
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

1981

Systematic Analysis of Algorithms Systematic Analysis of Algorithms

Lyle A. Anderson III
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Anderson, Lyle A. III, "Systematic Analysis of Algorithms" (1981). Open Access Master's Theses. Paper
1167.
https://digitalcommons.uri.edu/theses/1167

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1167?utm_source=digitalcommons.uri.edu%2Ftheses%2F1167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

SYSTEMATIC ANALYSIS

OF

ALGORITHMS

BY

LYLE A. ANDERSON, III

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

1981

MASTER OF SCIENCE THESIS

OF

LYLE ALLEN ANDERSON, III

Approved:

Thesis Committee

Major Professor u~ a . L~c

z::::tti:::zf~
d!lz:2d__

Dean of the Graduate School

UNIVERSITY OF RHODE ISLAND

1981

ABSTRACT

SYSTEMATIC ANALYSIS

OF

ALGORITHMS

The limits and methods involved in the systematic analysis

of algorithms are explored. A review of the existing work

in this field is presented. A specific method of systematic

analysis is developed. The method consists of (1) the

translation of algorithm loop structures into recursive

subroutines and recursive subroutine references, and (2) the

semantic manipulation of expressions representing the joint

probability distribution function of the program variables.

A new delta function is introduced to describe the effects

of conditional statements on the joint probability density

function of the program variables. The method is applied to

several simple algorithms, sorting and searching algorithms,

and a tree insertion/deletion algorithm.

ii

.ACKNOWLEDGEMENT

Throughout the research and writing of this thesis, I

have been indebted to my major professor, Dr. Edmund .A.

Lamagna, for his guidance, encouragement, and support.

The research reported in this thesis was supported by

the U.S • .Air Force Systems Command, Rome .Air Development

Center, under contract F30602-79-C-0124 • .Additional support

was provided by .Aquidneck Data Corporation.

iii

TABLE OF CONTENTS

ABSTRACT. • • • • •

ACKNOWLEDGEMENT •

CHAPTER

. . . ii

iii

l

2

3

INTRODUCTION • • • • • • • • • • • • • • • • • • • l

Statement of the Problem. • • • • • • • 1
What Are Algorithms?. • • • • • • • • • 2
What is the Analysis of Algorithms? • • • • 2
What is the Systematic Analysis of Algorithms? 4
What are the Limits of Systematic Analysis? 5

What We Can Do • • • • • • • • • • • • • • • 5
What We Cannot Do. • • • • • • • • • • • 6

Overview of the Thesis. • • • • 7

CURRENT STATE OF THE ART

Ad Hoc Procedures • • • • •
de Freitas and Lavelle •
Aho, Hopcroft and Ullman

Horowitz and Sahni. • • • • • • • ••
Knuth's Analysis Techniques •••••••

Systematic Approaches • • • • • • • • • • •
Electrical Network Analysis. • •••••
Wegbreit's Probability System ••••
Ramshaw's Frequency System • • •••

Automatic Analyzers ••••••••••••••
Wegbreit's METRIC ••••••••••••••
Cohen & Zuckerman's EL/PL. • • •••••

SYNTAX DIRECTED TRANSLATION APPROACH •

10

10
11

11
12
13
13
17
18
22
22
23

25

Solving Recurrence Relations. • • • • • • • • • 26
Translating Loops into Recursive Subroutines. • 28
Simple Examples • • • • • • • • • • • • 29

Algorithm for nn • • • • • • • • • • 29
ODD/EVEN Print Example • • • • • • • • • 31
COINFLIP • • • • • • • • • • • • • • • • • • 33
FIND MAX • • • • • • • • • • • • • • • • • • 34

The Problem of the Conditional Statement. • 36

iv

4

5

6

7

TABLE OF CONTENTS
(Continued)

DEALING WITH CONDITIONAL STATEMENTS •••••••• 38

Algorithms and Probability Distributions. • 39
LEAPFROG Revisited. • • • • • • • • • • 44
COINFLIP Revisited. • • • • • • • • • • • • 48
FINDMAX Revisited • • • • • • • • • • • • • • • 51

APPLICATION TO SORTING AND SEARCHING • 55

"Oblivious" Insertion Sort. • • • • • • • • • • 55
"Improved" Insertion Sort • • • • • • • • • • • 61
Binary Search • • • • • • • • • • • • • • • 68

APPLICATION TO A MISCELLANEOUS PROBLEM •

SUMMARY AND CONCLUSIONS ••••

71

80

REFERENCES ••
BIBLIOGRAPHY.

82
84

APPENDIX A

LINE-BY-LINE ANALYSIS OF "OBLIVIOUS" INSERTION SORT 86

v

CHAPTER 1

INTRODUCTION

This chapter is divided into two parts. In the first

part we will state and discuss the problem in computer

science that will be addressed in the rest of the thesis.

In the second part we will give an overview of the remaining

chapters of the thesis.

Statement of the Problem

This thesis is concerned with the systematic analysis

of algorithms. In order to understand what it is about, we

must answer these three questions:

1. What are algorithms?

2. What is the analysis of algorithms?

3. What is the systematic analysis of algorithms?

We will also be discussing a fourth question:

4. What are the limits of systematic analysis?

This will involve a short discussion of:
n

a. Godel's Theorem

b. The Halting Problem

c. Characteristics of the Completeness Problem

1

2

What are Algorithms?

Horowitz and Sahni [7] give this definition of an

algorithm: "Algorithm has come to refer to a precise method

b a computer for the solution of a problem." In useable Y

order to be considered an algorithm the method must have the

following characteristics:

1. A finite number of steps of one or more operations

2. Each operation must be definite, i.e. unambigously

defined as to what must be done

3. Each operation must be effective, i.e. a person with

pencil and paper or a Turing Machine must be able to

perform each operation in a finite amount of time

4. Produce at least one output

5. Accept zero or more inputs

6. Terminate after a finite number of operations

What is the Analysis of Algorithms?

Webster's New Collegiate Dictionary defines analysis as

"an examination of a complex, its elements, and their rela-

tions n. In the analysis of an algorithm we are interested

in the relationship between characteristics of the inputs

and the performance characteristics of the algorithm. Fore-

most among these characteristics is the execution time of

the algorithm; that is, the relationship between some sizing

parameter of the input data and the amount of time it takes

for the algorithm to get an answer. Other performance

3

parameters of interest include:

1. Number of comparisons in sorting/searching

algorithms

2. Number of scalar multiplications/divisions in

algebraic algorithms, such as matrix-matrix product

3. Number of input/output operations required for

problems dealing with database access

4. Size of the computer memory required to solve a

problem

All of these performance parameters have one thing in

common. They all can be transformed into the cost of com-

puting the answer. This is the reason that the analysis of

algorithms is so important. Aside from its intellectual and

recreational aspects, the economic aspects of the analysis

of algorithms are important to the users of computer sys­

tems. Especially in the computer-based industries, time is

money. An algorithm which takes twice as long to run may

not only cost twice as much to run, but may not even get

done in time to be useful. In other applications, accurate

predictions of probable running times are needed before a

system is actually built. These predictions can help make

overall cost and feasibility estimates for a proposed system

more accurate. In these kinds of applications the analysis

of algorithms is a software engineering tool. Other poten-

tial uses are in automatic program synthesizers or in

compiler systems for very high-level languages. [l]

4

In most cases the analysis of an algorithm consists of

determining the time behavior of the algorithm. This is not

the only measure of a program for which an analysis can be

performed. An algorithm can be analyzed by "instrumenting"

it, meaning that the values of the parameter of interest are

recorded in a counter variable which is added to the algo-

ri thm. We often do this when analyzing for the time

behavior of an algorithm. For this reason the analysis of

different measures have a great deal in common with the ana-

lysis of time behavior. When we talk about the analysis of

an algorithm, we will only be concerned with its time

behavior unless otherwise stated.

What is the Systematic Analysis of Algorithms?

There are two basic ways to approach the analysis of

algorithms. The first way is to approach each alogrithm as

a separate new problem and to find the solution by appealing

to previous experience with similar problems. The second

way is to make up general rules which apply to "all"

algorithms and to apply these rules step by step to the

algorithm being studied.

The first way is very suitable to humans who come

equipped with a great deal of problem-solving and pattern-

recognition ability. It is not so well suited to the

digital computers of today because they are not so equipped.

The more systematic approach of the second way to analyze

algorithms is better suited to implementation by digital

5

co11puters. we shall say that the human approach involves ad

dures and the computer approach involves boC proce '

systematic procedures.

What are the limits of Systematic Analysis?

The gross limits of systematic or automatic algorithm

analysis are known.

1. We know that systems can be built which will analyze

simple programs. (1,3,4]

2. We know that no completely automatic system or com-

plete formal system can be constructed which can

analyze all algorithms. This fact is firmly estab-

lished by computability theory. (15]

In between the simple programs and all possible programs

there is a lot of ground which can be covered.

What We Can Do

Wegbreit [l] has built a system which can analyze

simple LISP programs automatically. Cohen and Zuckerman [3]

have built a system which greatly aids in the analysis of

algorithms written in an ALGOL-like programming language.

Their system helps the analyst with the details of the

analysis while requiring the analyst to provide the branch-

ing probabilities. Wegbrei t [2] developed a formal system

for the verification of program performance. His technique

can also be used to provide the branching probabilities

which are needed. Recently, Ramshaw [5] has shown that

6

there are problems with Wegbrei t' s

and has developed a formal system

probabilistic approach

which he calls the

Frequency System. There are problems with the Frequency

system, which Ramshaw points out in his thesis [5]. We will

show that some of the problems in the Frequency System can

be overcome.

What We Cannot Do

Douglas R. Hofstadter [15] gives a beautiful exposition

of the nature of the • whole question of computability and

decidability and the wide-ranging and unexpected topics upon

which it touches. The formal study of this subject springs

" from Godel's Theorem which Hofstadter paraphrases:

"All consistent axiomatic formulations of number
theory include undecidable propositions."

The undecidability of the Halting Problem is an example

of one such "undecidable proposition." Stated in terms of a

Turing Machine, the Halting Problem is this:

Can one construct . a Turing Machine which can decide
whether any other Turing Machine will halt for any
input, when given an input tape containing a
description of the other Turing Machine and its
input?

A negative answer to this question was given in 1937 by

Alan Turing. The argument which he used is called a diagonal .

method. This method was discovered by Georg Cantor, the

founder of set theory. It involves feeding a hypothetical

Turing Machine, which could decide whether any other Turing

Machine would halt for any input, a description of itse l f

Which has been modified in a particularly diabolica l manner.

7

Hofstadter's book [15] devotes much of its 740 pages to the

Of topics to which this method may be applied.
variety

It appears to us that undecidability and incompleteness

creep into formal systems when statements which can be

interpreted as being about the system itself are allowed.

In our discussions we will try to avoid these kinds of

questions, and thereby the completeness problem.

Overview of the Thesis

We have chosen to organize this thesis along the lines

which were taken in the development of the research upon

which it is based. We feel that the road taken is interest-

ing in and of itself. For this reason we will point out the

•aead-ends" which periodically blocked our path.

The first step which we took was a survey of the work

which had been done in this field. In Chapter 2, we will

discuss the current state of the art of algorithm analysis.

We will point out t h e areas where results are firmly estab­

lished and the benefi .ts of particular procedures that are

known. We will examine some of the recent advances both to

see how they work and to d i scover the kinds of problems

which they cannot solve.

When this survey was completed we formulated a plan.

The approach which we used was to start from the program

statements themselves. We attempted to determine just how

much could be l earned from manipulations of the programs

using various translation schema. We restricted ourselves

8

to programs written in a "structured"

developed by Horowitz and Sahni [7, 9] ,

language. SPARKS,

was chosen as the

language for representing algorithms for the same reasons

they used it in their books.

our initial work revealed a transformation which proved

ff Ctl·ve i·n analyzing several deterministic algo­to be e e

rithrns in a straight-forward manner. Chapter 3 describes

this technique which involves the transformation of all

looping structures of a program into a series of recursive

subroutines and recursive subroutine calls. Because this

process is designed to follow the syntax of the algorithm,

we refer to this as a "syntax-directed translation." The

program characteristic to be analyzed is selected, and the

recursive program statements are transformed into recurrence

equations. The analysis is done by solving the recurrence

equations. This is not always easy [8]. For this reason we

concerned ourselves with solving as well as setting up the

recursions.

In Chapter 3, we ·will examine some very simple, deter-

ministic algorithms (i.e. ones for which we know the inputs

exactly), then some very simple probabilistic algorithms

(i.e. ones where we only know some characteristics of the

inputs). While looking at these· examples we will discover

the "problem of the conditional statement." We started with

the FINDMAX algorithm which was analyzed both by Knuth [6]

and by Ramshaw [5] • We soon discovered that when the

statistical behavior of algorithms is being analyzed, the

9

distribution from which the input data is drawn is an

rtant factor in the running time. While we could solve
impo

the problems relating to distributions in algorithms such as

FINDMAX, we often found ourselves using information from

•outside the system".

Chapter 4 presents our formal approach for handling the

conditional ~a tement. This approach is to use statements

about the distrioutions of program variables directly in the

analysis of the algorithms. We found that we had to study

the propagation of the distributions of the program vari-

ables through the program. As a result, we developed a

•calculus" for the behavior of the distributions themselves.

we will use this · method to analyze the probabilistic

algorithms from Chapter 3.

We will then move on and apply the techniques to some

sorting and searching algorithms in Chapter 5, and to a

miscellaneous problem in Chapter 6. Chapter 7 is a summary

of the work and an outline of poss i ·ble future efforts.

Appendix A contains some details of the work discussed

in Chapter 5.

CHAPTER 2

CURRENT STATE OF THE ART

In this chapter, we will discuss what is currently

known about the analysis of algorithms. The chapter is

divided into two sections. The first discusses what we call

ad hoc procedures, and the second discusses current syste­

matic approaches.

Ad Hoc Procedures

We are going

hoc" if we

to characterize an analysis technique as

cannot see a way to easily remove the

•intuition" required to get the answers. The analysis proce-

dures which a re so categorized are mo re suited

humans than for the programming of a computer.

for use by

They take

advantage of the rich background of experience which forms

the context of a human's ability to perform such analysis.

We will present the techniques of three sets of researchers

in order of increasing mathematical elegance of the tech­

niques. A method with a high degree of elegance is very

hard for the uninitiated to understand, but facilitates

quick and meaningful communication between the initiated.

10

11

de Freitas and Lavelle

The most straight-forward, and hence the least elegant,

t o analyze an algorithm is to write down how long each
way

statement takes and to add up the result. s. L. de Freitas

and P. J. Lavelle describe "A Method for the Time Analysis

of Programs" [4] which does the first part of this proce­

Their method consists of superimposing timing data

about the assembly/machine code produced by a FORTRAN

program on the program source listing. The programmer may

then use the timing information to identify inefficient

portions of the program. The method does not calculate the

repetition counts for loops, but presents the time required

to perform one iteration of a loop. It therefore requires

the application of all the ad hoc analysis techniques we

will describe, but allows the analyst to come up with exact

answers to time performance questions. Even though it uses

a computer program, it can sti 11 be considered an ad hoc

technique.

Aho, Hopcroft and Ullman

Horowitz and Sahni

Aho, Hopcroft and Ullman [10] and Horowitz and Sahni

[7] describe a level of analysis which is one step removed

from the machine dependent technique described above. This

level deals with the statements of the algorithm as pr imi­

tive ent1·t1·es and l argely ignores the variation in execution

time between them. This type of analysis seeks order-of-

magnitude or

in trod ucto ry

12

"Big O" performance data.

text [7] I Horowitz and

interested in this kind of analysis.

In their excellent

Sahni are primarily

They introduce a

methodology which is very close to the high level "code" of

the algorithm to be analyzed. Aho, Hopcroft and Ullman [10]

give an excellent presentation of the various computer and

computability models which have been used.

Knuth's Analysis Techniques

It would be unfair to imply that Knuth's techniques are

all ad hoc. Nothing can be further from the truth. Donald

E. Knuth, perhaps more than anyone else, has established the

definitions and directions of algorithmic analysis [6].

Jonassen and Knuth present an ad hoc tour de force in "A

Trivial Algorithm Whose Analysis Isn't" [8]. In the begin-

ning of his book [6], Knuth sets down the tools and techni­

ques which may be brought to bear during the analysis of an

algorithm. It is this grouping o~ techniques which we refer

1. Mathematical Induction

2. Sums and Products

3. Eleme_ntary Number Theory and Integer Functions

4. Permutations and Factorials

5. Binomial Coefficients

6. Harmonic Numbers

7. Generating Functions

8. Euler's Summation Formula

9. Combinatorics

13

The application of these techniques requires a consid-

erable amount of intuition and experience in the analysis of

algorithms. The analyses which result are characterized by

a high degree of abstraction.

Systematic Approaches

we now begin a discussion of systematic approaches to

the analysis of algorithms. These methods are characterized

by the exposition of a "theory" which is applied consis­

tently in the analysis of algorithms. We will discuss three

manual approaches in order of increasing effectiveness, and

then discuss two automatic analyzers. The manual approaches

which we will discuss are:

l. Electrical Network Analysis

2. Wegbreit's Probability System

3. Ramshaw's Frequentistic System

For each one we will cover the theoretical basis of the

system, describe how it works, give · an example, and discuss

the inherent weaknesses and their causes.

Electrical Network Analysis

Knuth mentions the applicability of Kirchhoff's Current

Law to the analysis of algorithms and applies it quite often

[6] • He also mentions that Kirchhoff's Voltage Law is not

applicable to the analysis of algorithms. An attempt to

introduce Kirchhoff's Voltage Law into the analysis of algo­

r · h 1 t ms was proposed by Kod res [13] and extended by Davi es.

14

following section closely follows Davies [14] • A

generalization

applied to the

of Kirchhoff's Voltage and Current Laws is

analysis of program or algorithm flowcharts

in the following way:

1. the number of executions of a statement corresponds

to the current in an electrical circuit

2. the execution time of a statement corresponds to the

resistance of a circuit element

3. the total time spent executing the statement

corresponds to the voltage across an electrical

circuit element

Kirchhoff's Current Law states the the sum of all

currents at any circuit node is zero. By assigning a "sign"

to the direction of flow in the flowchart, it is easy to

show that this is true for the number of executions in a

flowchart. The number of times into any node in the flow-

chart is equal to the number of times out of that node.

Kirchhoff's voltage law states that the sum of all voltage

drops and emf 's around any circuit loop is zero. The

analogy for the voltage law breaks down in the case of

parallel connected sections in a flowchart. Here Kodres in­

troduced the idea of placing "current" sources in each

closed loop in the flowchart. The value of the current

source is equivalent to the number of times the loop is

executed.

15

In the examples which follow, this notation applies:

pt is the fractional execution count for the true (t)

branch of an if statement

T is a prefix that indicates that the quantity is an

execution time for a program block or element

(Examples are TA, TCf)

n is the number of executions of a loop body

The expressions which are given with each program

construct represent the equivalent "voltage" or total

execution time of the block in question.

The structured programming constructs involving closed

flowchart loops are translated as follows:

• if-then-else is equivalent

to a single statement

block with a value of

Pt(TCt+TA) + (1-Pt) (TCf+TB)

t

f

B A

TA TB

•do-while is equivalent to

a single statement block

with a value of

n(TCt + TA) + TCf

t

A
I f
t

• do-until is equivalent to

a single statement block

with a value of

+ TA + TCt

t

f

16

nf
TCt

. TCf

TA

TA

I\

17

The limit of this approach is clear and has been

t by all who have written about the technique.
pointed ou

The di ff icul t pa rt of the analysis of algorithms is the

determination of the number of times a loop is executed or

in this analog, the value of the current source. However,

if one could solve this problem, then this technique

guarantees that one can get the solution to any structured

flowchart.

Wegbreit's Probability System

wegbreit's systematic approach to the analysis of

algorithms was introduced in an article on "Verifying

Program Performance" [2]. The analysis of the algorithm is a

natural by-product of proving that the program/algorithm is

correct, and a refinement of the use of well-ordered sets,

first suggested by Floyd. The algorithm is instrumented to

record the desired performance parameter. Then the appro-

priate probabilistic input assertions are made about vari­

able probability distributions and inductive assertions are

shown to hold at intermediate stages in the algorithm. When

one of the inductive assertions can be shown to be a loop

invariant it can be manipulated into a statement about the

algorithm's performance. The important advance of

Wegbreit's probability system is that it sets out to

calculate the branching probabilities in order to determine

average computation time.

18

Ramshaw [5] states that this method is based on the

O f Floyd and Hoa re.
ideas

It uses formal reasoning about

d ·cates of the form Pr(P) = e, O<e<l. Which means that
pre 1

Probability that the predicate P is true is equal to the
the
real-valued expression e. Ramshaw has shown [5] that systems

of this form have p~oblems with a very simple program which

be calls the Leapfrog Problem:

Leapfrog: if K = 0 then K ~- K + 2 endif

we assume that K can take on the values of 1 and O with

equal probability, i.e.,

1 1
[Pr(K=0)=2l /\ [Pr(K=l)=2l

The output assertion which one would expect to get is:

1 1 [Pr (K=l) =2l /\ [Pr (K=2) =2J

However, all that can be asserted using a Floyd-Hoare system

is:

Pr([K=l] \/ [K=2]) = 1

This is not particularly informative or of much use in

subsequent portions of the program since all of the

information about the distribution of the input has been

lost.

Ramshaw's Frequentistic System

In his Ph.D. dissertation, Ramshaw [5] reformulates the

ideas about probabilistic assertions into what he calls

•frequentistic" assertions. In this way he "avoids the

rescalings that are associated with taking conditional

Probabilities." Ramshaw's frequency "is like probability in

19

way except that it doesn't always have to add up to
everY

on•·"
He defines a frequentistic state as a collection of

·nistic states with their associated frequencies.
determ1

l·c assertions are statements of the form Fr(P)=e, where
Atoll

p is a predicate and e is a real-valued expression.

Ramshaw applies his frequency system successfully to

the Leapfrog problem.

Leapfrog: if K = O then K ~- K + 2 endif

Bis input assertion is:
1 1

[Fr(K=O)=~] /\ [Fr(K=l)=~]

This means that the frequency associated with the state K=O

is ~ and the frequency associated with the state K=l is also

1
2· The total frequency associated with the variable K is

1 1 -tt2 - 1.

So far we have followed Ramshaw' s thesis closely. The

following is a slightly different interpretation of the

application of his method which arrives at the same answer.

We present it here in this way because it seems a little

•ore formal than his presentation.

The i £-test on the predicate { K=O } conjoins the

branch atomic assertion Fr(K~O) = 0 to the TRUE

out-branch. This is derived by setting the frequency of the

negation of the if-test predicate equal to zero. For the

PAI.SE out-branch, the branch atomic assertion is [Fr(K=O) =

O] • This simply states that the frequency with which the

if-test predicate is true in the FALSE out-branch is zero!

20

Each atomic assertion in the input assertion is

. ·dually resolved with the branch atomic assertion, in
indlVl

the manner of theorem proving systems. If there is a

· then that conJ·unct of the input assertion is contradiction,

dropped. In the TRUE branch we have:

[Fr (K=O) =~] /\ [Fr (K;CO) =O]

which is logically consistent, but
1

[Fr(K=l)=~] /\ [Fr(K;CO)=O]

is a contradiction and is dropped. In the FALSE branch we

have:
1 [Fr(K=0)=2] /\ [Fr(K=O)=O]

which is a contradiction, and

[Fr(K=l)=~] /\ [Fr(K=O)=O] = [Fr(K=l)=~] /\ [Fr(K;Cl)=O]

which is a valid assertion.

In the TRUE branch, the assignment statement changes

the deterministic states of K to have the value K+2.

1
[Fr(K=2)=~] /\ [Fr(K;C2)=0]

The assignment statement maps all of the frequencies of

the states of K in this branch into the frequency of the

state K+2.

At the final join, the output assertion is the

conjunction of the two branch assertions, namely:

[Fr (K=2) =~] /\ [Fr (K;C2) =O] /\ ' [Fr (K=l) =~] /\ [Fr (K;Cl) =O]

This statement contains the logical contradiction:

[Fr (K;Cl) =0] /\ [Fr (K;C2) =O]

Unlike the case with the restriction at the if-test, a

contradiction at the join (which must be between atomic

21

. 5 from separate
assertion

out-branches) is resolved by

conjoining each branch's contribution to· a given

frequentistic state within a single predicate. In this

case:
.[Fr(K11)=0] /\ [Fr(K12)=0] ==> [Fr(KFl /\ K12)=0].

we arrive at Ramshaw's output assertion:
1 1

[Fr(K=l)=~] /\ [Fr(K=2)=~] /\ [Fr(KFl /\ K12)=0].

This result is a little more useful! It says that K is

either 1 or 2 and that it takes on either value with equal

probability·

Now, one would think that all this would lead to a very

powerful method. It does. Ramshaw shows how to apply this

straight forward approach to the COINFLIP algorithm in

Chapter 5 of his thesis [5]. His analysis is very similar

to the one that we will give in Chapter 4. But, instead of

continuing to use the more straight-forward approach,

Ramshaw follows Kozen's semantics for probabilisitic

programs, applies measure theory, ~nd shifts to a "theorem-

proving" approach. He uses the following rule of

consequence to prove theorems about the conditional

statement:

1-[AIP]S[B], 1-[Al..,P]T[C]
1-[A]if P then S else T fi[B+C]

This rule of consequence means that, if the truth of

Predicate A given that p is true implies that B is true

after the execution of program section S, and if the truth

of Predicate A given that p is false implies the truth of

Predicate C after the execution of program section T, then

22

i s true before the if statement involving P, s, and T,
if A

it follows that either B or C is true afterward.
then

Ramshaw's frequency system can handle some of the

which Wegbreit's can't, because Ramshaw avoids pro­
programs

blems of renormalizing probabilities. But because Ramshaw

to use this rule of consequence for the if statement,
chose

bis system still can't handle the "useless test":

if R then nothing else nothing endif.

Ramshaw must include a special rule of consequence for

the •useless test" (one that says that nothing happens).

This seems to be symptomatic of those formal systems of

algorithm analysis which have grown from the work in program

verification based on theorem proving.

we have just given a taste of Ramshaw's frequency

system. Readers who are interested in learning more about

it should see Ramshaw's dissertation [5].

Automatic Ar alVzers

We now turn our attention to the current state of

automatic analysis. We will look at two systems which have

been reported in the literature.

Wegbreit's METRIC

METRIC [l] is a system, written in Interlisp, which is

able to analyze_ · simple LISP programs and produce closed-form

expressions for the parameter of interest in terms of the

Size (in some sense) of input. the The analysis of a

23

takes place in three distinct phases:
program

1 • Assign a cost to each primitive operation. This

process continues as long as the procedure is not

recursive. Blocks of primitive operations are

assigned the cost of the sum of their individual

costs.

2. Analyze the recursive procedures. This phase ana-

lyzes how the recursion variables change from one

iteration to the next. A series of difference equa-

tions is generated by projecting this recursive

structure onto the set of integers.

3. Solve the difference equations. This phase finds a

closed-form expression for the difference equations.

Wegbrei t has implemented solutions to these equa-

tions based on: direct summation, pattern matching,

elimination of variables, best-case/worst-case anal-

ysis, and differentiation of generating functions.

In Wegbreit's processing of coriditional statements, he

assumes that all tests are independent. This is perhaps the

most serious flaw in the approach. Again the problem stems

from the difficulty in handling conditional probabilities.

Cohen and Zuckerman's EL/PL

Evaluation Language/Programming Language [3] is a

system that consists of an ALGOL-like language for express-

ing algo r i· thms (· h PL) and a language for analyzing t e result-

ing algorithms (EL). The PL statements are compiled by the

24

PL compiler
into a symbolic formula representing the time

executing the program. This "object deck" is present to
for

the EL processor. The EL processor, in turn, provides a

buman operator with the means to manipulate the symbolic

formula into answers. EL runs in an interactive mode. It

allows the operator to bind formal or numerical values to

the execution counts of loops and to assign formal or numer­

ical values to the probabilities of boolean expressions.

Here, as with METRIC, the operator has to provide the

critical data on the branching probabilities. The branching

probabilities of different conditional statements are

assumed to be independent of each other. This seems to be

the most serious defect in the automatic analyzers to date.

CHAPTER 3

SYNTAX DIRECTED TRANSLATION APPROACH

In this chapter, we will discuss our approach to the

systematic analysis of algorithms. The presentation follows

the order in which the work actually progressed. our

research was sparked by the arrival of Ramshaw's thesis [5].

It seemed to us, at the time, that the theorem-proving

approach was overly mathematical. There must be, we said, a

way to look at this which is more closely related to the

code and more understandable by programmers. Wegbreit's

article on METRIC [1] got us thinking about the uti 1 i ty of

translating program loops into recursive subroutines.

Loops make the analysis of algorithms interesting.

Without loops it's once th rough and done. Straight line

code is easy to analyze. When you add some branching state­

ments it gets a little harder; but it's the loops which make

an analysis really interesting. The first observation is

that there has been a lot of work done on solving recurrence

relations. If we can convert all of the different loop

structures to recursive subroutine calls, then we can apply

the same techniques to attempt to analyze all kinds of

loops. In fact, one can do exactly that, as Wegbre it [1]

25

26

points out. He ...also points no if that there out are

1 branches in the loops, then there is an exact
conditiona

to the recurrence relations.
solution

basically quite simple:

Our procedure is

Convert all loops into recursive subroutine calls 1.

2. convert the recursive subroutine calls into

recurrence relations

3 0 Solve the recurrence relations

Solving Recurrence Relations

There are three basic methods for solving recurrence

relations:

1. Inspect the relation to see if you have seen it

before in another problem, or recognize a general

form

2. Try a few iterations to get the feel of the recur-

rence relationships and · the way the relations

behave, then guess a closed-form answer, and prove

its correctness by induction

3. Apply one of the standard techniques to solve the

recurrence relation

Within these simple steps are contained a lot of art

and experience. G. s. Lueker in a recent tutorial "Some

Techniques for Sol:ving Recurrences" [16] gives an excellent

introduction to these methods. Advanced techniques can be

founa i K . n nuth [6], and especially Jonassen and Knuth [8].

27

shall we
Lueker [16] •

list some of the techniques mentioned by

1. summing factors -- where one tries to manipulate the

recurrence relations by addition of expressions for

adjacent terms in the hope that the sum will

•telescope" into a few terms, one of which is the

nth term.

2. Characteristic

mapped into

equations where the

that of finding the

problem

roots of

is

a

characteristic system of polynomial equations. This

approach works for linear recurrences with constant

coefficients.

3. Range transformation -- where the unknown coeff ic­

ents in the recurrence relations are transformed by

some function which turns an unknown problem into a

known problem, or one that can be solved by another

technique.

4. Domain transformation -- where the index value is

transformed to make the progression of values

additive instead of some other function. Once this

is done, summing factors can often be used.

S. Generating functions where the problem is

transformed into another domain in a way similar to

the transformation of a time-domain function into a

frequency-domain function by a Fourier transform.

This method is pa rt i cular 1 y powerful for handling

probabilistic aspects of solutions.

Our work in this thesis, involved some very familiar

recurrences for which the answers were easily guessed.

28

Translating Loops into Recursive Subroutines -
we will limit our discussion to algorithms expressed

structured programming constructs only. This is not a
usin9
particularly restrictive limitation since the structured

· g constructs are all that is theoretically needed programm1n

to describe any a log r i thm. For this reason and the fact

that such programs are easier to maintain, most new

programming is being done using structured programming

aethods.

we will adopt SPARKS as the language for expressing

algorithms. SPARKS was developed by Horowitz and Sahni in

1976 [9] and sight! y modified in 1978 [7] •

we have developed a formal syntax-directed translation

schema for converting structured loop constructs into

recursive subroutines.

First we consider the FOR loop.

Given the input syntax:
<label>:

<statements with live variables>
repeat

we get the recursive syntax:

start ~- <exp1 >; stop ~- <exp2>; incr ~- <exp3>

<var> ~- start

call <label>(<var>,incr,stop,{ live variables }

procedure <label>(var,incr,stop,{ live variables })

if SGN(incr) * (stop - var) ~ O then

<statements with live variables>

var ~- var + inc

call <label>(var,incr,stop,{ live variables })
end if

ena <label>

29

The live variables from <statements> are those

which are used or created in <statements> and have
9ariables

Pe that extends outside of <statements>.
a sco

The procedure for converting DO WHILE loops to

recursive subroutine calls is quite similar.

<label>: while < relational expression > do
< statements with live variables >

repeat
The recursive syntax is:

call <label>({live variables, relational variables})

procedure <label> ({live variables, relational variables})

if < relational expression > then
< statements with live variables >

call <label> ({ live variables,

end if

end <label>

relational variables })

Simple Examples

n do while example (Algorithm for n)

The following algorithm is a · modification of one by

Horowitz and Sahni [10].

procedure N to the N

read Rl

R2 ~- l; R3 ~- Rl
Tl: while R3 > o do

R2 ~- R2 * Rl; R3 ~- R3 - 1
repeat

Print R2
•nd N to the N - - -

30

This procedure contains a single while loop which we

viSh to analyze. The time behavior of this algorithm is

i ted by the number of times that the body of the while
do• na

iooP is executed. We first translate the while loop into a

recursive subroutine. The algorithm becomes:

procedure N_to_the_N

read Rl
R2 ~- l; R3 ~- Rl

call Tl(Rl, R2, R3

print R2

end N_to_the_N
procedure Tl (Rl, R2, R3)

if R3 > 0 then

R2 ~- R2 * Rl; R3 ~- R3 - 1

call Tl(Rl, R2, R3)

end if

end Tl

Only program variable R3 has any effect on the course

of the recursion. Let i be the mathematical variable which

corresponds to R3, and T be the number of calls on the

subroutine. Then:

T(i) = T
I

1, if i < 0

l 1 + T(i-1), if i > 0

The subroutine Tl is called from the main program with

i • Rl. Therefore, the recursion is solved by:

0

Tl(Rl) = /- 1 =
j=Rl

Rl + 1

The subrout1· ne Tl i· s called one time more than the value of

Rl, Which we expected.

31

ODD/EVEN Print Example

This example is a little more difficult. It involves

an if statement, but one which is completely determined by

the starting number. ODD(I) is a built-in function which

returns True if its argument

argument is even.

procedure ODD_EVEN (N)

I ~- N
while I ~ 1 do

Ta: print 'AAA'
if ODD (I then

I ~- I - 3

else

I ~- I + 1

end if

repeat

end ODD EVEN

is odd,

The recursive form of the program is:

procedure ODD EVEN (N) -
I ~- N

call Ta(I)
end ODD EVEN

procedure Ta I)

if I > 1 then

print 'AAA'

if ODD(I then

I ~- I - 3
else

I ~- I + 1

end if

call Ta(I)
end if

•nd Ta

and False if the

32

wegbreit [l] points out the idea for the next step and

into it in greater detail than we shall here. He
goes

tes "The essential idea is to map a recursive procedure sta ,

p into a new recursive procedure whose value is the

p •• we are interested in the number of times that

printed· The recurrence relation for it is given by:

T o, if i < 1

T (i) I 1 + Ta(i -= I a
l 1 + Ta (i +

starting with the case where

Ta(io) = 1 + T (i -3) a o

Now, i -3 is even so we have
0

Ta(io) = 1 + 1 + T (i -a o

Note that i -
0

2 is also odd.

we now examine the case when

Ta(ie) = 1 + Ta(ie+ 1)

Now, ie +l is odd, so we have

3) I if i is odd

1) I if i is even

i is odd, we have:

(assuming i 0 - 3 ~ 1)

3 + 1) = 2 + Ta (i 0 - 2)

i 0 is even:

Ta(ie) = 1+1 + Ta(ie+ 1 - 3) = 2 + Ta(ie- 2)

cost of

AAA is

Since the recursions for the odd and even cases have been

transformed to eliminate the dependence on parity, we have

the new recurrence relations:

Ta (i) = 2 + Ta (i-2), if i>2

T (1) = 1 a

Ta(O) = O

Whose solution is easily shown to be Ta(i) = i.

33

COINFLIP

coINFLIP is an algorithm which Ramshaw [5] uses. Here

.,. translate it into SPARKS. The built-in function RANDOMht

lue of Heads or Tails with equal probability.
returns a va

procedure COINFLIP

I ~- 0
while RANDOMht = T do

Tc: print 'ok, so far!'; I~- I+ 1

repeat

print I, ' times!! '

end COINFLIP

The recursive version is:

procedure COINFLIP

I ~- 0

call Tc(I)

print I,' times!! '

end COINFLIP

procedure Tc(I)

if RANDOMht = T then

print 'ok, so far!'; I~- I+ 1

call Tc (I

end if

end Tc

The question "how many times will tails turn up in

sion?• is equivalent to asking how many times will

fart' be printed out. We see that:

T o, if RANDOMht = H
I
l 1 + Tc(i+l), if RANDOMht = T

succes-

'ok, so

Where T i's th c e number of times that the statement labeled

34

the original program is executed. If RANDOMht returns

first time that it is called, then the statement is
I the

executed. never
If RANDOMht

d s not terminate. program oe

al ways returns T, then

The in-between cases are

interesting ones. What is the expected value of i, i.e.

expected number of times that 'ok, so far' is printed? .

the

the

the

To

answer this question requires an investigation of the part

that probability plays in the conditional statement. We

will come back to this question later.

FIND MAX

This algorithm has been used as an example by several

authors [S, 6, and 7]. It is the usual algorithm for

finding the maximum value of a set of numbers. This is the

first example which we have given in which the recursive

form of the algorithm is not obvious.

will give the translation explicitly.

procedure FINDMAX(A, N, XMAX)

For this reason we

I* set XMAX to the maximum value in A(l:N), N>O. */

XMAX ~- A(l)

Ll: for I ~- 2 to N do

if A(I) > XMAX then XMAX ~- A(I); end if
repeat

end FINDMAX

35

· version of this program is: recursive tbe
edure FINDMAX(A, N, XMAX)

proc .
t XMAX to the maximum value in A(l:N), N>O. */

/* se
XMAX ~- A(l); I~- 2

call Ll(A, N, I, XMAX

end !'INDMAX
edure Ll(A, N, I, XMAX) proc

Tl:

if I < N then
if .A(I) > XMAX then

XMAX ~- A(I); end if

I ~- I + 1

call Ll(A, N, I, XMAX)

end if

end Ll

The next step is to convert the recursive algorithm

into a recurrence relation for the number of times that

control passes Tl. In this case we are interested, in the

number of times that a new maximum is found.

T(A, n, i, xmax) =
T 1 + T(A,n,i+l,A(i)) if A(i)>xmax
I
1 0 + T(A,n,i+l,xmax) if A(i)~ xmax

'ith the boundary condition T(A, n, _k, xmax) = 0 for k>n.

Given a known input array, A(l:n), this recurrence

relation completely determines the value of T. If this were

all that could be learned, then it would not be very useful.

The answer could just as well be determined by instrumenting

the original algorithm with a test counter in the true

branch. In this case we observe that the true branch is

taken if the i-th element is the largest of the first i

elements. If pi is the probability that A (i) is the largest

36

i elements we have:

T(A,i) =pi + T(A,i+l)

a description of the average behavior of the algorithm •

••
At this point we have dropped the arguments of T which

return the

behavior.

"answer" so that we can concentrate on the time

If the elements A(i) are drawn from a uniform

distribution, then Pi = f and

T(A,i) = f + T(A,i+l)

T(A,i) = O, for i>n

Since the initial value of i is 2, the solution to this

recursion is easily shown to be T(A,2) = Hn - 1, where Hn is

the nth harmonic number:

H = ! + ! + ! + + 1 n 1 2 3 •••• n
While we were able to get the correct solution, this

way of analyzing the algorithm is not suited for automation.

The insight into the di str 5.bution of the data and its effect

on the probabi 1 i ty that the branch would be taken requires

human-like understanding·.

The Problem of the Conditional Statement

At this point, our approach has the same problem that

Plagues the Electrical Network approach--i t works fine if

one knows the branching probabilities. It was at this point

ln our research that we went back and studied the work of

Wegbrei t and Ramshaw more closely. We noted the strengths

Ind weaknesses which we described in Chapter 2. Knuth [5]

37

ides an analysis of FINDMAX which relies on some subtle
prov

. ng about left-to-right maxima among random permuta­
reason1

dons·
since we plan to teach a computer how to do this

analysis, we wanted to keep any real "thinking" out of it

until absolutely necessary. In Wegbreit's and Ramshaw's ap­

proaches, the fact that the program variables of interest

are random variables and have distributions is recognized.

aowever, most of their analyses are performed by making

assertions about the frequencies or probabilities of these

distributions, and then proving theorems about the

assertions. The problem of the "useless test" led us to

think that it might be useful to see what happened when one

followed the distributions themselves around the program.

At this point we had been concentrating so much on

understanding the true meaning of "differentially disjoint

vanilla assertions", the measure theory, and theorem proving

aspects of Ramshaw's frequency system [5], we had forgotten

that his treatment of COINFLIP dealt with the distributions

themselves. It was 6nly after we had devised a major

portion of our approach that we realized the great similar­

ity between our' s and Ramshaw' s frequency system (as it

stood in Chapter 5 of his thesis [5]). We then recognized

that we had continued down the path of following the dis-

tributions , while Ramshaw had turned . to follow the path of

Proving theorems about frequentistic assertions.

CHAPTER 4

DEALING WITH CONDITIONAL STATEMENTS

In this chapter we introduce the central idea which, we

feel, is either a new idea or one which has been inadequate­

ly expressed in the past. The problem with the conditional

statement stems from the normalizations required when taking

probabilities, so why not, we reasoned, put off taking the

probabilities as long as possible? Ramshaw's thesis [5] was

a key to this. We observed his abandoning of his raw

frequencies in favor of asserting predicates about frequen­

cies. Another key factor in our choosing this direction was

Jonassen and Knuth's paper on "A Trivial Algorithm Whose

Analysis Isn't" [8]. Here were these nice joint probability

distribution functions ·(p.d.f.) which appeared from "direct­

ly translating the algorithm into mathematical formalism."

We set out to find the rules that had to have been used to

get to these simple recurrence relations. Because we took

IO many wrong turns on our way to our final ideas, we will

abandon our historical presentation in favor of a more

•xpository one. We also have to abandon our initial assess­

•ent that Ramshaw' s approach was "too mathematical". There

leems to be no way to avoid mathematics if one desires more

38

39

the analysis of the simplest algorithms.
tban

Algorithms and Probability Distributions

Each execution of an algorithm can be thought of as a

random experimental sample from the universe of possible

input data. we wi 11 be concerned with the behavior of the

probability distributions associated with the program vari-

ables during execution of the algorithm. These probability

distributions can be thought of as the repository of all the

information about possible execution histories for an algo-

rithm. We perform the analysis of an algorithm's behavior

by manipulating these distributions to find probabili tes for

various conditions. We can then use this information in any

of the analysis techniques (e.g., those given in Chapters 2

and 3), which work for known branching probabilities.

We begin by associating a random variable with each

algorithm or program variable. We wi 11 follow Ramshaw [5]

and differentiate between the two by continuing to represent

algorithm variables by upper-case character strings and

representing the corresponding random variable by the same

characters in lower-case letters. For example, the random

variable xmax is associated with the program variable XMAX.

The value of the random variable x at any time in the

execution of the algorithm is the value of the corresponding

algorithm variable at that time. Unlike Ramshaw, we have no

Proh · b. · 1 lt1on about mixing program and mathematical variables

in th
e same expression. In fact this will be how we get

40

of our answers.

we define the probability set function, PX (A), to be

probability that the program variable X is contained in

set 0 f poss i b 1 e v a 1 u es A , i • e • , PX (A) = Pr (X € A) • I f

set A is countable, we obtain the discrete probabi 1 i ty

,density function (p.d.f.), fx{x): -
f (x) = Pr(X €A) I A= { some finite set of x's } (4-la)
x

we let the set A be the set of all values of {Xlx~X~x+dx}

have the continuous probability density function, fx(x):

fx(X) = Pr(X €A) A = { x ~ X < x+dx } (4-lb)

we will deal with the discrete type of random variable

our formalism because of the fact that all values within

a computer can be mapped onto a finite set of integers. By

discrete representations, we avoid the need for

the concept of "differential equality" which Ramshaw [5]

introduced to bridge the gap between continuous variables

and program equality expressions. · We wi 11 develop a nota­

tion which is very close to the calculus of finite differ-

ences. Some of the rules which we will use will be derived

from analogous rules in continuous probability theory and

the calculus of continuous variables.

Equations (4-1) can be generalized to any finite number

of Program variables by thinking of the X as a vector of the

n ordered program variables and x as an n dimensional random

The random variables form a vector space in ~n and

a functional over that space.

41

The joint p.d.f. of the program variables describes the

f the program up to a point in the execution of the
state o

program.
If we have a loop translated into a recursive

subroutine call, and if we can describe the joint p.d~f.

before the next recursive call in terms of the joint p.d.f.

entering the body of the subroutine, then we have a recur-

rence relation that we may be able to solve to get the joint

p.d.f. as a function of the number of calls on the subrou­

tine. This knowledge will allow us to calculate the branch­

ing probabilities at any step in the process and hence

complete the analysis of the algorithms begun in Chapter 3.

Let us now examine the behavior of the joint p.d.f.

with various programming constructs. We begin with the

conditional statement.

Theorem 1:

If R is a deterministic logical relation of the program

variables then, the conditional statement

if R then { st } else { sf } endif

a. Divides the joint p.d.f. entering the if statement

. into two parts by:

1. setting to zero all terms of the joint p.d.f.

entering the then clause { St } for which R is

FALSE, and

2. setting to zero all terms of the joint p.d.f.

entering the else clause { Sf } for which R is

TRUE.

b. Forms the joint p.d.f. leaving the endif from the

algebraic sum of the joint p.d.f.s leaving the two

clauses.

We will not present a formal proof, but will use

Theorem 1 as a rule and see how it handles situations for

42

have answers by other means.

The effect of the conditional statement on the joint

entering each clause can be represented in a compact

using a new type of delta function which we will

refer to as the Anderson delta. This new delta function is

closely related to the Kronecker and Dirac delta functions,

except that its domain is a Boolean space with possible

values True and False. The Anderson delta maps the Boolean

space into the numbers 0 and 1.

Definition -Let R be a deterministic logical relation of program vari-

ables, then the Anderson delta function

6 (R) =
T 1 if R is TRUE
I
l 0 if R is FALSE.

It is easy to see that the following properties hold:

6(R) • 6 (-.R) = 0

6 (R) + 6 (-.R) = 1

6 (R) = 1 - 6 (-.R)

6(R /\ S) = 6 (R) • 6 (s)

6(R \/ S) = 6 (R) + 6(S) - 6 .(R) • 6 (s)

With these properties one can find the Anderson delta

any Boolean expression. We can now state a theorem about

~e effects of the "useless test" on the joint p.d.f.

be the joint p.d.f. of the n program variables
1 l'X2,·••1X at a point in an algorithm just prior to the
• n
useless test",

if R then nothing else nothing endif

Where R is a deterministic logical relation on the program

variables X, and let gx(x) be the joint p.d.f. of the

Program variables after the join at the endif, then gX(x) =
fx (x) •

43

~
h rem 1 and the Anderson delta 6 (R) we have the

usin9 T eo

auCJlllented algorithm:

if R

then

else

end if

{ fx(x) }

{ fx(x) • 6 (R) }

nothing

{ fX(X) • 6 (-.R) }

nothing

{ gx(x) = fx(x)6(R) + fx(x)6(-.R) }

{ gx(x) = fx(x) • (6(R) + 6(-.R))}

{ gx(x) = fx(x) }

Q.E.D.

So far, this discussion of the joint p.d.f. of the

program variables is very close to Ramshaw' s [5] frequen­

tistic states. In fact, we can show that Ramshaw's frequen-

tistic assertions can be derived from marginal or · joint

p.d.f.s. As we have said before; where we de pa rt from

Ramshaw is that we wi lf stay with the rules for the trans­

formation of the joint p.d.f. by the algorithms instead of

llOving to the next higher level of abstraction, i.e. rules

for the transformation of assertions about the marginal or

joint p.d.f.s. It was this abstraction which destroyed the

ability of Ramshaw's system to handle the "useless test".

44

LEAPFROG Revisited

In order to get some understanding of the effects of

assignment statements, let us look again at LEAPFROG.

Leapfrog: if K=O then K~-K+2 endif

joint p.d.f. to Leapfrog is

fK (k)
1 6Ck=O) + 1 6ck=1) = 2 2

that Pr{k=O) 1 and Pr{k=l) means = 2'
augmented program would be:

if K=O then { 6 {k=O) (~6 (k=0)+~6 {k=l)}

{ 16 (k=O) }
2

K ~- K+2 { ~6 ((k-2) =0) }

{ ~6 (k=2) }

[e 1 s e] { 6 (k ;i! O) (~ 6 (k = O) +~ 6 (k = 1)) }

{ 16 {k=l) }
2

endif { ~6 {k=2) + ~6 (k=l) }

what we should get.

1
= 2·

In handling the assignment statement, K ~- K+2, we

that it maps k as follows:

k before k after

-2 0
-1 1

0 2
1 3
2 4

45

In general, if we wish to keep the equations in terms

the original variables, we have:

X • ~- x. + c] :
[1 1

<x1 ,x 2 , •. ,xi, •• ,xn> -~ <x 1 ,x 2 , ••• ,xi-c, ••• ,xn>.

Next we will look again at the COINFLIP algorithm. To

that we need some rules about the effects of a

conditional statement which contains a non-deterministic

we can easily transform a non-deterministic relation

a non-deterministic assignment followed by a

deterministic conditional statement. For example:

if x = RANDOMht then { st } else { sf } endif

y ~- RANDO Mh t

if X=Y then { st } else { sf } endif.

3

be the joint p.d.f. of then program variables

X1,x2, ••• ,Xn in the algorithm just prior to the conditional
ltatement

if R then { st } else { Sf} endif

Where Risa logical rela,tion containing a finite number, m,

Of random (possibly pseudo-random) functions RANDOMfj. Let

R' be derived from R by replacing each instance of RANDOMfj

With a reference to a new program variable y., then the fol-
J

lowing sequence of statements are equivalent to the original
statement:

'I 1 = RANDOMf l

Y2 = RANDOMf 2
. . . .
ym = RANDO Mf m

if R' then { st } else { sf } endif

46

Tbeorel'!!_ 4
_. f (x) be the joint p.d.f. of program variables
i.et x x which have been defined, and let Y be a "new"
X1,X2' • •., n
variable defined by the statement Y ~- RANDOMg' where

RANDOM generates a statistically independent random number

from dgistribution g(y), then the joint p.d.f. after this

statement, hz(z), is
hz (z) = fx (x) •g (y)

wbere,
z = <x1 ,x2 , ••• ,xn,y>

z = <X1 ,x2 , ••• ,Xn,Y>.

It is now time to examine the general assignment state-

aent between two program variables. We will use a memory­

~o-register, register-to-memory model for the assignment

statement. This will allow us to have the statement X ~- X

be a NOOP in the formalism without any special rules. We

introduce the notation

f x.
1

to mean the summation over all values of random variable xi.

This is the discrete equivalent of the definite integral.

When it is applied to a function of xi' the result does not

depend on x .• . If this summation is done symbolically, all
1

occurences of are removed from the equation of the

result. Here are some properties of this summation which we

•hall use later:

f -x.
1

f(x.) = 1 1 , when f (xi) is a p.d.f.

the

47

F (x.)
J

= Pr (x e A) I A= { X < x. } is the cumulative
- J

density function (c.p.d.f.) for f. Note that in

case of discrete random variables we usually have to

whether or not the c.p.d.f. is defined to

x. or whether it is just
J

"up to" x .•
J

In the con-

representation we would not have to worry about this

the two are equivalent.

Theorem 5
Let fx(x) be the joint p.d.f. of the n program variables

11,x2 , ••• ,Xn just before the program statement

x. ~- x.
1 J

joint p.d.f. after this assignment statement is

(Lx. fx(x) 6cx.=r)) 6cr=x.)
1 1 J

The application of 6cx . =r) within the summation takes
1

of the case when x. is the same variable as x .• In the
1 J

cases where x. and x. are different variables, the rule
1 J

to:

(Lx. fx(x)) 6cxi=xj)
1

For an example we will look at a simple program which

.interchanges the contents of two variables x 1 and x2 using a

third variable x 3 as temporary storage. The augmented

Program goes like this:

48

{ fx(x1,x2,x3) = gx(x 1 ,x2)6(x 3=0) }

~- Xl { fx(xl'x 2 ,x 3) = gx(x 1 ,x 2)6(x 3=x 1) }
X3

~- X2 { fx(xl,x2,x3) = gx(x 3 ,x2)6(x1=x 2) }
X1

X2 ~- X3 { fx(xl'x 2 ,x 3) = gx(X3,X1)6(x2=X3) }

{ fx(xl,x2,x3) = gx(x 2 ,x1)6(x3=x2) }

Mote that we need not have assumed that x3 initially

contained o. We could have started with the general

p.d.f.:

fx(x1,x2,x3> = gx(x1,x2,x3>

Tben the first assignment would have resulted in

where g X (x 1 , x 2)

The remainder of the

= > x gx(x1,x2,x3>
3

example would be as

COINFLIP Revisited

before.

joint

We now have all the tools to handl·e COINFLIP and get the

real answer in a systematic way. The annotated main program

is:

procedure COIN FLIP

I ~- 0 { f I (i) = 6 (i =O) }

call TC(I) { f I (i) = g (i) }

print i , I times.' { f I (i) = g (i) }

The problem is to determine what the function g(i)

looks like. This is, of course, determined by the sub­

routine TC. We now proceed to the analysis of TC. Assume

that the p.d.f. entering TC is fr (i).

49

TC(!)

RANDOMht { f I (i) . (~6(y=H) + ~6(y=T)) }
y ~-

= T then { f I (i)
. ~Q (y=T) } if y

print 'OK, so far!'

I + 1 { f I (i-1) . !6 (y=T) } I ~- 2

call TC(!) { g i (i) }

end if

{ gI (i) + f 1 (i) • ~6 (y=H) }

represents the value of I returned by the recur­

TC. Now, the distribution { f 1 (i-1) ~6 (y=T) }

to the next cal 1 of TC (I) , so we must have in

f 1 (i) = f 1 (i-l) • ~6(y=T>

variable Y is local to TC(!), it must be

from the joint p.d.f. that is returned. We will

refer to this process as "killing" a variable. This is done

the marginal p.d.f. of I with respect to y:

!f (i-1)
2 I

that if Y were to be treated as a global variable, this

would take place as part of the RANDOMht assignment

The initial condition from the main program is

so the distribution for the first recursive

fl(i) = !6(i-l = 0) = !6(i=l)
2 2

d in general we see that
ail

50

j is the number of times that 'OK, so far!' has been

out. This distribution represents the part of the

which is "caught in the loop". Each time some

distribution "escapes". This corresponds to the

chance that Heads will turn up at any time. For each value

of j, the joint p.d.f. that "escapes" is (~)j6(i=j)~6(y=H),

joins the rest at the end if to give the final answer:

g(i) = ~ fj (~)jb(i=j), j e { o, 1, 2, •••• }

note that this is in fact a normalized p.d.f. What is

expected value of I?

i,j €{ o, 1, 2, ••• }

= !c 0·1 + l·! + 2· c.!) 2 +
2 2 2

by distributing and regrouping each fraction we get:

= !c 1 + 2 + 3 + 4 + 2 2 4 8 16
= !c 1 + 1 + 1 + 1 1 1

2 2 4 + 4 8 + . . . + 8 + I6 + . . .
= !c 1 + 1

+
1

2 2 4 +
= !c 2 = 1 2

If we had performed this analysis on Ramshaw's

of COINFLIP,

C ~- O;

loop X ~- RANDOMht; C ~- C + l; while X=T repeat

1fe Would have gotten the final joint p.d.f.:

[5]

51

fbiS contains all of the information that is in Ramshaw' s

t assertion for the same problem [5, p.78]
out PU

[Fr(C<l)=O]/\[Fr(X=T)=O]/\ /\ [Fr(C=c,X=H) =
I \
c > 1

FINDMAX Revisited

we will again follow Ramshaw [5, p.81] and use a

slightly different form of the FINDMAX program than was

presented in Chapter 3. We will replace the input array

A(I) of random variables by repeated calls to a random

number generator. This simplifies the notation somewhat

without sacrificing generality. We will return to the array

notation when we deal with the sorting algorithms. The

program is instrumented to record the number of times a new

is selected. The modified and annotated program in

recursive form is:

FIND MAX (N, M)

O; I ~- 2

M ~- RANDOMf

call LOOP! (N,M,c,r·)

Ind FINDMAX

procedure LOOP! (N,M,C,I)

if I ~ N then

T ~- RANDOMf

if T>M then

c ~- c + 1

M ~- T

{ b (m=t) (>

{ 6(c=O) 6(i=2) }

{ 6cc=O) · 6ci=2) f(m) }

{ g(n,m,c,i) }

{ h(n,m,c,i) }

{ h(n,m,c,i) 6(i~n) }

{ h(n,m,c,i) 6(i<n) f(t) }

{ h(n,m,c,i) 6ci~n) f (t) b(t>m) }

{ h(n,m,c-l,i)b(i~n)f(t)6(t>m) }

h(n,m,c-l,i)b(t>m))6(i~n)f(t) }
m

[else] { h(n,m,c,i) 6(i~n) f(t) 6(t~m) }

52

end if

{ b(m=t) (l_ h(n,m,c-1,i)b(t>m)) b(i~n)f(t)
m

+ h(n,m,c,i) 6(i~n) f(t) 6(t~m) }

I ~- I + 1

{6(i-l~n) (6(m=t) (L h(n,m,c-l,i-1)6(t>m))f(t)
m

+ h(n,m,c,i-1) f(t) 6(t~m)) }

call LOOPl (N,M,C,I)

{ g(m,n,c,i) }

end if

{ h(n,m,c,i)6(i~n) + g(m,n,c,i) }

Note that all of the joint p.d.f. is caught in the loop

or recursive calls until I is incremented past N. The

recursion which we must solve is:

b(n,m,c,i) = {b(i-l~n) (6(m=t) (L h(n,m,c-1,i-l)b(t>m))f(t>'
m

+ h(n,m,c,i-1) f(t) 6(t~m)) }

T is a local variable to LOOPl and not sent outside that

subroutine so we must "kill" it.

b(n,m,c,i) = L {6(i-l~n) .(6(m=t)(L h(n,m,c-l,i-1)6(t>m))f(t)
t m

+ h(n,m,c,i-1) f(t) 6(t~m)) }

At first glance, this recursion doesn't look very useful.

To get a handle on what is going on, we will follow the

first few iterations of the program.

drop the termination delta function.

•ade with

In doing so we will

The initial call is

h(n,m,c,i) = 6(c=O) ·f(m) ·6(i=2)

53

th rules we find that
Applying e

h(n,m,c-l,i-1) = 6(c=l) ·f(m) ·6(i=3)

and
h(n,m,c,i-1) = 6(c=O) •f(m) ·6(i=3)

10 we have

b(n,m,c, i) =

6(i=3) Lt { 6(c=l)·6(m=t)•(/m f(m)·6(t>m))·f(t)

+ 6(c=O) ·f(m) ·f(t) ·6(t~m) }

b(n,m,c,i) = 6(i=3) }t { 6(c=l) ·6(m=t) ·(F(t)) ·f(t)

+ 6(c=O) ·f(m) .f(t) .6(t~m) }

h(n,m,c,i) = 6(i=3) { 6(c=l) ·F(m) ·f(m) + 6(c=O) ·f(m) ·F(m) }

we can rewrite this into an equivalent form

h(n,m,c,i) = 6(i=3) { 2·F(m) •f(m) (~6(c=l) + ~6(c=O)) }

If we crank through another iteration we get:

b(n,m,c,i) =

6(i=4) { 3•F2 (m).f(m)·c~6(c=2) + ~6(c=l) + ~6(c=O))}

The third time a round we get:

h(n,m,c,i) =

6ci=S){4F3 (m)f(m) (~46cc=3>+i6cc=2)+~i6cc=l)+i6cc=O)
Each time that we cycle through the equations we find that

the joint p.d.f. is a product of the marginal p.d.f .s of the

individual variables. We have factored the coefficients to

normalize the marginal p.d.f.s with respect to m and c.

When the joint p.d.f. of a set of random variables can be
w .
ritten as the product of their respective marginal p.d.f .s,

54

the variables are said to be stochastically indepen­
then

This is a very important thing for us to confirm in

It tells us that we have not affected the

of the maximum value by instrumenting the

program. The stochastic independence also simplifies the

solution of the recurrence relations. Because of it we can

set up a recursion for each variable separately by following

the marginal p.d. f. for each variable. We change the

induction variable from i to j = i - 1 so that the formulas

will look more familiar.

and

fM(m)j = j~l F(m) fM(m)j-l

recursion for f M(m) gives the final distribution of

fM(m)n = n"Fn-l(m) "f(m)

which is the answer given by Hogg [12]. The recursion for

fc(c) is the same as Knuth's [6] and Ramshaw's [5].

CHAPTER 5

APPLICATION TO SORTING AND SEARCHING

we now turn our attention to the further application of

our approach to sorting and searching algorithms. We will

look at three such algorithms: The "oblivious" Insertion

(Bubble) Sort, the "improved" Insertion Sort, and Binary

Search.

"Oblivious" Insertion Sort

Insertion Sort was used by Wegbreit [2] as the example

for verifying program performance. He used the "improved"

version which has an exit in the inner loop after each

candidate element is properly positioned. The "oblivious"

version of this program does not have this exit. It con-

tinues to compare the element being inserted to all of the

elements in the sorted sublist. While it is an inefficient

software algorithm, this version of the algorithm is of

interest because it can be realized using a network of com­

parators (i.e. using hardware logic circuits).

55

'I
I

1

2
3

4

s
6

7

56

procedure INSERTION SORT (B ' N)

real B(l:N)

OUTER:

for J ~- 1 to N-1 do

INNER:
for I ~- J to 1 by -1 do

if B(I) > B(I+l) then

EXCHANGE (B(I), B(I+l))

endif

8 repeat

9 repeat

10 end INSERTION SORT

The first step is to convert the loops to recursive

subroutine calls. We will number the statements so that

they may be related back to the original program. We will

also insert a counter variable, Y, to keep track of the

number of times an EXCHANGE takes place.

1 procedure INSERTION SORT (B '
N)

2 real B(l:N)

global integer y

3a J ~- l; y ~- 0

3b call OUTER(J, N-1, B)
10 end INSERTION SORT.

3c procedure OUTER(J, LIM, B)
3d if LIM - J > 0 then
4a I ~- J
4b call INNER(I' B)
9a J ~- J + 1
9b call OUTER(J, LIM, B)
9c endif
9d end OUTER

6

6a
7

ea
Sb

Sc
8d

57

procedure INNER(I, B)

if I > 1 then

end if

end INNER

if B(I) > B(I+l) then

EXCHANGE

y ~- y + 1

end if

I ~- I - 1

call INNER (I, B)

B(I), B(I+l))

Appendix A contains a detailed, line-by-line tracing of

the joint p.d.f. which is used in an "average case"

analysis. From it we can develop the form which the distri­

bution of a "sorted" list takes. Specifically, we have:

6 (bN~ bN-1) ••• 6 (b 2~ b 1) • f I (b 1 ' b 2 ' ••• , bN) I

where f'(b 1 ,b 2 , ••• ,bN) is some transformation of the initial

joint p.d.f. The leading product of Anderson deltas con-

tains the information that the list is sorted. This may

Hem like a simple thing, but remember that having started

with an algorithm and the assertion that it "sorts a list",

Ve have arrived at a form of joint p.d.f. which means "the

list is sorted n. If we were to give an automatic analyzer

an algorithm, and if it came up with a final joint p.d.f.

that had this form, the automatic analyzer could say, "this

algorithm sorts a list." Converse! y, if the analysis does

not result in a joint p.d.f. of this form then the analyzer

can say, "this algorithm does not sort a list."

When analyzing sorting algorithms, three different

types of input distributions are usually used. These

58

esent the initally sorted list, the initially reverse
re pr

t ed list, and the initially "random" list. These three
sor

sometimes cover the best, worst, and average case execution

although not necessarily in that order. In some more times,

exotic algorithms, there is a more complicated input distri-

bution which leads to the best or worst case behavior. Our

approach can be used to determine the best and worst case

distributions, although we will not dwell on this. The best

case performance for Insertion Sort comes when the EXCHANGE

never takes place, and the worst case performance comes when

the exchange always takes place.

The work shown in Appendix A, for the average case

analysis, suggests the induction hypothesis that if you give

INNER, at its call from OUTER, the distribution

6 {i=j) ·6 (j<n) ·6 (j=k) •

k• ·6cb >b) ···6cb >b) ·fcb) ·fcb) ···fcb) . k- k-1 2- 1 1 2 N '

INNER returns the distribution

6 (i=O) ·6 (j<n) ·6 (j=k) •

Ck+l) ! ·6cbk+l~bk) ···6cb2~b1) ·fcb1) ·fcb2) ···fcbN).

In other words, INNER inserts the k+l th element into the

sorted list of the first k elements. We are therefore

justified in picking as the general form for a joint p.d. f.

going into INNER

6 (i=m) • 6 (m.~j) • 6 (j <n) •

6 (b j~ b j- l) • • • 6 (b 2~ bl) • f ' (y, bl , b 2 , ••• , b j , ••• , bN) •

Rather than doing that, let us s~art with a completely

9eneral · · · · b b b Joint p.d.f. g(J,1,n,y, 1 , 2 , ••• , N) after 4c.

59

After 4d, in the true branch:

6 (i ~ 1) • g (j , i , n , y , bl , b 2 , • • • , bN)

sent to Sc, is the false branch:

6ci=O) "g(j,i,n,y,b1 ,b2 , ••• ,bN)

After 5, in the true branch:

6 (i ~ 1) • 6 (bi > bi+ l) • g (j , i , n , y , bl , b 2 , ••• , bN)

sent to 7, in the false branch is:

6 (i ~ 1) • 6 (bi+ l~ bi) • g (j , i , n, y, bl , ~2 , ••• , bN)

After 6'

6 (i ~ 1) • 6 (bi+ l >bi) • g (j , i , n , y , bl , b 2 , •• , bi+ l , b i , •• , bN)

After 6a,

6 (i ~ 1) • 6 (bi+ l >bi) • g (j , i , n, y-1 , bl , b 2 , •• , bi+ l , bi , •• , bN)

After 7,

6 (i ~ 1) • 6 (bi+ l~ bi) • (g (j , i , n, y-1, bl, b 2 , •• , bi+ l, bi , •• , bN)

+ g(j,i,n,y,b1 ,b2 , •• ,bi'bi+l'""'bN))

After 8a,

6 (i + 1~1) • 6 (bi+ 2~ bi+ 1) •

g(j,i+l,n,y-l,b1 ,b2 , •• ,bi~2 ,bi+l'""'bN)

+ g(j,i+l,n,y,b1 ,b2 , •• ,bi+l'bi+2 ' •• 'bN)

We have arrived at the recursive calling of INNER, so

we must have:

g(j,i,n,y,b1 ,b2 , ••• ,bN) =

6 (i + 1~1) • 6 (b i + 2~ b i + 1) •

g(j,i+l,n,y-l,bl,b2 , •• ,bi+2 'bi+l'""'bN)

+ g(j,i+l,n,y,b1 ,b2 , •• ,bi+l'bi+2 ' •• 'bN)

i 1

60

From the other parts of the algorithm, we get the

dary conditions
boun

d the initial condition
an

g(j,i,n,y,b1 ,b2 , ••• ,bN) =

6(i=j> ·6cn=N> "h(y) ·6cbj.?.bj_1 > ···6cb2,?.b1 > "fCb1 ,b2 , ••• ,bN>,

assuming that f is symmetric with respect to interchange of

variables.

Note that this is a "backward" recursion, i.e. we start

with i=j and move backward to the desired answer for i=O.

once we have solved the recursive relationship for INNER

(based on i), we can use that to solve the recursive rel a-

tion for OUTER (based on j), which gives the final answer

for the joint p.d.f. Doing this in the general case cannot

result in a closed form answer in the usual sense. It is

~ssible to "write down" the general solution for any given

N, but the equation would be equivalent to the one that we

would get if we were to "unwind" the loops into straight

line code. In order to· get really useful results, we need

to s e 1 e ct the f o rm of the j o i n t p • d • f • f o r the u n so rte d

list.

Once one has selected an initial joint p.d.f., and

Solved the recursion relations, one has a joint p.d.f. which

represents the distributions of the variables at the termin­

ation of the algorithm. The distribution of the counter

variable is then isolated by summation (integration) over

all the other variables. This marginal p.d.f. is then used

61

f ind the expected value, variance, and other statistics
to

in the usual manner.

"Improved" Insertion Sort

There is an easy way to improve the relative perfor­

mance of the "oblivious" insertion sort, although the order

of its running time remains the same. We note from the

analysis that the portion of the joint p.d.f. that fails the

test at statement 5, is already in sorted order. This

suggests that we could exit from the INNER loop at this

point without affecting the algorithm's ability to sort.

Even such "obvious" improvements often have hidden side

effects. Luckily our method will let us not only calculate

the improvement in perf.ormance from this change, but also

prove that the modified algorithm still sorts! It also

turns out that the distribution of I will give a direct

indication of the algorithm's performance. For this reason,

we will delete the counter variable Y.

1

2

3

4

5

6

6a

7

8

9

10

procedure INSERTION SORT (B , N)

real B(l:N)

OUTER:

for J ~- 1 to N-1 do

INNER:

for I ~- J to 1 by -1 do

if B(I) > B(I+l) then

EXCHANGE (B (I) , B (I+l))

else exit /* This is the change */

end if

repeat

repeat

end INSERTION SORT

1

2

3a

3b

10

3C
3d
4a

4b

9a

9b

• 62

recursive equivalent is:

procedure INSERTION SORT (B ' N)

real B(l:N)

J ~- 1

call OUTER(J, N-1, B)

end INSERTION SORT

procedure OUTER(J, LIM, B)

if LIM - J > 0 then

I ~- J

call INNER(I, B)

J ~- J + 1

call OUTER(J, LIM, B)

9c end if

9d end OUTER

4c procedure INNER (I, B)

4d i f I > 1 then

5 if B (I) > B (I+ 1) then

6 EXCHANGE (B(I), B(I+l))

6a else return

7 end if

Sa I ~- I - 1

Sb call INNER (I, B)

Sc end if

Sd end INNER

The return in the recursive program i s equivalent to

the exit in the loop version. Everything works the same as

before up to statement Ga. At this point, the joint p.d.f.

from the false branch "escapes" from INNER. We will pick up

the analysis at that point on the J = l iteration.

5 This is the first test involving the data itself. This

statement splits the joint p.d.f. on the basis of the

Values of B(I) and B(I+l).

63

In the true branch:

6Ci~l) ·6(i=j) ·6(j<n) ·6(j=l) ·6(b1 >b 2) •

f(b) "f(b) 000 f(b) 1 2 N

In the false branch:

6 (i ~ 1) • 6 (i = j) • 6 (j < n) • 6 (j = 1) • 6 (b 2~ b 1) •

f(b) "f(b) •••t(b)
1 2 N

This EXCHANGES the values of b 2 and b1

6 (i~l) ·6 (i=j) ·6 (j<n) ·6 (j=l) ·6 (b2 >b1) •

f(b) "f(b) ••• f(b)
2 1 N

This sends the false branch joint p.d.f. back to OUTER.

6 (i ~ 1) • 6 (i = j) • 6 (j < n) • 6 (j = 1) • 6 (b 2~ b 1) •

f(b) "f(b) •••t(b)
1 2 N

It is accumulated there as we shall see.

At the join for the if statement we have only the true

branch left

6Ci~l) ·6(i=j) ·6(j<n) ·6(j=l) ·6(b2 >b1) •

f(b) .f(b) """f(b) 1 2 N

This adjusts I for the next it~ration

6Ci+l~l) ·6(i+l=j) ·6(j<n) ·6(j=l) ·6(b2>b1)

•t(b) "f(b) •••t(b) 1 2 N

We know from step 4d above, that this joint p.d.f. will

be returned with the additional (superfluous)

restriction 6(i<l). Simplifying we have

6(i=O) ·6(j<n) 0 6(j=l) ·6(b >b) "f(b) "f(b) """f(b)
2 1 1 2 N

This joint p.d.f. is returned at 4b. It joins with

joint p.d.f. that "escaped".

64

The result is:

{ 6 (i = 1) + 6 (i = O) } • 6 (j < n) • 6 (j = 1) • 6 (b 2~ b 1) •

f(b) "f(b) 000 f(b) 1 2 N

This statement adjusts J for the next iteration, and

{ 6 (i = 1) +6 (i = 0) } • 6 (j-1 < n) • 6 (j-1=1) • 6 (b 2~ b 1) •

f(b) "f(b) """f(b) 1 2 N

is again passed to OUTER.

we see now that this test "traps" all of the joint

d f 1. n the loop unti 1 J exceeds LIM (N-1 in our p. • •

case). So we won't mention the false branch until the

end. In the true branch:

{ 6 (i = 1) + 6 (i = 0) } • 6 (j < n) • 6 (j = 2) • 6 (b 2~ b 1) •

f(b) "f(b) 000 f(b) 1 2 N

This collapses the old joint p.d.f. on i and results in

6 (i = j) • 6 (j < n) • 6 (j = 2) • 2 • 6 (b 2~ bl) • f (bl) • f (b 2) • • • f (bN)

In the oblivious version, this was a trivial operation.

Here it destroys information about the distribution of

the I in the last iteration.

This joint p.d.f ·. arrives at INNER, where this

statement controls the exit of the last of the joint

p.d.f.

In the true branch:

6 (i = j) • 6 (j < n) • 6 (j = 2) • 2 • 6 (b 2~ b 1) • 6 (b 2 > b 3) •

f(b) "f(b) 000 f(b) 1 2 N

In the false branch:

6 (i = j) • 6 (j < n) • 6 (j = 2) • 2 • 6 (b 2~ b 1) • 6 (b 3~ b 2) •

f(b) "f(b) """f(b) 1 2 N

\ 65

The exchange yields:

6ci=j) ·6cj<n) ·6cj=2) ·2·6cb3.?.b1) ·6cb3>b2) •

f(b).f(b) ••• f(b)
1 2 N

Here the false branch again escapes in the form of

6 (i = 2) • 6 (j < n) • 6 (j = 2) • 2 • 6 (b 2.?. b 1) • 6 (b 3.?. b 2) •

f(b) .f(b) ••• f(b)
1 2 N

At the join we have only the true branch joint p.d.f.

left:

6 (i = j) • 6 (j < n) • 6 (j = 2) • 2 • 6 (b 3.?. b 1) • 6 (b 3 > b 2) •

f(b) .f(b) ••• f(b)
1 2 N

Prepares for the next call of INNER

6 (i = j -1) • 6 (j < n) • 6 (j = 2) • 2 • 6 (b 3.?. b 1) • 6 (b 3 > b 2) •

f(b) .f(b) ••• f(b)
1 2 N

This gets through to statement 5 in INNER.

In the true branch (multiply by 6cb1>b 2) and simplify):

6 (i=j-1) ·6 (j<n) ·6 (j=2) •

2·{6cb1>b2) ·6cb3.?.b1) ·6cb3>b2) l

.f(b) .f(b) ••• f(b)
1 2 N

In the false branch. (multiply by 6cb2.?_b1), simplify):

6Ci=j-l) ·6cj<n) ·6cj=2)

• 2 • { 6 (b 3.?. b 2) • 6 (b 2.?. b 1) }

.f(b) •f(b) ••• f(b)
1 2 N

The EXCHANGE in the true branch yields:

6 (i=j-1) ·6 (j<n) ·6 (j=2) •

2 • { 6 (b 3.?_ b 2) • 6 (b 2.?_ bl) } • f (bl) • f (b 2) • • • f (bN)

7

66

Again the false branch joint p.d.f. escapes

b(i=l) ·6(j<n) ·6(j=2)

• 2 • { 6 (b 3~ b 2) • 6 (b 2~ b 1) }

"f(b) "f(b) 000 f(b) 1 2 N

At the join we have only the true branch joint p.d.f.

left:

6 (i=j-1) ·6 (j<n) ·6 (j=2) •

2 • { 6 (b ~ b 2) • 6 (b 2~ bl) } • f (bl) • f (b 2) • • • f (bN)

Sa sets I to zero in this case, and the next call of INNER

returns this joint p.d.f.

6 (i=O) ·6 (j<n) ·6 (j=2).

2·{6(b >b) 0 6(b >b)}"f(b)"f(b)"""f(b)
3- 2 2- 1 1 2 N

to OUTER at statement 9a.

4b The three sets of joint p. d. f. s meet and a re added

here. We have:

{6(i=0)+6(i=l)+6(i=2) } 0 6(j<n) ·6(j=2) •

2·{6(b >b) ·6(b >b) }"f(b) "f(b) """f(b) 3- 2 2- 1 1 2 N

9a Increments J and we get, going back into OUTER at 9b:

{6(i=0)+6(i=l)+6(i=2) } 0 6(j<n+l) ·6(j=3) •

2 • { 6 (b 3~ b 2) • 6 (b 2~ bl) } • f (bl) • f (b 2) • • • f (bN)

By now the pattern is clear. It is even easier to show

that the result at the end will be:

{6(i=0)+6(i=l)+ •••• +6(i=N-l)} 0 6(j=N) •

(N-l)! 0 {6(b >b) 000 6(b >b)}"f(b)"f(b)"""f(b)
N- N-1 2- 1 1 2 N

If we collapse this on i, then we get the same result as

before. Therefore, the change in the program has not

changed its ability to sort. This form tells us some other

67

things· Specifically, the value of I that is returned by

INNER represents the number of elements that were found to

th
be smaller than the J+l element. It is easy to see that I

can take on exactly J+l values from O to J, and that each of

those values is equally likely. This is something that one

would have expected, but we have proved it without recourse

to any elaborate combinatorial or probabilistic arguments.

The result just "fell out" of the analysis. It is easier to

write a program that can recognize that the probabi 1 i ty

density function of a discrete variable has the same value

at each point, than to have that program say "Each I is

equa 11 y 1 i k e 1 y ! n

The other thing that the values and p.d.f. for I tells

us is the number of exchanges that take place. From the

observation above, we get that P(i=j) =
1

j+l so that the

expected number of exchanges for any value of i is

Lj i j_
j+l =

i=O 2

for the entire N elements, this is

LN-1 j_ =
(N 2-N)

j=l 2 4

Which is the correct answer. This turns out to be the

expected number of comparisons, also. We can see that the

running time performance of the sort has been improved by a

factor of two.

68

Binary Search

we now turn our attention to the analysis of an

algorithm for a Binary Search. This particular version

closely follows one given by Horowitz and Sahni [9] • We

introduce it here for two reasons: (1) it gives us a chance

to present the case statement, and (2) it is the first

•divide and conquer" algorithm that we have considered. The

function INT returns the INTeger part of the argument (i.e.

the floor function) •

1

2
3
4
5
6
7
8
9
10
11
12

procedure BINARY_SEARCH (N, I, X)
global real K(l:N)
LOW ~- l; UP ~- N
I ~- 0

SPLIT:while LOW < UP do
MID ~- INT ((LOW + UP) I 2)
case

end
end

X > K (MID)
X = K(MID)
X < K (MID)

end BINARY SEARCH

LOW ~- MID + 1
I ~- MID; return
UP ~- MID - 1

The recursive equivalent is:

1

2
3
4a
12

4b
4c
5
6
7
8
9
10
lla
llb
llc
lld

procedure BINARY SEARCH (N, I, x
global real R(l":N)
LOW ~- l; UP ~- N
I ~- 0
call SPLIT (LOW, UP, X, I)

end BINARY SEARCH

procedure SPLIT(LOW, UP, X, I)
if LOW < UP then

MID ~- INT ((LOW + UP) / 2)
case

end

X > K (MID)
X = K(MID)
X < K (MID)

LOW ~- MID + 1
I ~- MID; return
UP ~- MID - 1

call SPLIT (LOW, UP, X, I)
endif
return

end SPLIT

69

since it is very straight forward, we will just sketch

the analysis. We start with the array K(l:N) ordered, so we

have the initial joint p.d.f.

((k <k) ·6(k <k) ···6(k <k) •f(k) •f(k) ••• f(k)
O 1 2 2 3 n-1 n 1 2 n

The search key X is drawn
'

the from a p. d. f. g (x) , and

assignment statements 2 and 3 have their usual effect. As a

result we have SPLIT called with the joint p.d.f.

6 (low=l) ·6 (up=N) ·6·(i=O) ·g (x) •

6(k <k) ·6(k <k) ···6(k <k) .f(k) .f(k) ••• f(k)
1 2 2 3 n-1 n 1 2 n

After 4c

6 (low~up) ·6 (low=l) ·6 (up=N) ·6 (i=O) ·g (x) •

6(k <k) ·6(k <k) ···6(k <k) .f(k) .f(k) ••• f(k)
1 2 2 3 n-1 n 1 2 n

After 5

6(mid=l(l+N)/2l) ·6(low<up) •

6 (low=l) ·6 (up=N) ·6 (i=O) ·g (x) •

6(k 1 <k 2) ·6(k 2 <k 3) ···6(kn_1 <kn) •f(k1) •f(k 2) •••f(kn)

At 6 the joint p.d.f. splits into three parts with the arms

of the case statement. The middle ·leg allows a portion of

the joint p.d.f. to es6ape back to the calling program.

After 7

6(x>k .d) ·6(mid=I (l+N)/21) •
m1 - -

6 (low=mid+l) ·6 (up=N) ·6 (i=O) •g (x) •

6ck <k) ·6(k <k) ···6(k <k) ·f(k) ·f(k) •• ·f(k) 1 2 2 3 n-1 n 1 2 n

After 8

6(x=kmid) ·6(mid=l(l+N)/21) ·6c1ow=l) ·6(up=N) ·6(i=mid) ·g(x) •

6(k <k) ·6(k <k) ···6(k <k) .f(k) .f(k) ••• f(k)
1 2 2 3 n-1 n 1 2 n

70

After 9

6 (x<kmid) • 6 (mid= l (l+N) /21) •

6 (1ow=1) • 6 (u p=m i d-1) • 6 (i = 0) • g (x) •

<:<k <k) ·6ck <k) ···6ck <k) "f<k) "f<k) ···fck)
O 1 2 2 3 n-1 n 1 2 n

The sum of the joint p.d.f. after 7 and after 9 is

presented to the next call on SPLIT. Each time SPLIT is

called, some of the joint p. d. f. escapes and is returned,

until the final return for no find. It is relatively easy

to see that the final joint p.d.f. will be

c 6ci=O) { 6cx<k1) + 6cx>k 1)6(x<k 2) + ••••• + 6cx>kn) } +

Jn. (6 (i=mid) 6 (x=kmid))]
m1d=l

"g(x) ·6ck 1 <k 2) ·6ck2 <k 3) ···6ckn_1 <kn) "f(k 1) "f(k 2) """f(kn)

The behavior of this joint p.d.f. is dependent on ·the form

of g(x). If this p.d.f. restricts the value of x to those

of the K(M) with equal probability, then we see that any of

the values is equally likely. The behavior of the number of

comparisons can be derived by instrumenting the algorithm.

Doing so results in the usual log n behavior.

\

CHAPTER 6

APPLICATION TO A MISCELLANEOUS PROBLEM

We will now look at Jonassen's and Knuth's celebrated

•Trivial Algorithm Whose Analysis Isn't" (8J. Ramshaw, a

student of Knuth's, applies his Frequentistic System to this

algorithm in his thesis [SJ. Jonassen and Knuth did not

give the derivation of the initial recursion relationships,

but derived them "by reasoning almost directly from the code

of the program" [SJ. We now believe that our work has

formalized th is "reasoning almost directly from the code",

because, when applied to this algorithm, it proceeds

directly to their equations 2.1, 2.2, and 2.3 [8].

Basically the algorithm involves the insertion and

deletion of keys in a binary tree structure. The insertion

is done with the standard binary insertion algorithm and the

deletion is done using Hibbard's algorithm[l8]. The two

possible trees with two keys are called F and G. The five

possible binary trees with three keys are called A, B, C, D,

and E. With x < y < z, we have the following pictures for

these binary tr e es:

71

72

A(x,y,z) B(x,y,z) C(x,y,z) D(x,y,z) E(x,y,z)

z z y x x
I I I \ \ \

y x x z z y

I \ I \
x y y z

F(x,y) G(x,y)

y x
I \

x y

The insertion algorithm is the standard one for binary

insertion, the new element is appended to the tree in the

appropriate place. Hibbard's deletion algorithm proceeds in

a straight-forward manner except that the deletion of x from

D(x,y,z) results in G(y,z) instead of F(y,z), as one might

expect. The insertion and deletion algorithm is given in

detail in the program which follows. We will not go further

into the background of the algorithm. Anyone interested

should see the Jonassen and Knuth article [8], which does

that quite nicely.

While the others [5,8] have always assumed that the

keys are selected from a uniform distribution, it turns out

that this restriction is unnecessary in our approach. It is

only necessary to have the keys drawn from the same,

stationary distribution f (x).

Jonassen and Knuth [8] give the graphical and word

Procedure representation of the algorithm, we will only

Present the algorithm as a SPARKS program. We wi 11 use

Rarnshaw's [5] notation for the tuples representing the

condition of the tree. Furthermore, we will adopt the

73

convention that after assignment the "from" variables are

set to zero ("killed") • This is not really necessary, but

it does simplify the notation, since after the variables are

•killed" we no longer have to carry them in the joint p.d.f.

equations.

1 procedure TRIVIAL (N)

/* Load the initial tree *!
2 x ~- randomf; y ~- randomf

3 if (x < y) then

4 <S;V,W> ~- <G;X,Y>

5 else

6 <S;V,W> ~- <F;Y,X>

7 endif

I* The main algorithm loop *I
8 for K ~- 1 to N

I* Insert a key *I
9 R ~- randomf

10 case

11 s = F and R < v <T;X,Y,Z> ~- <A;R,V,W>

12 s = F and v < R < w <T;X,Y,Z> ~- <B;V,R,W>

13 s = F and w < R <T;X,Y,Z> ~- <C;V,W,R>

14 s = G and R < v <T;X,Y,Z> ~- <C;R,V,W>

15 s = G ano v < R < w <T;X,Y,Z> ~- <D;V,R,W>
16 s = G and w < R <T;X,Y,Z> ~- <E;V,W,R>
17 end

I* Now do the deletion *I
18 L ~- randomXYZ
19 case
20 T = A and L = x <S;V,W> ~- <F;Y,Z>
21 T = A and L = y <S;V,W> ~- <F;X,Z>
22 T = A and L = z <S;V,W> ~- <F;X,Y>
23 T = B and L = x <S;V,W> ~- <F;Y,Z>
24 T = B and L = y <S;V,W> ~- <F;X,Z>
25 T = B and L = z <S;V,W> ~- <G;X,Y>

I
74

I
T = c and L = x <S;V,W> ~- <G;Y,Z>

I 26
27 T = c and L = y <S;V,W> ~- <F;X,Z>

28 T = c and L = z <S;V,W> ~- <F;X,Y>

29 T = D and L = x <S;V,W> ~- <G;Y,Z>

30 T = D and L = y <S;V,W> ~- <G;X,Z>

31 T = D and L = z <S;V,W> ~- <G;X,Y>

32 T = E and L = x <S;V,W> ~- <G;Y,Z>

33 T = E and L = y <S;V,W> ~- <G;X,Z>

34 T = E and L = z <S;V,W> ~- <G;X,Y>

35 end

36 repeat

37 end TRIVIAL

The recursive version of this program is then,

1 procedure TRIVIAL (N)

/* Load the initial tree */

2 X ~- randomf; Y ~- randomf
3 if (X < Y) then

4 <S;V,W> ~- <G;X,Y>
5 else

6 <S;V,W> ~- <F;Y,X>

7 endif

I* The main algorithm loop */

Sa K ~- 1

Sb call MAIN (K , N

37 end TRIVIAL

Sc procedure MAIN K, N
8d if (K < N then

/* Insert a key *I
9 R ~- randomf
10 case
11 s - F and R < v <T;X,Y,Z> ~- <A;R,V,W>
12 s = F and v < R < w <T;X,Y,Z> ~- <B;V,R,W>
13 s = F and w < R <T;X,Y,Z> ~- <C;V,W,R>

75

14 s = G and R < v <T;X,Y,Z> ~- <C;R,V,W>

15 s = G and v < R < w <T;X,Y,Z> ~- <D;V,R,W>

16 s = G and w < R <T;X,Y,Z> ~- <E;V,W,R>

17 end

/* Now do the deletion *I

18 L ~- randomXYZ

19 case

20 T = A and L = x <S;V,W> ~- <F;Y,Z>

21 T = A and L = y <S;V,W> ~- <F;X,Z>

22 T = A and L = z <S;V,W> ~- <F;X,Y>

23 T = B and L = x <S;V,W> ~- <F;Y,Z>

24 T = B and L = y <S;V,W> ~- <F;X,Z>

25 T = B and L = z <S;V,W> ~- <G;X,Y>

26 T = c and L = x <S;V,W> ~- <G;Y,Z>

27 T = c and L = y <S;V,W> ~- <F;X,Z>

28 T = c and L = z <S;V,W> ~- <F;X,Y>

29 T = D and L = x <S;V,W> ~- <G;Y,Z>

30 T = D and L = y <S;V,W> ~- <G;X,Z>
31 T = D and L = z <S;V,W> ~- <G;X,Y>

32 T = E and L = x <S;V,W> ~- <G;Y,Z>
33 T = E and L = y <S;V,W> ~- <G;X,Z>
34 T - E and L = z <S;V,W> ~- <G;X,Y>
35 end
36a K = K + 1

36b call MAIN K, N)

36c end if
36d end MAIN

The analysis is as follows:

After 2

f(x) "f(y)

After 3

6(x<y) "f(x) "f(y)

76

After 4

6 { s =G) " 6 { v < w) " f { v) " f { w)

After 5

6cx>y) "f{x) "f{y)

After 6

6cs=F) ·6cv<w) "f{v) "f{w)

After 7

{ 6 { s = F) + 6 { s =G) } " 6 { v < w) " f { v) " f { w)

After Sa

6 { k = 1) " { 6 { s = F) + 6 { s =G) } " 6 { v < w) " f { v) " f { w)

Which is what we expected, either tree is equally

likely, and the joint p.d.f. is that of a sorted list of two

variables. Rather than continue to follow an explicit

example through the algorithm, as we have done in the past,

we will define unknown functions to represent the various

tree forms. Following these through the algorithm will

result in the recursive equations. Let:

6 { k = K) • 6 { v < w) " { 6 { s = F) " f k { v , w) f 0 { s =G) " g k { v , w) }

represent the joint p.d.f. that is presented to each call of

the recursive subroutine MAIN. This form comes from looking

ahead and recognizing that no joint p.d.f. "leaks out" until

the end of the loop.

After 8d

6ck~N) ·6ck=K) ·6cv<w) 0 {6{s=F) "fk{v,w)+O{s=G) "gk{v,w)}

After 9

6ck~N) ·6ck=K) ·6cv<w) 0 {6{s=F) "fk{v,w)+6cs=G) "gk{v,w) }"f{r)

77

In order to simplify the expressions, we will drop the

We wi 11 loop-counting-and-stopping factor

also note that 6(s=F) ·6(s=G) = 0, and use this in each arm

of the case statement.

After 11

6(s=F) "fk(v,w) "f(r) ·6(v<w) ·6(r<v) •

6 (t=A) ·6 (x=r) ·6 (y=v) ·6 (z=w)

using the convention of "killing" the old variables,

6(t=A) "fk(y,z) "f(x) ·6(x<y<z)

Note that this convention simplifies the assignments to

<t;x,y,z> because the distributions of these variables is

always

at this point.

After 12

6 (t=B) • fk (x, z) • f (y) • 6 (x<y<z)

After 13

6 (t=C) 0 fk (x,y) "f (z) ·6.(x<y<z)

After 14

6(t=C) "gk(y,z) "f(x) ·6(x<y<z)

After 15

6(t=D) "gk(x,z) "f(y) ·6(x<y<z)

After 16

After 17

We have the sum of the six arms of the case statement.

It is at this point that, by looking ahead, we see that the

78

next general functions should be defined as:

ak(x,y,z)=fk(y,z) "f(x)

bk(x,y,z)=fk(x,z) "f(y)

ck(x,y,z)= fk(x,y) "f(z) + gk(y,z) "f(x)

d k (x, y, z) =g k (x, z) • f (y)

e k (x , y, z) =g k (x, y) • f (z)

With f(x)=6(o<x<l) for a unitary distribution, these

are equations 2.1 in Jonassen and Knuth [8].

The whole joint p.d.f. after 17 is then:

{6 (t=A) ·ak (x,y,z) + 6 (t=B) "bk (x,y,z) + 6 (t=C) ·ck (x,y,z)

+ 6(t=D) "dk(x,y,z) + 6(t=E) ·ek(x,y,z) } • 6(x<y<z)

After 18

{6(t=A) ·ak(x,y,z) + 6(t=B) "bk(x,y,z) + 6(t=C) ·ck(x,y,z)

+ 6(t=D) "dk(x,y,z) +

6(x<y<z) • { ~6(l=X)

6(t=E) ·ek(x,y,z) } •

+ !6 (l=Y) + !6 (l=Z) }
3 3

where the last term expresses the fact that any of the

keys may be deleted with equal probability.

After 20

6(t=A) ·ak(x,y,z) ·~6(l=X) ·6(s=F) ·6(v=y) ·6(w=z) ·6(x<y<z)

We now apply the convention of setting t,x,y, and z to

zero. This is done by "integration" over these variables

using Theorem 5. We will use our summation notation, which

is defined to work the same as integration if the functions

are taken to be continuous. Remember that if a variable of

integration appears in an Anderson delta function and is

equal to a free variable, then the effect is the same as a

change of variable. In this case y and z appear this way,

79

while x appears only with respect to other variables of

integration.

L {6(t=A).ak(x,y,z).;6(l=X)
l,t,x,y,z

·6 (s=F) ·6 (v=y) ·6 (w=z) ·6 (x<y<z)} =

~6(s=F) .6(v<w) .) ak(x,v,w) .6(x<v)
x

Do the same thing with the 14 other arms of the case

statement.

After 35

S(v<w). [~6(s=F) .{ L (ak(x,v,w) + bk(x,v,w)) .6(x<v)
x

+ L · (ak(v,y,w) + bk(v,y,w) + ck(v,y,w)) .6(v<y<w)
y

+ L (a k (v, w, z) + ck (v, w, z)) • 6 (w< z) }
z

+ ~b (s=G) • { [(ck(x,v,w) + dk(x,v,w) + ek(x,v,w)) .6(x<v)
x

+ / (dk (v,y,w) + ek(v,y,w)) .6(v<y<w)
y

+ f (bk (v,w,z) + dk (v,w,z) + ek (v,w,z)) .6 (w<z) }]
z

After 36a

The value of k is incremented, and we can identify the

terms of the joint p.d.f. after 36a as equal to fk+l (v,w)

and gk+l (v,w) respectively. We now have arrived at

Jonassen's and Knuth's recursive equations 2.2 [8].

CHAPTER 7

SUMMARY AND CONCLUSIONS

What have we accomplished? We have sketched the

foundation for a systematic approach to algorithm analysis

that is based on two ideas:

1. Convert all loop constructs within a program to

recursive subroutine calls.

2. Develop a representation of the initial joint p.d.f.

of the program variables, and fol low the effects

that the program has on that joint p.d.f.

These two ideas yield recurrence relations for the

joint p.d.f. which can be solved to get the joint p.d.f. at

any point in the execution of the algorithm. The branching

probabilities can be calculated directly from the joint

p.d.f. at each conditional statement. It is this detailing

of the branching probabilities that was missing from the

automatic analyzers METRIC and EL/PL. Therefore, the logical

next step would be to add this method to the existing

analyzers.

The central addition we have made to the understanding

of the behavior of joint p.d.f .s in a program is the intro-

duct ion of the Anderson de! ta function. This function,

80

81

by connecting the boolean world of the algorithmic

conditional statement to the real numbers, makes it possible

to keep track of the effects of conditional statements on

the joint p.d.f.s. Its form, essentially a list of

arguments, makes it very easy to represent and operate upon

in a computer program, especially since LISP seems to be the

language most used in this type of work.

Our approach, by capturing the behavior of the program

variables in detail, also includes a means for verifying the

performance of algorithms. All of the information that can

be obtained from previous methods of program verification

seems to be present in our method.

Regardless of the under 1 ying simplicity of the ideas,

the method is very tedious to apply to any significant

algorithm. The examples given in this thesis were made

possible by the string manipulation features of a DIGITAL

WS/78 Word Processor. The next thing that must be done

before more useful work can be done in this area is to

automate the technique. This automated processor should be

an interactive one in the EL/PL style.

Armed with an automatic processor, work can go forward

to handle some of the simple program constructs which we

have not addressed. Multiplication, division, addition and

subtraction of variables have not been considered. Since

these are very important parts of many algorithms, this work

must be extended to cover them before it becomes really

useful.

References

1. Wegbreit, B., "Mechanical Program Analysis", Comm. ACM

Vol.18, No.9 (Sept.1975), 528-539.

2. Wegbieit, B., "Verifying Program Performance", J. ACM,

Vol.23, No.4 (October 1976), 691-699.

3. Cohen, J. and Zuckerman, C. "Two Languages for

Estimating Program Efficiency", Comm. ACM, Vol.17,

No.6 (June 1974), 301-308.

4. deFreitas, S.L. and Lavelle, P.J., "A Method for the

Time Analysis of Programs", IBM Syst J, Vol.17,

No.l (1978), 26-38.

5. Ramshaw, L.H., "Formalizing the Analysis of Algorithms",

Ph.D. Dissertation, Stanford University, 1979.

6. Knuth, D.E., The Art of Computer Programming (Vol.! and

Vol.3). Addison-Wesley, Menlo Park, California,

1968.

7. Horowitz, E. and Sahni, S., Fundamentals of Computer

Algorithms. Computer Science Press, Potomac, .

Maryland, 1978.

8. Jonassen, A.T. and Knuth, D.E., "A Trivial Algorithm

Whose Analysis Isn't", Journal of Computer and

System Sciences, Vol.16 (1978), 301-322.

9. Horowitz, E. and Sahni, S., Fundamentals of Data

Structures. Computer Science Press, Potomac,
I

Maryland, 1976.

10. Aho,A., Hopcroft,J. and Ullman,J., The Design and

Analysis of Computer Algorithms. Addison-Wesley,

Reading, Massachusetts, 1976.

82

83

11. Cohen, J. and Roth, M., "On the Implementation of

Strassen's Fast Multiplication Algorithm", Acta

Informatica, Vol.6 (1976), 341-355.

12. Hogg, R.V. and Craig, A.T., Introduction to

Mathematical Statistics (Second Edition).

Macmillian, New York, 1959.

13. Kodres, U.R., "Discrete Systems and Flowcharts", IEEE

Trans. Software Eng., Vol. SE-4, No. 6 (November

1978), 521-525.

14. Davies, A.C., "The Analogy Between Electrical Networks

and Flowcharts", IEEE Trans. Software Eng., Vol.

SE-6, No. 4 (July 1980), 391-394.
n

15. Hofstadter, D.R., Godel, Escher, Bach: an Eternal

Golden Braid. Basic Books, New York, 1979.

16. Lueker, G.S., "Some Techniques for Solving

Recurrences", Computing Surveys, Vol.12, No.4

(December 1980), 419-436.

17. Anderson, R.B., Proving Programs Correct. John Wiley &

Sons, New York, 1979.

18. Hibbard, T.N., "Some Combinatorial Properties of

Certain Trees with Applications to Searching and

Sorting", J. ACM, Vol. 9 (1962), 13-28.

\

Bibliography

1. Aho,A., Hopcroft,J. and Ullman,J., The Design and

Analysis of Computer Algorithms. Addison-Wesley,

Reading, Massachusetts, 1976.

2. Anderson, R.B., Proving Programs Correct. John Wiley &

Sons, New York, 1979.

3. Cohen, J. and Roth, M., "On the Implementation of

Strassen's Fast Multiplication Algorithm", Acta

Informatica, Vol.6 (1976), 341-355.

4. Cohen, J. and Zuckerman, c. "Two Languages for

Estimating Program Efficiency", Comm. ACM, Vol.17,

No.6 (June 1974), 301-308.

5. Davies, A.C., "The Analogy Between Electrical Networks

and Flowcharts", IEEE Trans. Software Eng., Vol.

SE-6, No. 4 (July 1980), 391-394.

6. deFreitas, S.L. and Lavelle, P.J., "A Method for the

Time Analysis of Programs", lBM Syst J, Vol.17,

No.l (1978), 26~38.

7. Hibbard, T.N., "Some Combinatorial Properties of

Certain Trees with Applications to Searching and

Sorting", J. ACM, Vol. 9 (1962), 13-28.

8. Hofstadter, D.R., Godel, Escher, Bach: an Eternal

Golden Braid. Basic Books, New York, 1979.

9. Hogg, R.V. and Craig, A.T., Introduction to

Mathematical Statistics (Second Edition).

Macmillian, New York, 1959.

10. Horowitz, E. and Sahni, s., Fundamentals of Computer

Algorithms. Computer Science Press, Potomac,

Maryland, 1978.

84

85

11. Horowitz, E. and Sahni, s., Fundamentals of Data

Structures. Computer Science Press, Potomac,

Maryland, 1976.

12. Jonassen, A.T. and Knuth, D.E., "A Trivial Algorithm

Whose Analysis Isn't", Journal of Computer and

System Sciences, Vol.16 (1978), 301-322.

13. Knuth, D.E., The Art of Computer Programming (Vol.I and

Vol.3). Addison-Wesley, Menlo Park, California,

1968.

14. Kodres, U.R., "Discrete Systems and Flowcharts", ,,!!E!!
Trans. Software Eng., Vol. SE-4, No. 6 (November

1978)' 521-525.

15. Lueker, G.S., "Some Techniques for Solving

Recurrences", Computing Surveys, Vol.12, No.4

(December 1980), 419-436.

16. Ramshaw, L.H., "Formalizing the Analysis of Algorithms",

Ph.D. Dissertation, Stanford University, 1979.

17. Wegbreit, B., "Mechanical Program Analysis", Comm. ACM

Vol.18, No.9 (Sept.1975), 528-539.

18. Wegbreit, B., "Verifying Program Performance", J. ACM,

Vol.23, No.4 (October 1976), 691-699.

APPENDIX A

LINE-BY-LINE ANALYSIS

of

"OBLIVIOUS" INSERTION SORT

We must do the analysis for a specific class of initial

distributions for the problem to be tractable. Specifical-

ly, we wi 11 assume that each element of B (1: N) is drawn

independently from a well defined, stationary p.d.f. f(bi).

Therefore the initial joint p.d.f. is simply

The converted program is:

1 procedure INSERTION SORT (B , N)

2 real B(l:N)

3a J ~- 1

3b call OUTER(J, N-1, B)

10 end INSERTION SORT

3c procedure OUTER(J, LIM, B)

3d if LIM - J > 0 then

4a I ~- J

4b call INNER(I' B)

9a J ~- J + 1

9b call OUTER(J, LIM, B)
9c endif

9d end OUTER

86

87

4c procedure INNER(I, B)

4d if I > 1 then

5 if B(I) > B(I+l) then

6 EXCHANGE (B (I), B (I+l))

7 end if

Sa I ~- I 1

8b call INNER (I, B)

Sc end if

8d end INNER

The numb~rs will refer to the statement numbers of the

recursive version of the algorithm.

1 Initial joint p.d.f.

f 8 (b1 ,b2 ,b3 , ••••• ,bN) = f(b 1) • f(b 2) • • • f(bN).

3a Adds a new variable

3d Splits the distribution based on the values of J and

LIM.

In the true branch:

In the false branch:

• f (bN) •

We have made the substitutions of the instances of the

dummy variables in the routine. Now, if N = 1, then

the true branch is zero, the false branch reduces to

6cj=l) .
f(bl)' and done. we are

4a Adds a new variable in the true branch

6 (i = j) • 6 (j < n) • 6 (j = 1) • f (bl) • f (b 2) • • • f (bN) •

This joint p.d.f. is transfered with the call at 4b.

88

4d Splits the distritution based on the value of I.

In the true branch:

In the false branch:

5 Finally things get interesting! This is the first test

involving the data itself. This statement splits the

joint p.d.f. on the basis of the values of B(I) and

B(I+l).

In the true branch:

In the false branch:

6 This EXCHANGES the values of b 2 and b 1

6 (i ~ l) • 6 (i = j) • 6 (j < n) • 6 (j = l) • 6 (b 2 >bl) • f (b 2) • f (bl) • • • f (bN) •

7 At the join for the if statement we have

6 (i~l) ·6 (i=j) ·6 (j<n) ·6 (j=l) •

{ 6 (b 2 >bl) +6 (b 2~ bl) } • f (bl) • f (b 2) • • • f (bN) •

It is now that we · can see the significance of our

choice of initial joint p.d.f. which is symmetric with

respect to the exchange of variable indicies.

At this point we must decide whether the probability

that b.=b. is going to be significant, or not. If we choose
1 J

to deal with continuous distributions, then this probability

is zero. Likewise, if we say that the discrete elements are

distinct we have the same thing. We will do this so that we

can write the joined joi\ t

89

p.d.f. as

6(i,?_l) ·6(i=j) ·6(j<n) ·6(j=l) ·2·6(b2,?_b1) •

f(b) .f(b) ••• f(b)
1 2 N

aa This adjusts I for the next iteration

6 (i+l..?_l) ·6 (i+l=j) ·6 (j<n) ·6 (j=l) •

2·6(b >b) .f(b) .f(b) ••• f(b)
2- 1 1 . 2 N

8b We know from step 4d above, that this joint p.d.f. will

be returned with the additional

restriction 6(i<l). Simplifying we have

(superfluous)

6 (i = 0) • 6 (j < n) • 6 (j = 1) • 2 • 6 (b 2,?_ bl) • f (bl) • f (b 2) • • • f (bN)

This joint p.d.f. is returned at 4b.

9a This statement adjusts J for the next iteration, and

6 (i = 0) • 6 (j-1 < n) • 6 (j-1=1) • 2 • 6 (b 2..?_ bl) • f (bl) • f (b 2) • • • f (bN)

is again passed to OUTER.

3d We see now that this test "traps" all of the joint

p.d.f. in the loop until J exceeds LIM (N-1 in our

case). So we won't mention the false branch until the

end.

In the true branch: ·

6 (j<n) ·6 (i=O) ·6 (j-l<n) ·6 (j-1=1) •

2·6(b >b) .f(b) .f(b) ••• f(b)
2- 1 1 2 N

4a This collapses the old joint p.d.f. on i and results in

6 (i = j) • 6 (j < n) • 6 (j = 2) • 2 • 6 (b 2,?_ bl) • f (bl) • f (b 2) • • • f (bN)

We have simplified the expression with respect to j.

4d This joint p.d.f. arrives at INNER, where this

statement traps the joint p.d.f. until I<l.

90

5 In the true branch:

6 (i = j) • 6 (j < n) • 6 (j = 2) • 2 • 6 (b 2.?. b 1) • 6 (b 2 > b 3) •

f(b) "f(b) """f(b) 1 2 N

In the false branch:

6Ci=j) ·6cj<n) ·6cj=2) ·2··6cb2,?.b1) ·6cb3,?.b2) •

f(b) "f(b) """f(b) 1 2 N

6 The exchange yields:

6 (i = j) • 6 (j < n) • 6 (j = 2) • 2 • 6 (b 3,?. b 1) • 6 (b 3 > b 2) •

f(b) "f(b) """f(b) 1 2 N

7 At the join we have:

6Ci=j) ·6cj<n) ·6cj=2) •

2·16cb2.?.b1) ·6cb3.?.b2)+6cb3.?.b1) ·6cb3>b2)J"

f(b) "f(b) """f(b) 1 2 N

Ba Prepares for the next call of INNER

6 (i=j-1) ·6 (j<n) ·6 (j=2) •

2 • { 6 (b 2.?. b 1) • 6 (b 3.?. b 2) +6 (b 3.?. b 1) • 6 (b 3 > b 2) } •

f(b) "f(b) """f(b) 1 2 N

This gets through to statement 5 in INNER.

5 In the true branch .(multiply by 6cb1>b2) and simplify):

6 (i=j-1) ·6 (j<n) ·6 (j=2) •

2 • { 6 (bl > b 2) • 6 (b 3.?_ bl) • 6 (b 3 > b 2) } • f (bl) • f (b 2) • • • f (bN)

In the false branch(multiply by 6cb2,?_b 1) and simplify):

6 (i=j-1) ·6 (j<n) ·6 (j=2) •

2 • { 6 (b 2.?. b 1) • 6 (b 3.?. b 2) +6 (b 2.?. b 1) • 6 (b 3.?. b 1) • 6 (b 3 > b 2) } •

f (bl) " f (b 2) " " " f (bN) =

6 {i=j-1) ·6 (j<n) ·6 (j=2) •

2·12·6cb >b) ·6cb >b) J"f<b, "f<b, ···fcb) 3- 2 2- 1 1 2 N

91

6 The EXCHANGE in the true branch yields:

6 (i=j-1) ·6 (j<n) ·6 (j=2) •

2 ° { 6 (b 2 >bl) " 6 (b 3.?_ b 2) " 6 (b 3 >bl) } 0 f (bl) 0 f (b 2) 0 0 0 f (bN)

6 {i=j-1) ·6 (j<n) ·6 (j=2) •

2·{6b) ·6cb >b) l "f<b) "f<b) ···f<b) 3- 2 2- 1 1 2 N

7 At the join we have:

6 (i=j-1) ·6 (j<n) ·6 (j=2) •

2"{3"6(b >b) 0 6{b >b)}"f(b)"f(b) 000 f(b) 3- 2 2- 1 1 2 N

8a Sets I to zero in this case, and the next call of INNER

returns this joint p.d.f.

6Ci=O) ·6cj<n) ·6cj=2) •

2 " { 3 " 6 (b 3,?. b 2) " 6 (b 2,?. bl) } " f (bl) " f (b 2) " " " f (bN)

to OUTER at statement 9a.

This suggests the induction hypothesis that if you give

INNER, at its call from OUTER, the distribution

6Ci=j) ·6cj<n) ·6cj=k) •

k1 ·6cb >b , ···6cb >b) "f<b '"f<b '···f<b) k- k-1 2- 1 l 2 N

it returns the distribution

6 (i=O) ·6 (j<n) · 6 (j=k) 0

<k+1) • ·6cb >b , ···6cb >b , "f(b) "f<b, ···f<b) . k+l- k 2- 1 1 2 N

This can be shown to be true in a straight-forward, if

somewhat tedious, manner.

OUTER's "loop-stopper" releases this joint p.d.f. when

J=N and we have the result:

6 (i = 0) "6 (j =N) 0 N ! 0 6 (bN.?_ bN-l) 0 0 0 6 (b 2,?. bl) 0

f(b) "f(b) 000 f(b) 1 2 N

92

This is precise!~ the proper answer which is usually derived

using combinatorial arguments [12). It may be easier to

implement this method of analysis, even though it requires

an induction proof solver, than to automate the rules of

combinatorial arguments and proofs. It should also be noted

that at every step of the way we had a precise expression

for the performance of the program. The marginal p.d.f. for

any program variable gives the probability that the variable

will take on a particular value.

Once the analysis of the bare algorithm is complete, an

analysis for any particular aspect can be done by instru­

menting the algorithm. It is easy to show that this

algorithm requires exactly (N 2-N) comparisons between the
2

elements, which is twice as many as the "improved" version

of the algorithm.

	Systematic Analysis of Algorithms
	Terms of Use
	Recommended Citation

	thesis_anderson_1981_001
	thesis_anderson_1981_002
	thesis_anderson_1981_003
	thesis_anderson_1981_004
	thesis_anderson_1981_005
	thesis_anderson_1981_006
	thesis_anderson_1981_007
	thesis_anderson_1981_008
	thesis_anderson_1981_009
	thesis_anderson_1981_010
	thesis_anderson_1981_011
	thesis_anderson_1981_012
	thesis_anderson_1981_013
	thesis_anderson_1981_014
	thesis_anderson_1981_015
	thesis_anderson_1981_016
	thesis_anderson_1981_017
	thesis_anderson_1981_018
	thesis_anderson_1981_019
	thesis_anderson_1981_020
	thesis_anderson_1981_021
	thesis_anderson_1981_022
	thesis_anderson_1981_023
	thesis_anderson_1981_024
	thesis_anderson_1981_025
	thesis_anderson_1981_026
	thesis_anderson_1981_027
	thesis_anderson_1981_028
	thesis_anderson_1981_029
	thesis_anderson_1981_030
	thesis_anderson_1981_031
	thesis_anderson_1981_032
	thesis_anderson_1981_033
	thesis_anderson_1981_034
	thesis_anderson_1981_035
	thesis_anderson_1981_036
	thesis_anderson_1981_037
	thesis_anderson_1981_038
	thesis_anderson_1981_039
	thesis_anderson_1981_040
	thesis_anderson_1981_041
	thesis_anderson_1981_042
	thesis_anderson_1981_043
	thesis_anderson_1981_044
	thesis_anderson_1981_045
	thesis_anderson_1981_046
	thesis_anderson_1981_047
	thesis_anderson_1981_048
	thesis_anderson_1981_049
	thesis_anderson_1981_050
	thesis_anderson_1981_051
	thesis_anderson_1981_052
	thesis_anderson_1981_053
	thesis_anderson_1981_054
	thesis_anderson_1981_055
	thesis_anderson_1981_056
	thesis_anderson_1981_057
	thesis_anderson_1981_058
	thesis_anderson_1981_059
	thesis_anderson_1981_060
	thesis_anderson_1981_061
	thesis_anderson_1981_062
	thesis_anderson_1981_063
	thesis_anderson_1981_064
	thesis_anderson_1981_065
	thesis_anderson_1981_066
	thesis_anderson_1981_067
	thesis_anderson_1981_068
	thesis_anderson_1981_069
	thesis_anderson_1981_070
	thesis_anderson_1981_071
	thesis_anderson_1981_072
	thesis_anderson_1981_073
	thesis_anderson_1981_074
	thesis_anderson_1981_075
	thesis_anderson_1981_076
	thesis_anderson_1981_077
	thesis_anderson_1981_078
	thesis_anderson_1981_079
	thesis_anderson_1981_080
	thesis_anderson_1981_081
	thesis_anderson_1981_082
	thesis_anderson_1981_083
	thesis_anderson_1981_084
	thesis_anderson_1981_085
	thesis_anderson_1981_086
	thesis_anderson_1981_087
	thesis_anderson_1981_088
	thesis_anderson_1981_089
	thesis_anderson_1981_090
	thesis_anderson_1981_091
	thesis_anderson_1981_092
	thesis_anderson_1981_093
	thesis_anderson_1981_094
	thesis_anderson_1981_095
	thesis_anderson_1981_096
	thesis_anderson_1981_097
	thesis_anderson_1981_098

