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ABSTRACT 

This paper presents a method for the design of control systems such that actuator 

performance limits are not exceeded. The maximum energy delivery concept and root 

locus analysis methods were used to find the gains for a pseudo-derivative feedback 

controller for a second order system with zero or first order numerator dynamics. 

The method has been implemented in a computer program which determines the gains 

and simulates response characteristics. 
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1. INTRODUCTION 

1.1 Statement of Problem 

In practice, control system design often involves expensive trial and error testing in 

order to design a controller which satisfies a certain set of criteria. Control system 

performance is ultimately dependent upon the physical limitations of the controlled 

system, a concept overlooked by most academic approaches to control system design. 

This paper presents a method to design control systems considering the physical 

constraints of the final control elements (actuator) of the system to be controlled. The 

method has been implemented in the form of a personal computer program which 

determines the gains for a Pseudo Derivative Feedback (PDF) controller for an 

adjustable configuration physical system. The system must be modeled as a transfer 

function with an order of two in the denominator and an order not exceeding one in 

the numerator. (The gains for the first order denominator configuration can be solved 

for analytically by direct substitution into equations derived by Phelan (Phelan [1], pp. 

152-155). 

1.2 Motivation 

Few authors are concerned with the design of controllers for systems with actuator 

limits. Of the authors who do consider this limitation, few provide a complete 

solution in a form useful for a modern control system designer. Phelan describes the 

actuator limit concept as the single most important point in control system design 
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(Phelan p.11). The general method presented by Phelan for solving such problems 

provides an analytical solution for a first order control system and a suggested trial 

and error procedure for second order systems. Other constraints on the configuration 

of the problem examined by Phelan include only an inertia term in the plant transfer 

function and no numerator dynamics (no derivatives in the transfer function 

numerator). The motivation of this investigation was therefore to expand the 

complexity of the problems to which Phelan's methods (or variations of) could be 

applied. As a consequence of the incorporation of the methods in a personal computer 

program, a tool has been developed which is convenient for a control designer to use. 

1.3 Terminology 

The following terms and definitions relate to the block diagram shown in Figure 1-1. 

Control system: Any system that controls a supply of energy. 

Feedback control system: A control system which uses measurement of the output or 

controlled variable to help adjust the supply of energy in the system. 

Controller: The portion of the control system which encompasses the adjustable 

parameters which influence how the system responds. 

Fixed Elements: The portion of the control system which is not adjustable. The two 

subsets of the fixed elements are: 

Actuator: Accepts a low power level command from the controller and 

converts it to a high power level. 
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C(1) V(1) '1'(1) 
CON'mOLLER ACTUATOR 

+ 

Figure 1-1 Typical Feedback Control System 

Plant: The object to be controlled, such as the mechanical load attached to a 

D.C. electric motor. 

Command (Reference) Input, R: The signal or action that is requested of the control 

system. Often the most severe cqmmand input that can be requested of a system is a 

step input, which is an instantaneous change from no energy to some maximum value. 

Output, C: The desired signal or action as a res~lt of the control process. 

Error Signal, E: The difference between the command signal and the output signal. 

Controller Signal, V: The signal following the controller in the block diagram. 

Actuator Signal, T: The signal following the actuator in the block diagram. 
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1. 4 Summary of the PID family of control laws 

The most traditional class of controllers are the proportional (P), integral (I) and 

derivative (D) controllers and various combinations thereof (Phelan p.70). A 

controller which uses proportional control modifies the error signal, E, by a 

proportional coefficient (gain). Integral control modifies the error signal by integrating 

it and likewise, derivative action differentiates the error signal. When applied either 

separately or in combination to appropriate problems, the PID family can modify the 

system's behavior such that 

a. steady state error (error signal after transient behavior has disappeared) 

is minimized 

b. overall system response time is minimized 

c. transient specifications, such as maximum overshoot of the output signal 

are minimized (Palm, [2] p. 335). 

In addition to these desirable characteristics of PID controllers, there are some 

undesirable ones. Foremost is that the controller which uses some combination of PID 

(which is more likely than any one action by itself) ·may simultaneously modify 

conflicting signals, resulting in possibly un-predicted controller performance. Systems 

designed with the PID family of controllers should therefore never operate on more 

than one signal in the forward path of the controller. This concept is sometimes 

referred to as the principle of one master (Phelan p. 150). 
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2. DESIGN BASED UPON CONSTRAINED ACTUATORS 

Phelan makes the following statement about control system design: "Two kinds of 

automatic control systems - academic and real exist, and they have almost nothing in 

common." (Phelan p.11) While many aspects of control system design can be 

understood using basic controller theory, these methods will only be accurate if the 

system responds linearly. Unfortunately, linearity is not guaranteed unless the physical 

limitations of the real actuator are taken into account in the determination of controller 

gains. 

2.1 Non-linearity in Control Systems 

The equations of motion describing the dynamics of every real controlled system are 

non-linear. Since the mathematical analysis of non-linear systems is much more 

complicated than linear systems, it is advantageous to simplify the equations of motion 

so that they are linear. Fortunately, the fundamental idea behind a feedback control 

system - the comparing of the actual output to the desired output, makes real (vs. 

academic or theoretical) control systems inherently very tolerant of most non­

linearities, provided they are designed properly. 

2.2 Non-linearity produced by Actuator Saturation 

There are many types of controllers, each of which can provide a wide variety of 

response characteristics to the signal upon which it operates, the error signal. Most 

academic lessons in control system design discuss these control methods and provide 
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examples of their use with every day problems. There are few examples of actual 

response data in the literature. There may be situations where the same control 

strategies are used in a real design problem, and the resulting response does not react 

as expected. 

The problem is that while the actuator is the "muscle" of the control system, it is also 

the weakest link. The actuator is part of the fixed elements of the control system and 

therefore is not easily adjustable. Examples of this inflexibility include: 

1. A D.C. motor has a limited torque which it can produce - either deliberately so 

as to prevent damage to the motors components or accidentally, such as due to 

improper selection of an amplifier. 

2. A valve cannot be more than fully open or fully closed in a liquid level 

controller or pressure control system. 

If a control system operates over a wide range of conditions, it is possible that the 

output of the controller, V, may request more energy from the actuator than it is 

capable of delivering. When this maximum value is exceeded, the feedback loop is 

effectively broken because while the control signal is requesting more energy, the 

actuator will produce only what it is limited to. When the actuator is at its limit, it is 

said to be saturated. Some other types of non-linearities include dead-zone, bang-
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bafig, hysteresis and mechanical backlash (Towill, [3] p. 411). In some of these cases, 

the non-linearity is actually deliberately produced to improve system performance 

(Towill p. 415). 

A common result of this saturation is called reset-windup. This occurs in controllers 

which use the integral of the error signal to control the process. The value of the 

control signal for the integral control algorithm is: 

v( t) =Kif e ( t) dt (2-1) 

The value of V is dependent both upon the magnitude of the error signal and the 

length of time the error exists. For a step input, the integral term increases rapidly 

until the actuator saturates and the response overshoots its desired level. The 

saturation would occur even sooner if proportional control of the error signal were also 

used (Pl control) because the error is at its maximum value just after time zero. After 

the response overshoots the set-point value, and the error changes sign, it takes some 

time before the error is large enough to cancel out the overshoot. Consequently, the 

actuator signal can not pull away from its saturation limit and the system behaves non­

linearly. The result is that any controller with integral action may have significant 

overshoot and a longer response time than it would have if the actuator signal did not 

saturate. 

The neglect of the finite energy delivering capability of actuators is the primary reason 
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academic control systems are so different from real ones. Many manufacturers of 

control equipment use academic methods on real-world systems. As a result their 

equipment falls short of expected performance which would then require a set of 

tuning procedures to bring the performance in line. (Phelan pp. 66-67). 

There are several methods that have been developed which consider actuator saturation 

and its effect on overall system performance. A controller which uses Anti-Windup 

(Astrom [4], p.12 ) has an extra feedback path which measures the actuator signal as a 

means to prevent saturation. More recently, a numerical method was developed which 

determines linear controller designs based upon convex optimization techniques (Boyd, 

et al [5]). The maximum energy delivery concept was developed by Phelan, and is 

described further in Section 2.3. 

2.3 The General Method 

Actuator saturation and non-linear response can be prevented by simply designing the 

controller (that is select the control gains for the control scheme) such that the control 

signal never requires the actuator to saturate. This will require the designer to know 

three types of information about the system to be controlled: 

1. The coefficients of the parameters of the fixed elements of the system. For a 

second order actuator/plant pair, this would be inertia, damping and restoring 

terms. 
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2. The actuator saturation limit. 

3. A maximum operating condition, such as the maximum speed at which a D.C. 

motor is expected to operate. 

The crucial information is item 2, and is also the most difficult to obtain. The 

difficulty is that so little emphasis has been placed on actuator limits in the past that 

data is rarely available on this parameter. The designer may be required to derive this 

limit from some maximum operating 

condition of the system. The 
T 

characteristics of an ideal actuator 

with a finite limit on the output, T, 
v 

is shown in Figure 2-1. 
Tmin 

While as a whole, Figure 2-1 does 

not describe a linear function, it is 

piece-wise linear. That is, for certain Figure 2-1 
Piecewise Linear Actuator Function 

ranges of the input V, the function is 

linear. In terms of the problem to be solved, linear operation occurs when V remains 

in the region such that 

(2-2) 

The minimum and maximum values of T represent the limits on the actuator and may 

or may not be equal in magnitude. The values of T mm and T max are entirely dependent 

upon the system requirements and hardware limitations. 
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1 .. · ~1 .,_I =t= I ···.____I - f 
Figure 2-2 Pl control of a saturating first order system. 

As an example, consider PI control of the first order plant shown in Figure 2-2, where 

m, and ~are the inputs and outputs of the piece-wide linear actuator function 

respectively. When the actuator function is operating in the linear region, 

(2-3) 

At time t=O, the integral of the error signal is zero, and the value of the error signal is 

at its maximum - the magnitude of the step input rmaX' This gives 

K =~.max 
P I max 

where mz.max is the saturation limit of the actuator function. The characteristic 

equation of the system in Figure 2-2 is: 

The standard formula for damping ratio for this second order equation is: 

Assuming the most desirable response characteristics will be achieved when the 

system is critically damped (~=l) ~can be determined as such: 
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(2-5) 

(2-6) 

(2-7) 



(2-8) 

(Phelan, pp. 267-278). 

2.4 Assumptions 

2.4.l Linearity 

The differential equation which describes the fixed elements of the control system is 

assumed to be linear. The transfer functions describing the control system in its 

entirety are also assumed to be linear, provided that the actuator is prevented from 

saturating. 

2.4.2 Absence of Disturbance Terms 

Sometimes random forces and/or deviations (non-linearities) in the parameters of the 

plant transfer function create a random input preceding the plant in Figure I. For the 

purposes of this study, disturbances were neglected because their maximum magnitude 

is difficult to predict, and thus an estimate can not be made on whether they will 

produce actuator saturation or not. It is assumed that disturbances are second-order 

effects that don't cause actuator saturation. 

2.4.3 Step Functions 

The most severe, and therefore most useful, type of reference input is a step function 

(Phelan p.96). A step change in command input represents an instantaneous, non­

continuous change. No real-world system can respond as such for this would require 
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an infinite amount of energy at time 0. For problems modeled with transfer functions 

having numerator dynamics, a pure step input is unrealistic. Therefore, a replacement 

function is used to represent the step function: 

x (t)=M(l-e-.r:t) 
I 

(2-9) 

where M is the magnitude of the step and z is a constant dependent upon the smallest 

time constant ('tmuJ of the control system. The constant is arbitrarily chosen such that 

(2-10) 

2.5 Method applied to a second order fixed element system 

The block diagram in Figure 2-3 shows pseudo-derivative-feedback (PDF) control for 

a second order system with numerator dynamics. PDF control was developed by 

Phelan (Dec. 1970) as a solution to the problems associated with the principle of one 

master. In an effort to avoid the undesirable effects of differentiating the error signal, 

the output of the control system is fed back into the forward path of the loop 

following an integral, I action, control block. The overall effect of this configuration 

would be the same as if the outpu·t signal were differentiated and fed back preceding 

the integral block. I action is chosen over P action in the forward path because it is 

often unrealistic to expect instantaneous response to a step input as is the case for P 

action and because I action gives zero steady-state error (Palm p. 417). Note that for 

the second order plant in Figure 2-3, there are two PDF gains, operating on the output 

signal, and the first derivative of the output signal. Also note there are two 

proportional gains KA and KB which are included in the figure to account for 
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+ as+ B c 
s Is 2 + cs+ k 

Figure 2-3 PDF Control of General Fixed Element System 

miscellaneous proportionality factors common in control systems (such as amplifiers 

and potentiometer/tachometer gains). They do not affect the dynamics of the system, 

only the magnitude of the PDF gains, and therefore will be neglected in the following 

derivations. The overall system tr an sf er function for the system in Figure 2-3 is 

c<s> = K1 Cas+P> 
R(s) T3 s 3 +T2 s 2 +T1 s+T0 

(2-11) 

(2-12) 
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(2-13) 

(2-14) 

(2-15) 

Two different methods are presented to determine the gains for satisfactory response 

of the above control system with respect to a constrained actuator signal. The 

methods cliff er because of the presence or absence of the first order numerator term 

(a). 

2.5.1 Method with zero order numerator dynamics 

The characteristic equation is a third order differential equation, therefore standard 

formulas for damping ratio and time constant for a second order characteristic equation 

are of no use in determining the gains which will accomplish the goal. The fact that 

the system in Figure 2-2 is a multiple loop system will be useful however. The inner 

loop transfer function is: 

C(s) = 13 
R1 (s} Is 2 + (c+PK2 ) s+k+f}K1 

(2-16) 

The characteristic equation is a second order differential equation from which the 

following equation for damping ratio is found ( where IL refers to inner-loop): 
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c+p~ c = 
IL -=2~,;;:::;c::::::;;I;::> :;:c k;::+:::P;:;K;::;:1::;:> 

(2-17) 

One would expect that the optimum values of K2 and K1 would be found when the 

jnner loop damping ratio is 1 because critically damped systems often have desirable 

characteristics (fast, smooth response curves). However because ~(s) would never be 

50 severe as a step function because of its position following the controller in the 

block diagram, the value of ~IL can be less than unity. Studies by Phelan and Ulsoy 

[6] have shown that the optimum value of the inner loop damping ratio for smooth 

fast response is 0.7 (Phelan, pp. 219-225). Through simulations, Phelan determined 

that the best relationship of K1 to vmax and rmax came out to be 

From Equation (2-17): 

v: 
K=8~ 

1 I 
lllllX 

(2-18) 

(2-19) 

Phelan states that there is no simple way to determine the gain~. analytically. He 

suggests a trial and error procedure of starting with a low value of ~ and gradually 

increasing it while providing step changes in the reference input equal to the 

maximum value expected. At each trial the value of Ki is increased until either the 

actuator saturates or the output response overshoots. 

2.S.2 Method with first order numerator dynamics 

15 



If the method used by Phelan were to be applied to a fixed element system with first 

order numerator dynamics, the first step again would be to find the gains K2 and K1 to 

provide an inner-loop damping ratio of 0.707, where 

(2-20) 

If Ki were selected as it was in the zero order case, then the solution for K2 would be 

in the form of a quadratic equation. The difficulties in determining the proper value 

of K2 (which may be complex conjugates) make this method more difficult to 

analyze, that is, a solution might not exist which provide a real value for Ki· 

The alternative method used to solve this problem uses the root-locus method to find 

the gains for satisfactory performance, without causing the actuator signal to saturate. 

The characteristic equation written in root locus form with ~incorporated into the 

root locus variable K is: 

(2-21) 

where 

(2-22) 
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There is one zero for this configuration of the characteristic equation. It is 

s=-l.. 
a 

(2-23) 

(2-24) 

(2-25) 

(2-26) 

There are also three poles, one of which is at the origin. The other two poles can be 

placed anywhere by appropriate selection of the gains K2 and K1• By observing the 

behavior of the root locus for different configurations of the pole placement, it was 

possible to determine a method of solution which provided satisfactory response in a 

conveniently programmed algorithm. Three possible configurations were examined: 

complex conjugate poles, real repeated poles to the left of the zero, and real repeated 

poles to the right of the zero. Real, distinct poles were not considered because of the 

lack of basis for a root separation factor. The first configuration, complex conjugate 

poles was ruled out because of the likelihood of an oscillatory response. Either of the 

remaining configurations may yield satisfactory response characteristics without 

actuator saturation. The configuration with the poles to the right of the fixed zero was 

chosen because poles near the origin are less likely to cause saturation. 

17 



The plot which is constructed using the root-locus plotting guides (Schwarzenback [7] 

P· !60) shows the locus breaking away at some point between 0 and the position of 

the poles, and approaching infinity along an asymptote perpendicular to the real axis 

(Figure 2-4). The fastest, smoothest response (before adjustment for actuator 

saturation) will occur at the breakaway point s.,.. The solution for the breakaway point 

is found by solving the root-locus equation for K and differentiating to find the local 

minimum. The result is the cubic equation: 

s 3 +C s 2 +C s+C =O 2 1 0 
(2-27) 

where 

(2-28) 

(2-29) 

(2-30) 

The breakaway point should be the only real root betWeen 0 and the pole position. 

The root-locus variable K at the breakaway point is 

(2-31) 

The gain values K2 and K1 selected to place the poles near the zero, and the value of 

Ki determined by (above) do not guarantee that actuator saturation will not occur. 

Therefore, it is necessary to simulate the actuator response, and adjust the values 
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accordingly. The method used to adjust the gains is to incrementally place the real, 

repeated poles closer to the origin in the root-locus plot, there by slowing the system 

down. until the actuator does not saturate. A graphical representation of the method is 

shown in Figure 2-5. This method is easily coded as a computer program algorithm. 
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I 

Figure 2-4 Root locus plot for first order numerator dynamic configuration 

Im 

Figure 2-5 Pole adjustment method used to find non-saturating response for first 
order numerator configuration 20 



2.6 Implementation of Computer Method 

1be following section summarizes the important points and modifications of the 

methods described in section 2.5 that are necessary to implement a computer based 

solution. 

2.6.l Saturation Limit Parameter Selection 

In practice, the non-linearity that produces saturation can occur anywhere within the 

fixed elements portion of the control system (Towill p. 411). Likewise it is not 

practical to design a computer method that analyzes the dynamics of a single type of 

problem. It is therefore necessary to select a saturation limit that is outside of the 

fixed elements of the system. The only choice for this parameter must then be the 

control signal, V. 

2.6.2 Response Calculations 

The control signal, V, in Figure 2-2 can be represented as: 

v( t) =K Je ( t) dt-K c ( t) -rr de( t) 
i 1 ~'2 dt 

(2-32) 

where 

e(t) =r(t)-c(t) (2-33) 

r(t) =M(l-e-zt) (2-34) 
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The overall system response, c(t), is found using the fourth order Runge Kutta method 

for solving third order differential equations. The step size required for the Runge 

Kutta method is chosen based on the least dominant root time constant ('t,): 

h=~ 
100 

(2-35) 

The integral of the error signal is found by sub-dividing each Runge Kutta step, h, by 

10 and applying Simpson's Rule over the span of h. The integral of the error signal 

would become 

(2-36) 

(Kreyzig [8] p. 789) where 

(2-37) 

(2-38) 

(2-39) 

and e0 is the error signal evaluated at each of the sub-intervals of the Runge Kutta step 

sii.e. 

2.6.3 Computational Differences from Method Discussed in Section 2.5 

The method described by Phelan suggests a trial and error approach of adjusting the 

integral gain ~ upward from a low value until saturation occurs. Computationally this 
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would require calculation of the entire control signal response (for about 4 time 

constants) before a determination of saturation (or not) could be made. To minimize 

computation time for this iterative procedure, the integral gain is initially selected to 

be some maximum value to ensure system stability. The gain is then adjusted 

downward until a control signal response is found that does not saturate. The initial 

value of the gain corresponds to the point where the root locus (Figure 2-6) crosses 

the imaginary axis. 

Figure 2-6 Root locus plot for zero order numerator dynamic configuration 
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APPLICATION OF COMPUTER METHOD 

3. 1 Derivation of Problem with Zero Order Numerator Dynamics 

Figure 3-1 is a block diagram representing PDF control of a DC motor. Such 

instruments are used in a wide variety of precision velocity and positioning control 

systems. A manufacturer's specifications for the motor components for such a motor 

are listed in Table 1. 

Term Description Value 

c Damping Factor 0.1 oz-in/KRPM 

I Armature Inertia 0.0055 oz-in-sec2 

R Armature Resistance 1.55 Ohms 

L Armature Inductance 3.19 mH 

KT Torque Constant 5.8 oz-in/Amp 

~ Back EMF constant 4.29 V/KRPM 

K. Output Voltage Gradient 3.0 V/KRPM 

rmax Maximum No Load Speed 6.0 KRPM 

luiax Maximum Pulse Current 24.0 Amp 

Table 3.1 - Electro-mechanical specifications for the Electrocraft E-576 

DC Servomotor Generator (Electrocraft Corp. [9]) 

The maximum operating chacteristics of the actuator must be determined before 

reducing the fixed elements of the motor into a single transfer function. Note that 

among the specifications is a maximum pulse current (which is important to avoid de­

magnetization of the motor's components). 

24 



1 I 
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K e 

KA 

K +Ks 
1 2 

Figure 3-1 Block Diagram of DC Servomotor with PDF Control 

The transfer function relating the current I(s) to Vi(s) is 

I ( s) _ 1 
vi (s) - Ls+R 

1 
Is+ c 

To simplify the problem, it is advantageous to neglect the effects of armature 

inductance temporarily so that 

vi ( t) =Ri ( t) 

c 

(3-1) 

(3-2) 

Substitution of the maximum pulse current for i(t) and the armature resistance gives 
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v 1 (t)=(l.55) (24)=37.2Vo1ts 

The control signal, V(s) is represented as 

(3-3) 

Vmax=37. 2+ (4. 29) (6. 0) =63 Vol ts 

The actuator limits for this problem then are +/-63 Volts for a command step input of 

6 KRPM. Reducing the fixed elements in Figure 3-1 to a single transfer function 

gives the general form for a fixed element system with zero order numerator 

dynamics, where 

a =0 

I= LI c=Rl+Lc (3-4) 

For the purposes of this example, the feedback and amplifier gains, KA and K8 , will be 

assumed to be unity, for their precensce do not affect the dynamics of the problem as 

discussed in section 2.5. 

3.2 Derivation of Problem with First Order Numerator Dynamics. 

The liquid level system shown in Figure 3-2 consists of two coupled tanks, each of 

which has an outflow pipe with known diameters and lengths. The fluid resistance 

due to laminar pipe flow is given by the Hagen-Poiseuille formula 

R= 128µ£ 
npD4 

26 
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Based upon the block diagram shown in Fig. 3-3, the transfer function relating the 

volume flow rate, q, to the height of the liquid in the first tank is 

H1 (s) = as+p 
Q(s) Is 2 +cs+k 

(3-6) 

where 

B = g(R1 + Rz) (3-7) 

Table 3-2 provides the appropriate parameters for a two tank system with fuel oil as 

the liquid. 

rameter Tank 1 Tank 2 

Tank Diameter (m) 1.0 0.75 

Pipe Diameter (m) 0.04 0.05 

Pipe Length (m) 0.2 0.1 

Area (m2) 0.78 0.44 

Resistance (N-sec/kg-m2) 3153.9 645.9 

ystem 

The required physical specifications of oil at 68 degrees F are: 

Density, 968.9 kg/m3 

Viscosity, 0.96 N-sec/m2 

In order to select reasonable values for an actuator limit and a corresponding input 

command height for the first tank, it is necessary to examine the steady state value of 
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the control signal in terms of the command request. The transfer function relating the 

control signal, V(s), to the command height H1R(s) is: 

V(s) = Ki(Is 2 +cs+k) 
HlR(s) T3 s 3 +T2 s 2 +T1 s+T0 

(3-8) 

Applying the final value theorem (Palm, p. 224-226) to the above transfer function and 

substituting the value for T0 from eqn. the following relationship results: 

V = H1~ 
SS p (3-9) 

For a maximum step command in liquid level (of the first tank) that would ever be 

expected, say 2 meters, a corresponding steady state value of V (which in this case is 

flow rate) can be found required to maintain the height of 2 meters. The flow rate 

becomes: 

v <2 > <96 · 04 ) =O. 005158m3 /sec 
ss= 37 238 

The above flow rate is used as the upper actuator limit in the tank problem. A lower 

actuator limit of 0 is chosen to represent the flow rate when the input valve is 

completely closed. A reasonable value for the command liquid height in the first tank 

must be between 0 and 2 meters. A command request of I meter is used. 
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Operating the Computer Program 

3.3.1 System Requirements and Startup 

While the computer method runs adequately on an 80286 type personal computer, 

speed performance is superior with an 80386 or 486 processor with at least 400K of 

free randam access memory. A mouse is recommended. 

The program can be run from the floppy drive or copied to a hard drive - about 300K 

of disk space is required. The program is started by typing PDF at the DOS prompt. 

3.3.2 Entering System Parameters. 

To enter the fixed element characteristics and the desired actuator performance limits, 

choose Specifications from the menu bar at the top of the display. Choose Fixed 

Element to enter the physical parameters of the system to be controlled (the form is 

the same as Eqn 3-7) in the Fixed Element data box. Note that the first order 

numerator term should remain zero if there are no numerator dynamics for the 

problem to be solved. Either choose Actuator Limits or click the mouse pointer on 

one of the fields in the Actuator Limit data box to enter actuator limit data. Press 

ESCAPE when finished entering data. If there are non-unity amplifier or feed-back 

gains (KA and KB)• choose Additional Gains from the Specifications menu-bar 

selection and enter the appropriate constant. Press ESCAPE when done. 

3.J.3 Calculating Gains and Response. 
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To calculate the gains and view the control signal response, select Go from the menu 

bar and then the Go sub-menu choice. After a few seconds a line graph is displayed 

with the control signal response. The PDF gains and control signal maximum and 

minimum values are displayed in data boxes on the right side of the display. Choose 

the System Response sub-menu from the Go menu-bar selection to view the overall 

system response with the gains that have been determined in the previous action. 

3.3.4 Saving and Retrieving Specifications and Responses. 

The system specifications can be saved to a disk file so that they can be conveniently 

recalled for another time. Select File from the menu-bar and the Save Specs submenu 

choice. Type a file name with no extension ( a .PDF will be added). Press ESCAPE 

not ENTER when done. To recall a saved file select File from the menu-bar and the 

Retrieve Specs submenu choice. A box is displayed with all the PDF data files in the 

current directory. Select a file to retrieve by clicking the mouse pointer on the desired 

file. 

To save a control signal or overall system response to a spreadsheet importable file, 

display the desired line plot (with Go) and choose Save Response from the File 

menu-bar selection. Type a file name (with or without an extention) for the 

destination file. Press ESCAPE not ENTER when done. 

3.3.S Quitting the Program. 
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Select Quit from the menu-bar to leave the program and return to DOS. A box is 

displayed verifying the action. Press the space bar to toggle the Yes/No field in the 

bOX and click Quit on the menu-bar again to complete the action. 
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4. RESULTS 

4.1 Results for the zero order numerator dynamic problem example. 

The results obtained from the computer method for the DC Motor example outlined in 

section 3.1 are (with control signal limits of +/- 63.0 Volts and a requested speed of 6 

KRPM) 

Input parameters (calculated from Table 3-1 and Equations 3-4): 

Gains: 

a =0.0 

I= 1.8 x 10 -5 

K2 = 2.188 x 10-2 

K1 = 8.400 x 101 

~ = 1.198 x 105 

Control Signal Min/Max: 

V min= 0.0 Volts 

V mu= 42.5 Volts 

Characteristic Roots: 

~ = 5.8 

c = 8.844 x 10-3 k = 24.882 

r1 = -2.395 x 103 (Dominant Time Constant of 0.0004 sec) 

r2 3= -2.573 X 103 +/- i3.082 X 103 

Figures 4-1 and 4-2 provide the graphical plots of the control and system output 

signals. 
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4.2 Results for the first order numerator dynamic example 

The results obtained from the computer method for the coupled tank system example 

outlined in section 3.2 are (with control signal limits of+/- 5.158 xlO ·3 m3/sec) and a 

requested liquid height of 1 m in tank:l: 

Input parameters (calculated from Table 3-2): 

Gains: 

a= 8.96328 x 105 

I= 6.99136 x 10 5 c = 3.1831 x 104 

K 2 = -1.1724 x 10° 

K 1 = -1.3541 x 10·2 

~ = -8.0617 x 10·5 

Control Signal Min/Max: 

v min= 0.0 m3/sec 

vmax= 5.1558 x 10·3 m3/sec 

Characteristic Roots: 

r1 = -3.8 x 10·2 

f3 = 3.72377 x 1()4 

k = 96.04 

r2,3= -1.4 x 10·2 (Dominant Time Constant of 71 sec) 

Figures 4-3 and 4-4 provide the graphical plots of the control and system output 

signals. 
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5. Discu~ion 

The following sections assess the performance of the computer program in determining 

the PDF gains which result in satisfactory responses without causing the control signal 

to saturate. 

5.1 Zero Order Numerator Dynamic Problem 

The open-loop response of the fixed-element portion of the control system with an 

input voltage of 63 Volts is shown in Figure 5-1. The plot provides some basis of 

comparison with the controlled system response determined by the PDF program. The 

open-loop response was generated by applying the Fourth Order Runge Kutta method 

Open Loop Response 
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Figure 5-1 Open-loop response for the DC Motor Example 
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to the second order transfer function of the fixed elements of the control system. 

The dominant root characteristics of the fixed elements are (time constant and 

daIJlping ratio): 

'to= 0.0041 sec ~ = 0.21 

The results from the PDF program indicate a significant smoothing of the response 

with no accompanying saturation of the control signal (voltage) supplied to the motor. 

The dominant root characteristics for the PDF solution presented in section 4.1 are 

'to = 0.0004 sec ~ = 1.00 

which represent a faster, smoother responding system. 

The determination of the control signal limit for this problem involved the selection of 

some physical limit embedded within the fixed elements of the system and deriving 

from that a corresponding limit. The physical parameter selected was a maximum 
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Figure 5-2 Open-loop response for the coupled tank example 
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pulse current. There may be a more appropriate parameter to use to derive the limit 

(such as the maximum torque a motor can generate) but such data was not available 

from the manufacturer's specifications. 

5.2 First Order Numerator Dynamics Problem 

The open-loop response for the tank example is shown in Figure 5-2. The dominant 

root characteristics for the fixed elements are: 

to= 303 sec ~ = 1.94 

It can be observed from Figure 5-2 that the liquid in the tank would reach a height of 

1 meter (the requested liquid height entered into the PDF program) in about 200 

seconds if the input valve were fully opened (a flow rate of 0.005 m3/sec) and left 

open. Of course the controlled response determined by the program would be 

preferable, especially if there were a design constraint that the liquid height not exceed 

its set-point value. 

5.3 General Comments on Computational Error 

In addition to the specific results for each of the examples above, there are several 

important notes pertaining to the computation process. First, for each type of problem, 

there is a requirement to divide the valid range for the PDF gain ~ into discrete 

segments for a computer iteration method. Specifically, the algorithm initially chooses 

an increment size that is 10% of the valid range for stability, and iterates with this 

value until a non-saturating solution is found. The increment size is then reduced by 
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factor of 10 and a more precise solution is found. An unavoidable result of this 

segmentation process is that it is nearly impossible to find the absolute optimum gains 

that will provide a control signal response that does not saturate and have the smallest 

time constant and smoothest response possible. 

Also, there are potential round-off or truncation errors inherent in the Runge Kutta 

numerical method. The magnitude of any such errors would be far less than is 

required to cause computational mistakes when comparing the calculated control signal 

to the limit specified by the user or in generating visual differences in the graphic 

plots. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this study was to investigate the design of feedback control systems 

within the limitations of the finite energy delivery capability of the system's physical 

elements. The development of the computer algorithms to accomplish the investigation 

indicated that not only is it possible to design control systems in this manner, but that 

there are many possible combinations of design methods which provide acceptable 

perfonnance within the saturation prevention constraint. 

While the configuration of the problem examined by the computer program is only 

capable of examining two general classes of physical systems, it does approximate the 

dynamics of a wide variety of potential systems to be controlled. Some possible areas 

for further study of this type of problem include: 

Investigate the effects of different input functions, such as a ramp 

function, to see if the same or similar methods of solution can be 

developed. 

Apply different methods to prevent actuator saturation such as the anti­

reset windup method. 

Expand complexity and flexibility of the physical parameters to be 

controlled by increasing the order of the dynamics of the fixed 

elements. 

Investigate different types of non-linearities inherent in real systems 
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Investigate different computer programming technology to develop more 

flexible tools for automated control system design. This might involve 

the the development of a core library of object code which provides 

simulation and graphics utilities around which different controller design 

methods can be developed. 
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APPENDIX A 

The following computer listing printouts contain the algorithms that perform the PDF 
gain calculations for both the first order and zero order numerator dynamic 
configurations and the subsequent control signal calculation. 

/* 
* phelanO 

* 
*DESCRIPTION: 

* 
*This function uses Phelan' s method for the zero order numerator 
* dynamics problem. Finds the PDF gains and response which do not 
* cause the control signal to exceed the actuator limits. 

* * VARIABLES: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

(global) 

(local) 

alpha 
beta 
inertia 
damping 
spring 
upper_limit 
rmax 
kd2, kdl, ki 
ka, kb 
term3, term2 
term 1, termO 

increment 
fvalue 

km ax 
done 

PSEUDOCODE: 

first-order numerator term 
zero-order numerator term 
second-order denominator term 
first-order denominator term 
zero-ordre denominator term 
upper saturation limit 
command step function magnitude 
PDF gains 
feedback and amplifier gains 
characteristic equation terms 

magnitude of Ki adjustinent per iteration 
steady state value check (for step magnitude) 

maximum value of ki for stability 
flag indicating precise solution found 

IF (the input step function magnitude causes the steady state 
value of the control signal to saturate) 

display an error message 
return 

END IF 
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* calulate kd2 and kdl using phelan's methodology 
* find maximum value of ki for stability and increment size 
* DO 
* find characteristic roots while slowly decreasing ki 
* WHILE ( complex conjugate roots are more dominant than the 
* the real root, in order to avoid an oscillatory solution) 
* DO 
* DO 
* find a non-saturating response while decreasing ki 
* IF (a solution is found) 
* don't continue 
* END IF 
* WHILE ( ki is positive ) 
* IF ( solution was not found ) 
* back up one iteration step and decrease 
* the increment size 
* END IF 
* WHILE ( a precise solution has not been found ) 
* plot the control signal response 
* return 
********************************************************************/ 
int phelan( ) 
{ 

double k, kmax; 
int done, icount; 

fvalue = upper_limit*beta*kb/spring; 
if ( rmax > fvalue ) 
{ 

sprintf( message, '\ 
The step size for these control signal parameters \ 

\n is too large ( the steady state control signal \ 
\n will exceed your specified limits). Please choose \ 
\n another step size."); 

pop_Prompt( message, -1, -1, 6, 56; Ox47, bd_l); 
return(O); 

kdl = 8.0*upper_limit/(ka*rmax); 
kd2 = (2.0*0.707*sqrt( inertia*( spring + beta*kdl *kb ) ) - damping)/(beta*kb); 

term3 = inertia; 
term2 = (damping + beta*kd2*kb); 
terml =(spring + beta*kdl *kb); 
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.kmax = terrn2*terml/(ka*kb*term3*beta); 
increment = -0.01 *kmax; 

/* 

do 
{ 

Ensure gains don't result in oscillatory sol'n *I 

char_roots =cubic( term2/term3, terml/term3, kmax*beta/term3); 
kmax += increment; 

} while( char_roots.real[O] < char_roots.real[l]); 

ki = kmax - increment; 

done= O; 
do 
{ 

do 
{ 

if (done = cntrl_sgnl()) 
break; 

ki += increment; 
}while( ki > fabs(increment) ); 

if (!done) 
{ 

} 

k -= increment; 
increment /= 10.0; 
k += increment; 

} while (!done); 
sed_ Close( wait); 
plot_response( 2, done); 
return(l); 
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/* 
* go() 

* * DESCRIPTION: 
* This function performs the root-locus iteration procedure, for 
* the first-order numerator dynamic configuration problem. Finds 
* the PDF gains and response which do not cause the control signal 
* to exceed the actuator limits. 

* * VARIABLES: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

(global) 

(local) 

alpha 
beta 
inertia 
damping 
spring 
upper_limit 
rm ax 
kd2, kdl, ki 
ka, kb 

poles 
increment 
break.pt 
fvalue 

zero 
k 
found 
done 

PSEUDOCODE: 

first-order numerator term 
zero-order numerator term 
second-order denominator term 

first-order denominator term 
zero-ordre denominator term 
upper saturation limit 
command step function magnitude 
PDF gains 
feedback and amplifier gains 

root-locus position of the repeated poles 
magnitude of pole adjustment per iteration 

point where locus breaks away from real axis 
steady state value check (for step magnitude) 

root-locus position of the zero 
root locus variation parameter 
flag indicating rough solution found 
flag indicating precise solution found 

IF (the input step function magnitude causes the steady state 
value of the control signal to saturate) 

display an error message 
return 

END IF 
calulate zero, initial pole position and increment 
DO 

move poles to the right a little 
calculate integral gain at locus breakaway point 
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* calculate control signal response until saturation occurs 
* IF ( a non-saturating response was found) 
* back up one iteration step and find 
* a more precise solution 
* END IF 
* IF ( poles become positive ) 
* back up one iteration step and decrease 
* the increment size 
* END IF 
* WHILE ( a precise solution has not been found ) 
* plot the control signal response 
* return 
********************************************************************/ 
int goO 
{ 

double zero, k; 
int done, found; 

found= O; 
fvalue = upper_lirnit*(beta*kb)/spring; 
if ( fvalue < rmax ) 
{ 

sprintf( message, '\ 
The step size for these control signal parameters \ 

\n is too large ( the steady state control signal \ 
\n will exceed your specified limits). Please choose \ 
\n another step size."); 

} 

pop_Prompt( message, -1, -1, 6, 56, Ox47, bd_l); 
return(O); 

zero = - beta/alpha; 
increment = 0.1 *fabs(zero ); 
poles = zero; 

do 
{ 

poles += increment; 
breakpt = calculate_breakaway( poles ); 
k = fabs(breakpt)*fabs( pow(breakpt,2.0) + (terml/term2)*breakpt + 

(term0/term2) )/ 
fabs( breakpt + (beta/alpha)); 

term3 =inertia+ alpha*kd2*kb; 
ki = (k*term3)/(alpha*kb); 
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} 

done = cntrl_sgnl(); 
if (done && !found) 
{ 

} 

found= 1; 
done= O; 
poles -= increment; 
increment /= 10.0; 

if ( fabs(poles) < fabs(increment) ) 
{ 

} 

poles -=increment; 
increment /= 10.0; 

} while ( !done ); 

sed_ Close(wait); 
plot_response( 2, done); 
return(l); 
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I* * calculate_breakaway(point) 

* * DESCRIPTION: 
* This function calculates the the PDF gains, KD2 and KDl, required 
* to place real, repeated poles at the position specified by the 
* input argument 'point'. Subsequent to the gain calculation, the 
* actual breakaway point, where the root locus splits away from the 
* negative real axis is calculated and returned to the calling function. 

* * VARIABLES: 

* 
* 
* 
* 
* 
* 
* 
* 

(global) 
breakaway 

kd2,kdl 
term3, term2 
terml, termO 

structure of type cubic_root to store 
results of breakaway calculation. 
PDF gains 
characteristic equation terms 

* (local) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

tc time constant of input parameter, point 

al,a2,bl,b2, These variables relate to the following 
aeon, bcon set of simultaneous equations (which 

result from choosing kd2 and kd 1 such 
that the poles are equal. 

det 
c2, cl, cO 
max.val 

PSEUDOCODE: 

I al a2 I I kd2 I = I aeon I 
I b 1 b2 I I kd 1 I = I bcon I 

value of above determinant 
intermediate variables 

maximum of the 3 real roots (breakaway) 

* calculate kd2 and kdl to place poles at point 
* find breakaway point for these poles 
* RETURN the breakaway point 
********************************************************************/ 
double calculate_breakaway( double point ) 
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double det, tc; 
double al, a2, aeon, bl, b2, bcon, tsqrd; 
double c2, c 1, cO; 
double maxval; 
int j; 
tc = -LO/point; 

tsqrd = tc*tc; 
al = 2.0*alpha - tc*beta; 
a2 = -tc*alpha; 
aeon = tc*damping - 2.0*inertia; 
bl =alpha; 
b2 = -tsqrd*beta; 
bcon = tsqrd*spring - inertia; 

det = al *b2 - bl *a2; 
kd2 = (double) (acon*b2 - bcon*a2)/(det*kb); 
kdl = (double) (al *bcon - bl *acon)/(det*kb); 

term2 =inertia+ alpha*kd2*kb; 
terml =damping+ alpha*kdl *kb+ beta*kd2*kb; 
termO =spring+ beta*kdl *kb; 

c2 = (terml *alpha + 3.0*term2*beta)/(2.0*term2*alpha); 
cl = (terml *beta)/(term2*alpha); 
cO = (term0*beta)/(2.0*term2*alpha); 
breakaway= cubic( c2, cl, cO); 
maxval =(double) max( (double) breakaway.real[!], (double) max( (double) 

breakaway.real[O], (double) breakaway.real[2])); 
return( maxval ); 

} 
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/* 
* 4th order Runge Kutta Function to solve 3rd order differential 
* equations. The equations are of the form: 

* 
* 
* 
* 
* 

x' = v 
v' =a 
a' = -ma - cv - kx + f(x,v,a,t) 

* The function f(x,v ,a,t) is a pointer to a specific function. In 
* this way, this routine can be used to evalute many functions. 
************************************************************************ 
*/ 
double 
{ 

} 

run3( double t, double h) 

double kl, k2, k3, k4, 11, 12, 13, 14, ml, m2, m3, m4; 

kl = h*f(x, v, a, t); 
11 = h*v; 
ml= h*a; 

k2 = h*f(x + 11/2.0, v + ml/2.0, a + kl/2.0, t + h/2.0); 
12 = h*(v + kl/2.0); 
m2 = h*(a + ml/2.0); 

k3 = h*f(x + 12/2.0, v + m2/2.0, a + k2/2.0, t+ h/2.0); 
13 = h*(v + k2/2.0); 
m3 = h*(a + m2/2.0); 

14 = h*(v + 13); 
m4 = h*(a + m3); 
k4 = h*f(x + 13, v + m3, a + k3, t + h); 

x +=(double) ((11 + 2.0*12 + 2.0*13 + 14)/6.0); 
v +=(double) ((ml + 2.0*m2 + 2.0*m3 + m4)/6.0); 
a+= (double) ((kl + 2.0*k2 + 2.0*k3 + k4)/6.0); 

return(x); 
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/* 
* simpsons_rule( n, h, x_n) 

* * DESCRIPTION: 

* 
* Uses simpsons rule to calculate an integral 

* * VARIABLES: 

* 
* 
* 
* 
* 
* 
* 
* 

n 
h 
x_n 
e[j] 
s0,sl,s2 

J 

number of subdivisions on x axis 
runge kutta step size 
dependent value to start with 
error signal evaluated at subdivision 
intermediate simpson 's rule variables 
counter 

* PSEUDOCODE: 

* 
* 
* 
* 
* 
* 
* 

FOR( j= 0 to j= number of subdivisions) 
calculate error signal at each subdivision 

END FOR 
calculate integral 
return integral 

***************************************************************/ 
double simpsons_rule(int n, double h, double x_n) 
{ 

int j; 
double 
double 

sO, sl, s2; 
e[l03]; 

for( j = O; j <= n; j++) 
{ 

e[j] = r_of_t - c_of_t; 
if G = n) 

break; 
r_of_t = rmax*(l.0 - exp( -z*(x_n+h) )); 
c_of_t = run3(x_n, h); 
x_n += h; 

} 

so= 0.0; 
sl = 0.0; 
s2 = 0.0; 
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} 

sO = e[O] + e[n]; 
for (j=l; j <= n-1; j+=2) 

sl += efj]; 
for (j=2; j <= n-2; j+=2) 

s2 += efj]; 

return( h*(sO + 4.0*sl + 2.0*s2)/3.0 ); 
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/* 
* cntrl_sgnl() 

* * DESCRIPTION: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

This function determines the control signal based upon the 
equation: r dc(t) 

v(t) = Ki I e(t) - kdl c(t) - kd2-------
J dt 

where e(t) is the error signal, c(t) and dc(t)/dt, are the 
output signal and it's derivative. The PDF gains are ki, kdl,kd2. 
Simpson's rule is used to calculate the integral and the fourth 
order Runge Kutta method is used to calculate the control signal 
and it's derivative. At any point, if the control signal exceeds 
the input maximum or minimum limit, then the procedure stops and 
returns to the calling routine. 

* VARIABLES: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

(global) 

(local) 

alpha 
beta 
inertia 
damping 
spring 
kd2, kdl, ki 
ka,kb 
term3, terrn2 
terml, termO 
char_roots 

r_of_t 
c_of_t 
dc_of_t 
v_of_t 
f 
X, V, a 
xchart[] 
ychartn[] 
dom_tc 

first-order numerator term 
zero-order numerator term 
second-order denominator term 

first-order denominator term 
zero-ordre denominator term 
PDF gains 
feedback and amplifier gains 
characteristic equation terms 

cubic root structure which holds 
the characteristic roots 
input step function value 
output system response 

derivative of output system response 
control signal 
pointer to R.K. function to evaluate 
Runge Kutta dependent variables 
array of x values for plotting 
arrays of y values for plotting 

dominant root time constant 
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* 
* 
* 
* 
* 
* 
* 

integral value of integral of error, returned from 
simpsons rule function 

stepsize area over which to evaluate integral 
t1 independent variable, time 
domroot,smlroot based upon characteristic roots 
i, j counters 

* PSEUDOCODE: 

* * determine dominant root based upon characteristic eqn 
* select Runge Kutta stepsize and length of response based on root 
* FOR (time= 0 seconds to time= 6 dominant time constants) 
* calculate v(t) using simpsons rule and runge kutta 
* IF ( v(t) saturate ) 
* return to calling program 
* END IF 
* IF ( 10 iterations have occured) 
* record chart variables to be plotted 
* END IF 
* END FOR 
* return the number of points to plot 

* 
********************************************************************/ 
int cntrl_sgnl() 
{ 

double 
double 
double 
int i = 0; 
int j; 
f =fl; 

integral = 0.0; 

stepsize, integral = 0.0; 
tl=O.O; 
domroot, smlroot; 

term3 =inertia+ alpha*kd2*kb; 
term2 =(damping+ alpha*kdl *kb+ beta*kd2*kb)/term3; 
terml =(spring+ alpha*ki*ka*kb + beta*kdl *kb)/term3; 
termO = (ki*ka*kb*beta)/term3; 

char_roots = cubic( term2, terml, termO); 

x = 0.0; 
v = 0.0; 
a= 0.0; 
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domroot =max( char_roots.real[l], max( char_roots.real[O], 
char_roots.real[2]) ); 

} 

smlroot = min( char_roots.real[l], min( char_roots.real[O], char_roots.real[2])); 

z = -10.0*smlroot; 

dom_tc = -1.0/domroot; 

numdy = (ki*ka*kb*alpha)/term3; 

stepsize = dom_tc/1000.0; 

r_of_t = 0.0; 
c_of_t = 0.0; 

xchart[O] = ychartl[O] = ychart2[0] = O.Of; 

j = 1; 
for( t1 = 0.0; tl <= 6.0*dom_tc; tl += stepsize) 
{ 

integral += simpsons_rule( 10, stepsize/10, tl); 
dc_of_t = v; 
v_of_t = ki*integral - kdl *c_of_t - kd2*dc_of_t; 

if (!step back) 
{ 

} 

if (!check_actuator(v _of_t)) 
return(O); 

if (++i = 10) 
{ 

} 
} 
return(j); 

xchartfj] = (float) (tl + stepsize); 
ychartl [j] = (float) v _of_t; 
ychart2[j] = (float) c_of_t; · 
ychart3[j] = (float) r_of_t; 
i = O; 
j++; 

57 



BIBLIOGRAPHY 

Astrom, K. J. and T. Hagglund. Automatic Tuning of PID Controllers. Research 

Triangle Park, NC: Instrument Society of America, 1988. 

Boyd, S., Craig Barratt, and Stephen Norman. "Linear Controller Design: Limits of 

Performance Via Convex Optimization." Proceedings of the IEEE, March 1990, 

pp. 529-574. 

Electrocraft Corp. DC Motors, Speed Controls, Servo Systems. 5th edition. Hopkins, 

MN, 1980. 

Kreyszig, E. Advanced Engineering Mathematics. New York: John Wiley & Sons, 

1983. 

Palm, W. Control Systems Engineering. New York: John Wiley & Sons, 1986. 

Phelan, R. Automatic Control Systems. Ithaca, New York: Cornell University Press, 

1977. 

Towill, D.R. Transfer Function Techniques for Control Engineers. London: Iliffe 

Books LTD, 1970. 

Schwarzenback, J. and K.F. Gill. System Modelling and Control. New York: John 

Wiley & Sons, 1978. 

Ulsoy, A.G. "Optimal Pseudo-Derivative Feedback Control." M.S. thesis. Cornell 

University 1975. 

58 


	Design of Control Systems with Respect to Constrained Actuators
	Terms of Use
	Recommended Citation

	thesis_aitkenhead_1993_001
	thesis_aitkenhead_1993_002
	thesis_aitkenhead_1993_003
	thesis_aitkenhead_1993_004
	thesis_aitkenhead_1993_005
	thesis_aitkenhead_1993_006
	thesis_aitkenhead_1993_007
	thesis_aitkenhead_1993_008
	thesis_aitkenhead_1993_009
	thesis_aitkenhead_1993_010
	thesis_aitkenhead_1993_011
	thesis_aitkenhead_1993_012
	thesis_aitkenhead_1993_013
	thesis_aitkenhead_1993_014
	thesis_aitkenhead_1993_015
	thesis_aitkenhead_1993_016
	thesis_aitkenhead_1993_017
	thesis_aitkenhead_1993_018
	thesis_aitkenhead_1993_019
	thesis_aitkenhead_1993_020
	thesis_aitkenhead_1993_021
	thesis_aitkenhead_1993_022
	thesis_aitkenhead_1993_023
	thesis_aitkenhead_1993_024
	thesis_aitkenhead_1993_025
	thesis_aitkenhead_1993_026
	thesis_aitkenhead_1993_027
	thesis_aitkenhead_1993_028
	thesis_aitkenhead_1993_029
	thesis_aitkenhead_1993_030
	thesis_aitkenhead_1993_031
	thesis_aitkenhead_1993_032
	thesis_aitkenhead_1993_033
	thesis_aitkenhead_1993_034
	thesis_aitkenhead_1993_035
	thesis_aitkenhead_1993_036
	thesis_aitkenhead_1993_037
	thesis_aitkenhead_1993_038
	thesis_aitkenhead_1993_039
	thesis_aitkenhead_1993_040
	thesis_aitkenhead_1993_041
	thesis_aitkenhead_1993_042
	thesis_aitkenhead_1993_043
	thesis_aitkenhead_1993_044
	thesis_aitkenhead_1993_045
	thesis_aitkenhead_1993_046
	thesis_aitkenhead_1993_047
	thesis_aitkenhead_1993_048
	thesis_aitkenhead_1993_049
	thesis_aitkenhead_1993_050
	thesis_aitkenhead_1993_051
	thesis_aitkenhead_1993_052
	thesis_aitkenhead_1993_053
	thesis_aitkenhead_1993_054
	thesis_aitkenhead_1993_055
	thesis_aitkenhead_1993_056
	thesis_aitkenhead_1993_057
	thesis_aitkenhead_1993_058
	thesis_aitkenhead_1993_059
	thesis_aitkenhead_1993_060
	thesis_aitkenhead_1993_061
	thesis_aitkenhead_1993_062
	thesis_aitkenhead_1993_063
	thesis_aitkenhead_1993_064

