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ABSTRACT

The impact of human behavior on vehicle efficiency has been vastly explored for in-

ternal combustion engine (ICE) vehicles. However, human behavioral impacts on vehicle

efficiency have not yet transitioned to include battery electric vehicles (BEVs). Under-

standing the impact of human behavior that achieves BEV efficiency is essential globally,

as BEVs begin to retain a significant portion of the automotive market share. BEV sales

trends in the US have seen consistent growth since 2010, amounting to over 200,000 units

sold by 2015. Globally, the total amount of BEVs and plug-in hybrid electric vehicles

(PHEVs) is expected to be 40-70 million by 2025. In light of the growth estimates, defin-

ing behavior that induces efficient energy consumption when driving BEVs is essential as

these vehicles have a traveling distance constrained to 60-120 miles and can require 1-8

hours to attain a fully charged battery at commercial charging stations.

With firm traveling distances and long charging times, defining human behavioral im-

pacts on BEV efficiency will allow drivers to get the most range out of their vehicle. In

order to develop categories of BEV drivers in terms of efficiency, an empirical experiment

was conducted to determine if clustering drivers on their energy consumption profiles in-

vokes significant categories. The driving attributes that defined the clusters were extracted

to compare whether or not efficient BEV driving is similar to eco-driving in ICE vehi-

cles. Furthermore, BEV drivers can suffer from anxiety that stems from limited traveling

distance, a phenomenon known as range anxiety. However, there exist other sources of

anxiety-related human driving behavior, three of which can be measured using the driving

behavior survey (DBS). The three anxiety measures from the DBS were contrasted against

the BEV efficiency clusters found from this research, to determine if the anxiety factors

defined by the DBS were responsible for efficient BEV driving.

The results from this research found two significantly different clusters of BEV driving

efficiency, which were defined as efficient and inefficient BEV driving. In comparison

to eco-driving in ICE vehicles, both aggressive speed and acceleration were found to be



contributing factors to BEV efficiency. The results from the DBS proved that anxiety was

not a contributing factor to BEV efficiency, as both clusters had similar answers.

The information accumulated through this research can be used to guide new BEV

drivers to adopt sustainable driving behaviors, which can help maximize their traveling

distance on a single charge. Behavioral contributions to efficiency stemmed mostly from

reduction of traveling speed; however, consumption based on elevation and road class se-

lection were also quantified. Drivers can use this information to plan their driving routes to

minimize energy usage. Modeling techniques that assume a single rate of energy consump-

tion for the population should include behavioral rates defined by this research. Defining

behavioral classes of BEV efficiency is essential as BEV sales are on the rise and drivers

and manufactures can both use this information to improve efficiency of these vehicles.
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CHAPTER 1 - Introduction

1.1 Background

Human behavior is naturally complex, as behavior is not tangible matter that can be

simply measured, but rather a system that changes dynamically in different environments

[1]. Beyond studying behavior subjectively, when humans become intertwined with aux-

iliary systems, complexity grows as the combination of systems forms a hierarchy [2].

Quantifying this hierarchical system with respect to transportation networks is known as

driving behavior. Driving behavior is the effect of the interactions between the human,

the vehicle, and the roadway system, where identical causes produce variable effects from

driver to driver [3].

The field of driving behavior is not new research. As roadway networks became in-

creasingly dense, due to the non-stop growth of registered vehicles [4], the focus of driving

behavior research was to define traits that evoke risky behavior which results in traffic acci-

dents and fatalities [5, 6, 7]. In conjunction with increasing vehicles on the roads, problems

arose with a growing amount of pollution from internal combustion engine (ICE) vehicles.

ICE vehicles are responsible for 45% of harmful pollutants emitted every year in the US

alone [8]. With respect to human behavior, eco-driving methods were defined as ways to

improve ICE efficiency, through the reduction of aggressive driving [9]. The majority of

eco-driving protocols call for controlled rates of speed and acceleration; however, further

maintenance and comfort settings also inhibit ICE vehicle efficiency [10].

However, as the world’s fossil fuel supply lingers [11], the cost to find, extract, and

refine oil will continue to grow as supply dwindles [2]. To circumvent a limited supply of

energy, alternative fuel vehicles began hitting the market, with increasing sales from year

to year. Figure 1.1 illustrates sales for plug-in hybrid electric vehicles (PHEV), and battery

electric vehicles (BEV), since their significant market entry at the beginning of 2010. BEVs

are fully electric vehicles, meaning that they are powered only by means of an electric
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Figure 1.1: Alternative Fuel Vehicles Sales [4]

motor and must be charged at an electronic charging station in order to regain energy for

travel [12]. A PHEV is also powered by an electric motor, but has an additional gasoline

powered engine used to charge the vehicle’s battery pack for extended range [13]. Since a

BEV is constrained to electricity as its only source of fuel, traveling long distances becomes

difficult, as range is generally limited to 60-120 miles [14]. Once a majority of energy is

used for travel, BEVs must be recharged. Recharging the vehicle becomes challenging, as

charging times range from 1-8 hours to fully recharge the battery at commercial charging

stations [14, 15]. Long charging times paired with limited range means BEV drivers have

to construct precise driving schedules.

In addition to planning charging events, a BEV driver also needs to consider how much

energy they will personally consume. A Mitsubishi i-MiEV has an estimated range of

90 miles [16], but studies with subjects driving the same route had variable usage of en-

ergy consumption, ranging from 11% to 15.5% of the total battery capacity [17]. While

the variation in energy consumption profiles between drivers could have diverged due to

roadway congestion [10, 12, 18], variables such as traveling speed are known to affect the

2



energy consumption of a BEV [16]. While aggressive driving could have been assumed to

be the reason behind inefficient BEV driving, further proof was necessary to support this

hypothesis, as BEVs and ICE vehicles are independent systems.

1.2 Research Goals

The contribution of this research will serve to quantify the different categories of BEV

efficiency, in conjunction with individualistic driving behavior. To complete this analysis,

an experiment was set up to collect data on thirty drivers over the course of a 26-mile route.

The route chosen for the experiment was held constant for each driver. Over the course of

this route, data was collected via electronic sensors to study BEV driving behavior.

One of the key difficulties for drivers considering switching from an ICE vehicle to

BEV is limited range [19]. This notion is known as “range anxiety” which is a measure of

anxiety traits that are heightened when the maximum distance a vehicle can travel becomes

further constrained, where drivers can be trapped in a vehicle with no battery power and no

way to recharge the battery [20]. In an effort to further quantify the effect anxiety has on

driving behavior, participants in the experiment took the Driving Behavior Survey (DBS).

The DBS is a questionnaire that has been used to find three levels of anxiety-based driving

behavior [21]. If anxiety-based driving behavior was found to be a contributing factor to

BEV efficiency, range anxiety could be further detrimental to the efficiency of a BEV driver

[22].

Therefore, the following specific research questions were addressed:

• Do drivers consume different amounts of energy when driving the same path?

• Does grouping BEV drivers based on their energy consumption profile aid in under-

standing why some BEV drivers use more energy than others?

• Is anxiety-based driving responsible for inefficient BEV driving?

3



• Since eco-driving, with respect to ICE vehicles, is assumed to stem from aggressive

displays of speed and acceleration, is efficient BEV driving behavior similar to eco-

driving?

To answer these specific research questions, this thesis was broken up into following

chapters. Chapter 2 provides an outline of the literature encompassing driving behavior,

in terms of how behavior is defined, analyzed, and interpreted. An in-depth discussion of

the factors essential to eco-driving was explored. Then, BEV efficient driving styles were

compared and contrasted to those essential to eco-driving.

Chapter 3 describes the methodologies utilized in this research. Rationale for using the

experimental design, along with the process of selecting and recruiting drivers, was defined.

Networking into the vehicle’s controller area network (CAN) was used to extract measure-

ments from the vehicle’s battery pack [23]. A separate global positioning satellite (GPS)

was used to collect location and velocity information. Since smartphone accelerometers

have been successfully used to obtain three-dimensional acceleration data [24], an iPhone

6s was used to capture this information. The last section of Chapter 3 covers the methods

used to cluster drivers based on their energy consumption profiles, and how the DBS was

used to test if anxiety is affecting BEV efficiency within the clusters found.

Chapter 4 covers the analysis and discussion of the data. The analysis includes how

energy consumption was affected by road classifications, as well as the difference in energy

usage among the drivers who participated in the experiment. Results of clustering drivers

on their energy consumption profiles were completed, along with an analysis of aggressive

driving behavior. Chapter 4 concludes with the analysis of the DBS, discussing driving

anxiety’s impact on BEV driving.

The last chapter, Chapter 5, concludes the results obtained from this research. Analysis

of the impact of the BEV driving clusters was outlined. Recommendations for further

research in the realm of BEV driving and BEV driving behavior were discussed.
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CHAPTER 2

Literature Review

2.1 Driving Behavior Background

Driving behavior is defined as the intermediate connection between humans and the

situational outcomes that happen when driving vehicles [3]. When studying driving be-

havior, research strives to quantify these situations and extract patterns that exist within a

segmented population. There exist three key avenues for segmenting drivers with respect to

behavior. The three methods are population demographics, psychological traits, and pattern

recognition from electronic sensors. However, when it comes to studying human behav-

ior our initial perceptions of a population’s performance may be distinctive, but the latent

construct of behavioral patterns that define an individual can only be unearthed through the

science of behavior [1].

In the process of developing a framework to organize humans with respect to their

driving behavior, many initial hypotheses focused on traditional population demographics.

These categories include age, sex, and driving experience [25, 26, 27], and are typically

used to subsegment the entire population into notions of driver categories. Sometimes these

population divisions produce significant results. Age and sex show significantly different

driving behavior when measuring the gap-acceptance in making left turns [27], and through

questionnaires focused on traffic violations and accident risk assessment [28]. However,

these divisions are not always clear indicators of driving behavior classes. This can be seen

in an experiment to quantify braking behavior at intervals of driving experience, which

yielded insignificant results [25]. Success in applying various population demographics in

driving behavioral studies exemplifies how a predetermined view of behavior can be used

to quantify driving categories. However, the predetermined intuition of these behavioral
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patterns falls short in some avenues of analysis because human behavior is complex [1]

and cannot always be defined by physical traits.

To overcome the complexity that exists in the driving behavior of humans, research has

also expanded to incorporate psychological measures. Background knowledge on these

traits is usually generated via questionnaires that seek to statistically group drivers based on

a group’s response pattern [21, 29]. Other research has used data from vehicles embedded

with electronic sensors to cluster patterns of driving data into known psychological traits

[30]. Electronic sensor data is also used for general clustering of driving behavior, by

clustering drivers on comparable patterns [5, 31].

Exploration of how behavioral patterns vary with respect to driving behavior is fur-

ther used to understand their impact on roadway systems. Overall, behavioral research in

this domain is primarily focused on traffic safety [5, 6, 7]. Even though traffic safety is

a fundamental component of driving behavior research, engineers today are being tasked

with alternative avenues of design and analysis by employing green engineering practices.

Green engineering involves quantifying the risk of pollutants through product use and man-

ufacture, in an effort to minimize excessive use of resources [32]. Beyond the design of ve-

hicles, green engineering can be used to reduce ICE vehicle emissions production through

analysis of driving behavior. The efficiency of an ICE vehicle correlates with the behavior

of different drivers [33]. The application of green engineering to ICE vehicles is known

as eco-driving. Eco-driving, also known as ICE efficiency, is affected by aggressive driv-

ing behaviors, most commonly noted as aggressive speed and acceleration [34]. There

are, however, more factors that are detrimental to ICE efficiency, and understanding those

factors will help illustrate how behavioral driving affects efficiency.

2.2 Behavioral Impact on ICE Vehicles

It has been estimated that ICE vehicles are responsible for 45% of pollutants emitted

in the US [8]. As of 2015 there were more than 263 million registered vehicles on U.S.
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roads, where alternative vehicles (BEVs, hybrids, and PHEV) accounted for approximately

1.5% of those vehicles [4]. From a green engineering perspective, determining factors to

curb emissions from the use of ICE vehicles is the first logical step in developing a more

sustainable society. Through the lens of behavioral driving, curbing emissions of an ICE

vehicle can be done through eco-driving practices. Eco-driving is defined as the reduction

of aggressive driving behaviors, which leads to increased fuel economy [9].

One way to achieve efficient driving of ICE vehicles is to stabilize gear shifting behav-

ior. In a study that simulated gear shifting relative to speed, it was found that an aggressive

style of gear shifting can increase fuel consumption and CO2 production by up to 30%

[35]. To apply non-aggressive gear shifting, vehicle operators would need to up shift be-

tween the revolutions-per-second (RPM) range of 2000-2500 [36]. When an ICE vehicle

is up shifted sooner, wasted energy used to propel vehicles on lower gears at faster speeds

can be avoided.

A second method to exercise eco-driving principles is to control one’s rate of accelera-

tion and deceleration [36]. Ideally, drivers would seek to control braking and acceleration

behavior when driving in variable traffic congestion levels [37, 38]. ICE vehicles make use

of both automatic and manual transmission, so engine braking can be used to slow down

vehicles when approaching a stop signal or entering roadways with traffic congestion. The

engine braking method utilizes smoother deceleration, which can aid in reducing speed

appropriately, without going below the optimal speed, which would then require more un-

necessary acceleration [18]. Reducing the rate of acceleration boils down to maintaining

consistent speeds, which ultimately increases fuel economy of an ICE vehicle [37]. Choice

of traveling speed, however, also affects efficiency. When traveling speed is compared

against fuel efficiency, a negative parabolic trend occurs [10]. For example, a V6 2007

Honda Civic exhibits minimal efficiency at speeds of 30 and 90 miles per hour (MPH) and

optimal efficiency around 61 MPH [39]. What this means for eco-driving efficiency is that

road type selection is important when seeking ICE efficiency [10, 37].
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Other known factors affecting ICE efficiency include excessive idling, which can ac-

count for a quarter to a half gallon of fuel per hour [40], and upkeep in regular maintenance,

by tuning the engine, keeping appropriate tire pressure, and selection of engine oil [10].

Additionally, the mass of the vehicle can impact overall efficiency, because of the energy

requirements necessary to increase momentum [10]. Lastly, usage of cooling by means of

heating, ventilation, and air conditioning (HVAC) systems can reduce mileage by 5-25%

[41]. However, heating is not affected in the same manner because ICE vehicles heat is

generated from waste engine heat, where no additional energy is used to heat the vehicle’s

cab.

While all of the factors affecting ICE efficiency can be determined through mathe-

matical modeling or mechanical systems simulation, understanding the human behavioral

interaction with ICE vehicles for efficiency can only be achieved through experimentation.

Since mass is an important aspect of ICE efficiency, buses are affected not only by their

size, but also by their capacity of travelers [42]. Buses can be more efficient in a sense

that per rider, their emissions are lower than driving individual vehicles because buses are

a form of carpooling [10]. However, other factors still play a role in determining a bus

driver’s efficiency. From an experiment tracking three bus drivers, on five different bus

routes, it was found that each driver used a different amount of fuel on the same route.

There also existed consistency among the drivers, where one driver always used the least

amount of fuel, another used the most, and the last driver was always in between the two

[43].

However, utilizing buses as a mode of transportation is not nearly as common in the US

as it is in European countries [44]. As it pertains to studying driving behavior with respect

to eco-driving of passenger vehicles, most research is focused on testing whether or not

individuals’ driving behavior can be altered to improve efficiency [36, 37, 45]. The reason

that individualistic patterns of eco-driving may not have been exhaustively researched is be-

cause aggressive driving behavior was stated to be the reason for inefficiency [9]. The gap
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in research could also stem from the US eliminating eco-driving programs which informed

drivers on how to improve their efficiency [9].
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Figure 2.1: ICE Efficiency [46]

Another issue with eco-driving is permanent adoption of the habits, when there exist

minimal negative effects from drivers fading back to their standard habits. One experiment

found seven out of eight subjects adopted eco-driving habits over the course of 6 months

after taking an eco-driving course [36]. However, since adoption of these habits can be af-

fected by driving situations and personal motivations [47], without a more complete sample

size adoption of eco-driving for the long term has not completely been researched. It may

also be challenging mentally to adopt eco-driving habits because ICE vehicles have been

seeing an upward trend in efficiency. The Environmental Protection Agency (EPA) tracks

the fuel economy and the rate of emissions from all vehicles in the US [46]. The EPA’s

data, seen in Figure 2.1a, shows an uptrend in the average fuel economy of cars (green) and

trucks (blue). This increase in fuel efficiency also correlates with a downtrend in the rate of

CO2 emissions, displayed in Figure 2.1b. Since 2000, efficiency in miles per gallon (MPG)

of cars and trucks has increased by 29% and 27% respectively. The increasing trend of ef-

ficiency is due to governmental policies that set standards for fuel economy and production
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of emissions [48]. As of 2016, the average fuel economy of cars was around 29 MPG. By

the year 2020, the National Highway Traffic Safety Administration has set standards for

cars to achieve 35 MPG. Individual vehicle manufacturers are responsible for meeting set

standards; otherwise the manufacturer is fined for failing to meet expected efficiency [48].

With an upward trend in efficiency, adoption of eco-driving behaviors indefinitely will

be even more challenging for society as ICE vehicles become more efficient on the man-

ufacturers’ end. However, it may in turn be the perfect time to begin applying similar

behavioral studies to the next generation of vehicles. In 2010, the International Energy

Agency estimated that if there could be around 84 million PHEVs and BEVs by year 2035,

carbon emissions could be reduced by around 900 Megatons [49, 50]. While that number

may be difficult to reach, the rate of BEV sales over the last five years continues to increase

in the US, from 9,750 units in 2011 to 71,044 units in 2015 (see Figure 2.2). To prepare for

this rising green technology, it will be essential to understand driving behavior’s impact on

BEV efficiency before these vehicles retain a larger market share, as compared to studying

behavior of ICE vehicles which is being done retrospectively.

2.3 Behavioral Impacts on BEVs

To apply behavioral techniques to BEVs, as has been done with ICE vehicles through

eco-driving, will first require knowledge of how BEV efficiency is influenced. While both

vehicles look similar, their internal systems are substantially different. The motor of an

ICE vehicle has hundreds of moving parts, as compared to a BEV which only has an en-

compassing motor [51]. A rough schematic of the essential components for each vehicle

is depicted in Figures 2.3a and 2.3b. The most fundamental difference, however, is the

fuel source for each vehicle. For ICE vehicles, the engine is powered by gasoline, which

is stored in the fuel tank, as seen in Figure 2.3a. The fuel source for the BEV, labeled as

the traction battery pack in Figure 2.3b, is an electronic battery. While these vehicles have

the same external skeletons, the interconnections that define their powertrain system are
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completely different, making them unique systems [2]. In studying ICE efficiency, a focus

on the variables that affect the rate of fossil fuel consumption is monitored [36, 37]. For a

BEV, a focus on the variables that affect the rate of sate of charge (SOC) depletion, must

be studied to determine the impact of human behavior.

(a) ICE Vehicles Main Components (b) BEV Vehicles Main Components

Figure 2.3: ICE Vs. BEV Internal Systems [52]
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The first variable affecting the rate of energy consumption, and one of the most im-

portant, is vehicle speed. An experiment was conducted using a Mitsubishi i-MiEV and a

Nissan® LEAF®. A single driver, operating each of the cars at speeds of 37.2, 43.5, 49.7,

55.9, 62.1, and 68.3 MPH, found an exponential relationship between speed and rate of

energy consumption [16]. This curve is much different when compared to the speed vs.

fuel consumption curve of an ICE vehicle, which follows a negative parabolic trend [10].

In terms of efficiency, an ICE vehicle is efficient around 45 MPH, and a BEV is efficient

around 15 MPH [12]. Since efficiency follows two completely different trends with respect

to speed for ICE vehicles and BEVs, road type selection between the two is completely

different.

Energy savings via road type selection for BEVs was found by collecting data over

an extended period of time from a professor’s daily commute. Initially there were four

possible ways to get between the two places (home and work). The three main routes used

were comprised of back roads and intercity roads, while the fourth route used a highway

for travel. The time savings from using the highway were minimal compared to the other

three routes; however, the other three routes saved about 1 kWh of battery capacity over

100 miles [53]. Utilization of alternative routes can be thought of as leverage points, where

the length of time may not be a significant factor, but the rate of discharge of the BEV can

be beneficial to the driver [54].

Road grade is another important factor in route selection. BEVs have the ability to re-

generate energy while braking. The regenerative braking system allows vehicles to harness

the power lost while braking, by reversing the direction the motor turns [55]. It is estimated

that in urban areas, the recuperation from braking could increase the range of a BEV by

15-20% [12, 55]. The effect of power used by a BEV versus the traveling grade was stud-

ied, and showed that a positive increase in grade always has a significant amount of power

consumption, while a decreasing grade results in minimal energy consumption or energy

collection from the regenerative brakes [53]. In contrast, ICE vehicles’ efficiency suffers
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from elevation changes, because they cannot recover energy on decreasing road grades. In

fact, a study found that an ICE vehicle traveling the same distance on a flat route and a

route with variable elevation had fuel savings of 15-20% on the flat route [56].

Regenerative braking can also increase efficiency in other scenarios, such as driving in

variable traffic congestion, because of the deceleration. A study was conducted on various

levels of traffic congestion, where measurements were recorded during free flow traffic,

mild congestion, moderate congestion, and high congestion. When a freeway switches

from free flow to mild/moderate congestion, BEVs take advantage of slower speeds and

regenerative braking though deceleration for improved efficiency [12]. When compared to

an ICE vehicle, which is not efficient at slow speeds, the rate of fuel consumption increases

[10]. Another problem in high traffic congestion is that if traffic comes to a full stop, ICE

efficiency is reduced because of excessive idling [40]. A BEV’s motor, on the other hand,

does not turn without pressing the accelerator; thus, no energy is consumed from the motor

when idling.

Another factor affecting a BEV’s rate of energy consumption is the auxiliary power used

by systems such as steering, radio, HVAC, and other onboard electronics that derive power

directly from the BEVs battery. Since in a typical ICE vehicle these amenities are powered

via an alternator, their effect on fuel consumption is not as detrimental as it is to BEV

drivers who have to account for the charge they will use on a trip. For a Nissan® LEAF®,

it has been estimated that the power needed to support the accessories is 0.2 kW, while the

power needed to sustain the HVAC system is around 6 kW [57]. The HVAC system affects

efficiency of BEVs at both ends of the extreme temperature spectrum [57], where the trend

of efficiency is parabolic. When using the HVAC system, a BEV is extremely inefficient

at temperatures below 0◦F and above 100◦F , and is most efficient around temperatures of

50− 70◦F [58]. Overall, HVAC systems have been found to reduce range by up to 40%

[59].
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For the most part, the variables that affect ICE efficiency are different from those that

alter a BEV’s efficiency. This is because ICE vehicles and BEVs interact with transporta-

tion networks differently. For ICE vehicles, it has been suggested that aggressive driving

behavior is directly linked to ICE efficiency [9]. While this assumption may hold true for

BEVs in the case of the exponential use of energy at higher speeds [16], aggressive driving

is also affected by rapid rates of acceleration [34]. All BEVs take advantage of regener-

ative braking and recover energy during deceleration [53], making the overall assumption

that aggressive driving is the sole representation of BEV efficiency challenging to prove

without experimentation.

However, what is known about BEVs with respect to driving behavior is that consump-

tion of energy differs between drivers. An experiment having ten drivers drive a BEV on

the same route resulted in variable usage of energy among the participants [17]. Another

study’s findings showed variation in the rate of SOC consumption among a group of 25

drivers, where the least efficient driver consumed 2.8% SOC/mile and the most efficient

driver used 1.5% SOC/mile [60]. Since it can be interpreted that behavior has an effect

on the rate at which energy is depleted, it has been stated that future works should study

the behavioral patterns that lead to excessive energy consumption [17]. Research defining

behavioral impacts on BEV efficiency can have a greater impact on society as compared

to studying eco-driving with respect to ICE vehicles, because limited traveling range may

force drivers to adopt efficient driving styles for the long term.

One of the most common drawbacks from society adopting BEVs is their limited range

[19], as most BEVs are restricted to a traveling distance of 60-120 miles [14]. However,

most BEVs on the market have been found to meet a large percentage of individuals’ travel

needs [61, 62]. A study supplying BEVs to 40 participants for daily driving found that

94% of participants had enough range with the BEV to meet their needs [63]. However,

issues with a BEVs limited range are still present. This phenomena is known as “range

anxiety,” which is defined as“the fear of becoming stranded with a discharged battery in a
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limited range vehicle” [20]. For BEVs, range anxiety can be mitigated through optimally

designing a transportation network with an appropriate amount of charging stations [64].

However, since charging times can range from one to eight hours at commercial charging

stations [14, 15], and with optimal networks still in the research phase [64], understanding

the behavioral component can help BEV drivers learn to get the most out of their vehicles’

range to reach destinations and charging stations.

Since range anxiety can be overcome through BEV driving experience [62], and since

studies point to high interest in BEV usage [65], studying the impacts of BEV behavioral

driving can help plan for a transition to a BEV future. There is a strong possibility that there

will be between 9-20 million electric vehicles (EVs) by 2020 and between 40-70 million

EVs in the world by 2025 [66]. By quantifying the impact of BEV driving behaviors,

current BEV drivers can learn to practice efficient driving behavior and new BEV drivers

can be educated to help make a seamless transition into the future.
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CHAPTER 3

Methodologies

In order to appropriately define classes of BEV drivers with respect to efficiency, var-

ious methods were deployed to collect and analyze data. This chapter begins with the

methods used to develop an experiment where subjects drove a BEV for the bulk of data

collection. Thens the systems used to electronically collect data from driving and use of

questionnaires were discussed. Finally, the methods chosen to analyze the data will were

covered.

3.1 Methods of Experimentation

This section will cover all of the methods used to design and run an experiment to

capture data relevant to BEV driving behavior. For this experiment, a sample of subjects

was recruited to drive a BEV on a predetermined route. The design of this experiment

needed to include a population large enough to witness different driving behavior among

individuals. Along with population size, the route chosen needed to be particularly long

enough to collect enough change events in SOC. The experimental design was approved by

the University of Rhode Island’s Institutional Review Board (IRB). The documentation for

the experiment can be found using the IRB reference number HU1617-055.

For this experiment, a sample of inexperienced BEV drivers was utilized. To amass

a sample of experienced BEV drivers would have presented a recruiting challenge. In

Rhode Island, as of 2015, there were only 421 registered BEVs and PHEVs. This would

account for 0.0421% of the state’s population [67]. However, use of an inexperienced

sample of BEV drivers was of greater benefit to this research. It was found that through

experimental interventions, an inexperienced BEV driver will opt to change their driving

behavior to improve efficiency [53]. With BEV sales increasing year to year [4] and an

expected total sales of 40-79 million PHEVs and BEVs by the year 2025 [49, 50], the
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impact from studying the driving behaviors of inexperienced BEV drivers was of greater

benefit to society, as there is a limited pool of experienced BEV drivers and their habits

will need to be quantified to improve their BEV driving efficiency.

Table 3.1: Population

Age Stats Sex (population %)
Mean Stdv Range Male Female
24.55 3.74 (19,36) 55% 45%

Recruiting of participants was done through the University. Advertisements were de-

veloped in the form of email blasts and flyers. Flyers used for recruitment can be found in

Appendix A. Subjects who opted to participate in the research completed a consent form

(see Appendix B), in compliance with the IRB’s rules for experimentation involving human

subjects. The results for the subjects age and sex can be seen in Table 3.1. The subjects’ in

this experiment were not conclusive with respect to age range, which only means that there

cannot be analysis with respect to driving experience. However, 30 participants completed

the experiment. This sample size follows trends seen in other driving behavioral research,

which are outlined in Table 3.2.

Table 3.2: Experimental Design Summarization

Sample Size Distance per Driver (miles) Constants Source
45 1 mile Route, Weather, and Time [33]
40 16 miles Route, Vehicle, Samples From Es-

tablished Classes, and Time
[7]

23 Unknown One Aggressive and One Non-
Aggressive Sample

[31]

13 243 miles Route, Vehicle, Weather, and Time [30]
10 8 miles Route and Vehicle [68]

In general, route selection for studying driving behavior has been held constant in pre-

vious research, as seen in the constants column of Table 3.2. For this research, the route

driven by the subjects was also held constant. The importance of holding the route con-
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stant was necessary for this research, because assessing total energy consumed over the

route was an essential step in defining behavioral patterns. The only way to make these

comparisons was to hold route characteristics that affect the rate of SOC depletion, such as

elevation changes [12] and road types [53], constant. However, the experimental route did

include those characteristics, as it was necessary to interpret how these factors affect BEV

driving behavior.

Since road type selection is a component of BEV efficiency [53], the route adopted for

experimentation covered various road classifications. To make distinctions between one

road and another, the road classification practices presented by OpenStreetMaps (OSM)

were used. OSM is an open source, community-built database of roadway information

[69]. The descriptions of the different road classes are available in Table 3.3. The road

classes from OSM were all plotted in southern Washington County, RI, as seen in Figure

3.1a.

Table 3.3: OSM Road Classes [69]

Road Class Description
Expressway Has directional traveling lanes, typically separated by a

physical barier where access is limited to on- and off-ramps
Principal
Arterial Roadways responsible for connecting urban centers to sur-

rounding regions
Minor

Arterial Provide connectivity to Principal Arterials and communities

Major
Collector Responsible for connecting Local roads to Arterials

Minor
Collector Similar to Major Collectors, except they are generally

shorter with slower rates of travel

The chosen route, depicted in Figure 3.1b, was eventually selected as the route of

choice. The route covers every OSM road class, except for Motorways. In the region

where the experiment took place, that road class did not exist, as is not seen by the missing

color red in Figure 3.1a. In the experimental route, participants started at the University and
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(a) Roads by Class (b) Experimental Route

Figure 3.1: Route Visual

ended at the University, and for the most part stayed consistently on the same road type.

The average distance on a given road class was 5.29 miles, with a standard deviation of

0.91 miles. Two road types that were split between two segments of the route were Minor

Arterial (orange) and Minor Collector (yellow). On the Minor Collector road class, the to-

tal distance for the first portion was 1.68 miles and the second portion was 4.31 miles long.

For road class Minor Collector, the first portion was 2.25 miles long and the second portion

was 1.82 miles long. Even with those splits, there was still a large enough distance on each

split to compare to the intervals of change in percent battery capacity, as this happened, on

average, every half mile.

While maintaining road types was integral, the change in elevation along each road type

was also considered. Since the area in southern Washington County had a high variation

in elevation, the design of the experimental route was planned on roadways that displayed

variable elevation changes. Figure 3.2 is a plot of the elevation over the different road

classes from start to finish on the experimental route. Measurements of altitude were taken

every 1ft on the route and plotted over time. Almost every road type had at least one sizable

change in both positive and negative altitude, with the exception of the Tertiary class which

had a constant uphill elevation.
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Figure 3.2: Altitude on Experimental Route

Beyond the experimental route, other conditions were held constant for each driver in

the experiment. The first constant was weather. The experiment was not held on rainy

days, by pre-scheduling experimental drives on days where the weather forecast did not

show rain. In the event that a driver was scheduled for a morning with rain, they were

rescheduled for another day, or later in the day if the forecast was expected to be sunny

for more than four hours. The second component of the experiment held constant was

the time of day. This was done to attempt to control traffic congestion, as the experiment

was conducted in the late morning to early afternoon. However, traffic could not be fully

controlled as these data are not publicly available. The third portion held constant was the

climate control temperature. Since the HVAC system draws power directly from the battery

pack, drivers who chose to change climate control settings would have used a different

amount of energy on that factor alone, as HVAC setting can reduce overall range by up

to 40% [59]. While this could have been important for characterizing a driver’s energy

consumption profile, adjustments to HVAC would have also correlated with factors such
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as outside temperature, which could not have been controlled for this experiment. For

this reason, the climate control was set to an ambient 68◦F . The fourth constant enforced

that the windows of the BEV remained closed. Keeping the windows open would have

increased aerodynamic drag, resulting in reduced fuel economy [10]. While the choice of

driving with open windows or having the climate control set to a specific temperature are

behavioral driving decisions, the are both dependent on weather conditions, which could

not have been held exactly constant in the experiment. For this reason, window position

and the HVAC system settings were controlled. The fourth variable held constant in the

experiment was the researcher who rode along the experimental drive. This was necessary

to keep communication and navigation patterns consistent.

The last variable held constant in the experimental drive was the brake recuperation

mode. The e-Golf has the possibility to recuperate energy at four different levels, which

are outlined in Table 3.4. While braking in a BEV always recuperates some amount of

energy, these modes apply a degree of braking power when the driver’s foot is removed

from the accelerator. Modes D1-B in Table 3.4 range from light braking to very high

braking, meaning that once the driver removes their foot from the accelerator, the brakes

will be applied to the degree of the recuperation mode. Mode N allows drivers to experience

normal braking, where the brakes are only applied when the brake pedal is pressed [70].

Table 3.4: e-Golf Recuperation Modes [70]

Recuperation Mode Description
N When coasting, energy is only recuperated by pressing the brakes
D1 Light braking recuperation

Recuperation during braking,
coasting, and driving

downhill

D2 Medium braking recuperation
D3 High braking recuperation
B Very high braking recuperation

Some brief experimentation was done driving on the different recuperation modes in a

random order, by a participant not involved in the driving experiment, to test which modes

consumed the least energy. The route used was different than the experimental route and
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can be seen in Figure 3.3a. This route covers 17 miles, enough to capture change events

in SOC that happen, on average, every 0.5 miles. The results from this test can be seen in

Figure 3.3a, where the x axis of the plot shows the different regenerative modes ranging

from zero recuperation (N) when coasting, to maximal recuperation (B) when coasting.

The y axis displays the total consumption of SOC in % of battery capacity drained. From

the test, a linear decrease in energy consumed was expected from modes N-B. However,

both modes D2 and D3 yielded the greatest consumption of energy. Since those modes

added no benefit to the driver, it was decided that they would not be the mode of choice

for the experiment. Mode B performed only slightly worse than mode D1. However, this

mode applied too much braking power for subjects to get used to, which could have skewed

results. This left modes N, no recuperation unless the brakes were pressed, and D1, light

recuperation when coasting. For the experiment, mode D1 was elected as the constant

for recuperation mode. The reason D1 was selected over mode N was because mode D1

provided additional benefit to the drivers in terms of energy consumption. In ICE vehicles,

eco-modes are automatically activated each time the vehicle is started, to help drivers limit

fuel consumption. For BEVs, this trend will most likely follow suit, as recuperation modes

were designed to improve maximum range of the vehicle.
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Before subjects began driving, they were instructed to attempt to recreate a scenario that

promoted their preferred vehicle setup. This included adjustment of the seat and mirrors, if

the subject felt it was necessary. Subjects also had the choice to listen to the radio, or their

own music. Since this option was given to everyone, the center console display was always

left on, to retain a similar level of energy draw, from those components, from the battery.

Since the participants were first time BEV drivers, they were each given a brief intro-

duction to the car before starting the experimental drive. This included how to visualize

their energy consumption, which could be done in two ways. The first was by looking at

the SOC gauge from Figure 3.6a. This analogue gauge ranges from 0 to 1, representing the

percentage of power remaining in the battery pack. The second way subjects were informed

of how to view their energy consumption was through the kWh analogue gauge. This gauge

displays the kWh draw from the battery instantaneously, increasing when pressing the gas

and regenerating when the brakes were pressed. Once the participants went through this

demo, the vehicle was switched into the D1 recuperation mode and subjects drove a half a

mile to get comfortable in the vehicle. At this point, the only instruction given to subjects

was route guidance. At the completion of the experimental drive, subjects were given a link

to SurveyMonkey® , where subjects would complete the driving behavior survey (DBS).

The DBS was used in this research to measure the effect of anxiety on BEV driving

behavior. A discussion of the DBS was covered in the last section of this chapter. However,

since a portion of this experiment was focused on studying the factors of anxiety presented

by the DBS, range anxiety was not measured in the experiment. In an effort to curb this

type of anxiety, participants were informed that they had plenty of energy in the BEV to

complete the experiment.

At the conclusion of the experiment, two additional control runs were used to capture

data for further analysis. For each control run, constants in the experiment remained the

same. The first control drove the BEV efficiently, while the second control drove the BEV

inefficiently. For efficient driving, a focus on maintaining controlled speeds equivalent to
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the speed limit and focus on minimal consumption based on the kWh gauge was employed

by the efficient control, along with non-aggressive acceleration, as this was defined to be

an aspect of eco-driving for ICE vehicles [9]. The inefficient control drove the BEV using

aggressive speed and acceleration, while focusing on high consumption from the kWh

gauge. Use of additional control drives have been used in similar experimental designs to

establish separation between potential behavioral clusters [31].

3.2 Methods of Data Collection and Analysis

This section covers the various sources of data extracted during and after the experi-

ment. During the experiment, electronic sensors were set up throughout the vehicle, taking

measurements from the vehicle’s computer and some external measurement systems that

recorded information, such as location and acceleration. A discussion of the questionnaire

taken after the experimental drive was also covered in this section.

3.2.1 BEV Driving Data

The most crucial element for the completion of this research was a BEV. The vehicle

selected for data collection was a 2015 VW e-Golf. This vehicle was equipped with an 85

kW electric motor, which is powered by a 24.2 kWh lithium-ion battery pack. The man-

ufacturer specified range was around 85 miles and the vehicle had a curb weight of 2.455

tons [71]. The selection process for using this vehicle stemmed from both its competitive-

ness with other BEVs on the market in terms of driving range, and from the fact that no

other literature found had used a VW e-Golf for electric vehicle experimentation. Most re-

search studies used a Mitsubishi i-MiEV, which has an estimated range of 90 miles [16, 17]

or a Nissan® LEAF® which has an estimated range of 123 miles [16].

The first piece of data necessary for this research was the SOC of the vehicle. SOC is

the percentage of battery power remaining in the battery pack before the BEV needs to be

recharged. While this information is available from an analogue gauge on the dashboard,
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(a) 2015 e-Golf [71]

(b) Raspberry Pi and PiCAN2 [72]

Figure 3.4: Main Data Logging Devices

an external system to capture this data was necessary to read it and log it in real time. This

type of information could be collected via the car’s controller area network (CAN). CAN is

a serial bus communication protocol, which contains the communications between a car’s

sensors, actuators, controllers, and other nodes tied into the system [73].

Access to CAN is usually accomplished by connecting to the on-board diagnostics

terminal (OBD) [74]. The OBD is a 16-pin male connector, where different pins are re-

sponsible for different protocols or are for power supply. Pins six and fourteen, for most

cars on the market, are typically CAN-High and CAN-Low, respectively [23]. Both con-

nection points are responsible for transmitting messages to various controllers throughout

the network, known as the bus, by sending a similar voltage pattern that represents a string

of binary data.

There were various systems available for reading CAN information; however, for this

research a Raspberry Pi 3 was selected. The Raspberry Pi is small enough that it can be

placed close to the OBD port, without getting in the way of the driver. This is necessary

because CAN speed is measured relative to the length of the wires throughout the system

[73]. To prevent any malfunctions in the system, the wires connecting the Raspberry Pi

to the OBD were kept short. Since the operating system for a Raspberry Pi is a Linux

distribution, the open source software package SocketCAN was used. SocketCAN uses the
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Berkeley Socket API and can only be run on the Linux stack [75]. SocketCAN enables the

Raspberry Pi to become a node on the car’s CAN. However, the Raspberry Pi cannot be

wired directly to the vehicle in order to begin reading data. Another daughter board must be

attached via the general-purpose input/output (GPIO) pins, highlighted in yellow in Figure

3.4b. This board is called the PiCAN2 which transformed the Pi into a CAN controller.

Wires were connected from the CAN-High and the CAN-Low terminals on the PiCAN2

board, which were then linked to the terminals on the OBD port on the BEV. These wires

could also have been connected to the CAN-High or CAN-Low wires at other junctions

on the car, by splicing those wires and pig-tailing them together. The setup for the system

can be seen in Figure 3.4b, where the Raspberry Pi 3 is the green board on the bottom,

connected to the blue PiCAN2 board on top.

With the Raspberry Pi connected to the vehicle, CAN frames were read directly from

the BEVs computer. The frames transmitted via the CAN wires contain segments of mes-

sages represented as binary strings. These strings are segmented into groups enabling the

BEVs computer to interpret their meaning. Examples of these groups included the start-of-

frame bits, which let the computer know a new frame is being transmitted; end-of-frame

bits that let the computer know that a new frame will begin now; and the data bits, which

hold measurements from different sensors on the BEV [73]. Using SocketCAN to read this

data enables programmers to split these fields automatically, without having to read raw

binary strings to ascertain data from the system.

The output depicted in Figure 3.5 is the output from the Linux terminal when the Can-

Dump command was issued [75]. The first column of values in Figure 3.5, highlighted in

green, displays the name of the node assigned to the Raspberry Pi. The second column,

highlighted in cyan displays the Parameter ID (PID). A PID is a data location identifier.

Every CAN system has a set of unique PIDs, which are the identifiers for data stored in

a frame. For example, PID A5 could store both speed and RPM. Every time the system

witnesses PID A5, the controller reading that frame will know that the frame stores speed
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Figure 3.5: SocketCAN Terminal Output

and RPMs values. The third column, highlighted in orange, displays the byte length of the

message or how many columns are to follow. The last chunk, highlighted in yellow, dis-

plays the packets of data, represented in hexadecimal format, where each column contains

one byte of data, unless the third column specifies that there are fewer than 8 bytes of data.

In this case the number of bytes specified in the third column represents how many columns

of bytes will follow.

The data shown in Figure 3.5 mean nothing on their own. However, to the vehicle they

supply the necessary information to all electronics on board to make the car function. The

vehicle’s internal database keeps a record of what each CAN frame means, and how it will

be decoded by subsystems in the car. Obtaining the SOC data required finding the PID that

identifies the data packets containing SOC measurements, by decoding the hexadecimal

data packets from the yellow highlighted section in Figure 3.5. There were two possible

methods for decoding the frames, known as fuzzing and visual pattern correlation [74].

Fuzzing would require manually creating CAN frames and injecting them into the system,

which was possible to do in SocketCAN. If a custom frame was injected into the vehicles

CAN, the vehicle would react in some manner. Simple examples of a given reaction would

have been the horn honking or the speedometer jumping to a different speed. In this re-

search, a change in the SOC gauge would have been sought after when fuzzing CAN data

27



(see Figure 3.6a). While fuzzing would have been the fastest way to decode the frames, it

is also very dangerous as the vehicle may act erratically which could have risked damage

to the car or anyone in the car [74].

To circumvent the issues with fuzzing this research employed method two of CAN

frame decoding, which was visual pattern inspection. One way to have applied this method

was perform an operation on the car, and look for bytes of a given PID that changed. For

example, gas pedal and brake pedal percent depression were decoded in this fashion with

only the interior power switched on. The pedals were pressed, and the changing bytes

were found. The benefit of only having the interior power on was that many other CAN

frames were unchanged; thus, they could be filtered out, leaving only a select few frames

that changed. For SOC, however, this method would not work because there was no way

to rapidly discharge the battery safely without driving.

(a) SOC Gauge (Smaller Gauge) [71] (b) Recorded SOC

Figure 3.6: SOC Comparison

To obtain SOC, the vehicle was driven and a log file of the data stored for off-line anal-

ysis. Various possible locations were determined by sifting through different combinations

of bit lengths and comparing them graphically. The location of SOC was determined by

data packets that had a negative slope with respect to time. While a few possibilities pre-

sented themselves, the possible locations were live-validated over the course of multiple
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drivers at various levels of SOC remaining, to witness their change in conjunction with the

SOC gauge. Only one location remained and its time series values can be seen in Figure

3.6b. In the chart, the remaining charge is seen from 23.5 kWh to around 17.1 kWh, with

CAN frames logged every 50 microseconds. While the plot matched the gauge’s output

while driving, changes in SOC over a trip could only be recorded as a decreasing func-

tion, limiting analysis of regenerative braking. Also, the sensor that supplied the data on

the CAN only updated once a large enough decrease in remaining charge was witnessed.

Thus, every CAN frame received did not witness a change in SOC, as can be seen in Figure

3.6b, where the data presented themselves as a stepwise function.

Location of the BEV was a requirement of the data collection. While it was noted that

CAN data for SOC does not change with a high degree of frequency, it will be beneficial

to sample location information comparable to the speed put out by the CAN, so that other

sources of data such as accelerometer and engine load measurements could be accurately

matched to location information. For this research the Adifriut® Ultimate breakout board

was acquired. This board, seen in Figure 3.7a, comes equipped with an internal GPS an-

tenna and a detachable external antenna that was magnetically mounted to the roof of the

vehicle.

(a) Adifruit Ultimate Breakout Board

(b) Distributed SOC Measurements
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The Breakout Board has 66 channels giving it the ability to track 22 satellites at once.

Most importantly, the board can sample location data at a rate of 10Hz (10 samples every

second). This particular sampling rate was high enough to match a quality amount of the

high speed CAN data. It has a positional accuracy within 1.8 meters and a velocity accuracy

of 0.1m/s (0.22mph) [76]. Since the PiCAN2 board used all 40 GPIO pins on the Raspberry

Pi, the Breakout Board was dongled to a USB port, circled in red in Figure 3.4, for easy

connection to the Raspberry Pi.

Adifruit® had built a python module for accessing the data received by the GPS. How-

ever, this module did not allow users to alter the sampling rate of the GPS, leaving the rate

at 1Hz (1 sample per second). To overcome this hurdle, the python module PySerial was

used to send and listen to serial information. The National Marine Electronics Association

(NMEA) sentences were then structured into their respective data formats. Since the only

data collected from the GPS were geo-coordinates and speed, those NMEA sentences were

decoded.

Another device used to collect data from the vehicles was an Apple iPhone 6s. Smart-

phones are equipped with accelerometers because these devices can be used to track screen

orientation. Smartphones have become standard in vehicle driving based experiments

[24, 68, 77]. While a smartphone accelerometer’s measurements present a greater degree

of noise, they produce correlated results to commercial devices [24].

The iPhone application Sensor Play was used to log data. The application allows for

a sampling rate of 10Hz, in line with both the CAN sampling rate and the GPS sampling

rate. The iPhone was positioned on the cup holder tray, and locked down to prevent move-

ment. Since the iPhone was well oriented, readings did not need to be reoriented [77] as

the iPhone was held stationary. The spatial measurements of acceleration taken from the

iPhone are illustrated in Figure 3.7b. The green axis captured falling acceleration, the red

axis collected longitudinal acceleration (forward and reverse), and the blue axis collected

lateral acceleration (left to right).
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With all of the sensors in place and the experiment concluded, post-processing of the

data ensued. Since each sensor stored data to a separate comma separated value file, they

needed to be combined for analysis. This was done by finding the closest time value from

each log and matching that value to the output from the CAN data. The CAN logs each

contain a timestamp, expressed as a unix epoch, which is the number of elapsed seconds

since January1st ,1970. Both the GPS and the iPhone log dates in datetime UTC format

(YYYY-MM-DDTHH:MM:SS.000Z). To generalize the matching procedure between the

data, both the GPS time and the iPhone time were converted to unix epochs.

Figure 3.8: Dataset Matching Procedure

The time conversation enabled seamless matching by finding the absolute difference

in time between the logs from the different sensors. This process is outlined in Figure

3.8. Iterating over each CAN measurement, starting with the first, the absolute value was

calculated from the CAN timestamp to all timestamps in the GPS data set. The smallest

difference in time, highlighted in green in Figure 3.8, was found and the GPS log was

combined with that CAN log. This process was the same for matching values from the

iPhone’s dataset.

Once all of the datasets were fused, there were some further post-processing steps. The

first was to calculate the distance between each logged event. This can be done using the
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Haversine formula from Equations 1 and 2, which equates the distance between two geo-

coordinates on a sphere. R is the radius of earth, represented in miles, and is equal to

3,959 miles. ϕ and δ are the latitude and longitude coordinate values respectively. For

each coordinate value a subscript of 1 represents the previous set of coordinates (look back

one row) from the combined dataset. A subscript value of 2 was equivalent to the current

coordinate in the combined log file.

Distance = 2Rarcsin
(√

hav(ϕ2 −ϕ1)+ cos(ϕ1)cos(ϕ2)hav(δ2 −δ1)

)
(1)

hav(θ) = sin2
(

θ

2

)
=

1− cos(θ)
2

(2)

With the distance between coordinates calculated, these values were then used to dis-

tribute the measurements of SOC backward, from the point in time they were logged to the

last change measurement in SOC. This process was necessary because the rate of SOC de-

pleted was studied with respect to road classifications. Since the logging of SOC was found

to be a stepwise function, there could have been over- or under-inflated measurements of

change in SOC due to carry-over between road classes. To circumvent this issue the first

change in SOC for each change in road class could have been stripped from the dataset for

each subject. This would have amounted to a significant loss in data. Instead, change in

SOC values were backwards distributed based on distance traveled.

The process for this backwards distribution of SOC measurements is illustrated in Fig-

ure 3.9. Incremental values were calculated using ∆SOC
∑Distance , where ∆SOC is the change

in SOC, reported by the vehicle, represent as 0.1 kWh in Figure 3.9. Then each block of

distance was multiplied by the incremental value. This way carry-over between roads will

not be over- or under-inflated.

Once the data was cleaned, analysis of BEV driving behavior transpired. To categorize

drivers with respect to their rate of SOC depletion, cluster analysis was used. Cluster
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Figure 3.9: Distributed SOC Measurements

analysis is used only when categories are unknown, and the objective is to determine if an

observation can be recognized as a member of a category [78]. There exist a few approaches

to complete this form of analysis. K-means clustering is by far the most popular; however,

it requires sample sizes greater than 200 [33, 78, 79]. For this reason, hierarchical clustering

was used.

Hierarchical clustering is beneficial for sample sizes smaller than 50, as the decision

between clusters is done through visual inspection of the separation of cluster on a dendro-

gram (hierarchy tree diagram) [80]. To conduct hierarchical clustering, a proximity matrix

between data points was computed. The values used to compute the matrix were a sub-

ject’s mean and standard deviation ∆SOC
Mile . Since one of the objectives of this research was

to group drivers based on their rate of energy consumption, Euclidean distance was used

to calculate distance in a two-dimensional plane to measure dissimilarity of clusters. The

steps for using hierarchical clustering are as follows [78, 81]:

1. Start with all observations (n) belonging to their own singular cluster
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2. Combine two clusters that produce the smallest impairment to the objective function;

total clusters equal to n -1

3. Repeat step 2 until every cluster is combined into one cluster

Step two in the process requires an objective function which is responsible for mea-

suring dissimilarity between clusters. There exist a few possible objective functions, one

being single-link, which chains clusters based on the minimum distance between a single

point in two clusters [78]. Complete-linkage is similar to single-link, except the maximum

distance between two points in distant clusters is used to measure dissimilarity [78]. There

is also average-link, which measures the average distance between all points in a cluster

[78]. However, for this research the Wards objective was used. This method joins clusters

based on the smallest error in the sum of squares (Equation 3).

ESS =
n

∑
i=1

x2
i −

1
n

( n

∑
i=1

xi

)2

(3)

All data in the results and discussion chapter of this paper were first tested for normality

using both the Anderson Darling test and the Shapiro-Wilk test. The Anderson Darling test

measures the distance between the theoretical distribution and the cumulative distribution

of the sample, placing a larger weight on the tails of the distribution [82]. The Shapiro-

Wilk test factors the weight values of the covariances, based on the sample size, by the sum

of squares to generate a test statistic ranging from 0-1 [83]. To test the difference between

data series, if the results for the normative testing were significant a t-test was used to test

the difference between the distributions. If data were not normal, a Wilcox test was used in

place of a t-test.

Aggressive acceleration patterns were studied by using the safe driving region within

a friction circle [84]. To generate the safe driving region vertical lines are placed on a

graph at -2.5 and 2.5 m
s2 lateral acceleration, spanning a distance of 0.15 m

s2 of longitudinal

acceleration from either side of the x-axis. Two horizontal lines are placed at 2.5 and 3.0
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m
s2 of longitudinal acceleration spanning the same 0.15 m

s2 from both ends of the y-axis. The

non-linear curves for enclosing the upper left region, upper right region, lower left region,

and lower right region are plotted using equations 4, 5, 6, and 7 respectively. The regions

were defined by experimentation involving aggressive and non-aggressive drivers [84].

a(x) = 0.509∗a(y)2 +2.351∗a(y)+2.841 (4)

a(x) = 0.509∗a(x)2 −2.351∗a(y)+2.841 (5)

a(x) = 0.446∗a(y)2 −2.395∗a(y)−3.349 (6)

a(x) = 0.446∗a(y)2 +2.395∗a(y)−3.349 (7)

3.2.2 Survey Data

The last portion of data collected from the experiment was a questionnaire. There exist

many questionnaires with respect to driving behavior. One is known as the Driving Skills

Questionnaire (DSQ). The DSQ measures how an individual perceives their driving skills.

The questionnaire consists of 20 questions, where subjects rate how well they believe they

perform a given skill on a scale of 0 (very poor) to 10 (very good) [29].

Another questionnaire, known as the Driving Behavior Questionnaire (DBQ), has sub-

jects rate themselves on how often they perform silly or bad driving behaviors. The ques-

tionnaire is composed of 50 questions, developed to cover the categories of slips, lapses,

mistakes, unintentional violations and intentional violations. The questionnaire uses a 5-

point Likert scale, where participants measure how frequently an event happens to them

while driving, ranging from 0 (never) to 5 (nearly all the time) [85].

35



The last questionnaire considered for the research was the DBS. This survey measures

anxiety with respect to driving behavior. Subjects taking the survey will report how often

they react to an anxious situation, described by each question. The questionnaire also

employed a Likert scale; however, the scale ranges from 1 (never) to 7 (very frequently)

[21].

The three proposed questionnaires all divulged different approaches to defining driving

behavior classifications. The DSQ presented itself as an opportunity to test how perceived

driving skills affect energy consumption when driving a BEV. However, while the DSQ can

result in four factors, subjects tend to over inflate their driving skills [29]. The DBQ could

also have been used as it can measure safe/aggressive driving practices [85]. However,

these factors could already be determined via the electronic sensors equipped to the BEV

[9, 34].

The DBS was eventually selected as the best questionnaire to include in the study. How-

ever, the DBS was not selected only as a last resort. The DBS measures driving behavior

with respect to anxiety [21], and a major factor inhibiting BEV growth is range anxiety

[20, 62]. If anxiety is the responsible for BEV efficiency, then drivers can run into situ-

ations where two factors of anxiety are overwhelming one another. Anxiety can further

impact anxiety, developing a vicious cycle that can be overly detrimental to an individual’s

health [22].

In developing the DBS, two studies were conducted, creating a 21-question survey

used to rate a driver’s anxiety [21]. In both studies, three factors were established to model

anxiety with respect to driving behavior. The three anxiety factors determined by the DBS

are outlined in Table 3.5. To ensure that the factors extracted from the DBS differ from

other questionnaires, the four factors from the DSQ [29] were compared to the three factors

of the DBS, showing that the factors were significantly different [21].

For completeness, all 36 questions used in developing the DBS were answered by each

subject in the experiment (see Appendix C). The 21 questions essential to the DBS were
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Table 3.5: Anxiety Based Driving Factors

Factor Description
Anxiety Based Performance Deficits
(DEF)

Anxiety’s impact on driving skills

Exaggerated Safety/Caution Behaviors
(CAUT)

The ability to control anxious be-
haviors in complex driving situa-
tions

Anxiety-Based Aggressive/Hostile Be-
haviors (ANG)

Accident related fears and eruption
of anger episodes

extracted and analyzed. By taking the average of the 7 questions that belong to the three

categories of anxiety, anxiety can be measured by a low mean suggesting minimal anxiety,

and a high mean suggesting heightened anxiety [21]. The means of all clusters of BEV

driving behavior were compared against one another. This approach was applied in similar

research, and has also been defined as the method of comparing groups against one another

using the DBS [86]. Principal component analysis was used to ensure that responses to the

questionnaire, taken in this research, loaded correctly on the factors outlined by the DBS.
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CHAPTER 4

Results and Discussion

This chapter provides a comprehensive analysis of the data extracted from the exper-

iment. Once a discussion of the raw data was covered, a cluster analysis was used to

generate clusters of similar driving behavior patterns. Lastly, an analysis of how the DBS

can be used to understand these clusters was assessed.

4.1 Raw Data Analysis

4.1.1 Analysis of SOC Consumed

In similar experiments, results had exposed that when a sample of drivers was tasked

with driving a BEV on the same route, a dissimilar amount of energy was used among the

samples [17]. Since the BEV brand used in this research had not yet been utilized in any

experimentation, with the extent of literature discovered, the first portion of the analysis

determined if an inconsistent usage of energy existed between the subjects. For a visual

perspective, a bar plot of the total consumption used by each subject was generated, which

can be seen in Figure 4.1. The x-axis labels each of the subjects in the order they were

tested, while the y-axis displays their total energy consumption for the entirety of the route

in kWh.

Subject 37 was the control for inefficient BEV driving and subject 38 was the control for

efficient BEV driving. The efficient control used 6.41 kWh and the inefficient control con-

sumed 7.26 kWh which suggested that there was a difference between the two BEV driving

styles. The lower control however did not under-perform other subjects. The least amount

of kWh used on the route was done by subject 29, who consumed 1.21 kWh less than ef-

ficient control. The maximal difference existed between subjects 3 and 29, amounting to a

difference of 2.42 kWH. If the rate of depletion of SOC could effectively be estimated as

Miles
kWh , subject 29 would have been able to drive an additional 12.28 miles before consum-
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ing an equivalent amount of energy to subject 3. For the sake of visualizing this difference,

subject 29 could have been able to complete an additional 47.23% of the experimental route

before using a similar amount of energy to subject 3.
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Figure 4.1: Subjects Usage of Energy During Experiment

In similar BEV driving research, it was found that subjects had a mean energy con-

sumption of 0.21 kWh
Mile , with a standard deviation of 0.04 kWh

Mile [17]. In this research the mean

consumption was 0.25 kWh
Mile , with a standard deviation of 0.02 kWh

Mile . While the mean con-

sumption in this research differed by around 0.04 kWh
Mile , the difference most likely stemmed

from the experimental route in this experiment being much longer, with more elevation

changes. Also, the other experiment focused on routes with many traffic signals which

would aid in energy recuperation from braking [12, 17].

4.1.2 Road Type Analysis

Since it had determined that road type selection for a BEV is essential for reduced

energy consumption [53], a graphical representation of energy consumption by OSM road
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class was created and can be viewed in Figure 4.2a. The x-axis lists the subjects, while

the y-axis is scaled by kWh
mile , where each subject had 5 data points, one for each OSM road

classification. While Principal Arterials (purple) and Expressways (black) were expected

to be highly inefficient due to higher speed limits, Major Collectors (blue) proved to be

generally the most inefficient type of road to drive on. The interaction plot in Figure 4.2b

displays the inefficiency of road class Major Collector, as the 95% confidence interval

deviates significantly from all other road classes. Since the speed limits on the Major

Collector class were similar to that of Minor Collector (green) and Minor Arterial (yellow),

it is quite evident that other factors were having a greater impact than speed.
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Figure 4.2: Rate of SOC depletion by Road Type

4.1.3 Elevation Analysis

The inefficiency of road class Major Collector was evidence that change in elevation

was a key component of BEV inefficiency [12]. Since there existed a limited number of

Major Collector roads in the region, the experiment was only conducted on uphill elevation

changes, as seen in Figure 4.3c. To accurately define the effect that change in elevation
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has on the rate of SOC depletion via different road classes, roadway divisions were taken

between the peaks and valleys along the experimental route, so that the effect of elevation

could be studied only when a subject drove uphill or downhill. Manual divisions were

placed along the route and can be seen by the vertical gray lines in Figure 4.3c. To factor

the rate of SOC depletion of the BEV, the rate of energy consumption was analyzed with

respect to the elevation angle of a segment of road. Elevation angles are used to measure the

angle of slope from a round base, using Earths radius. The elevation angle was estimated

using Equation 8. The rate of SOC depletion was produced by kWh
ElevationAngle . Both negative

and positive changes in elevation were separated to establish the rate at which subjects

consumed energy over increasing and decreasing elevation. The elevation angles were

computed using a distance held to approximately one mile, as the angle was dependent on

both distance and height.

ElevationAngle =
180
π

∗
[

Altitudestart −Altitudeend

Distance
− Distance

2∗Radiusearth

]
(8)

Figure 4.3a displays subjects’ kWh
ElevationAngle over increasing road grades. Through vi-

sual inspection, the Major Collector road class shifted to the region between Principal

Arterial and Minor Arterial road classes, when comparing Figure 4.2a and 4.3a. Road

classes Expressway, Principal Arterial, Minor Arterial, and Minor Collector all illustrate

less consumption from Expressway-Minor Collector as expected, because they range from

55 to 25 MPH respectively. While road class Major Collector had shifted downward, it

was still one of the most energy inefficient roads to drive on. However, for the purposes of

this analysis, studying the elevation angle’s effect on energy consumption would not have

yielded substantial results. Since change in SOC happened on average every 0.5 miles,

elevation’s effect on SOC was challenging to study, even when the measurements of SOC

had been backwards distributed, as described by this thesis. Overall, each subject over the

course of the experimental route witnessed, on average, 56 change events in SOC. When

making comparisons to distance, there existed large amounts of data from which to make
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Figure 4.3: Rate of SOC depletion by Grade

inferences. When studying the elevation angle over a road segment, there existed a total of

26 samples, 12 for downhill elevation changes and 14 for uphill elevation changes.

With so few data samples, making an accurate analysis of behavioral BEV driving with

respect to elevation would not have aided in analysis. Furthermore, when broken down by

road class, there were 2-3 samples for each direction of elevation. For road class Major
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Collector, there were no downhill samples, as the color blue is missing from Figure 4.3b.

For this reason, analysis of BEV behavioral driving with respect to elevation was eliminated

from further analysis, and driver behavior was analyzed instead on a driver’s overall rate of

energy consumption per mile.

4.2 Cluster Analysis

From the analysis of the raw data, there existed evidence that subjects were not using a

similar amount of energy while traveling the same route, although some subjects appeared

to show similar consumption patterns. This section first covers the process of subdividing

drivers into clusters through hierarchal clustering. Next, clusters of drivers were statis-

tically validated to ensure that clusters had unequal distributions of energy consumption.

Lastly, driving parameters such as speed and acceleration were tested to determine if the

clusters found had displayed aggressive behaviors, as aggressive speed and acceleration are

responsible for ICE inefficiency [9].

4.2.1 Results

To cluster drivers based on their energy consumption profiles, hierarchical clustering

was utilized. Hierarchical clustering develops a tree-structured dendrogram where clusters

can be assigned by the partitions in the branches. The dendrogram from this experiment can

be seen in Figure 4.4a. The height on the y-axis displays the measurement of dissimilarity

between groupings of branches on the dendrogram. The largest distance existed between

Cluster 1 (green) and the combination of Cluster 2 (blue) and Cluster 3 (red). Dropping

to a fourth cluster would only have moved Subject 34 into a cluster of their own. Thus, a

maximum of three possible clusters was analyzed.

Results of hierarchical clustering were plotted in Figure 4.4b, to display graphical sep-

aration between clusters. Cluster 1 (green) spans the region of low mean and low standard

deviation of kWh
Mile . The combination of Clusters 2 and 3 (red) spans the region of high mean
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Figure 4.4: Clustering Results

and high standard deviation of kWh
Mile . If a three-cluster scenario was deemed significant, the

red points surrounded by the dotted blue box in Figure 4.4 would be separated into a cluster

of their own.

Two control runs were set up, driving the BEV efficiently (purple) and inefficiently

(black), and their results can be seen in Figure 4.4. The inefficient control (black) appeared

to fit into Cluster 3’s region, as that run resulted in a high rate of energy consumption. The

inefficient driving control also appeared to fit into the region defined by Cluster 1 (green),

with a low mean and low standard deviation kWh
Mile . Since three clusters were outlined in

Figure 4.4 to represent increased inefficiency from Cluster 1 to Cluster 3, they will be

referenced by their efficiency level for the remainder of this analysis. Cluster 1 (green) was

labeled as efficient BEV drivers, Cluster 2 (blue) was labeled as moderately efficient BEV

drivers, and Cluster 3 (red) was labeled as inefficient BEV drivers. However, if a two cluster

model was singularly significant, moderately efficient BEV drivers would have merged

with inefficient BEV drivers, and all drivers in that cluster would be labeled inefficient

BEV drivers.
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4.2.2 Cluster Validation

Since three possible distinctions of BEV driving behavior were found, the strength of

cluster’s to stand on its own as significant categories of BEV driving behavior was cov-

ered. To determine statistical significance between found clusters of BEV efficiency, each

clusters distribution for their rate of energy consumption was tested for normality. Both an

Anderson Darling and a Shapiro Wilk test were used to test the hypothesis of normality of

the cluster’s distributions.

Every cluster, in a two and three cluster setup, were found to be not normal. All test

statistics from the Anderson Darling and Shapiro Wilk tests were zero, meaning that the

assumption of normality was rejected. For further inspection, qqplots were drawn for each

cluster in a three cluster model. If data were to be considered normal, data points would

have linearly trended around the fitted line in a qqplot. However, this was not the case

for the data extracted from this experiment. All of the qqplots, seen in Figure 4.5, are

non-linear. The curves from each qqplot suggest that the distributions were skewed to the

right. The skewness of the distributions seemed truly representative of the data collected, as

there were events such as traffic and variable elevation that aided in BEV efficiency, which

altered the rate of energy consumption from the BEV [12]. Normal data obtained from

BEV driving would more likely exist in non-complex transportation networks, as there

would be no event that would hinder the rate of energy consumed. While normality could

have been assumed from the implications of the central limit theorem, the data had been

proven to be not normal, and further analysis was built on this fact.

Since normative testing between two samples was not used to find significance between

the found clusters, a non-parametric test was used. The test used on these data was a Wilcox

test, and the resulting test statistics for each type of BEV driving can be found in Table 4.1.

In a two cluster scenario, both efficient and inefficient BEV driving were found to be sig-

nificant, as the test statistic from the Wilcox test was zero. In a three cluster scenario,

significance testing was computed for both efficient behavior and moderately efficient be-
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Figure 4.5: Cluster QQplots

havior, as these two connect graphically in Figure 4.4. Both clusters were significant, as

their test statistic was 0.001. Testing was then computed between moderately efficient be-

havior and inefficient behavior. Since these two clusters were formed by dropping a level

on the hierarchical clustering dendrogram (see Figure 4.4a), significance between these

two groups could only result in a three cluster model. The resulting Wilcox test statistic,

however, was 0.161, meaning that these two groups were highly similar.

The results from statistical testing deemed a two cluster model accurate for driving

behavior, within the sample of participants from this experiment. From Table 4.1, the

number of subjects is well balanced for a two cluster setup. In the three cluster setup, there

were only five subjects that fit into Inefficient BEV driving, so it could have been possible

that with more driving samples, three clusters could be significant. However, there was

a still a large number of data samples for all clusters which help aid in the accuracy of

these results. Table 4.1 also included statistics for age and the counts of sexes that belong

to each cluster. The resulting two cluster model had similar age ranges, as both efficient

BEV drivers and inefficient BEV drivers had an average age of around 24 years old, which

was similar to the sample mean of all participants. Sex within the two cluster model was

also very well balanced, showing around two fewer females than males in each cluster,
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Table 4.1: Cluster Statistics

Number
of

clusters
group Subjects

Data
Samples

Age
(µ ,σ )

Sex
Wilcox

Test

2
Efficient
Behavior

14 699 (24.0,3.7) M=8 F=6
0.000

Inefficient
Behavior

16 895 (24.6,4.1) M=9 F=7

3

Efficient
Behavior

14 699 (24.0,3.9)
M=8 F=6 0.001

Moderately
Efficient
Behavior

11 603 (24.3,4.7)
M=6 F=5

0.161
Inefficient
Behavior

5 292 (25.4,2.6)
M=3 F=2

which mimics the demographics of the population, as there were more males enrolled in

the experiment than females.

Since the two cluster setup was deemed significant, from this research, BEV drivers

can either be categorized as efficient or inefficient. Further analysis of how strong these

two clusters of behavioral BEV driving was completed by taking the same parameters they

were clustered on, those being mean and standard deviation ∆SOC
Mile , and separating their con-

sumption on the different road classifications defined by OSM. Figure 4.6 holds five plots

for the five different road classes that the experiment was completed over. The expectation

of this analysis was that the clustering regions defined earlier in Figure 4.4, should hold

true when broken down by road class. The inefficient BEV driving behavior cluster should

remain in the region of high mean high standard deviation ∆SOC
Mile , while the efficient BEV

driving behavior cluster should trend to the lower-leftmost region of the plots.

Overall, the two defined clusters of driving behavior fit into their respective regions of

efficiency in Figure 4.6, where efficient BEV driving (green) is positioned in the lower left

quadrant of the graphs and inefficient driving behavior (red) is positioned in the upper right
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quadrant on the graphs. However, there were a few examples of drivers who appeared to

display the opposite classification of BEV driving behavior then that in which they were

clustered. This rarely happened for drivers classified as efficient BEV drivers (green), as

there were limited instances in Figure 4.6 where a red point is mixed in with inefficient BEV

drivers (red). An instance of this can be seen in Figure 4.6a, where efficient BEV drivers

number 32 and 15 are encircled by a few inefficient BEV drivers. The same happened

for efficient BEV driver number 36 in Figure 4.6e. However, for the most part, efficient

BEV drivers retained a similar pattern of energy consumption when driving different road

classes. This was to be expected, as the efficient cluster was developed by minimizing the

cluster’s standard deviation of ∆SOC
Mile . The efficient cluster was expected to display a similar

pattern on energy consumption when broken down by road class.

Inefficient BEV driving behavior, on the other hand, showed more examples where

a subject’s behavior appeared to be efficient when broken down by road class. Extreme

examples of this were inefficient BEV drivers number 9 and 25 on road class Minor Col-

lector (Figure 4.6a) and drivers 9 and 31 on road class Principal Arterial (Figure 4.6d).

These drivers displayed efficient driving behaviors on those road classes. This was to be

expected, as drivers who were categorized as inefficient BEV drivers had a much higher

standard deviation in energy consumption; thus, they will display a degree of variability in

energy consumption when driving a BEV.

One road class that did not hold up well was class Minor Arterial. On the Minor Arterial

roads, depicted in Figure 4.6c, there was a large amount of mixing between the regions of

inefficient and efficient BEV driving behavior. Both control runs also displayed a very

similar pattern of consumption over this road class. Road class Minor Arterial, however,

had greater traffic density and many stop signals, which provided ample opportunity to

recuperate energy from the regenerative brakes.
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Figure 4.6: Rate of SOC depletion by Road Class
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4.2.3 Analysis of Aggressive Driving Attributes

Part of the analysis of this research was to determine if eco-driving of ICE vehicles

is comparable to efficient driving of BEV vehicles. The last portion of analysis of data

extracted from the vehicle was used to compare eco-driving to BEV driving efficiency. Eco-

driving in ICE vehicles was defined as the reduction of aggressive speed and acceleration.

With this in mind, acceleration data collected from an iPhone 6s and velocity data captured

from the Adifruit® Ultimate Breakout board were analyzed.

With traveling speed being a large contributing factor to inefficient driving of BEVs

[16], a distinction was made between the traveling speeds of efficient and inefficient BEV

drivers. Figure 4.7 shows the speed profile of each class of BEV drivers over the course

of the experimental route. Data was down-sampled for visualization purposes. The spread

of the standard deviation of each class of efficient BEV driving was plotted over time,

which can be seen in Figure 4.7. Generally, efficient BEV driving behavior (green) results

displayed much slower speeds than inefficient driving behavior (red). There was a slight

overlap (brown) between the two classes of BEV driving behavior; however, for the most

part it would appear that each class’s distribution of speed differs. Surprisingly, there is a

large degree of overlap on road class Expressway, which can be seen between time steps

78-95 in Figure 4.7. A similar separation between traveling speed of the BEV efficiency

clusters would have been expected to follow suit on class Expressway, especially since this

road had a high speed limit, allowing drivers to get a feel for high speed travel in a BEV.

Since all of drivers in the experiment were familiar with the area, due to recruiting through

the University, it is also possible that subjects could have been aware of possible penalties

for speeding on that stretch of road.

While there is visual evidence from Figure 4.7 that different clusters of BEV driving

efficiency traveled at different rates of speed, further statistical testing ensued to determine

if inefficient BEV drivers have aggressive speeds and if efficient BEV drivers present non-

aggressive speeds. Over the course of the experimental route, both groups’ average speed
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Figure 4.7: Cluster Speed

with respect to the road’s speed limit was calculated by stripping off the first 100 and the last

100 samples from each road, to assess true traveling speed and curb deflation from stopping,

starting, and standstill traveling events. Efficient BEV drivers, on average, traveled 1.7

MPH over the speed limit, with a standard deviation of 6.0 MPH. Inefficient BEV drivers

traveled on average 4.8 MPH over the speed limit with a standard deviation of 5.5 MPH.

The distributions of the deviation from the speed limit were plotted in Figure 4.8. Both

distributions visually had a bell curve structure, which suggested normality.

With both classes of efficient BEV driving representing a bell curve structure, and a

number of samples than 40,000 for deviation from the speed limit for each cluster, accord-

ing to the central limit theorem, the data could be assumed normal. Continuing on the

assumption of normality, a t-test was used to determine if the clusters of BEV driving ef-

ficiency were statistically different. The test statistic from the t-test resulted in a value of

zero, meaning each class of driving efficiency drove the BEV at a different rate of speed

when compared to the speed limit. For the sake of comparison to eco-driving in ICE vehi-
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Figure 4.8: Cluster Deviation from Speed Limit

cles, efficiency of BEV driving was also affected by aggressive speeds, as inefficient BEV

drivers generally drove faster than efficient BEV drivers.

The second component of eco-driving was defined as aggressive acceleration [9]. One

way to determine aggressive driving was to use the safe driving region within a friction

circle [84]. The acceleration results from the control runs were plotted in Figure 4.9. The

y-axis is the longitudinal acceleration of the vehicle (forward and backward acceleration),

while the x-axis is the lateral acceleration (left to right acceleration), measured in meters
second2 .

While both control runs had a high degree of acceleration within the safe driving region,

the inefficient controls plot from Figure 4.9b had a greater degree of points outside the

safe driving region. It was determined that safe, non-aggressive driving behavior results

in fewer than 8% of points falling outside the safe driving region, and aggressive driving

amounts to more than 10% of points outside of the safe driving region [84]. The efficient

control had 4.07% of points outside of the region and the inefficient control had 9.53% of
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points outside the region. These results pointed to aggressive driving behaviors having an

impact BEV on efficiency.

−4 −2 0 2

Lateral Acceleration
m
s2

−2

0

2

4

L
on

gi
tu

di
na

lA
cc

el
er

at
io

n
m s2

Efficient Control

Samples Safe Driving Region

(a)

−4 −2 0 2 4

Lateral Acceleration
m
s2

−4

−2

0

2

4

L
on

gi
tu

di
na

lA
cc

el
er

at
io

n
m s2

Inefficient Control

Samples Safe Driving Region

(b)

Figure 4.9: Control Runs Friction Circles

Results for both efficient and inefficient BEV driving can be seen by the box plot in

Figure 4.10. Efficient BEV drivers had a much larger range of acceleration points outside

the safe driving region as compared to inefficient BEV drivers. Both clusters’ ranges did

not expand beyond 10%, which was suggested to be the threshold of aggressive driving

[84]. This was most likely due to using the D1 recuperation mode, as this mode applied

braking when the driver removed their foot from the gas pedal.

However, inefficient BEV drivers generally had more points outside of the safe driving

region, as their median is very close to the third quartile of efficient BEV drivers in Figure

4.10. To test if these acceleration profiles differ, they were first tested for normality. The

efficient cluster reported a test statistic of 0.9 for the Anderson-Darling test and 0.8 for the

Shapiro Wilk test. The inefficient cluster reported 0.07 for the Anderson Darling test and

0.05 for the Shapiro Wilk test. Both could be assumed normal from these tests, even though

the inefficient drivers’ results showed marginal insignificance when compared to a normal

distribution.
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Figure 4.10: Points Outside Safe Driving Region by BEV Cluster

A t-test was used to determine whether the two cluster acceleration profiles differed.

The results from the t-test determined that the clusters did in fact have different acceleration

profiles, as the test statistic resulted in a value of 0.039. While the determined thresholds

of 10% for aggressive drivers and 8% for non-aggressive drivers [84] may hold true for

ICE vehicles, recuperation modes on the e-Golf have altered the results in this experiment.

Thus, acceleration is affecting a BEV driver’s efficiency.

4.2.4 Regression of BEV Driving Factors

In an effort to determine the effect that the different factors explored in this research

have on BEV efficiency, a hierarchical regression was constructed. To create the regression

model, segments of roads were extracted over the course of the experimental route. These

segments were randomly generated from the data so that they would only cover uphill,

downhill, or flat elevation. The predictor used was the sum of the kWh consumed of the

road segment.

Regression 1 is the first model considered in the hierarchal regression and can be seen

in the second column of Table 4.2. Regression 1 considered only roadway characteristics,

those being the total distance traveled, the change in altitude, and the speed limit. This
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model alone had a strong R2 value (0.9434), and all of the predictors were significant at a

99% confidence interval.

Regression 2 was constructed by adding in the BEV behavioral classes found in this

research. This variable was defined as a binary classification where zero represents Efficient

BEV drivers and one represent Inefficient BEV drivers. The addition of these variables to

the model was significant, reporting a test statistic of zero and an F-value of 67.87. The

inclusion of this variable also raised the R2 of the regression to 0.9523 while increasing

Sum of Squares by 0.15.

Regression 3 was created by adding instantaneous parameters to the model. The inclu-

sion of these parameters was also significant reporting a test statistic of zero and F-values

of 10.971. However, speed limit becomes insignificant as the travel time was a better rep-

resentation of speed, which was found to be a strong component of BEV inefficiency as

outlined in this research and previous works [12]. The inclusion of the number of points

outside the safe driving region of a friction circle was also not significant, as seen in Table

4.2. The inclusion of the instantaneous parameters only increases the Sum of Squares by

0.0743 and the R2 values by 0.0043.

Table 4.2: Hierarchical Regression Results

Predictor Variables Regression 1 Regression 2 Regression 3
Intercept -5.608e-02*** -8.051e-02*** -2.845e-02
Distance 2.364e-01*** 2.361e-01*** 2.991e-01***
Change in altitude 1.478e-03*** 1.490e-03*** 1.509e-03***
Speed limit 1.787e-03*** 1.849e-03*** 5.308e-04
BEV Classes (1,Inefficient; 0,
Efficient)

4.273e-02*** 3.395e-02***

Travel Time 7.076e-04***
Safe driving region

Inside region -2.797e-04***
Outside region -5.869e-05

R2 0.9434 0.9523 0.9566
∆R2 0 0.0089 0.0043
*p<0.05; **p<0.01; ***p<0.001
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4.3 Questionnaire Results

With two distinct clusters presenting themselves in the categories of efficient and in-

efficient BEV driving behavior, their results were tested against drivers’ answers to the

21-question DBS. The three measures of anxiety proposed by the DBS were DEF, which

measured anxiety’s effect on driving skills; CAUT which measured anxiety’s effect on

cautious driving behaviors; and ANG, which measured anxiety in the form of hostile and

aggressive driving behaviors.
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Figure 4.11: DBS 21 Anxiety Scores by Cluster

Scores for each cluster were plotted against one another to ascertain which dimensions

of anxiety had an impact on BEV efficiency (see Figure 4.11). From the plot, mean answers

for each of the anxiety dimensions match those reported from the DBS. However, while the

mean for each level of BEV efficiency presented only a marginal shift in anxiety measures,

a standard deviation of around 1 was found for each class, by each dimension of anxiety.

Similar analysis had been done by comparing the results of drivers with post-traumatic

stress disorder, to the sample of the DBS using normative statistical testing [86]. Results

from this experiment were tested in the same way.
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However, in this experiment, results for dimensions DEF (p-value=0.613), CAUT (p-

value=0.938), and ANG (p-value=0.464) all reported insignificant measures between the

clusters. These results, while insignificant, are of benefit to BEV drivers. If BEV inef-

ficiency stemmed from anxiety-based driving, compounding range anxiety with anxiety

from driving could be detrimental to an individual’s health [22].

To further validate the factors proposed by the DBS, exploratory factor analysis was

conducted. For this research, principal component analysis was used to further explore

possible factors with the sample of drivers who participated in the BEV driving experi-

ment. The analysis began with the construction of a scree plot. The scree plot displays

the eigenvalues of the number of principal components that are added to the model, which

reduce unexplainable variance.
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Figure 4.12: Scree Plot of Eigenvalues

The scree plot, depicted in Figure 4.12, shows the expected decrease in eigenvalues as

more components are added to the model. Once the scree plot forms an elbow, less variance

is explained by adding additional principal components to the model. In Figure 4.12, the

elbow formed at the fourth component, which suggested that the data collected could be

efficiently explained in a three, four, or five factor model. Table 4.3 displays the numerical

eigenvalues from Figure 4.12, while also including the total variance explained by each
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component added, and the cumulative variance from each component added to the model.

While the scree plot suggested a four factor model, this also was the case for developing

the DBS [21], where a three factor model was found to be the most accurate representation

of anxiety-based driving.

Table 4.3: Principal Component Analysis Variance

Component Eigenvalues Total Variance Cumulative Variance
1 4.779 0.273 0.273
2 4.002 0.192 0.465
3 3.010 0.122 0.587
4 1.349 0.0649 0.653
5 1.142 0.0647 0.717

Additionally, the inclusion of a fourth factor only reduced unexplained variance by

around half of what the previous additional component explained. Moving to a five factor

model also only additionally explained 6% more variance within the model. Since the

intention of this analysis was to test whether or not the same factors exist in this experiment,

only a three factor model was analyzed. This method of analysis has been seen in other

factor analysis experiments using the DBS [87]. Also, a three factor model was able to

explain well over half of the variance that exists from the survey answers.

Results from the principal component analysis is outlined in Table 4.4. In the ex-

ploratory factor analysis completed to create the DBS, factor loadings greater than 0.3 were

considered to be representative of a given factor. Factor loadings, in columns 2-4 in Table

4.4, yielded factor loadings greater than 0.41, in line with the analysis of the DBS [21] and

other studies that have done factor analysis on this survey [87]. All the factors are loaded

to the same categories as the DBS, with the exception of “I pound on the steering wheel

when I’m nervous." This question got loaded with DEF, which measures anxiety related to

driving skills. The sample size in this experiment was not as enormous as the DBS, which

had over 200 samples [21], or other similar principal component analysis studies which
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had 147 samples [87]. It is possible that with a larger sample size, all factors would have

loaded correctly.

Table 4.4: Factor Loadings for the DBS

DBS
Category Question

Factor
1

Factor
2

Factor
3

ANG

I gesture at the driver drivers who made me ner-
vous

0.91

I try to find ways to let other drivers know that they
are making me nervous

0.82

I let the driver who made me nervous know that I
m upset

0.79

I honk my horn at the driver who made me nervous 0.71
I yell at the driver who made me nervous 0.68
I swear use profanity while I am driving 0.58
I pound on the steering wheel when I m nervous 0.41

DEF

I have trouble staying in the correct lane 0.84
I drift into other lanes 0.8
I forget to make appropriate adjustments in speed 0.63
I lose track of where I am going 0.62
I have trouble finding the correct lane 0.6
I forget where I am driving to 0.57
I have difficulty merging into traffic 0.45

CAUT

I try to put distance between myself and other cars 0.76
I try to stay away from other cars 0.74
During bad weather I drive more cautiously than
other vehicles on the road

0.69

I maintain a large distance between myself and the
driver in front of me

0.55

I slow down when approaching intersections even
when the light is green

0.55

I decrease my speed until I feel comfortable 0.54
I maintain my speed in order to calm myself down 0.45

4.4 Summary

The results from this analysis show that two clusters of BEV driving efficiency statis-

tically differ. The categories were defined as efficient and inefficient BEV driving. When

they were compared to eco-driving in ICE vehicles, both aggressive speed and acceleration
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were found to affect the rate at which SOC was depleted by the subjects. Anxiety was not

found to be a contributing factor to BEV efficiency, as both clusters’ answers to the DBS

were highly similar.

The final analysis for the effects of efficient and inefficient driving behavior can be

found in Table 4.5. The first section of Table 4.5 displays each clusters mean and standard

deviation kWh per mile which were the factors used to cluster drivers. Although efficient

BEV driving appeared to only be slightly different than inefficient BEV driving, when

analysis is expanded over a full year the impacts hold a much larger weight. The second

section of Table 4.5 displays how much battery power the behavioral classes would use over

the course of a year, based on the average distance drivers travel per year, which was 13,474

miles[88]. The next grouping of data shows the expected fuel bill for traveling 13,474 miles

a year at a rate of 13.1¢/kWh, which is the national average [89]. The last group of results

displays how many charging events these groupings of drivers should expect to have in a

year, calculated by dividing kWh per year by the e-Golf total battery capacity of 24.2 kWh

[71]. However, in reality more charging events will happen as these numbers would assume

full discharge and full recharge.

Table 4.5: Driving Estimation for BEV Driving Behavior

Event
Efficient BEV Driving Inefficient BEV Driving
Mean SD Mean SD

kWh/mile 0.227 0.129 0.254 0.165
kWh per Year 3063 1741 3421 2223

Yearly Fuel Bill $401.36 $228.14 $448.15 $291.33
Yearly charging Events 126 72 141 92
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CHAPTER 5 - Conclusion

5.1 Conclusions

The aim of this research was to test the statistical significance between clusters of BEV

driving behavior, determine whether or not the definition for eco-driving of ICE vehicles

held constant for BEV driving efficiency, and also to determine if anxiety-based driving

behavior influences BEV efficiency. To complete this analysis, 30 subjects agreed to vol-

untary participate in this research study. The participants involvement required them to

drive a BEV on a specified route and complete the DBS used to measure three components

of anxiety.

From the driving experiment, sensors were setup to collect measurements of the change

in SOC over the experimental route. In terms of energy consumption, a variable amount

of energy consumption was found between the sample of drivers. The maximal difference

between the subject who used the most energy, compared to the subject who used the least

energy, was equivalent to 10% of the batteries capacity. Estimating energy consumption

on a per mile basis would enable the subject who consumed the least amount of energy to

drive an additional 47% of the experimental route again, before consuming the equivalent

amount of energy as the most inefficient subject.

Hierarchical clustering was used to group subjects into categories of efficiency with re-

spect to their mean and standard deviation kWh’s consumed per mile. The Wards objective

function was used to create efficiency clusters and dissimilarity between clusters was cal-

culated using Euclidean Distance. Based on the dendrogram developed from hierarchical

clustering, three possible clusters presented themselves in the form of efficient, moderately

efficient, and inefficient BEV driving. However a two clusters model was only significant,

which was determined by using a Wilcox test, which proved that the two cluster model had

independent distributions of energy consumption.
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Three anxiety factors were tested against the efficient and inefficient BEV driving clus-

ters found from hierarchical clustering. Measuring anxiety was an appropriate addition to

the study due to range anxiety being key deterrent of market transition to BEVs [62, 20].

Multiple forms of anxiety compounded together can be detrimental to an individuals health

[22]. This could potentially lead to increased rates of energy consumption for BEV drivers.

Further validation of the results from questionnaire taken during this research was com-

pleted using principal component analysis, following similar procedures proposed by the

DBS [21] and other research employing the DBS [87]. All questions, except for one,

loaded correctly on the three factors of anxiety proposed by the DBS. The three compo-

nents of anxiety were not found to influence BEV efficiency as the drivers in each of the

two clusters answered the questionnaire similarly.

In relation to eco-driving, efficient BEV driving behavior was found to be similar. Since

eco-driving was defined as the reduction of aggressive speed and acceleration [9], efficiency

clusters were statistically tested against their deviation from the speed limit. Aggressive

speed was found to be significantly different between the clusters of efficiency. Speed was

expected to have a powerful contribution to efficient BEV driving, as speed is know to ex-

ponentially affect the rate that SOC is depleted [12, 16, 90]. Aggressive use of acceleration

was also found to be a factor for BEV efficiency. Using the safe driving region of a fric-

tion circle, inefficient BEV drivers statistically had more points outside of the safe driving

region as compared to efficient BEV drivers. However, the threshold of 10% for aggres-

sive driving and 8% for non aggressive driving [84] were not determinants in this research,

because the BEV was set to a recuperation mode that reduced acceleration. Thus, further

analysis of the data included using a t-test to determine if inefficient BEV drivers had more

points outside the safe driving region of a friction circle. It was found that the acceleration

profiles between efficient and inefficient BEV drivers was significantly different.
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5.2 Limitations

There are, however, some limitations presented in this research. The first was sample

size and age range of the subjects. While the sample size was in line with other behavioral

driving research [7, 31, 33, 68], a larger sample size would have sanctioned the use of more

robust clustering techniques, such as k-mean clustering [79], or latent profile analysis. An

extension of the sample size into more age groups would have also enabled studying BEV

driving behavior with respect to driving experience [25], as drivers who can purchase a

BEV is not limited to age range of participants in the experiments sample.

A longer experimental drive would have also been beneficial because the sampling rate

for the change in SOC was infrequent, happening every 0.5 miles on average. A higher

sampling rate would have allowed for a more in depth analysis of energy consumption with

respect to change in elevation and road classes. Since there was a possibility of overlap

between road classes, defined by OSM, values for the change in SOC were backwards

distributed based on the distance traveled. Instantaneous sampling of SOC would have

eliminated this issue entirely.

Both a longer experimental drive and a larger sample size would have allowed more

time to study the different eco-modes of the VW e-Golf. The BEV had four recuperation

modes and three modes that limit acceleration when pressing the gas pedal [70]. Since the

the experiment was limited to approximately 26 miles, and the change in measurements of

SOC happened, on average every half mile, further analysis of BEV driving behavior was

limited to one recuperation mode. Mode D1, light recuperation when braking was selected

for the experimental drive as it adds the benefits of reduced energy consumption. Mode

D1 was also chosen because comparisons between eco-driving and BEV driving behavior

was completed in this research. Since manufactures of ICE vehicles are making alterations

to improve efficiency, eco-modes are becoming a standard in these vehicles [48]. Future

research should involve all eco-modes of BEVs to fully understand how they impact driving

behavior.
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One constant from the experiment was the time of day when participants completed

the experimental drive. This constant was included in the experiment to attempt to control

traffic congestion. However, there are many other factors that affect traffic congestion such

as accidents, holidays, weekday, etc. At the time this research was completed, there was

no data publicly available to access traffic congestion. To study traffic congestion, in future

analyses, it may be possible to acquire radar data from the BEVs CAN to access how far

away other vehicles are and relate this information to traveling speed to determine traffic

congestion.

In terms of driving anxiety, BEV efficiency was studied using the three anxiety factors

defined by the DBS. To control range anxiety, drivers were informed that there was more

than enoguh energy to complete the experiment. While this allowed for finer analysis of

the DBS anxiety factors, this research did not cover the effect that range anxiety could have

the clusters of efficiency found. So defining how range anxiety affects the BEV behavioral

classes found in this research was not explored.

Lastly, another limitation of this research was that naturalist driving behaviors could

not be studied. The vehicle that subjects drove was not their own, the route of travel may

not have been one the subjects were accustom too, and a researcher was present during

the experimental drive. When studying driving behavior, typically a vehicle is supplied to

drivers so that it can be used for daily driving [20]. While participants were given time to

adjust the vehicles settings, and were provided a mile travel to become comfortable driving

the vehicle, naturalistic driving behavior would be better studied in a vehicle that a subject

had for an extended period of time.

5.3 Future Work

Results from this research can branch out in various directions, within the scope of

BEV energy consumption modeling. To start, the foundation supporting this research can

be further expanded in understanding BEV behavioral driving. Those who have studied
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range anxiety have supplied a BEV to selected drivers for an extended period of time [62].

By supplying a BEV to drivers, behavioral patterns can be studied based on road selection,

as well as vehicle comfort settings, to study behavior in uncontrolled environments. With

the inclusion of the results from this research, and further research on naturalistic BEV

driving behavior, courses could be developed to train drivers to drive BEVs efficiently. In a

study tracking one BEV driver, minor interventions helped that driver make better overall

route selections [53]. Also, the effect that range anxiety has on BEV efficiency should be

explored, as drivers who fit within the classes defined by this research may change when

they experience limited range.

An instantaneous estimation of SOC can be made by utilizing Coulomb Counting,

Kalman Filters, or by training back propagation neural networks [91]. In future research,

these methods could be applied to yield a faster sampling rate to analyze BEV behavioral

driving data. Faster sampling rates could be beneficial in developing estimation techniques

for how much energy will be required to travel from point A to point B, on real road net-

works. The VW e-Golf used in this research provides an estimate for how many miles can

be traveled based on the energy left in the battery back [70]. Many estimation methods also

attempt to better quantify remaining miles given the current charge of the battery and the

drivers behavior [92, 93]. However, circular range estimation only enables drivers to know

how much charge they will use when driving in a straight line, from origin to destination.

Better estimation of energy consumption and the inclusion of BEV behavioral driving

can benefit routing problems as well. Most BEV routing problems give a single estimate

for the rate of charge used per distance [94, 95]. This is also the case for BEV shortest path

problems [96, 97]. The inclusion of behavioral data will refine these routing techniques,

allowing them to model true energy consumption with respect to driving behavior.

BEVs have the potential to develop a more sustainable society. While sales of BEVs

continue to grow, these vehicles have not yet captured a prominent share of the automotive

market, because potential BEV drivers are concerned with limited range. Manufactures
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can use the information from this research to develop BEV driving modes that promote

efficiency, or learn the current drivers behavior and automatically alter the BEV settings

to improve efficiency. Ultimately, this research was able to quantify BEV driving behav-

ior factors that inhibit maximum traveling distance of these vehicles. New BEV drivers

can learn to adopt better driving behaviors, and potential BEV drivers can learn from this

material, to overcome the hurdle of transitioning from an ICE vehicle to a BEV and help

advance the sustainability of society.
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APPENDICES

Appendix A - Recruitment Advertisements
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WANT TO TEST DRIVE AN 
 

          ELECTRIC CAR?   
 
 

 
 
Have you always wanted to drive an electric car? Are you curious if it’s the same as or different from your car? Do you want 

to see for yourself how quiet it is? 

 

 
Well, here is you chance! Come participate in a study that is looking at how we drive EVs. This is a URI research under the 

supervision of Dr. Gretchen A. Macht which will help understand how people drive electric vehicles, which in turn will help 

arrange infrastructure better to accommodate the rising use of EVs. 

 

 
Research volunteers, 18 or older, in possession of a valid American or international driver’s license are being sought for an 

experiment beginning —. This research will be conducted at URI and routes to drive will all be around the Kingston 

campus. 

 

 
The experiment will last just over an hour. First, you will take a questionnaire on your perceived driving habits [10 

minutes]. Next, you will gain familiarity with the vehicle with a brief training session [10 minutes]. Then you will drive 

the car on the road on a specified route [50 minutes].   

 

 
Contact Dan Kowalsky email at dan_kowalsky@my.uri.edu for more information and for recruitment. This research is 

affiliated with the University of Rhode Island through the MCISE department. 

This research has been approved by The University of Rhode Island Institutional Review Board. 
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Want to Test Drive an Electric Car? 
 
 
 

Well, here is you chance! Come participate in a study that is looking at how we 

drive EVs. This is a URI research under the supervision of Dr. Gretchen A. Macht 

which will help understand how people drive electric vehicles, which in turn will 

help arrange infrastructure better to accommodate the rising use of EVs. 
 

 
 

Research volunteers, 18 or older, in possession of a valid American or international 

driver’s license are being sought for an experiment beginning —. This research will 

be conducted at URI and routes to drive will all be around the Kingston campus. 
 

 

The experiment will last just over an hour. First, you will take a questionnaire on 

your perceived driving habits [10 minutes]. Next, you will gain familiarity with 

the vehicle with a brief training session [10 minutes]. Then you will drive the car 

on the road on a specified route [50 minutes].   
 

 
 

Contact Dan Kowalsky email at dan_kowalsky@my.uri.edu for more information 

and for recruitment. This research is affiliated with the University of Rhode Island 

through the MCISE department. 

This research has been approved by The University of Rhode Island Institutional 

Review Board. 
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Appendix B - Consent Form

 

 

 

Consent Form for Research 

  
 

The University of Rhode Island 

Department of: Mechanical, Industrial & Systems Engineering 

Address: 92 Upper College Road, Kingston RI 02881 

Title of Project: Electric Vehicle Driver Behavior 

 

 

 

TEAR OFF AND KEEP THIS FORM FOR YOURSELF 

 

Dear Participant 

You have been invited to take part in the research project described below.  If you have any questions, 

please feel free to call Dan Kowalsky or Dr. Macht or Dr. Sodhi, the people mainly responsible for this 

study. 

 

The purpose of this study is to investigate how driver behaviour changes when combustion engine 

drivers start using an electric vehicle. All collected information will be stored in Pastore 333 in a locked 

file cabinet and digital information will be stored in computers in Pastore 254 as locked files. Only the 

researchers will have access to these files. No audio or video file will be collected. All the information 

required will be collected directly from the car. 
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Appendix C - Anxiety Questionnaire

Often times situations occur while people are driving which make them nervous (e.g., weather
conditions, heavy traffic, near accidents, etc.). Below is a list of behaviors that may or may not be
relevant to you in these situations. Based on your personal experience, please indicate how
frequently you perform each of these items when a stressful driving situation occurs which makes
you nervous, anxious, tense, or uncomfortable. Please indicate what you generally do, not what you
think you should do.

Driving Behavior Survey

First Name

Last Name

1. Name*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

2. I have trouble finding the correct lane*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

3. I have trouble staying in the correct lane*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

4. I have difficulty merging into traffic*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

5. I have difficulty adjusting the controls (e.g., temperature, radio) because it's too distracting*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

6. I press the wrong pedal*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

7. I lose track of where I am going*
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Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

8. I forget where I am driving to*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

9. I apply the brakes repeatedly*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

10. I pull off the road*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

11. I stop talking with passengers*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

12. I forget to make appropriate adjustments in speed*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

13. I forget to use my turning signal*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

14. I maintain a large distance between myself and the driver in front of me*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

15. I decrease my speed until I feel comfortable*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

16. I slow down when approaching intersections even when the light is green*
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Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

17. I repeatedly look in the rearview mirror*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

18. I talk to someone on my cell phone*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

19. I gesture at the driver/drivers who made me nervous*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

20. I break suddenly if I am being tailgated*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

21. I make sudden turns*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

22. I yell at the driver who made me nervous*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

23. I drift into other lanes*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

24. I wait long periods of time before entering an intersection*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

25. I avoid looking in my mirrors*
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Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

26. I try to put distance between myself and other cars*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

27. I slow down when approaching green lights*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

28. I let the driver who made me nervous know that I'm upset*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

29. I try to find ways to let other drivers know that they are making me nervous*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

30. I honk my horn at the driver who made me nervous*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

31. I swear/use profanity while I am driving*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

32. I pound on the steering wheel when I'm nervous*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

33. I think of ways to get even with other drivers*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

34. I hope that the driver/driver's who made me nervous will get pulled over*
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Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

35. I tailgate the driver who made me nervous*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

36. I complain about the drivers who made me nervous*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

37. I maintain my speed in order to calm myself down*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

38. During bad weather, I drive more cautiously than other vehicles on the road*

Never Very Infrequently Infrequently Sometimes Frequently Very Frequently Always

39. I try to stay away from other cars*

74



BIBLIOGRAPHY

[1] B. F. Skinner, Science and human behavior. Simon and Schuster, 1953.

[2] D. Meadows, Thinking in Systems A Primer. Earth Scan, 2008.

[3] S. Jafarpour and V. Rahimi-Movaghar, “Determinants of risky driving behavior: a

narrative review.” Medical journal of the Islamic Republic of Iran, vol. 28, p. 142, 12

2014.

[4] “Bureau of transportation statistics,” https://www.bts.gov, 2016, [Accessed: 23- Oct-

2017].

[5] F. Guo and Y. Fang, “Individual driver risk assessment using naturalistic driving data,”

Accident Analysis & Prevention, vol. 61, pp. 3–9, 2013.

[6] O. Taubman-Ben-Ari, M. Mikulincer, and O. Gillath, “The multidimensional driv-

ing style inventory-scale construct and validation,” Accident Analysis & Prevention,

vol. 36, no. 3, pp. 323–332, 2004.

[7] D. J. Sun and L. Elefteriadou, “Lane-changing behavior on urban streets: An“in-

vehicle" field experiment-based study,” Computer-Aided Civil and Infrastructure En-

gineering, vol. 27, no. 7, pp. 525–542, 2012.

[8] T. Litman and S. B. Colman, “Generated traffic, implications for transport planning,”

Institute of Transportation Engineers. ITE Journal, vol. 71, no. 4, p. 38, 2001.

[9] J. N. Barkenbus, “Eco-driving: An overlooked climate change initiative,” Energy Pol-

icy, vol. 38, no. 2, pp. 762–769, 2010.

[10] M. Sivak and B. Schoettle, “Eco-driving: strategic, tactical, and operational decisions

of the driver that improve vehicle fuel economy,” University of Michigan, Ann Arbor,

Transportation Research Institute, 2011.

75



[11] D. L. Meadows, E. I. Goldsmith, and P. Meadow, Limits to growth. CBC, 1972, vol.

381.

[12] S. Agrawal, H. Zheng, S. Peeta, and A. Kumar, “Routing aspects of electric vehicle

drivers and their effects on network performance,” Transportation Research Part D:

Transport and Environment, vol. 46, pp. 246–266, 7 2016.

[13] R. Curtin, Y. Shrago, and J. Mikkelsen, “Plug-in hybrid electric vehicles,”

Reuters/University of Michigan, Surveys of Consumers, 2009.

[14] DOE, “All-electric vehicles,” https://www.fueleconomy.gov/feg/evtech.shtml, 2011,

[Accessed: 29- Oct- 2017].

[15] J. Dong, C. Liu, and Z. Lin, “Charging infrastructure planning for promoting battery

electric vehicles: An activity-based approach using multiday travel data,” Transporta-

tion Research Part C: Emerging Technologies, vol. 38, pp. 44–55, 2014.

[16] G. Wager, J. Whale, and T. Braunl, “Driving electric vehicles at highway speeds: The

effect of higher driving speeds on energy consumption and driving range for electric

vehicles in australia,” Renewable and Sustainable Energy Reviews, vol. 63, pp. 158–

165, 9 2016.

[17] A. D. Alvarez, F. S. Garcia, J. E. Naranjo, J. J. Anaya, and F. Jimenez, “Modeling the

driving behavior of electric vehicles using smartphones and neural networks,” IEEE

Intelligent Transportation Systems Magazine, vol. 6, no. 3, pp. 44–53, 2014.

[18] T. Hiraoka, Y. Terakado, S. Matsumoto, and S. Yamabe, “Quantitative evaluation of

eco-driving on fuel consumption based on driving simulator experiments,” in Pro-

ceedings of the 16th World Congress on Intelligent Transport Systems, 2009, pp. 21–

25.

76



[19] D. S. Bunch, M. Bradley, T. F. Golob, R. Kitamura, and G. P. Occhiuzzo, “Demand for

clean-fuel personal vehicles in california: A discrete-choice stated preference survey,”

Institute of Transportation Studies, University of California, Irvine, 1991.

[20] E. Tate, M. O. Harpster, and P. J. Savagian, “The electrification of the automobile:

from conventional hybrid, to plug-in hybrids, to extended-range electric vehicles,”

SAE international journal of passenger cars-electronic and electrical systems, vol. 1,

no. 2008-01-0458, pp. 156–166, 2008.

[21] J. D. Clapp, S. A. Olsen, J. G. Beck, S. A. Palyo, D. M. Grant, B. Gudmundsdottir,

and L. Marques, “The driving behavior survey: Scale construction and validation,”

Journal of Anxiety Disorders, vol. 25, no. 1, pp. 96–105, 1 2011.

[22] S. Taylor, W. J. Koch, and R. J. McNally, “How does anxiety sensitivity vary across

the anxiety disorders?” Journal of anxiety disorders, vol. 6, no. 3, pp. 249–259, 1992.

[23] Y. Yang, B. Chen, L. Su, and D. Qin, “Research and development of hybrid elec-

tric vehicles can-bus data monitor and diagnostic system through obd-ii and android-

based smartphones,” Advances in Mechanical Engineering, vol. 2013, p. 741240, 1

2013.

[24] D. A. Johnson and M. M. Trivedi, “Driving style recognition using a smartphone as

a sensor platform,” in Intelligent Transportation Systems (ITSC), 2011 14th Interna-

tional IEEE Conference on. IEEE, 2011, pp. 1609–1615.

[25] M. Casucci, M. Marchitto, and P. C. Cacciabue, “A numerical tool for reproduc-

ing driver behaviour: Experiments and predictive simulations,” Applied ergonomics,

vol. 41, no. 2, pp. 198–210, 2010.

[26] N. Rhodes and K. Pivik, “Age and gender differences in risky driving: The roles of

positive affect and risk perception,” Accident Analysis & Prevention, vol. 43, no. 3,

pp. 923–931, 2011.

77



[27] X. Yan, E. Radwan, and D. Guo, “Effects of major-road vehicle speed and driver age

and gender on left-turn gap acceptance,” Accident Analysis & Prevention, vol. 39,

no. 4, pp. 843–852, 2007.

[28] R. Lawton, D. Parker, A. S. Manstead, and S. G. Stradling, “The role of affect in

predicting social behaviors: The case of road traffic violations,” Journal of applied

social psychology, vol. 27, no. 14, pp. 1258–1276, 1997.

[29] F. P. McKenna, R. A. Stanier, and C. Lewis, “Factors underlying illusory self-

assessment of driving skill in males and females,” Accident Analysis & Prevention,

vol. 23, no. 1, pp. 45–52, 1991.

[30] L. Eboli, G. Mazzulla, and G. Pungillo, “Combining speed and acceleration to de-

fine car users’ safe or unsafe driving behaviour,” Transportation Research Part C:

Emerging Technologies, vol. 68, pp. 113–125, 2016.

[31] Z. Constantinescu, C. Marinoiu, and M. Vladoiu, “Driving style analysis using data

mining techniques,” International Journal of Computers Communications & Control,

vol. 5, no. 5, pp. 654–663, 2010.

[32] Gradel, T.E. and Allenby, B.R., Industrial Ecology and Sustainable Engineering.

Prentice Hall, 10 2009.

[33] J. Wang, M. Lu, and K. Li, “Characterization of longitudinal driving behavior by mea-

surable parameters,” Transportation Research Record: Journal of the Transportation

Research Board, no. 2185, pp. 15–23, 2010.

[34] Y. L. Murphey, R. Milton, and L. Kiliaris, “Driver’s style classification using jerk

analysis,” Computational Intelligence in Vehicles and Vehicular Systems, 2009.

CIVVS’09. IEEE Workshop on, pp. 23–28, 2009.

78



[35] C. Beckx, L. Panis, I. Vlieger, and G. Wets, “Influence of gear-changing behaviour

on fuel use and vehicular exhaust emissions,” Highway and Urban Environment, pp.

45–51, 2007.

[36] B. Beusen, S. Broekx, T. Denys, C. Beckx, B. Degraeuwe, M. Gijsbers, K. Scheep-

ers, L. Govaerts, R. Torfs, and L. I. Panis, “Using on-board logging devices to study

the longer-term impact of an eco-driving course,” Transportation research part D:

transport and environment, vol. 14, no. 7, pp. 514–520, 2009.

[37] K. Boriboonsomsin, A. Vu, and M. Barth, “Eco-driving: pilot evaluation of driving

behavior changes among us drivers,” University of California Transportation Center,

2010.

[38] T. Hiraoka, Y. Terakado, S. Matsumoto, and S. Yamabe, “Quantitative evaluation of

eco-driving on fuel consumption based on driving simulator experiments,” in Pro-

ceedings of the 16th World Congress on Intelligent Transport Systems, 2009, pp. 21–

25.

[39] D. J. LeBlanc, M. Sivak, and S. Bogard, “Using naturalistic driving data to assess

variations in fuel efficiency among individual drivers,” University of Michigan, Ann

Arbor, Transportation Research Institute, 2010.

[40] EPA, “Gas mileage tips - driving more efficiently,” http://www.fueleconomy.gov/feg/

drivehabits.shtml, 2011, [Accessed: 10- Oct- 2017].

[41] ——, “Many factors affect mpg,” http://www.fueleconomy.gov/feg/factors.shtml.,

2011, [Accessed: 10- Oct- 2017].

[42] D. Vangi and A. Virga, “Evaluation of energy-saving driving styles for bus drivers,”

Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automo-

bile Engineering, vol. 217, no. 4, pp. 299–305, 2003.

79



[43] S. Carrese, A. Gemma, and S. La Spada, “Impacts of driving behaviours, slope and

vehicle load factor on bus fuel consumption and emissions: a real case study in the

city of rome,” Procedia-Social and Behavioral Sciences, vol. 87, pp. 211–221, 2013.

[44] R. Buehler, “Determinants of transport mode choice: a comparison of germany and

the usa,” Journal of Transport Geography, vol. 19, no. 4, pp. 644–657, 2011.

[45] C. Andrieu and G. Saint Pierre, “Comparing effects of eco-driving training and simple

advices on driving behavior,” Procedia-Social and Behavioral Sciences, vol. 54, pp.

211–220, 2012.

[46] EPA, “Light-duty automotive technology, carbon dioxide emissions, and fuel

economy trends report overview,” https://www.epa.gov/fuel-economy-trends/

trends-report, 2016.

[47] E. Dogan, L. Steg, and P. Delhomme, “The influence of multiple goals on driving

behavior: The case of safety, time saving, and fuel saving,” Accident Analysis &

Prevention, vol. 43, no. 5, pp. 1635–1643, 2011.

[48] W. R. Morrow, K. S. Gallagher, G. Collantes, and H. Lee, “Analysis of policies to

reduce oil consumption and greenhouse-gas emissions from the us transportation sec-

tor,” Energy Policy, vol. 38, no. 3, pp. 1305–1320, 2010.

[49] F. Birol et al., “World energy outlook,” Paris: International Energy Agency, vol. 23,

no. 4, p. 329, 2008.

[50] M. Tran, D. Banister, J. D. Bishop, and M. D. McCulloch, “Realizing the electric-

vehicle revolution,” Nature climate change, vol. 2, no. 5, p. 328, 2012.

[51] “How to gasoline and electric vehicles compare,” https://avt.inl.gov/sites/default/files/

pdf/fsev/compare, 2016, [Accessed: 27- Oct- 2017].

80



[52] “Alternatie fuels data center,” https://www.afdc.energy.gov/fuels/, [Accessed: 15-

Oct- 2017].

[53] X. Wu, D. Freese, A. Cabrera, and W. A. Kitch, “Electric vehicles’ energy consump-

tion measurement and estimation,” Transportation Research Part D: Transport and

Environment, vol. 34, pp. 52–67, 1 2015.

[54] D. Meadows, Thinking in Systems A Primer. Earth Scan, 2008.

[55] X. Nian, F. Peng, and H. Zhang, “Regenerative braking system of electric vehicle

driven by brushless dc motor,” IEEE Transactions on Industrial Electronics, vol. 61,

no. 10, 10 2014.

[56] K. Boriboonsomsin and M. Barth, “Impacts of road grade on fuel consumption and

carbon dioxide emissions evidenced by use of advanced navigation systems,” Trans-

portation Research Record: Journal of the Transportation Research Board, no. 2139,

pp. 21–30, 2009.

[57] J. G. Hayes, R. P. R. de Oliveira, S. Vaughan, and M. G. Egan, “Simplified elec-

tric vehicle power train models and range estimation,” Vehicle Power and Propulsion

Conference (VPPC), 2011 IEEE, pp. 1–5, 2011.

[58] T. Yuksel and J. J. Michalek, “Effects of regional temperature on electric vehicle

efficiency, range, and emissions in the united states,” Environmental science & tech-

nology, vol. 49, no. 6, pp. 3974–3980, 2015.

[59] J. S. Welstand, H. H. Haskew, R. F. Gunst, and O. M. Bevilacqua, “Evaluation of

the effects of air conditioning operation and associated environmental conditions on

vehicle emissions and fuel economy,” SAE Technical Paper, Tech. Rep., 2003.

[60] C. Walsh, S. Carroll, A. Eastlake, and P. Blythe, “Electric vehicle driving style and

duty variation performance study,” University of Sheffield2010, 2010.

81



[61] A. Gärling, Paving the way for the electric vehicle. Vinnova, 2001.

[62] T. Franke, I. Neumann, F. Bühler, P. Cocron, and J. F. Krems, “Experiencing range

in an electric vehicle: Understanding psychological barriers,” Applied Psychology,

vol. 61, no. 3, pp. 368–391, 2012.

[63] P. Cocron, F. Bühler, I. Neumann, T. Franke, J. F. Krems, M. Schwalm, and

A. Keinath, “Methods of evaluating electric vehicles from a user’s perspective–the

mini e field trial in berlin,” IET Intelligent Transport Systems, vol. 5, no. 2, pp. 127–

133, 2011.

[64] J. Dong, C. Liu, and Z. Lin, “Charging infrastructure planning for promoting battery

electric vehicles: An activity-based approach using multiday travel data,” Transporta-

tion Research Part C: Emerging Technologies, vol. 38, pp. 44–55, 2014.

[65] O. Egbue and S. Long, “Barriers to widespread adoption of electric vehicles: An

analysis of consumer attitudes and perceptions,” Energy policy, vol. 48, pp. 717–729,

2012.

[66] “Global ev outlook 2017,” 2017, [Accessed: 15- Oct- 2017].

[67] “Office of energy resources,” http://www.energy.ri.gov/transportation/ev/, [Accessed:

29- Oct- 2017].

[68] A. D. Alvarez, F. S. Garcia, J. E. Naranjo, J. J. Anaya, and F. Jimenez, “Modeling the

driving behavior of electric vehicles using smartphones and neural networks,” IEEE

Intelligent Transportation Systems Magazine, vol. 6, no. 3, pp. 44–53, 2014.

[69] “Open street maps,” http://wiki.openstreetmap.org/wiki/Key:highway, [Accessed:

23- Oct- 2017].

[70] “2015 volkswageb e-golf - owners manual,” https://carmanuals2.com/volkswagen/

e-golf-2015-owner-s-manual-88312, [Accessed: 29- Oct- 2017].

82



[71] “2015 e-golf,” https://www.vw.com/content/dam/vwcom/brochures/2015models/

MY15_e-Golf_Digital.pdf, [Accessed: 1- Oct- 2017].

[72] “Sk pang electronics,” http://skpang.co.uk/catalog/

pican2-canbus-board-for-raspberry-pi-23-p-1475.html, [Accessed: 25- Oct-

2017].

[73] K. H. Johansson, M. Törngren, and L. Nielsen, Vehicle Applications of Controller

Area Network. Boston, MA: Birkhäuser Boston, 2005, pp. 741–765.

[74] C.-M. Tseng, W. Zhou, M. Hashmi, C.-K. Chau, S. Song, and E. Wilhelm, “Data ex-

traction from electric vehicles through obd and application of carbon footprint evalu-

ation,” EV-SYS, 6 2016.

[75] “Socektcan documentation,” https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux.git/plain/Documentation/networking/can.txt, [Accessed: 29- Aug- 2017].

[76] “Breakout board documentation,” https://learn.adafruit.com/adafruit-ultimate-gps/

overview, [Accessed: 01- Aug- 2017].

[77] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: rich monitoring of road

and traffic conditions using mobile smartphones,” in Proceedings of the 6th ACM

conference on Embedded network sensor systems. ACM, 2008, pp. 323–336.

[78] M. R. Anderberg, Cluster analysis for applications: probability and mathematical

statistics: a series of monographs and textbooks. Academic press, 2014, vol. 19.

[79] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm,”

Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1,

pp. 100–108, 1979.

[80] “Cluster analysis,” http://www.umass.edu/landeco/teaching/multivariate/schedule/

cluster1.pdf, [Accessed: 26- Oct- 2017].

83



[81] J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,” Journal of

the American statistical association, vol. 58, no. 301, pp. 236–244, 1963.

[82] T. W. Anderson and D. A. Darling, “A test of goodness of fit,” Journal of the American

statistical association, vol. 49, no. 268, pp. 765–769, 1954.

[83] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete

samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[84] R. Vaiana, T. Iuele, V. Astarita, M. V. Caruso, A. Tassitani, C. Zaffino, and V. P.

Giofrè, “Driving behavior and traffic safety: an acceleration-based safety evaluation

procedure for smartphones,” Modern Applied Science, vol. 8, no. 1, p. 88, 2014.

[85] J. Reason, A. Manstead, S. Stradling, J. Baxter, and K. Campbell, “Errors and vio-

lations on the roads: a real distinction?” Ergonomics, vol. 33, no. 10-11, pp. 1315–

1332, 1990.

[86] J. D. Clapp, A. S. Baker, S. D. Litwack, D. M. Sloan, and J. G. Beck, “Properties

of the driving behavior survey among individuals with motor vehicle accident-related

posttraumatic stress disorder,” Journal of anxiety disorders, vol. 28, no. 1, pp. 1–7,

2014.

[87] H. Khanipour, S. A. Tavallaii, and K. Ahmadi, “Psychometric properties of the driving

behavior survey among iranian drivers,” Practice in Clinical Psychology, vol. 3, no. 4,

pp. 259–266, 2015.

[88] “Us department of transportation,” https://www.fhwa.dot.gov/ohim/onh00/bar8.htm,

[Accessed: 29- Oct- 2017].

[89] “Telegram,” http://www.telegram.com/article/20150915/NEWS/150919445, [Ac-

cessed: 29- Oct- 2017].

84



[90] R. Zhang and E. Yao, “Electric vehicles’ energy consumption estimation with real

driving condition data,” Transportation Research Part D: Transport and Environment,

vol. 41, pp. 177–187, 12 2015.

[91] W.-Y. Chang, “The state of charge estimating methods for battery: A review,” ISRN

Applied Mathematics, vol. 2013, 2013.

[92] A. Bolovinou, I. Bakas, A. Amditis, F. Mastrandrea, and W. Vinciotti, “Online predic-

tion of an electric vehicle remaining range based on regression analysis,” in Electric

Vehicle Conference (IEVC), 2014 IEEE International. IEEE, 2014, pp. 1–8.

[93] J. C. Ferreira, V. Monteiro, and J. L. Afonso, “Dynamic range prediction for an elec-

tric vehicle,” in Electric Vehicle Symposium and Exhibition (EVS27), 2013 World.

IEEE, 2013, pp. 1–11.

[94] J. Lin, W. Zhou, and O. Wolfson, “Electric vehicle routing problem,” Transportation

Research Procedia, vol. 12, pp. 508–521, 2016.

[95] M. Bruglieri, F. Pezzella, O. Pisacane, and S. Suraci, “A matheuristic for the electric

vehicle routing problem with time windows,” arXiv preprint arXiv:1506.00211, 2015.

[96] A. Artmeier, J. Haselmayr, M. Leucker, and M. Sachenbacher, “The shortest path

problem revisited: Optimal routing for electric vehicles.” KI, vol. 6359, pp. 309–316,

2010.

[97] J. D. Adler, P. B. Mirchandani, G. Xue, and M. Xia, “The electric vehicle shortest-

walk problem with battery exchanges,” Networks and Spatial Economics, vol. 16,

no. 1, pp. 155–173, 2016.

85


	Quantifying Behavioral Impacts on Electric Vehicle Efficiency
	Terms of Use
	Recommended Citation

	tmp.1512404919.pdf.4tu6z

