1 2 N 

is again passed to OUTER. 

we see now that this test "traps" all of the joint 

d f 1. n the loop unti 1 J exceeds LIM ( N-1 in our p. • • 

case). So we won't mention the false branch until the 

end. In the true branch: 

{ 6 (i = 1 ) + 6 (i = 0 ) } • 6 ( j < n) • 6 ( j = 2 ) • 6 ( b 2~ b 1 ) • 

f(b ) "f(b ) 000 f(b ) 1 2 N 

This collapses the old joint p.d.f. on i and results in 

6 (i = j ) • 6 (j < n) • 6 ( j = 2) • 2 • 6 ( b 2~ bl) • f (bl) • f ( b 2 ) • • • f ( bN) 

In the oblivious version, this was a trivial operation. 

Here it destroys information about the distribution of 

the I in the last iteration. 

This joint p.d.f ·. arrives at INNER, where this 

statement controls the exit of the last of the joint 

p.d.f. 

In the true branch: 

6 (i = j ) • 6 ( j < n) • 6 ( j = 2) • 2 • 6 ( b 2~ b 1 ) • 6 ( b 2 > b 3 ) • 

f(b ) "f(b ) 000 f(b ) 1 2 N 

In the false branch: 

6 (i = j ) • 6 ( j < n) • 6 ( j = 2 ) • 2 • 6 ( b 2~ b 1 ) • 6 ( b 3~ b 2 ) • 

f(b) "f(b) """f(b) 1 2 N 
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The exchange yields: 

6ci=j) ·6cj<n) ·6cj=2) ·2·6cb3.?.b1 ) ·6cb3>b2 ) • 

f(b ).f(b ) ••• f(b) 
1 2 N 

Here the false branch again escapes in the form of 

6 (i = 2 ) • 6 ( j < n ) • 6 ( j = 2 ) • 2 • 6 ( b 2.?. b 1 ) • 6 ( b 3.?. b 2 ) • 

f(b) .f(b) ••• f(b) 
1 2 N 

At the join we have only the true branch joint p.d.f. 

left: 

6 (i = j ) • 6 ( j < n ) • 6 ( j = 2 ) • 2 • 6 ( b 3.?. b 1 ) • 6 ( b 3 > b 2 ) • 

f(b ) .f(b ) ••• f(b ) 
1 2 N 

Prepares for the next call of INNER 

6 (i = j -1 ) • 6 ( j < n ) • 6 ( j = 2 ) • 2 • 6 ( b 3.?. b 1 ) • 6 ( b 3 > b 2 ) • 

f(b ) .f(b ) ••• f(b) 
1 2 N 

This gets through to statement 5 in INNER. 

In the true branch (multiply by 6cb1>b 2) and simplify): 

6 (i=j-1) ·6 (j<n) ·6 (j=2) • 

2·{6cb1>b2) ·6cb3.?.b1 ) ·6cb3>b2) l 

.f(b ) .f(b ) ••• f(b ) 
1 2 N 

In the false branch. (multiply by 6cb2.?_b1), simplify): 

6Ci=j-l) ·6cj<n) ·6cj=2) 

• 2 • { 6 ( b 3.?. b 2 ) • 6 ( b 2.?. b 1 ) } 

.f(b ) •f(b ) ••• f(b ) 
1 2 N 

The EXCHANGE in the true branch yields: 

6 (i=j-1) ·6 (j<n) ·6 (j=2) • 

2 • { 6 ( b 3.?_ b 2) • 6 ( b 2.?_ bl) } • f (bl) • f ( b 2 ) • • • f ( bN) 
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Again the false branch joint p.d.f. escapes 

b(i=l) ·6(j<n) ·6(j=2) 

• 2 • { 6 ( b 3~ b 2 ) • 6 ( b 2~ b 1 ) } 

"f(b ) "f(b ) 000 f(b ) 1 2 N 

At the join we have only the true branch joint p.d.f. 

left: 

6 (i=j-1) ·6 (j<n) ·6 (j=2) • 

2 • { 6 ( b ~ b 2 ) • 6 ( b 2~ bl ) } • f ( bl ) • f ( b 2 ) • • • f ( bN) 

Sa sets I to zero in this case, and the next call of INNER 

returns this joint p.d.f. 

6 (i=O) ·6 (j<n) ·6 (j=2). 

2·{6(b >b ) 0 6(b >b )}"f(b )"f(b )"""f(b) 
3- 2 2- 1 1 2 N 

to OUTER at statement 9a. 

4b The three sets of joint p. d. f. s meet and a re added 

here. We have: 

{6(i=0)+6(i=l)+6(i=2) } 0 6(j<n) ·6(j=2) • 

2·{6(b >b) ·6(b >b) }"f(b) "f(b) """f(b) 3- 2 2- 1 1 2 N 

9a Increments J and we get, going back into OUTER at 9b: 

{6(i=0)+6(i=l)+6(i=2) } 0 6(j<n+l) ·6(j=3) • 

2 • { 6 ( b 3~ b 2 ) • 6 ( b 2~ bl) } • f (bl ) • f ( b 2 ) • • • f ( bN) 

By now the pattern is clear. It is even easier to show 

that the result at the end will be: 

{6(i=0)+6(i=l)+ •••• +6(i=N-l)} 0 6(j=N) • 

(N-l)! 0 {6(b >b ) 000 6(b >b )}"f(b )"f(b )"""f(b) 
N- N-1 2- 1 1 2 N 

If we collapse this on i, then we get the same result as 

before. Therefore, the change in the program has not 

changed its ability to sort. This form tells us some other 
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things· Specifically, the value of I that is returned by 

INNER represents the number of elements that were found to 

th 
be smaller than the J+l element. It is easy to see that I 

can take on exactly J+l values from O to J, and that each of 

those values is equally likely. This is something that one 

would have expected, but we have proved it without recourse 

to any elaborate combinatorial or probabilistic arguments. 

The result just "fell out" of the analysis. It is easier to 

write a program that can recognize that the probabi 1 i ty 

density function of a discrete variable has the same value 

at each point, than to have that program say "Each I is 

equa 11 y 1 i k e 1 y ! n 

The other thing that the values and p.d.f. for I tells 

us is the number of exchanges that take place. From the 

observation above, we get that P(i=j) = 
1 

j+l so that the 

expected number of exchanges for any value of i is 

Lj i j_ 
j+l = 

i=O 2 

for the entire N elements, this is 

LN-1 j_ = 
(N 2-N) 

j=l 2 4 

Which is the correct answer. This turns out to be the 

expected number of comparisons, also. We can see that the 

running time performance of the sort has been improved by a 

factor of two. 
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Binary Search 

we now turn our attention to the analysis of an 

algorithm for a Binary Search. This particular version 

closely follows one given by Horowitz and Sahni [ 9] • We 

introduce it here for two reasons: ( 1) it gives us a chance 

to present the case statement, and (2) it is the first 

•divide and conquer" algorithm that we have considered. The 

function INT returns the INTeger part of the argument (i.e. 

the floor function) • 

1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

procedure BINARY_SEARCH ( N, I, X ) 
global real K(l:N) 
LOW ~- l; UP ~- N 
I ~- 0 

SPLIT:while LOW < UP do 
MID ~- INT ( ( LOW + UP ) I 2 ) 
case 

end 
end 

X > K (MID) 
X = K(MID) 
X < K (MID) 

end BINARY SEARCH 

LOW ~- MID + 1 
I ~- MID; return 
UP ~- MID - 1 

The recursive equivalent is: 

1 

2 
3 
4a 
12 

4b 
4c 
5 
6 
7 
8 
9 
10 
lla 
llb 
llc 
lld 

procedure BINARY SEARCH ( N, I, x 
global real R(l":N) 
LOW ~- l; UP ~- N 
I ~- 0 
call SPLIT ( LOW, UP, X, I ) 

end BINARY SEARCH 

procedure SPLIT( LOW, UP, X, I ) 
if LOW < UP then 

MID ~- INT ( ( LOW + UP ) / 2 ) 
case 

end 

X > K (MID) 
X = K(MID) 
X < K (MID) 

LOW ~- MID + 1 
I ~- MID; return 
UP ~- MID - 1 

call SPLIT ( LOW, UP, X, I ) 
endif 
return 

end SPLIT 
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since it is very straight forward, we will just sketch 

the analysis. We start with the array K(l:N) ordered, so we 

have the initial joint p.d.f. 

((k <k ) ·6(k <k ) ···6(k <k ) •f(k ) •f(k ) ••• f(k ) 
O 1 2 2 3 n-1 n 1 2 n 

The search key X is drawn 
' 

the from a p. d. f. g ( x) , and 

assignment statements 2 and 3 have their usual effect. As a 

result we have SPLIT called with the joint p.d.f. 

6 (low=l) ·6 (up=N) ·6·(i=O) ·g (x) • 

6(k <k ) ·6(k <k ) ···6(k <k ) .f(k ) .f(k ) ••• f(k ) 
1 2 2 3 n-1 n 1 2 n 

After 4c 

6 (low~up) ·6 (low=l) ·6 (up=N) ·6 (i=O) ·g (x) • 

6(k <k ) ·6(k <k ) ···6(k <k ) .f(k ) .f(k ) ••• f(k ) 
1 2 2 3 n-1 n 1 2 n 

After 5 

6(mid=l(l+N)/2l) ·6(low<up) • 

6 (low=l) ·6 (up=N) ·6 ( i=O) ·g (x) • 

6(k 1 <k 2 ) ·6(k 2 <k 3 ) ···6(kn_1 <kn) •f(k1 ) •f(k 2 ) •••f(kn) 

At 6 the joint p.d.f. splits into three parts with the arms 

of the case statement. The middle ·leg allows a portion of 

the joint p.d.f. to es6ape back to the calling program. 

After 7 

6(x>k .d) ·6(mid=I (l+N)/21) • 
m1 - -

6 (low=mid+l) ·6 (up=N) ·6 (i=O) •g (x) • 

6ck <k ) ·6(k <k ) ···6(k <k ) ·f(k ) ·f(k ) •• ·f(k ) 1 2 2 3 n-1 n 1 2 n 

After 8 

6(x=kmid) ·6(mid=l(l+N)/21) ·6c1ow=l) ·6(up=N) ·6(i=mid) ·g(x) • 

6(k <k ) ·6(k <k ) ···6(k <k ) .f(k ) .f(k ) ••• f(k ) 
1 2 2 3 n-1 n 1 2 n 
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After 9 

6 (x<kmid) • 6 (mid= l ( l+N) /21) • 

6 ( 1ow=1 ) • 6 ( u p=m i d-1 ) • 6 ( i = 0 ) • g ( x) • 

<:<k <k ) ·6ck <k ) ···6ck <k ) "f<k ) "f<k ) ···fck ) 
O 1 2 2 3 n-1 n 1 2 n 

The sum of the joint p.d.f. after 7 and after 9 is 

presented to the next call on SPLIT. Each time SPLIT is 

called, some of the joint p. d. f. escapes and is returned, 

until the final return for no find. It is relatively easy 

to see that the final joint p.d.f. will be 

c 6ci=O) { 6cx<k1 ) + 6cx>k 1 )6(x<k 2 ) + ••••• + 6cx>kn) } + 

Jn. ( 6 (i=mid) 6 (x=kmid)) ] 
m1d=l 

"g(x) ·6ck 1 <k 2 ) ·6ck2 <k 3 ) ···6ckn_1 <kn) "f(k 1 ) "f(k 2 ) """f(kn) 

The behavior of this joint p.d.f. is dependent on ·the form 

of g(x). If this p.d.f. restricts the value of x to those 

of the K(M) with equal probability, then we see that any of 

the values is equally likely. The behavior of the number of 

comparisons can be derived by instrumenting the algorithm. 

Doing so results in the usual log n behavior. 
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CHAPTER 6 

APPLICATION TO A MISCELLANEOUS PROBLEM 

We will now look at Jonassen's and Knuth's celebrated 

•Trivial Algorithm Whose Analysis Isn't" (8J. Ramshaw, a 

student of Knuth's, applies his Frequentistic System to this 

algorithm in his thesis [SJ. Jonassen and Knuth did not 

give the derivation of the initial recursion relationships, 

but derived them "by reasoning almost directly from the code 

of the program" [SJ. We now believe that our work has 

formalized th is "reasoning almost directly from the code", 

because, when applied to this algorithm, it proceeds 

directly to their equations 2.1, 2.2, and 2.3 [8]. 

Basically the algorithm involves the insertion and 

deletion of keys in a binary tree structure. The insertion 

is done with the standard binary insertion algorithm and the 

deletion is done using Hibbard's algorithm[l8]. The two 

possible trees with two keys are called F and G. The five 

possible binary trees with three keys are called A, B, C, D, 

and E. With x < y < z, we have the following pictures for 

these binary tr e es: 

71 
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A(x,y,z) B(x,y,z) C(x,y,z) D(x,y,z) E(x,y,z) 

z z y x x 
I I I \ \ \ 

y x x z z y 

I \ I \ 
x y y z 

F(x,y) G(x,y) 

y x 
I \ 

x y 

The insertion algorithm is the standard one for binary 

insertion, the new element is appended to the tree in the 

appropriate place. Hibbard's deletion algorithm proceeds in 

a straight-forward manner except that the deletion of x from 

D(x,y,z) results in G(y,z) instead of F(y,z), as one might 

expect. The insertion and deletion algorithm is given in 

detail in the program which follows. We will not go further 

into the background of the algorithm. Anyone interested 

should see the Jonassen and Knuth article [8], which does 

that quite nicely. 

While the others [5,8] have always assumed that the 

keys are selected from a uniform distribution, it turns out 

that this restriction is unnecessary in our approach. It is 

only necessary to have the keys drawn from the same, 

stationary distribution f (x). 

Jonassen and Knuth [8] give the graphical and word 

Procedure representation of the algorithm, we will only 

Present the algorithm as a SPARKS program. We wi 11 use 

Rarnshaw's [5] notation for the tuples representing the 

condition of the tree. Furthermore, we will adopt the 
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convention that after assignment the "from" variables are 

set to zero ( "killed" ) • This is not really necessary, but 

it does simplify the notation, since after the variables are 

•killed" we no longer have to carry them in the joint p.d.f. 

equations. 

1 procedure TRIVIAL ( N ) 

/* Load the initial tree *! 
2 x ~- randomf; y ~- randomf 

3 if ( x < y ) then 

4 <S;V,W> ~- <G;X,Y> 

5 else 

6 <S;V,W> ~- <F;Y,X> 

7 endif 

I* The main algorithm loop *I 
8 for K ~- 1 to N 

I* Insert a key *I 
9 R ~- randomf 

10 case 

11 s = F and R < v <T;X,Y,Z> ~- <A;R,V,W> 

12 s = F and v < R < w <T;X,Y,Z> ~- <B;V,R,W> 

13 s = F and w < R <T;X,Y,Z> ~- <C;V,W,R> 

14 s = G and R < v <T;X,Y,Z> ~- <C;R,V,W> 

15 s = G ano v < R < w <T;X,Y,Z> ~- <D;V,R,W> 
16 s = G and w < R <T;X,Y,Z> ~- <E;V,W,R> 
17 end 

I* Now do the deletion *I 
18 L ~- randomXYZ 
19 case 
20 T = A and L = x <S;V,W> ~- <F;Y,Z> 
21 T = A and L = y <S;V,W> ~- <F;X,Z> 
22 T = A and L = z <S;V,W> ~- <F;X,Y> 
23 T = B and L = x <S;V,W> ~- <F;Y,Z> 
24 T = B and L = y <S;V,W> ~- <F;X,Z> 
25 T = B and L = z <S;V,W> ~- <G;X,Y> 
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I 
T = c and L = x <S;V,W> ~- <G;Y,Z> 

I 26 
27 T = c and L = y <S;V,W> ~- <F;X,Z> 

28 T = c and L = z <S;V,W> ~- <F;X,Y> 

29 T = D and L = x <S;V,W> ~- <G;Y,Z> 

30 T = D and L = y <S;V,W> ~- <G;X,Z> 

31 T = D and L = z <S;V,W> ~- <G;X,Y> 

32 T = E and L = x <S;V,W> ~- <G;Y,Z> 

33 T = E and L = y <S;V,W> ~- <G;X,Z> 

34 T = E and L = z <S;V,W> ~- <G;X,Y> 

35 end 

36 repeat 

37 end TRIVIAL 

The recursive version of this program is then, 

1 procedure TRIVIAL ( N ) 

/* Load the initial tree */ 

2 X ~- randomf; Y ~- randomf 
3 if ( X < Y ) then 

4 <S;V,W> ~- <G;X,Y> 
5 else 

6 <S;V,W> ~- <F;Y,X> 

7 endif 

I* The main algorithm loop */ 

Sa K ~- 1 

Sb call MAIN ( K , N 

37 end TRIVIAL 

Sc procedure MAIN K, N 
8d if ( K < N then 

/* Insert a key *I 
9 R ~- randomf 
10 case 
11 s - F and R < v <T;X,Y,Z> ~- <A;R,V,W> 
12 s = F and v < R < w <T;X,Y,Z> ~- <B;V,R,W> 
13 s = F and w < R <T;X,Y,Z> ~- <C;V,W,R> 
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14 s = G and R < v <T;X,Y,Z> ~- <C;R,V,W> 

15 s = G and v < R < w <T;X,Y,Z> ~- <D;V,R,W> 

16 s = G and w < R <T;X,Y,Z> ~- <E;V,W,R> 

17 end 

/* Now do the deletion *I 

18 L ~- randomXYZ 

19 case 

20 T = A and L = x <S;V,W> ~- <F;Y,Z> 

21 T = A and L = y <S;V,W> ~- <F;X,Z> 

22 T = A and L = z <S;V,W> ~- <F;X,Y> 

23 T = B and L = x <S;V,W> ~- <F;Y,Z> 

24 T = B and L = y <S;V,W> ~- <F;X,Z> 

25 T = B and L = z <S;V,W> ~- <G;X,Y> 

26 T = c and L = x <S;V,W> ~- <G;Y,Z> 

27 T = c and L = y <S;V,W> ~- <F;X,Z> 

28 T = c and L = z <S;V,W> ~- <F;X,Y> 

29 T = D and L = x <S;V,W> ~- <G;Y,Z> 

30 T = D and L = y <S;V,W> ~- <G;X,Z> 
31 T = D and L = z <S;V,W> ~- <G;X,Y> 

32 T = E and L = x <S;V,W> ~- <G;Y,Z> 
33 T = E and L = y <S;V,W> ~- <G;X,Z> 
34 T - E and L = z <S;V,W> ~- <G;X,Y> 
35 end 
36a K = K + 1 

36b call MAIN K, N ) 

36c end if 
36d end MAIN 

The analysis is as follows: 

After 2 

f(x) "f(y) 

After 3 

6(x<y) "f(x) "f(y) 
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After 4 

6 { s =G ) " 6 { v < w ) " f { v ) " f { w) 

After 5 

6cx>y) "f{x) "f{y) 

After 6 

6cs=F) ·6cv<w) "f{v) "f{w) 

After 7 

{ 6 { s = F ) + 6 { s =G ) } " 6 { v < w ) " f { v ) " f { w) 

After Sa 

6 { k = 1 ) " { 6 { s = F ) + 6 { s =G ) } " 6 { v < w) " f { v ) " f { w) 

Which is what we expected, either tree is equally 

likely, and the joint p.d.f. is that of a sorted list of two 

variables. Rather than continue to follow an explicit 

example through the algorithm, as we have done in the past, 

we will define unknown functions to represent the various 

tree forms. Following these through the algorithm will 

result in the recursive equations. Let: 

6 { k = K ) • 6 { v < w) " { 6 { s = F ) " f k { v , w) f 0 { s =G ) " g k { v , w) } 

represent the joint p.d.f. that is presented to each call of 

the recursive subroutine MAIN. This form comes from looking 

ahead and recognizing that no joint p.d.f. "leaks out" until 

the end of the loop. 

After 8d 

6ck~N) ·6ck=K) ·6cv<w) 0 {6{s=F) "fk{v,w)+O{s=G) "gk{v,w)} 

After 9 

6ck~N) ·6ck=K) ·6cv<w) 0 {6{s=F) "fk{v,w)+6cs=G) "gk{v,w) }"f{r) 
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In order to simplify the expressions, we will drop the 

We wi 11 loop-counting-and-stopping factor 

also note that 6(s=F) ·6(s=G) = 0, and use this in each arm 

of the case statement. 

After 11 

6(s=F) "fk(v,w) "f(r) ·6(v<w) ·6(r<v) • 

6 (t=A) ·6 (x=r) ·6 (y=v) ·6 (z=w) 

using the convention of "killing" the old variables, 

6(t=A) "fk(y,z) "f(x) ·6(x<y<z) 

Note that this convention simplifies the assignments to 

<t;x,y,z> because the distributions of these variables is 

always 

at this point. 

After 12 

6 (t=B) • fk (x, z) • f (y) • 6 (x<y<z) 

After 13 

6 (t=C) 0 fk (x,y) "f (z) ·6.(x<y<z) 

After 14 

6(t=C) "gk(y,z) "f(x) ·6(x<y<z) 

After 15 

6(t=D) "gk(x,z) "f(y) ·6(x<y<z) 

After 16 

After 17 

We have the sum of the six arms of the case statement. 

It is at this point that, by looking ahead, we see that the 
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next general functions should be defined as: 

ak(x,y,z)=fk(y,z) "f(x) 

bk(x,y,z)=fk(x,z) "f(y) 

ck(x,y,z)= fk(x,y) "f(z) + gk(y,z) "f(x) 

d k ( x, y, z) =g k ( x, z) • f ( y) 

e k ( x , y, z) =g k ( x, y) • f ( z) 

With f(x)=6(o<x<l) for a unitary distribution, these 

are equations 2.1 in Jonassen and Knuth [8]. 

The whole joint p.d.f. after 17 is then: 

{6 (t=A) ·ak (x,y,z) + 6 (t=B) "bk (x,y,z) + 6 (t=C) ·ck (x,y,z) 

+ 6(t=D) "dk(x,y,z) + 6(t=E) ·ek(x,y,z) } • 6(x<y<z) 

After 18 

{6(t=A) ·ak(x,y,z) + 6(t=B) "bk(x,y,z) + 6(t=C) ·ck(x,y,z) 

+ 6(t=D) "dk(x,y,z) + 

6(x<y<z) • { ~6(l=X) 

6(t=E) ·ek(x,y,z) } • 

+ !6 (l=Y) + !6 (l=Z) } 
3 3 

where the last term expresses the fact that any of the 

keys may be deleted with equal probability. 

After 20 

6(t=A) ·ak(x,y,z) ·~6(l=X) ·6(s=F) ·6(v=y) ·6(w=z) ·6(x<y<z) 

We now apply the convention of setting t,x,y, and z to 

zero. This is done by "integration" over these variables 

using Theorem 5. We will use our summation notation, which 

is defined to work the same as integration if the functions 

are taken to be continuous. Remember that if a variable of 

integration appears in an Anderson delta function and is 

equal to a free variable, then the effect is the same as a 

change of variable. In this case y and z appear this way, 
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while x appears only with respect to other variables of 

integration. 

L {6(t=A).ak(x,y,z).;6(l=X) 
l,t,x,y,z 

·6 (s=F) ·6 (v=y) ·6 (w=z) ·6 (x<y<z)} = 

~6(s=F) .6(v<w) .) ak(x,v,w) .6(x<v) 
x 

Do the same thing with the 14 other arms of the case 

statement. 

After 35 

S(v<w). [ ~6(s=F) .{ L (ak(x,v,w) + bk(x,v,w) ) .6(x<v) 
x 

+ L · (ak(v,y,w) + bk(v,y,w) + ck(v,y,w) ) .6(v<y<w) 
y 

+ L (a k ( v, w, z) + ck ( v, w, z) ) • 6 ( w< z) } 
z 

+ ~b ( s=G) • { [ (ck(x,v,w) + dk(x,v,w) + ek(x,v,w)) .6(x<v) 
x 

+ / (dk (v,y,w) + ek(v,y,w)) .6(v<y<w) 
y 

+ f (bk (v,w,z) + dk (v,w,z) + ek (v,w,z)) .6 (w<z) } ] 
z 

After 36a 

The value of k is incremented, and we can identify the 

terms of the joint p.d.f. after 36a as equal to fk+l (v,w) 

and gk+l (v,w) respectively. We now have arrived at 

Jonassen's and Knuth's recursive equations 2.2 [8]. 



CHAPTER 7 

SUMMARY AND CONCLUSIONS 

What have we accomplished? We have sketched the 

foundation for a systematic approach to algorithm analysis 

that is based on two ideas: 

1. Convert all loop constructs within a program to 

recursive subroutine calls. 

2. Develop a representation of the initial joint p.d.f. 

of the program variables, and fol low the effects 

that the program has on that joint p.d.f. 

These two ideas yield recurrence relations for the 

joint p.d.f. which can be solved to get the joint p.d.f. at 

any point in the execution of the algorithm. The branching 

probabilities can be calculated directly from the joint 

p.d.f. at each conditional statement. It is this detailing 

of the branching probabilities that was missing from the 

automatic analyzers METRIC and EL/PL. Therefore, the logical 

next step would be to add this method to the existing 

analyzers. 

The central addition we have made to the understanding 

of the behavior of joint p.d.f .s in a program is the intro-

duct ion of the Anderson de! ta function. This function, 

80 
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by connecting the boolean world of the algorithmic 

conditional statement to the real numbers, makes it possible 

to keep track of the effects of conditional statements on 

the joint p.d.f.s. Its form, essentially a list of 

arguments, makes it very easy to represent and operate upon 

in a computer program, especially since LISP seems to be the 

language most used in this type of work. 

Our approach, by capturing the behavior of the program 

variables in detail, also includes a means for verifying the 

performance of algorithms. All of the information that can 

be obtained from previous methods of program verification 

seems to be present in our method. 

Regardless of the under 1 ying simplicity of the ideas, 

the method is very tedious to apply to any significant 

algorithm. The examples given in this thesis were made 

possible by the string manipulation features of a DIGITAL 

WS/78 Word Processor. The next thing that must be done 

before more useful work can be done in this area is to 

automate the technique. This automated processor should be 

an interactive one in the EL/PL style. 

Armed with an automatic processor, work can go forward 

to handle some of the simple program constructs which we 

have not addressed. Multiplication, division, addition and 

subtraction of variables have not been considered. Since 

these are very important parts of many algorithms, this work 

must be extended to cover them before it becomes really 

useful. 
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APPENDIX A 

LINE-BY-LINE ANALYSIS 

of 

"OBLIVIOUS" INSERTION SORT 

We must do the analysis for a specific class of initial 

distributions for the problem to be tractable. Specifical-

ly, we wi 11 assume that each element of B ( 1: N) is drawn 

independently from a well defined, stationary p.d.f. f(bi). 

Therefore the initial joint p.d.f. is simply 

The converted program is: 

1 procedure INSERTION SORT ( B , N ) 

2 real B(l:N) 

3a J ~- 1 

3b call OUTER( J, N-1, B ) 

10 end INSERTION SORT 

3c procedure OUTER( J, LIM, B ) 

3d if LIM - J > 0 then 

4a I ~- J 

4b call INNER( I' B ) 

9a J ~- J + 1 

9b call OUTER( J, LIM, B ) 
9c endif 

9d end OUTER 
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4c procedure INNER( I, B ) 

4d if I > 1 then 

5 if B(I) > B(I+l) then 

6 EXCHANGE ( B (I), B (I+l) ) 

7 end if 

Sa I ~- I 1 

8b call INNER ( I, B ) 

Sc end if 

8d end INNER 

The numb~rs will refer to the statement numbers of the 

recursive version of the algorithm. 

1 Initial joint p.d.f. 

f 8 (b1 ,b2 ,b3 , ••••• ,bN) = f(b 1 ) • f(b 2 ) • • • f(bN). 

3a Adds a new variable 

3d Splits the distribution based on the values of J and 

LIM. 

In the true branch: 

In the false branch: 

• f ( bN) • 

We have made the substitutions of the instances of the 

dummy variables in the routine. Now, if N = 1, then 

the true branch is zero, the false branch reduces to 

6cj=l) . 
f(bl)' and done. we are 

4a Adds a new variable in the true branch 

6 (i = j ) • 6 ( j < n) • 6 ( j = 1 ) • f ( bl ) • f ( b 2 ) • • • f ( bN ) • 

This joint p.d.f. is transfered with the call at 4b. 
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4d Splits the distritution based on the value of I. 

In the true branch: 

In the false branch: 

5 Finally things get interesting! This is the first test 

involving the data itself. This statement splits the 

joint p.d.f. on the basis of the values of B(I) and 

B(I+l). 

In the true branch: 

In the false branch: 

6 This EXCHANGES the values of b 2 and b 1 

6 (i ~ l ) • 6 (i = j ) • 6 ( j < n) • 6 ( j = l ) • 6 ( b 2 >bl ) • f ( b 2 ) • f ( bl ) • • • f ( bN ) • 

7 At the join for the if statement we have 

6 (i~l) ·6 (i=j) ·6 (j<n) ·6 (j=l) • 

{ 6 ( b 2 >bl) +6 ( b 2~ bl) } • f (bl) • f (b 2 ) • • • f ( bN) • 

It is now that we · can see the significance of our 

choice of initial joint p.d.f. which is symmetric with 

respect to the exchange of variable indicies. 

At this point we must decide whether the probability 

that b.=b. is going to be significant, or not. If we choose 
1 J 

to deal with continuous distributions, then this probability 

is zero. Likewise, if we say that the discrete elements are 

distinct we have the same thing. We will do this so that we 
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p.d.f. as 

6(i,?_l) ·6(i=j) ·6(j<n) ·6(j=l) ·2·6(b2,?_b1 ) • 

f(b ) .f(b ) ••• f(b ) 
1 2 N 

aa This adjusts I for the next iteration 

6 (i+l..?_l) ·6 (i+l=j) ·6 (j<n) ·6 (j=l) • 

2·6(b >b) .f(b) .f(b) ••• f(b) 
2- 1 1 . 2 N 

8b We know from step 4d above, that this joint p.d.f. will 

be returned with the additional 

restriction 6(i<l). Simplifying we have 

(superfluous) 

6 (i = 0 ) • 6 ( j < n) • 6 ( j = 1 ) • 2 • 6 ( b 2,?_ bl ) • f ( bl ) • f ( b 2 ) • • • f ( bN ) 

This joint p.d.f. is returned at 4b. 

9a This statement adjusts J for the next iteration, and 

6 (i = 0 ) • 6 ( j-1 < n) • 6 ( j-1=1 ) • 2 • 6 ( b 2..?_ bl ) • f ( bl ) • f ( b 2 ) • • • f ( bN ) 

is again passed to OUTER. 

3d We see now that this test "traps" all of the joint 

p.d.f. in the loop until J exceeds LIM ( N-1 in our 

case). So we won't mention the false branch until the 

end. 

In the true branch: · 

6 (j<n) ·6 (i=O) ·6 (j-l<n) ·6 (j-1=1) • 

2·6(b >b) .f(b) .f(b) ••• f(b) 
2- 1 1 2 N 

4a This collapses the old joint p.d.f. on i and results in 

6 (i = j ) • 6 ( j < n) • 6 ( j = 2 ) • 2 • 6 ( b 2,?_ bl ) • f ( bl ) • f ( b 2 ) • • • f ( bN) 

We have simplified the expression with respect to j. 

4d This joint p.d.f. arrives at INNER, where this 

statement traps the joint p.d.f. until I<l. 
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5 In the true branch: 

6 (i = j ) • 6 ( j < n) • 6 ( j = 2 ) • 2 • 6 ( b 2.?. b 1 ) • 6 ( b 2 > b 3 ) • 

f(b) "f(b ) """f(b ) 1 2 N 

In the false branch: 

6Ci=j) ·6cj<n) ·6cj=2) ·2··6cb2,?.b1 ) ·6cb3,?.b2 ) • 

f(b) "f(b) """f(b ) 1 2 N 

6 The exchange yields: 

6 (i = j ) • 6 ( j < n ) • 6 ( j = 2 ) • 2 • 6 ( b 3,?. b 1 ) • 6 ( b 3 > b 2 ) • 

f(b) "f(b ) """f(b ) 1 2 N 

7 At the join we have: 

6Ci=j) ·6cj<n) ·6cj=2) • 

2·16cb2.?.b1 ) ·6cb3.?.b2)+6cb3.?.b1 ) ·6cb3>b2)J" 

f(b) "f(b) """f(b ) 1 2 N 

Ba Prepares for the next call of INNER 

6 (i=j-1) ·6 (j<n) ·6 (j=2) • 

2 • { 6 ( b 2.?. b 1) • 6 ( b 3.?. b 2) +6 ( b 3.?. b 1) • 6 ( b 3 > b 2) } • 

f(b) "f(b) """f(b) 1 2 N 

This gets through to statement 5 in INNER. 

5 In the true branch .(multiply by 6cb1>b2 ) and simplify): 

6 (i=j-1) ·6 (j<n) ·6 (j=2) • 

2 • { 6 ( bl > b 2 ) • 6 ( b 3.?_ bl ) • 6 ( b 3 > b 2 ) } • f ( bl ) • f ( b 2 ) • • • f ( bN ) 

In the false branch(multiply by 6cb2,?_b 1 ) and simplify): 

6 (i=j-1) ·6 (j<n) ·6 (j=2) • 

2 • { 6 ( b 2.?. b 1) • 6 ( b 3.?. b 2) +6 ( b 2.?. b 1) • 6 ( b 3.?. b 1) • 6 ( b 3 > b 2) } • 

f ( bl ) " f ( b 2 ) " " " f ( bN ) = 

6 {i=j-1) ·6 (j<n) ·6 (j=2) • 

2·12·6cb >b) ·6cb >b) J"f<b, "f<b, ···fcb) 3- 2 2- 1 1 2 N 
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6 The EXCHANGE in the true branch yields: 

6 (i=j-1) ·6 (j<n) ·6 (j=2) • 

2 ° { 6 ( b 2 >bl ) " 6 ( b 3.?_ b 2 ) " 6 ( b 3 >bl ) } 0 f (bl ) 0 f ( b 2 ) 0 0 0 f ( bN) 

6 {i=j-1) ·6 (j<n) ·6 (j=2) • 

2·{6<b >b ) ·6cb >b ) l "f<b ) "f<b ) ···f<b ) 3- 2 2- 1 1 2 N 

7 At the join we have: 

6 (i=j-1) ·6 (j<n) ·6 (j=2) • 

2"{3"6(b >b ) 0 6{b >b )}"f(b )"f(b ) 000 f(b) 3- 2 2- 1 1 2 N 

8a Sets I to zero in this case, and the next call of INNER 

returns this joint p.d.f. 

6Ci=O) ·6cj<n) ·6cj=2) • 

2 " { 3 " 6 ( b 3,?. b 2 ) " 6 ( b 2,?. bl ) } " f ( bl ) " f ( b 2 ) " " " f ( bN ) 

to OUTER at statement 9a. 

This suggests the induction hypothesis that if you give 

INNER, at its call from OUTER, the distribution 

6Ci=j) ·6cj<n) ·6cj=k) • 

k1 ·6cb >b , ···6cb >b) "f<b '"f<b '···f<b) k- k-1 2- 1 l 2 N 

it returns the distribution 

6 (i=O) ·6 (j<n) · 6 (j=k) 0 

<k+1) • ·6cb >b , ···6cb >b , "f(b) "f<b, ···f<b) . k+l- k 2- 1 1 2 N 

This can be shown to be true in a straight-forward, if 

somewhat tedious, manner. 

OUTER's "loop-stopper" releases this joint p.d.f. when 

J=N and we have the result: 

6 ( i = 0) "6 ( j =N) 0 N ! 0 6 ( bN.?_ bN-l) 0 0 0 6 ( b 2,?. bl) 0 

f(b ) "f(b ) 000 f(b ) 1 2 N 
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This is precise!~ the proper answer which is usually derived 

using combinatorial arguments [12). It may be easier to 

implement this method of analysis, even though it requires 

an induction proof solver, than to automate the rules of 

combinatorial arguments and proofs. It should also be noted 

that at every step of the way we had a precise expression 

for the performance of the program. The marginal p.d.f. for 

any program variable gives the probability that the variable 

will take on a particular value. 

Once the analysis of the bare algorithm is complete, an 

analysis for any particular aspect can be done by instru­

menting the algorithm. It is easy to show that this 

algorithm requires exactly (N 2-N) comparisons between the 
2 

elements, which is twice as many as the "improved" version 

of the algorithm. 


	Systematic Analysis of Algorithms
	Terms of Use
	Recommended Citation

	thesis_anderson_1981_001
	thesis_anderson_1981_002
	thesis_anderson_1981_003
	thesis_anderson_1981_004
	thesis_anderson_1981_005
	thesis_anderson_1981_006
	thesis_anderson_1981_007
	thesis_anderson_1981_008
	thesis_anderson_1981_009
	thesis_anderson_1981_010
	thesis_anderson_1981_011
	thesis_anderson_1981_012
	thesis_anderson_1981_013
	thesis_anderson_1981_014
	thesis_anderson_1981_015
	thesis_anderson_1981_016
	thesis_anderson_1981_017
	thesis_anderson_1981_018
	thesis_anderson_1981_019
	thesis_anderson_1981_020
	thesis_anderson_1981_021
	thesis_anderson_1981_022
	thesis_anderson_1981_023
	thesis_anderson_1981_024
	thesis_anderson_1981_025
	thesis_anderson_1981_026
	thesis_anderson_1981_027
	thesis_anderson_1981_028
	thesis_anderson_1981_029
	thesis_anderson_1981_030
	thesis_anderson_1981_031
	thesis_anderson_1981_032
	thesis_anderson_1981_033
	thesis_anderson_1981_034
	thesis_anderson_1981_035
	thesis_anderson_1981_036
	thesis_anderson_1981_037
	thesis_anderson_1981_038
	thesis_anderson_1981_039
	thesis_anderson_1981_040
	thesis_anderson_1981_041
	thesis_anderson_1981_042
	thesis_anderson_1981_043
	thesis_anderson_1981_044
	thesis_anderson_1981_045
	thesis_anderson_1981_046
	thesis_anderson_1981_047
	thesis_anderson_1981_048
	thesis_anderson_1981_049
	thesis_anderson_1981_050
	thesis_anderson_1981_051
	thesis_anderson_1981_052
	thesis_anderson_1981_053
	thesis_anderson_1981_054
	thesis_anderson_1981_055
	thesis_anderson_1981_056
	thesis_anderson_1981_057
	thesis_anderson_1981_058
	thesis_anderson_1981_059
	thesis_anderson_1981_060
	thesis_anderson_1981_061
	thesis_anderson_1981_062
	thesis_anderson_1981_063
	thesis_anderson_1981_064
	thesis_anderson_1981_065
	thesis_anderson_1981_066
	thesis_anderson_1981_067
	thesis_anderson_1981_068
	thesis_anderson_1981_069
	thesis_anderson_1981_070
	thesis_anderson_1981_071
	thesis_anderson_1981_072
	thesis_anderson_1981_073
	thesis_anderson_1981_074
	thesis_anderson_1981_075
	thesis_anderson_1981_076
	thesis_anderson_1981_077
	thesis_anderson_1981_078
	thesis_anderson_1981_079
	thesis_anderson_1981_080
	thesis_anderson_1981_081
	thesis_anderson_1981_082
	thesis_anderson_1981_083
	thesis_anderson_1981_084
	thesis_anderson_1981_085
	thesis_anderson_1981_086
	thesis_anderson_1981_087
	thesis_anderson_1981_088
	thesis_anderson_1981_089
	thesis_anderson_1981_090
	thesis_anderson_1981_091
	thesis_anderson_1981_092
	thesis_anderson_1981_093
	thesis_anderson_1981_094
	thesis_anderson_1981_095
	thesis_anderson_1981_096
	thesis_anderson_1981_097
	thesis_anderson_1981_098

