Web Based Bioinformatics Tool for Contributing Content to the Anti-Microbial Peptide Editable Database

Abraham Herrera

University of Rhode Island, abraham7_12@yahoo.com

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation
https://digitalcommons.uri.edu/theses/1133

This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
WEB BASED BIOINFORMATICS TOOL FOR CONTRIBUTING CONTENT TO THE ANTI-
MICROBIAL PEPTIDE EDITABLE DATABASE

BY

ABRAHAM HERRERA

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2016
ABSTRACT

The goal of the work described in this thesis is to improve the software tool used to extract relevant data from an existing larger database, the Protein Data Bank (PDB), in order to populate the newly designed AMPed database that has been developed by Professor Lenore Martin's microbial peptide research group at URI. However, not all data from the PDB site can be automatically loaded into the AMPed database. Thus, this work describes a user-friendly secure web-based tool for manually transferring, editing, and contributing structural and anti-microbial experimental data generated by research labs around the globe into the AMPed.

Once users have uploaded their data into AMPed, it then goes through an evaluation process where it is placed in a 'pending' mode, waiting to be reviewed by Professor Martin or other designated evaluator ('reviewer'). The reviewer gets notified through email when a new entry has been submitted or added to the database.

The designated content reviewer can access the newly uploaded data through a private and secure web-based user interface to evaluate the incoming entries. Within this tool, the reviewer can approve the data, edit it, or simply reject it. The reviewer can then communicate back to the data contributors through email, and inform them about the status of their contributions. If the data has been approved for addition to AMPed, it will rapidly be made available to anyone searching the database.

In addition, we have increased the efficiency of the AMPed website through major improvements in graphical design and usability using the latest techniques available.
ACKNOWLEDGMENTS

This project would not have been possible if it was not for the commitment, support, and guidance of my professors Dr. Joan Peckham and Dr. Lenore M. Martin; their encouragement and dedication led me to be part of this magnificent project. For all those moments that you both spent with me sharing your knowledge and expertise and for pushing me to exceed the expectations, I will always be thankful.

I would also like to extend my gratitude to Terry Wild and Chi Shen for helping us with the creation of the virtual server and moving the AMPed site to a faster, newer, more reliable and secure server.

To my bioinformatics class and team mates (Brett Boudreau, Christopher Mills, Mingyang Zhao, and Vivek Annavarjula) who helped me to map the AMPed and PDB tables and setting the floor plan for populating the AMPed database.

Special thanks go to my friend and predecessor Tripti Garg for her support during this project, as well as to my kids and friends for believing in me, for their support and admiration.

Finally, I would also like to extend a special gratitude to my wife, Zoila Castro, for her continuous encouragement throughout this entire project and in my life.
Table of Contents

ABSTRACT ... ii

ACKNOWLEDGMENTS ... iii

Table of Contents .. iv

List of Tables ... viii

LIST OF FIGURES .. ix

CHAPTER 1... 1

INTRODUCTION ... 1

CHAPTER 2... 5

AMPed Domain: A WEB BASED BIOINFORMATICS TOOL ... 5

AMPed Domain ... 6

The Hosting Server .. 6

AMPed Web Flow ... 8

Secure Server .. 9

Portability .. 12

Branding .. 18

Visitor Counter .. 19

The Header and Footer Sections... 21
CHAPTER 3... 27

THE AMPED DATABASE CONTENT .. 27

Importing content to AMPed.. 27

The BioParser ... 29

Matching Tables: PDB – AMPed .. 34

Entity Relationship (ER) Diagram ... 34

The Tables ... 36

AMPed Content .. 40

Navigational Features ... 41

CHAPTER 4... 44

JOIN US & LOGIN PAGES ... 44

Join Us Page ... 44

Validation Process .. 46

Registration Process ... 48

Login Page .. 50

Access levels .. 52

CAPTCHA ... 53

CHAPTER 5... 57

ADMINISTRATOR SITE ... 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Portal</td>
<td>59</td>
</tr>
<tr>
<td>Peptide Portal</td>
<td>61</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>63</td>
</tr>
<tr>
<td>SEARCH SECTION</td>
<td>63</td>
</tr>
<tr>
<td>Search Page</td>
<td>63</td>
</tr>
<tr>
<td>Search Criteria</td>
<td>68</td>
</tr>
<tr>
<td>Advanced Search</td>
<td>68</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>71</td>
</tr>
<tr>
<td>ABOUT US</td>
<td>71</td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td>72</td>
</tr>
<tr>
<td>CONTACT US</td>
<td>72</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>75</td>
</tr>
<tr>
<td>CONCLUSION AND FUTURE WORK</td>
<td>75</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>79</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>83</td>
</tr>
<tr>
<td>Chart matching the AMPed and PDB tables</td>
<td>83</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>87</td>
</tr>
<tr>
<td>Database Structure and Schema of AMPed</td>
<td>87</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>95</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: AMPed tables with attributes and data type.. 90
Table 2: AMPed comparison with other Database repositories .. 98
LIST OF FIGURES

Figure 1: AMPed Web Flow Diagrams .. 9
Figure 2: HTTP vs HTTPS ... 10
Figure 3: Secure icon .. 11
Figure 4: AMPed’s Certificate Information .. 11
Figure 5: Bootstrap’s grid system .. 14
Figure 6: AMPed index page HTML source code ... 15
Figure 7: Desktop’s AMPed index homepage full-width display ... 16
Figure 8: Mobile’s AMPed index homepage truncated width display 17
Figure 9: AMPed logo ... 18
Figure 10: favicon - shortcut icon .. 18
Figure 11: Google Analytics - Geo report of AMPed ... 21
Figure 12: Google Analytics code inserted on the footer section of the AMPed’s pages 21
Figure 13: AMPed header before login ... 22
Figure 14: AMPed header after login ... 23
Figure 15: AMPed header with logo reference on intermediate pages 23
Figure 16: AMPed footer .. 24
Figure 17: AMPed copyright info .. 24
Figure 18: ER diagram of AMPed database ... 35
Figure 19: Tables of AMPed database .. 39
Figure 20: Peptide Database table showing AA Sequences ... 40
Figure 21: Browsing the tables ... 41
Figure 22: "Join Us" link at header section ... 44
Figure 23: Join Us page fields .. 45
Figure 24: Welcome to AMPed registration email ... 49
Figure 25: Login page .. 51
Figure 26: Welcome message header ... 52
Figure 27: AMPed CAPTCHA image ... 54
Figure 28: Secure access to AMPed Admin Tools ... 57
Figure 29: AMPed - User Portal snapshot .. 59
Figure 30: User’s Portal pop-up window ... 60
Figure 31: Peptide contribution by user ... 62
Figure 32: AMPed Search page ... 64
Figure 33: AJAX code to display Peptides results as the entry is input 65
Figure 34: Live search with a list of possible matching results 66
Figure 35: Live search without a matching hit .. 67
Figure 36: Full vs. Partial match .. 67
Figure 37: Advance Search page .. 69
Figure 38: About Us page ... 71
Figure 39: Contact Us page ... 73
Figure 40: AMPed structure version 1.0 .. 92
Figure 41: AMPed structure version 2.0 ... 93
Figure 42: AMPed structure version 3.0 ... 94
Figure 43: AMPed ER diagram (High Definition) ... 109
CHAPTER 1

INTRODUCTION

Antibiotic-resistant bacteria pose a very serious threat to the medical community, as antibiotics are essential for carrying out many conventional therapeutic techniques such as surgery. Antimicrobial peptides (AMPs), also called host defense peptides (HDPs), are an essential part of the innate immune response found in all domains of life, both in invertebrate and vertebrate organisms. These short chains of amino acids have been demonstrated to kill bacteria, fungi, and viruses, and even combat the growth of cancer cells in vivo[1]. For that reason, since the 1980s, there has been a large effort to better understand and mimic their antimicrobial action in order to help fight the emergence of antibiotic-resistant bacteria, viruses such as HIV-1, and cancer [2].

Over the past few years, the problem of how to share and access an exponentially-growing amount of peptide information has increased dramatically. This has led to a demand for new software tools, analytical methods, and easy-to-use software for biological users to collect and handle large amounts of new data.

The Anti-Microbial Peptide Editable Database (“AMPed”), developed at URI for carrying out research on the structure and functions of antimicrobial proteins of up to 100 amino acids in length, is a high-quality annotated collection of data describing the properties of antimicrobial peptides. It was specifically designed to provide a user-friendly resource for interdisciplinary researchers seeking to share data and information regarding AMPs.
For this thesis the following goals have been set:

1. Transfer the old code and run both the database (DB) and tools to a newer and more secure server.

2. Populate the AMPed DB with a variety of information types from existing databases.

3. Provide new tools to allow users to manually contribute new data to the database.

4. Enhance the overall user experience.

To reach these goals, a redesigned and updated version of the bioparser software tool written in Practical Extraction and Report Language (Perl) script was implemented to parse and import bulk data downloaded from the Protein Data Bank (PDB) into the newly redesigned AMPed database in a uniform and comprehensive way [3]. This addressed a pressing user need because existing protein databases, such as Swiss-Prot, NCBI, and PDB, with broader subject matter than just peptides, are often difficult and time-consuming to search effectively for AMPs.

Since not every type of experimental data can be parsed automatically for loading into the database, there was a demonstrated need for a mechanism for manually uploading and curating experimental data and antimicrobial peptide potency. This project implements a new data import capability, allowing biological researchers from around the world ('contributors') to upload their findings directly into the AMPed database, data which, while published in summary form, may not be found in any other online database.
A graphical user interface (GUI) was designed to collect all the needed information from potential contributors, and then allows them to input data into the appropriate tables of the AMPed database at URI.

Once the information has been uploaded into the AMPed database, it goes through a preliminary evaluation process, where it is placed in a 'pending' mode, to be reviewed by Professor Martin or another designated evaluator ('reviewer'). The 'reviewer' gets notified through email whenever new data has been uploaded into the database.

The designated content reviewer can then access the newly uploaded data through a private-secured web user interface to evaluate the incoming data entries. With this tool, the reviewer is able to either approve the data, edit it, or simply reject it. The reviewer then has the option of communicating back to the contributors through email and informing them about the status of their contributions. If the reviewer approves the submitted data, the contributors will be notified, and the data will be made available to anyone searching the AMPed database. If not, the reviewer has the opportunity to explain to the contributors the reasons that the entry was rejected and to request further information and/or missing data.
REFERENCES

http://nar.oxfordjournals.org/content/44/D1/D1087.full

The Internet has become a significant instrument in our day-to-day activities - from an entertainment source to a research tool, from allowing us to pay bills online, make purchases, or perform any kind of transactions to “link people and information through computers and other digital devices.” [1] In this “information age” we live in, we are constantly exposed and bombarded with stimuli that can make us forget the primary objective of the World Wide Web: the support of group discussions, the exchange of electronic correspondence, and the access to distant databases. [2] Having the information available and accessible from a database is as important as being able to process this information and perform quick queries as well as being able to contribute to the repository.

The AMPed database has been in development for several years under the direction of Professor Lenore Martin. Its creation has been the work of dedicated students taking an unusual interdisciplinary project-oriented class, which pairs graduate students from Biology and Computer Sciences to collaborate together. David Ryder, a biochemist, and Daniel Ducharme, a computer scientist, initiated it as a class project for their CMB/CSC 522 class. George Konstantinidis then designed the first extensive database structure, known here as DBS version 1.0. [3] Tripti Garg, together with the assistance of her CMB/CSC 522 class, enhanced this structure on her thesis project, known here as DBS version 2.0. She also designed and implemented the first AMPed’s Web Interface,
known here as AWI version 1.0 [4]. In this project, with the help and guidance of Professor Martin and students in the CMB/CSC 522 classes, the database structure as well as the GUI interface has been enhanced; referenced here as DBS version 3.0 and AWI version 2.0 accordingly. The site is entirely written in PHP scripts with MySQL commands enhanced with Cascading Style Sheets (CSS) and Asynchronous JavaScript and XML (AJAX), a client-side script that communicates to and from a server/database.

AMPed Domain

Thanks to Ms. T. Wild and Chi Shen in the IT department, the AWI version 1.0 code was transferred to a newer virtualized server. That AWI version showed many errors due to the fact that it was created using a lower PHP version than the one installed on the new server. The entire AWI version 1.0 was revised and upgraded to comply with the newer PHP version. This enhancement and many others that will be explained in later chapters are part of the AMPed Web Interface version 2.0. One of these enhancements is the switch from an Internet Protocol (IP) address, a set of numerical instructions used by the computer to know the exact location of the pages, 131.128.169.79 on the old server, to a newly created and customized domain name amped.uri.edu with a new IP address, 131.128.20.101. A domain name is the readable version of the IP address.

The Hosting Server

The hosting server of the AMPed website version 1.0 was a 10+ years old Linux box locating in the Biochemistry Lab. This old server was too unstable for hosting a public
database and was frequently offline. During this project, the AMPed website was moved to a brand new virtualized Linux server running GNU/Linux.

The hosting server for the AMPed database and website went from a:

- Processor: Pentium 4 variant, 3.4Ghz (single core)
- Memory: 2 GB
- Disk space: 225 GB total

to a server with the below specifications:

- Processor: Pentium Xeon 3.3Ghz, 4 cores
- Memory: 8 GB
- Disk space: 1TB

The upload and download Internet speed for this server is about 500 Mbps download, 150 Mbps upload with a wide bandwidth. As a mode of comparison, the typical home internet service is about 25 Mbps download and 5 Mbps upload.

The following software is installed and running on the server:

- Perl 5.16.3
- PHP 5.6.27
- MySQL 5.5
- Apache 2.4.6
- Python 2.7.5
In short, the AMPed site is running on a faster, newer, more reliable and higher capacity Linux server. Running on a Linux server in a dedicated facility is more secure and stable than running on a lab-based server box. [13]

AMPed Web Flow

A web flow or web flowchart is a diagram showing a sequence of actions or movements performed by a user within the web site. On the AWI version 1.0 the flow chart displayed a few set of options from the homepage: a search option with detail results, the About Us page, and the logout and login options with the validation process.

The diagram in figure 1 displays both the AWI version 1.0 and 2.0 flow charts. From the website’s homepage users can access not only the options listed on the AWI version 1.0 web flow but many more pages depending on their access level (more information about the levels in Chapter 4, Access Levels section).
Secure Server

On AWI version 1.0 the AMPed database was accessed through a regular Hyper Text Transfer Protocol (HTTP), a procedure used to request and transmit files such as webpages and webpage components, over the Internet or other computer network [5]. Considering that the AWI version 2.0 allows users to join the AMPed database by entering personal information, such as full name, phone number, full address, and email among other information, it was evident that the database needed to be accessed from a more secure protocol. Working with the IT team, the Hyper Text Transfer Protocol
Secure (HTTPS) was adopted. This increases security for users’ login credentials by encrypting all communications between the user’s browser and the AMPed website. Figure 2 shows a graphical representation of these two protocols.

Figure 2: HTTP vs HTTPS

“HTTPS pages typically use one of two secure protocols to encrypt communications - SSL (Secure Sockets Layer) or TLS (Transport Layer Security).” [6]

The https://amped.uri.edu secure website has been encrypted using the SSL protocol. A padlock icon appears in the browser address bar next to the AMPed URL.
Figure 3: Secure icon

Clicking the icon reveals the site information and the secure certification shown in Figure 4:

![Certificate Information](image)

Figure 4: AMPed’s Certificate Information

Clicking on the Details tab, the Serial number information can be accessed: 4d 2d a1 bc f7 22 0c 07 0a eb c0 58 82 3f e6. The serial number is a unique identification number issued by a given certification authority. Having the AMPed site secured means that customer information is encrypted and cannot be intercepted while traveling across the network. A secure site increases trust in a domain and its content. It also boosts ranking in search engines tools.

“It is known that Google prefers sites that are trusted and certified.” [7]
Portability

The AMPed graphical user interface (GUI) has a mobile portable design that dynamically adjusts to the proper screen resolution. In order to achieve this cross-browser and cross-devices compatibility, the web interface was developed using the Bootstrap design.

“Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive, mobile first projects on the web.” [8]

Bootstrap is an open-source JavaScript framework developed by a team at Twitter. It provides a basic structure with Grid System, link styles, and background. It is a combination of HTML, CSS, and JavaScript code designed to help build user interface components which easily and efficiently scale the AMPed website with a single code base, from mobiles to tablets to desktops.

Bootstrap is designed to be responsive to mobile devices. And even though the bootstrap technique was used on the AMPed Web Interface version 1.0, it was not properly implemented. To ensure appropriate rendering and touch zooming, the following `<meta>` tag inside was included into the `<head>` element of all web pages:

```html
<meta name="viewport" content="width=device-width, initial-scale=1">
```

The `width=device-width` part sets the width of the page to follow the screen-width of the device (which will vary depending on the device).

The `initial-scale=1` part sets the initial zoom level when the page is first loaded by the browser. [9]
The code displaying the logo in the main page has been enhanced for a proper display on every platform as shown below.

AWI version 1.0 implementation fixed the width and height of the logo, which makes it hard to display on screens with lower resolutions:

```
<img style="width: 408px; height: 131px;" src="images/AMPed_Logo_Clear.png">
```

AWI version 2.0 implementation incorporates the bootstrap’s “.img-responsive” class. Responsive images automatically adjust to fit the size of the screen. The width and height attributes do not need to be specified:

```
<img class="img-responsive" src="images/AMPed_Logo_Clear.png">
```

It is important to note that the main core of the Bootstrap framework is the grid layout. The grid is what dynamically adjusts to the proper screen resolution.

“Grid systems are used for creating page layouts through a series of rows and columns that house your content.” [10]

With the Bootstrap’s ready-made classes, it is easy to specify how many spots in the grid system each column will occupy. Specifying the number of columns you wish to span, from the available 12, creates the grid columns. In the grid system, one can specify at which point we want the columns to stack horizontally rather than vertically to display properly on any device. The graphic below provides a visual example of how the rows and columns can be stacked:
Figure 5: Bootstrap's grid system

In HTML code, this grid is applied within a `<div>` tag using the 'class' attributes. A `<div>` tag defines a division or a section in a webpage. In order to work properly, it must define a global 'container' with specific rows and columns. A column could take the full size of the container (e.g., `div class="col-sm-12"`) or a portion of it (e.g., `div class="col-sm-4"`).

The below example shows the actual code of the AMPed main page: the main title ('AMPed Database') occupies the full width (col-sm-12) of the central section (<div> 'container') within a single row, while the 3 main columns ('Peptide database', 'Microbe database', and 'Structure information') each get an equal portion of that container (col-sm-4) under another row.

In HTML code, this grid is applied within a `<div>` tag using the 'class' attributes. A `<div>`
This code running on a desktop device generates the resulting display; the main information is displayed in columns one next to the other; on the top right-hand side there is the header with the ‘quick links’ section (Search, AMPed Tools, About Us…). The header will be further discussed in more detail, later in this chapter. Below that area is the main search link (search button), next to the AMPed main logo. At the bottom of the page is the copyright information displaying the current year. Just above that is the
footer section with links to the main sections and pages in the web site (this footer section will be discussed in more detail during this chapter).

Figure 7: Desktop’s AMPed index homepage full-width display
The display on a mobile device, on the other hand, despite having all the same information, is displayed quite differently but at the same time, is quite accessible. The below snapshots show the main sections of the site as displayed through a mobile device:

Figure 8: Mobile’s AMPed index homepage truncated width display
Branding

As important as the content of a website is, the user or customer experience is a key factor for the overall success of a site. As part of good branding, many factors have to be taken into consideration: an attractive logo, an easy to recognize style, “an intuitive design,” [4] and a unique shortcut icon - favicon.

The AMPed logo was designed by Eric Zhang, a former URI graduate student and enhanced by Tripti Garg. The logo displays the website identity and allows users to identify with the site’s core brand. It is also a shortcut to the main page; clicking on it takes you back to the AMPed homepage.

Figure 9: AMPed logo

This updated AMPed web interface, AWI version 2.0, follows the original template based on Tripti Garg’s project, AWI version 1.0.

Figure 10: favicon - shortcut icon
“It’s true, favicons are very little things, probably the least important bit of a site, but it’s attention to detail that makes a site stand out.”[11]

The favicon must also be unique. The AMPed favicon was created using as a reference the main logo’s design and adding a transparent background, which can then blend with the browser’s tab and at the same time let the image stand out.

Visitor Counter

A visitor counter or “hit counter” is a computer software program or script that records and displays the number of visitors, or hits, to a particular webpage. Once set up, these counters will automatically be incremented by one every time the web page is accessed in a web browser.

“This counter works in the back ground without providing annoying page delays for the user.” [12]

On AWI version 1.0, the counter was set up so it will increment every time a page is visited regardless of the identity of the visitor: “A visit counts all visitors, no matter how many times the same visitor may have been to the site.”[4] For this project, on AWI version 2.0, the script has been upgraded to track only a single visit per session; each distinct visitor’s session has been defined as a 12-hour period. The counter script will
only track the visit once for each visitor regardless of how many times the page is refreshed during a 12-hour session.

The way this is accomplished is as follows: the script hit_number.php tracks a cookie set per user. The counter will not increase if the cookie is still active. If the cookie has expired, the counter will increment by one and record the new number in a text file, ‘Countlog.txt’; at the same time, the cookie will be set to start tracking the visitor’s new session.

A hit counter allows the Webmaster and users to see how popular the site is. The information provided contributes to make plans for future content. On the other hand, when visitors see how popular one site is compared to others, it encourages them to spend more time exploring the content. This feature is particularly important in a newly formed website like AMPed. The visitor counter is only displayed on the main page.

AWI version 2.0 has incorporated a Google Analytics tool to provide full analytical reporting on all the visited AMPed pages. This free tool provides information to the webmaster on how visitors locate the AMPed site, identifies which pages and links visitors click the most, as well as providing demographics on the users (gender, age range, interests, etc.). It also provides the geographic location of the users using easy to understand graphic reports:

<table>
<thead>
<tr>
<th>Country</th>
<th>Acquisitions</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sessions</td>
<td>% New Sessions</td>
</tr>
<tr>
<td></td>
<td>% of Total: 100.00%</td>
<td>24.72%</td>
</tr>
<tr>
<td>United States</td>
<td>89</td>
<td>76 (85.92%)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>10 (11.24%)</td>
<td>100.00%</td>
</tr>
<tr>
<td>Russia</td>
<td>3 (0.07%)</td>
<td>60.67%</td>
</tr>
</tbody>
</table>
One of the most attractive features of using Google Analytics is how easy it can be implemented. The code is based on a few lines of JavaScript code embedded on the footer of all traceable AMPed pages:

```html
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m);
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');

ga('create', 'UA-85010664-1', 'auto');
ga('send', 'pageview');
</script>
```

Google Analytics is the most widely used web analytics algorithm. There are many more benefits in this implementation, but getting into more details can be the subject for future discussion and work.

There are pages that do not need to be tracked, like the admin sections of the AMPed site (the User and Peptide admin consoles, which will be explained in more detailed in Chapter 5).

The Header and Footer Sections

The header and footer are key elements in the AMPed site; they not only deliver the “quick links” features, but also provide enough information to encourage users to explore the whole site without getting lost. These two sections have been designed in a
way that a single PHP command is all that is needed to add the sections to all new AMPed webpages:

```php
<?php include("footer.php"); ?>
```

As Tripti Garg explained on Chapter 6.2.1 (“Reusable Components”) of her thesis:

“To achieve fast and less error prone development for edits and enhancements, this thesis built AMPed webpages using a component driven design. In order to achieve this, each page, capability and feature was analyzed to check its use and reuse on the site.” [4]

The header and footer provide the unique tone and the style followed by the AMPed site: it starts and ends with a light-green frame matching the background colors of the main page’s banner.

In AWI version 2.0, the header is dynamically designed to reflect whether the user has logged in or not. A new user will see the ‘Login’ link once he/she lands on the homepage:

![Figure 13: AMPed header before login](image)

Figure 13: AMPed header before login
However, once the user has joined the AMPed community and logged in, the header not only reflects the ‘Logout’ shortcut but also personally welcomes the customer:

![Figure 14: AMPed header after login](image1)

Except for the main page, where the logo is an appreciable part of the main banner, all the other pages include a small reference to the main logo on the top left hand side of the header, pointing back to the main page.

![Figure 15: AMPed header with logo reference on intermediate pages](image2)

The footer provides access to all the main sections of the site. The AMPed website has adopted the new trend of displaying “mega footers.” This is a larger area where more information is displayed, as opposed to the minimal layout depicted on the header (which has the optimal size and number of links displayed):
In AWI version 1.0, the copyright code in the footer section displayed a static presentation forcing the webmaster to manually update the displayed date at the beginning of each year.

In AWI version 2.0, the copyright code has been automated making the display maintenance-free.

The snippet of code below displays the command used on this enhancement:

```php
date_default_timezone_set('US/Eastern'); echo date('Y');
```

The `date('Y');` command sets the year in a four digit format.

The `date_default_timezone_set('US/Eastern');` sets the default timezone to the US Eastern region.
REFERENCES

[7] Z. Ait Bahajji and G. Illyes, “HTTPS as a ranking signal.” URL:
https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html,
Last accessed: 09/09/2016

[9] Bootstrap Get Started.URL:
http://www.w3schools.com/bootstrap/bootstrap_get_started.asp, Last
accessed: 09/09/2016

Last accessed: 10/01/2016

counter.htm, Last accessed: 10/01/2016

CHAPTER 3

THE AMPED DATABASE CONTENT

Importing content to AMPed

Initial plans called for the development of an automated bioparser using Perl that would access the National Center for Biotechnology Information (NCBI) database, the largest, most comprehensive collection of genetic and protein information that extracts relevant peptide information and then populate AMPed. The complex public list of NCBI table structures was examined to identify fields that could be used to match and populate our target database table structure. This process was more time-consuming than anticipated.

The information in the NCBI database was found to be inconsistent in format, often duplicated, and in many cases conflicting or irrelevant. Simple categories, such as the name of the peptide, were found in a variety of different fields and in varying formats. A fact to be considered is that NCBI database was developed over 25 years ago, prior to the onset of the big data revolution. Their table structure has not been properly normalized as it dramatically grew over these years; many entries included different forms of the same peptide (pre-, pro-, or individual chains) obtained under different environmental solutions without obvious structural differences (increasing the number of duplications). These ambiguities make it difficult to properly parse synthetic modifications as data was updated. In addition, the integer sequence identifiers (known
as GIs) currently in use by the NCBI are undergoing revisions and may be eliminated in
the new future. [1] Changes to the NCBI database format and the basic sequence
(FASTA) format for proteins would dramatically affect any bioparser design.

After acknowledging all these issues and with the advice of Professor Martin, a decision
was made to switch to the RCSB-Protein Data Bank (PDB) due to the fact that it was
smaller, well-curated, and directly based on the molecular structures of the peptides, an
important feature and goal of the AMPed project.

The switch to targeting the bioparser to the PDB database was time-consuming as it
meant learning and parsing a brand new file format, analyzing which fields were
applicable and which ones have non-relevant information, as well as developing a parser
that could handle the sheer amount of information available regarding the structure of
the proteins. The information from PDB is presented in a standardized text file called
the mmCIF Format. The Crystallographic Information File (CIF) data is useful for
describing small molecule structures and associated x-ray diffraction experiments.

Proposed matching entries were discovered by students in the CMB/CSC 522 class
together with the author by reviewing both raw mmCIF files of PDB entries and through
the use of the online PDB to mmCIF dictionary [2]. The dictionary also provided helpful
relative usage percentages for many fields within the database. This knowledge was
used to eliminate apparently promising PDB fields that were found to be actually used
for less than 10% of entries. This arbitrary cutoff was used in choosing fields to source
data that would provide AMPed with consistent data, and to avoid generating a large
number of AMPed entries with blank fields because there was no PDB data available. A
critical piece of information was absent from most PDB entries: genetic information.

Populating these fields in AMPed by manually accessing the NCBI database and journal articles has become part of the scope for future work to complete the database.

The switch from NCBI to the PDB database as a primary online data source also generated several new fields, such as ‘Atom_Type’ in the Atomic_Coordinates table (to record a portion of a specific molecule) and other related PDB structures and altering tables that were not a part of the original database structure (DBS) versions 1.0 and 2.0.

We found that the basic structure of the database may need to be modified from time to time to accommodate advances in molecular biology and structural biochemistry.

The BioParser

The new BioParser created for this project, known here as BP version 2.0, perpetuates the original mission stated by George Konstantinidis in his thesis, Chapter V: Parsing and Importing Data:

“In order for any loading of the data into the database there must be a process to first find the data files, download them, and then parse them.” [3]

As opposed to Konstantinidis’ parser, BP version 1.0, where the Go language was used, version 2.0 was developed using Perl (short for "Practical Extraction and Report Language").

“Perl 5 is a highly capable, feature-rich programming language with over 29 years of development.” [4]
Perl is an interpreted language; most of its implementations execute instructions directly, without the need to compile a program into machine-language instructions.

Perl has become invaluable in bioinformatics because it is good at pattern matching, specifying regular expressions, and performing file and string manipulations. The fact that it has been around for almost 3 decades speaks to its stability. It is easy to read and implement: “There's more than one way to do it.” [5] Perl is very portable - it is available for almost every platform. Finally, due to the fact that the Perl language was basically designed with a linguistic rationale, it is more intuitive to a scientist without formal computer science training.

Version 2.0 of the bioparser was developed with the goal to read and import content from a mmCIF format text file downloaded from the PDB database. However, not all files are used in the same way and their information is not represented in a consistent manner. After testing and importing bulk data from PDB into AMPed, it was clear that even this format was not consistent enough in the way the information was stored to perform an automated import of bulk data.

For example, within a mmCIF file there are two different types of tables formatted as follows:

- “List”. Each table is separated by a single line with a single character, the hash or pound sign, '#', known here as 'the separator'; the separator signals the beginning of the 'table dictionary' (any line starting with an underline, '_').
The lines below show an example of a regular .cif file table with the two different columns, one on the left is the field names, the data itself is on the right column:

```
#  _pdbx_struct_assembly.id                                 1
  _pdbx_struct_assembly.details                 author_defined_assembly
  _pdbx_struct_assembly.oligomeric_details   monomeric
  _pdbx_struct_assembly.oligomeric_count     1
• “Loop”. The ‘table loop’ displaying a list of category declarations followed by a list of data content, like in the example below:

#  loop_
  _atom_site.group_PDB
  _atom_site.type_symbol
  _atom_site.label_atom_id
  _atom_site.label_comp_id
  _atom_site.label_asym_id
  _atom_site.label_seq_id
  _atom_site.label_alt_id
  _atom_site.Cartn_x
  _atom_site.Cartn_y
  _atom_site.Cartn_z
  _atom_site.occupancy
  _atom_site.B_iso_or_equiv
  _atom_site.footnote_id
  _atom_site.auth_seq_id
  _atom_site.id
ATOM N N VAL A 11 . 25.369 30.691 11.795 1.00 17.93 . 11 1
ATOM C CA VAL A 11 . 25.970 31.965 12.332 1.00 17.75 . 11 2
ATOM C C VAL A 11 . 25.569 32.010 13.808 1.00 17.83 . 11 3
ATOM O O VAL A 11 . 24.735 33.195 14.167 1.00 17.53 . 11 4
ATOM C CB VAL A 11 . 25.379 33.146 15.540 1.00 17.66 . 11 5
ATOM C CG1 VAL A 11 . 26.911 33.346 17.018 1.00 20.51 . 11 6
ATOM C CG2 VAL A 11 . 23.933 33.309 11.872 1.00 17.12 . 11 7
ATOM N N THR A 12 . 26.095 32.930 14.590 1.00 18.97 4 12 8
ATOM C CA THR A 12 . 25.734 32.995 16.032 1.00 19.80 4 12 9
ATOM C C THR A 12 . 24.695 34.106 16.113 1.00 20.92 4 12 10
ATOM O O THR A 12 . 24.869 35.118 15.421 1.00 21.84 4 12 11
ATOM C CB THR A 12 . 26.911 33.346 17.018 1.00 20.51 4 12 12
# - - - - data truncated for brevity - - - -
Even within the same type of table, the content display varies according to the length of the information. For example, the reference entry below could be delineated in two different ways by either semi-colon (;) or by quotes (‘), which seems to be chosen based on the content’s length.

Example 1 (Entry ID: 1LXE):

```plaintext
_citation.title
; Structure of the cathelicidin motif of protegrin-3 precursor: structural insights into the activation mechanism of an antimicrobial protein.
```

Example 2 (Entry ID: 1ZMH):

```plaintext
_citation.title 'Reconstruction of the conserved beta-bulge in mammalian defensins using D-amino acids.'
```

There are many more examples like the above two of how the information from this “standardized” mmCIF format gets displayed in different ways. For this reason, in this project the bioparser was updated to a new version, BP version 3.0, which analyzes PDBML/XML formatted input files rather than the mmCIF format. PDBML/XML Format is based on XML data. XML (Extensible Markup Language) defines a set of rules for encoding documents in a format that is both human-readable and machine-readable.

“Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML (ISO 8879). Originally designed to meet the challenges of large-scale electronic publishing, XML is also playing an increasingly important role in the exchange of a wide variety of data on the Web and elsewhere.” [6]
The design goals of XML emphasize simplicity, generality, and usability across the Internet. In this format, the display of information is standardized on every file.

Going back to the two entries on our previous example (Entry IDs: 1LXE and 1ZMH), the revised examples in XML format below shows how they both display their data in a more consistent format making it easier to read and reliable to parse.

Example 1 (Entry ID: 1LXE):

   <PDBx:citation id="primary">
   . . .
   <PDBx:title>Structure of the cathelicidin motif of protegrin-3 precursor: structural insights into the activation mechanism of an antimicrobial protein.</PDBx:title>
   
Example 2 (Entry ID: 1ZMH):

   <PDBx:citation id="primary">
   . . .
   <PDBx:title>Reconstruction of the conserved beta-bulge in mammalian defensins using D-amino acids.</PDBx:title>

The new XML-based parser, BP version 3.0, using Perl-XML packages can easily and quickly read and parse the downloaded information. Appendix D provides the Perl code that can be used to read a PDBML/XML file.

The only issue that still needs to be addressed with the data downloaded from the PDB site is that it does not provide a way to easily download the needed information in bulk. For that reason, in order for the bioparser to work properly, the information must first be manually downloaded locally to the developer’s computer before it is automatically parsed to the AMPed database. An automatic downloader will be a matter of future investigation.
In general, managing and sharing information among structural biology and bioinformatics communities would be a lot easier if there were common standards for representation and storage of peptide and protein data.

Matching Tables: PDB – AMPed

Once the PDB database was selected as our primary content resource, the next step was to match our AMPed tables with their many tables. The AMPed tables, a subset of the diverse types of information available in the PDB, were redesigned to provide information needed to support the microbial peptide research focus of Professor Martin’s lab and facilitate collaboration with their colleagues worldwide. The AMPed database currently consists of 17 normalized tables, while the PDB database has 69 tables. The matching process was not a one to one comparison. The information contained within the PDB tables, compared to the ones in AMPed, was scattered over all the 69 tables and fields.

After a thorough analysis, a right set of matches was found. This result can be found in Appendix A.

Entity Relationship (ER) Diagram

To define the AMPed tables in the database we needed to revise the entity relationship (ER) diagram. The ER diagram defines the conceptual view of a database. It shows how
the tables (entities) and their fields (attributes) are defined and how they are related to each other.

The new ER diagram shown in figure 18 illustrates the logical structure of the database.

This is then mapped to the database tables upon implementation; each entity type becomes a table, each single-valued attribute becomes a column, key attributes on the entity types become the primary keys of the table. [7] For a more detailed description of the AMPed ER diagram and a higher resolution graphic, please refer to Appendix E.

Figure 18: ER diagram of AMPed database
(Courtesy of Sunandha Acharya)

In this diagram we can see how the entities are related to each other within the AMPed database. For example, at the center of the diagram we have the Peptide entity, with all its attributes (Amino Acid Sequence, Length of Sequence, Molecular Weight, etc.) and
then see how it relates to the Microbe entity by the ‘fight against’ action. This is the essence of what an antimicrobial peptide is, and forms the central structure of the database. The 3D structure of each Peptide is also represented as an entity in the diagram with its structure amino acid addresses and their respective structures and atomic coordinates branching out. There are 3 types of relationships among entities in the ER, one-to-one, one-to-many, and many-to-many relationships. For instance, the Peptide entity relates to the 3D_structure entity through the ‘In the form’ relationship. This is a one-to-many relationship, meaning that one 3D_structure instance can be associated with only one Peptides instance; however one Peptide could be associated with many 3D_structure entities. On the other hand, we have a many-to-many relationship between the Peptide entity and the Microbe one. Many different Peptides can fight multiple different Microbes.

The Tables

As previously stated, based on the experience with users of the database and attempts to parse data, the table structures were modified accordingly. In DBS version 3.0, tables like the Atomic_Coordinates, Fight_Against, Inserted_by, Country, and even the User table, were modified; some had new attributes added, others had their types modified. The modifications listed below were added to the current version 3.0 of the AMPed structure.
• The ‘Bioparser’ and ‘Approval_Status’ attributes were moved from the ‘Peptide’ table to the ‘Inserted_By’ table, this way the ‘Peptide’ table only has peptide’s pertinent information within.

• The ‘Resolution’ attribute was added to the ‘3D_Structure’ table to reflect the reliability of the experimental data structure in Angstroms. The Angstrom (Å) is an internationally recognized unit of length equal to $1 \times 10^{-10}$ meters (m) or 0.1 nanometer (nm) commonly used to express the sizes of atoms, molecules, and electromagnetic wavelengths.

• The American Type Culture Collection identification number or ‘ATCC_ID’ attribute was added to the Fight_Against table. This allows linking the AMPed site to the ATCC website, and eliminates ambiguity about bacterial strains used in testing.

• The relationship between the ‘Microbe’ and ‘Test’ tables was renamed to ‘Microbe_Test’ to be easily identified.

• At the same time the ‘Test’ table was renamed to ‘Test_Results’ to put an emphasis on the nature of the data in this table.

• In this table, a new column was added to track the Minimal Lethal Concentration, ‘MLC’, in addition to the Minimal Inhibitory Concentration since both data are equally useful and informative.

• Under the ‘User’ table the primary key’s attribute, ‘UserName’, was redefined to match the Email’s type. During the process of developing this project we decided to use the user’s email address as his/her username due to the fact that each
email address is unique; it makes more sense to have the email address also as
the username rather than creating another unique element to use as a
username.

The current tables' structure, version 3.0, as approved by Professor Martin along with
information about the fields is provided under Appendix B along with a graphical
comparison of versions 1.0 and 2.0.
The diagram below shows the current AMPed database with tables, cross-referenced
tables, primary keys and constraints applied.
Figure 19: Tables of AMPed database
AMPed Content

One of the main enhancements of the AMPed website is the fact that it can display its valuable content in a clean, clear way. A good example of that is the display of the Peptide table under the Peptide Database page (https://amped.uri.edu/peptide.php).

### Peptide Database

Browse our content or perform your own search.

<table>
<thead>
<tr>
<th>AMP ID</th>
<th>Accession No.</th>
<th>Name</th>
<th>Molecular Weight</th>
<th>Amino Acid Sequence</th>
<th>Notes</th>
<th>Length Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP2NLG</td>
<td>P60022</td>
<td>Beta-defensin 1</td>
<td>3891.533</td>
<td>DWNLQGVPAVQVSAVPTKGTIDCTVCKAAKDEK</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>AMP2NLG</td>
<td>P60022</td>
<td>Beta-defensin 1</td>
<td>3918.5503</td>
<td>CHYHCVDGCGGSKNFTNQGTVYRKAKCA</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>AMP2NLP</td>
<td>P50022</td>
<td>Beta-defensin 1</td>
<td>3952.1141</td>
<td>CHYHCVDGCGGSKNFTNQGTVYRKAKCA</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>AMP2NLG</td>
<td>P60022</td>
<td>Beta-defensin 1</td>
<td>3935.4904</td>
<td>CHYHCVDGCGGSKNFTNQGTVYRKAKCA</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>AMP2NLP</td>
<td>P60022</td>
<td>Beta-defensin 1</td>
<td>3877.5064</td>
<td>CHYHCVDGCGGSKNFTNQGTVYRKAKCA</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>AMP2NLG</td>
<td>P60022</td>
<td>Beta-defensin 1</td>
<td>3935.5425</td>
<td>CHYHCVDGCGGSKNFTNQGTVYRKAKCA</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>AMP2NLP</td>
<td>P60022</td>
<td>Beta-defensin 1</td>
<td>3877.4613</td>
<td>CHYHCVDGCGGSKNFTNQGTVYRKAKCA</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>AMP2NLG</td>
<td>P60022</td>
<td>Beta-defensin 1</td>
<td>3935.4904</td>
<td>CHYHCVDGCGGSKNFTNQGTVYRKAKCA</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>AMP100012</td>
<td>P99511</td>
<td>CALPRINulin C</td>
<td>10043.7319</td>
<td>TLEELKLEWPSYFHHKSWIKHWSHYYSLTVGKD</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>AMP100012</td>
<td>P99511</td>
<td>Defensin</td>
<td>5500.1712</td>
<td>KTQKAVGATPFTSVDGSKHCHNRLNQDQDVS</td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>

Showing 1 to 10 of 41 records.

Figure 20: Peptide Database table showing AA Sequences

The same technique is used for browsing the content of the database as well as for displaying the Users’ and Peptides admin interfaces (refer to Chapter 5 for more information). The page’s design allows the content to be displayed in a dynamic way. To create this page, a technique combining Asynchronous JavaScript and XML (AJAX) [8] with PHP scripts performs queries to the MySQL database that allows the most efficient
technique for displaying the content without having to reload all the ‘framework’ of the page but focusing exclusively on the desired content.

AJAX reduces the data traffic traveling between the client and the server, which increases response time, performance, and speed. AJAX makes asynchronous calls to a web server. This means that client browsers avoid waiting for all of the data to arrive before rendering of the information to the interface starts. Examples of applications using AJAX include: Gmail, Google Maps, YouTube, and Facebook tabs.

**Navigational Features**

In order to conveniently browse the AMPed databases and to improve user’s experience, code was developed to parse the retrieved content into sections of 10 rows at the time. A combination of AJAX and PHP code, unique in this thesis, was used to display the total number of displayed records (bottom left on the table) and the current navigational section (bottom right on the table).

![Figure 21: Browsing the tables](image)

A set of cascading style commands (CSS) were developed for this project and added to the main css file to handle the look and feel of the navigational code. Under this style, the current selected section gets displayed in a gray square with white font as opposed as the mouse-over feature, which changes the background color to a light blue with a
black font. When an option is not selected, the default style is a white background with a gray font.

This navigational feature makes the site look more attractive and professional; it improves the site’s user’s experience by helping them to understand where they are and what state they are currently in as they move through the site.
REFERENCES


CHAPTER 4

JOIN US & LOGIN PAGES

Join Us Page

Before this thesis, the only way to add a user to the AMPed database was by direct insertion into the MySQL table by the administrator. This was an inefficient and time-consuming process. This thesis provides a web interface that allows users to register themselves to the database through the “Join Us” page. This whole chapter describes the implementation done only during this project.

The "Join Us" page is more than a gateway to our AMPed community; it is also the means by which prospective members are being introduced to the community. It is the first opportunity to build trust. For that matter, one of the main goals of this project was to make the intro page and the ‘Join Us’ form easy to find and comprehensive. There are links to the "Joins Us" page on both the header and footer of the website.

![Figure 22: "Join Us" link at header section](image)

To make the application process run smoothly, we made sure that all of the information needed to complete the form is accessible; nothing detracts more from the goal of a
welcoming form than making a prospective member go look for information needed to complete the form.

Since the user’s email address also serves as his/her username, it is the first field to be input. It is also the only field to be ‘live authenticated’; using a combination of AJAX and PHP commands, an instant query is placed to the ‘User’ database to verify that the customer is not already registered. If the user’s email address is not in the database, the user can proceed to fill out all the other required information. Except for the “Building-Mail/Stop” field, the user is required to fill in all of the other information in order to register. If the user’s email already exists in the database, the customer is notified and the page is redirected to the login page. If the customer does not remember the password or cannot find the received email with the login credentials, he/she must
contact the administrator and request his/her password be reset. The password is the only element of the form that gets encrypted prior to being added to the database.

Before submitting the form, the customer has to make sure that the information provided in the “Enter Image Text” field matches the CAPTCHA image. More information about this feature will be provided further down in this chapter.

**Validation Process**

Ideally, customers will fill in any web forms with required information and submit their data entry successfully. However, people often make mistakes. This is where web form validation plays an important role in the tool design. The first and most obvious data that should be validated is the required information – information without which an operation cannot be completed successfully. Thus, validation ensures that the user provides all the necessary details to the web form and the process fails if at least one of the fields is not filled.

A user’s input can be validated either on the server side or on the client side (web browser) or both. In server-side validation, information is sent to the server and validated using the server-side language (PHP code, for this project). If the validation fails, the response is then sent back to the client’s browser, the form is refreshed, and feedback is shown. This method is secure because it will work even if JavaScript is turned off in the client’s browser and malicious users cannot easily bypass it. The downside is that users fill in the information without getting a response until after
submitting the form. This results in a slower response from the server and an annoying experience for the user even if this is the safest way to make sure all the required information has been provided.

A client-side validation process is done on the client's web browser by employing script languages such as JavaScript. With client-side validation, the form data never gets submitted if the validation fails. By the script language, a user's input can be validated simultaneously as they type (in-line form validation). This means the process is more responsive, providing a visually rich validation of their effort. Validation is being handled by JavaScript methods and the users get immediate feedback if their data validation fails.

The main drawback of client-side validation is that it relies on interpretative languages such as JavaScript. If users turn their host JavaScript interpreter off, they can easily bypass the validation.

A third way to validate a form, also within the client-side validation process and a complement of the previous method, is through the “required” attribute. The “required” attribute is a boolean feature which “specifies that an input field must be filled out before submitting the form.”[1]

The AMPed web forms implement a triple validation process. For example, in the Contact Us form, this triple validation process has been implemented for all fields; here is a closer look at the First Name field validation in JavaScript, HTML code, and PHP script.
JavaScript validation code:

```javascript
if (!isFilled(form.First_Name.value)) { //Checks if the field is not null
 errorMessage += "Your First Name.\n";
 displayMessage = true; // displays error message as a pop-up window
}
```

HTML code using the “required” attribute:

```html
<input style="height: 35px; width: 100%;" placeholder="Please enter your First Name." name="First_Name" id="First_Name" required type="text">
```

PHP code validating all required fields:

```php
if (!$First_Name || !$Last_Name || !$Email || !$comments) {
 $_SESSION['incomplete'] = "Please fill out all the fields before submitting the form. Thank you.";
 header ("location: contactus.php"); exit();
}
```

By combining server-side and two client-side validation methods, we get the best of both: fast user response, more secure data validation, and overall a better user experience.

Once a user’s required fields have been validated, experimental data is added to the appropriate tables in the AMPed database together with a ‘pending’ (revision) status.

**Registration Process**

As soon as the customer registers, the site generates an eight-digit random password based on a combination of: upper and lower case characters, the ten single-digit numbers, and the hyphen

(abcdefgihknopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-).
The password gets encrypted and along with all of the other information it gets validated and added to the User table. More information about the validation process will follow.

Once the information has been entered into the User table, an email is sent to the registrant acknowledging the registration process and providing his/her credentials. The snapshot below displays an example of the email:

![Figure 24: Welcome to AMPed registration email](image)

A similar email goes to the AMPed administrator informing them about the potential new community member. The administrator, through the “User Portal” interface has access to all the information submitted by the User and can update the User’s access level along with any other information.

By default any new registrant starts with level 4 access. More information about the access levels will follow.
Login Page

As with any major heterogeneous database, the AMPed database is an open research tool; a user does not need to be registered to browse, search, or download useful information. But in order to be a functioning part of the AMPed community one must register and log into the website.

The login page works as a threshold for many of the aspects or tools offered in AMPed.

As described in Tripti Garg’s thesis, three fields are required to submit the login form:

1. “User Name: referred to as an account name, is a string (i.e., sequence of characters) that uniquely identifies a user. User name in AMPed is a completely arbitrary value assigned by the AMPed administrator.”

2. “Password: similar to User Name, password is a string, but it differs from a user name in that it is intended to be known only to its user. Passwords do not display in clear text in the AMPed GUI.”

3. “CAPTCHA: is a graphic presented with distorted text used to tell whether the user is a human or a computer.”[2]
“When the user attempts to log into the system, a Captcha image is first generated by the system and compared to the text entered by the user. If correct, the user names and passwords entered by the user are compared with data contained in special User tables in the AMPed database. If successful, user is provided access to the AMPed site.” [2]

As implemented in AWI version 2.0, if the customer does not have an account, the login page now provides a new option to join the community and register; a link pointing to the ‘Join Us’ page has been added at the bottom of the form. There is also an option to contact the administrator, through a link to the ‘Contact Us’ page; in case the customer needs additional assistance.
Another feature added in AWI version 2.0 is that once successfully logged in, the system will welcome the user into the community. A welcome message with the user’s first name gets displayed right below the header section:

![Welcome message header](image)

**Figure 26: Welcome message header**

The message will appear on every page until the user ends the session (logs out from the site).

**Access levels**

On the previous AMPed web interface version, there was no access level implementation. This is a new enhancement unique to this AWI version 2.0.

In this implementation there are 5 access or permission levels set in the AMPed backend interface. Here they are explained in order from lower to a higher degree of access.

- Level 5. This is the lowest access level. Any user browsing or using the search tools, before being logged in, is by default a level 5 user - an anonymous user.
- Level 4. Once the user has joined the community (successfully filled out the ‘Join Us’ form) and has logged into the website, they are by default granted this access level. At this moment his/her privileges in the AMPed site are not different from those of an anonymous user except that he/she gets a more
personalized page (welcome message at the top right corner of every page and automatic self-populated contact info when using the ‘Contact Us’ form). Also the user’s IP address gets registered in the site’s log file. Access levels in the AMPed site can be changed; it is left to the discretion of the administrator or moderator to change a user’s level up or down.

- **Level 3.** This level is reserved for researchers or faculty members studying Antimicrobial Peptides. At this level the user can insert new entries and upload peptide information to the database - the ‘contribute’ page becomes available.

- **Level 2.** This level is reserved for software developers or graduate students working directly with or under Professor Martin’s supervision. They are responsible for maintaining and troubleshooting any issue with the AMPed backend.

- **Level 1.** This is the highest access level assigned by the AMPed site: the administrator level. This level provides access to modify any of the user’s information (from changing access level, to resetting passwords, as well as modifying any information submitted). At the same time, the administrator can approve or reject any contribution made to the AMPed community. Refer to Chapter 5 for more information.

**CAPTCHA**

Any web administrator or website owner is aware of the unpleasant task of dealing with spambots. A spambot is a computer program designed to collect, or harvest, e-mail
addresses from the Internet in order to build mailing lists for sending unsolicited e-mail, also known as spam. A spambot can gather e-mail addresses from Web sites, newsgroups, special-interest group (SIG) postings, and chat-room conversations. [3] Spambot activity can lead to everything from harassment of other users (spamming them with unwanted links or information), to creation of links to bad websites, or just being annoying in general.

The most efficient way to fight against these spambot web crawlers is with CAPTCHAs. The word CAPTCHA is an acronym developed by computer scientists at Carnegie Mellon University in 2000 meaning the following:

**Completely Automated Public Test to tell Computers and Humans Apart.**

In other words, these tools work as gatekeepers controlling your entry into the database by judging whether you are a human or a spamming machine.

![AMPed CAPTCHA image](image)

Computer scientists have found out that the best way to keep away spammers is to use language images. A randomly generated text is generated and the image is manipulated, so that a human can just read the same while a computer trying to capture a the text cannot.
Within the AMPed site, CAPTCHAs have been placed on the ‘Login’, ‘Join Us’, and ‘Contact Us’ pages.

This project AWI version 2.0 has built up and improved the CAPTCHA feature originally designed AWI version 1.0 but maintained its functionality:

“To create CAPTCHA for AMPed, this thesis used PHP’s GD library image functions [24][6]. The GD Graphics Library is a graphics software library for dynamically manipulating images. GD can create images composed of lines, arcs, text, other images, and multiple colors. Its native programming language is ANSI C... , for AMPed CAPTCHA, we chose and built the image in JPEG format.” [2]

To make it easier for humans to read, the CAPTCHA code has been configured to avoid the possible situation in which the image could be ambiguous. In that regard, the letters and numbers below will not appear on the image: upper case vowel “O”, upper case vowel “I”, and lower case consonant “l”, as well as the numbers: ‘0’ and ‘1’.

For this project, AWI version 2.0, the 4-character code has perfectly aligned in the center and middle within the CAPTCHA image to make it easier for users to read as opposed to the previous version 1.0 where the text appeared on the top left portion of the image generated making it harder to read and more distracting.
REFERENCES

[1] HTML <input> required Attribute. URL:
http://www.w3schools.com/tags/att_input_required.asp, Last accessed: 10/01/2016


[3] Antispam: Protect Your Website Against Spammers. URL:

[4] CAPTCHA: Telling Humans and Computers Apart Automatically. URL:
http://www.captcha.net/, Last accessed: 10/05/2016
CHAPTER 5
ADMINISTRATOR SITE

In version 1.0 of the AWI, there was not an Administrator site for controlling the function of the AMPed database. This whole chapter describes the concept and implementation of this tool performed during this thesis. Like every website there is a need for a webmaster, moderator, or administrator who oversees and safeguards the site and its content. This website ‘superintendent’ has complete access to the domain and its content. The Administrator has a set of tools tailored to his/her needs and only accessible through the main login page. Furthermore, none of the admin tools can be accessed directly (even with the URL bookmarked) unless the user has properly logged into the website and has the appropriate access level.

The snippet of code below displays this secure feature:

```php
<?php
 session_start();
 if (!$_SESSION['is_auth']) {
 $_SESSION['redirect'] = "_admin/index.php";
 header("location: ../login.php"); exit();
 }

 // Determines than only levels 1-2 can access content
 if (isset($_SESSION['Level'])) {
 if ($_SESSION['Level'] > 2) {
 header("location: ../amped_tools.php"); exit();
 }
 } else {
 header("location: ../amped_tools.php"); exit();
 }
?>
```

Figure 28: Secure access to AMPed Admin Tools
Line 2: sets and starts a new logging session (period of use) or resumes an existing session.

Line 3: checks whether the logging session has been authenticated.

Line 4: If not already set, it creates a session variable (‘redirect’) to hold the location of the current page. This will allow the site to redirect to this page after a successful login.

Line 5: redirects the page to the login form.

Line 8: if the loggin session has been authenticated it checks whether the user’s access level has been set.

Line 9: if so, it checks whether the user’s access level is 2 or 1 (only access level 1 and 2 are granted access to the admin page).

Line 10: if the user does not have the proper credentials, the page will redirect to the ‘Search’ page.

Line 12: if the user’s access level has not been set it will redirect the page to the ‘AMPed Tools’ page.

The above code makes sure that the page is only accessed by the administrator after a successful log in.
User Portal

The User Portal is the interface where the administrator can validate the user’s credentials, change the user’s access level, or reset his/her password. By default the listing is sorted in ascending order by the user’s first name. At the bottom of the table it shows the total number of records on the left hand side as well as the navigational option on the bottom right corner. These are the same convenience features explained in Chapter 3 for displaying search results.

The ‘User Portal’ has been designed so it will display all content on a single table with one column per field, as shown in figure 29.

<table>
<thead>
<tr>
<th>UserName</th>
<th>Access Level</th>
<th>First Name</th>
<th>Last Name</th>
<th>Email</th>
<th>Contact No</th>
<th>Job Title</th>
<th>Affiliation</th>
<th>Country ID</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="mailto:abraham_hersa@my.uri.edu">abraham_hersa@my.uri.edu</a></td>
<td>2</td>
<td>Abraham</td>
<td>Hersa</td>
<td><a href="mailto:abraham_hersa@my.uri.edu">abraham_hersa@my.uri.edu</a></td>
<td>401.566.5550</td>
<td>Endo Student</td>
<td>SMSLLG</td>
<td>US</td>
<td>199 HIGH STREET AVE</td>
</tr>
<tr>
<td><a href="mailto:ashleyb91459@my.uri.edu">ashleyb91459@my.uri.edu</a></td>
<td>4</td>
<td>Ashley</td>
<td>Bartels</td>
<td><a href="mailto:ashleyb91459@my.uri.edu">ashleyb91459@my.uri.edu</a></td>
<td>401.479.9952</td>
<td>Student Researcher</td>
<td>University of Rhode Island</td>
<td>US</td>
<td>77 Silver Spring Ave</td>
</tr>
<tr>
<td><a href="mailto:ekaterina.grafiteya@phystech.edu">ekaterina.grafiteya@phystech.edu</a></td>
<td>4</td>
<td>Ekaterina</td>
<td>Grafiteya</td>
<td><a href="mailto:ekaterina.grafiteya@phystech.edu">ekaterina.grafiteya@phystech.edu</a></td>
<td>409.4575.6423</td>
<td>PHD student</td>
<td>MFT</td>
<td>RU</td>
<td>Instructional Per.</td>
</tr>
<tr>
<td>user2</td>
<td>3</td>
<td>FName2</td>
<td>LName2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><a href="mailto:mikestaabeur@my.uri.edu">mikestaabeur@my.uri.edu</a></td>
<td>4</td>
<td>Ian</td>
<td>Staabeur</td>
<td><a href="mailto:mikestaabeur@my.uri.edu">mikestaabeur@my.uri.edu</a></td>
<td>401.593.6408</td>
<td>Student</td>
<td>University of Rhode Island</td>
<td>US</td>
<td>217 Walker St. apt 2</td>
</tr>
<tr>
<td><a href="mailto:joyntony2@gmail.com">joyntony2@gmail.com</a></td>
<td>4</td>
<td>Jack</td>
<td>Boynton</td>
<td><a href="mailto:joyntony2@gmail.com">joyntony2@gmail.com</a></td>
<td>401.455.4241</td>
<td>Research Student</td>
<td>University of Rhode Island</td>
<td>US</td>
<td>32 Benjamin St.</td>
</tr>
<tr>
<td><a href="mailto:hsteadhead@msao.com">hsteadhead@msao.com</a></td>
<td>4</td>
<td>Joseph</td>
<td>Stedman</td>
<td><a href="mailto:hsteadhead@msao.com">hsteadhead@msao.com</a></td>
<td>401.916.4185</td>
<td>Student</td>
<td>University of Rhode Island</td>
<td>US</td>
<td>1279 South Road</td>
</tr>
<tr>
<td><a href="mailto:joshua.gyimah@gmail.com">joshua.gyimah@gmail.com</a></td>
<td>2</td>
<td>Joshua</td>
<td>Gyimah</td>
<td><a href="mailto:joshua.gyimah@gmail.com">joshua.gyimah@gmail.com</a></td>
<td>800</td>
<td>Developer</td>
<td>URI</td>
<td>US</td>
<td></td>
</tr>
<tr>
<td><a href="mailto:Martin@uni.edu">Martin@uni.edu</a></td>
<td>1</td>
<td>Lenore</td>
<td>Martin</td>
<td><a href="mailto:Martin@uni.edu">Martin@uni.edu</a></td>
<td>401.874.5049</td>
<td>Assistant Professor</td>
<td>University of Rhode Island</td>
<td>US</td>
<td>9 East Avenue</td>
</tr>
</tbody>
</table>

Figure 29: AMPed - User Portal snapshot
The administrator can access and modify any entry by clicking on the UserName column. This will pop up a new window, which will allow the administrator to modify/update the user’s entry.

![Figure 30: User's Portal pop-up window](image)

Other than the UserName, all other fields can be modified. Once selected, the username is the only field that will remain the same for a specific user. As indicated before, the username and the email share the same information; the project wanted to minimize the user’s ability to create their own username and password. Since the email address is unique to any user, it was decided that it will also be used as the username. Within this pop-up window there is a ‘Note’ field where the administrator can record any pertinent comments or notes regarding the user. Those comments cannot be
accessed or seen by the customer. Once the entry has been updated and the pop-up
window is closed, the User Portal interface gets automatically updated to reflect the
new information or status.

**Peptide Portal**

As with the User portal explained in the previous section, the Peptide portal is unique to
AWI version 2.0. When a new entry gets added to the peptide database, by design it
goes into a “Pending” approval state. Peptide entries with this status will not appear on
the public listing when browsing the Peptide database page, nor will they get displayed
through the search result pages. Only the administrator can review and approve any
entry for public release.

The Peptide Portal follows the same design as the User Portal - the information is
displayed in a table with columns marking each field. Below the table the total number
of peptides in pending review mode is displayed on the left hand side as well as the
navigational option on the bottom right corner.

The Administrator has the power to approve, reject, or leave in pending mode any
uploaded data or contribution. At the same time, the reviewer can modify (update) any
of their submitted fields in the AMPed database except for the AMP_ID (designated by
the AMPed tool) and the contributor’s information (those fields are displayed in the
pop-up window with a grey background).
Table: Fetched data from Peptide: AMP1L34

<table>
<thead>
<tr>
<th>AMP_ID</th>
<th>AMP1L34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Pending</td>
</tr>
<tr>
<td>Peptide</td>
<td>Data five</td>
</tr>
<tr>
<td>AA Sequence</td>
<td>DHYACVSSGQQLYACPIFTHCDGTCYR3MKDCD</td>
</tr>
</tbody>
</table>

**Figure 31: Peptide contribution by user**

Through the Peptide console, the data reviewer is provided with email communication with the data contributor in case more information is needed before approving the contribution and making it publicly available for anyone to access.
CHAPTER 6

SEARCH SECTION

Search Page

The “Search” page implemented on this project has respected the original goal and design philosophy set out by AWI version 1.0:

“The AMPed search needed to be flexible to meet the needs of the range from expert to novice users and be able to process a variety of criterions through tens of thousands of records in the AMPed database tables. The search had to be designed for speed and accuracy. The search also had to manage a variety of data types.” [1]

To be an effective page, a clean and concise design of the search page was implemented. Only a few of the most relevant search keys were allowed into the “Search” page; these selected fields are:

- Peptide Name
- Amino Acid Sequence
- ATCC Number
- Species Name
- AMP ID, and
- PDB ID.
This thesis has enhanced the overall user experience by adding a ‘placeholder’ attribute to each input field. The ‘placeholder’ attribute specifies a short hint that describes the expected value of an input field. [2] The ‘hint’ disappears as soon as the user starts typing in content. For example, “Enter a peptide name...” is the placeholder attribute for the Peptide Name field.

Figure 32 displays the current state of the page as implemented in the AWI version 2.0:
This project has also enhanced the AWI version 1.0 by adding a “live search” feature on all the pages and forms, where a query to the database is required. By applying an AJAX-PHP combination, the goal is to see possible search results without needing to refresh the page or redirecting to a results page.

The AJAX code has been customized to work with all the major browsers (Firefox, Chrome, Opera, Safari, and Internet Explorer).

The code snippet below shows the AJAX code setting up an event listener to capture the user’s keystrokes. Based on this input, the captured information gets sent to a PHP script, which at the same time performs a real-time query to the database and submits the result back to the AJAX code, for immediate display on the current page.

```javascript
function showPeptide(str)
{
 if (str.length==0)
 {
 document.getElementById("peptide-1st").innerHTML="";
 document.getElementById("peptide-1st").style.border="0px";
 return;
 }
 document.getElementById('peptide-1st').style.display='block';
 if (window.XMLHttpRequest)
 // code for IET+, Firefox, Chrome, Opera, Safari
 xmlhttp=new XMLHttpRequest();
 else
 {
 // code for IE6, IE5
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
 }
 xmlhttp.onreadystatechange=function()
 {
 document.getElementById("peptide-1st").innerHTML=xmlhttp.responseText;
 document.getElementById("peptide-1st").style.border="1px solid #555555";
 }
 xmlhttp.open("GET","get-peptides.php?searchstr=\"+str+\"true\"\);
 xmlhttp.send();
}
</script>

Figure 33: AJAX code to display Peptides results as the entry is input
When the information the user is looking for is present in the database, a list of possible options appears right below the input text, as shown in the screenshot below. The user can easily click to select any of the possible matches listed. To make it easier to identify the nature of the hit, the resulting list highlights all the entries matching the original input string in a red font.

An additional feature has been added to the ‘Amino Acid Sequence’ input field, in that any character typed in automatically converts to uppercase; that is how an Amino Acid Sequence is traditionally displayed, saving the user the trouble of holding down the Shift key.

By design, the match list has a maximum of 7 ‘unique’ rows displayed per hit; if there is more than one exact match, the list will only display one occurrence.

If none of the characters on the search string matches an entry in the database, a ‘no suggestion’ message is displayed instead of the list option. The ‘no suggestion’ message cannot be clicked on (selected) like it can when a matching hit is encountered.
Due to the biological nature of an amino acid sequence string, the search page offers two options for searching: by default the search engine provides a ‘partial’ match search but one can also choose to only perform a ‘full match.’

“The full and partial search option on AA sequences allows researchers to quickly and accurately find results that might be of interest to them. The example below highlights how a full and partial string search using an amino acid sequence provides different results when searched via AMPed.” [1]
Search Criteria

The search page allows a user to search for specific information in the AMPed database. Once the form is submitted, a list of all the entries matching the criteria will be displayed along with the number of results found.

The information will be displayed in a table with the four main columns: AMP ID, Accession Number, Peptide Name, and the Amino Acid Sequence.

The AMP ID column is a link to a page with more detailed information about each peptide. In this page, along with the basic information, the user can see information about the Microbes and Species related to the Peptide, its structure, and if available, the Journal (with Article’s Title, Author(s), year of publication, etc.) in which additional information appears.

The Accession Number column is linked directly to the relevant entries in the UniProt database. The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data maintained by the European Molecular Biology Consortium. [3]

Advanced Search

The ‘Advanced Search’ page allows a user to search for specific types of information in the AMPed database. A user can pick and choose one or more types of data to search for throughout the entire database.
The advance as well as the basic search features are based on fulfilling two main goals: quality and speed. With the growing demand for peptide research, and the need for fast and accurate results, the AMPed website provides the needed tools for this area of research to succeed and grow.

These tools are highly customizable and can adapt quickly to any future requirements.
REFERENCES

Chapter 7

ABOUT US

The ‘About Us’ page provides an introduction to the team, the AMPed project, as well as the team’s location. It also provides a link to join the community through the ‘Join Us’ page. In the AWI version 1.0 it only provided a placeholder for the information. The current AWI version, 2.0, has provided actual and meaningful content.

Figure 38: About Us page

For future enhancements, the ‘About Us’ should include the mission and vision of the AMPed site.
CHAPTER 8

CONTACT US

Many websites neglect the importance of having contact information in an easy to find place. Some others do not even bother to have one. The 'Contact Us' page is in fact one of the top four most important pages on a website. [1] With our primary goal of creating an online community of antimicrobial researchers from around the world, this is an essential part of opening a dialog between our university and the world.

This project has designed and implemented a fully functional ‘Contact Us’ page, not present on the previous AWI version, where users can submit questions, comments, or suggestions. The content of this page clearly states its purpose; it provides different methods of contacting the site owners, and it has a defined ‘call to action.’ In the AMPed site, the Contact Us page is linked from the footer section of all web pages.

If an anonymous user is accessing the page, the form will start with the required fields empty (as shown in figure 39). On the other hand, if the user has already registered and logged into the community, the form will be auto-populated with his/her first name, last name, and email, making it easier for the user to submit multiple times.

In order to prevent spam, the CAPTCHA field has been incorporated within the form.

All fields are required in order to submit the form.
Once the form is submitted, the administrator will receive an email with all the pertinent information. The administrator will be able to reply back using the customized and newly created AMPed email: `amped@uri.edu`. This customized email was created as a direct request from this project’s main developer, to keep the lines of communication with the AMPed community uncluttered.

The Contact Us page increases the sense of community on the AMPed site.
REFERENCES

Chapter 9

CONCLUSION AND FUTURE WORK

The Anti-Microbial Peptide Editable Database (AMPed) is a high quality annotated collection of data describing antimicrobial peptides, their sources, and their targets. It has been in development for several years under the direction of Professor Lenore Martin as part of the project oriented graduate class, CMB/CSS 522 Bioinformatics, at URI. Its creation has been the work of many dedicated undergraduate and graduate students, as well as guided by many Professors and graduate advisors.

With Professor Martin’s guidance, all the goals set at the beginning and during this project to date have been achieved. The primary goal was to globally improve AMPed, with a focus on supporting the ability for the research community to insert and Professor Martin to curate the data. However, in order to complete the interface, several other system and database design issues had to be resolved. The below listing summarizes the achieved goals.

- Transferred the AMPed code to a secure new virtual server with higher capacity and faster performance.
- Established the AMPed’s own domain, amped.uri.edu, and its own administrator email account, amped@uri.edu.
- Enhanced the PHP code to run under a new secure protocol server and to make it portable; easy to access and run from any web device.
- Populated the AMPed site with a new Bioparser capable of reading and manipulating CIF and XML files from the PDB site.
• Enhanced visitor counter to track unique visitors rather than page loads.
• Customized header with user level’s access and greeting message.
• Enhanced the footer section with google analytics tool.
• Automated copyright year display.
• Enhanced user experience by adding live search capability and all needed pages.
• Linked information to other databases, such as UniProtKB and PDB sites
• Implemented the Join Us page which adds a user to the database and communicates it to the administrator
• Developed an access level implementation
• Enhanced the AMPed community by adding a contribution tool to manually insert peptide information
• Provided a Peptides Portal interface to monitor peptide contributions.

In short, the AMPed database and website has all the user and administrative features to become the number one repository of antimicrobial peptide information worldwide. Appendix C shows a comparison of AMPed features with the other antimicrobial peptide repositories currently found online.

In spite of all these accomplishments, the work in the AMPed site is not done; many new features could be and should be added to the AMPed website. As previously mentioned in Chapter 7, the Mission and Vision of the site should be available under the ‘About Us’ page.
Another important enhancement to consider is a ‘Privacy Policy’. Since this community is collecting personal information, it is a good idea to assure the customers that their private information will not be shared with any third party company without their written permission. In addition to this, a ‘Terms of Use’ (‘Terms and Conditions’) should be added to the site. A website terms and conditions page may be used to satisfy legal disclosure obligations, such as granting users rights to use website materials, impose acceptable use obligations, to limit (or attempt to limit) warranties and disclaim liabilities, and more generally to structure the legal relationships between the website operator and users. [1]

For this project, all the AMPed webpages are being tracked with Google Analytics code. In order to get the maximum benefits of this feature, further work needs to be done to analyze and report on visitor’s activities, check what pages or sections are more popular, and enhance the pages needing more visibility.

Finally, as has already been stated, a new tool to automatically download content from a variety of sources and parse it automatically to the AMPed site might need to be developed, to continue populating the site with the ever-expanding amount of new, validated content.
REFERENCES

GLOSSARY

AMPed
The Antimicrobial Peptide Editable Database developed at the University of Rhode Island under the direction of Professor Lenore Martin.

Antimicrobial
An antimicrobial is an agent that kills microorganisms or inhibits their growth, which includes antibacterial, antiviral, antifungal and antiprotozoal agents.

AJAX
AJAX stands for Asynchronous JavaScript and XML. AJAX is a new technique for creating better, faster, and more interactive web applications with the help of XML, HTML, CSS, and Java Script. Ajax uses XHTML for content, CSS for presentation, along with Document Object Model and JavaScript for dynamic content display.

Amino acid
Organic compound that serves as the building blocks of proteins.

AWI
AMPed Web Interface; the group of web pages and forms that access the AMPed database.

Bioparser
Script designed to download information from PDB database, annotate, and then populate the AMPed database.

Bootstrap
Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive, mobile first projects on the web.

CSS
Cascading Style Sheets (CSS) is a style sheet language used for describing the presentation of a document written in a markup language.

DBS

Database Structure; the structure of the tables conforming the AMPed database.

Dehydration synthesis

Dehydration synthesis is the reaction that occurs when two amino acids are initially bound together during protein synthesis. The reaction results in the release of water, a hydrogen from the amino end of the new amino acid and an hydroxide ion from the carboxyl end of the existing protein.

FASTA

A text-based format for representing either nucleotide sequences or peptide sequences, in which nucleotides or amino acids are represented using single-letter codes.

Gestalt Principle

Gestalt principle or gestalt laws are rules of the organization of perceptual scenes. It describes how people organize visual elements into groups or unified wholes. Gestalt is also known as the "Law of Simplicity".

MIC

Minimum inhibitory concentration (MIC) is the lowest concentration of the peptide that will inhibit the growth of a targeted microorganism.

Molecular weight

Molecular weight is the total mass of a given peptide as determined by the sum of the composite amino acids (as determined by NIST) minus the mass of water for each peptide bond in the peptide.

MySQL

MySQL is an open-source relational database management system (RDBMS) created by a Swedish company, MySQL AB.
NCBI

National Center for Biotechnology Information (NCBI) is a US government resource that develops, distributes, supports, and coordinates access to a variety of databases and software for the scientific and medical communities.

NMR spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a technique used to determine the structure of a compound.

PDB

Protein Data Bank (PDB) is a repository of curated 3D biological structures, usually proteins, populated by direct input from an international community of scientists. PDB utilizes different file formats (mmCif/XML) to display protein structure information.

Peptide

A small protein usually less than 100 amino acids in length.

Perl

Perl (short for "Practical Extraction and Report Language") is a highly capable, feature-rich programming language with over 29 years of development. Perl runs on over 100 platforms from portables to mainframes and is suitable for both rapid prototyping and large scale development projects.

Phi/Psi

Phi and Psi angles are the torsional angles around the backbone of an amino acid within a protein.

Pre- / Pro-

Prefixes in protein terminology that indicate various nascent forms of the peptide prior to activation. Pro- refers to an inactive peptide that requires additional post-transcriptional modifications prior to activation. Pre- indicates that an amino acid sequence requires additional cleavage prior to generating an active peptide.
Secondary structure

The secondary structures are the localized arrangements of amino acids within a peptide resulting from interactions between the amino acid side-chains as well as between the side-chains and the environment.

Side-chains

Side-chains are unique to each amino acid and give the amino acid unique chemical and physical properties.

Virtual Server

A virtual server is software that functions as if it were a physical server. It allows for easy mobility that a physical server could not provide.

XML

Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding documents in a format which is both human-readable and machine-readable. The design goals of XML emphasize simplicity, generality and usability across the Internet. It is a textual data format with strong support via Unicode for different human languages.

X-ray crystallography

X-ray crystallography is a technique used to determine the structure of a compound.
APPENDIX A

Chart matching the AMPed and PDB tables

<table>
<thead>
<tr>
<th>AMPed Tables</th>
<th>PDB tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptide</td>
<td>struct_ref</td>
</tr>
<tr>
<td>Attribute</td>
<td>biol_id</td>
</tr>
<tr>
<td>AMP_ID</td>
<td>db_code</td>
</tr>
<tr>
<td>Accession_No</td>
<td>db_name</td>
</tr>
<tr>
<td>Name</td>
<td>entity_id</td>
</tr>
<tr>
<td>AA_sequence</td>
<td>id</td>
</tr>
<tr>
<td>Mol_weight</td>
<td>pdbx_align_begin</td>
</tr>
<tr>
<td>Notes</td>
<td>pdbx_db_accession</td>
</tr>
<tr>
<td>Length_seq</td>
<td>pdbx_seq_one_letter_code</td>
</tr>
<tr>
<td>entity_poly</td>
<td>pdbx_database_related</td>
</tr>
<tr>
<td>entity_id</td>
<td>content_type</td>
</tr>
<tr>
<td>nstd_linkage</td>
<td>db_id</td>
</tr>
<tr>
<td>nstd_monomer</td>
<td>db_name</td>
</tr>
<tr>
<td>pdbx_seq_one_letter_code</td>
<td>details</td>
</tr>
<tr>
<td>pdbx_seq_one_letter_code_can</td>
<td></td>
</tr>
<tr>
<td>pdbx_strand_id</td>
<td></td>
</tr>
<tr>
<td>Amino_Acid_Address</td>
<td>entity_poly_seq</td>
</tr>
<tr>
<td>Attribute</td>
<td>entity_id</td>
</tr>
<tr>
<td>AMP_ID</td>
<td>hetero</td>
</tr>
<tr>
<td>PDB_ID</td>
<td></td>
</tr>
<tr>
<td>AA_Names</td>
<td>mon_id</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Chain</td>
<td>num</td>
</tr>
<tr>
<td>2nd_structure</td>
<td></td>
</tr>
<tr>
<td>Sequence_AA_No</td>
<td></td>
</tr>
<tr>
<td>hydro</td>
<td></td>
</tr>
<tr>
<td>Phi</td>
<td>auth_asym_id</td>
</tr>
<tr>
<td>Psi</td>
<td>auth_comp_id</td>
</tr>
<tr>
<td></td>
<td>id</td>
</tr>
<tr>
<td>PDB_ins_code</td>
<td></td>
</tr>
<tr>
<td>PDB_model_num</td>
<td></td>
</tr>
<tr>
<td>phi</td>
<td></td>
</tr>
<tr>
<td>psi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom_coord_Source</th>
<th>exptl</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>crystals_number</td>
<td>entry_id</td>
</tr>
<tr>
<td>Source_ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source_Name</td>
<td>method</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic_Coordinates</th>
<th>atom_site</th>
<th>entity_poly_seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>auth_asym_id</td>
<td>entity_id</td>
</tr>
<tr>
<td>AA_Names</td>
<td>auth_atom_id</td>
<td>hetero</td>
</tr>
<tr>
<td>Atom_num</td>
<td>auth_comp_id</td>
<td>mon_id</td>
</tr>
<tr>
<td>Atom_Names</td>
<td>auth_seq_id</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>B_iso_or_equiv</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>B_iso_or_equiv_esd</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Cartn_x</td>
<td></td>
</tr>
<tr>
<td>Atom_Types</td>
<td>Cartn_x_esd</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>Cartn_y</td>
<td></td>
</tr>
<tr>
<td>Sequence_AA_No</td>
<td>Cartn_y_esd</td>
<td></td>
</tr>
<tr>
<td>Chain</td>
<td>Cartn_z</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cartn_z_esd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>group_PDB</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>label_alt_id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>label_asym_id</td>
<td>label_atom_id</td>
<td>label_comp_id</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Gene</td>
<td>entity_src_nat</td>
<td>Attribute</td>
</tr>
<tr>
<td>Attribute</td>
<td>book_publisher</td>
<td>citation</td>
</tr>
<tr>
<td>Attribute</td>
<td>book_publisher</td>
<td>citation</td>
</tr>
<tr>
<td>AMP_ID</td>
<td>country</td>
<td>name</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Abstract</td>
<td>id</td>
<td>ordinal</td>
</tr>
<tr>
<td>Doi</td>
<td>journal_abbrev</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>journal_id_ASTMD</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>journal_id_CSD</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>journal_id_ISSN</td>
<td></td>
</tr>
<tr>
<td>Article_Title</td>
<td>journal_volume</td>
<td></td>
</tr>
<tr>
<td>Journal_Article</td>
<td>page_first</td>
<td></td>
</tr>
<tr>
<td>Start_Page</td>
<td>page_last</td>
<td></td>
</tr>
<tr>
<td>Start_End</td>
<td>pdbx_database_id.DOI</td>
<td></td>
</tr>
<tr>
<td>Pages</td>
<td>*</td>
<td>pdbx_database_id_PubMed</td>
</tr>
<tr>
<td>Article_ID</td>
<td>title</td>
<td></td>
</tr>
<tr>
<td></td>
<td>year</td>
<td></td>
</tr>
</tbody>
</table>

* = 1 + (_citation.page_last - _citation.page_first)
APPENDIX B

Database Structure and Schema of AMPed

Database Structure

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D_Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMP_ID</td>
<td>varchar(15)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDB_ID</td>
<td>varchar(10)</td>
<td>NO</td>
<td>PRI</td>
<td></td>
</tr>
<tr>
<td>Source_ID</td>
<td>varchar(5)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>Decimal(5,3)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access_Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access_Level</td>
<td>int(2)</td>
<td>NO</td>
<td>PRI</td>
<td>0</td>
</tr>
<tr>
<td>Description</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino_Acid_Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMP_ID</td>
<td>varchar(15)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phi</td>
<td>int(3)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psi</td>
<td>int(3)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd_structure</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydro</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain</td>
<td>varchar(5)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence_AA_No</td>
<td>int(10)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA_Symbol</td>
<td>char(1)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMP_ID</td>
<td>varchar(15)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doi</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>year(4)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Article_Title</td>
<td>varchar(100)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pages</td>
<td>int(5)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal_title</td>
<td>varchar(100)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Type</td>
<td>Key</td>
<td>Default</td>
<td>Extra</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>-----</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Article_ID</td>
<td>varchar(5)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End_Page</td>
<td>int(10)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start_Page</td>
<td>int(10)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Atom_coord_Source

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source_Name</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source_ID</td>
<td>varchar(5)</td>
<td>NO</td>
<td></td>
<td>PRI</td>
</tr>
</tbody>
</table>

Atomic_Coordinates

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>decimal(6,3)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>decimal(6,3)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>decimal(6,3)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA_Symbol</td>
<td>char(1)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>decimal(6,2)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom_num</td>
<td>int(10)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom_Names</td>
<td>varchar(10)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom_Types</td>
<td>varchar(10)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence_AA_No</td>
<td>int(10)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain</td>
<td>varchar(5)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Country

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country_ID</td>
<td>varchar(3)</td>
<td>NO</td>
<td></td>
<td>PRI</td>
</tr>
<tr>
<td>Country</td>
<td>varchar(40)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fight_Against

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP_ID</td>
<td>varchar(15)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbe_ID</td>
<td>varchar(20)</td>
<td>NO</td>
<td>MUL</td>
<td></td>
</tr>
<tr>
<td>ATCC_ID</td>
<td>int(11)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gene

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA_Seq</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chromosome_num</td>
<td>varchar(255)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA_Sequence</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Type</td>
<td>Key</td>
<td>Default</td>
<td>Extra</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>-----</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Genome_ID</td>
<td>int(11)</td>
<td>YES</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>chrom_address_start</td>
<td>decimal(30,20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chrom_address_end</td>
<td>decimal(30,20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genome_Name</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA_ID</td>
<td>varchar(20)</td>
<td>NO</td>
<td>PRI</td>
<td></td>
</tr>
<tr>
<td>RNA_ID</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMP_ID</td>
<td>varchar(15)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inserted_By</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMP_ID</td>
<td>varchar(15)</td>
<td>NO</td>
<td>PRI</td>
<td></td>
</tr>
<tr>
<td>UserName</td>
<td>varchar(45)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioparser</td>
<td>int(11)</td>
<td>YES</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Approval_Status</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method_Name</td>
<td>varchar(20)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method_ID</td>
<td>varchar(10)</td>
<td>NO</td>
<td>PRI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species_Name</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbe_Type</td>
<td>varchar(50)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbe_ID</td>
<td>varchar(20)</td>
<td>NO</td>
<td>PRI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMP_ID</td>
<td>varchar(15)</td>
<td>NO</td>
<td>PRI</td>
<td></td>
</tr>
<tr>
<td>Accession_No</td>
<td>varchar(15)</td>
<td>NO</td>
<td>MUL</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mol_Weight</td>
<td>varchar(15)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA_Sequence</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length_seq</td>
<td>int(10)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results_of_Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbe_ID</td>
<td>varchar(20)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Type</td>
<td>Key</td>
<td>Default</td>
<td>Extra</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>-----</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Test_ID</td>
<td>varchar(10)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC</td>
<td>decimal(10,0)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UOM</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method_ID</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbe_ID</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test_ID</td>
<td>varchar(10)</td>
<td>NO</td>
<td>PRI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test_ID</td>
<td>varchar(10)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method_ID</td>
<td>varchar(10)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserName</td>
<td>varchar(45)</td>
<td>NO</td>
<td>PRI</td>
<td></td>
</tr>
<tr>
<td>Password</td>
<td>varchar(20)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access_Level</td>
<td>int(2)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First_Name</td>
<td>varchar(20)</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last_Name</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email</td>
<td>varchar(45)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact_No</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job_Title</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affiliation</td>
<td>varchar(50)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country_ID</td>
<td>varchar(5)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>varchar(50)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>varchar(20)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zip_Code</td>
<td>varchar(15)</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>text</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: AMPed tables with attributes and data type

The references about these tables are as follows:

- **Field** indicates the table column name.
• **Type** indicates the column data type: int, varchar, text, etc.

• **Key** fields do not permit NULL values as indicated by “NO” in the Key column.

• The **Default** field indicates whether the column is indexed (an indexed column stores copies of the values from that column in a data structure, allowing fast lookups for the rows with the corresponding column values):

 o If empty, the column is either not indexed or is indexed only as a secondary column in a multiple-column, nonunique index.

 o If **PRI**, the column is a PRIMARY KEY or is one of the columns in a multiple-column PRIMARY KEY.

 o If **UNI**, the column is the first column of a UNIQUE index.
 (A UNIQUE index permits multiple NULL values, but you can tell whether the column permits NULL by checking the Null field.)

 o If **MUL**, the column is the first column of a nonunique index in which multiple occurrences of a given value are permitted within the column.

• The **Extra** field contains any additional information that is available about a given column.

Database Schema

Over the past three years the AMPed structure has suffered many modifications designed to normalize the database and to improve its functionality. Figure 40 shows the database structure version 1.0 as designed by George Konstantinidis. Figure 41 shows the DBS version 2.0 as improved by Tripti Garg, while figure 42 displays the current version, 3.0 improved during this thesis.
Figure 41: AMPed structure version 2.0
Figure 42: AMPed structure version 3.0
APPENDIX C

Comparison between AMPed and other antimicrobial peptides repositories online

The table below, originally collected by Tripti Garg and updated for this project compares other antimicrobial peptides repositories online with URI’s AMPed’s site. The websites being compared are:

- The Antimicrobial Peptide Database (APD).
 http://aps.unmc.edu/AP/main.php
- Yet another db of antimicrobial peptides (YADAMP).
 http://yadamp.unisa.it/
- A database linking antimicrobial peptide (LAMP).
 http://biotechlab.fudan.edu.cn/database/lamp/

<table>
<thead>
<tr>
<th>Category</th>
<th>YADAMP</th>
<th>APD</th>
<th>LAMP</th>
<th>AMPed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Privacy</td>
<td>N/A</td>
<td>N/A</td>
<td>Store private information in cookie that is accessible</td>
<td>Cookie created but destroyed after the session</td>
</tr>
<tr>
<td>Password</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CAPTCHA</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Access Request</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Secure access</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>(HTTPS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>YADAMP</td>
<td>APD</td>
<td>LAMP</td>
<td>AMPed</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Design and Accessibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical limits of visual acuity</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Limits of absolute memory</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Gestalt principle</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Website Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent Navigation</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Consistent Footer</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SiteMap</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Visible Branding</td>
<td>Yes</td>
<td>Yes, but not on every page</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>About the Team</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Contact Us</td>
<td>Yes, e-mail only</td>
<td>Yes</td>
<td>Yes, e-mail only</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Visits</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Track visits per session</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Database Statistics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Own Domain</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Favicon</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Website’s Admin email</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Portability (desktops, tables, mobiles)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Category</td>
<td>YADAMP</td>
<td>APD</td>
<td>LAMP</td>
<td>AMPed</td>
</tr>
<tr>
<td>Website Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptides</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Genomes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3D Structures</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Amino Acids</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Microbes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Test/Method</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Atomic Coordinates</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Source</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 2: AMPed comparison with other Database repositories
(Courtesy of Tripti Garg and enhanced during this project)

<table>
<thead>
<tr>
<th>Category</th>
<th>YADAMP</th>
<th>APD</th>
<th>LAMP</th>
<th>AMPed</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fight Against</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Uniprot ID</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Author</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Length</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Search</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexibility</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Visual Acuity</td>
<td>Low (search buttons are very small)</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Number of Search Criterion</td>
<td>26</td>
<td>14</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Summary Results</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Detailed Results</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Results Returned</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Search Criteria for Peptide Sequence</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes, both Partial and Full Search</td>
</tr>
</tbody>
</table>

Table 2: AMPed comparison with other Database repositories (Courtesy of Tripti Garg and enhanced during this project)
APPENDIX D

Perl code to read and parse a PDBML/XML file and output run

Main script for reading an XML file.

#!/usr/bin/perl

--
Perl program to read and parse a PDBML/XML file:
read-pdb-xml.pl file
--
Written by: AbrAhAm HerrerA (2016)
--

importing XML module
use XML::Simple;

create object
$xml = new XML::Simple;

call to additional perl script required to calculate the molecular weight
by importing the weightMol() function
require "molWeight.pl";

read single XML file; example:
D:\wdir\URI\thesis\RCSB-PDB\AntiM Pep-from-PDB-161017\1zmh.xml
$file = " AntiM Pep-from-PDB-161017/1zmh.xml";
print "Reading file: $file.

$data = $xml->XMLin($file);

access XML data
print "Peptide table\n";
$AMP_ID = "AMP",$data->{datablockName};
print "AMP_ID: $AMP_ID\n";

$Accession_No = $data->{PDBx:struct_refCategory}->{PDBx:struct_ref}->{PDBx:pdbx_db_accession};
print "Accession_No: $Accession_No\n";

$Name = $data->{PDBx:structCategory}->{PDBx:struct}->{PDBx:pdbx_descriptor};
print "Name: $Name\n";
$AA_sequence = $data->{'PDBx:entity_polyCategory'}->{'PDBx:entity_poly'}->
{'PDBx: pdbx_seq_one_letter_code_can'};
print "AA_sequence: $AA_sequence\n";

$Mol_weight = weightMol($AA_sequence);
print "Mol_weight: $Mol_weight\n";

$Notes = $data->{'PDBx: pdbx_database_relatedCategory'}->
{'PDBx: pdbx_database_related'}[0]->{'PDBx: details'};
print "Notes: $Notes\n";

$Length_seq = length $AA_sequence;
print "Length_seq: $Length_seq\n";
print "\n";

print "3D_Structure table\n";
print "AMP_ID: $AMP_ID\n";

$PDB_ID = $data->{'PDBx: entryCategory'}->{'PDBx: entry'}->{'id'};
print "PDB_ID: $PDB_ID\n";
print "\n";

print "Amino_Acid_Address table\n";
print "AMP_ID: $AMP_ID\n";

$AA_Names = $data->{'PDBx: entity_poly_seqCategory'}->
{'PDBx: entity_poly_seq'}[0]->
{'mon_id'};
print "AA_Names: $AA_Names\n";

$Chain = $data->{'PDBx: entity_polyCategory'}->
{'PDBx: entity_poly'}->
{'PDBx: pdbx_strand_id'};
print "Chain: $Chain\n";

print "Length_seq: $Length_seq\n";

$Sequence_AA_No = $data->{'PDBx: entity_poly_seqCategory'}-
->{'PDBx: entity_poly_seq'}[0]-
->{'num'};
print "Sequence_AA_No: $Sequence_AA_No\n";

$Phi = $data->{'PDBx: pdbx_validate_torsionCategory'}->
{'PDBx: pdbx_validate_torsion'}->
{'1'}->{'PDBx: phi'};
print "Phi: $Phi\n";
$Psi = $data->{'PDBx: pdbx_validate_torsionCategory'}->
{'PDBx: pdbx_validate_torsion'}->
{'1'}->{'PDBx: psi'};
print "Psi: $Psi\n";
print "\n";

print "Atomic_Coordinates table\n";
$numAtomCoords = scalar keys(%{data->{'PDBx:atom_siteCategory'}->
{PDBx:atom_site'}});
print "MULTIPLE ENTRIES IN DATABASE (Total # of entries: $numAtomCoords)\n";
print "Below is an example; entries 1 -- 10\n";
for (my $id = 1; $id < 11; $id++) {
 $Atom_num = $id;
 print "Atom_num: $Atom_num\n";
 $AA_Names = data->{'PDBx:atom_siteCategory'}->{'PDBx:atom_site'}->{$id}-
{PDBx:auth_comp_id'};
 print "AA_Names: $AA_Names\n";
 $Atom_Name = data->{'PDBx:atom_siteCategory'}->{'PDBx:atom_site'}->{$id}-
{PDBx:type_symbol'};
 print "Atom_Name: $Atom_Name\n";
 $X = data->{'PDBx:atom_siteCategory'}->{'PDBx:atom_site'}->{$id}-
{PDBx:Cartn_x'};
 print "X: $X\n";
 $Y = data->{'PDBx:atom_siteCategory'}->{'PDBx:atom_site'}->{$id}-
{PDBx:Cartn_y'};
 print "Y: $Y\n";
 $Z = data->{'PDBx:atom_siteCategory'}->{'PDBx:atom_site'}->{$id}-
{PDBx:Cartn_z'};
 print "Z: $Z\n";
 $Atom_Type = data->{'PDBx:atom_siteCategory'}->{'PDBx:atom_site'}->{$id}-
{PDBx:label_atom_id'};
 print "Atom_Type: $Atom_Type\n";
 $Error = data->{'PDBx:atom_siteCategory'}->{'PDBx:atom_site'}->{$id}-
{PDBx:B_iso_or_equiv'};
 print "Error: $Error\n";
 print "----------\n";
}
print "\n";

print "Gene table\n";

print "AMP_ID: $AMP_ID\n";
print "\n";

print "Article table\n";
print "AMP_ID: $AMP_ID\n";
$Doi = $data->{'PDBx:citationCategory'}->{'PDBx:citation'}->{'PDBx:database_id_DOI'};
print "Doi: $Doi\n";
$Volume = $data->{'PDBx:citationCategory'}->{'PDBx:citation'}->{'PDBx:journal_volume'};
print "Volume: $Volume\n";
$Year = $data->{'PDBx:citationCategory'}->{'PDBx:citation'}->{'PDBx:year'};
print "Year: $Year\n";

@allAuthors = keys(%{$data->{'PDBx:citation_authorCategory'}->{'PDBx:citation_author'}});
initializing 'authOrd' hash table
%authOrd;
foreach my $thisAuthor (@allAuthors) {
 $order = $data->{'PDBx:citation_authorCategory'}->{'PDBx:citation_author'}->{$thisAuthor}->{'ordinal'};
 $authOrd{$thisAuthor} = $order;
}
@keys = sort { $authOrd{$a} <=> $authOrd{$b} } keys(%authOrd);
@vals = @authOrd{@keys};

joining list of authors in a single line
$Authors = join('; ', @keys);
print "Authors: $Authors\n";

$Article_Title = $data->{'PDBx:citationCategory'}->{'PDBx:citation'}->{'PDBx:title'};
print "Article_Title: $Article_Title\n";

$Journal_Article = $data->{'PDBx:citationCategory'}->{'PDBx:citation'}->{'PDBx:journal_abbrev'};
print "Journal_Article: $Journal_Article\n";

$Start_Page = $data->{'PDBx:citationCategory'}->{'PDBx:citation'}->{'PDBx:page_first'};
print "Start_Page: $Start_Page\n";

$Start_End = $data->{'PDBx:citationCategory'}->{'PDBx:citation'}->{'PDBx:page_last'};
print "Start_End: $Start_End\n";

print "Inserted_By table\n";
print "AMP_ID: $AMP_ID\n";
print "Bioparser: 1\n";
print "Approval_Status: Approved\n";
Required Perl script needed for calculating the molecular weight of a sequence (}

#�다요

Perl program which reads calculates the weight of a sequence
#
Written by: AbrAhAm HerrerA (2016)
#--

sub weightMol {
 my ($string) = @_;
 # initializing total sum
 $sum = 0;
 # removing carriage return if any
 chomp($string);
 # iterating from sequence to add their molecular weight
 foreach $char (split //, $string) {
 # collecting the weight in the variable $sum
 $sum += $molWeight{$char};
 }
 # adding the hydrogen end to the sum
 #print "Adding hydrogen end value ($hydroEnd) to this total\n\n";
 $sum += $hydroEnd;
 # return final addition
 return $sum;
} # ends subroutine

hash table with molecular weights
%molWeight = (
 A => 71.0782,
 C => 103.143,
 D => 115.0877,
 E => 129.1143,
 F => 147.1741,
 G => 57.0516,
 H => 137.1396,
 I => 113.1579,
 K => 128.1726,
L => 113.1579,
M => 131.196,
N => 114.1029,
P => 97.1155,
Q => 128.1295,
R => 156.186,
S => 87.0776,
T => 101.1042,
V => 99.1313,
W => 186.2102,
Y => 163.1735,
);
hydrogen end value
$hydroEnd = 18.015;

Output from running the main Perl script.

D:\wdir\URI\thesis\RCSB-PDB>perl read-pdb-xml.pl
Reading file: AntiMPep-from-PDB-161017/1zmh.xml.

Peptide table
AMP_ID: AMP1ZMH
Accession_No: P59666
Name: Neutrophil defensin 2
AA_sequence: CYCRIPACIAGERRYATCIYQGRLWAFC
Mol_weight: 3391.0329
Notes: Crystal structure of related defensin
Length_seq: 29

3D_Structure table
AMP_ID: AMP1ZMH
PDB_ID: 1ZMH

Amino_Acid_Address table
AMP_ID: AMP1ZMH
AA_Names: CYS
Chain: A,B,C,D
Length_seq: 29
Sequence_AA_No: 1
Phi:
Psi:

Atomic_Coordinates table
MULTIPLE ENTRIES IN DATABASE (Total # of entries: 1099)
Below is an example; entries 1 -- 10
Atom_num: 1
AA_Names: CYS
Atom_Names: N
X: 2.916
Y: 0.742
Z: 1.707
Atom_Types: N
Error: 22.08

Atom_num: 2
AA_Names: CYS
Atom_Names: C
X: 4.174
Y: 0.055
Z: 1.212
Atom_Types: CA
Error: 20.52

Atom_num: 3
AA_Names: CYS
Atom_Names: C
X: 4.796
Y: -0.780
Z: 2.312
Atom_Types: C
Error: 18.76

Atom_num: 4
AA_Names: CYS
Atom_Names: O
X: 4.618
Y: -0.466
Z: 3.490
Atom_Types: O
Error: 19.14

Atom_num: 5
AA_Names: CYS
Atom_Names: C
X: 5.207
Y: 1.035
Z: 0.718
Atom_Types: CB
Error: 21.88

Atom_num: 6
AA_Names: CYS
Atom_Names: S
X: 4.711
Y: 2.136
Z: -0.633
Atom_Types: SG
Error: 25.15

Atom_num: 7
AA_Names: TYR
Atom_Names: N
X: 5.555
Y: -1.819
Z: 1.931
Atom_Types: N
Error: 19.49

Atom_num: 8
AA_Names: TYR
Atom_Names: C
X: 6.124
Y: -2.795
Z: 2.903
Atom_Types: CA
Error: 18.71

Atom_num: 9
AA_Names: TYR
Atom_Names: C
X: 7.462
Y: -3.278
Z: 2.366
Atom_Types: C
Error: 19.99

Atom_num: 10
AA_Names: TYR
Atom_Names: O
X: 7.547
Y: -3.654
Z: 1.190
Atom_Types: O
Error: 21.78

Gene table
AMP_ID: AMP1ZMH

Article table
AMP_ID: AMP1ZMH
Doi: 10.1074/jbc.M503084200
Volume: 280
Year: 2005
Authors: Xie, C.; Prahl, A.; Ericksen, B.; Wu, Z.; Zeng, P.; Li, X.; Lu, W.Y.; Lubkowski, J.; Lu, W.
Article_Title: Reconstruction of the conserved beta-bulge in mammalian defensins using D-amino acids.
Journal_Article: J.Biol.Chem.
Start_Page: 32921
Start_End: 32929

Inserted_By table
AMP_ID: AMP1ZMH
Bioparser: 1
Approval_Status: Approved

D:\wdir\URI\thesis\RCSB-PDB>
APPENDIX E

ER Diagram

An entity relationship (ER) diagram is a graphical way of displaying information on how an object relates within the system. The main components of the AMPed ER diagram are:

- Entities; represented by rectangles. An entity is an object or concept about which you want to store information.

![Entity](image)

- Actions, represented by diamond shapes, show how two entities share information in the database.

![Relationship](image)

- Attributes, represented by ovals, are characteristic of the entity. A key attribute, represented with an underline, is a unique characteristic of an entity.

![Attribute](image)

A multivalued attribute can have more than one value.

![Attribute](image)

- Connecting lines are solid lines that connect attributes to show the relationships of entities in the diagram.

- Cardinality specifies how many instances of an entity relate to one instance of another entity.
Figure 43: AMPed ER diagram (High Definition)
BIBLIOGRAPHY

http://www.5z.com/24APS/24APS.2015.105
